WO2014061532A1 - Apparatus for depositing organic material - Google Patents

Apparatus for depositing organic material Download PDF

Info

Publication number
WO2014061532A1
WO2014061532A1 PCT/JP2013/077523 JP2013077523W WO2014061532A1 WO 2014061532 A1 WO2014061532 A1 WO 2014061532A1 JP 2013077523 W JP2013077523 W JP 2013077523W WO 2014061532 A1 WO2014061532 A1 WO 2014061532A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic material
organic
vapor deposition
Prior art date
Application number
PCT/JP2013/077523
Other languages
French (fr)
Japanese (ja)
Inventor
有紀 今田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157009882A priority Critical patent/KR20150055062A/en
Publication of WO2014061532A1 publication Critical patent/WO2014061532A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to an organic material vapor deposition apparatus that can be used for the manufacture of organic devices such as organic EL and organic CMOS, and in particular, without degrading the purity of the organic material, and further without decomposing the organic material.
  • the present invention relates to a vapor deposition apparatus for an organic material that can be deposited with a composition.
  • a vacuum heating vapor deposition method is used to form an organic material.
  • organic materials such as organic EL and organic CMOS.
  • Conventional vapor deposition methods of organic materials include a point vapor deposition type and a line source type, in which a large amount of organic material is deposited in a vapor deposition crucible for vapor deposition.
  • various vapor deposition apparatuses for organic materials have been proposed (Patent Documents 1, 2, etc.).
  • Patent Document 1 describes a vapor deposition apparatus for vapor-depositing an organic EL layer.
  • a crucible in which a film forming material is stored is in contact with the bottom wall of the second processing container to be evacuated, and heat in the container is released to the atmospheric system through the second processing container. Yes.
  • the temperature in the vicinity of the portion of the crucible where the film forming material is stored is lower than or equal to the temperature of the other portion of the crucible.
  • Patent Document 2 describes a vapor deposition apparatus that can continuously supply a thin film material and can form a film continuously for a long time.
  • the vacuum vapor deposition apparatus of Patent Document 2 has a vacuum chamber in which a glass substrate can be installed and an evaporation apparatus having a heat generating part for evaporating a thin film material.
  • the glass substrate is installed in the vacuum chamber and evaporated by the evaporation apparatus.
  • the thin film material is evaporated to deposit a film of a predetermined component on the glass substrate.
  • the heat generating part is located in a vacuum chamber or a position communicating with the vacuum chamber, and is disposed in a vacuum atmosphere when depositing a thin film.
  • a thin film material feeding device that sends a thin film material from the outside of the vacuum chamber to the heat generating part is provided. Have. Cooling means for cooling the thin film material is provided upstream of the heat generating portion.
  • the organic material for the organic EL a material having high heat resistance is basically used.
  • NPD nophthyl-substituted diamine derivative
  • Alq hydroxyquinoline and aluminum complex
  • an organic material having a relatively low heat resistance is used as an organic material for organic CMOS
  • the above-described conventional vapor deposition method and the vapor deposition apparatus disclosed in Patent Documents 1 and 2 are heated for a long time or heat during heating. The purity or the like of the organic material is degraded by the load, or the organic material is decomposed. In such a state, there is a problem that the organic material cannot be used up in a pure state.
  • the object of the present invention is to solve the problems based on the prior art, and to deposit an organic material that can be deposited with a stable composition without degrading the purity of the organic material and without further decomposing the organic material. To provide an apparatus.
  • the present invention is a vapor deposition apparatus for depositing an organic material on a film-forming material in a vacuum atmosphere, the organic material is disposed, and an evaporation chamber for heating and evaporating the organic material;
  • An organic material vapor deposition apparatus characterized by having a guide portion for guiding the vapor of the organic material generated in the evaporation chamber to the film forming material, and the evaporation chamber is always kept at a lower temperature than the guide portion.
  • the heating method for the evaporation chamber is preferably an induction heating method.
  • the evaporation chamber has a filling portion in which an organic material is disposed at the bottom, and a heat dissipation member is provided at least at the bottom of the bottom and side surfaces of the filling portion.
  • the heat dissipation member is a hollow cylindrical member and is directly connected to the filling portion.
  • the heat radiating member is connected to the filling portion by welding.
  • the induction heating coil is arranged in the evaporation chamber so that the pitch of the second region other than the filling portion is narrower than the pitch of the first region having the filling portion. Preferably it is.
  • the temperature of the evaporation chamber is always kept at a lower temperature than the guide portion that guides the vapor of the organic material to the film-forming material such as the substrate.
  • the occurrence of a cold spot having a temperature lower than that of the vapor deposition chamber is suppressed, and an organic material can be deposited with a small heat load.
  • an organic material having a stable composition can be deposited on the film forming material without degrading the purity of the organic material and without further decomposing the organic material.
  • the heat load can be reduced, an organic material having low heat resistance can be deposited while maintaining a stable composition, and an organic thin film with high purity can be obtained.
  • the temperature of a filling part can be made relatively low by providing a heat radiating member in at least a bottom part among the bottom part and side surface of an evaporation part.
  • the heat dissipating member is fixed by screwing, since the vapor deposition is performed in a vacuum atmosphere, the temperature variation is noticeable depending on the grounding condition.
  • the filling portion can be stabilized and the temperature can be relatively lowered.
  • an organic material having a stable composition can be deposited with a simple heating mechanism without complicated control of the deposition.
  • FIG. 1 It is a schematic diagram which shows an example of the vapor deposition apparatus of the organic material of the 1st Embodiment of this invention. It is a schematic diagram which shows the modification of the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. It is typical sectional drawing which shows an example of the photoelectric conversion element formed by forming an organic thin film into a film using the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. (A)-(c) is typical sectional drawing which shows a part of manufacturing process of the organic thin film of the photoelectric conversion element using the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. 1 in order of a process. It is a schematic diagram which shows the principal part of the vapor deposition apparatus of the organic material of the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic view showing an example of an organic material vapor deposition apparatus according to the first embodiment of the present invention.
  • An organic material vapor deposition apparatus 10 shown in FIG. 1 is used for forming an organic film such as an organic EL and an organic CMOS, and deposits an organic material on a film formation material in a vacuum atmosphere.
  • the film forming material is, for example, the substrate 100, but is not limited thereto, and examples of the film forming material include materials in the process of manufacturing an organic EL or organic CMOS.
  • the vapor deposition apparatus 10 basically includes a vacuum vessel 12, a vacuum exhaust unit 14 that depressurizes the inside 12 a of the vacuum vessel 12 to obtain a predetermined degree of vacuum (pressure), and a control unit that controls each unit of the vapor deposition device 10. 16.
  • the control unit 16 is connected to each unit and is controlled by the control unit 16.
  • the vacuum exhaust unit 14 is connected to the vacuum vessel 12 via a pipe 15 and exhausts the interior 12a of the vacuum vessel 12 to maintain a predetermined degree of vacuum (pressure).
  • the evacuation unit 14 is controlled by the control unit 16.
  • the vacuum exhaust part 14 has various vacuum pumps generally used for a vapor deposition apparatus, and has vacuum pumps, such as a dry pump and a turbo-molecular pump.
  • the vacuum vessel 12 is provided with a pressure sensor (not shown) that measures the pressure in the interior 12 a, and this pressure sensor is connected to the control unit 16. Based on the pressure obtained by the pressure sensor, the control unit 16 operates the evacuation unit 14 to a predetermined pressure.
  • the vapor deposition apparatus 10 includes a material supply unit 20, an evaporation chamber 40, and a vapor guide unit 60 in the interior 12 a of the vacuum container 12.
  • the material supply unit 20 supplies the organic material m to a material filling unit 44 described later of the evaporation chamber 40.
  • the material supply unit 20 includes a material stock chamber 22 that stocks the organic material m, and a material supply path 24 that communicates with the material stock chamber 22.
  • the material supply path 24 is provided with a material discharge port 24 a at the tip, and is disposed in the evaporation chamber 40 so that the material discharge port 24 a is located above the center of the material filling portion 44 of the evaporation chamber 40. ing.
  • the material supply unit 20 further conducts heat conduction from the material supply path 24 to the material supply path 24 to control the material supply of the organic material m from the material supply path 24 to the evaporation chamber 40 and from the heated evaporation chamber 40 side.
  • a heat insulating pipe 28 for blocking and a heating valve 30 for preventing the vapor Vo of the organic material m from entering the material stock chamber 22 from the material discharge port 24a are provided.
  • the heat insulating tube 28 is made of, for example, ceramics.
  • the heat insulating pipe 28 does not block the material supply path 24, and is always in a state in which the organic material m can move.
  • the supply valve 26 and the heating valve 30 are, for example, slid in the horizontal direction (left-right direction on the paper surface), thereby blocking or releasing the material supply path 24 to supply the organic material m to the evaporation chamber 40. Adjust.
  • a slide mechanism (not shown) for sliding the supply valve 26 and the heating valve 30 in the horizontal direction is provided. This slide mechanism is connected to the control unit 16, and the control unit 16 slides the supply valve 26 and the heating valve 30 in the horizontal direction.
  • the material supply path 24 is blocked by inserting the supply valve 26 and the heating valve 30 into the material supply path 24, and the material supply path 24 is released by pulling out.
  • the material supply unit 20 drops and supplies the organic material m to the material filling unit 44 of the evaporation chamber 40 by sliding and releasing the heating valve 30 and the supply valve 26 in the horizontal direction by a slide mechanism. After a certain amount of the organic material m is supplied, the supply valve 26 and the heating valve 30 are slid in a direction to be shut off by the slide mechanism, and the dropping of the organic material m is stopped.
  • the evaporation chamber 40 heats and evaporates the organic material m, and moves the generated vapor Vo to the vapor guide unit 60.
  • the evaporation chamber 40 includes a housing 42, a material filling unit 44, an induction heating coil 48, and a high frequency power supply 50 connected to the induction heating coil 48.
  • the high-frequency power source 50 is used for heating the organic material m, and various types generally used for induction heating can be used.
  • the housing 42 is made of, for example, a hollow cylindrical member.
  • a material filling portion 44 is detachably provided on the bottom portion of the housing 42 by various methods such as screwing or engagement. Note that the material filling portion 44 may be integrated with the housing 42.
  • a transport pipe 62 (described later) of the steam guide unit 60 is connected to the side surface 42 a of the housing 42, and the vapor Vo of the organic material m generated in the material filling unit 44 moves to the transport pipe 62.
  • the material filling unit 44 functions as an evaporating dish and has a recess in which the organic material m is disposed.
  • the material filling portion 44 for example, four heat radiating members 46 are directly provided on the bottom surface 44a, and two heat radiating members 46 are directly provided on the side surface 44b. None of the heat radiating members 46 are in contact with the vacuum vessel 12.
  • the heat radiating member 46 is constituted by, for example, a hollow cylindrical member.
  • the configuration of the heat radiating member 46 is not limited to the hollow cylindrical member, and may be a truncated cone-shaped hollow member whose diameter decreases toward the tip, or a trumpet-shaped hollow member whose diameter increases toward the tip. Good.
  • the heat radiating member 46 is not limited to a hollow cylinder, and may be other shapes, for example, a polygon such as a hollow triangle or a hollow quadrilateral as long as it is hollow.
  • a heat radiating fin can also be used as the heat radiating member 46.
  • the heat radiating member 46 is directly provided in the material filling portion 44.
  • the direct provision means that direct connection is made by, for example, welding or brazing without using a member such as a screw or a pin.
  • heat dissipating member 46 is fixed by screwing, heat is conducted to the screw due to the grounding condition, etc., heat dissipating from the heat dissipating member 46 may not be stable, and the heat dissipating function may not be sufficiently exhibited. For this reason, it is preferable that the heat dissipation member 46 is directly connected to the material filling portion 44 by welding or the like.
  • the heat dissipation member 46 is not limited to being provided on both the bottom surface 44a and the side surface 44b.
  • four heat dissipating members 46 may be directly connected to the bottom surface 44 a as long as it is provided on either the bottom surface 44 a or the side surface 44 b.
  • an induction heating coil 48 is disposed so as to surround the casing 42 and the material filling portion 44, and is connected to a high frequency power supply 50.
  • the high frequency power supply 50 is connected to the control unit 16, and the control unit 16 controls the temperatures of the housing 42 and the material filling unit 44.
  • an induction heating method is used in which when a high frequency is applied from the high frequency power supply 50 to the induction heating coil 48, the casing 42 and the material filling portion 44 generate heat by electromagnetic induction. For this reason, as compared with the resistance heating method, the evaporation chamber 40 can be rapidly heated and lowered.
  • the lower part (first region) where the material filling part 44 is present and the upper part (second region) where the material filling part 44 is absent by the casing 42 are separately heated, and the respective temperatures are controlled by the control part. 16 may be controlled. Further, the induction heating coil 48 has a high temperature when the pitch is narrowed, and conversely, the temperature is low when the pitch is widened.
  • the upper part can always be at a higher temperature than the lower part.
  • a temperature difference can be produced between the upper part and the lower part without separately controlling the temperatures of the upper part and the lower part.
  • the housing 42 and the material filling portion 44 need to be configured with electromagnetic induction, and are configured with, for example, stainless steel, titanium, or graphite. Moreover, since it is necessary to connect the heat radiating member 46 to the material filling part 44 by welding or the like, it is preferable to use stainless steel, titanium or the like for the housing 42 and the material filling part 44.
  • the vapor guide unit 60 guides the vapor Vo generated in the material filling unit 44 to the substrate 100, and is heated and held at a temperature at which the vapor Vo state can be maintained during vapor deposition.
  • the steam guide section 60 includes a transport pipe 62, a discharge section 64, a heating resistor 66 for heating the transport pipe 62 and the discharge section 64, and a power supply section 68 connected to the heating resistor 66.
  • the power supply unit 68 is connected to the control unit 16.
  • As the power source unit 68 a general unit used for resistance heating can be appropriately used.
  • the substrate 100 is disposed with the surface 100a facing the ejection surface 64a of the ejection unit 64.
  • the substrate 100 is not particularly limited as long as it is used for forming an organic thin film.
  • the vapor Vo of the organic material m evaporated in the material filling portion 44 of the evaporation chamber 40 extends from the material filling portion 44 to the housing 42, the transport pipe 62 and the discharge portion 64 of the vapor guide portion 60.
  • the path is called a vapor deposition path.
  • the transport pipe 62 guides the vapor Vo of the organic material m generated in the evaporation chamber 40 to the discharge part 64, and is made of, for example, a tubular member.
  • the discharge part 64 guides the vapor Vo of the organic material m to the surface 100a of the substrate 100, and is made of, for example, a tubular member.
  • the discharge part 64 has a plurality of openings 64b formed on the discharge surface 64a, and has a configuration like a shower head.
  • the vapor Vo of the organic material m is emitted from the plurality of openings 64b, and an organic thin film is formed on the surface 100a of the substrate 100.
  • the heating resistor 66 is disposed so as to surround the steam guide portion 60 (the transport pipe 62 and the discharge portion 64), and is composed of, for example, various wires used for resistance heating.
  • the heating method of the steam guide unit 60 is that when a current is applied to the heating resistor 66 from the power supply unit 68, the heating resistor 66 generates heat, and the steam guide unit 60 (the transport pipe 62 and the discharge unit 64) is heated to a predetermined temperature. This is a resistance heating method that heats the material.
  • the control unit 16 adjusts the amount of current applied from the power supply unit 68 to the heating resistor 66 to control the temperature of the steam guide unit 60 (the transport pipe 62 and the discharge unit 64).
  • the heating method of the steam guide unit 60 is not limited to the resistance heating method, and may be a dielectric heating method using an induction heating coil. Further, the transport pipe 62 and the discharge unit 64 may be heated separately, and the respective temperatures may be controlled by the control unit 16.
  • the transport pipe 62 and the discharge part 64 can be made of the same material as the housing 42 and the material filling part 44. However, since the transport pipe 62 and the discharge part 64 do not have to be a dielectric heating method, the material is not particularly limited as long as it can withstand the temperature at which the organic material m can be maintained in the state of the vapor Vo. .
  • the vapor deposition apparatus 10 it is preferable to increase the temperature as the substrate 100 is closer in the order of the material filling unit 44, the casing 42, the transport pipe 62, and the discharge unit 64 during vapor deposition. That is, it is preferable to have a temperature gradient in which the temperature sequentially increases in the vapor deposition path from the evaporation of the organic material m to the arrival of the substrate 100. Thereby, generation
  • the powdery organic material m is supplied to the material stock chamber 22 of the material supply unit 20.
  • the organic material m is blocked in the material supply path 24 by the supply valve 26 and the heating valve 30.
  • the inside 12a of the vacuum vessel 12 is depressurized to a predetermined pressure by the vacuum exhaust part 14, and the inside 12a of the vacuum vessel 12 is made into a vacuum atmosphere.
  • the supply valve 26 and the heating valve 30 are slid to supply a predetermined amount of the organic material m to the material filling unit 44.
  • the evaporation chamber 40 is heated using the high-frequency power source 50, and the vapor guide unit 60 is heated using the power source unit 68 to a temperature at which the organic material m can be deposited, and is controlled by the control unit 16 so as to maintain the temperature.
  • the steam guide portion 60 is heated and held at a temperature higher than that of the housing 42 because the steam Vo passes therethrough.
  • the material filling unit 44 is heated to a temperature at which the organic material m can be deposited, since the heat is radiated by the heat radiating member 46, the temperature of the material filling unit 44 is always lower than that of the housing 42 and the steam guide unit 60. .
  • the temperature is preferably increased as the material is closer to the substrate 100 in the order of the material filling unit 44, the casing 42, the transport pipe 62, and the discharge unit 64. Then, the organic material m is evaporated, and the vapor Vo reaches the surface 100a of the substrate 100 through the evaporation chamber 40 and the discharge part 64, and an organic thin film is formed.
  • the inside of the vacuum vessel 12 is depressurized to a predetermined pressure by the vacuum exhaust unit 14 and then the evaporation chamber 40 is subjected to induction heating using the high frequency power source 50 when the organic material m is vapor deposited.
  • the vapor guide section 60 is heated to a temperature at which the organic material m can be deposited by resistance heating using the power supply section 68 and the temperature is maintained, the material filling section 44 of the evaporation chamber 40 can be placed anywhere in the vacuum container 12 or the like.
  • the heat is radiated by the heat radiating member 46 that is not in contact, the temperature is relatively lowest, and vapor deposition is performed in a state where the occurrence of cold spots in other vapor deposition paths is suppressed. Therefore, the vapor Vo comes into contact with various places until the vapor Vo of the organic material m passes from the material filling portion 44 through the housing 42 and the evaporation chamber 40 and exits from the discharge portion 64 of the vapor guide portion 60. However, it does not cool and temporarily adheres as an organic substance, and the organic material m is not overheated. Thereby, the organic material m can be vapor-deposited with a stable composition, and an organic thin film can be formed on the surface 100 a of the substrate 100.
  • the temperature of the material filling unit 44 is always lower than that of the housing 42 and the steam guide unit 60. However, even when the temperature is lowered, the temperature of the material filling unit 44 is always low. Kept.
  • the dielectric heating method is used for heating the evaporation chamber 40, the time required for heating can be shortened, and when the heating is stopped, the temperature quickly decreases. Thereby, after the organic material m supplied to the evaporation chamber 40 is consumed, the time required for supplying the organic material m to the evaporation chamber 40 again can be shortened.
  • FIG. 3 is a schematic cross-sectional view showing an example of a photoelectric conversion element formed by forming an organic thin film using the organic material vapor deposition apparatus of the first embodiment shown in FIG.
  • a photoelectric conversion element 110 shown in FIG. 3 converts a visible light image into an electric signal, and is formed on an insulating layer 114 formed on a substrate 112.
  • the photoelectric conversion element 110 includes a pixel electrode (lower electrode) 116, an organic layer 118, a counter electrode (upper electrode) 120, a protective film (sealing layer) 122, a color filter 126, a partition wall 128, and a light shielding layer. 129 and an overcoat layer 130.
  • a reading circuit 140 and a counter electrode voltage supply unit 142 are formed on the substrate 112.
  • the substrate 112 for example, a glass substrate or a semiconductor substrate such as Si is used.
  • a plurality of pixel electrodes 116 are formed on the surface of the insulating layer 114.
  • the pixel electrodes 116 are arranged in a one-dimensional or two-dimensional manner, for example.
  • a first connection portion 144 that connects the pixel electrode 116 and the readout circuit 140 is formed in the insulating layer 114.
  • a second connection portion 146 that connects the counter electrode 120 and the counter electrode voltage supply unit 142 is formed.
  • the second connection portion 146 is formed at a position not connected to the pixel electrode 116 and the organic layer 118.
  • the first connection portion 144 and the second connection portion 146 are made of a conductive material.
  • a wiring layer 148 made of a conductive material for connecting the readout circuit 140 and the counter electrode voltage supply unit 142 to, for example, the outside of the photoelectric conversion element 110 is formed inside the insulating layer 114.
  • the insulating layer 114 formed on the substrate 112 is collectively referred to as a circuit substrate 111.
  • the circuit board 111 is also referred to as a CMOS substrate.
  • An organic layer 118 is formed so as to cover the plurality of pixel electrodes 116 and to avoid the second connection portion 146.
  • the organic layer 118 includes an electron blocking layer 150 and a photoelectric conversion layer 152.
  • the electron blocking layer 150 is formed on the pixel electrode 116 side, and the photoelectric conversion layer 152 is formed on the electron blocking layer 150.
  • the electron blocking layer 150 is a layer for suppressing injection of electrons from the pixel electrode 116 to the photoelectric conversion layer 152.
  • the photoelectric conversion layer 152 generates an electric charge according to the amount of received light such as incident light L (visible light), and includes an organic photoelectric conversion material.
  • the counter electrode 120 is an electrode facing the pixel electrode 116 and is provided so as to cover the photoelectric conversion layer 152.
  • a photoelectric conversion layer 152 is provided between the pixel electrode 116 and the counter electrode 120.
  • the counter electrode 120 is made of a conductive material that is transparent to incident light (visible light) in order to make light incident on the photoelectric conversion layer 152.
  • the counter electrode 120 is electrically connected to the second connection portion 146 disposed outside the photoelectric conversion layer 152, and is connected to the counter electrode voltage supply portion 142 via the second connection portion 146. Yes.
  • the counter electrode voltage supply unit 142 applies a predetermined voltage to the counter electrode 120 via the second connection unit 146.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
  • the pixel electrode 116 is an electrode for collecting electric charges for collecting electric charges generated in the organic layer 118 (photoelectric conversion layer 152).
  • the pixel electrode 116 is connected to the readout circuit 140 through the first connection portion 144.
  • the readout circuit 140 is provided on the substrate 112 corresponding to each of the plurality of pixel electrodes 116, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 116.
  • the reading circuit 140 is constituted by, for example, a CCD, a MOS circuit, a TFT circuit, or the like, and is shielded from light by a light shielding layer (not shown) provided in the insulating layer 114.
  • a light shielding layer (not shown) provided in the insulating layer 114.
  • a high-concentration n region surrounded by a p region is formed on the substrate 112, and the first connection portion 144 is connected to the n region.
  • a read circuit 140 is provided in the p region.
  • the n region functions as a charge accumulation unit that accumulates charges of the photoelectric conversion layer 152.
  • the signal charge accumulated in the n region is converted into a signal corresponding to the amount of charge by the readout circuit 140 and output to the outside of the photoelectric conversion element 110 via the wiring layer 148, for example.
  • the protective film 122 is for protecting the organic layer 118 including the photoelectric conversion layer 152 from deterioration factors such as water molecules and oxygen.
  • the protective film 122 is formed so as to cover the counter electrode 120, and is formed of, for example, a silicon oxynitride film (SiON film). Further, the incident light L (visible light) reaches the organic layer 118 through the protective film 122. Therefore, the protective film 122 is transparent to light having a wavelength detected by the organic layer 118, for example, visible light.
  • the color filter 126 is formed at a position facing each pixel electrode 116 on the protective film 122.
  • the partition wall 128 is provided between the color filters 126 on the protective film 122 and is for improving the light transmission efficiency of the color filter 126.
  • the light shielding layer 129 is formed in a region other than the region (effective pixel region) provided with the color filter 126 and the partition wall 128 on the protective film 122, and light is incident on the photoelectric conversion layer 152 formed outside the effective pixel region. Is to prevent.
  • the color filter 126, the partition wall 128, and the light shielding layer 129 are formed by, for example, a photolithography method.
  • the overcoat layer 130 is for protecting the color filter 126 from subsequent processes and is formed so as to cover the color filter 126, the partition wall 128 and the light shielding layer 129.
  • one pixel electrode 116 in which the organic layer 118, the counter electrode 120, and the color filter 126 are provided above, is a unit pixel.
  • the overcoat layer 130 a known layer used for an organic solid-state image sensor is used.
  • a polymer material such as an acrylic resin, a polysiloxane resin, a polystyrene resin, or a fluorine resin, or an inorganic material such as silicon oxide or silicon nitride can be used as appropriate.
  • the overcoat layer 130 may be formed in a predetermined vacuum or non-vacuum. Note that the overcoat layer 130 can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 126.
  • the counter electrode 120 and the pixel electrode 116 are made of a conductive material.
  • a conductive material a metal, an alloy, a metal oxide, an electrically conductive compound, a mixture thereof, or the like can be used. Since light enters from the counter electrode 120, the counter electrode 120 needs to be sufficiently transparent to the light to be detected.
  • Specific examples of the counter electrode 120 include tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxides metal thin films such as gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, Examples thereof include organic conductive materials such as polythiophene and polypyrrole, and laminates of these with ITO.
  • the pixel electrode 116 may have transparency, or conversely, may use a material that does not have transparency and reflects light.
  • the pixel electrode 116 is made of tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • Conductive metal oxides metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metals, and also between these metals and conductive metal oxides Examples thereof include mixtures or laminates, inorganic conductive substances such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene and polypyrrole, and laminates of these with ITO. Note that a method for forming the electrode is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material described above.
  • the electron blocking layer 150 preferably contains a compound represented by the following general formula (I).
  • R 11 to R 18 and R ′ 11 to R ′ 18 are each independently a hydrogen atom, halogen atom, alkyl group, aryl group, heterocyclic group, hydroxyl group, amino group, or mercapto. Represents a group, and these may further have a substituent. However, any one in R 15 ⁇ R 18 is linked to any one in R '15 ⁇ R' 18, to form a single bond.
  • a 11 and A 12 each independently represent a substituent represented by the following general formula (A-1), and any one of R 11 to R 14 and any of R ′ 11 to R ′ 14 Replace as one.
  • Y independently represents a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, or a silicon atom, and these may further have a substituent.
  • Ra 1 to Ra 8 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heterocyclic group, and these may further have a substituent. . At least two members out of Ra 1 to Ra 8 may be bonded to each other to form a ring. * Represents a bonding position.
  • Xa represents a single bond, an oxygen atom, a sulfur atom, an alkylene group, a silylene group, an alkenylene group, a cycloalkylene group, a cycloalkenylene group, an arylene group, a divalent heterocyclic group, or an imino group, and these further represent a substituent. You may have.
  • S 11 independently represents the following substituent (S 11 ) and is substituted as any one of Ra 1 to Ra 8 .
  • Each n independently represents an integer of 1 to 4.
  • R 1 to R 3 each independently represents a hydrogen atom or an alkyl group. At least two of R 1 to R 3 may be bonded to each other to form a ring.
  • the electron blocking layer 150 uses an organic compound (organic material) represented by the general formula (I) as an electron blocking material.
  • organic compound organic material represented by the general formula (I)
  • the compound 1 shown below is a specific example of the said general formula (I), and this compound 1 is a powder.
  • an electron blocking material of Compound 2 shown below can be used as the electron blocking layer 150.
  • This compound 2 is a powder.
  • the thickness of the electron blocking layer 150 is preferably 10 nm to 300 nm, more preferably 30 nm to 150 nm, and particularly preferably 50 nm to 100 nm.
  • the organic material constituting the photoelectric conversion layer 152 preferably contains at least one of p-type organic semiconductor and n-type organic semiconductor.
  • p-type organic semiconductor and n-type organic semiconductor will be described.
  • the p-type organic semiconductor is a donor organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • the metal complex etc. which it has as can be used.
  • any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
  • triarylamine compound is preferable.
  • triarylamine compounds represented by the following general formula (II) are more preferable.
  • Z 1 is a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 and L 3 each represents an unsubstituted methine group or a substituted methine group.
  • D 1 represents an atomic group having a hetero atom.
  • n 1 represents an integer of 0 or more.
  • Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • the condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Can be mentioned.
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6 -Dione etc.
  • (B) pyrazolinone nucleus for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl- 2-pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, etc.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, and 1,3-diphenyl. 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), and 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and derivatives thereof.
  • the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-arylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl).
  • 3-position heterocyclic-substituted rhodanine such as rhodanine.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidine Zeon etc.
  • (N) Imidazolin-5-one nucleus For example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione, etc.
  • Benzothiophen-3-one nucleus for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
  • Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • the ring represented by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thio Barbituric acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone A nucleus, more preferably a 1,3-dicarbony
  • Z 3 represents a ring containing at least 3 carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • Z 3 can be selected from the ring formed by Z 1 and is preferably a 1,3-dicarbonyl nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body), Particularly preferred are 1,3-indandione nucleus, barbituric acid nucleus, 2-thiobarbituric acid nucleus and derivatives thereof.
  • the structure represented by D 1 functions as a donor part and the structure represented by Z 1 as an acceptor part, and both are linked via L 1 or the like. It has been found useful as a conversion material. Further, when used in combination with n-type semiconductor material, such as C 60 (acceptor), by controlling the interaction between acceptor parts, when used as a co-deposited film with C 60, to express the high hole-transporting property It was found that things could be done.
  • the structure of the acceptor part and the interaction can be controlled by introducing a substituent that causes steric hindrance.
  • the barbituric acid nucleus and 2-thiobarbituric acid nucleus it is possible to control the interaction between molecules preferably by substituting two hydrogen atoms at two N positions with a substituent.
  • substituent W include those described below, more preferably an alkyl group, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group.
  • the ring represented by Z 1 is preferably a group represented by the following general formula (IV) or a group represented by the following general formula (V).
  • R 41 to R 44 each independently represents a hydrogen atom or a substituent.
  • R 41 , R 44 and R 45 to R 48 each independently represent a hydrogen atom or a substituent.
  • R 41 to R 44 each independently represents a hydrogen atom or a substituent.
  • the substituent for example, those mentioned as the substituent W can be applied.
  • R 41 to R 44 are adjacent to each other and can be bonded to form a ring (the ring to be formed includes ring R described later), and R 42 and R 43 are bonded to each other. It is preferable to form a ring (for example, a benzene ring, a pyridine ring, a pyrazine ring).
  • R 41 to R 44 are preferably all hydrogen atoms.
  • R 41 , R 44 , R 45 to R 48 each independently represents a hydrogen atom or a substituent.
  • substituent W for example, those mentioned as the substituent W can be applied.
  • R 41 , R 44 and R 45 to R 48 are preferably all hydrogen atoms.
  • the ring represented by Z 1 is a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone form), it is preferably a group represented by the following general formula (VI).
  • the following R 81 and R 82 each independently represent a hydrogen atom or a substituent.
  • R 83 represents an oxygen atom, a sulfur atom or a substituent.
  • R 81 and R 82 each independently represents a hydrogen atom or a substituent.
  • substituent W for example, those mentioned as the substituent W can be applied.
  • R 81 and R 82 are each independently preferably an alkyl group, an aryl group or a heterocyclic group (such as 2-pyridyl), and an alkyl group having 1 to 6 carbon atoms (eg, methyl, ethyl, n-propyl, t-). (Butyl) is more preferable.
  • R 83 represents an oxygen atom, a sulfur atom or a substituent, and R 83 preferably represents an oxygen atom or a sulfur atom.
  • substituents in which the bond is a nitrogen atom and those having a carbon atom are preferable.
  • a nitrogen atom an alkyl group (having 1 to 12 carbon atoms) or an aryl group (having 6 to 12 carbon atoms) is preferable.
  • Specific examples include a methylamino group, an ethylamino group, a butylamino group, a hexylamino group, a phenylamino group, and a naphthylamino group.
  • a carbon atom it is sufficient that at least one electron-withdrawing group is substituted.
  • Examples of the electron-withdrawing group include a carbonyl group, a cyano group, a sulfoxide group, a sulfonyl group, and a phosphoryl group. It is good to have. Examples of this substituent include W.
  • R 83 is preferably one that forms a 5-membered or 6-membered ring containing a carbon atom at the bond, and specifically includes those having the following structures.
  • Ph in the above group represents a phenyl group.
  • L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group.
  • the substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring).
  • the substituent of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
  • n represents an integer of 0 or more, preferably 0 or more and 3 or less, and more preferably 0.
  • N 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
  • D 1 represents an atomic group having a hetero atom.
  • the D 1 is preferably a group containing —NR a (R b ), and the D 1 may further have an aryl group substituted with —NR a (R b ) (preferably, may have a substituent).
  • R a and R b each independently represent a hydrogen atom or a substituent, and examples of the substituent represented by R a and R b include the substituent W, but the substituent may preferably have a substituent.
  • An aliphatic hydrocarbon group preferably an alkyl group or alkenyl group which may have a substituent
  • an aryl group preferably a phenyl group which may have a substituent
  • a heterocyclic group preferably a 5-membered ring such as furan, thiophene, pyrrole or oxadiazole.
  • R a and R b are an aliphatic hydrocarbon group, an aryl group or a heterocyclic group, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, Aryloxycarbonyl group, acylamino group, sulfonylamino group, sulfonyl group, silyl group, aromatic heterocyclic group, more preferably alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, silyl group, aromatic A heterocyclic group, more preferably an alkyl group, an aryl group, an alkoxy group, an aryloxy group, a silyl group, and an aromatic heterocyclic group.
  • those exemplified for the substituent W can be applied.
  • R a and R b are preferably an alkyl group, an aryl group, or an aromatic heterocyclic group.
  • R a and R b are particularly preferably an alkyl group, an alkylene group linked to L to form a ring, or an aryl group, and more preferably an alkyl group having 1 to 8 carbon atoms, and L to 5 to 6 linked to L.
  • R a and R b are a substituent (preferably an alkyl group, an alkenyl group, or a group having these groups as a substituent), these groups are those of the aryl group substituted by —NR a (R b ).
  • a ring preferably a 6-membered ring
  • the case represented by the general formula (VIII), (IX) or (X) described later is preferable.
  • R a and R b are bonded to each other to form a ring (the ring to be formed includes a ring R described later, preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring).
  • R a and R b may be bonded to a substituent in L (representing any one of L 1 , L 2 , and L 3 ) to form a ring (preferably a 5- or 6-membered ring, more preferably May form a 6-membered ring).
  • D 1 is preferably an aryl group substituted with an amino group at the para position (preferably a phenyl group). In this case, it is preferably represented by the following general formula (IID). This amino group may be substituted.
  • the substituent of this amino group (preferably an alkyl group or alkenyl group which may have a substituent) is bonded to a hydrogen atom of the aromatic ring (preferably benzene ring) skeleton of the aryl group or a substituent to form a ring.
  • the ring to be formed include a ring R described later, preferably a 6-membered ring).
  • R 1 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 2 and R 5 , and R 4 and R 6 may be bonded to each other to form a ring.
  • R 811 to R 814 , R 820 to R 824 , and R 830 to R 834 each independently represent a hydrogen atom or a substituent. Further, at least two of R 811 to R 814 , R 820 to R 824 , and R 830 to R 834 may be bonded to each other to form a ring. It is also preferred that D 1 is represented by the following general formula (VII).
  • R 91 to R 98 each independently represents a hydrogen atom or a substituent.
  • m represents an integer of 0 or more.
  • Rx and Ry each independently represent a hydrogen atom or a substituent.
  • Rx and Ry bonded to each 6-membered ring may be different substituents.
  • R 91 and R 92 , R 92 and Rx, Rx and R 94 , R 94 and R 97 , R 93 and Ry, Ry and R 95 , R 95 and R 96 , R 97 and R 98 are independent of each other. Thus, a ring may be formed.
  • the bond with L 3 (L 1 when n 1 is 0) may be at the position of R 91 , R 92 , R 93 , and in that case, the bond with L 3 in the general formula (VII)
  • a substituent or a hydrogen atom corresponding to R 91 , R 92 , or R 93 may be bonded to the site represented as, and adjacent Rs may be bonded to form a ring.
  • adjacent Rs may be bonded to form a ring
  • R 91 is a bonding part with L 3 (L 1 when n 1 is 0)
  • R 90 and R 93 may bond to form a ring
  • R 92 is L 3 (when n 1 is 0). Is bonded to L 1 ), and R 90 is bonded to the bonded portion of the general formula (VII), R 90 and R 91 , and R 90 and R 93 are bonded to form a ring.
  • R 93 is a bonding portion with L 3 (L 1 when n 1 is 0)
  • R 90 is bonded to the bonding portion of the general formula (VII).
  • R 90 and R 91 , R 91 and R 92 may be bonded to each other to form a ring.
  • the above ring is preferably a benzene ring.
  • the substituent of R 91 to R 98 , Rx and Ry includes the substituent W.
  • R 91 to R 96 are all preferably hydrogen atoms, and Rx and Ry are preferably both hydrogen atoms.
  • R 91 to R 96 are preferably hydrogen atoms, and Rx and Ry are also preferably hydrogen atoms.
  • R 97 and R 98 each independently preferably represent a phenyl group which may be substituted, and examples of the substituent include the substituent W, and an unsubstituted phenyl group is preferable.
  • m represents an integer of 0 or more, and 0 or 1 is preferable. It is also preferred that D 1 is a group represented by the general formula (VIII), (IX) or (X).
  • R 51 to R 54 each independently represent a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 52 and R 53 , or R 51 and R 52 may be linked to form a ring.
  • R 61 to R 64 each independently represents a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 62 and R 63 , or R 61 and R 62 may be linked to form a ring.
  • R 71 to R 73 each independently represents a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 72 and R 73 may be linked to form a ring.
  • the group represented by the general formula (IID) or the general formula (III) is more preferably used as the D 1 .
  • R 1 to R 6 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 2 and R 5 , and R 4 and R 6 may be bonded to each other to form a ring.
  • Examples of the ring to be formed include the ring R described later.
  • Examples of the substituent in R 1 to R 4 include the substituent W, preferably R 1 to R 4 are a hydrogen atom, or R 2 and R 5 or R 4 and R 6 form a 5-membered ring. More preferably, all of R 1 to R 4 are hydrogen atoms.
  • the substituent in R 5 and R 6 includes the substituent W, and among the substituents, a substituted or unsubstituted aryl group is preferable, and the substituent of the substituted aryl group is an alkyl group (for example, a methyl group, an ethyl group, or the like). Group) and an aryl group (for example, phenyl group, naphthylene group, phenanthryl group, anthryl group) are preferable.
  • R5 and R6 are preferably a phenyl group, an alkyl-substituted phenyl group, a phenyl-substituted phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, or a fluorenyl group (preferably a 9,9′-dimethyl-2-fluorenyl group).
  • R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 each independently represent a hydrogen atom or a substituent.
  • R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 may be bonded to each other to form a ring. Examples of the ring to be formed include the ring R described later.
  • R 11 and R 12 , R 13 and R 14 are bonded to form a benzene ring
  • two adjacent R 20 to R 24 (R 24 and R 23 , R 23 and R 20 , R 20 and R 21 , R 21 and R 22 ) combine to form a benzene ring
  • two adjacent R 30 to R 34 (R 34 and R 33 , R 33 and R 30 , R 30 and R 31 , R 31 and R 32 ) are combined to form a benzene ring
  • R 22 and R 34 are combined to form a 5-membered ring with an N atom.
  • the substituent represented by R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 include the substituent W.
  • the substituent is an alkyl group (for example, methyl group, ethyl group), an aryl group (for example, , Phenyl group, naphthyl group), and these groups may be further substituted with a substituent W (preferably an aryl group).
  • R 20 and R 30 are preferably substituents, and the other R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 are more preferably hydrogen atoms.
  • the compound represented by the general formula (II) is preferably a compound represented by the following general formula (pI).
  • Z 1 represents a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group.
  • n 1 represents an integer of 0 or more.
  • Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 each independently represents a hydrogen atom or a substituent.
  • Rp 1 and Rp 2 , Rp 2 and Rp 3 , Rp 4 and Rp 5 , Rp 5 and Rp 6 may be bonded to each other to form a ring.
  • Rp 21 and Rp 22 each independently represent a substituted aryl group, an unsubstituted aryl group, a substituted heteroaryl group, or an unsubstituted heteroaryl group.
  • a photoelectric conversion material As a photoelectric conversion material, a compound having a naphthylene group as a connecting part of a donor part (site of —NRp 21 Rp 22 ) / acceptor part (site bonded to a naphthylene group via L 1 to L 3 ) as described above.
  • a photoelectric conversion element having excellent heat resistance and high-speed response can be obtained. This is considered that the interaction with the fullerenes is improved and the response speed is improved by using a naphthylene group as the connecting part of the donor part / acceptor part.
  • the said compound has sufficient sensitivity.
  • Z 1, L 1, L 2, L 3, n 1 has the same meaning as Z 1, L 1, L 2 , L 3, n 1 in formula (II), a preferred range Is the same.
  • Rp 1 to Rp 6 each independently represents a hydrogen atom or a substituent. If Rp 1 ⁇ Rp 6 represents a substituent, but the substituent represented by Rp 1 ⁇ Rp 6 include the later-described substituent W, especially halogen atom, an alkyl group, an aryl group, a heterocyclic group, hydroxy group, A nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, arylthio group, alkenyl group, and cyano group heterocyclic thio group are preferred.
  • Rp 1 to Rp 6 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a heterocyclic group, a hydroxy group, a nitro group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, an amino group, or an alkylthio group.
  • An arylthio group, an alkenyl group, a cyano group or a heterocyclic thio group more preferably a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number
  • An aryl group having 6 to 20 carbon atoms and a heterocyclic group having 4 to 16 carbon atoms are more preferable, and a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and an aryl group having 6 to 14 carbon atoms are further preferable, and a hydrogen atom and carbon number 1 More preferred are an alkyl group of 6 to 6 and an aryl group of 6 to 10 carbon atoms, and a hydrogen atom is particularly preferred.
  • Rp1 to Rp6 may have further substituents.
  • Further substituents include the substituent W described below.
  • the plurality of substituents may be linked to form a ring. Examples of the ring formed include ring R described later.
  • Preferable specific examples of Rp 1 to Rp 6 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group, a phenyl group, and a naphthyl group.
  • Rp 1 and Rp 2 , Rp 2 and Rp 3 , Rp 4 and Rp 5 , Rp 5 and Rp 6 may be bonded to each other to form a ring.
  • the ring formed include ring R described later.
  • Preferred are a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring and the like.
  • Rp 21 and Rp 22 each independently represent a substituted aryl group, an unsubstituted aryl group, a substituted heteroaryl group, or an unsubstituted heteroaryl group. It is preferable that both Rp 21 and Rp 22 are not unsubstituted phenyl groups.
  • the aryl group represented by Rp 21 and Rp 22 is preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 20 carbon atoms. Specific examples of the aryl group include a phenyl group, a naphthyl group, a biphenylyl group, a terphenyl group, an anthryl group, and a fluorenyl group.
  • Examples of the substituent of the substituted aryl group in Rp 21 and Rp 22 include an alkyl group (for example, methyl group, ethyl group, t-butyl group), an alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group), aryl group (For example, phenyl group, naphthyl group, phenanthryl group, anthryl group) and heteroaryl groups (for example, thienyl group, furanyl group, pyridyl group, carbazolyl group) are preferable.
  • an alkyl group for example, methyl group, ethyl group, t-butyl group
  • an alkoxy group for example, methoxy group, ethoxy group, isopropoxy group
  • aryl group for example, phenyl group, naphthyl group, phenanthryl group, anthryl group
  • heteroaryl groups for example, thienyl group, furanyl
  • the aryl group or substituted aryl group represented by Rp 21 or Rp 22 is preferably a phenyl group, a substituted phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a fluorenyl group, or a substituted fluorenyl group (preferably 9,9 ′ -Dialkyl-2-fluorenyl group).
  • the heteroaryl group is preferably a heteroaryl group consisting of a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof.
  • the hetero atom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • ring constituting the heteroaryl group examples include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine.
  • benzofuran ring isobenzofuran ring, benzothiophene ring, indole ring, indoline ring, isoindole ring, benzoxazole ring, benzothiazole ring, indazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, cinnoline ring, Phthalazine ring, quinazoline ring, quinoxaline ring, dibenzofuran ring, carbazole ring, xanthene ring, acridine ring, phenanthridine ring, phenanthroline ring, phenazine ring, phenoxazine ring, thianthrene ring, thienothiophene ring, indolizine ring, quinolidine ring, A quinuclidine ring, a naphthyridine ring, a pur
  • Examples of the substituent of the substituted heteroaryl group in Rp 21 and Rp 22 include an alkyl group (for example, methyl group, ethyl group, t-butyl group), an alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group), aryl A group (for example, phenyl group, naphthyl group, phenanthryl group, anthryl group) or a heteroaryl group (for example, thienyl group, furanyl group, pyridyl group, carbazolyl group) is preferable.
  • an alkyl group for example, methyl group, ethyl group, t-butyl group
  • an alkoxy group for example, methoxy group, ethoxy group, isopropoxy group
  • aryl A group for example, phenyl group, naphthyl group, phenanthryl group, anthryl group
  • a heteroaryl group for example, thieny
  • the ring constituting the heteroaryl group or substituted heteroaryl group represented by Rp 21 and Rp 22 is preferably a thiophene ring, substituted thiophene ring, furan ring, substituted furan ring, thienothiophene ring, substituted thienothiophene ring, carbazolyl group It is.
  • Rp 21 and Rp 22 are each independently preferably a phenyl group, a naphthyl group, a fluorenyl group, a biphenyl group, an anthracenyl group, or a phenanthrenyl group, and more preferably a phenyl group, a naphthyl group, or a fluorenyl group.
  • the substituent is preferably an alkyl group, a halogenated alkyl group, an alkoxy group, an aryl group or a heteroaryl group, more preferably a methyl group, an isopropyl group, a t-butyl group, A trifluoromethyl group, a phenyl group, or a carbazolyl group;
  • the compound represented by the general formula (pI) is represented by the following general formula (pII), respectively.
  • the compound represented by the general formula (pI) is preferably a compound represented by the following general formula (pII) or a compound represented by the following general formula (pIII).
  • L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 , Rp 21 , Rp 22 are represented by the general formula (pI) It is synonymous and the preferable range is also the same.
  • Rp 41 , Rp 42 , Rp 43 , Rp 44 are synonymous with R 41 , R 42 , R 43 , R 44 in the general formula (IV), and preferred ranges are also the same.
  • L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 , Rp 21 , Rp 22 are synonymous with the general formula (pI), The preferable range is also the same.
  • Rp 51 , Rp 52 , Rp 53 , Rp 54 , Rp 55 , Rp 56 are synonymous with R 41 , R 44 , R 45 , R 46 , R 47 , R 48 in the general formula (V), and preferred ranges are also the same. It is.
  • the compound represented by the general formula (pI) is preferably a compound represented by the following general formula (pIV).
  • Z 1 , L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 are synonymous with the general formula (pI), and preferred ranges are also included. It is the same.
  • Rp 7 to Rp 11 and Rp 12 to Rp 16 each independently represents a hydrogen atom or a substituent. However, the case where all of Rp 7 to Rp 11 and Rp 12 to Rp 16 are hydrogen atoms is excluded. Further, adjacent ones of Rp 7 to Rp 11 and Rp 12 to Rp 16 may be bonded to each other to form a ring. Further, Rp 3 and Rp 7 , Rp 6 and Rp 16 may be connected to each other.
  • Rp 7 to Rp 11 and Rp 12 to Rp 16 each independently represents a hydrogen atom or a substituent. However, all of Rp 7 to Rp 11 and Rp 12 to Rp 16 do not become hydrogen atoms. When Rp 3 and Rp 7 or Rp 6 and Rp 16 are linked, all other Rp 8 to Rp 11 and Rp 12 to Rp 15 may be hydrogen atoms.
  • Rp 7 ⁇ Rp 11, Rp 12 ⁇ Rp 16 represents a substituent, but the substituent represented by Rp 7 ⁇ Rp 11, Rp 12 ⁇ Rp 16 include the substituent W described below, in particular a halogen atom, an alkyl Group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, arylthio group, alkenyl group, cyano group and heterocyclic thio group are preferred.
  • substituent W described below, in particular a halogen atom, an alkyl Group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, arylthio group, alkenyl group, cyano group and heterocyclic thio group are preferred.
  • Rp 7 to Rp 11 and Rp 12 to Rp 16 are each independently a hydrogen atom, halogen atom, alkyl group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, It is preferably an amino group, an alkylthio group, an arylthio group, an alkenyl group, a cyano group or a heterocyclic thio group, more preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group or a heterocyclic group.
  • the hetero atom contained in the heterocyclic group include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Specific examples of the alkyl group, alkenyl group, aryl group and the like include groups exemplified by the alkyl group, alkenyl group, and aryl group of the substituent W described later.
  • Rp 7 to Rp 11 and Rp 12 to Rp 16 may be bonded to each other to form a ring.
  • the ring formed include ring R described later.
  • the ring to be formed is preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring or the like.
  • Rp 3 and Rp 7 , Rp 6 and Rp 16 may be connected to each other. When Rp 3 and Rp 7 or Rp 6 and Rp 16 are linked, it becomes a condensed ring of 4 or more rings containing a naphthylene group and a phenyl group.
  • the linkage between Rp 3 and Rp 7 or Rp 6 and Rp 16 may be a single bond.
  • the compound represented by the general formula (II) is a compound described in JP-A-2000-297068, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. . Specific examples of the compound represented by the general formula (II) are shown below, but the present invention is not limited thereto.
  • the following compound 3 is used as a photoelectric conversion material, and the compound 3 is a powder.
  • An n-type organic semiconductor is an acceptor organic semiconductor (compound), which is represented by mainly an electron-transporting organic compound and refers to an organic compound having a property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.
  • condensed aromatic carbocyclic compounds naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, fluoranthene, or derivatives thereof
  • 5- to 7-membered heterocyclic compounds containing nitrogen atom, oxygen atom, sulfur atom E.g.
  • pyridine pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, Benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazaindene, oxadia Metal, imidazopyridine, pyralidine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.), polyarylene compounds, fluorene compounds, cyclopentadiene compounds, silyl compounds, nitrogen-containing heterocyclic compounds
  • fullerene or fullerene derivatives are preferably used.
  • Fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , fullerene C 540 , mixed Fullerene and fullerene nanotube are represented, and a fullerene derivative represents a compound having a substituent added thereto.
  • the substituent an alkyl group, an aryl group, or a heterocyclic group is preferable.
  • the compound (organic material) represented by the general formula (II) exemplified as a preferred example of the p-type organic semiconductor is used as the photoelectric conversion material.
  • the thickness of the photoelectric conversion layer 152 is preferably 10 nm to 1000 nm, more preferably 50 nm to 800 nm, and particularly preferably 100 nm to 500 nm.
  • the photoelectric conversion element 110 shown in FIG. 3, the substrate 112, and the insulating layer 114 constitute an imaging element.
  • the image pickup device is used by being mounted on an image pickup device such as a digital camera or a digital video camera, an image pickup module such as an electronic endoscope or a mobile phone.
  • a first connection portion 144, a second connection portion 146, and a wiring layer 148 are formed on a substrate 112 on which a readout circuit 140 and a counter electrode voltage supply portion 142 are formed.
  • a circuit substrate 111 (CMOS substrate) on which an insulating layer 114 provided with is formed is prepared.
  • the pixel electrode 116 is formed on the surface 114 a of the insulating layer 114 so as to be connected to each first connection portion 144.
  • the first connection portion 144 and the readout circuit 140 are connected, and the second connection portion 146 and the counter electrode voltage supply portion 142 are connected.
  • an electron blocking material (organic material) is deposited using the vapor deposition apparatus 10 so as to cover all the pixel electrodes 116 except on the second connection portion 146.
  • the electron blocking layer 150 is formed.
  • the electron blocking material for example, the powdery compound 1 is used.
  • a photoelectric conversion material (organic material) is vapor-deposited on the surface 150 a of the electron blocking layer 150 to form the photoelectric conversion layer 152.
  • the photoelectric conversion material for example, the powdery compound 3 is used. Thereby, the photoelectric conversion layer 152 is formed, and the organic layer 118 is formed.
  • the counter electrode 120 is formed under a predetermined vacuum using, for example, a sputtering method in a pattern that covers the organic layer 118 and is formed on the second connection portion 146.
  • a protective film 122 is formed on the surface 114 a of the insulating layer 114 so as to cover the counter electrode 120.
  • the color filter 126, the partition wall 128, and the light shielding layer 129 are formed on the surface 122a of the protective film 122 by using, for example, a photolithography method.
  • the formation process of the color filter 126, the partition wall 128, and the light shielding layer 129 may be under a predetermined vacuum or non-vacuum.
  • the overcoat layer 130 is formed using, for example, a coating method so as to cover the color filter 126, the partition wall 128, and the light shielding layer 129. Thereby, the photoelectric conversion element 110 shown in FIG. 3 can be formed.
  • the organic material used for film-forming of the electron blocking layer 150 and the photoelectric converting layer 152 is decomposed
  • FIG. 5 is a schematic view showing a main part of an organic material vapor deposition apparatus according to the second embodiment of the present invention.
  • illustration of components other than the material supply unit 20 and the evaporation chamber 70 of the vapor deposition apparatus 10 a of the second embodiment is omitted.
  • the same components as those of the vapor deposition apparatus 10 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the vapor deposition apparatus 10a of this embodiment is the structure similar to the vapor deposition apparatus 10 of 1st Embodiment except the structure of the evaporation chamber 70 differing from the vapor deposition apparatus 10 of 1st Embodiment, Detailed description thereof is omitted.
  • the housing 72 and the material filling portion 74 have an integral structure, and the bottom of the housing 72 is the material filling portion 74.
  • the housing 72 has a substantially conical shape with the material filling portion 74 as a bottom surface, and becomes narrower toward the top of the housing 72.
  • the upper end of the housing 72 is opened, and the material supply path 24 of the material supply unit 20 is connected to the opening.
  • the induction heating coils 48a and 48b are composed of a single coil and are connected to a high-frequency power source 50 (see FIG. 1), although not shown.
  • the induction heating coil 48 a provided on the upper portion of the housing 72 is arranged at a narrower pitch than the induction heating coil 48 b provided in the material filling unit 74.
  • the pitch of the induction heating coil 48 a on the upper portion of the housing 72 is narrowed, the temperature at the upper portion of the housing 72 is higher than that of the material filling portion 74 without particularly controlling as described above. Can be.
  • the heat radiation member 47 is directly connected to the bottom surface 74 a and the side surface 74 b of the material filling portion 74 of the housing 72.
  • the heat radiating member 47 has, for example, a fin shape.
  • the heat radiating member 47 is not limited to a fin-shaped thing,
  • the various hollow member of the vapor deposition apparatus 10 of the above-mentioned 1st Embodiment can also be used.
  • the effect similar to the vapor deposition apparatus 10 of 1st Embodiment is acquired.
  • the temperature of the material filling portion 74 (the bottom portion of the casing 72) is always lower than the upper portion of the casing 72. it can. For this reason, temperature can be made high in order of the material filling part 74 (bottom part of the housing 72), the upper part of the housing 72, and the vapor
  • the organic material used for vapor deposition is not limited to the organic material used for the production of organic CMOS, but is an NPD (naphthyl-substituted diamine derivative) used for the production of organic EL. ) And Alq (a complex of hydroxyquinoline and aluminum) can also be used. Even in this case, it goes without saying that the above-described effects can be obtained.
  • the present invention is basically configured as described above. As mentioned above, although the vapor deposition apparatus of the organic material of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, it is possible to perform various improvement or a change. Of course.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is an apparatus for depositing an organic material on a substrate in a vacuum environment. The deposition apparatus has: an evaporation chamber for heating and evaporating the organic material, the evaporation chamber being filled with the organic material; and a guide part for guiding to the substrate the organic material in the form of steam generated in the evaporation chamber. The evaporation chamber is continually maintained at a lower temperature than the guide part.

Description

有機材料の蒸着装置Organic material deposition equipment
 本発明は、有機ELおよび有機CMOS等の有機デバイスの製造に用いることができる有機材料の蒸着装置に関し、特に、有機材料の純度等を劣化させず、更には有機材料を分解させることなく、安定した組成で蒸着することができる有機材料の蒸着装置に関する。 The present invention relates to an organic material vapor deposition apparatus that can be used for the manufacture of organic devices such as organic EL and organic CMOS, and in particular, without degrading the purity of the organic material, and further without decomposing the organic material. The present invention relates to a vapor deposition apparatus for an organic material that can be deposited with a composition.
 有機材料の成膜には、一般的に真空加熱蒸着法が用いられている。例えば、有機ELおよび有機CMOS等の有機デバイスへの用途がある。
 有機材料の従来の蒸着方式では、点蒸着型およびラインソース型等があり、有機材料を蒸着用るつぼの中に多量に入れて蒸着して、成膜している。これ以外にも、有機材料の蒸着装置が種々提案されている(特許文献1、2等)。
In general, a vacuum heating vapor deposition method is used to form an organic material. For example, there are applications to organic devices such as organic EL and organic CMOS.
Conventional vapor deposition methods of organic materials include a point vapor deposition type and a line source type, in which a large amount of organic material is deposited in a vapor deposition crucible for vapor deposition. In addition to this, various vapor deposition apparatuses for organic materials have been proposed (Patent Documents 1, 2, etc.).
 特許文献1には、有機EL層を蒸着する蒸着装置が記載されている。この蒸着装置では、成膜材料が納められるるつぼが真空状態にされる第2の処理容器の底壁と接して、容器内の熱を、第2の処理容器を介して大気系に放出させている。これにより、るつぼの成膜材料が納められた部分近傍の温度を、るつぼのその他の部分の温度より低いかまたは同一にしている。 Patent Document 1 describes a vapor deposition apparatus for vapor-depositing an organic EL layer. In this vapor deposition apparatus, a crucible in which a film forming material is stored is in contact with the bottom wall of the second processing container to be evacuated, and heat in the container is released to the atmospheric system through the second processing container. Yes. As a result, the temperature in the vicinity of the portion of the crucible where the film forming material is stored is lower than or equal to the temperature of the other portion of the crucible.
 また、特許文献2には、薄膜材料を連続的に供給でき、長時間連続で成膜が行える蒸着装置が記載されている。特許文献2の真空蒸着装置は、ガラス基板を設置可能な真空室と、薄膜材料を蒸発させる発熱部を備えた蒸発装置とを有し、真空室内にガラス基板を設置し、蒸発装置によって蒸発された薄膜材料を蒸散させてガラス基板に所定成分の膜を蒸着する。発熱部は真空室内または真空室と連通する位置にあって薄膜を蒸着する際には真空雰囲気下に配されるものであり、真空室の外部から発熱部に薄膜材料を送る薄膜材料送り装置を有する。発熱部の上流側に薄膜材料を冷却する冷却手段が設けられている。 Further, Patent Document 2 describes a vapor deposition apparatus that can continuously supply a thin film material and can form a film continuously for a long time. The vacuum vapor deposition apparatus of Patent Document 2 has a vacuum chamber in which a glass substrate can be installed and an evaporation apparatus having a heat generating part for evaporating a thin film material. The glass substrate is installed in the vacuum chamber and evaporated by the evaporation apparatus. The thin film material is evaporated to deposit a film of a predetermined component on the glass substrate. The heat generating part is located in a vacuum chamber or a position communicating with the vacuum chamber, and is disposed in a vacuum atmosphere when depositing a thin film. A thin film material feeding device that sends a thin film material from the outside of the vacuum chamber to the heat generating part is provided. Have. Cooling means for cooling the thin film material is provided upstream of the heat generating portion.
 ここで、有機EL用の有機材料としては、基本的に耐熱性の高い材料が用いられている。例えば、正孔輸送材に用いられるNPD(ナフチル置換ジアミン誘導体)および電子輸送材に用いられるAlq(ヒドロキシキノリンとアルミニウムとの錯体)等である。 Here, as the organic material for the organic EL, a material having high heat resistance is basically used. For example, NPD (naphthyl-substituted diamine derivative) used for a hole transport material and Alq (hydroxyquinoline and aluminum complex) used for an electron transport material.
特開2008-81778号公報JP 2008-81778 A 特開2012-46814号公報JP 2012-46814 A
 耐熱性の高い有機材料であれば、従来の蒸着方式のように、蒸発用るつぼおよび蒸発皿の中に数日にわたって連続で蒸着できる量の有機材料を入れておけば、蒸着し、成膜できる。
 しかしながら、例えば、有機CMOS用の有機材料として、比較的耐熱性が低い有機材料を用いた場合、上述の従来の蒸着方法および特許文献1、2の蒸着装置では、長時間加熱または加熱時の熱負荷によって有機材料の純度等が劣化したり、有機材料が分解したりしてしまう。このような状態では、ピュアのままで有機材料を使い切ることができないという問題がある。
If it is an organic material with high heat resistance, it can be vapor-deposited and formed into a film by placing an amount of organic material that can be continuously vaporized over several days in an evaporation crucible and an evaporation dish as in the conventional vapor deposition method. .
However, for example, when an organic material having a relatively low heat resistance is used as an organic material for organic CMOS, the above-described conventional vapor deposition method and the vapor deposition apparatus disclosed in Patent Documents 1 and 2 are heated for a long time or heat during heating. The purity or the like of the organic material is degraded by the load, or the organic material is decomposed. In such a state, there is a problem that the organic material cannot be used up in a pure state.
 また、有機材料を蒸着した場合、るつぼ等から真っ直ぐ基板へ飛んでいく有機材料と、るつぼ等の側壁等にぶつかって反射を繰り返して、るつぼ等から飛び出て行く有機材料とが存在する。そのとき、有機材料がぶつかって反射する部位に温度が低いエリア、例えば、蒸着経路上に温度が低い蒸着装置部品があると、そこがコールドスポットとなる。有機材料が、一旦コールドスポットに付着してしまうと、コールドスポットに付着したまま有機材料が残ったり、逆にコールドスポットの温度が材料昇華温度まで上昇して再度、有機材料が蒸発したりすると、有機材料への熱負荷が過度になるという問題がある。 In addition, when an organic material is deposited, there are an organic material that jumps straight from the crucible or the like to the substrate, and an organic material that hits a side wall of the crucible or the like and repeatedly reflects and jumps out of the crucible or the like. At that time, if there is a low temperature area, for example, a vapor deposition device part having a low temperature on the vapor deposition path, the portion that reflects the organic material is reflected and becomes a cold spot. Once the organic material adheres to the cold spot, the organic material remains attached to the cold spot, or conversely, if the temperature of the cold spot rises to the material sublimation temperature and the organic material evaporates again, There is a problem that the heat load on the organic material becomes excessive.
 本発明の目的は、前記従来技術に基づく問題点を解消し、有機材料の純度等を劣化させず、更には有機材料を分解させることなく、安定した組成で蒸着することができる有機材料の蒸着装置を提供することにある。 The object of the present invention is to solve the problems based on the prior art, and to deposit an organic material that can be deposited with a stable composition without degrading the purity of the organic material and without further decomposing the organic material. To provide an apparatus.
 上記目的を達成するために、本発明は、真空雰囲気で、被成膜材に有機材料を蒸着する蒸着装置であって、有機材料が配置され、有機材料を加熱して蒸発させる蒸発室と、蒸発室で発生した有機材料の蒸気を被成膜材に導くガイド部とを有し、蒸発室は、ガイド部よりも常に低い温度に保たれていることを特徴とする有機材料の蒸着装置を提供するものである。
 この場合、蒸発室の加熱方式は、誘導加熱方式であることが好ましい。
In order to achieve the above object, the present invention is a vapor deposition apparatus for depositing an organic material on a film-forming material in a vacuum atmosphere, the organic material is disposed, and an evaporation chamber for heating and evaporating the organic material; An organic material vapor deposition apparatus characterized by having a guide portion for guiding the vapor of the organic material generated in the evaporation chamber to the film forming material, and the evaporation chamber is always kept at a lower temperature than the guide portion. It is to provide.
In this case, the heating method for the evaporation chamber is preferably an induction heating method.
 蒸発室は、底部に有機材料が配置される充填部を有し、充填部の底部および側面のうち、少なくとも底部に放熱部材が設けられていることが好ましい。
 例えば、放熱部材は、中空円筒状の部材であり、充填部に直接接続されている。この場合、放熱部材は、充填部に溶接により接続されていることが好ましい。
 蒸発室において、充填部のある第1の領域と、充填部以外の第2の領域とで、別々に温度を制御する制御部を有することが好ましい。
 蒸発室の加熱方式が誘導加熱方式である場合、蒸発室において、充填部のある第1の領域のピッチよりも充填部以外の第2の領域のピッチを狭くして誘導加熱コイルが配置されていることが好ましい。
It is preferable that the evaporation chamber has a filling portion in which an organic material is disposed at the bottom, and a heat dissipation member is provided at least at the bottom of the bottom and side surfaces of the filling portion.
For example, the heat dissipation member is a hollow cylindrical member and is directly connected to the filling portion. In this case, it is preferable that the heat radiating member is connected to the filling portion by welding.
In the evaporation chamber, it is preferable to have a control unit for controlling the temperature separately in the first region having the filling portion and the second region other than the filling portion.
When the heating method of the evaporation chamber is an induction heating method, the induction heating coil is arranged in the evaporation chamber so that the pitch of the second region other than the filling portion is narrower than the pitch of the first region having the filling portion. Preferably it is.
 本発明によれば、蒸発室の温度を、有機材料の蒸気を基板等の被成膜材に導くガイド部よりも低い温度に常に保つことにより、蒸発室を昇温および降温する際にも、蒸発室以外に蒸着室よりも温度が低いコールドスポットの発生が抑制され、熱負荷を少なく有機材料を蒸着することができる。これにより、被成膜材に対して、有機材料を純度等の劣化させることなく、更には有機材料を分解させることなく、安定した組成の有機材料を蒸着できる。
 特に、熱負荷を少なくできるため、耐熱性の低い有機材料でも安定な組成を維持して蒸着することが可能となり、純度の高い有機薄膜を得ることができる。
According to the present invention, the temperature of the evaporation chamber is always kept at a lower temperature than the guide portion that guides the vapor of the organic material to the film-forming material such as the substrate. In addition to the evaporation chamber, the occurrence of a cold spot having a temperature lower than that of the vapor deposition chamber is suppressed, and an organic material can be deposited with a small heat load. As a result, an organic material having a stable composition can be deposited on the film forming material without degrading the purity of the organic material and without further decomposing the organic material.
In particular, since the heat load can be reduced, an organic material having low heat resistance can be deposited while maintaining a stable composition, and an organic thin film with high purity can be obtained.
 また、蒸発部の底部および側面のうち、少なくとも底部に放熱部材を設けることにより、充填部の温度を相対的に低くすることができる。
 また、放熱部材をねじ止めで固定した場合、蒸着が真空雰囲気でなされるため、接地具合等により、温度のばらつきが顕著に表れる。しかし、放熱部材を直接接続することにより、充填部を安定して相対的に温度を低くすることができる。このように、蒸着に複雑な制御を行うことなく、シンプルな加熱機構で安定した組成の有機材料を蒸着できる。
Moreover, the temperature of a filling part can be made relatively low by providing a heat radiating member in at least a bottom part among the bottom part and side surface of an evaporation part.
In addition, when the heat dissipating member is fixed by screwing, since the vapor deposition is performed in a vacuum atmosphere, the temperature variation is noticeable depending on the grounding condition. However, by directly connecting the heat dissipating member, the filling portion can be stabilized and the temperature can be relatively lowered. As described above, an organic material having a stable composition can be deposited with a simple heating mechanism without complicated control of the deposition.
本発明の第1の実施形態の有機材料の蒸着装置の一例を示す模式図である。It is a schematic diagram which shows an example of the vapor deposition apparatus of the organic material of the 1st Embodiment of this invention. 図1に示す第1の実施形態の有機材料の蒸着装置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. 図1に示す第1の実施形態の有機材料の蒸着装置を用いて有機薄膜を成膜して形成される光電変換素子の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the photoelectric conversion element formed by forming an organic thin film into a film using the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. (a)~(c)は、図1に示す第1の実施形態の有機材料の蒸着装置を用いた光電変換素子の有機薄膜の製造工程の一部を工程順に示す模式的断面図である。(A)-(c) is typical sectional drawing which shows a part of manufacturing process of the organic thin film of the photoelectric conversion element using the vapor deposition apparatus of the organic material of 1st Embodiment shown in FIG. 1 in order of a process. 本発明の第2の実施形態の有機材料の蒸着装置の要部を示す模式図である。It is a schematic diagram which shows the principal part of the vapor deposition apparatus of the organic material of the 2nd Embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の有機材料の蒸着装置を詳細に説明する。
 図1は、本発明の第1の実施形態の有機材料の蒸着装置の一例を示す模式図である。
 図1に示す有機材料の蒸着装置10は、有機ELおよび有機CMOS等の有機膜の成膜に利用されるものであり、真空雰囲気で、被成膜材に有機材料を蒸着する。被成膜材は、例えば、基板100であるが、これに限定されるものではなく、被成膜材としては、有機ELまたは有機CMOS等の製造途中のものが挙げられる。
Hereinafter, an organic material vapor deposition apparatus according to the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
FIG. 1 is a schematic view showing an example of an organic material vapor deposition apparatus according to the first embodiment of the present invention.
An organic material vapor deposition apparatus 10 shown in FIG. 1 is used for forming an organic film such as an organic EL and an organic CMOS, and deposits an organic material on a film formation material in a vacuum atmosphere. The film forming material is, for example, the substrate 100, but is not limited thereto, and examples of the film forming material include materials in the process of manufacturing an organic EL or organic CMOS.
 蒸着装置10は、基本的に、真空容器12と、この真空容器12の内部12aを減圧し、所定の真空度(圧力)にする真空排気部14と、蒸着装置10の各部を制御する制御部16とを有する。なお、蒸着装置10において、図示が省略されている場合でも、制御部16は各部と接続されており、制御部16で制御される。 The vapor deposition apparatus 10 basically includes a vacuum vessel 12, a vacuum exhaust unit 14 that depressurizes the inside 12 a of the vacuum vessel 12 to obtain a predetermined degree of vacuum (pressure), and a control unit that controls each unit of the vapor deposition device 10. 16. In the vapor deposition apparatus 10, even when the illustration is omitted, the control unit 16 is connected to each unit and is controlled by the control unit 16.
 真空排気部14は、配管15を介して真空容器12に接続されており、真空容器12の内部12aを排気して所定の真空度(圧力)に保つものである。この真空排気部14は、制御部16により制御される。
 また、真空排気部14は、蒸着装置に一般的に用いられる各種の真空ポンプを有するものであり、ドライポンプおよびターボ分子ポンプ等の真空ポンプを有する。
 真空容器12には、内部12aの圧力を測定する圧力センサ(図示せず)が設けられており、この圧力センサは、制御部16に接続されている。制御部16により、圧力センサで得られた圧力に基づき、真空排気部14が動作され、所定の圧力にされる。
The vacuum exhaust unit 14 is connected to the vacuum vessel 12 via a pipe 15 and exhausts the interior 12a of the vacuum vessel 12 to maintain a predetermined degree of vacuum (pressure). The evacuation unit 14 is controlled by the control unit 16.
Moreover, the vacuum exhaust part 14 has various vacuum pumps generally used for a vapor deposition apparatus, and has vacuum pumps, such as a dry pump and a turbo-molecular pump.
The vacuum vessel 12 is provided with a pressure sensor (not shown) that measures the pressure in the interior 12 a, and this pressure sensor is connected to the control unit 16. Based on the pressure obtained by the pressure sensor, the control unit 16 operates the evacuation unit 14 to a predetermined pressure.
 蒸着装置10は、真空容器12の内部12aに、材料供給部20と、蒸発室40と、蒸気ガイド部60とを有する。
 材料供給部20は、蒸発室40の後述する材料充填部44に有機材料mを供給するものである。材料供給部20は、有機材料mをストックする材料ストック室22と、材料ストック室22に連通された材料供給路24とを有する。この材料供給路24は、先端に材料吐出口24aが設けられており、この材料吐出口24aが蒸発室40の材料充填部44の中心の上方に位置するように、蒸発室40内に配置されている。
 材料供給部20は、更に、材料供給路24に、材料供給路24から蒸発室40への有機材料mの材料供給を制御する供給弁26と、加熱される蒸発室40側からの熱伝導を遮断するための断熱管28と、材料吐出口24aから材料ストック室22への有機材料mの蒸気Voの侵入を防ぐための加熱用弁30とが設けられている。断熱管28は、例えば、セラミックスで形成されている。断熱管28は、材料供給路24を遮るものではなく、常に有機材料mが移動できる状態にしている。
The vapor deposition apparatus 10 includes a material supply unit 20, an evaporation chamber 40, and a vapor guide unit 60 in the interior 12 a of the vacuum container 12.
The material supply unit 20 supplies the organic material m to a material filling unit 44 described later of the evaporation chamber 40. The material supply unit 20 includes a material stock chamber 22 that stocks the organic material m, and a material supply path 24 that communicates with the material stock chamber 22. The material supply path 24 is provided with a material discharge port 24 a at the tip, and is disposed in the evaporation chamber 40 so that the material discharge port 24 a is located above the center of the material filling portion 44 of the evaporation chamber 40. ing.
The material supply unit 20 further conducts heat conduction from the material supply path 24 to the material supply path 24 to control the material supply of the organic material m from the material supply path 24 to the evaporation chamber 40 and from the heated evaporation chamber 40 side. A heat insulating pipe 28 for blocking and a heating valve 30 for preventing the vapor Vo of the organic material m from entering the material stock chamber 22 from the material discharge port 24a are provided. The heat insulating tube 28 is made of, for example, ceramics. The heat insulating pipe 28 does not block the material supply path 24, and is always in a state in which the organic material m can move.
 供給弁26および加熱用弁30は、例えば、水平方向(紙面左右方向)にスライドさせることにより、材料供給路24を遮断したり、解放したりして、有機材料mの蒸発室40への供給を調整する。
 供給弁26および加熱用弁30を、水平方向にスライドさせるスライド機構(図示せず)が設けられている。このスライド機構は制御部16に接続されており、制御部16により、供給弁26および加熱用弁30が水平方向にスライドされる。
 本実施形態では、供給弁26および加熱用弁30を材料供給路24に差し入れることで材料供給路24を遮断し、引く抜くことで材料供給路24を解放する。
The supply valve 26 and the heating valve 30 are, for example, slid in the horizontal direction (left-right direction on the paper surface), thereby blocking or releasing the material supply path 24 to supply the organic material m to the evaporation chamber 40. Adjust.
A slide mechanism (not shown) for sliding the supply valve 26 and the heating valve 30 in the horizontal direction is provided. This slide mechanism is connected to the control unit 16, and the control unit 16 slides the supply valve 26 and the heating valve 30 in the horizontal direction.
In the present embodiment, the material supply path 24 is blocked by inserting the supply valve 26 and the heating valve 30 into the material supply path 24, and the material supply path 24 is released by pulling out.
 材料供給部20では、スライド機構により、加熱用弁30および供給弁26を水平方向にスライドさせて解放することにより、有機材料mを蒸発室40の材料充填部44に落下供給する。一定量の有機材料mを供給した後にスライド機構により供給弁26および加熱用弁30を遮断する方向にスライドさせて、有機材料mの落下を停止する。 The material supply unit 20 drops and supplies the organic material m to the material filling unit 44 of the evaporation chamber 40 by sliding and releasing the heating valve 30 and the supply valve 26 in the horizontal direction by a slide mechanism. After a certain amount of the organic material m is supplied, the supply valve 26 and the heating valve 30 are slid in a direction to be shut off by the slide mechanism, and the dropping of the organic material m is stopped.
 蒸発室40は、有機材料mを加熱し、蒸発させて、発生する蒸気Voを蒸気ガイド部60に移動させるものである。蒸発室40は、筺体42と、材料充填部44と、誘導加熱コイル48と、誘導加熱コイル48に接続された高周波電源50とを有する。高周波電源50は、有機材料mを加熱するために用いられるものであり、一般的に誘導加熱に用いられるものが各種利用可能である。 The evaporation chamber 40 heats and evaporates the organic material m, and moves the generated vapor Vo to the vapor guide unit 60. The evaporation chamber 40 includes a housing 42, a material filling unit 44, an induction heating coil 48, and a high frequency power supply 50 connected to the induction heating coil 48. The high-frequency power source 50 is used for heating the organic material m, and various types generally used for induction heating can be used.
 筺体42は、例えば、中空円筒部材で構成されている。この筺体42の底部に材料充填部44が、ねじ止め、または係合等の種々の方法で取り外し自在に設けられている。なお、材料充填部44は筺体42と一体構造であってもよい。
 筺体42の側面42aに蒸気ガイド部60の後述する輸送管62が接続されており、材料充填部44で発生した有機材料mの蒸気Voが輸送管62に移動する。
The housing 42 is made of, for example, a hollow cylindrical member. A material filling portion 44 is detachably provided on the bottom portion of the housing 42 by various methods such as screwing or engagement. Note that the material filling portion 44 may be integrated with the housing 42.
A transport pipe 62 (described later) of the steam guide unit 60 is connected to the side surface 42 a of the housing 42, and the vapor Vo of the organic material m generated in the material filling unit 44 moves to the transport pipe 62.
 材料充填部44は、蒸発皿として機能するものであり、有機材料mが配置される凹部を有する。
 材料充填部44には、例えば、底面44aに4つ放熱部材46が直接設けられ、側面44bに2つずつ放熱部材46が直接設けられている。いずれの放熱部材46も真空容器12に接していない。
 放熱部材46は、例えば、中空円筒部材で構成される。しかし、放熱部材46の構成は、中空円筒部材に限定されるものではなく、先端に向かって径が小さくなる円錐台状の中空部材でも、先端に向かって径が大きくなるラッパ状の中空部材でもよい。また、放熱部材46は、中空円筒に限定されるものではなく、中空であれば、その他の形状、例えば、中空三角形、中空四角形等の多角形であってもよい。これ以外に、放熱部材46として放熱フィンを用いることもできる。
The material filling unit 44 functions as an evaporating dish and has a recess in which the organic material m is disposed.
In the material filling portion 44, for example, four heat radiating members 46 are directly provided on the bottom surface 44a, and two heat radiating members 46 are directly provided on the side surface 44b. None of the heat radiating members 46 are in contact with the vacuum vessel 12.
The heat radiating member 46 is constituted by, for example, a hollow cylindrical member. However, the configuration of the heat radiating member 46 is not limited to the hollow cylindrical member, and may be a truncated cone-shaped hollow member whose diameter decreases toward the tip, or a trumpet-shaped hollow member whose diameter increases toward the tip. Good. Moreover, the heat radiating member 46 is not limited to a hollow cylinder, and may be other shapes, for example, a polygon such as a hollow triangle or a hollow quadrilateral as long as it is hollow. In addition, a heat radiating fin can also be used as the heat radiating member 46.
 放熱部材46は、材料充填部44に直接設けられている。この直接設けられているとは、ねじ、ピン等の部材を用いることなく、例えば、溶接、ロウ付けにより直接接続することをいう。放熱部材46を、ねじ止めにより固定した場合、接地具合等により、ねじに熱が伝導し、放熱部材46からの放熱が安定せず、放熱機能が十分に発揮されない可能性がある。このため、放熱部材46は、溶接等により材料充填部44に直接接続することが好ましい。 The heat radiating member 46 is directly provided in the material filling portion 44. The direct provision means that direct connection is made by, for example, welding or brazing without using a member such as a screw or a pin. When the heat dissipating member 46 is fixed by screwing, heat is conducted to the screw due to the grounding condition, etc., heat dissipating from the heat dissipating member 46 may not be stable, and the heat dissipating function may not be sufficiently exhibited. For this reason, it is preferable that the heat dissipation member 46 is directly connected to the material filling portion 44 by welding or the like.
 なお、放熱部材46は、底面44aおよび側面44bの両方に設けることに限定されるものではない。底面44aおよび側面44bのいずれか一方に設けられていればよく、例えば、図2に示すように、底面44aに4つ放熱部材46が直接接続された構成でもよい。 The heat dissipation member 46 is not limited to being provided on both the bottom surface 44a and the side surface 44b. For example, as shown in FIG. 2, four heat dissipating members 46 may be directly connected to the bottom surface 44 a as long as it is provided on either the bottom surface 44 a or the side surface 44 b.
 蒸発室40では、図1に示すように、誘導加熱コイル48が、筺体42および材料充填部44の周囲を囲んで配置されており、高周波電源50に接続されている。この高周波電源50は制御部16に接続されており、制御部16により、筺体42および材料充填部44の温度が制御される。
 本実施形態では、高周波電源50から高周波が誘導加熱コイル48に印加されると、電磁誘導により筺体42および材料充填部44が発熱する誘導加熱方式を用いている。このため、抵抗加熱方式に比して、蒸発室40の昇温および降温を速やかにできる。
In the evaporation chamber 40, as shown in FIG. 1, an induction heating coil 48 is disposed so as to surround the casing 42 and the material filling portion 44, and is connected to a high frequency power supply 50. The high frequency power supply 50 is connected to the control unit 16, and the control unit 16 controls the temperatures of the housing 42 and the material filling unit 44.
In the present embodiment, an induction heating method is used in which when a high frequency is applied from the high frequency power supply 50 to the induction heating coil 48, the casing 42 and the material filling portion 44 generate heat by electromagnetic induction. For this reason, as compared with the resistance heating method, the evaporation chamber 40 can be rapidly heated and lowered.
 蒸発室40において、材料充填部44のある下部(第1の領域)と、筺体42で材料充填部44のない上部(第2の領域)とを別々に加熱して、それぞれの温度を制御部16で制御するようにしてもよい。
 また、誘導加熱コイル48は、ピッチを狭くすると温度が高くなり、逆にピッチを広くすると温度が低くなる。このため、筺体42で材料充填部44のない上部(第2の領域)での誘導加熱コイル48のピッチPを、材料充填部44のある下部(第1の領域)での誘導加熱コイル48のピッチPよりも狭くすることにより、すなわち、ピッチについてP<Pとすることにより、上部を下部よりも常に高い温度にできる。これにより、上部と下部との温度を別々に制御することなく、上部と下部に温度差を生じさせることができる。
In the evaporation chamber 40, the lower part (first region) where the material filling part 44 is present and the upper part (second region) where the material filling part 44 is absent by the casing 42 are separately heated, and the respective temperatures are controlled by the control part. 16 may be controlled.
Further, the induction heating coil 48 has a high temperature when the pitch is narrowed, and conversely, the temperature is low when the pitch is widened. Therefore, the induction heating coil 48 of the pitch P 2 of the induction heating coil 48 at the top with no material filling unit 44 by the housing 42 (second region), the lower with the material filled portion 44 (first region) By making it narrower than the pitch P 1 , that is, by setting P 2 <P 1 with respect to the pitch, the upper part can always be at a higher temperature than the lower part. Thereby, a temperature difference can be produced between the upper part and the lower part without separately controlling the temperatures of the upper part and the lower part.
 本実施形態では、誘導加熱方式を用いているため、筺体42および材料充填部44は、電磁誘導が生じるもので構成する必要があり、例えば、ステンレス鋼、チタン、グラファイトで構成される。また、材料充填部44には、放熱部材46を溶接等で接続する必要があることから、筺体42および材料充填部44には、ステンレス鋼、チタン等を用いることが好ましい。 In the present embodiment, since the induction heating method is used, the housing 42 and the material filling portion 44 need to be configured with electromagnetic induction, and are configured with, for example, stainless steel, titanium, or graphite. Moreover, since it is necessary to connect the heat radiating member 46 to the material filling part 44 by welding or the like, it is preferable to use stainless steel, titanium or the like for the housing 42 and the material filling part 44.
 蒸気ガイド部60は、材料充填部44で発生した蒸気Voを基板100に導くものであり、蒸着時には蒸気Voの状態が維持できる温度に加熱保持される。
 蒸気ガイド部60は、輸送管62と、吐出部64と、輸送管62および吐出部64を加熱するための発熱抵抗体66と、発熱抵抗体66に接続された電源部68とを有する。電源部68は制御部16に接続されている。この電源部68は、抵抗加熱に用いられる一般的なものを適宜利用可能である。
 吐出部64の吐出面64aに表面100aが対向して基板100が配置される。基板100は、有機薄膜の形成に利用されるものであれば、特に限定されるものではないが、例えば、シリコン基板およびガラス基板が用いられる。
 なお、蒸着装置10において、蒸発室40の材料充填部44で蒸発された有機材料mの蒸気Voが材料充填部44から筺体42、蒸気ガイド部60の輸送管62および吐出部64に至る迄の経路のことを蒸着経路という。
The vapor guide unit 60 guides the vapor Vo generated in the material filling unit 44 to the substrate 100, and is heated and held at a temperature at which the vapor Vo state can be maintained during vapor deposition.
The steam guide section 60 includes a transport pipe 62, a discharge section 64, a heating resistor 66 for heating the transport pipe 62 and the discharge section 64, and a power supply section 68 connected to the heating resistor 66. The power supply unit 68 is connected to the control unit 16. As the power source unit 68, a general unit used for resistance heating can be appropriately used.
The substrate 100 is disposed with the surface 100a facing the ejection surface 64a of the ejection unit 64. The substrate 100 is not particularly limited as long as it is used for forming an organic thin film. For example, a silicon substrate and a glass substrate are used.
In the vapor deposition apparatus 10, the vapor Vo of the organic material m evaporated in the material filling portion 44 of the evaporation chamber 40 extends from the material filling portion 44 to the housing 42, the transport pipe 62 and the discharge portion 64 of the vapor guide portion 60. The path is called a vapor deposition path.
 輸送管62は、蒸発室40で発生された有機材料mの蒸気Voを吐出部64に導くものであり、例えば、管状部材で構成されている。
 吐出部64は、有機材料mの蒸気Voを、基板100の表面100aに導くものであり、例えば、管状部材で構成されている。また、吐出部64は、吐出面64aに複数の開口部64bが形成されており、シャワーヘッドのような構成になっている。複数の開口部64bから有機材料mの蒸気Voが出ていき、基板100の表面100aに有機薄膜が形成される。
The transport pipe 62 guides the vapor Vo of the organic material m generated in the evaporation chamber 40 to the discharge part 64, and is made of, for example, a tubular member.
The discharge part 64 guides the vapor Vo of the organic material m to the surface 100a of the substrate 100, and is made of, for example, a tubular member. Moreover, the discharge part 64 has a plurality of openings 64b formed on the discharge surface 64a, and has a configuration like a shower head. The vapor Vo of the organic material m is emitted from the plurality of openings 64b, and an organic thin film is formed on the surface 100a of the substrate 100.
 発熱抵抗体66は、蒸気ガイド部60(輸送管62および吐出部64)を囲むように配置されており、例えば、抵抗加熱に用いられる各種の線材で構成される。
 蒸気ガイド部60の加熱方式は、発熱抵抗体66に電源部68から電流が印加されると、発熱抵抗体66が発熱し、蒸気ガイド部60(輸送管62および吐出部64)を所定の温度に加熱する抵抗加熱方式である。制御部16により、電源部68から発熱抵抗体66への電流印加量が調整されて、蒸気ガイド部60(輸送管62および吐出部64)の温度が制御される。
 なお、蒸気ガイド部60の加熱方式は、抵抗加熱方式に限定されるものではなく、誘導加熱コイルを用いた誘電加熱方式であってもよい。また、輸送管62と、吐出部64とを別々に加熱して、それぞれの温度を制御部16で制御するようにしてもよい。
The heating resistor 66 is disposed so as to surround the steam guide portion 60 (the transport pipe 62 and the discharge portion 64), and is composed of, for example, various wires used for resistance heating.
The heating method of the steam guide unit 60 is that when a current is applied to the heating resistor 66 from the power supply unit 68, the heating resistor 66 generates heat, and the steam guide unit 60 (the transport pipe 62 and the discharge unit 64) is heated to a predetermined temperature. This is a resistance heating method that heats the material. The control unit 16 adjusts the amount of current applied from the power supply unit 68 to the heating resistor 66 to control the temperature of the steam guide unit 60 (the transport pipe 62 and the discharge unit 64).
The heating method of the steam guide unit 60 is not limited to the resistance heating method, and may be a dielectric heating method using an induction heating coil. Further, the transport pipe 62 and the discharge unit 64 may be heated separately, and the respective temperatures may be controlled by the control unit 16.
 輸送管62および吐出部64は、筺体42および材料充填部44と同じ材質で構成することができる。しかしながら、輸送管62および吐出部64は、誘電加熱方式ではなくともよいため、有機材料mを蒸気Voの状態に維持できる温度に耐えるものであれば、その材質は、特に限定されるものではない。 The transport pipe 62 and the discharge part 64 can be made of the same material as the housing 42 and the material filling part 44. However, since the transport pipe 62 and the discharge part 64 do not have to be a dielectric heating method, the material is not particularly limited as long as it can withstand the temperature at which the organic material m can be maintained in the state of the vapor Vo. .
 なお、蒸着装置10では、蒸着時に、材料充填部44、筺体42、輸送管62および吐出部64の順で、基板100に近い程、温度を高くすることが好ましい。すなわち、有機材料mが蒸発してから基板100の達するまでの蒸着経路において、温度が順次高くなる温度勾配を有することが好ましい。これにより、蒸着経路でのコールドスポットの発生をより一層抑制することができる。このため、蒸気ガイド部60は、材料充填部44よりも高い温度に加熱保持することが好ましい。 In the vapor deposition apparatus 10, it is preferable to increase the temperature as the substrate 100 is closer in the order of the material filling unit 44, the casing 42, the transport pipe 62, and the discharge unit 64 during vapor deposition. That is, it is preferable to have a temperature gradient in which the temperature sequentially increases in the vapor deposition path from the evaporation of the organic material m to the arrival of the substrate 100. Thereby, generation | occurrence | production of the cold spot in a vapor deposition path | route can be suppressed further. For this reason, it is preferable that the steam guide part 60 is heated and held at a temperature higher than that of the material filling part 44.
 以下、蒸着装置10の蒸着方法について説明する。
 本実施形態では、材料供給部20の材料ストック室22に、粉末状の有機材料mを供給する。このとき、材料供給路24は供給弁26と加熱用弁30により、有機材料mが遮断されている。
 次に、真空容器12の内部12aを、真空排気部14により所定の圧力に減圧し、真空容器12の内部12aを真空雰囲気にする。
 次に、供給弁26と加熱用弁30をスライドさせて、所定の量の有機材料mを材料充填部44に供給する。
Hereinafter, the vapor deposition method of the vapor deposition apparatus 10 will be described.
In the present embodiment, the powdery organic material m is supplied to the material stock chamber 22 of the material supply unit 20. At this time, the organic material m is blocked in the material supply path 24 by the supply valve 26 and the heating valve 30.
Next, the inside 12a of the vacuum vessel 12 is depressurized to a predetermined pressure by the vacuum exhaust part 14, and the inside 12a of the vacuum vessel 12 is made into a vacuum atmosphere.
Next, the supply valve 26 and the heating valve 30 are slid to supply a predetermined amount of the organic material m to the material filling unit 44.
 次に、高周波電源50を用いて蒸発室40を、電源部68を用いて蒸気ガイド部60を有機材料mを蒸着可能な温度に加熱し、その温度を保つように制御部16で制御する。
 このとき、蒸気ガイド部60は、蒸気Voが通るため、筺体42よりも高い温度に加熱保持される。また、材料充填部44は有機材料mを蒸着可能な温度に加熱されているものの、放熱部材46で放熱されるため、材料充填部44の温度は、筺体42および蒸気ガイド部60よりも常に低い。このとき、上述のように、材料充填部44、筺体42、輸送管62および吐出部64の順で、基板100に近い程、温度を高くすることが好ましい。
 そして、有機材料mを蒸発させ、蒸気Voが蒸発室40および吐出部64を経て、基板100の表面100aに到達し、有機薄膜が形成される。
Next, the evaporation chamber 40 is heated using the high-frequency power source 50, and the vapor guide unit 60 is heated using the power source unit 68 to a temperature at which the organic material m can be deposited, and is controlled by the control unit 16 so as to maintain the temperature.
At this time, the steam guide portion 60 is heated and held at a temperature higher than that of the housing 42 because the steam Vo passes therethrough. In addition, although the material filling unit 44 is heated to a temperature at which the organic material m can be deposited, since the heat is radiated by the heat radiating member 46, the temperature of the material filling unit 44 is always lower than that of the housing 42 and the steam guide unit 60. . At this time, as described above, the temperature is preferably increased as the material is closer to the substrate 100 in the order of the material filling unit 44, the casing 42, the transport pipe 62, and the discharge unit 64.
Then, the organic material m is evaporated, and the vapor Vo reaches the surface 100a of the substrate 100 through the evaporation chamber 40 and the discharge part 64, and an organic thin film is formed.
 本実施形態の蒸着装置10では、真空容器12内を真空排気部14により所定の圧力に減圧した後、有機材料mの蒸着させる際に、蒸発室40を高周波電源50を用いた誘導加熱により、蒸気ガイド部60を電源部68を用いた抵抗加熱により、有機材料mを蒸着可能な温度に加熱し、その温度を保持すると、蒸発室40の材料充填部44では、真空容器12等のどこにも接していない放熱部材46により放熱されて温度が相対的に一番低くなり、それ以外の蒸着経路でのコールドスポットの発生が抑制された状態で、蒸着が行われる。このため、有機材料mの蒸気Voが、材料充填部44から筺体42と蒸発室40を経て、蒸気ガイド部60の吐出部64から出て行くまでの間、蒸気Voが様々なところに接触しても、冷えて有機物として一時付着することがなく、有機材料mへ熱過負荷になることもない。これにより、安定した組成で有機材料mを蒸着でき、基板100の表面100aに有機薄膜を形成することができる。
 更には、コールドスポットの発生が抑制されるため、有機材料への熱過負荷が抑制され、有機材料の劣化を抑制でき、有機材料が分解することもない。このため、融点が低い有機材料を用いた場合でも、上述のように蒸着できる。
In the vapor deposition apparatus 10 of the present embodiment, the inside of the vacuum vessel 12 is depressurized to a predetermined pressure by the vacuum exhaust unit 14 and then the evaporation chamber 40 is subjected to induction heating using the high frequency power source 50 when the organic material m is vapor deposited. When the vapor guide section 60 is heated to a temperature at which the organic material m can be deposited by resistance heating using the power supply section 68 and the temperature is maintained, the material filling section 44 of the evaporation chamber 40 can be placed anywhere in the vacuum container 12 or the like. The heat is radiated by the heat radiating member 46 that is not in contact, the temperature is relatively lowest, and vapor deposition is performed in a state where the occurrence of cold spots in other vapor deposition paths is suppressed. Therefore, the vapor Vo comes into contact with various places until the vapor Vo of the organic material m passes from the material filling portion 44 through the housing 42 and the evaporation chamber 40 and exits from the discharge portion 64 of the vapor guide portion 60. However, it does not cool and temporarily adheres as an organic substance, and the organic material m is not overheated. Thereby, the organic material m can be vapor-deposited with a stable composition, and an organic thin film can be formed on the surface 100 a of the substrate 100.
Furthermore, since the occurrence of cold spots is suppressed, thermal overload on the organic material is suppressed, deterioration of the organic material can be suppressed, and the organic material is not decomposed. For this reason, even when an organic material having a low melting point is used, vapor deposition can be performed as described above.
 本実施形態では、有機材料mの蒸着時、材料充填部44の温度を筺体42および蒸気ガイド部60よりも常に低くしているが、降温時でも、材料充填部44の温度が常に低い状態が保たれる。
 また、蒸発室40の加熱に誘電加熱方式を用いているため、加熱に要する時間を短縮することができ、加熱を停止した場合には温度が下がるのも早い。これにより、蒸発室40に供給した有機材料mを消費した後、再度有機材料mを蒸発室40の供給する際に要する時間を短縮することができる。
In this embodiment, when the organic material m is deposited, the temperature of the material filling unit 44 is always lower than that of the housing 42 and the steam guide unit 60. However, even when the temperature is lowered, the temperature of the material filling unit 44 is always low. Kept.
In addition, since the dielectric heating method is used for heating the evaporation chamber 40, the time required for heating can be shortened, and when the heating is stopped, the temperature quickly decreases. Thereby, after the organic material m supplied to the evaporation chamber 40 is consumed, the time required for supplying the organic material m to the evaporation chamber 40 again can be shortened.
 以下、本実施形態の蒸着装置で用いられる有機材料について、作製される光電変換素子を例にして具体的に説明する。
 図3は、図1に示す第1の実施形態の有機材料の蒸着装置を用いて有機薄膜を成膜して形成される光電変換素子の一例を示す模式的断面図である。
Hereinafter, the organic material used in the vapor deposition apparatus of the present embodiment will be specifically described by taking the produced photoelectric conversion element as an example.
FIG. 3 is a schematic cross-sectional view showing an example of a photoelectric conversion element formed by forming an organic thin film using the organic material vapor deposition apparatus of the first embodiment shown in FIG.
 まず、光電変換素子について説明する。
 図3に示す光電変換素子110は、可視光像を電気信号に変換するものであり、基板112上に形成された絶縁層114に形成されている。
 光電変換素子110は、画素電極(下部電極)116と、有機層118と、対向電極(上部電極)120と、保護膜(封止層)122と、カラーフィルタ126と、隔壁128と、遮光層129と、オーバーコート層130とを有する。
First, the photoelectric conversion element will be described.
A photoelectric conversion element 110 shown in FIG. 3 converts a visible light image into an electric signal, and is formed on an insulating layer 114 formed on a substrate 112.
The photoelectric conversion element 110 includes a pixel electrode (lower electrode) 116, an organic layer 118, a counter electrode (upper electrode) 120, a protective film (sealing layer) 122, a color filter 126, a partition wall 128, and a light shielding layer. 129 and an overcoat layer 130.
 基板112には読出し回路140と、対向電極電圧供給部142とが形成されている。基板112は、例えば、ガラス基板またはSi等の半導体基板が用いられる。
 絶縁層114には、表面に複数の画素電極116が形成されている。画素電極116は、例えば、1次元または2次元状に配列される。
 また、絶縁層114には、画素電極116と読出し回路140とを接続する第1の接続部144が形成されている。さらには、対向電極120と対向電極電圧供給部142とを接続する第2の接続部146が形成されている。第2の接続部146は、画素電極116および有機層118に接続されない位置に形成されている。第1の接続部144および第2の接続部146は、導電性材料で形成されている。
A reading circuit 140 and a counter electrode voltage supply unit 142 are formed on the substrate 112. As the substrate 112, for example, a glass substrate or a semiconductor substrate such as Si is used.
A plurality of pixel electrodes 116 are formed on the surface of the insulating layer 114. The pixel electrodes 116 are arranged in a one-dimensional or two-dimensional manner, for example.
In addition, a first connection portion 144 that connects the pixel electrode 116 and the readout circuit 140 is formed in the insulating layer 114. Furthermore, a second connection portion 146 that connects the counter electrode 120 and the counter electrode voltage supply unit 142 is formed. The second connection portion 146 is formed at a position not connected to the pixel electrode 116 and the organic layer 118. The first connection portion 144 and the second connection portion 146 are made of a conductive material.
 絶縁層114の内部には、読出し回路140および対向電極電圧供給部142を、例えば、光電変換素子110の外部と接続するための導電性材料からなる配線層148が形成されている。
 上述のように、基板112上に形成された絶縁層114を合わせて回路基板111という。なお、この回路基板111はCMOS基板ともいう。
A wiring layer 148 made of a conductive material for connecting the readout circuit 140 and the counter electrode voltage supply unit 142 to, for example, the outside of the photoelectric conversion element 110 is formed inside the insulating layer 114.
As described above, the insulating layer 114 formed on the substrate 112 is collectively referred to as a circuit substrate 111. The circuit board 111 is also referred to as a CMOS substrate.
 複数の画素電極116を覆うとともに、第2の接続部146を避けるようにして有機層118が形成されている。有機層118は、電子ブロッキング層150と光電変換層152とを有する。
 有機層118は、電子ブロッキング層150が画素電極116側に形成されており、電子ブロッキング層150上に光電変換層152が形成されている。
 電子ブロッキング層150は、画素電極116から光電変換層152に電子が注入されるのを抑制するための層である。
 光電変換層152は、入射光L(可視光)等の受光した光の光量に応じた電荷を発生するものであり、有機の光電変換材料を含むものである。
An organic layer 118 is formed so as to cover the plurality of pixel electrodes 116 and to avoid the second connection portion 146. The organic layer 118 includes an electron blocking layer 150 and a photoelectric conversion layer 152.
In the organic layer 118, the electron blocking layer 150 is formed on the pixel electrode 116 side, and the photoelectric conversion layer 152 is formed on the electron blocking layer 150.
The electron blocking layer 150 is a layer for suppressing injection of electrons from the pixel electrode 116 to the photoelectric conversion layer 152.
The photoelectric conversion layer 152 generates an electric charge according to the amount of received light such as incident light L (visible light), and includes an organic photoelectric conversion material.
 対向電極120は、画素電極116と対向する電極であり、光電変換層152を覆うようにして設けられている。画素電極116と対向電極120との間に光電変換層152が設けられている。
 対向電極120は、光電変換層152に光を入射させるため、入射光(可視光)に対して透明な導電性材料で構成されている。対向電極120は、光電変換層152よりも外側に配置された第2の接続部146と電気的に接続されており、第2の接続部146を介して対向電極電圧供給部142に接続されている。
The counter electrode 120 is an electrode facing the pixel electrode 116 and is provided so as to cover the photoelectric conversion layer 152. A photoelectric conversion layer 152 is provided between the pixel electrode 116 and the counter electrode 120.
The counter electrode 120 is made of a conductive material that is transparent to incident light (visible light) in order to make light incident on the photoelectric conversion layer 152. The counter electrode 120 is electrically connected to the second connection portion 146 disposed outside the photoelectric conversion layer 152, and is connected to the counter electrode voltage supply portion 142 via the second connection portion 146. Yes.
 対向電極電圧供給部142は、第2の接続部146を介して対向電極120に所定の電圧を印加するものである。対向電極120に印加すべき電圧が光電変換素子110の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給するものである。 The counter electrode voltage supply unit 142 applies a predetermined voltage to the counter electrode 120 via the second connection unit 146. When the voltage to be applied to the counter electrode 120 is higher than the power supply voltage of the photoelectric conversion element 110, the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
 画素電極116は、有機層118(光電変換層152)で発生した電荷を捕集するための電荷捕集用の電極である。画素電極116は、第1の接続部144を介して読出し回路140に接続されている。この読出し回路140は、複数の画素電極116の各々に対応して基板112に設けられており、対応する画素電極116で捕集された電荷に応じた信号を読出すものである。 The pixel electrode 116 is an electrode for collecting electric charges for collecting electric charges generated in the organic layer 118 (photoelectric conversion layer 152). The pixel electrode 116 is connected to the readout circuit 140 through the first connection portion 144. The readout circuit 140 is provided on the substrate 112 corresponding to each of the plurality of pixel electrodes 116, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 116.
 読出し回路140は、例えば、CCD、MOS回路、またはTFT回路等で構成されており、絶縁層114内に設けられた遮光層(図示せず)によって遮光されている。
 なお、図示はしないが、例えば、基板112にp領域によって囲まれた高濃度のn領域が形成されており、このn領域に第1の接続部144が接続されている。p領域に読出し回路140が設けられている。n領域は光電変換層152の電荷を蓄積する電荷蓄積部として機能するものである。n領域に蓄積された信号電荷は読出し回路140によって、その電荷量に応じた信号に変換されて、例えば、配線層148を介して光電変換素子110外部に出力される。
The reading circuit 140 is constituted by, for example, a CCD, a MOS circuit, a TFT circuit, or the like, and is shielded from light by a light shielding layer (not shown) provided in the insulating layer 114.
Although not shown, for example, a high-concentration n region surrounded by a p region is formed on the substrate 112, and the first connection portion 144 is connected to the n region. A read circuit 140 is provided in the p region. The n region functions as a charge accumulation unit that accumulates charges of the photoelectric conversion layer 152. The signal charge accumulated in the n region is converted into a signal corresponding to the amount of charge by the readout circuit 140 and output to the outside of the photoelectric conversion element 110 via the wiring layer 148, for example.
 保護膜122は、光電変換層152含む有機層118を水分子、酸素等の劣化因子から保護するためのものである。保護膜122は、対向電極120を覆うようして形成されており、例えば、酸化窒化珪素膜(SiON膜)で構成される。また、入射光L(可視光)は、保護膜122を通じて有機層118に到達する。このため、保護膜122は、有機層118で検知する波長の光、例えば、可視光に対して透明である。 The protective film 122 is for protecting the organic layer 118 including the photoelectric conversion layer 152 from deterioration factors such as water molecules and oxygen. The protective film 122 is formed so as to cover the counter electrode 120, and is formed of, for example, a silicon oxynitride film (SiON film). Further, the incident light L (visible light) reaches the organic layer 118 through the protective film 122. Therefore, the protective film 122 is transparent to light having a wavelength detected by the organic layer 118, for example, visible light.
 カラーフィルタ126は、保護膜122上の各画素電極116と対向する位置に形成されている。隔壁128は、保護膜122上のカラーフィルタ126同士の間に設けられており、カラーフィルタ126の光透過効率を向上させるためのものである。遮光層129は、保護膜122上のカラーフィルタ126および隔壁128を設けた領域(有効画素領域)以外に形成されており、有効画素領域以外に形成された光電変換層152に光が入射することを防止するものである。カラーフィルタ126、隔壁128および遮光層129は、例えば、フォトリソグラフィ法により形成される。 The color filter 126 is formed at a position facing each pixel electrode 116 on the protective film 122. The partition wall 128 is provided between the color filters 126 on the protective film 122 and is for improving the light transmission efficiency of the color filter 126. The light shielding layer 129 is formed in a region other than the region (effective pixel region) provided with the color filter 126 and the partition wall 128 on the protective film 122, and light is incident on the photoelectric conversion layer 152 formed outside the effective pixel region. Is to prevent. The color filter 126, the partition wall 128, and the light shielding layer 129 are formed by, for example, a photolithography method.
 オーバーコート層130は、カラーフィルタ126を後工程等から保護するためのものであり、カラーフィルタ126、隔壁128および遮光層129を覆うようにして形成されている。
 光電変換素子110においては、有機層118、対向電極120およびカラーフィルタ126が上方に設けられた画素電極116、1つが単位画素になる。
The overcoat layer 130 is for protecting the color filter 126 from subsequent processes and is formed so as to cover the color filter 126, the partition wall 128 and the light shielding layer 129.
In the photoelectric conversion element 110, one pixel electrode 116, in which the organic layer 118, the counter electrode 120, and the color filter 126 are provided above, is a unit pixel.
 オーバーコート層130には、有機固体撮像素子に用いられる公知のものが用いられる。オーバーコート層130には、アクリル系樹脂、ポリシロキサン系樹脂、ポリスチレン系樹脂、弗素樹脂等のような高分子材料、酸化珪素、窒化珪素のような無機材料を適宜使用できる。オーバーコート層130の形成工程は、所定の真空下でも、非真空下であってもよい。なお、オーバーコート層130を反射防止層として使用することも可能であり、カラーフィルタ126の隔壁として使用した各種低屈折率材料を成膜することも好ましい。 As the overcoat layer 130, a known layer used for an organic solid-state image sensor is used. For the overcoat layer 130, a polymer material such as an acrylic resin, a polysiloxane resin, a polystyrene resin, or a fluorine resin, or an inorganic material such as silicon oxide or silicon nitride can be used as appropriate. The overcoat layer 130 may be formed in a predetermined vacuum or non-vacuum. Note that the overcoat layer 130 can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 126.
 対向電極120および画素電極116は、導電性材料から構成される。導電性材料としては、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物等を用いることができる。対向電極120から光が入射されるため、対向電極120は検知したい光に対し十分透明である事が必要である。対向電極120としては、具体的には、アンチモンまたはフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属薄膜、更にこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、およびこれらとITOとの積層物等が挙げられる。 The counter electrode 120 and the pixel electrode 116 are made of a conductive material. As the conductive material, a metal, an alloy, a metal oxide, an electrically conductive compound, a mixture thereof, or the like can be used. Since light enters from the counter electrode 120, the counter electrode 120 needs to be sufficiently transparent to the light to be detected. Specific examples of the counter electrode 120 include tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxides, metal thin films such as gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, Examples thereof include organic conductive materials such as polythiophene and polypyrrole, and laminates of these with ITO.
 画素電極116は、用途に応じて、透明性を持たせる場合と、逆に透明を持たせず光を反射させるような材料を用いる場合等がある。画素電極116としては、具体的には、アンチモンまたはフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミニウム等の金属およびこれらの金属の酸化物や窒化物等の導電性化合物、更にこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、およびこれらとITOとの積層物等が挙げられる。
 なお、電極を形成する方法は、特に限定されるものではなく、上述の電極材料との適正を考慮して適宜選択することができる。
Depending on the application, the pixel electrode 116 may have transparency, or conversely, may use a material that does not have transparency and reflects light. Specifically, the pixel electrode 116 is made of tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), or the like. Conductive metal oxides, metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metals, and also between these metals and conductive metal oxides Examples thereof include mixtures or laminates, inorganic conductive substances such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene and polypyrrole, and laminates of these with ITO.
Note that a method for forming the electrode is not particularly limited, and can be appropriately selected in consideration of appropriateness with the electrode material described above.
 電子ブロッキング層150は、下記一般式(I)で表される化合物を含有するものとすることが好ましい。 The electron blocking layer 150 preferably contains a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(F-1)中、R11~R18、R’11~R’18はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、複素環基、水酸基、アミノ基、またはメルカプト基を表し、これらは更に置換基を有してもよい。但し、R15~R18中のいずれか一つは、R’15~R’18中のいずれか一つと連結し、単結合を形成する。A11およびA12はそれぞれ独立に下記一般式(A-1)で表される置換基を表し、R11~R14中のいずれか一つ、およびR’11~R’14中のいずれか一つとして置換する。Yはそれぞれ独立に、炭素原子、窒素原子、酸素原子、硫黄原子、またはケイ素原子を表し、これらは更に置換基を有していてもよい。 In general formula (F-1), R 11 to R 18 and R ′ 11 to R ′ 18 are each independently a hydrogen atom, halogen atom, alkyl group, aryl group, heterocyclic group, hydroxyl group, amino group, or mercapto. Represents a group, and these may further have a substituent. However, any one in R 15 ~ R 18 is linked to any one in R '15 ~ R' 18, to form a single bond. A 11 and A 12 each independently represent a substituent represented by the following general formula (A-1), and any one of R 11 to R 14 and any of R ′ 11 to R ′ 14 Replace as one. Y independently represents a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, or a silicon atom, and these may further have a substituent.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(A-1)中、Ra~Raは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、または複素環基を表し、これらは更に置換基を有してもよい。Ra~Raのうち少なくとも2つが互いに結合して環を形成してもよい。*は結合位置を表す。Xaは、単結合、酸素原子、硫黄原子、アルキレン基、シリレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、アリーレン基、2価の複素環基、またはイミノ基を表し、これらは更に置換基を有してもよい。S11はそれぞれ独立に下記置換基(S11)を示し、Ra~Ra中のいずれかひとつとして置換する。nはそれぞれ独立に1~4の整数を表す。 In general formula (A-1), Ra 1 to Ra 8 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, or a heterocyclic group, and these may further have a substituent. . At least two members out of Ra 1 to Ra 8 may be bonded to each other to form a ring. * Represents a bonding position. Xa represents a single bond, an oxygen atom, a sulfur atom, an alkylene group, a silylene group, an alkenylene group, a cycloalkylene group, a cycloalkenylene group, an arylene group, a divalent heterocyclic group, or an imino group, and these further represent a substituent. You may have. S 11 independently represents the following substituent (S 11 ) and is substituted as any one of Ra 1 to Ra 8 . Each n independently represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 R~Rはそれぞれ独立に、水素原子またはアルキル基を表す。R~Rのうち少なくとも2つが互いに結合して環を形成してもよい。 R 1 to R 3 each independently represents a hydrogen atom or an alkyl group. At least two of R 1 to R 3 may be bonded to each other to form a ring.
 電子ブロッキング層150は、電子ブロッキング材料として、一般式(I)で示される有機化合物(有機材料)が用いられる。なお、下記に示す化合物1は、上記一般式(I)の具体例であり、この化合物1は粉体である。 The electron blocking layer 150 uses an organic compound (organic material) represented by the general formula (I) as an electron blocking material. In addition, the compound 1 shown below is a specific example of the said general formula (I), and this compound 1 is a powder.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 電子ブロッキング層150としては、上述のもの以外に、例えば、以下に示す化合物2の電子ブロッキング材料を用いることができる。この化合物2は粉体である。 As the electron blocking layer 150, in addition to the above, for example, an electron blocking material of Compound 2 shown below can be used. This compound 2 is a powder.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 電子ブロッキング層150の厚さは、10nm以上300nm以下が好ましく、更に好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。電子ブロッキング層150の厚さを10nm以上とすることにより、好適な暗電流抑制効果が得られ、電子ブロッキング層150の厚さを300nm以下とすることにより、好適な光電変換効率が得られる。 The thickness of the electron blocking layer 150 is preferably 10 nm to 300 nm, more preferably 30 nm to 150 nm, and particularly preferably 50 nm to 100 nm. By setting the thickness of the electron blocking layer 150 to 10 nm or more, a suitable dark current suppressing effect can be obtained, and by setting the thickness of the electron blocking layer 150 to 300 nm or less, preferable photoelectric conversion efficiency can be obtained.
 光電変換層152を構成する有機材料は、p型有機半導およびn型有機半導体の少なくとも一方を含んでいることが好ましい。以下、p型有機半導およびn型有機半導体について説明する。 The organic material constituting the photoelectric conversion layer 152 preferably contains at least one of p-type organic semiconductor and n-type organic semiconductor. Hereinafter, the p-type organic semiconductor and the n-type organic semiconductor will be described.
 p型有機半導体(化合物)は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。更に詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これに限らず、上述したように、n型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてよい。 The p-type organic semiconductor (compound) is a donor organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound. For example, triarylamine compound, benzidine compound, pyrazoline compound, styrylamine compound, hydrazone compound, triphenylmethane compound, carbazole compound, polysilane compound, thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole Compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), nitrogen-containing heterocyclic compounds The metal complex etc. which it has as can be used. Not limited to this, as described above, any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
 上記の中でも、好ましいのはトリアリールアミン化合物である。中でも、下記一般式(II)で表されるトリアリールアミン化合物がより好ましい。 Among the above, a triarylamine compound is preferable. Among these, triarylamine compounds represented by the following general formula (II) are more preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(II)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、Lはそれぞれ無置換メチン基、または置換メチン基を表す。Dはヘテロ原子を有する原子群を表す。nは0以上の整数を表す。 In the general formula (II), Z 1 is a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each represents an unsubstituted methine group or a substituted methine group. D 1 represents an atomic group having a hetero atom. n 1 represents an integer of 0 or more.
 Zは、少なくとも2つの炭素原子を含む環であって、5員環、6員環または5員環および6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環または5員環および6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば、以下のものが挙げられる。 Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. As the condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring, those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following: Can be mentioned.
(a)1,3-ジカルボニル核:例えば、1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
(b)ピラゾリノン核:例えば、1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン等。
(c)イソオキサゾリノン核:例えば、3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
(d)オキシインドール核:例えば、1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
(e)2,4,6-トリケトヘキサヒドロピリミジン核:例えば、バルビツール酸または2-チオバルビツール酸およびその誘導体等。誘導体としては例えば、1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えば、ローダニンおよびその誘導体等。誘導体としては例えば、3-メチルローダニン、3-エチルローダニン、3-アリールローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
(A) 1,3-dicarbonyl nucleus: for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6 -Dione etc.
(B) pyrazolinone nucleus: for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl- 2-pyrazolin-5-one and the like.
(C) isoxazolinone nucleus: for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, etc.
(D) Oxindole nucleus: For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
(E) 2,4,6-triketohexahydropyrimidine nucleus: for example, barbituric acid or 2-thiobarbituric acid and derivatives thereof. Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, and 1,3-diphenyl. 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), and 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
(F) 2-thio-2,4-thiazolidinedione nucleus: for example, rhodanine and derivatives thereof. Examples of the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-arylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl). And 3-position heterocyclic-substituted rhodanine such as rhodanine.
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば、3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば、3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば、3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば、2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば、4-チアゾリノン、2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば、2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば、2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)イミダゾリン-5-オン核:例えば、2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば、1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3-オン核:例えば、ベンゾチオフェン-3-オン、オキソベンゾチオフェン-3-オン、ジオキソベンゾチオフェン-3-オン等。
(q)インダノン核:例えば、1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、3,3-ジメチル-1-インダノン等。
(G) 2-thio-2,4-oxazolidinedione (2-thio-2,4- (3H, 5H) -oxazoledione nucleus: for example, 3-ethyl-2-thio-2,4-oxazolidinedione and the like.
(H) Tianaphthenone nucleus: For example, 3 (2H) -thianaphthenone-1,1-dioxide and the like.
(I) 2-thio-2,5-thiazolidinedione nucleus: for example, 3-ethyl-2-thio-2,5-thiazolidinedione and the like.
(J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
(K) Thiazolin-4-one nucleus: for example, 4-thiazolinone, 2-ethyl-4-thiazolinone, etc.
(L) 2,4-imidazolidinedione (hydantoin) nucleus: for example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione, etc.
(M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus: for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidine Zeon etc.
(N) Imidazolin-5-one nucleus: For example, 2-propylmercapto-2-imidazolin-5-one and the like.
(O) 3,5-pyrazolidinedione nucleus: for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione, etc.
(P) Benzothiophen-3-one nucleus: for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
(Q) Indanone nucleus: for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
 Zで表される環として好ましくは、1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えば、バルビツール酸核、2-チオバルビツール酸核)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えば、バルビツール酸核、2-チオバルビツール酸核)、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、更に好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えば、バルビツール酸核、2-チオバルビツール酸核)であり、特に好ましくは1,3-インダンジオン核、バルビツール酸核、2-チオバルビツール酸核およびそれらの誘導体である。 The ring represented by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thio Barbituric acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone A nucleus, more preferably a 1,3-dicarbonyl nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, Obarbituric acid nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine Nuclei (including thioketone bodies, for example, barbituric acid nuclei, 2-thiobarbituric acid nuclei), particularly preferably 1,3-indandione nuclei, barbituric acid nuclei, 2-thiobarbituric acid nuclei and their Is a derivative of
 Zで表される環として好ましいものは下記の式で表される。 What is preferable as a ring represented by Z 1 is represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 Zは、少なくとも3つの炭素原子を含む環であって、5員環、6員環または5員環および6員環の少なくともいずれかを含む縮合環を表す。Zとしては上記Zにより形成される環中から選ぶことができ、好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)であり、特に好ましくは1,3-インダンジオン核、バルビツール酸核、2-チオバルビツール酸核およびそれらの誘導体である。 Z 3 represents a ring containing at least 3 carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. Z 3 can be selected from the ring formed by Z 1 and is preferably a 1,3-dicarbonyl nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body), Particularly preferred are 1,3-indandione nucleus, barbituric acid nucleus, 2-thiobarbituric acid nucleus and derivatives thereof.
 一般式(II)で表される化合物は、Dで表される構造がドナー部とZで表される構造がアクセプター部として働き、両者がL等を介して連結させることにより、光電変換材料として有用であることが見出された。
 また、C60などのn型半導体材料(アクセプター性)と併用した際に、アクセプター部同士の相互作用を制御することにより、C60と共蒸着膜とした際、高い正孔輸送性を発現させる事ができることが見出された。
 ここで、アクセプター部の構造、および立体障害となる置換基の導入により相互作用の制御を行うことが可能である。バルビツール酸核、2-チオバルビツール酸核において、2つのN位の水素を好ましくは2つとも、置換基により置換する事で好ましく分子間相互作用を制御することが可能であり、置換基としては後述の置換基Wがあげられるが、より好ましくはアルキル基であり、更に好ましくは、メチル基、エチル基、プロピル基、またはブチル基である。
 Zで表される環が1,3-インダンジオン核の場合、下記一般式(IV)で示される基または下記一般式(V)で示される基である場合が好ましい。
In the compound represented by the general formula (II), the structure represented by D 1 functions as a donor part and the structure represented by Z 1 as an acceptor part, and both are linked via L 1 or the like. It has been found useful as a conversion material.
Further, when used in combination with n-type semiconductor material, such as C 60 (acceptor), by controlling the interaction between acceptor parts, when used as a co-deposited film with C 60, to express the high hole-transporting property It was found that things could be done.
Here, the structure of the acceptor part and the interaction can be controlled by introducing a substituent that causes steric hindrance. In the barbituric acid nucleus and 2-thiobarbituric acid nucleus, it is possible to control the interaction between molecules preferably by substituting two hydrogen atoms at two N positions with a substituent. Examples of the substituent W include those described below, more preferably an alkyl group, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group.
When the ring represented by Z 1 is a 1,3-indandione nucleus, it is preferably a group represented by the following general formula (IV) or a group represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 R41~R44はそれぞれ独立に、水素原子または置換基を表す。
Figure JPOXMLDOC01-appb-C000009
R 41 to R 44 each independently represents a hydrogen atom or a substituent.
Figure JPOXMLDOC01-appb-C000009
 R41、R44、R45~R48はそれぞれ独立に、水素原子または置換基を表す。
 前記一般式(IV)で示される基の場合、R41~R44は、それぞれ独立に、水素原子または置換基を表す。置換基としては例えば、置換基Wとして挙げたものが適用できる。また、R41~R44はそれぞれ隣接するものが、結合して環(形成する環としては、後述の環Rが挙げられる。)を形成することができ、R42とR43が結合して環(例えば、ベンゼン環、ピリジン環、ピラジン環)を形成する場合が好ましい。R41~R44としては全てが水素原子である場合が好ましい。
 前記一般式(IV)で示される基が前記一般式(V)で示される基である場合が好ましい。
 前記一般式(V)で示される基の場合、R41、R44、R45~R48はそれぞれ独立に、水素原子または置換基を表す。置換基としては例えば、置換基Wとして挙げたものが適用できる。R41、R44、R45~R48としては全てが水素原子である場合が好ましい。
R 41 , R 44 and R 45 to R 48 each independently represent a hydrogen atom or a substituent.
In the case of the group represented by the general formula (IV), R 41 to R 44 each independently represents a hydrogen atom or a substituent. As the substituent, for example, those mentioned as the substituent W can be applied. R 41 to R 44 are adjacent to each other and can be bonded to form a ring (the ring to be formed includes ring R described later), and R 42 and R 43 are bonded to each other. It is preferable to form a ring (for example, a benzene ring, a pyridine ring, a pyrazine ring). R 41 to R 44 are preferably all hydrogen atoms.
The case where the group represented by the general formula (IV) is a group represented by the general formula (V) is preferable.
In the case of the group represented by the general formula (V), R 41 , R 44 , R 45 to R 48 each independently represents a hydrogen atom or a substituent. As the substituent, for example, those mentioned as the substituent W can be applied. R 41 , R 44 and R 45 to R 48 are preferably all hydrogen atoms.
 Zで表される環が2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含む)の場合、下記一般式(VI)で示される基である場合が好ましい。下記R81、R82はそれぞれ独立に、水素原子または置換基を表す。R83は、酸素原子、硫黄原子または置換基を表す。 When the ring represented by Z 1 is a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone form), it is preferably a group represented by the following general formula (VI). The following R 81 and R 82 each independently represent a hydrogen atom or a substituent. R 83 represents an oxygen atom, a sulfur atom or a substituent.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記一般式(VI)で示される基の場合、R81、R82はそれぞれ独立に、水素原子または置換基を表す。置換基としては例えば、置換基Wとして挙げたものが適用できる。R81、R82としてはそれぞれ独立に、アルキル基、アリール基またはヘテロ環基(2-ピリジル等)が好ましく、炭素数1~6のアルキル基(例えば、メチル、エチル、n-プロピル、t-ブチル)を表す場合がより好ましい。
 R83は、酸素原子、硫黄原子または置換基を表すが、R83としては酸素原子、または硫黄原子を表す場合が好ましい。前記置換基としては結合部が窒素原子であるものと炭素原子であるものが好ましく、窒素原子の場合はアルキル基(炭素数1~12)もしくはアリール基(炭素数6~12)が好ましく、具体的にはメチルアミノ基、エチルアミノ基、ブチルアミノ基、ヘキシルアミノ基、フェニルアミノ基、またはナフチルアミノ基が挙げられる。炭素原子の場合は更に少なくとも一つの電子吸引性基が置換していれば良く、電子吸引性基としてはカルボニル基、シアノ基、スルホキシド基、スルホニル基、またはホスホリル基が挙げられ、更に置換基を有している場合が良い。この置換基としては前記Wが挙げられる。R83としては、結合部の炭素原子を含む5員環または6員環を形成するものが好ましく、具体的には下記構造のものが挙げられる。
In the case of the group represented by the general formula (VI), R 81 and R 82 each independently represents a hydrogen atom or a substituent. As the substituent, for example, those mentioned as the substituent W can be applied. R 81 and R 82 are each independently preferably an alkyl group, an aryl group or a heterocyclic group (such as 2-pyridyl), and an alkyl group having 1 to 6 carbon atoms (eg, methyl, ethyl, n-propyl, t-). (Butyl) is more preferable.
R 83 represents an oxygen atom, a sulfur atom or a substituent, and R 83 preferably represents an oxygen atom or a sulfur atom. As the substituent, those in which the bond is a nitrogen atom and those having a carbon atom are preferable. In the case of a nitrogen atom, an alkyl group (having 1 to 12 carbon atoms) or an aryl group (having 6 to 12 carbon atoms) is preferable. Specific examples include a methylamino group, an ethylamino group, a butylamino group, a hexylamino group, a phenylamino group, and a naphthylamino group. In the case of a carbon atom, it is sufficient that at least one electron-withdrawing group is substituted. Examples of the electron-withdrawing group include a carbonyl group, a cyano group, a sulfoxide group, a sulfonyl group, and a phosphoryl group. It is good to have. Examples of this substituent include W. R 83 is preferably one that forms a 5-membered or 6-membered ring containing a carbon atom at the bond, and specifically includes those having the following structures.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記の基中のPhはフェニル基を表す。
 一般式(II)において、L、L、Lは、それぞれ独立に、無置換メチン基、または置換メチン基を表す。置換メチン基同士が結合して環(例、6員環例えば、ベンゼン環)を形成してもよい。置換メチン基の置換基は置換基Wが挙げられるが、L、L、Lは全てが無置換メチン基である場合が好ましい。
Ph in the above group represents a phenyl group.
In the general formula (II), L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group. The substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring). Although the substituent of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
 一般式(II)において、nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にする事ができるか、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。 In the general formula (II), n represents an integer of 0 or more, preferably 0 or more and 3 or less, and more preferably 0. When n is increased, the absorption wavelength region can be made longer, or the thermal decomposition temperature is lowered. N = 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
 一般式(II)において、Dはヘテロ原子を有する原子群を表す。
 前記Dは-NR(R)を含む基であることが好ましく、更に、前記Dが-NR(R)が置換したアリール基(好ましくは、置換基を有してもよい、フェニル基またはナフチル基)を表す場合が好ましい。
 R、Rはそれぞれ独立に、水素原子、または置換基を表し、R、Rで表される置換基は置換基Wが挙げられるが、好ましくは、置換基を有してもよい、脂肪族炭化水素基(好ましくは置換基を有してもよいアルキル基、アルケニル基)、アリール基(好ましくは置換基を有してもよいフェニル基)、またはヘテロ環基である。前記ヘテロ環としては、フラン、チオフェン、ピロール、オキサジアゾール等の5員環が好ましい。
In the general formula (II), D 1 represents an atomic group having a hetero atom.
The D 1 is preferably a group containing —NR a (R b ), and the D 1 may further have an aryl group substituted with —NR a (R b ) (preferably, may have a substituent). , A phenyl group or a naphthyl group) is preferable.
R a and R b each independently represent a hydrogen atom or a substituent, and examples of the substituent represented by R a and R b include the substituent W, but the substituent may preferably have a substituent. , An aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may have a substituent), an aryl group (preferably a phenyl group which may have a substituent), or a heterocyclic group. The heterocycle is preferably a 5-membered ring such as furan, thiophene, pyrrole or oxadiazole.
 R、Rが脂肪族炭化水素基、アリール基、ヘテロ環基の場合の置換基として好ましくは、アルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルアミノ基、スルホニルアミノ基、スルホニル基、シリル基、芳香族ヘテロ環基であり、より好ましくはアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、シリル基、芳香族ヘテロ環基であり、更に好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、シリル基、芳香族ヘテロ環基である。具体例は置換基Wで挙げたものが適用できる。 When R a and R b are an aliphatic hydrocarbon group, an aryl group or a heterocyclic group, an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, Aryloxycarbonyl group, acylamino group, sulfonylamino group, sulfonyl group, silyl group, aromatic heterocyclic group, more preferably alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, silyl group, aromatic A heterocyclic group, more preferably an alkyl group, an aryl group, an alkoxy group, an aryloxy group, a silyl group, and an aromatic heterocyclic group. As specific examples, those exemplified for the substituent W can be applied.
 R、Rとして好ましくはアルキル基、アリール基、または芳香族へテロ環基である。R、Rとして特に好ましくはアルキル基、Lと連結して環を形成するアルキレン基、またはアリール基であり、より好ましくは炭素数1~8のアルキル基、Lと連結して5ないし6員環を形成するアルキレン基、または置換もしくは無置換のフェニル基であり、更に好ましくは炭素数1~8のアルキル基、または置換もしくは無置換のフェニル基である。 R a and R b are preferably an alkyl group, an aryl group, or an aromatic heterocyclic group. R a and R b are particularly preferably an alkyl group, an alkylene group linked to L to form a ring, or an aryl group, and more preferably an alkyl group having 1 to 8 carbon atoms, and L to 5 to 6 linked to L. An alkylene group forming a member ring, or a substituted or unsubstituted phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group.
 R、Rが置換基(好ましくはアルキル基、アルケニル基、またはこれらの基を置換基として有する基)である場合、これらの基は、-NR(R)が置換したアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、または置換基と結合して環(好ましくは6員環)を形成してもよい。この場合、後記の一般式(VIII)、(IX)または(X)で表される場合が好ましい。
 R、Rが互いに置換基同士が結合して環(形成する環としては、後述の環Rが挙げられる。好ましくは5員または6員環、より好ましくは6員環)を形成してもよく、また、R、RはそれぞれがL(L、L、Lのいずれかを表す)中の置換基と結合して環(好ましくは5員または6員環、より好ましくは6員環)を形成してもよい。
 Dはパラ位にアミノ基が置換したアリール基(好ましくはフェニル基)である場合が好ましい。この場合、下記一般式(IID)で示されることが好ましい。このアミノ基は置換されていてもよい。このアミノ基の置換基としては、置換基Wが挙げられるが、脂肪族炭化水素基(好ましくは置換基を有してもよいアルキル基)、アリール基(好ましくは置換基を有してもよいフェニル基)、またはヘテロ環基が好ましい。前記アミノ基はアリール基が2つ置換した、いわゆるジアリール基置換のアミノ基が好ましく、この場合、下記一般式(III)で示されることが好ましい。更にこのアミノ基の置換基(好ましくは置換基を有してもよい、アルキル基、アルケニル基)はアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、または置換基と結合して環(形成する環としては、後述の環Rが挙げられる。好ましくは6員環)を形成してもよい。
When R a and R b are a substituent (preferably an alkyl group, an alkenyl group, or a group having these groups as a substituent), these groups are those of the aryl group substituted by —NR a (R b ). A ring (preferably a 6-membered ring) may be formed by bonding to a hydrogen atom of an aromatic ring (preferably benzene ring) skeleton or a substituent. In this case, the case represented by the general formula (VIII), (IX) or (X) described later is preferable.
R a and R b are bonded to each other to form a ring (the ring to be formed includes a ring R described later, preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring). R a and R b may be bonded to a substituent in L (representing any one of L 1 , L 2 , and L 3 ) to form a ring (preferably a 5- or 6-membered ring, more preferably May form a 6-membered ring).
D 1 is preferably an aryl group substituted with an amino group at the para position (preferably a phenyl group). In this case, it is preferably represented by the following general formula (IID). This amino group may be substituted. Examples of the substituent of the amino group include a substituent W, but an aliphatic hydrocarbon group (preferably an alkyl group which may have a substituent) and an aryl group (preferably may have a substituent). A phenyl group) or a heterocyclic group. The amino group is preferably a so-called diaryl group-substituted amino group in which two aryl groups are substituted. In this case, the amino group is preferably represented by the following general formula (III). Further, the substituent of this amino group (preferably an alkyl group or alkenyl group which may have a substituent) is bonded to a hydrogen atom of the aromatic ring (preferably benzene ring) skeleton of the aryl group or a substituent to form a ring. (Examples of the ring to be formed include a ring R described later, preferably a 6-membered ring).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、R~Rはそれぞれ独立に、水素原子または置換基を表す。またRとR、RとR、RとR、RとR、RとRがそれぞれ互いに結合して環を形成してもよい。 In the formula, R 1 to R 6 each independently represents a hydrogen atom or a substituent. R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 2 and R 5 , and R 4 and R 6 may be bonded to each other to form a ring.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(III)中、R811~R814、R820~R824、R830~R834はそれぞれ独立に、水素原子または置換基を表す。またR811~R814、R820~R824、R830~R834の少なくとも2つが互いに結合して環を形成してもよい。
 前記Dが下記の一般式(VII)で示される場合も好ましい。
In general formula (III), R 811 to R 814 , R 820 to R 824 , and R 830 to R 834 each independently represent a hydrogen atom or a substituent. Further, at least two of R 811 to R 814 , R 820 to R 824 , and R 830 to R 834 may be bonded to each other to form a ring.
It is also preferred that D 1 is represented by the following general formula (VII).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、R91~R98はそれぞれ独立に、水素原子または置換基を表す。mは0以上の整数を表す。Rx、Ryは、それぞれ独立に水素原子または置換基を表し、mが2以上の場合、各6員環に結合するRx、Ryは異なる置換基であっても良い。また、R91とR92、R92とRxと、RxとR94、R94とR97、R93とRy、RyとR95、R95とR96、R97とR98はそれぞれ互いに独立して環を形成しても良い。また、L(nが0のときはL)との結合部は、R91、R92、R93の位置でも良く、その場合、一般式(VII)中のLとの結合部として表記されている部位に、それぞれR91、R92、R93に相当する置換基または水素原子が結合し、隣接するR同士は結合して環を形成しても良い。ここで、「隣接するR同士は結合して環を形成しても良い。」とは、例えば、R91がL(nが0のときはL)との結合部になる場合、一般式(VII)の結合部にはR90が結合しているとするとR90とR93とが結合し環を形成してもよく、また、R92がL(nが0のときはL)との結合部になる場合、一般式(VII)の結合部にはR90が結合しているとするとR90とR91、R90とR93とがそれぞれ結合し環を形成してもよく、また、R93がL(nが0のときはL)との結合部になる場合、一般式(VII)の結合部にはR90が結合しているとするとR90とR91、R91とR92とがそれぞれ結合し環を形成してもよいことを言う。 In the formula, R 91 to R 98 each independently represents a hydrogen atom or a substituent. m represents an integer of 0 or more. Rx and Ry each independently represent a hydrogen atom or a substituent. When m is 2 or more, Rx and Ry bonded to each 6-membered ring may be different substituents. R 91 and R 92 , R 92 and Rx, Rx and R 94 , R 94 and R 97 , R 93 and Ry, Ry and R 95 , R 95 and R 96 , R 97 and R 98 are independent of each other. Thus, a ring may be formed. Further, the bond with L 3 (L 1 when n 1 is 0) may be at the position of R 91 , R 92 , R 93 , and in that case, the bond with L 3 in the general formula (VII) A substituent or a hydrogen atom corresponding to R 91 , R 92 , or R 93 may be bonded to the site represented as, and adjacent Rs may be bonded to form a ring. Here, “adjacent Rs may be bonded to form a ring” means, for example, when R 91 is a bonding part with L 3 (L 1 when n 1 is 0), If R 90 is bonded to the bonding portion of the general formula (VII), R 90 and R 93 may bond to form a ring, and R 92 is L 3 (when n 1 is 0). Is bonded to L 1 ), and R 90 is bonded to the bonded portion of the general formula (VII), R 90 and R 91 , and R 90 and R 93 are bonded to form a ring. In the case where R 93 is a bonding portion with L 3 (L 1 when n 1 is 0), it is assumed that R 90 is bonded to the bonding portion of the general formula (VII). R 90 and R 91 , R 91 and R 92 may be bonded to each other to form a ring.
 上記の環はベンゼン環である場合が好ましい。
 R91~R98、Rx、Ryの置換基は置換基Wが挙げられる。
 R91~R96はいずれも水素原子である場合が好ましく、Rx、Ryはいずれも水素原子である場合が好ましい。R91~R96は水素原子であり、かつRx、Ryも水素原子である場合が好ましい。
 前記R97およびR98は、それぞれ独立に、置換基されてよいフェニル基を表す場合が好ましく、この置換基としては置換基Wが挙げられるが、好ましくは無置換フェニル基である。mは0以上の整数を表すが、0または1が好ましい。
 前記Dが一般式(VIII)、(IX)または(X)で表される基である場合も好ましい。
The above ring is preferably a benzene ring.
The substituent of R 91 to R 98 , Rx and Ry includes the substituent W.
R 91 to R 96 are all preferably hydrogen atoms, and Rx and Ry are preferably both hydrogen atoms. R 91 to R 96 are preferably hydrogen atoms, and Rx and Ry are also preferably hydrogen atoms.
R 97 and R 98 each independently preferably represent a phenyl group which may be substituted, and examples of the substituent include the substituent W, and an unsubstituted phenyl group is preferable. m represents an integer of 0 or more, and 0 or 1 is preferable.
It is also preferred that D 1 is a group represented by the general formula (VIII), (IX) or (X).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、R51~R54はそれぞれ独立に、水素原子または置換基を表す。この置換基として置換基Wが挙げられる。R52とR53、R51とR52はそれぞれ連結して環を形成してもよい。 In the formula, R 51 to R 54 each independently represent a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 52 and R 53 , or R 51 and R 52 may be linked to form a ring.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、R61~R64はそれぞれ独立に、水素原子または置換基を表す。この置換基として置換基Wが挙げられる。R62とR63、R61とR62はそれぞれ連結して環を形成してもよい。 In the formula, R 61 to R 64 each independently represents a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 62 and R 63 , or R 61 and R 62 may be linked to form a ring.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、R71~R73はそれぞれ独立に、水素原子または置換基を表す。この置換基として置換基Wが挙げられる。R72とR73はそれぞれ連結して環を形成してもよい。 In the formula, R 71 to R 73 each independently represents a hydrogen atom or a substituent. Substituent W is mentioned as this substituent. R 72 and R 73 may be linked to form a ring.
 前記Dは前記一般式(IID)または一般式(III)で示される基がより好ましく用いられる。 The group represented by the general formula (IID) or the general formula (III) is more preferably used as the D 1 .
 一般式(IID)中、R~Rはそれぞれ独立に、水素原子または置換基を表す。またRとR、RとR、RとR、RとR、RとRがそれぞれ互いに結合して環を形成してもよい。形成する環としては、後述の環Rが挙げられる。
 R~Rにおける置換基は置換基Wが挙げられるが、好ましくはR~Rが水素原子、またはRとRもしくはRとRが5員環を形成する場合であり、より好ましくはR~Rのいずれもが水素原子である場合である。
 R、Rにおける置換基は置換基Wが挙げられるが、置換基の中でも、置換もしくは無置換のアリール基が好ましく、置換アリール基の置換基としては、アルキル基(例えば、メチル基、エチル基)、アリール基(例えば、フェニル基、ナフチレン基、フェナントリル基、アントリル基)が好ましい。R5、R6は好ましくはフェニル基、アルキル置換フェニル基、フェニル置換フェニル基、ナフチル基、フェナントリル基、アントリル基またはフルオレニル基(好ましくは9,9’-ジメチル-2-フルオレニル基)である。
In the general formula (IID), R 1 to R 6 each independently represents a hydrogen atom or a substituent. R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 2 and R 5 , and R 4 and R 6 may be bonded to each other to form a ring. Examples of the ring to be formed include the ring R described later.
Examples of the substituent in R 1 to R 4 include the substituent W, preferably R 1 to R 4 are a hydrogen atom, or R 2 and R 5 or R 4 and R 6 form a 5-membered ring. More preferably, all of R 1 to R 4 are hydrogen atoms.
The substituent in R 5 and R 6 includes the substituent W, and among the substituents, a substituted or unsubstituted aryl group is preferable, and the substituent of the substituted aryl group is an alkyl group (for example, a methyl group, an ethyl group, or the like). Group) and an aryl group (for example, phenyl group, naphthylene group, phenanthryl group, anthryl group) are preferable. R5 and R6 are preferably a phenyl group, an alkyl-substituted phenyl group, a phenyl-substituted phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, or a fluorenyl group (preferably a 9,9′-dimethyl-2-fluorenyl group).
 一般式(III)中、R11~R14、R20~R24、R30~R34はそれぞれ独立に、水素原子または置換基を表す。またR11~R14、R20~R24、R30~R34がそれぞれ互いに結合して環を形成してもよい。形成する環としては、後述の環Rが挙げられる。その環形成の例としては、R11とR12、R13とR14が結合してベンゼン環を、R20~R24の隣接する2つ(R24とR23、R23とR20、R20とR21、R21とR22)が結合してベンゼン環を、R30~R34の隣接する2つ(R34とR33、R33とR30、R30とR31、R31とR32)が結合してベンゼン環を、R22とR34が結合してN原子と共に5員環を形成する場合が挙げられる。
 R11~R14、R20~R24、R30~R34で表される置換基は置換基Wが挙げられるが、好ましくはアルキル基(例えば、メチル基、エチル基)、アリール基(例えば、フェニル基、ナフチル基)であり、これらの基は更に置換基W(好ましくはアリール基)が置換していてもよい。中でも、R20、R30が置換基である場合が好ましく、かつ、その他のR11~R14、R20~R24、R30~R34は水素原子である場合がより好ましい。
In general formula (III), R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 each independently represent a hydrogen atom or a substituent. R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 may be bonded to each other to form a ring. Examples of the ring to be formed include the ring R described later. As an example of the ring formation, R 11 and R 12 , R 13 and R 14 are bonded to form a benzene ring, and two adjacent R 20 to R 24 (R 24 and R 23 , R 23 and R 20 , R 20 and R 21 , R 21 and R 22 ) combine to form a benzene ring, and two adjacent R 30 to R 34 (R 34 and R 33 , R 33 and R 30 , R 30 and R 31 , R 31 and R 32 ) are combined to form a benzene ring, and R 22 and R 34 are combined to form a 5-membered ring with an N atom.
Examples of the substituent represented by R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 include the substituent W. Preferably, the substituent is an alkyl group (for example, methyl group, ethyl group), an aryl group (for example, , Phenyl group, naphthyl group), and these groups may be further substituted with a substituent W (preferably an aryl group). In particular, R 20 and R 30 are preferably substituents, and the other R 11 to R 14 , R 20 to R 24 , and R 30 to R 34 are more preferably hydrogen atoms.
 一般式(II)で表される化合物は、下記一般式(pI)で表される化合物であることが好ましい。 The compound represented by the general formula (II) is preferably a compound represented by the following general formula (pI).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(pI)中、Zは、少なくとも2つの炭素原子を含む環であって、5員環、6員環または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、Lは、それぞれ独立に無置換メチン基または置換メチン基を表す。nは0以上の整数を表す。Rp、Rp、Rp、Rp、Rp、Rpは、それぞれ独立に、水素原子または置換基を表す。RpとRp、RpとRp、RpとRp、RpとRp、それぞれ互いに結合して環を形成してもよい。Rp21、Rp22は、それぞれ独立に、置換アリール基、無置換アリール基、置換ヘテロアリール基、または無置換ヘテロアリール基を表す。 In the general formula (pI), Z 1 represents a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group. n 1 represents an integer of 0 or more. Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 each independently represents a hydrogen atom or a substituent. Rp 1 and Rp 2 , Rp 2 and Rp 3 , Rp 4 and Rp 5 , Rp 5 and Rp 6 may be bonded to each other to form a ring. Rp 21 and Rp 22 each independently represent a substituted aryl group, an unsubstituted aryl group, a substituted heteroaryl group, or an unsubstituted heteroaryl group.
 光電変換材料として上記のようにドナー部(-NRp21Rp22の部位)/アクセプター部(L~Lを介してナフチレン基に結合している部位)の連結部をナフチレン基とした化合物をフラーレン類とともに使用することで、優れた耐熱性と高速応答性を有する光電変換素子が得られる。これは、ドナー部/アクセプター部の連結部をナフチレン基とすることで、フラーレン類との相互作用が向上し、応答速度が改善したものと考えられる。また、上記化合物は十分な感度を有する。 As a photoelectric conversion material, a compound having a naphthylene group as a connecting part of a donor part (site of —NRp 21 Rp 22 ) / acceptor part (site bonded to a naphthylene group via L 1 to L 3 ) as described above. By using it together with fullerenes, a photoelectric conversion element having excellent heat resistance and high-speed response can be obtained. This is considered that the interaction with the fullerenes is improved and the response speed is improved by using a naphthylene group as the connecting part of the donor part / acceptor part. Moreover, the said compound has sufficient sensitivity.
 一般式(pI)において、Z、L、L、L、nは、一般式(II)におけるZ、L、L、L、nと同義であり、好ましい範囲も同じである。 In formula (pI), Z 1, L 1, L 2, L 3, n 1 has the same meaning as Z 1, L 1, L 2 , L 3, n 1 in formula (II), a preferred range Is the same.
 Rp~Rpは、それぞれ独立に、水素原子または置換基を表す。Rp~Rpが置換基を表す場合、Rp~Rpが表す置換基としては後述の置換基Wが挙げられるが、特にハロゲン原子、アルキル基、アリール基、複素環基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、シアノ基ヘテロ環チオ基が好ましい。
 Rp~Rpは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、複素環基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、シアノ基またはヘテロ環チオ基であることが好ましく、水素原子、アルキル基、アリール基、複素環基がより好ましく、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数4~16の複素環基がより好ましく、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基がさらに好ましく、水素原子、炭素数1~6のアルキル基、炭素数6~10のアリール基がさらに好ましく、水素原子が特に好ましい。アルキル基の場合分岐があってもよい。また、Rp1~Rp6が置換基である場合、更なる置換基を有していてもよい。更なる置換基としては後述の置換基Wが挙げられる。この更なる置換基が複数ある場合には、この複数の置換基同士が連結して環を形成してもよい。形成される環としては後述の環Rが挙げられる。
 Rp~Rpの好ましい具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、フェニル基、ナフチル基が挙げられる。
Rp 1 to Rp 6 each independently represents a hydrogen atom or a substituent. If Rp 1 ~ Rp 6 represents a substituent, but the substituent represented by Rp 1 ~ Rp 6 include the later-described substituent W, especially halogen atom, an alkyl group, an aryl group, a heterocyclic group, hydroxy group, A nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, arylthio group, alkenyl group, and cyano group heterocyclic thio group are preferred.
Rp 1 to Rp 6 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a heterocyclic group, a hydroxy group, a nitro group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, an amino group, or an alkylthio group. , An arylthio group, an alkenyl group, a cyano group or a heterocyclic thio group, more preferably a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number An aryl group having 6 to 20 carbon atoms and a heterocyclic group having 4 to 16 carbon atoms are more preferable, and a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and an aryl group having 6 to 14 carbon atoms are further preferable, and a hydrogen atom and carbon number 1 More preferred are an alkyl group of 6 to 6 and an aryl group of 6 to 10 carbon atoms, and a hydrogen atom is particularly preferred. In the case of an alkyl group, there may be a branch. Further, when Rp1 to Rp6 are substituents, they may have further substituents. Further substituents include the substituent W described below. When there are a plurality of further substituents, the plurality of substituents may be linked to form a ring. Examples of the ring formed include ring R described later.
Preferable specific examples of Rp 1 to Rp 6 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group, a phenyl group, and a naphthyl group.
 RpとRp、RpとRp、RpとRp、RpとRp、それぞれ互いに結合して環を形成してもよい。形成される環としては、後述の環Rが挙げられる。好ましくは、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリミジン環等である。 Rp 1 and Rp 2 , Rp 2 and Rp 3 , Rp 4 and Rp 5 , Rp 5 and Rp 6 may be bonded to each other to form a ring. Examples of the ring formed include ring R described later. Preferred are a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring and the like.
 Rp21、Rp22は、それぞれ独立に置換アリール基、無置換アリール基、置換ヘテロアリール基、または無置換ヘテロアリール基を表す。
 Rp21、Rp22の両方が無置換フェニル基ではないことが好ましい。
 Rp21、Rp22が表すアリール基としては、炭素数6~30のアリール基が好ましく、炭素数6~20のアリール基がより好ましい。アリール基の具体例としては、フェニル基、ナフチル基、ビフェニリル基、ターフェニル基、アントリル基、フルオレニル基が挙げられる。
 Rp21、Rp22における置換アリール基の置換基としては、アルキル基(例えば、メチル基、エチル基、t-ブチル基)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基)、アリール基(例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基)、ヘテロアリール基(例えば、チエニル基、フラニル基、ピリジル基、カルバゾリル基)が好ましい。
Rp 21 and Rp 22 each independently represent a substituted aryl group, an unsubstituted aryl group, a substituted heteroaryl group, or an unsubstituted heteroaryl group.
It is preferable that both Rp 21 and Rp 22 are not unsubstituted phenyl groups.
The aryl group represented by Rp 21 and Rp 22 is preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 20 carbon atoms. Specific examples of the aryl group include a phenyl group, a naphthyl group, a biphenylyl group, a terphenyl group, an anthryl group, and a fluorenyl group.
Examples of the substituent of the substituted aryl group in Rp 21 and Rp 22 include an alkyl group (for example, methyl group, ethyl group, t-butyl group), an alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group), aryl group (For example, phenyl group, naphthyl group, phenanthryl group, anthryl group) and heteroaryl groups (for example, thienyl group, furanyl group, pyridyl group, carbazolyl group) are preferable.
 Rp21、Rp22が表すアリール基または置換アリール基は、好ましくは、フェニル基、置換フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオレニル基、置換フルオレニル基(好ましくは9,9’-ジアルキル-2-フルオレニル基)である。 The aryl group or substituted aryl group represented by Rp 21 or Rp 22 is preferably a phenyl group, a substituted phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a fluorenyl group, or a substituted fluorenyl group (preferably 9,9 ′ -Dialkyl-2-fluorenyl group).
 Rp21、Rp22がヘテロアリール基である場合、ヘテロアリール基としては、5員、6員または7員の環またはその縮合環からなるヘテロアリール基が好ましい。ヘテロアリール基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子挙げられる。ヘテロアリール基を構成する環の具体例としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、トリアジン環等が挙げられる。
 縮合環としては、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、インドリン環、イソインドール環、ベンゾオキサゾール環、ベンゾチアゾール環、インダゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、カルバゾール環、キサンテン環、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、フェノキサジン環、チアントレン環、チエノチオフェン環、インドリジン環、キノリジン環、キヌクリジン環、ナフチリジン環、プリン環、プテリジン環等が挙げられる。
When Rp 21 and Rp 22 are heteroaryl groups, the heteroaryl group is preferably a heteroaryl group consisting of a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof. Examples of the hetero atom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom. Specific examples of the ring constituting the heteroaryl group include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine. Ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, triazole ring, furazane ring, tetrazole ring, pyran ring, thiine ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, Examples include a piperazine ring and a triazine ring.
As the condensed ring, benzofuran ring, isobenzofuran ring, benzothiophene ring, indole ring, indoline ring, isoindole ring, benzoxazole ring, benzothiazole ring, indazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, cinnoline ring, Phthalazine ring, quinazoline ring, quinoxaline ring, dibenzofuran ring, carbazole ring, xanthene ring, acridine ring, phenanthridine ring, phenanthroline ring, phenazine ring, phenoxazine ring, thianthrene ring, thienothiophene ring, indolizine ring, quinolidine ring, A quinuclidine ring, a naphthyridine ring, a purine ring, a pteridine ring, etc. are mentioned.
 Rp21、Rp22における置換ヘテロアリール基の置換基としては、アルキル基(例えば、メチル基、エチル基、t-ブチル基)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基)、アリール基(例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基)、ヘテロアリール基(例えば、チエニル基、フラニル基、ピリジル基、カルバゾリル基)が好ましい。
 Rp21、Rp22が表すヘテロアリール基または置換ヘテロアリール基を構成する環としては、好ましくは、チオフェン環、置換チオフェン環、フラン環、置換フラン環、チエノチオフェン環、置換チエノチオフェン環、カルバゾリル基である。
Examples of the substituent of the substituted heteroaryl group in Rp 21 and Rp 22 include an alkyl group (for example, methyl group, ethyl group, t-butyl group), an alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group), aryl A group (for example, phenyl group, naphthyl group, phenanthryl group, anthryl group) or a heteroaryl group (for example, thienyl group, furanyl group, pyridyl group, carbazolyl group) is preferable.
The ring constituting the heteroaryl group or substituted heteroaryl group represented by Rp 21 and Rp 22 is preferably a thiophene ring, substituted thiophene ring, furan ring, substituted furan ring, thienothiophene ring, substituted thienothiophene ring, carbazolyl group It is.
 Rp21、Rp22は、それぞれ独立に、好ましくはフェニル基、ナフチル基、フルオレニル基、ビフェニル基、アントラセニル基、フェナントレニル基であり、フェニル基、ナフチル基、またはフルオレニル基がより好ましい。Rp21、Rp22が置換基を有する場合の置換基として好ましくは、アルキル基、ハロゲン化アルキル基、アルコキシ基、アリール基またはヘテロアリール基であり、より好ましくはメチル基、イソプロピル基、t-ブチル基、トリフルオロメチル基、フェニル基、またはカルバゾリル基である。 Rp 21 and Rp 22 are each independently preferably a phenyl group, a naphthyl group, a fluorenyl group, a biphenyl group, an anthracenyl group, or a phenanthrenyl group, and more preferably a phenyl group, a naphthyl group, or a fluorenyl group. When Rp21 and Rp22 have a substituent, the substituent is preferably an alkyl group, a halogenated alkyl group, an alkoxy group, an aryl group or a heteroaryl group, more preferably a methyl group, an isopropyl group, a t-butyl group, A trifluoromethyl group, a phenyl group, or a carbazolyl group;
 Zが上記一般式(VI)で示される基または上記一般式(VII)で示される基である場合、前記一般式(pI)で表される化合物は、それぞれ下記一般式(pII)で表される化合物または下記一般式(pIII)で表される化合物となる。
 一般式(pI)で表される化合物が、下記一般式(pII)で表される化合物、または下記一般式(pIII)で表される化合物であることが好ましい。
When Z 1 is a group represented by the general formula (VI) or a group represented by the general formula (VII), the compound represented by the general formula (pI) is represented by the following general formula (pII), respectively. Or a compound represented by the following general formula (pIII).
The compound represented by the general formula (pI) is preferably a compound represented by the following general formula (pII) or a compound represented by the following general formula (pIII).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(pII)中、L、L、L、n、Rp、Rp、Rp、Rp、Rp、Rp、Rp21、Rp22は、一般式(pI)と同義であり、好ましい範囲も同様である。Rp41、Rp42、Rp43、Rp44は一般式(IV)におけるR41、R42、R43、R44と同義であり、好ましい範囲も同様である。 In the general formula (pII), L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 , Rp 21 , Rp 22 are represented by the general formula (pI) It is synonymous and the preferable range is also the same. Rp 41 , Rp 42 , Rp 43 , Rp 44 are synonymous with R 41 , R 42 , R 43 , R 44 in the general formula (IV), and preferred ranges are also the same.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、L、L、L、n、Rp、Rp、Rp、Rp、Rp、Rp、Rp21、Rp22は、一般式(pI)と同義であり、好ましい範囲も同様である。Rp51、Rp52、Rp53、Rp54、Rp55、Rp56は一般式(V)におけるR41、R44、R45、R46、R47、R48と同義であり、好ましい範囲も同様である。
 一般式(pI)で表される化合物は、下記一般式(pIV)で表される化合物であることが好ましい。
In the formula, L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 , Rp 21 , Rp 22 are synonymous with the general formula (pI), The preferable range is also the same. Rp 51 , Rp 52 , Rp 53 , Rp 54 , Rp 55 , Rp 56 are synonymous with R 41 , R 44 , R 45 , R 46 , R 47 , R 48 in the general formula (V), and preferred ranges are also the same. It is.
The compound represented by the general formula (pI) is preferably a compound represented by the following general formula (pIV).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式中、Z、L、L、L、n、Rp、Rp、Rp、Rp、Rp、Rpは、一般式(pI)と同義であり、好ましい範囲も同様である。
 Rp~Rp11、Rp12~Rp16は、それぞれ独立に、水素原子または置換基を表す。ただし、Rp~Rp11、Rp12~Rp16のすべてが水素原子である場合を除く。また、Rp~Rp11、Rp12~Rp16のうち隣接するものが互いに結合して環を形成してもよい。更に、RpとRp、RpとRp16はそれぞれ連結してもよい。
In the formula, Z 1 , L 1 , L 2 , L 3 , n 1 , Rp 1 , Rp 2 , Rp 3 , Rp 4 , Rp 5 , Rp 6 are synonymous with the general formula (pI), and preferred ranges are also included. It is the same.
Rp 7 to Rp 11 and Rp 12 to Rp 16 each independently represents a hydrogen atom or a substituent. However, the case where all of Rp 7 to Rp 11 and Rp 12 to Rp 16 are hydrogen atoms is excluded. Further, adjacent ones of Rp 7 to Rp 11 and Rp 12 to Rp 16 may be bonded to each other to form a ring. Further, Rp 3 and Rp 7 , Rp 6 and Rp 16 may be connected to each other.
 一般式(pIV)において、Rp~Rp11、Rp12~Rp16はそれぞれ独立に、水素原子または置換基を表す。但し、Rp~Rp11、Rp12~Rp16のすべてが水素原子となることはない。なお、RpとRpまたはRpとRp16が連結する場合は、これ以外のRp~Rp11、Rp12~Rp15がすべて水素原子となっていてもよい。
 Rp~Rp11、Rp12~Rp16が置換基を表す場合、Rp~Rp11、Rp12~Rp16が表す置換基としては後述の置換基Wが挙げられるが、特にハロゲン原子、アルキル基、アリール基、複素環基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、シアノ基、ヘテロ環チオ基が好ましい。
 Rp~Rp11、Rp12~Rp16はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、複素環基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、シアノ基またはヘテロ環チオ基であることが好ましく、水素原子、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基がより好ましく、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、5員、6員もしくは7員環またはその縮合環からなる複素環基がより好ましく、水素原子、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数1~12のアルキルオキシ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、5員もしくは6員環またはその縮合環からなる複素環基がさらに好ましい。
 アルキル基の場合、直鎖状でも分岐状でもよい。複素環基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 アルキル基、アルケニル基、アリール基等の具体例としては後述の置換基Wのアルキル基、アルケニル基、アリール基で例示する基が挙げられる。
In the general formula (pIV), Rp 7 to Rp 11 and Rp 12 to Rp 16 each independently represents a hydrogen atom or a substituent. However, all of Rp 7 to Rp 11 and Rp 12 to Rp 16 do not become hydrogen atoms. When Rp 3 and Rp 7 or Rp 6 and Rp 16 are linked, all other Rp 8 to Rp 11 and Rp 12 to Rp 15 may be hydrogen atoms.
If Rp 7 ~ Rp 11, Rp 12 ~ Rp 16 represents a substituent, but the substituent represented by Rp 7 ~ Rp 11, Rp 12 ~ Rp 16 include the substituent W described below, in particular a halogen atom, an alkyl Group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, amino group, alkylthio group, arylthio group, alkenyl group, cyano group and heterocyclic thio group are preferred.
Rp 7 to Rp 11 and Rp 12 to Rp 16 are each independently a hydrogen atom, halogen atom, alkyl group, aryl group, heterocyclic group, hydroxy group, nitro group, alkoxy group, aryloxy group, heterocyclic oxy group, It is preferably an amino group, an alkylthio group, an arylthio group, an alkenyl group, a cyano group or a heterocyclic thio group, more preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group or a heterocyclic group. A hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, A heterocyclic group consisting of a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof is more preferable. Group, an alkenyl group having 2 to 12 carbon atoms, an alkyloxy group having 1 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a 5-membered or 6-membered ring or a condensed ring thereof A heterocyclic group consisting of
In the case of an alkyl group, it may be linear or branched. Examples of the hetero atom contained in the heterocyclic group include an oxygen atom, a sulfur atom, and a nitrogen atom.
Specific examples of the alkyl group, alkenyl group, aryl group and the like include groups exemplified by the alkyl group, alkenyl group, and aryl group of the substituent W described later.
 また、Rp~Rp11、Rp12~Rp16のうち隣接するものが互いに結合して環を形成してもよい。形成される環としては後述の環Rが挙げられる。形成される環として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリミジン環等である。
 更に、RpとRp、RpとRp16はそれぞれ連結してもよい。RpとRpまたはRpとRp16が連結する場合、ナフチレン基とフェニル基とを含む4環以上の縮合環となる。RpとRpまたはRpとRp16との連結は、単結合でもよい。
Further, adjacent ones of Rp 7 to Rp 11 and Rp 12 to Rp 16 may be bonded to each other to form a ring. Examples of the ring formed include ring R described later. The ring to be formed is preferably a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring or the like.
Further, Rp 3 and Rp 7 , Rp 6 and Rp 16 may be connected to each other. When Rp 3 and Rp 7 or Rp 6 and Rp 16 are linked, it becomes a condensed ring of 4 or more rings containing a naphthylene group and a phenyl group. The linkage between Rp 3 and Rp 7 or Rp 6 and Rp 16 may be a single bond.
 一般式(II)で表される化合物は、特開2000-297068号公報に記載の化合物であり、前記公報に記載のない化合物も、前記公報に記載の合成方法に準じて製造することができる。以下に、一般式(II)で示される化合物の具体例を示すが、本発明はこれらに限定されるものではない。例えば、上記一般式(II)の具体例のうち、光電変換材料として、下記に示す化合物3が用いられ、この化合物3は粉体である。 The compound represented by the general formula (II) is a compound described in JP-A-2000-297068, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. . Specific examples of the compound represented by the general formula (II) are shown below, but the present invention is not limited thereto. For example, among the specific examples of the general formula (II), the following compound 3 is used as a photoelectric conversion material, and the compound 3 is a powder.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 n型有機半導体(化合物)は、アクセプター性有機半導体(化合物)であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。更に詳しくは2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン、アントラセン、フラーレン、フェナントレン、テトラセン、ピレン、ペリレン、フルオランテン、またはこれらの誘導体)、窒素原子、酸素原子、硫黄原子を含有する5ないし7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体等が挙げられる。
 なお、これに限らず、上述したように、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。
An n-type organic semiconductor (compound) is an acceptor organic semiconductor (compound), which is represented by mainly an electron-transporting organic compound and refers to an organic compound having a property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound. For example, condensed aromatic carbocyclic compounds (naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, fluoranthene, or derivatives thereof), 5- to 7-membered heterocyclic compounds containing nitrogen atom, oxygen atom, sulfur atom (E.g. pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, Benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazaindene, oxadia Metal, imidazopyridine, pyralidine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.), polyarylene compounds, fluorene compounds, cyclopentadiene compounds, silyl compounds, nitrogen-containing heterocyclic compounds as ligands A complex etc. are mentioned.
Note that the present invention is not limited thereto, and as described above, any organic compound having an electron affinity higher than that of the organic compound used as the donor organic compound may be used as the acceptor organic semiconductor.
 n型有機半導体としては、フラーレンまたはフラーレン誘導体を用いることが好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブを表し、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。置換基としては、アルキル基、アリール基、または複素環基が好ましい。 As the n-type organic semiconductor, fullerene or fullerene derivatives are preferably used. Fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 80 , fullerene C 82 , fullerene C 84 , fullerene C 90 , fullerene C 96 , fullerene C 240 , fullerene C 540 , mixed Fullerene and fullerene nanotube are represented, and a fullerene derivative represents a compound having a substituent added thereto. As the substituent, an alkyl group, an aryl group, or a heterocyclic group is preferable.
 光電変換層152は、光電変換材料として、p型有機半導体の好ましい例として挙げた一般式(II)で示される化合物(有機材料)が用いられる。
 光電変換層152の厚さは、10nm以上1000nm以下が好ましく、更に好ましくは50nm以上800nm以下、特に好ましくは100nm以上500nm以下である。光電変換層152の厚さを10nm以上とすることにより、好適な暗電流抑制効果が得られ、光電変換層152の厚さを1000nm以下とすることにより、好適な光電変換効率が得られる。
In the photoelectric conversion layer 152, the compound (organic material) represented by the general formula (II) exemplified as a preferred example of the p-type organic semiconductor is used as the photoelectric conversion material.
The thickness of the photoelectric conversion layer 152 is preferably 10 nm to 1000 nm, more preferably 50 nm to 800 nm, and particularly preferably 100 nm to 500 nm. By setting the thickness of the photoelectric conversion layer 152 to 10 nm or more, a suitable dark current suppressing effect can be obtained, and by setting the thickness of the photoelectric conversion layer 152 to 1000 nm or less, preferable photoelectric conversion efficiency can be obtained.
 なお、図3に示す光電変換素子110と、基板112および絶縁層114とで撮像素子が構成される。撮像素子は、デジタルカメラ、デジタルビデオカメラ等の撮像装置、電子内視鏡および携帯電話機等の撮像モジュール等に搭載して用いられる。 Note that the photoelectric conversion element 110 shown in FIG. 3, the substrate 112, and the insulating layer 114 constitute an imaging element. The image pickup device is used by being mounted on an image pickup device such as a digital camera or a digital video camera, an image pickup module such as an electronic endoscope or a mobile phone.
 次に、蒸着装置10の蒸着方法について、図3に示す光電変換素子110の電子ブロッキング層150および光電変換層152の形成方法を例にして、より具体的に説明する。
 まず、図4(a)に示すように、読出し回路140と対向電極電圧供給部142とが形成された基板112上に、第1の接続部144と第2の接続部146と、配線層148が設けられた絶縁層114が形成された回路基板111(CMOS基板)を用意する。そして、絶縁層114の表面114aに、各第1の接続部144に接続されるように画素電極116を形成する。
 この場合、上述の如く、第1の接続部144と読出し回路140とが接続されており、第2の接続部146と対向電極電圧供給部142とが接続されている。
Next, the vapor deposition method of the vapor deposition apparatus 10 will be described more specifically by taking the method of forming the electron blocking layer 150 and the photoelectric conversion layer 152 of the photoelectric conversion element 110 shown in FIG. 3 as an example.
First, as shown in FIG. 4A, a first connection portion 144, a second connection portion 146, and a wiring layer 148 are formed on a substrate 112 on which a readout circuit 140 and a counter electrode voltage supply portion 142 are formed. A circuit substrate 111 (CMOS substrate) on which an insulating layer 114 provided with is formed is prepared. Then, the pixel electrode 116 is formed on the surface 114 a of the insulating layer 114 so as to be connected to each first connection portion 144.
In this case, as described above, the first connection portion 144 and the readout circuit 140 are connected, and the second connection portion 146 and the counter electrode voltage supply portion 142 are connected.
 次に、蒸着装置10を用いて、図4(b)に示すように、第2の接続部146上を除き、かつ全ての画素電極116を覆うように電子ブロッキング材料(有機材料)を蒸着し、電子ブロッキング層150を形成する。電子ブロッキング材料には、例えば、粉体状の上記化合物1が用いられる。 Next, as shown in FIG. 4B, an electron blocking material (organic material) is deposited using the vapor deposition apparatus 10 so as to cover all the pixel electrodes 116 except on the second connection portion 146. The electron blocking layer 150 is formed. As the electron blocking material, for example, the powdery compound 1 is used.
 次に、蒸着装置10を用いて、図4(c)に示すように、電子ブロッキング層150の表面150aに光電変換材料(有機材料)を蒸着し、光電変換層152を形成する。光電変換材料には、例えば、粉体状の上記化合物3が用いられる。これにより、光電変換層152が形成されて、有機層118が形成される。 Next, using the vapor deposition apparatus 10, as shown in FIG. 4C, a photoelectric conversion material (organic material) is vapor-deposited on the surface 150 a of the electron blocking layer 150 to form the photoelectric conversion layer 152. For the photoelectric conversion material, for example, the powdery compound 3 is used. Thereby, the photoelectric conversion layer 152 is formed, and the organic layer 118 is formed.
 次に、有機層118を覆い、かつ第2の接続部146上に形成されるパターンで対向電極120を、例えば、スパッタ法を用いて所定の真空下で形成する。
 次に、対向電極120を覆うようにして、絶縁層114の表面114aに、保護膜122を形成する。
Next, the counter electrode 120 is formed under a predetermined vacuum using, for example, a sputtering method in a pattern that covers the organic layer 118 and is formed on the second connection portion 146.
Next, a protective film 122 is formed on the surface 114 a of the insulating layer 114 so as to cover the counter electrode 120.
 次に、保護膜122の表面122aに、カラーフィルタ126、隔壁128および遮光層129を、例えば、フォトリソグラフィ法を用いて形成する。カラーフィルタ126、隔壁128および遮光層129の形成工程は、所定の真空下でも非真空下であってもよい。
 次に、カラーフィルタ126、隔壁128および遮光層129を覆うようにして、オーバーコート層130を、例えば、塗布法を用いて形成する。これにより、図3に示す光電変換素子110を形成することができる。
Next, the color filter 126, the partition wall 128, and the light shielding layer 129 are formed on the surface 122a of the protective film 122 by using, for example, a photolithography method. The formation process of the color filter 126, the partition wall 128, and the light shielding layer 129 may be under a predetermined vacuum or non-vacuum.
Next, the overcoat layer 130 is formed using, for example, a coating method so as to cover the color filter 126, the partition wall 128, and the light shielding layer 129. Thereby, the photoelectric conversion element 110 shown in FIG. 3 can be formed.
 光電変換素子110を製造する際に、蒸着装置10を用いて、電子ブロッキング層150および光電変換層152を形成することにより、電子ブロッキング層150および光電変換層152の成膜に用いる有機材料を分解させることなく、更には有機材料の純度劣化させることなく、安定した組成で蒸着できる。このため、電子ブロッキング層150および光電変換層152を高純度の膜で構成することができる。 When manufacturing the photoelectric conversion element 110, the organic material used for film-forming of the electron blocking layer 150 and the photoelectric converting layer 152 is decomposed | disassembled by forming the electron blocking layer 150 and the photoelectric converting layer 152 using the vapor deposition apparatus 10. In addition, it is possible to deposit with a stable composition without deteriorating the purity of the organic material. For this reason, the electron blocking layer 150 and the photoelectric conversion layer 152 can be formed of high-purity films.
 次に、本発明の第2の実施形態について説明する。
 図5は、本発明の第2の実施形態の有機材料の蒸着装置の要部を示す模式図である。図5は、第2の実施形態の蒸着装置10aの材料供給部20および蒸発室70以外の構成物の図示は省略している。
 なお、本実施形態においては、第1の実施形態の蒸着装置10と同一構成物には同一符号を付して、その詳細な説明は省略する。
Next, a second embodiment of the present invention will be described.
FIG. 5 is a schematic view showing a main part of an organic material vapor deposition apparatus according to the second embodiment of the present invention. In FIG. 5, illustration of components other than the material supply unit 20 and the evaporation chamber 70 of the vapor deposition apparatus 10 a of the second embodiment is omitted.
In the present embodiment, the same components as those of the vapor deposition apparatus 10 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の蒸着装置10aは、第1の実施形態の蒸着装置10に比して、蒸発室70の構成が異なる以外は、第1の実施形態の蒸着装置10と同様の構成であるため、その詳細な説明は省略する。
 蒸発室70は、筺体72と材料充填部74とが一体構造であり、筺体72の底部が材料充填部74である。筺体72は、材料充填部74を底面とした略円錐形状であり、筺体72上部に向かうに連れて狭くなっている。また、筺体72は、上端が開口されており、この開口に材料供給部20の材料供給路24が接続されている。筺体72の上部を狭くすることにより、筺体72の上部に付着する蒸気Voの量を減らすことができる。
Since the vapor deposition apparatus 10a of this embodiment is the structure similar to the vapor deposition apparatus 10 of 1st Embodiment except the structure of the evaporation chamber 70 differing from the vapor deposition apparatus 10 of 1st Embodiment, Detailed description thereof is omitted.
In the evaporation chamber 70, the housing 72 and the material filling portion 74 have an integral structure, and the bottom of the housing 72 is the material filling portion 74. The housing 72 has a substantially conical shape with the material filling portion 74 as a bottom surface, and becomes narrower toward the top of the housing 72. Moreover, the upper end of the housing 72 is opened, and the material supply path 24 of the material supply unit 20 is connected to the opening. By narrowing the upper portion of the housing 72, the amount of the vapor Vo adhering to the upper portion of the housing 72 can be reduced.
 誘導加熱コイル48a、48bは1つのコイルで構成されており、図示はしないが、高周波電源50(図1参照)に接続されている。筺体72上部に設けられた誘導加熱コイル48aは、材料充填部74に設けられた誘導加熱コイル48bに比して、狭いピッチで配置されている。
 本実施形態では、筺体72上部の誘導加熱コイル48aのピッチを狭くしているため、上述のように特に制御することもなく、筺体72上部の温度を、材料充填部74に比して高い温度にすることができる。
 筺体72の材料充填部74の底面74aおよび側面74bに、放熱部材47が直接接続されている。この放熱部材47は、例えば、フィン状のものである。なお、放熱部材47は、フィン状のものに限定されるものではなく、上述の第1の実施形態の蒸着装置10の種々の中空部材を用いることもできる。
The induction heating coils 48a and 48b are composed of a single coil and are connected to a high-frequency power source 50 (see FIG. 1), although not shown. The induction heating coil 48 a provided on the upper portion of the housing 72 is arranged at a narrower pitch than the induction heating coil 48 b provided in the material filling unit 74.
In the present embodiment, since the pitch of the induction heating coil 48 a on the upper portion of the housing 72 is narrowed, the temperature at the upper portion of the housing 72 is higher than that of the material filling portion 74 without particularly controlling as described above. Can be.
The heat radiation member 47 is directly connected to the bottom surface 74 a and the side surface 74 b of the material filling portion 74 of the housing 72. The heat radiating member 47 has, for example, a fin shape. In addition, the heat radiating member 47 is not limited to a fin-shaped thing, The various hollow member of the vapor deposition apparatus 10 of the above-mentioned 1st Embodiment can also be used.
 本実施形態の蒸着装置10aにおいても、第1の実施形態の蒸着装置10と同様の効果が得られるものである。上述のように、誘導加熱コイル48a、49bのピッチおよび放熱部材47により、蒸発室70では、材料充填部74(筺体72の底部)の方が筺体72の上部よりも温度を常に低くすることができる。このため、材料充填部74(筺体72の底部)、筺体72の上部および蒸気ガイド部60(輸送管62および吐出部64)の順で、温度を高くすることができる。これにより、上述のように、蒸着時にコールドスポットの発生を抑制することができ、純度の劣化および有機材料の分解を生じさせることなく、有機材料mを安定した組成で蒸着することができる。
 上述のいずれの実施形態の蒸着装置においては、蒸着に用いられる有機材料は、有機CMOSの製造に用いられる有機材料に限定されるものではなく、有機ELの製造に用いられるNPD(ナフチル置換ジアミン誘導体)、Alq(ヒドロキシキノリンとアルミニウムとの錯体)等の有機材料を利用することもできる。この場合においても、上述の効果が得られることは言うまでもない。
Also in the vapor deposition apparatus 10a of this embodiment, the effect similar to the vapor deposition apparatus 10 of 1st Embodiment is acquired. As described above, due to the pitch of the induction heating coils 48 a and 49 b and the heat radiating member 47, in the evaporation chamber 70, the temperature of the material filling portion 74 (the bottom portion of the casing 72) is always lower than the upper portion of the casing 72. it can. For this reason, temperature can be made high in order of the material filling part 74 (bottom part of the housing 72), the upper part of the housing 72, and the vapor | steam guide part 60 (transport pipe 62 and the discharge part 64). Thereby, as described above, the generation of cold spots can be suppressed during vapor deposition, and the organic material m can be vapor-deposited with a stable composition without causing deterioration in purity and decomposition of the organic material.
In the vapor deposition apparatus of any of the above-described embodiments, the organic material used for vapor deposition is not limited to the organic material used for the production of organic CMOS, but is an NPD (naphthyl-substituted diamine derivative) used for the production of organic EL. ) And Alq (a complex of hydroxyquinoline and aluminum) can also be used. Even in this case, it goes without saying that the above-described effects can be obtained.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の有機材料の蒸着装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. As mentioned above, although the vapor deposition apparatus of the organic material of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, it is possible to perform various improvement or a change. Of course.
 10 蒸着装置
 12 真空容器
 14 真空排気部
 16 制御部
 20 材料供給部
 22 材料ストック室
 24 材料供給路
 26 供給弁
 28 断熱管
 30 加熱用弁
 40、70 蒸発室
 42、72 筺体
 44、74 材料充填部
 50 高周波電源
 60 蒸気ガイド部
 62 輸送管
 64 吐出部
 66 ヒータ
 68 電源部
 100、112 基板
 110 光電変換素子
 114 絶縁層
 116 画素電極
 118 有機層
 120 対向電極
 122 保護膜
 126 カラーフィルタ
 130 オーバーコート層
 150 電子ブロッキング層
 152 光電変換層
DESCRIPTION OF SYMBOLS 10 Deposition apparatus 12 Vacuum container 14 Vacuum exhaust part 16 Control part 20 Material supply part 22 Material stock room 24 Material supply path 26 Supply valve 28 Heat insulation pipe 30 Heating valve 40, 70 Evaporation chamber 42, 72 Housing 44, 74 Material filling part DESCRIPTION OF SYMBOLS 50 High frequency power supply 60 Steam guide part 62 Transport pipe 64 Discharge part 66 Heater 68 Power supply part 100, 112 Substrate 110 Photoelectric conversion element 114 Insulating layer 116 Pixel electrode 118 Organic layer 120 Counter electrode 122 Protective film 126 Color filter 130 Overcoat layer 150 Electron Blocking layer 152 Photoelectric conversion layer

Claims (7)

  1.  真空雰囲気で、被成膜材に有機材料を蒸着する蒸着装置であって、
     前記有機材料が配置され、前記有機材料を加熱して蒸発させる蒸発室と、
     前記蒸発室で発生した有機材料の蒸気を前記被成膜材に導くガイド部とを有し、
     前記蒸発室は、前記ガイド部よりも常に低い温度に保たれていることを特徴とする有機材料の蒸着装置。
    A vapor deposition apparatus that deposits an organic material on a material to be deposited in a vacuum atmosphere,
    An evaporation chamber in which the organic material is disposed and the organic material is heated to evaporate;
    A guide portion for guiding the vapor of the organic material generated in the evaporation chamber to the film forming material,
    The vapor deposition apparatus for organic materials, wherein the evaporation chamber is always kept at a temperature lower than that of the guide portion.
  2.  前記蒸発室の加熱方式は、誘導加熱方式である請求項1に記載の有機材料の蒸着装置。 2. The organic material deposition apparatus according to claim 1, wherein the heating method of the evaporation chamber is an induction heating method.
  3.  前記蒸発室は、底部に前記有機材料が配置される充填部を有し、
     前記充填部の底部および側面のうち、少なくとも底部に放熱部材が設けられている請求項1または2に記載の有機材料の蒸着装置。
    The evaporation chamber has a filling portion in which the organic material is disposed at the bottom,
    The organic material vapor deposition apparatus according to claim 1, wherein a heat radiating member is provided at least at a bottom portion of a bottom portion and a side surface of the filling portion.
  4.  前記放熱部材は、中空円筒状の部材であり、前記充填部に直接接続されている請求項3に記載の有機材料の蒸着装置。 4. The organic material vapor deposition apparatus according to claim 3, wherein the heat radiating member is a hollow cylindrical member and is directly connected to the filling portion.
  5.  前記放熱部材は、前記充填部に溶接により接続されている請求項4に記載の有機材料の蒸着装置。 5. The organic material vapor deposition apparatus according to claim 4, wherein the heat radiating member is connected to the filling portion by welding.
  6.  前記蒸発室において、前記充填部のある第1の領域と、前記充填部以外の第2の領域とで、別々に温度を制御する制御部を有する請求項3~5のいずれか1項に記載の有機材料の蒸着装置。 The control unit according to any one of claims 3 to 5, further comprising a control unit that separately controls the temperature in the first region where the filling unit is located and in the second region other than the filling unit. Organic material vapor deposition equipment.
  7.  前記蒸発室において、前記充填部のある第1の領域のピッチよりも前記充填部以外の第2の領域のピッチを狭くして誘導加熱コイルが配置されている請求項3~5のいずれか1項に記載の有機材料の蒸着装置。
     
    6. The induction heating coil is arranged in the evaporation chamber with a pitch of the second region other than the filling portion being narrower than a pitch of the first region having the filling portion. The organic material vapor deposition apparatus according to Item.
PCT/JP2013/077523 2012-10-17 2013-10-09 Apparatus for depositing organic material WO2014061532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157009882A KR20150055062A (en) 2012-10-17 2013-10-09 Apparatus for depositing organic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-229774 2012-10-17
JP2012229774 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061532A1 true WO2014061532A1 (en) 2014-04-24

Family

ID=50488100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077523 WO2014061532A1 (en) 2012-10-17 2013-10-09 Apparatus for depositing organic material

Country Status (4)

Country Link
JP (1) JP5953280B2 (en)
KR (1) KR20150055062A (en)
TW (1) TWI591196B (en)
WO (1) WO2014061532A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059992A (en) * 2002-07-29 2004-02-26 Sony Corp Organic thin film deposition apparatus
WO2011101325A1 (en) * 2010-02-16 2011-08-25 Astron Fiamm Safety Heating system for a vapor-phase deposition source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911555B2 (en) * 2005-04-07 2012-04-04 国立大学法人東北大学 Film forming apparatus and film forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059992A (en) * 2002-07-29 2004-02-26 Sony Corp Organic thin film deposition apparatus
WO2011101325A1 (en) * 2010-02-16 2011-08-25 Astron Fiamm Safety Heating system for a vapor-phase deposition source

Also Published As

Publication number Publication date
KR20150055062A (en) 2015-05-20
TWI591196B (en) 2017-07-11
JP5953280B2 (en) 2016-07-20
TW201420786A (en) 2014-06-01
JP2014098207A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5292432B2 (en) New compounds, electron blocking materials, membranes
JP5557663B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL SENSOR, IMAGING ELEMENT AND ITS DRIVING METHOD
KR101675596B1 (en) Photoelectric conversion device and imaging device
WO2010140645A1 (en) Photoelectric conversion element and method for producing same, photosensor, imaging element and method of driving same
KR101719089B1 (en) Photoelectric conversion element and method for using same, optical sensor, and image pickup element
TWI469956B (en) Photoelectric conversion material, film containing the material, photoelectric conversion device, production method thereof, photosensor, imaging device and their use methods
KR101632161B1 (en) Photoelectric conversion material, photoelectric conversion element and method for using same, optical sensor, and image pickup element
JP6010567B2 (en) Photoelectric conversion material, photoelectric conversion element, optical sensor, and imaging element
EP2667426A1 (en) Imaging device and production method thereof
WO2013133218A1 (en) Photoelectric conversion element, method for using same, imaging element, optical sensor, and chemical
JP5662893B2 (en) Vapor deposition material for photoelectric conversion element, photoelectric conversion element, sensor, imaging element
JP2015043362A (en) Photoelectric conversion element and image pickup element
JP6077426B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
JP6145883B2 (en) Light-receiving layer forming method, organic photoelectric conversion element manufacturing method, film-forming organic material, organic photoelectric conversion element and optical sensor obtained using the same.
JP5992378B2 (en) Photoelectric conversion device, optical sensor, and imaging device
JP5953280B2 (en) Organic material deposition equipment
JP6231435B2 (en) Solid-state image sensor
JP6059616B2 (en) Photoelectric conversion material, photoelectric conversion element and method of using the same, optical sensor, imaging element
JP2015137416A (en) Tablet for vapor deposition and vapor deposition apparatus for depositing organic material
JP2012243873A (en) Membrane, method for producing the same, and photoelectric conversion element
WO2014157216A1 (en) Photoelectric conversion material, photoelectric transducer and method of using said transducer, light sensor, and imaging element
JP2015074793A (en) Manufacturing method of photoelectric conversion layer and vapor deposition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009882

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847841

Country of ref document: EP

Kind code of ref document: A1