WO2014061430A1 - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
WO2014061430A1
WO2014061430A1 PCT/JP2013/076462 JP2013076462W WO2014061430A1 WO 2014061430 A1 WO2014061430 A1 WO 2014061430A1 JP 2013076462 W JP2013076462 W JP 2013076462W WO 2014061430 A1 WO2014061430 A1 WO 2014061430A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
coil
rotating electrical
electrical machine
stator
Prior art date
Application number
PCT/JP2013/076462
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 英治
利夫 石川
亮一 石堂
邦博 大澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014061430A1 publication Critical patent/WO2014061430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots

Definitions

  • the present invention relates to a rotating electrical machine.
  • a stator used for a generator or a motor is inserted into a stator core having a plurality of slots opened in an inner circumferential surface in the circumferential direction, and wound around a tooth portion between the slots. And a plurality of stator windings.
  • the stator winding is inserted from the slot opening of the stator core. Since the slot opening is narrow, the insertion operation of the stator winding becomes complicated. Furthermore, since the coil interferes at the coil end portion, it is difficult to increase the space factor of the stator winding.
  • Patent Document 1 a stator winding is attached to a stator core on a flat plate, and both ends of the stator core are annular so that slot openings are disposed on the inner peripheral side.
  • An alternator has been proposed in which a stator is constructed by molding into a shape to improve the space factor.
  • Patent Document 2 proposes a method in which a rectangular wire having a substantially rectangular cross section is wound continuously by overlapping winding to improve the space factor of the stator winding.
  • Patent Document 1 since the one described in Patent Document 1 is attached to the stator core and formed into an annular shape, it is necessary to consider damage to the coating of the coil wire. Moreover, when using a flat wire as a strand, it is necessary to consider the direction of a flat wire. For this reason, a high molding technique is required, and there is a problem in terms of quality and productivity particularly in a rotating electric machine used at a high voltage.
  • the shape of the coil end portion in the continuous winding is important, and the inclined portion of the coil end is wound and molded with the same length. For this reason, at the time of coil insertion or coil forming, it is expanded on the arc according to the slot pitch. At this time, stress may occur in the coil due to a dimensional difference between the coil end inner periphery side and the outer periphery side in the coil end portion. In addition, this dimensional difference is accumulated in the coil turn portion which is the apex of the coil end, the axial alignment is poor at the coil end apex portion, the gap between the coils becomes large, and the coil end becomes high as a result. There is a problem.
  • the present invention provides a rotating electrical machine that is excellent in productivity and that has a reduced coil end portion.
  • a stator core in which a plurality of slots that open toward the inner peripheral surface are formed radially A rotating electrical machine having a stator winding wound around the plurality of slots via an insulator, and the stator winding includes: A conducting wire having a rectangular cross section is formed by an annular coil wound in a hexagonal shape having a bent portion, and the annular coil has two slot insertion portions to be attached to the plurality of slots, and one slot insertion portion is The other slot insertion portion is disposed on the outer periphery side of the slot, and a concave shape is formed in the vicinity of the bent portion of the annular coil.
  • FIG. 6 is a detailed view of a concave shape of the annular coil in FIG. 5. The figure which expanded the annular coil of FIG.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a rotating electrical machine according to an embodiment of the present invention.
  • the vehicle alternator 23 is used as an example of the rotating electrical machine.
  • axial direction refers to a direction along the rotation axis of the rotating electrical machine.
  • the circumferential direction refers to the direction along the rotational direction of the rotating electrical machine.
  • the “radial direction” refers to a radial direction (radial direction) when the rotational axis of the rotating electrical machine is the center.
  • Inner circumference side refers to the radially inner side (inner diameter side)
  • outer circumference side refers to the opposite direction, that is, the radially outer side (outer diameter side).
  • a vehicle AC generator 23 that is a rotating electrical machine includes a rotor 4 and a stator 5.
  • the rotor 4 includes a field winding 13 at the center of the shaft 2, and a rotor core composed of a front claw-shaped magnetic pole 11 and a rear claw-shaped magnetic pole 12 formed of a magnetic material on both sides of the rotor 4. It arrange
  • the front claw-shaped magnetic pole 11 and the rear claw-shaped magnetic pole 12 are arranged so that the claw portions face each other and one claw-shaped magnetic pole meshes with the other claw-shaped magnetic pole.
  • the rotor 4 is arranged on the inner peripheral side of the stator 5 so as to face each other with a slight gap.
  • the rotor 4 is rotatably supported by inserting the shaft 2 through the inner rings of the front bearing 3 and the rear bearing 10.
  • the stator 5 includes a stator core 6 and a stator winding 7.
  • the stator core 6 is formed by laminating a plurality of thin steel plates formed in an annular shape, and has a protruding tooth portion (tooth) on the inner peripheral side, and a slot is formed between each tooth portion. In each slot, the stator winding 7 of each phase is inserted and mounted in each slot across a plurality of teeth. Both ends of the stator 5 are held by a front bracket 18 and a rear bracket 19.
  • the pulley 1 is attached to one end of the shaft 2.
  • a slip ring 14 is provided at the other end of the shaft 2 and is in contact with the brush 15 to supply power to the field winding 13.
  • a front fan 16 and a rear fan 17 which are cooling fans having a plurality of blades on the outer peripheral side are provided on both end surfaces of the front claw magnetic pole 11 and the rear claw magnetic pole 12 of the rotor 4, respectively.
  • the cooling air CW is circulated so as to introduce air from outside and discharge the air cooled inside by centrifugal force.
  • the stator winding 7 is cooled by the cooling air CW.
  • the stator winding 7 is composed of two sets of three-phase windings in this embodiment, and the lead wire of each winding is connected to the rectifier circuit 20.
  • the rectifier circuit 20 is composed of a rectifier element such as a diode, and constitutes a full-wave rectifier circuit.
  • the cathode terminal is connected to the diode connection terminal 21.
  • the anode side terminal is electrically connected to the vehicle alternator main body.
  • the rear cover 22 serves as a protective cover for the rectifier circuit 20.
  • the rotor 4 is rotated through the shaft 2.
  • a direct current is supplied from the brush 15 to the field winding 13 provided in the rotor 4 via the slip ring 14 a magnetic flux that circulates around the inner and outer circumferences of the field winding 13 is generated.
  • N-poles or S-poles are alternately formed in the circumferential direction on the front-side claw-shaped magnetic pole 11 and the rear-side claw-shaped magnetic pole 12.
  • the magnetic flux generated by the field winding 13 circulates around the stator winding 7 from the N pole of the front claw-shaped magnetic pole 11 through the stator core 6, and the S of the rear claw-shaped magnetic pole 12 of the rotor 4.
  • a magnetic circuit that circulates around the rotor 4 and the stator 5 is formed by reaching the pole. Since the magnetic flux generated in the rotor is linked to the stator winding 7 in this way, AC induction is induced in each of the U1-phase, U2-phase, V1-phase, V2-phase, W1-phase, and W2-phase stator windings 7. A voltage is generated, and an AC induced voltage for six phases is generated as a whole.
  • the AC voltage generated in this way is full-wave rectified and converted into a DC voltage by a rectifier circuit 20 composed of a rectifier element such as a diode.
  • the current supplied to the field winding 13 is controlled by an IC regulator (not shown) so that the rectified DC voltage becomes a constant voltage.
  • FIG. 2 is a perspective view from the rear side of the stator 5.
  • the stator 5 is connected to each phase through an annular stator core 6 having a plurality of slots in the circumferential direction of the inner peripheral surface and a U-shaped insulating paper 8 attached to the inner peripheral surface of each slot.
  • the stator winding 7 is mounted, and a slot wedge 9 is provided on the innermost circumferential side of the slot in order to hold the stator winding 7 in the slot.
  • the number of slots is 72.
  • the portion protruding in the axial direction from the slot of the stator core 6 is a coil end 72-a on the lead wire side and a coil end 72-b on the opposite lead wire side between the two slots. Further, as shown in the figure, 24 lead lines 71 are taken out. Since the number of lead wires 71 is 24, the number of coils is 12.
  • a predetermined gap (1 mm or more) is provided between the respective winding coils of the stator winding. This is because when the rotating electrical machine is a motor, the applied voltage is as high as 300 V or 600 V, and insulation between phases is ensured by a gap.
  • the output voltage is generally as low as 14V to 28V, and the withstand voltage between the lines is not so required. Therefore, an insulating material (insulating varnish) is interposed in the space between the respective winding coils of the stator winding.
  • FIG. 3 is a circuit diagram (connection diagram) of the stator winding.
  • the configuration of this embodiment is a delta connection configuration in which the stator windings are connected in a triangular shape, and two types of coils, a first winding 7-1 and a second winding 7-2, are connected in parallel. Configured. The first winding 7-1 is connected to the rectifier 20-1, and the second winding 7-2 is connected to the rectifier 20-2.
  • the delta-connected first winding 7-1 includes six coils (two U-phase coils 7U1-A and 7U1-B connected in parallel and two V-phase coils 7V1-A connected in parallel). , 7V1-B and two W-phase coils 7W1-A, 7W1-B) connected in parallel. Similarly, in the second winding 7-2, six coils are delta-connected.
  • the above windings are delta-connected, but a rotating electrical machine can be established even if they are configured in series connection and star connection (Y connection).
  • FIG. 4 is a perspective view of one coil (for example, U-phase coil 7U1-A) attached to the stator core 6.
  • the number of turns of the annular coil 76 is, for example, 5 turns (5T). It consists of six annular coils 76, five connecting wires 73 that connect between the annular coils 76, and two lead wires 71 that connect the annular coils 76 located at both ends to the outside.
  • the U phase of the first winding 7-1 includes a U phase coil 7U1-A and a U phase coil 7U1-B. Both the U-phase coil 7U1-A and the U-phase coil 7U1-B have a configuration in which the jumper wire 73 is arranged on the lead wire 71 side, that is, the arrangement of the jumper wires is concentrated on the lead wire side.
  • the U-phase coil of the first winding 7-1 is taken as an example, but the above-described configuration is common to the coils of the first winding 7-1 and the second winding 7-2.
  • FIG. 5 is a perspective view showing the form of one annular coil 76.
  • the annular coil 76 is substantially hexagonal (tortoise-shaped), and is attached to a lead wire 71, coil end portions 74-a and 74-b protruding in the axial direction of the stator core, and a slot portion of the stator core. Slot insertion portions 75-a and 75-b, and a crossover 73 connecting the annular coils.
  • the coil end portions 74-a and 74-b include coil turn portions 74ct-a and 74ct-b that are folded back in a U shape at the triangular apexes of the coil end portions.
  • a tortoiseshell-shaped coil has been formed by winding a conductive wire in the flatwise direction and forming it while sliding or twisting in the rotational direction.
  • the stator core 6 was mounted in a tortoiseshell shape while being twisted when inserted into the slot portion.
  • the inclined part of the coil end is wound and formed with the same length. For this reason, at the time of coil insertion or coil forming, it is expanded on the arc according to the slot pitch. At this time, stress may occur in the coil due to a dimensional difference between the coil end inner periphery side and the outer periphery side in the coil end portion.
  • the concave shape 78 having a different size is formed near the bent portion of the annular coil 76. Accordingly, when the annular coil is inserted in the outer peripheral direction of the stator slot while expanding the annular coil in the radial direction from the inner peripheral side of the stator slot, the annular coil is deformed three-dimensionally. That is, flexibility in the radial direction and the axial direction in the rigid state of the annular coil 76 can be obtained. For this reason, the insertability of the annular coil 76 into the stator core is improved, and the height of the coil end portion can be minimized.
  • FIG. 6 is a detailed shape diagram showing the concave shape 77 of the annular coil.
  • a concave shape 77 is formed in the vicinity of the slot insertion portions 75-a and 75-b attached to the slot portions of the stator core of the annular coil 76.
  • the concave shape 77 forms a three-dimensional shape in which the coil turn portions 74ct-a and 74ct-b are inclined when the annular coil is expanded in the radial direction, thereby minimizing the height of the coil end portion. It can be suppressed.
  • FIG. 7 is a view showing a shape when the annular coil 76 of FIG. 6 is expanded in the radial direction.
  • An arrow RD in FIG. 7 indicates the radial direction.
  • the annular coil 76 is expanded, the concave shape 77 is crushed. Thereby, the stress (distortion which arises in a coil end part) applied to a coil end part at the time of a deformation
  • transformation of the annular coil 76 is absorbed, and the damage to the film of a coil can be reduced. Moreover, since the axial alignment of the coil end apex portion can be maintained, the height of the coil end can be suppressed.
  • L2 in FIG. 7 indicates the length (height) of the annular coil 76 in the axial direction. L2 is smaller than the length L1 in the axial direction before deformation (FIG. 6).
  • the insertion property of the annular coil and the height of the coil end portion can be minimized, and a high-quality, high-output and high-efficiency rotating electrical machine can be provided.
  • the stator winding 7 is mounted from the slot inner peripheral side of the stator core 6.
  • the coil of the present invention can also be applied to a deployment core system as disclosed in Patent Document 1 (a system in which a stator core formed by a rectangular conductor wire is mounted on a flat stator iron core and a deployment core is rounded). Forms can be applied. In this case as well, the stress on the coil end portion due to the round forming of the stator core can be suppressed, the force required for the round forming can be reduced, and a high quality and high quality stator can be provided.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • the stator winding of the example has a configuration in which six annular coils are connected via a jumper wire.
  • a single annular coil is arranged, and the lead wires of each annular coil are joined by welding or the like, or each lead wire is connected by a bus bar or the like to form a ⁇ connection (delta connection) or a Y connection (star connection).
  • delta connection delta connection
  • Y connection star connection
  • stator winding of the example had a winding pitch of 5/6 (electrical angle 150 °).
  • the present invention can be applied even when the winding pitch is 4/6 (electrical angle 120 °) or 6/6 (electrical angle 180 °), and the same effects as those described in the embodiments can be obtained. It is done.
  • stator of the example had two sets of three-phase windings.
  • present invention can be applied even to multi-phase windings such as three-phase, five-phase, and seven-phase, and the same effects as those described in the embodiments can be obtained.
  • the vehicular AC generator has been described as an example of the rotating electrical machine.
  • the present invention can also be applied to a motor that outputs rotational force, a motor generator that combines power generation and driving, and the like.
  • the motor can be applied as a stator to a motor for driving a hybrid vehicle or an electric four-wheel drive vehicle, a motor for driving a pump, or the like.

Abstract

The purpose of the present invention is to provide a rotating electrical machine that has excellent productivity and reduces the size of a coil end part. In the rotating electrical machine comprising: a stator core having a plurality of radially formed slots opened toward the inner peripheral surface; and a rotor rotatably supported through a gap on the inner side of the stator core, the plurality of slots being wound by a stator winding via an insulating body, the stator winding is constituted by an annular coil made of a wire having a rectangular cross-section, and is wound into a hexagonal shape with a bent portion, and the annular coil has two slot insertion parts to be inserted into the plurality of slots, including one slot insertion part arranged on the inner peripheral side of the slot and the other slot insertion part arranged on the outer peripheral side of the slot with a recessed shape formed in proximity of the bent portion of the annular coil.

Description

回転電機Rotating electric machine
 本発明は、回転電機に関する。 The present invention relates to a rotating electrical machine.
 近年、低燃費化やCO2排出削減のため効率を重視した車両開発が進められている。車両用の回転電機に対しても、高出力化、高効率化、低価格化が要求されている。これらの要求に対し、固定子を改善することは特に大きな効果が見込まれる。 In recent years, vehicles have been developed with an emphasis on efficiency to reduce fuel consumption and reduce CO 2 emissions. High output, high efficiency, and low price are also required for rotating electrical machines for vehicles. In response to these demands, improving the stator is expected to be particularly effective.
 発電機やモータに用いられる固定子は、一般的に、周方向に複数のスロットが内周面に開口した固定子鉄心と、夫々のスロットに挿入され、各スロット間のティース部に巻回された複数の固定子巻線によって構成される。 In general, a stator used for a generator or a motor is inserted into a stator core having a plurality of slots opened in an inner circumferential surface in the circumferential direction, and wound around a tooth portion between the slots. And a plurality of stator windings.
 固定子の製造時、固定子巻線は固定子鉄心のスロット開口部から挿入される。スロット開口部は幅が狭いため、固定子巻線の挿入作業が煩雑となる。さらに、コイルエンド部でコイルが干渉するため、固定子巻線の占積率を上げることが困難である。 時 When manufacturing the stator, the stator winding is inserted from the slot opening of the stator core. Since the slot opening is narrow, the insertion operation of the stator winding becomes complicated. Furthermore, since the coil interferes at the coil end portion, it is difficult to increase the space factor of the stator winding.
 これらの問題に対して、例えば特許文献1では、平板上の固定子鉄心に固定子巻線を装着し、固定子鉄心の両端部をスロット開口部が内周側に配置されるように円環状に成形することで固定子を構築し、占積率向上を図る交流発電機が提案されている。また、特許文献2では、断面が略四角形の平角線を重ね巻きにより連続的に巻線し、固定子巻線の占積率の向上を図ったものが提案されている。 To solve these problems, for example, in Patent Document 1, a stator winding is attached to a stator core on a flat plate, and both ends of the stator core are annular so that slot openings are disposed on the inner peripheral side. An alternator has been proposed in which a stator is constructed by molding into a shape to improve the space factor. Further, Patent Document 2 proposes a method in which a rectangular wire having a substantially rectangular cross section is wound continuously by overlapping winding to improve the space factor of the stator winding.
特許第3310967号Japanese Patent No. 3310967 特開2008-167567号公報JP 2008-167567 A
 しかし、特許文献1に記載のものは、固定子鉄心に装着して円環状に成形されるため、コイルの素線の被膜へのダメージを考慮する必要がある。また、素線として平角線を用いる場合は平角線の方向を考慮する必要がある。このため、高い成形技術を必要とし、特に高電圧で使用される回転電機では品質面及び生産性の面で課題がある。 However, since the one described in Patent Document 1 is attached to the stator core and formed into an annular shape, it is necessary to consider damage to the coating of the coil wire. Moreover, when using a flat wire as a strand, it is necessary to consider the direction of a flat wire. For this reason, a high molding technique is required, and there is a problem in terms of quality and productivity particularly in a rotating electric machine used at a high voltage.
 また、特許文献2に記載のものは、連続巻線におけるコイルエンド部の形状が重要であり、コイルエンドの傾斜部は、同じ長さで巻線され成形される。このため、コイル挿入時、又はコイル成形時に、スロットピッチに合わせ円弧上に広げられる。この時、コイルエンド部においてコイルエンド内周側と外周側との寸法差により、コイルにストレスが発生するおそれがある。また、コイルエンドの頂点であるコイルターン部にこの寸法差が集積され、コイルエンド頂点部において、軸方向の整列性が悪く、コイル間の隙間も大きくなり、結果的にコイルエンドが高くなってしまう課題がある。 Also, in the device described in Patent Document 2, the shape of the coil end portion in the continuous winding is important, and the inclined portion of the coil end is wound and molded with the same length. For this reason, at the time of coil insertion or coil forming, it is expanded on the arc according to the slot pitch. At this time, stress may occur in the coil due to a dimensional difference between the coil end inner periphery side and the outer periphery side in the coil end portion. In addition, this dimensional difference is accumulated in the coil turn portion which is the apex of the coil end, the axial alignment is poor at the coil end apex portion, the gap between the coils becomes large, and the coil end becomes high as a result. There is a problem.
 そこで、本発明は、生産性に優れ、コイルエンド部を小型化した回転電機を提供する。 Therefore, the present invention provides a rotating electrical machine that is excellent in productivity and that has a reduced coil end portion.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、内周面に向かって開口する複数のスロットが放射状に形成された固定子鉄心と、前記固定子鉄心の内周側に隙間を介して回転可能に支持された回転子とを有し、前記複数のスロットに絶縁体を介して固定子巻線が巻回された回転電機において、前記固定子巻線は、断面矩形の導線が折り曲げ部を有する六角形状に巻回された環状コイルにより構成され、前記環状コイルは、前記複数のスロットに装着される2つのスロット挿入部を有し、一方のスロット挿入部はスロットの内周側に配置され、他方のスロット挿入部はスロットの外周側に配置され、前記環状コイルの前記折り曲げ部の近傍に、凹形状が形成されたことを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. To give an example, a stator core in which a plurality of slots that open toward the inner peripheral surface are formed radially, A rotating electrical machine having a stator winding wound around the plurality of slots via an insulator, and the stator winding includes: A conducting wire having a rectangular cross section is formed by an annular coil wound in a hexagonal shape having a bent portion, and the annular coil has two slot insertion portions to be attached to the plurality of slots, and one slot insertion portion is The other slot insertion portion is disposed on the outer periphery side of the slot, and a concave shape is formed in the vicinity of the bent portion of the annular coil.
 本発明によれば、生産性に優れ、コイルエンド部を小型化した回転電機を提供することができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, it is possible to provide a rotating electrical machine that is excellent in productivity and has a reduced coil end portion. Problems, configurations, and effects other than those described above will become apparent from the description of the following examples.
回転電機の全体構成を示す断面図。Sectional drawing which shows the whole structure of a rotary electric machine. 固定子のリヤ側からの斜視図。The perspective view from the rear side of a stator. 固定子の回路図。The circuit diagram of a stator. U1相Aコイルの固定子巻線の斜視図。The perspective view of the stator winding | coil of a U1 phase A coil. 環状コイルの斜視図。The perspective view of an annular coil. 図5の環状コイルの凹形状詳細図。FIG. 6 is a detailed view of a concave shape of the annular coil in FIG. 5. 図6の環状コイルを広げた図。The figure which expanded the annular coil of FIG.
 以下、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 図1は、本発明の実施例による回転電機の全体構成を示す断面図である。ここでは、回転電機の例として車両用交流発電機23を用いる。なお、以下の説明において、「軸方向」は回転電機の回転軸に沿った方向を指す。周方向は回転電機の回転方向に沿った方向を指す。「径方向」は回転電機の回転軸を中心としたときの動径方向(半径方向)を指す。「内周側」は径方向内側(内径側)を指し、「外周側」はその逆方向、すなわち径方向外側(外径側)を指す。 FIG. 1 is a cross-sectional view showing the overall configuration of a rotating electrical machine according to an embodiment of the present invention. Here, the vehicle alternator 23 is used as an example of the rotating electrical machine. In the following description, “axial direction” refers to a direction along the rotation axis of the rotating electrical machine. The circumferential direction refers to the direction along the rotational direction of the rotating electrical machine. The “radial direction” refers to a radial direction (radial direction) when the rotational axis of the rotating electrical machine is the center. “Inner circumference side” refers to the radially inner side (inner diameter side), and “outer circumference side” refers to the opposite direction, that is, the radially outer side (outer diameter side).
 回転電機である車両用交流発電機23は、回転子4と、固定子5とを備えている。回転子4は、シャフト2の中心部に界磁巻線13を備え、その両側に磁性材料にて成形されたフロント側爪形磁極11とリヤ側爪形磁極12からなる回転子鉄心が界磁巻線13を覆うように両側から挟むように配置される。フロント側爪形磁極11とリヤ側爪形磁極12とは、爪部が互いに対向し、かつ、一方の爪形磁極が他方の爪形磁極に噛み合うように配置される。回転子4は、固定子5の内周側に、僅かなギャップを介して対向するように配置される。回転子4は、フロントベアリング3及びリヤベアリング10の内輪にシャフト2が挿通され、回転自在に支持される。 A vehicle AC generator 23 that is a rotating electrical machine includes a rotor 4 and a stator 5. The rotor 4 includes a field winding 13 at the center of the shaft 2, and a rotor core composed of a front claw-shaped magnetic pole 11 and a rear claw-shaped magnetic pole 12 formed of a magnetic material on both sides of the rotor 4. It arrange | positions so that it may pinch | interpose from both sides so that the coil | winding 13 may be covered. The front claw-shaped magnetic pole 11 and the rear claw-shaped magnetic pole 12 are arranged so that the claw portions face each other and one claw-shaped magnetic pole meshes with the other claw-shaped magnetic pole. The rotor 4 is arranged on the inner peripheral side of the stator 5 so as to face each other with a slight gap. The rotor 4 is rotatably supported by inserting the shaft 2 through the inner rings of the front bearing 3 and the rear bearing 10.
 固定子5は、固定子鉄心6と固定子巻線7から構成される。固定子鉄心6は、環状に形成された薄板鋼板が複数枚積層され、内周側には突出した歯部(ティース)とからなり、各歯部の間にスロットが形成される。各々のスロットに各相の固定子巻線7が複数のティースを跨いで夫々のスロットに挿入され装着される。固定子5の両端は、フロントブラケット18とリヤブラケット19によって保持される。 The stator 5 includes a stator core 6 and a stator winding 7. The stator core 6 is formed by laminating a plurality of thin steel plates formed in an annular shape, and has a protruding tooth portion (tooth) on the inner peripheral side, and a slot is formed between each tooth portion. In each slot, the stator winding 7 of each phase is inserted and mounted in each slot across a plurality of teeth. Both ends of the stator 5 are held by a front bracket 18 and a rear bracket 19.
 シャフト2の一方の端部には、プーリ1が取り付けられる。シャフト2の他方の端部には、スリップリング14が設けられ、ブラシ15と接触し界磁巻線13に電力を供給している。更に、回転子4のフロント側爪形磁極11とリヤ側爪磁極12の両端面には、外周側に複数の羽根を有する冷却ファンであるフロントファン16とリヤファン17が設けられ、回転することによる遠心力によって、破線で示すように、外部からの空気を導入し、内部を冷却した空気を外部に排出するように、冷却風CWを流通させるようになっている。この冷却風CWにより、固定子巻線7が冷却される。 The pulley 1 is attached to one end of the shaft 2. A slip ring 14 is provided at the other end of the shaft 2 and is in contact with the brush 15 to supply power to the field winding 13. Further, a front fan 16 and a rear fan 17 which are cooling fans having a plurality of blades on the outer peripheral side are provided on both end surfaces of the front claw magnetic pole 11 and the rear claw magnetic pole 12 of the rotor 4, respectively. As indicated by a broken line, the cooling air CW is circulated so as to introduce air from outside and discharge the air cooled inside by centrifugal force. The stator winding 7 is cooled by the cooling air CW.
 固定子巻線7は、本実施例では2組の3相巻線で構成されており、それぞれの巻線の口出し線は、整流回路20に接続される。整流回路20は、ダイオード等の整流素子から構成され、全波整流回路を構成している。例えばダイオードの場合、カソード端子はダイオード接続端子21に接続される。また、アノード側の端子は車両用交流発電機本体に電気的に接続される。リヤカバー22は整流回路20の保護カバーの役割を果たしている。 The stator winding 7 is composed of two sets of three-phase windings in this embodiment, and the lead wire of each winding is connected to the rectifier circuit 20. The rectifier circuit 20 is composed of a rectifier element such as a diode, and constitutes a full-wave rectifier circuit. For example, in the case of a diode, the cathode terminal is connected to the diode connection terminal 21. The anode side terminal is electrically connected to the vehicle alternator main body. The rear cover 22 serves as a protective cover for the rectifier circuit 20.
 次に、発電動作について説明する。 Next, the power generation operation will be described.
 まず、エンジンの始動に伴ってクランクシャフトからベルトを介してプーリ1に回転が伝達されるため、シャフト2を介して回転子4を回転させる。ここで、回転子4に設けられた界磁巻線13にスリップリング14を介してブラシ15から直流電流を供給すると界磁巻線13の内外周を周回する磁束が生じるため、回転子4におけるフロント側爪形磁極11とリヤ側爪形磁極12にN極、又は、S極が周方向に交互に形成される。この界磁巻線13による磁束は、フロント側爪形磁極11のN極から固定子鉄心6をとおって固定子巻線7の周りを周回し、回転子4のリヤ側爪形磁極12のS極に到達することで回転子4と固定子5を周回する磁気回路が形成される。このように回転子にて生じた磁束が固定子巻線7と鎖交するため、U1相、U2相、V1相、V2相、W1相、W2相の固定子巻線7のそれぞれに交流誘起電圧が発生し、全体としては6相分の交流誘起電圧が生じる。 First, since the rotation is transmitted from the crankshaft to the pulley 1 through the belt as the engine starts, the rotor 4 is rotated through the shaft 2. Here, when a direct current is supplied from the brush 15 to the field winding 13 provided in the rotor 4 via the slip ring 14, a magnetic flux that circulates around the inner and outer circumferences of the field winding 13 is generated. N-poles or S-poles are alternately formed in the circumferential direction on the front-side claw-shaped magnetic pole 11 and the rear-side claw-shaped magnetic pole 12. The magnetic flux generated by the field winding 13 circulates around the stator winding 7 from the N pole of the front claw-shaped magnetic pole 11 through the stator core 6, and the S of the rear claw-shaped magnetic pole 12 of the rotor 4. A magnetic circuit that circulates around the rotor 4 and the stator 5 is formed by reaching the pole. Since the magnetic flux generated in the rotor is linked to the stator winding 7 in this way, AC induction is induced in each of the U1-phase, U2-phase, V1-phase, V2-phase, W1-phase, and W2-phase stator windings 7. A voltage is generated, and an AC induced voltage for six phases is generated as a whole.
 このように発電された交流電圧は、ダイオード等の整流素子で構成された整流回路20によって、全波整流されて直流電圧に変換される。整流された直流電圧が一定電圧になるように、ICレギュレータ(図示せず)で界磁巻線13に供給する電流が制御される。 The AC voltage generated in this way is full-wave rectified and converted into a DC voltage by a rectifier circuit 20 composed of a rectifier element such as a diode. The current supplied to the field winding 13 is controlled by an IC regulator (not shown) so that the rectified DC voltage becomes a constant voltage.
 次に,図2から図7を用いて、本実施例による回転電機に用いる固定子の構成について説明する。 Next, the configuration of the stator used in the rotating electrical machine according to this embodiment will be described with reference to FIGS.
 図2は、固定子5のリヤ側からの斜視図である。固定子5は、内周面の周方向に複数のスロットを有する環状の固定子鉄心6と、その各々のスロットの内周面に装着されたU字状の絶縁紙8を介して、各相の固定子巻線7を装着し、固定子巻線7をスロット内に保持するためスロット最内周側にスロット楔9を有する。本実施例では、スロット数は72である。 FIG. 2 is a perspective view from the rear side of the stator 5. The stator 5 is connected to each phase through an annular stator core 6 having a plurality of slots in the circumferential direction of the inner peripheral surface and a U-shaped insulating paper 8 attached to the inner peripheral surface of each slot. The stator winding 7 is mounted, and a slot wedge 9 is provided on the innermost circumferential side of the slot in order to hold the stator winding 7 in the slot. In this embodiment, the number of slots is 72.
 固定子鉄心6のスロットから軸方向にはみ出た部分は、2つのスロット間を口出し線側のコイルエンド72-a、反口出し線側のコイルエンド72-bである。また、図示のように、24本の口出し線71が取り出される。口出し線71の数が24本であるので、コイルの数は12個である。 The portion protruding in the axial direction from the slot of the stator core 6 is a coil end 72-a on the lead wire side and a coil end 72-b on the opposite lead wire side between the two slots. Further, as shown in the figure, 24 lead lines 71 are taken out. Since the number of lead wires 71 is 24, the number of coils is 12.
 ここで、固定子巻線の各周回コイルの間には、所定の空隙(1mm以上)を設ける。これは、回転電機がモータである場合、印加される電圧が300Vや600Vのように高圧であり、空隙により相間の絶縁を確保するためである。 Here, a predetermined gap (1 mm or more) is provided between the respective winding coils of the stator winding. This is because when the rotating electrical machine is a motor, the applied voltage is as high as 300 V or 600 V, and insulation between phases is ensured by a gap.
 一方、本実施例のような車両用交流発電機の場合、その出力電圧は一般的に14V~28Vと低電圧であり、線間の耐圧はそれほど要求されない。そのため、固定子巻線の各周回コイルの間の空隙には、絶縁材(絶縁ワニス)を介在させる。 On the other hand, in the case of the vehicle alternator as in this embodiment, the output voltage is generally as low as 14V to 28V, and the withstand voltage between the lines is not so required. Therefore, an insulating material (insulating varnish) is interposed in the space between the respective winding coils of the stator winding.
 図3は、固定子巻線の回路図(結線図)である。本実施例での構成は、固定子巻線は三角形状に結線されたデルタ結線の構成で、第1巻線7-1と第2巻線7-2との2種類のコイルを並列に結線し構成される。第1巻線7-1は整流器20-1に接続され、第2巻線7-2は整流器20-2に接続される。 FIG. 3 is a circuit diagram (connection diagram) of the stator winding. The configuration of this embodiment is a delta connection configuration in which the stator windings are connected in a triangular shape, and two types of coils, a first winding 7-1 and a second winding 7-2, are connected in parallel. Configured. The first winding 7-1 is connected to the rectifier 20-1, and the second winding 7-2 is connected to the rectifier 20-2.
 デルタ結線された第1巻線7-1は、6個のコイル(2個の並列接続されたU相コイル7U1-A,7U1-Bと、2個の並列接続されたV相コイル7V1-A,7V1-Bと、2個の並列接続されたW相コイル7W1-A,7W1-B)から構成される。第2巻線7-2も、同様に6個のコイルがデルタ結線される。 The delta-connected first winding 7-1 includes six coils (two U-phase coils 7U1-A and 7U1-B connected in parallel and two V-phase coils 7V1-A connected in parallel). , 7V1-B and two W-phase coils 7W1-A, 7W1-B) connected in parallel. Similarly, in the second winding 7-2, six coils are delta-connected.
 なお、以上の巻線はデルタ結線されるが、直列接続及びスター結線(Y結線)で構成しても回転電機として成立する。 The above windings are delta-connected, but a rotating electrical machine can be established even if they are configured in series connection and star connection (Y connection).
 図4は、固定子鉄心6に装着された1個のコイル(例としてU相コイル7U1-A)の斜視図である。環状コイル76のターン数は、例えば5ターン(5T)である。6つの環状コイル76と、各環状コイル76の間を接続する5つの渡り線73と、両端に位置する環状コイル76を外部に接続する2つの口出し線71とからなる。 FIG. 4 is a perspective view of one coil (for example, U-phase coil 7U1-A) attached to the stator core 6. FIG. The number of turns of the annular coil 76 is, for example, 5 turns (5T). It consists of six annular coils 76, five connecting wires 73 that connect between the annular coils 76, and two lead wires 71 that connect the annular coils 76 located at both ends to the outside.
 第1巻線7-1のU相はU相コイル7U1-AとU相コイル7U1-Bとで構成される。U相コイル7U1-A、U相コイル7U1-Bともに渡り線73が口出し線71側に配置される構成、すなわち渡り線の配置が口出し線側に集約される構成である。 The U phase of the first winding 7-1 includes a U phase coil 7U1-A and a U phase coil 7U1-B. Both the U-phase coil 7U1-A and the U-phase coil 7U1-B have a configuration in which the jumper wire 73 is arranged on the lead wire 71 side, that is, the arrangement of the jumper wires is concentrated on the lead wire side.
 以上の説明では第1巻線7-1のU相コイルを例に挙げたが、第1巻線7-1、第2巻線7-2の各コイルについて上記の構成は共通する。12個すべてのコイルを固定子鉄心6に装着すると図2の状態となる。 In the above description, the U-phase coil of the first winding 7-1 is taken as an example, but the above-described configuration is common to the coils of the first winding 7-1 and the second winding 7-2. When all twelve coils are attached to the stator core 6, the state shown in FIG.
 図5は、一つの環状コイル76の形態を示す斜視図である。環状コイル76は、略六角形(亀甲形)であり、口出し線71と、固定子鉄心の軸方向に飛び出したコイルエンド部74-a,74-bと、固定子鉄心のスロット部に装着されるスロット挿入部75-a,75-bと、環状コイル間を繋ぐ渡り線73により構成される。コイルエンド部74-a,74-bには、コイルエンド部の三角形状の頂点でU字形状に折り返しされるコイルターン部74ct-a,74ct-bがある。 FIG. 5 is a perspective view showing the form of one annular coil 76. The annular coil 76 is substantially hexagonal (tortoise-shaped), and is attached to a lead wire 71, coil end portions 74-a and 74-b protruding in the axial direction of the stator core, and a slot portion of the stator core. Slot insertion portions 75-a and 75-b, and a crossover 73 connecting the annular coils. The coil end portions 74-a and 74-b include coil turn portions 74ct-a and 74ct-b that are folded back in a U shape at the triangular apexes of the coil end portions.
 従来では、特許文献2に示されるようにフラットワイズ方向に導線を巻回し、スライドもしくは回転方向に捻りながら成形することで、亀甲形状のコイルが形成されていた。また、固定子鉄心6のスロット部への挿入時に捻りながら亀甲形状状態で装着されていた。コイルエンドの傾斜部は、同じ長さで巻線され成形される。このため、コイル挿入時、又はコイル成形時に、スロットピッチに合わせ円弧上に広げられる。この時、コイルエンド部においてコイルエンド内周側と外周側との寸法差により、コイルにストレスが発生するおそれがある。また、コイルエンドの頂点であるコイルターン部にこの寸法差が集積され、コイルエンド頂点部において、軸方向の整列性が悪く、コイル間の隙間も大きくなり、結果的にコイルエンドが高くなってしまう課題があった。 Conventionally, as shown in Patent Document 2, a tortoiseshell-shaped coil has been formed by winding a conductive wire in the flatwise direction and forming it while sliding or twisting in the rotational direction. Also, the stator core 6 was mounted in a tortoiseshell shape while being twisted when inserted into the slot portion. The inclined part of the coil end is wound and formed with the same length. For this reason, at the time of coil insertion or coil forming, it is expanded on the arc according to the slot pitch. At this time, stress may occur in the coil due to a dimensional difference between the coil end inner periphery side and the outer periphery side in the coil end portion. In addition, this dimensional difference is accumulated in the coil turn portion which is the apex of the coil end, the axial alignment is poor at the coil end apex portion, the gap between the coils becomes large, and the coil end becomes high as a result. There was a problem.
 その対策として、コイルエンド頂点を拘束又は成形することで、整列性及びコイルエンドの高さを抑えることができるが、コイルエンド部のコイルにストレスが掛かることで、コイルの被膜へのダメージが増加し、亀裂、又はコイルの断面積が少となり品質問題が発生する場合があった。 As a countermeasure, restraint or molding of the coil end apex can suppress alignment and the height of the coil end, but stress on the coil at the coil end increases damage to the coil coating. In some cases, however, cracks or the cross-sectional area of the coil becomes small, resulting in quality problems.
 そこで、本実施例では、環状コイル76の折り曲げ部近傍へ大きさの異なる凹形状78を形成する。これにより、固定子スロット内周側から環状コイルを径方向へ広げながら該固定子スロット外周方向へ環状コイルを挿入する際、環状コイルが3次元的に変形する。すなわち、環状コイル76の剛体状態での径方向、軸方向への柔軟性を得ることができる。このため、環状コイル76の固定子鉄心への挿入性が向上し、コイルエンド部の高さを最小限に抑えることができる。 Therefore, in this embodiment, the concave shape 78 having a different size is formed near the bent portion of the annular coil 76. Accordingly, when the annular coil is inserted in the outer peripheral direction of the stator slot while expanding the annular coil in the radial direction from the inner peripheral side of the stator slot, the annular coil is deformed three-dimensionally. That is, flexibility in the radial direction and the axial direction in the rigid state of the annular coil 76 can be obtained. For this reason, the insertability of the annular coil 76 into the stator core is improved, and the height of the coil end portion can be minimized.
 図6は環状コイルの凹形状77を示す詳細形状図である。環状コイル76の固定子鉄心のスロット部に装着されるスロット挿入部75-a,75-bの近傍に、凹形状77を形成する。この凹形状77により、環状コイルを径方向へ広げたとき、コイルターン部74ct-a、74ct-bが斜めになるような3次元的形状が形成され、コイルエンド部の高さを最小限に抑えられる。 FIG. 6 is a detailed shape diagram showing the concave shape 77 of the annular coil. A concave shape 77 is formed in the vicinity of the slot insertion portions 75-a and 75-b attached to the slot portions of the stator core of the annular coil 76. The concave shape 77 forms a three-dimensional shape in which the coil turn portions 74ct-a and 74ct-b are inclined when the annular coil is expanded in the radial direction, thereby minimizing the height of the coil end portion. It can be suppressed.
 図7は図6の環状コイル76を径方向に広げたときの形状を示す図である。図7中の矢印RDは径方向を示している。環状コイル76を広げると、凹形状77が潰れる。これにより、環状コイル76の変形時にコイルエンド部に掛かるストレス(コイルエンド部に生じる歪み)を吸収し、コイルの被膜へのダメージを低減することができる。また、コイルエンド頂点部の軸方向の整列性を維持できるため、コイルエンドの高さを抑えることができる。図7のL2は環状コイル76の軸方向の長さ(高さ)を示している。L2は、変形前(図6)の軸方向の長さL1よりも小さい。 FIG. 7 is a view showing a shape when the annular coil 76 of FIG. 6 is expanded in the radial direction. An arrow RD in FIG. 7 indicates the radial direction. When the annular coil 76 is expanded, the concave shape 77 is crushed. Thereby, the stress (distortion which arises in a coil end part) applied to a coil end part at the time of a deformation | transformation of the annular coil 76 is absorbed, and the damage to the film of a coil can be reduced. Moreover, since the axial alignment of the coil end apex portion can be maintained, the height of the coil end can be suppressed. L2 in FIG. 7 indicates the length (height) of the annular coil 76 in the axial direction. L2 is smaller than the length L1 in the axial direction before deformation (FIG. 6).
 以上説明したように、本発明によれば、環状コイルの挿入性及び、コイルエンド部の高さを最小限に抑えることができ、高品質で、高出力・高効率の回転電機が提供できる。 As described above, according to the present invention, the insertion property of the annular coil and the height of the coil end portion can be minimized, and a high-quality, high-output and high-efficiency rotating electrical machine can be provided.
 上述の実施例は、固定子鉄心6のスロット内周側から固定子巻線7を装着する方式であった。しかし、特許文献1に示されるような展開コア方式(平板状の固定子鉄心に矩形導線で形成された固定子巻線を装着状態で展開コアの丸め成形する方式)にも、本発明のコイル形態を適用することができる。この場合も固定子鉄心の丸め成形によるコイルエンド部へのストレスを抑えられ、更に丸め成形に必要な力も軽減でき、生産性が高く高品質な固定子を提供できる。 In the above-described embodiment, the stator winding 7 is mounted from the slot inner peripheral side of the stator core 6. However, the coil of the present invention can also be applied to a deployment core system as disclosed in Patent Document 1 (a system in which a stator core formed by a rectangular conductor wire is mounted on a flat stator iron core and a deployment core is rounded). Forms can be applied. In this case as well, the stress on the coil end portion due to the round forming of the stator core can be suppressed, the force required for the round forming can be reduced, and a high quality and high quality stator can be provided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 例えば、実施例の固定子巻線は、渡り線を介して6個の環状コイルが連続する構成であった。しかし、単一の環状コイルを配置し、各環状コイルの口出し線を溶接等で接合、又はバスバー等で各口出し線を接続し、Δ結線(デルタ結線)またはY結線(スター結線)を構成しても同様の効果が得られる。 For example, the stator winding of the example has a configuration in which six annular coils are connected via a jumper wire. However, a single annular coil is arranged, and the lead wires of each annular coil are joined by welding or the like, or each lead wire is connected by a bus bar or the like to form a Δ connection (delta connection) or a Y connection (star connection). However, the same effect can be obtained.
 また、実施例の固定子巻線は、巻回ピッチが5/6(電気角150°)であった。しかし、巻回ピッチが4/6(電気角120°)、又は6/6(電気角180°)であっても本発明は適用可能であり、実施例で説明したものと同様の効果が得られる。 Further, the stator winding of the example had a winding pitch of 5/6 (electrical angle 150 °). However, the present invention can be applied even when the winding pitch is 4/6 (electrical angle 120 °) or 6/6 (electrical angle 180 °), and the same effects as those described in the embodiments can be obtained. It is done.
 また、実施例の固定子は、2組の3相巻線を有していた。しかし、3相、5相、7相等の多相の巻線であっても本発明は適用可能であり、実施例で説明したものと同様の効果が得られる。 In addition, the stator of the example had two sets of three-phase windings. However, the present invention can be applied even to multi-phase windings such as three-phase, five-phase, and seven-phase, and the same effects as those described in the embodiments can be obtained.
 また、実施例では回転電機の一例として車両用交流発電機について説明を行ったが、回転力を出力するモータや、発電と駆動を兼ねたモータジェネレータ等にも適用することができる。特にモータとしては、ハイブリット自動車や電動四輪駆動車の駆動用モータ,ポンプを駆動するためのモータ等への固定子として適用できる。 In the embodiment, the vehicular AC generator has been described as an example of the rotating electrical machine. However, the present invention can also be applied to a motor that outputs rotational force, a motor generator that combines power generation and driving, and the like. In particular, the motor can be applied as a stator to a motor for driving a hybrid vehicle or an electric four-wheel drive vehicle, a motor for driving a pump, or the like.
  1    プーリ
  2    シャフト
  3    フロントベアリング
  4    回転子
  5    固定子
  6    固定子鉄心
  7    固定子巻線
  8    絶縁紙
  9    スロット楔
  10   リヤベアリング
  11   フロント側爪磁極
  12   リヤ側爪磁極
  13   界磁巻線
  14   スリップリング
  15   ブラシ
  16   フロントファン
  17   リヤファン
  18   フロントブラケット
  19   リヤブラケット
  20   整流回路
  21   ダイオード接続端子
  22   リヤカバー
  23   車両用交流発電機
  71   口出し線
  73   渡り線
  74-a コイルエンド部(口出し線側)
  74-b コイルエンド部(反口出し線側)
  75-a スロット挿入部(スロットの固定子鉄心内周側に挿入)
  75-b スロット挿入部(スロットの固定子鉄心外周側に挿入)
  76   環状コイル
  77   凹形状
DESCRIPTION OF SYMBOLS 1 Pulley 2 Shaft 3 Front bearing 4 Rotor 5 Stator 6 Stator iron core 7 Stator winding 8 Insulating paper 9 Slot wedge 10 Rear bearing 11 Front side claw magnetic pole 12 Rear side claw magnetic pole 13 Field winding 14 Slip ring 15 Brush 16 Front fan 17 Rear fan 18 Front bracket 19 Rear bracket 20 Rectifier circuit 21 Diode connection terminal 22 Rear cover 23 Vehicle alternator 71 Lead wire 73 Crossover wire 74-a Coil end portion (lead wire side)
74-b Coil end (on the lead wire side)
75-a Slot insertion part (inserted on the inner circumference side of the stator core of the slot)
75-b Slot insertion part (inserted on the outer periphery of the stator core of the slot)
76 Annular coil 77 Concave shape

Claims (3)

  1.  内周面に向かって開口する複数のスロットが放射状に形成された固定子鉄心と、
     前記固定子鉄心の内周側に隙間を介して回転可能に支持された回転子とを有し、
     前記複数のスロットに絶縁体を介して固定子巻線が巻回された回転電機において、
     前記固定子巻線は、断面矩形の導線が折り曲げ部を有する六角形状に巻回された環状コイルにより構成され、
     前記環状コイルは、前記複数のスロットに装着される2つのスロット挿入部を有し、一方のスロット挿入部はスロットの内周側に配置され、他方のスロット挿入部はスロットの外周側に配置され、
     前記環状コイルの前記折り曲げ部の近傍に、凹形状が形成された回転電機。
    A stator core in which a plurality of slots that open toward the inner peripheral surface are radially formed;
    A rotor supported rotatably via a gap on the inner peripheral side of the stator core;
    In the rotating electrical machine in which the stator winding is wound around the plurality of slots via an insulator,
    The stator winding is constituted by an annular coil wound in a hexagonal shape with a conductor having a rectangular cross section having a bent portion,
    The annular coil has two slot insertion portions mounted in the plurality of slots, one slot insertion portion is disposed on the inner peripheral side of the slot, and the other slot insertion portion is disposed on the outer peripheral side of the slot. ,
    A rotating electrical machine in which a concave shape is formed in the vicinity of the bent portion of the annular coil.
  2.  請求項1に記載の回転電機において、
     前記環状コイルが、渡り線を介して複数個連続的に形成された回転電機。
    In the rotating electrical machine according to claim 1,
    A rotating electrical machine in which a plurality of the annular coils are continuously formed via a jumper wire.
  3.  請求項1記載の回転電機において、
     前記固定子巻線の口出し線の一方がスロットの中央部に配置され、もう一方がスロットの最外周側又は最内周側に配置された回転電機。
    The rotating electrical machine according to claim 1, wherein
    A rotating electrical machine in which one of the lead wires of the stator winding is disposed at the center of the slot and the other is disposed on the outermost or innermost side of the slot.
PCT/JP2013/076462 2012-10-15 2013-09-30 Rotating electrical machine WO2014061430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227595 2012-10-15
JP2012227595A JP2014082821A (en) 2012-10-15 2012-10-15 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2014061430A1 true WO2014061430A1 (en) 2014-04-24

Family

ID=50488002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076462 WO2014061430A1 (en) 2012-10-15 2013-09-30 Rotating electrical machine

Country Status (2)

Country Link
JP (1) JP2014082821A (en)
WO (1) WO2014061430A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994304A (en) * 2019-12-13 2021-06-18 三菱电机株式会社 Rotating electrical machine
CN113454881A (en) * 2019-02-22 2021-09-28 三菱电机株式会社 Stator, motor and compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532478B (en) 2014-11-20 2021-08-25 Time To Act Ltd Generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544312U (en) * 1977-06-14 1979-01-12
JPS5866845U (en) * 1981-10-27 1983-05-07 三菱電機株式会社 armature coil
JP2002262497A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Rotary electric machine and its manufacturing method
JP2005354804A (en) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd Motor stator and wire winder for winding material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544312U (en) * 1977-06-14 1979-01-12
JPS5866845U (en) * 1981-10-27 1983-05-07 三菱電機株式会社 armature coil
JP2002262497A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Rotary electric machine and its manufacturing method
JP2005354804A (en) * 2004-06-10 2005-12-22 Nissan Motor Co Ltd Motor stator and wire winder for winding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454881A (en) * 2019-02-22 2021-09-28 三菱电机株式会社 Stator, motor and compressor
CN112994304A (en) * 2019-12-13 2021-06-18 三菱电机株式会社 Rotating electrical machine

Also Published As

Publication number Publication date
JP2014082821A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
US6552463B2 (en) Dynamo-electric machine having winding phase groups of series-connected windings connected in parallel
US9397542B2 (en) Stator manufacturing method used for automotive rotary electric machine
JP5802581B2 (en) Rotating electric machine and production method thereof
EP1742328B1 (en) Electric rotating machine
US8633629B2 (en) Dynamoelectric machine
JP5770074B2 (en) Rotating electric machine
EP1981154B1 (en) Dynamo-electric machine
US9246366B2 (en) Automotive rotary electric machine and winding assembly manufacturing method that is used therefor
US10432053B2 (en) Stator for rotating electrical machine
JP4940252B2 (en) Manufacturing method of rotating electrical machine
JP2011036010A (en) Rotating electrical machine
JP2010041795A (en) Stator for rotating electric machine
US8981613B2 (en) Electric rotating machine
WO2014061430A1 (en) Rotating electrical machine
US6956314B2 (en) Alternator
US20120062064A1 (en) Electric rotating machine
US7342340B2 (en) Alternator with identical conductor segments
WO2014061406A1 (en) Dynamo-electric machine
US7466048B2 (en) Dynamoelectric stator
JP4934635B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847204

Country of ref document: EP

Kind code of ref document: A1