WO2014061350A1 - Optical component, terahertz wave module, and optical component manufacturing method - Google Patents

Optical component, terahertz wave module, and optical component manufacturing method Download PDF

Info

Publication number
WO2014061350A1
WO2014061350A1 PCT/JP2013/072888 JP2013072888W WO2014061350A1 WO 2014061350 A1 WO2014061350 A1 WO 2014061350A1 JP 2013072888 W JP2013072888 W JP 2013072888W WO 2014061350 A1 WO2014061350 A1 WO 2014061350A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical component
alumina
lens
terahertz
terahertz wave
Prior art date
Application number
PCT/JP2013/072888
Other languages
French (fr)
Japanese (ja)
Inventor
清水 誠
石橋 忠夫
和宏 丸山
小林 賢二
長峰 勝
五神 真
邦昭 小西
Original Assignee
Nttエレクトロニクス株式会社
株式会社長峰製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 株式会社長峰製作所 filed Critical Nttエレクトロニクス株式会社
Publication of WO2014061350A1 publication Critical patent/WO2014061350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces

Definitions

  • the present invention relates to a terahertz wave optical component, a terahertz wave module mounted with the same, and a method of manufacturing the optical component.
  • lenses for terahertz waves (herein, electromagnetic waves having a frequency of 0.1 to 10 terahertz), plastic lenses represented by polyethylene, cycloolefin, and polymethylpentene, or high resistance silicon single crystal materials Lenses are used.
  • a lens mounted on a module using a photoconductive antenna for terahertz wave generation or reception, a photo mixer, and a Schottky barrier diode a chip for terahertz wave generation or terahertz wave reception is a semiconductor with a high refractive index. For some reason, silicon single crystal lenses are used rather than plastic lenses.
  • Patent Document 1 describes a photo mixer module in which an antenna integrated PD element is mounted on the center of a silicon spherical lens (hemispherical lens) as a module to which such terahertz waves can be applied.
  • the photo mixer module can generate a millimeter wave or sub-millimeter wave (terahertz wave band) signal.
  • FIG. 1 is a view of a photo mixer module using a silicon spherical lens disclosed in Patent Document 1.
  • the reference numeral 1-1 denotes a housing of the module
  • 1-2 denotes a silicon spherical lens (hemispherical lens)
  • 1-3 denotes an antenna integrated light receiving element
  • 1-5 to 1-8 denote reflecting mirrors and lenses of an optical system.
  • the antenna integrated light receiving element 1-3 is an element of end surface incidence type.
  • Representative devices using conversion of an optical signal to a terahertz wave include (1) a photoconductive antenna semiconductor chip, and (2) a photodiode semiconductor chip and a terahertz wave antenna formed on the photodiode semiconductor chip.
  • Non-Patent Documents 1 to 3 describe this operation.
  • Non-Patent Document 3 As a device for generating terahertz waves directly from an electrical signal, there is an RTD (resonant tunneling diode) or a quantum cascade laser. This operation is described in Non-Patent Document 3.
  • Non-Patent Document 3 As a device used for terahertz wave reception, there is a method using a Schottky barrier diode or a photoconductive antenna. Non-Patent Document 3 also describes these devices.
  • the optical component for terahertz wave transmission installed in a module for transmitting and receiving terahertz waves is required to have a high refractive index as described above, and at present, a high resistance silicon single crystal is the only material.
  • a problem first problem
  • breakage of the material is easily generated during lens processing and when the lens is fixed to the holder due to being a single crystal material.
  • the lens surface can only be formed by cutting or polishing, and for this reason, forming a surface shape other than a spherical surface requires a high-level processing technology and can not realize a low-cost aspheric lens (second subject ) Also.
  • the Si lens is a crystalline material
  • the processing method must be performed by cutting or polishing. It was impossible to avoid the formation of minute cracks on the surface by this processing, and it was inevitable that the possibility of breakage due to the growth of such minute cracks was avoided.
  • a crack of the lens may grow to cause breakage due to a stress applied by adhesion for fixing the lens, and thus, improvement in reliability is required.
  • FIG. 2 is a view showing the light beam of the terahertz wave beam emitted when the point oscillation source of the terahertz wave is disposed on the planar side of the Si hemispherical lens.
  • Point oscillation sources are arranged with three types of offsets on the central axis from the central position of the spherical lens. As shown in FIG. 2B, when the terahertz wave point oscillation source is arranged at a position given a specific offset, the terahertz wave beam emitted from the lens surface is emitted without spherical aberration.
  • FIG. 2C the arrangement with a larger offset
  • FIG. 2C the arrangement with a smaller offset
  • the focal positions of the ray passing through the lens central portion and the ray passing through the lens peripheral portion are largely different (spherical surface aberration).
  • the problem with using a spherical lens is that it is not in principle a collimated beam at offset positions where spherical aberration is eliminated. Therefore, in a module using a spherical lens, the terahertz wave point oscillation source is disposed at an offset position where there is no spherical aberration, and another lens or an off-axis parabolic mirror is disposed on the optical axis of the output beam of the module. A method of collimating is taken.
  • the present invention has been made in view of the above two problems, and is an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture, a module for terahertz waves including the same, and
  • An object of the present invention is to provide a method of manufacturing the optical component.
  • an optical component according to the present invention is made of alumina.
  • the optical component according to the present invention is an optical component which is formed of alumina and through which the terahertz electromagnetic wave passes in the alumina.
  • Alumina transmits terahertz waves.
  • the alumina parts have high strength and can be molded by injection molding or powder molding, so that the first and second problems described above can be solved. Therefore, the present invention can provide an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
  • the optical component according to the present invention is characterized in that at least a part of the surface has an aspheric lens shape. Since the material is alumina, an aspheric lens shape can be formed on a part of the optical component by injection molding or powder molding as described above. Therefore, the present invention can also solve the problem of the spherical aberration existing in the Si lens for terahertz waves.
  • the optical component according to the present invention may be a cylindrical lens, a prism, a corner cube, a beam splitter, a mirror, a window or a microlens array.
  • a terahertz wave module includes the optical component and an electromagnetic wave emitting unit that emits a terahertz electromagnetic wave into the alumina of the optical component.
  • Another terahertz wave module includes the optical component and an electromagnetic wave receiving unit that receives a terahertz electromagnetic wave from within the alumina of the optical component.
  • the present module uses a conventional technique for chips for generating or receiving terahertz waves, but includes an optical component formed of alumina as an optical component for shaping terahertz waves emitted or incident from the chips.
  • the strength of the optical component is high, the reliability of the module can be enhanced, and the manufacturing is easy, so that the cost of the module can be reduced.
  • the present invention can provide a terahertz wave module provided with an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
  • the optical component manufacturing method according to the present invention is an optical component manufacturing method for manufacturing the optical component, comprising: an injection molding step of filling and molding alumina in the mold cavity using a mold having a desired shape; And sintering the alumina molded body after the injection molding step to form the optical component.
  • Another optical component manufacturing method is an optical component manufacturing method for manufacturing the optical component, wherein a powder having a mold of a desired shape is filled with alumina powder in the mold cavity and compacted. And a sintering step of sintering the alumina molded body after the powder molding step to form the optical component.
  • the optical component according to the present invention can be mass-produced by injection molding or powder molding using alumina as a raw material.
  • alumina as a raw material.
  • the present invention can provide a method of manufacturing an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
  • an optical component of a material that can transmit terahertz waves is less likely to be damaged and is easy to manufacture, a module for terahertz waves provided with the same, and a method of manufacturing the optical components.
  • Embodiment 1 the results of evaluating the complex refractive index of the alumina plate manufactured by injection molding and powder molding will be described below.
  • the method for producing an alumina plate material to be evaluated is an injection molding process in which alumina is filled and molded in the mold cavity using a mold having a desired shape, and the alumina molded body after the injection molding process is sintered to And an optical component.
  • FIG. 3 is a view briefly explaining a plate manufacturing method.
  • the upper mold (3-1) in which the shape of the plate is cut, and the lower mold (3-2) in which the raw material feeding passage (3-3) and the raw material discharging passage (3-4) are formed
  • a mixture of alumina and a molding binder is fed from the raw material feeding path (3-3) and filled in the mold cavity.
  • a raw material discharge passage (3-4) is provided at a position opposite to the input portion in order to sufficiently fill the space.
  • the alumina material thus molded is obtained as an alumina molded body (3-5) shown in FIG. 3 by heat treatment for degreasing and firing at a higher temperature after being taken out of the mold.
  • the plate-like alumina compact manufactured by the said injection molding is 100% alumina.
  • FIG. 4 shows the results of evaluating the refractive index and the absorption coefficient in the terahertz wave region of the plate-like alumina molded body.
  • the measurement range is 0.5 THz to 2.5 THz.
  • the refractive index of the alumina molded body is approximately 3.1, which is slightly lower than the refractive index 3.4 of the Si single crystal.
  • the absorption coefficient of the alumina molded body is as low as that of the Si single crystal, and can be sufficiently used as a high refractive index transmission material for terahertz waves.
  • the evaluation results of the spectral shapes of the refractive index and the absorption coefficient it was found that even 2.5 THz or more can be sufficiently used.
  • the method of manufacturing the alumina plate material is a powder forming process of filling the alumina powder into the mold cavity and compacting it using a mold having a desired shape, and sintering the alumina formed body after the powder forming process. And Sintering as the optical component.
  • the plate-like alumina molded body manufactured by powder molding also has a high refractive index of about 3.1 and a low absorption coefficient in the terahertz region as in the injection molding, and is useful as a high refractive index transmission material for terahertz waves I found that.
  • the said manufacturing method can form the optical component which is formed with an alumina and the electromagnetic wave of terahertz permeate
  • FIG. 5 is a view showing the shape (design value) of an aspheric lens designed for alumina having a refractive index of 3.16.
  • the lens shape is a flat surface on one side and an aspheric convex shape on the opposite surface.
  • the horizontal axis (R axis) is the distance from the optical axis of the lens (R; unit is mm), and the vertical axis is the lens thickness from the lens plane to the optical axis direction (y; unit in mm).
  • Embodiment 1 The injection molding method of Embodiment 1 was used to manufacture an aspheric lens of the design value of FIG. As a result of measuring the cross-sectional shape in 2 planes orthogonal including the optical axis of the manufactured aspherical lens using a three-dimensional measuring device, it confirmed that the aspherical lens as a design value was able to be manufactured. Note that "as designed" means the following.
  • the manufacturing error of the aspheric lens was on the order of ⁇ m. Since the wavelength of the 1 THz terahertz wave is 300 ⁇ m, the manufacturing error is 1/10 or less of the wavelength. For this reason, the manufactured aspheric lens has sufficient accuracy as an optical component.
  • an absorption coefficient is as low as Si single crystal by refractive index 3.16 similarly to Embodiment 1.
  • the alumina molded body molded by the mold was subjected only to the heat treatment of degreasing and baking, and the aspherical shape could be realized with high accuracy although the aspherical surface side was not polished. This indicates that the alumina material is a transparent material for terahertz wave excellent in mass productivity.
  • a terahertz wave module including an optical component formed of alumina and an electromagnetic wave emitting unit for emitting a terahertz electromagnetic wave into the alumina of the optical component will be described.
  • FIG. 6 is a view for explaining the structure of the terahertz wave generation module of this embodiment.
  • the aspherical lens 1-2 'manufactured in the second embodiment is inserted into the mounting hole 1-1a' of the housing 1-1 '.
  • the photo mixer chip 1-3 ' is disposed at the center of the back surface (anti-lens side) of the aspheric lens 1-2'.
  • the photomixer chip 1-3 ' is a back illuminated type. Further, the upper reflecting mirror 1-5 ', the first lens 1-6', the lens holding part 1-7 ', and the second lens 1-8' are disposed at predetermined positions in the housing 1-1 '.
  • the terahertz wave generation module transmits an optical signal incident from the optical fiber 1-9 'to the photo mixer chip 1- via the second lens 1-8', the first lens 1-6 ', and the upper reflecting mirror 1-5'. Irradiate the back of 3 '.
  • the photo mixer chip 1-3 ' converts the light signal into a terahertz electromagnetic wave and emits it to the aspheric lens 1-2' side.
  • the terahertz wave generation module outputs a terahertz electromagnetic wave according to the input light signal.
  • the terahertz wave generation module may have a structure in which the first lens 1-6 ′ is directly incident on the back surface of the chip without the upper reflecting mirror 1-5 ′.
  • the results of evaluating the characteristics of the terahertz wave generation module will be described next.
  • light of two wavelengths with different frequencies of 1.55 ⁇ m band is made incident to the terahertz wave generation module from the optical fiber 1-9 ', and the difference in the light frequency is changed from 300 GHz to 1800 GHz, and generated at that time.
  • the terahertz wave beam transmitted through the aspheric lens 1-2 ' was measured by a Golay cell (power meter for terahertz wave).
  • the two light waves of different frequencies incident on the optical fiber input section are condensed on the photo mixer chip 1-3 '.
  • carriers electrospray and holes
  • the photocurrent flows between the anode and the cathode by this carrier, since the frequency of the two light waves is different, a beat corresponding to the frequency difference is generated.
  • the photocurrent is modulated corresponding to the beat, and as a result, an alternating electric field is generated between the anode and the cathode.
  • An antenna integrated on the photo mixer chip 1-3 ' is excited by this AC electric field, and a terahertz wave corresponding to a beat frequency (difference frequency between two light waves) is emitted.
  • the terahertz wave is collected by the aspheric lens 1-2 'and taken out to the outside.
  • the two types of light had almost the same light quantity, and the total light quantity was 28 mW.
  • the photocurrent generated by the photo mixer chip 1-3 ' was 6 mA.
  • FIG. 7 shows the results of measuring the terahertz wave output from the terahertz wave generation module of FIG. 6 while changing the difference frequency of the input light.
  • a terahertz wave of 1 ⁇ W was observed as a terahertz wave of 1 THz.
  • This value is a terahertz wave output substantially equivalent to the case where a Si spherical lens is used instead of the alumina aspheric lens 1-2 'in the terahertz wave generation module of FIG.
  • the UTC-PD chip is attached under the condition that the spherical aberration becomes zero.
  • the terahertz wave emitted from the module is a diffused beam
  • the confocal system using two terahertz wave lenses between the module and the Golay cell is not configured, the terahertz wave efficiency of the golay cell
  • the terahertz wave beam can be efficiently incident on the Golay cell without forming a confocal system between the module and the Golay cell. This is evidence that the terahertz wave beam is emitted in a collimated state by the aspheric lens 1-2 '.
  • the terahertz wave generation module of the present embodiment has the same structure as the terahertz wave generation module of FIG. 6, but the photomixer chip 1-3 'is a photoconductive antenna using LT (low temperature growth) InGaAs instead of UTC-PD. It is a chip. As in the case of UTC-PD, the antenna surface of the photoconductive antenna was mounted at a position 0.2 mm away from the planar portion of the alumina aspheric lens.
  • a terahertz wave in the range of ⁇ f is generated from the photoconductive antenna chip on which the pulse light is incident.
  • the terahertz wave generated in this module is collimated by the aspheric lens 1-2 ′ and output to the outside.
  • a terahertz wave module including an optical component formed of alumina and an electromagnetic wave receiving unit that receives a terahertz electromagnetic wave from the alumina of the optical component will be described.
  • the terahertz wave reception module of this embodiment has the same structure as the terahertz wave generation module of FIG. 6, but a reception chip is disposed as an alternative to the photo mixer chip 1-3 '.
  • the receiving chip is, for example, one in which a bow-tie antenna is integrated on a Schottky barrier diode (SBD).
  • SBD Schottky barrier diode
  • the terahertz wave generation module described in the third embodiment is used as the terahertz wave transmitter.
  • Two light waves of a terahertz wave with a difference frequency of 1 THz were input to the terahertz wave transmitter at 28 mW.
  • the terahertz wave transmitter and the terahertz wave receiving module of the present embodiment are opposed by 10 cm and face each other.
  • the same experiment was conducted with a terahertz wave receiving module using only a lens portion of a Si spherical lens.
  • the detection current could not be detected in the SBD.
  • the detection current can be detected in the SBD, and the collimated output of the alumina aspheric lens can be demonstrated, and the alumina aspheric lens has excellent performance as an optical material for terahertz wave transmission. It turned out that it was.
  • spherical lenses, cylindrical lenses, corner cubes, prisms, beam splitters, mirrors, polarizers, windows, microlens arrays, etc. can also be molded with alumina by the above-described manufacturing method. And an optical component with high refractive index and low loss in the terahertz region.
  • [Cylindrical lens] A lens having a shape as shown in FIG. 8 was manufactured as a cylindrical lens.
  • the manufacturing method is the injection molding described in the first embodiment.
  • Beam splitter, mirror, window A wedge-shaped optical component as shown in FIG. 11 was manufactured as a beam splitter.
  • the manufacturing method is the powder molding described in the first embodiment.
  • the function as a mirror was also confirmed by vapor-depositing metal on this beam splitter.
  • the window is used with the terahertz wave vertically incident using the above-mentioned beam splitter, and the expected characteristics are also obtained. It goes without saying that as a mirror, not only a flat surface but also an off-axis parabolic mirror can be handled by the shape polarization of the mold.
  • Aspheric micro lens array Optical components of the following parameters were manufactured as an aspheric microlens array.
  • the manufacturing method is the injection molding described in the first embodiment.
  • the microlens array actually created is Although the deviation from the design position of the aspheric surface part was about 5 ⁇ , it is 1/10 or less compared to the wavelength of the terahertz wave, and it has been confirmed that the function as a lens has no problem.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 The purpose of the present invention is to provide: an optical component made from a material through which terahertz waves can pass, which is not susceptible to damage, and which is easily manufactured; a terahertz wave module equipped with the same; and a method for manufacturing said optical component. This optical component is formed from alumina, and terahertz electromagnetic waves pass into the alumina. Alumina allows terahertz waves to pass therethrough. Furthermore, because alumina components are high-strength, and can be molded by injection molding or powder molding, the abovementioned issues are resolved.

Description

光学部品、テラヘルツ波用モジュール、及び光学部品製造方法Optical component, terahertz wave module, and optical component manufacturing method
 本発明は、テラヘルツ波用の光学部品、これを搭載したテラヘルツ波用モジュール、及び当該光学部品の製造方法に関する。 The present invention relates to a terahertz wave optical component, a terahertz wave module mounted with the same, and a method of manufacturing the optical component.
 従来、テラヘルツ波(本明細書では周波数0.1~10テラヘルツの電磁波を指す)用のレンズとしては、ポリエチレン、シクロオレフィン、及びポリメチルペンテンに代表されるプラスチックレンズ、又は高抵抗シリコン単結晶材料を用いたレンズが使用されている。特に、テラヘルツ波発生或いは受信用の光伝導アンテナ、フォトミキサ、及びショットキーバリアダイオードを用いたモジュールに実装されるレンズとしては、テラヘルツ波発生用或いはテラヘルツ波受信用チップが半導体で高屈折率であることから、プラスチックレンズではなくシリコン単結晶レンズが使用されている。 Conventionally, as lenses for terahertz waves (herein, electromagnetic waves having a frequency of 0.1 to 10 terahertz), plastic lenses represented by polyethylene, cycloolefin, and polymethylpentene, or high resistance silicon single crystal materials Lenses are used. In particular, as a lens mounted on a module using a photoconductive antenna for terahertz wave generation or reception, a photo mixer, and a Schottky barrier diode, a chip for terahertz wave generation or terahertz wave reception is a semiconductor with a high refractive index. For some reason, silicon single crystal lenses are used rather than plastic lenses.
 このようなテラヘルツ波を発生させることが適用可能なモジュールとして、アンテナ集積PD素子をシリコン球面レンズ(半球面レンズ)の中心上に搭載したフォトミキサモジュールが特許文献1に記載されている。このフォトミキサモジュールによりミリ波やサブミリ波(テラヘルツ波帯)の信号を発生することができる。 Patent Document 1 describes a photo mixer module in which an antenna integrated PD element is mounted on the center of a silicon spherical lens (hemispherical lens) as a module to which such terahertz waves can be applied. The photo mixer module can generate a millimeter wave or sub-millimeter wave (terahertz wave band) signal.
 図1は、特許文献1で開示されたシリコン球面レンズを用いたフォトミキサモジュールの図である。1-1はモジュールの筐体、1-2はシリコン球面レンズ(半球面レンズ)、1-3はアンテナ集積受光素子、1-5~1-8は光学系の反射鏡、レンズを示す。光ファイバ1-9を介して光信号を入射することにより、シリコン球面レンズ1-2よりミリ波またはサブミリ波のビームを取り出すことができる。アンテナ集積受光素子1-3は端面入射型の素子である。 FIG. 1 is a view of a photo mixer module using a silicon spherical lens disclosed in Patent Document 1. As shown in FIG. The reference numeral 1-1 denotes a housing of the module, 1-2 denotes a silicon spherical lens (hemispherical lens), 1-3 denotes an antenna integrated light receiving element, and 1-5 to 1-8 denote reflecting mirrors and lenses of an optical system. By inputting an optical signal through the optical fiber 1-9, it is possible to extract a millimeter wave or sub-millimeter wave beam from the silicon spherical lens 1-2. The antenna integrated light receiving element 1-3 is an element of end surface incidence type.
 光信号からテラヘルツ波への変換を用いる代表的デバイスとしては、(1)光導電アンテナ半導体チップ、(2)フォトダイオード半導体チップと当該フォトダイオード半導体チップ上に形成されたテラヘルツ波アンテナ、がある。この動作については非特許文献1~3に記載されている。 Representative devices using conversion of an optical signal to a terahertz wave include (1) a photoconductive antenna semiconductor chip, and (2) a photodiode semiconductor chip and a terahertz wave antenna formed on the photodiode semiconductor chip. Non-Patent Documents 1 to 3 describe this operation.
 また、電気信号から直接テラヘルツ波を発生させるデバイスとしては、RTD(共鳴トンネルダイオード)あるいは量子カスケードレーザがある。この動作については、非特許文献3に記載されている。 In addition, as a device for generating terahertz waves directly from an electrical signal, there is an RTD (resonant tunneling diode) or a quantum cascade laser. This operation is described in Non-Patent Document 3.
 テラヘルツ波受信に使用するデバイスとしては、ショットキーバリアダイオ一ドや光伝導アンテナを用いる方法がある。これらのデバイスについても、非特許文献3に記載されている。 As a device used for terahertz wave reception, there is a method using a Schottky barrier diode or a photoconductive antenna. Non-Patent Document 3 also describes these devices.
特開2005-64987号公報JP 2005-64987 A
 テラヘルツ波を送受信するモジュールに搭載されるテラヘルツ波透過用光学部品は、上述のように高屈折率が求められており、現在、高抵抗シリコン単結晶が唯一の材料である。しかしながら単結晶素材である事に起因し、レンズ加工時およびレンズをホルダーに固定する際に材料の破損が発生しやすいことが課題(第一課題)となっている。また、レンズ面の形成方法としては切削或いは研磨によるしかなく、このために球面以外の面形状の形成は高度な加工技術が必要であり、低廉な非球面レンズを実現できないという課題(第二課題)もある。 The optical component for terahertz wave transmission installed in a module for transmitting and receiving terahertz waves is required to have a high refractive index as described above, and at present, a high resistance silicon single crystal is the only material. However, it is a problem (first problem) that breakage of the material is easily generated during lens processing and when the lens is fixed to the holder due to being a single crystal material. In addition, the lens surface can only be formed by cutting or polishing, and for this reason, forming a surface shape other than a spherical surface requires a high-level processing technology and can not realize a low-cost aspheric lens (second subject ) Also.
 まず、第一課題について説明する。前述のように、Siレンズは結晶材料であるために、加工方法としては切削或いは研磨により行わざるを得ない。この加工により表面に微少なクラックが生じることは避けがたく、この微少クラックが成長することによる破壊が生じる可能性があることは避けがたかった。また、モジュールとして実装する際に、レンズ固定用の接着により加わる応力のために、レンズのクラックが成長し破壊に至ることもあり、信頼性の向上が求められている。 First, the first problem will be described. As described above, since the Si lens is a crystalline material, the processing method must be performed by cutting or polishing. It was impossible to avoid the formation of minute cracks on the surface by this processing, and it was inevitable that the possibility of breakage due to the growth of such minute cracks was avoided. In addition, when mounting as a module, a crack of the lens may grow to cause breakage due to a stress applied by adhesion for fixing the lens, and thus, improvement in reliability is required.
 次に、第二課題について説明する。球面レンズでは、レンズ中心を通る光とレンズ周辺を通る光では焦点位置がずれる現象(収差)があるが、この収差の問題を解決するために一般的に用いられるレンズが非球面レンズである。 Next, the second problem will be described. In the case of a spherical lens, there is a phenomenon (aberration) in which light passing through the center of the lens and light passing through the periphery of the lens shift the focal position (aberration), but a lens generally used to solve this aberration problem is an aspheric lens.
 図2はSi半球面レンズの平面側にテラヘルツ波の点発振源を配置した場合に、放射されるテラヘルツ波ビームの光線を示した図である。球面レンズの中心位置から中心軸上で3種類のオフセットを持たせて点発振源を配置している。図2(b)に示すように、ある特定のオフセットを持たせた位置にテラヘルツ波点発振源を配置するとレンズ面より放射されるテラヘルツ波ビームは球面収差無く放射される。一方、よりオフセットを大きくした配置(図2(c))或いはより小さくした配置(図2(a))では、レンズ中心部を通る光線とレンズ周辺部を通る光線の焦点位置が大きく異なる(球面収差)。球面レンズを使用する事の問題は、球面収差がなくなるオフセット位置では原理的にコリメートされたビームとはならないことである。このため、球面レンズを使用したモジュールでは、球面収差がないオフセット位置にテラヘルツ波点発振源を配置し、モジュールの出射ビームの光軸上に別のレンズあるいは軸外し放物面鏡を配置してコリメート化する方法がとられる。 FIG. 2 is a view showing the light beam of the terahertz wave beam emitted when the point oscillation source of the terahertz wave is disposed on the planar side of the Si hemispherical lens. Point oscillation sources are arranged with three types of offsets on the central axis from the central position of the spherical lens. As shown in FIG. 2B, when the terahertz wave point oscillation source is arranged at a position given a specific offset, the terahertz wave beam emitted from the lens surface is emitted without spherical aberration. On the other hand, in the arrangement with a larger offset (FIG. 2C) or the arrangement with a smaller offset (FIG. 2A), the focal positions of the ray passing through the lens central portion and the ray passing through the lens peripheral portion are largely different (spherical surface aberration). The problem with using a spherical lens is that it is not in principle a collimated beam at offset positions where spherical aberration is eliminated. Therefore, in a module using a spherical lens, the terahertz wave point oscillation source is disposed at an offset position where there is no spherical aberration, and another lens or an off-axis parabolic mirror is disposed on the optical axis of the output beam of the module. A method of collimating is taken.
 このような球面収差を回避するには、レンズ形状を非球面にする必要がある。この非球面形状は、切削や研磨で製造する場合には非常に高度な加工技術が必要であり、量産性に欠けるという問題があった。非晶質であるガラスの場合には、モールド成型(射出成型)法により量産性に優れた方法で非球面レンズが製造されているが、シリコン(Si)レンズの場合、Si単結晶材であるためにモールド加工は不可能であった。 In order to avoid such spherical aberration, it is necessary to make the lens shape aspheric. In the case of manufacturing by cutting or polishing, this aspherical shape requires a very advanced processing technology, and there is a problem that mass productivity is lacking. In the case of amorphous glass, an aspheric lens is manufactured by a method excellent in mass productivity by molding (injection molding) method, but in the case of a silicon (Si) lens, it is a Si single crystal material. Because of this, molding was impossible.
 そこで、本発明は、上記2つの課題に鑑みてなされたものであり、テラヘルツ波を透過でき、破損が発生し難く且つ製造が容易である材料の光学部品、これを備えるテラヘルツ波用モジュール、及び当該光学部品の製造方法を提供することを目的とする。 Accordingly, the present invention has been made in view of the above two problems, and is an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture, a module for terahertz waves including the same, and An object of the present invention is to provide a method of manufacturing the optical component.
 上記目的を達成するために、本発明に係る光学部品はアルミナを材料とする。 In order to achieve the above object, an optical component according to the present invention is made of alumina.
 具体的には、本発明に係る光学部品は、アルミナで形成され、前記アルミナ内をテラヘルツの電磁波が透過する光学部品である。アルミナはテラヘルツ波を透過させる。そして、アルミナ部品は強度が高く、射出成型或いは粉体成型で成型が可能であることから上述した第一課題及び第二課題を解決することができる。従って、本発明は、テラヘルツ波を透過でき、破損が発生し難く且つ製造が容易である材料の光学部品を提供することができる。 Specifically, the optical component according to the present invention is an optical component which is formed of alumina and through which the terahertz electromagnetic wave passes in the alumina. Alumina transmits terahertz waves. The alumina parts have high strength and can be molded by injection molding or powder molding, so that the first and second problems described above can be solved. Therefore, the present invention can provide an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
 本発明に係る光学部品は、少なくとも表面の一部が非球面のレンズ形状を有することを特徴とする。材料がアルミナであるから上述のように射出成型或いは粉体成型で光学部品の一部に非球面レンズ形状を形成することができる。従って、本発明は、テラヘルツ波用Siレンズに存在した球面収差の課題も解決できる。 The optical component according to the present invention is characterized in that at least a part of the surface has an aspheric lens shape. Since the material is alumina, an aspheric lens shape can be formed on a part of the optical component by injection molding or powder molding as described above. Therefore, the present invention can also solve the problem of the spherical aberration existing in the Si lens for terahertz waves.
 本発明に係る光学部品は、シリンドリカルレンズ、プリズム、コーナキューブ、ビームスプリッタ、ミラー、ウィンドウ、又はマイクロレンズアレイとすることができる。 The optical component according to the present invention may be a cylindrical lens, a prism, a corner cube, a beam splitter, a mirror, a window or a microlens array.
 本発明に係るテラヘルツ波用モジュールは、前記光学部品と、前記光学部品の前記アルミナ内へテラヘルツの電磁波を放射する電磁波放射手段と、を備える。 A terahertz wave module according to the present invention includes the optical component and an electromagnetic wave emitting unit that emits a terahertz electromagnetic wave into the alumina of the optical component.
 本発明に係る他のテラヘルツ波用モジュールは、前記光学部品と、前記光学部品の前記アルミナ内からテラヘルツの電磁波を受信する電磁波受信手段と、を備える。 Another terahertz wave module according to the present invention includes the optical component and an electromagnetic wave receiving unit that receives a terahertz electromagnetic wave from within the alumina of the optical component.
 本モジュールは、テラヘルツ波の発生あるいは受信用のチップについては従来技術を使用するが、それらチップから出射されるあるいは入射するテラヘルツ波を整形する光学部品として、アルミナで形成された光学部品を備える。当該光学部品は強度が強いため、モジュールの信頼性を高めることができ、製造が容易であるため、モジュールのコストを低減することができる。 The present module uses a conventional technique for chips for generating or receiving terahertz waves, but includes an optical component formed of alumina as an optical component for shaping terahertz waves emitted or incident from the chips. The strength of the optical component is high, the reliability of the module can be enhanced, and the manufacturing is easy, so that the cost of the module can be reduced.
 従って、本発明は、テラヘルツ波を透過でき、破損が発生し難く且つ製造が容易である材料の光学部品を備えるテラヘルツ波用モジュールを提供することができる。 Therefore, the present invention can provide a terahertz wave module provided with an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
 本発明に係る光学部品製造方法は、前記光学部品を製造する光学部品製造方法であって、所望形状の金型を用い、前記金型空洞内にアルミナを充填して成型する射出成型工程と、前記射出成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、を含むことを特徴とする。 The optical component manufacturing method according to the present invention is an optical component manufacturing method for manufacturing the optical component, comprising: an injection molding step of filling and molding alumina in the mold cavity using a mold having a desired shape; And sintering the alumina molded body after the injection molding step to form the optical component.
 本発明に係る他の光学部品製造方法は、前記光学部品を製造する光学部品製造方法であって、所望形状の金型を用い、前記金型空洞内にアルミナ粉末を充填して押し固める粉体成型工程と、前記粉体成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、を含むことを特徴とする。 Another optical component manufacturing method according to the present invention is an optical component manufacturing method for manufacturing the optical component, wherein a powder having a mold of a desired shape is filled with alumina powder in the mold cavity and compacted. And a sintering step of sintering the alumina molded body after the powder molding step to form the optical component.
 本発明に係る光学部品は、原料としてアルミナを用い射出成型法或いは粉体成型法で量産することが可能である。また、金型形状を変更することで非球面を含む任意の面形状光学部品を生産することができる。従って、本発明は、テラヘルツ波を透過でき、破損が発生し難く且つ製造が容易である材料の光学部品の製造方法を提供することができる。 The optical component according to the present invention can be mass-produced by injection molding or powder molding using alumina as a raw material. In addition, it is possible to produce any surface-shaped optical component including an aspheric surface by changing the mold shape. Therefore, the present invention can provide a method of manufacturing an optical component of a material that can transmit terahertz waves, is less likely to be damaged, and is easy to manufacture.
 本発明によれば、テラヘルツ波を透過でき、破損が発生し難く且つ製造が容易である材料の光学部品、これを備えるテラヘルツ波用モジュール、及び当該光学部品の製造方法を提供することができる。 According to the present invention, it is possible to provide an optical component of a material that can transmit terahertz waves, is less likely to be damaged and is easy to manufacture, a module for terahertz waves provided with the same, and a method of manufacturing the optical components.
シリコン球面レンズを用いたテラヘルツ波用モジュールの構成を説明する図である。It is a figure explaining the structure of the module for terahertz waves using a silicon spherical lens. Si半球面レンズの平面側にテラヘルツ波の点発振源を配置した場合に、放射されるテラヘルツ波ビームの光線を示した図である。When the point oscillation source of the terahertz wave is disposed on the plane side of the Si hemispherical lens, it is a diagram showing the light beam of the terahertz wave beam emitted. 本発明に係る光学部品製造方法を説明する図である。It is a figure explaining the optical component manufacturing method which concerns on this invention. 本発明に係る光学部品の屈折率及び吸収係数を評価した結果を説明する図である。It is a figure explaining the result of having evaluated the refractive index and absorption coefficient of the optical component which concerns on this invention. 本発明に係る光学部品(非球面レンズ)の設計値である。It is a design value of the optical component (aspheric lens) concerning the present invention. 本発明に係るテラヘルツ波用モジュールの構成を説明する図である。It is a figure explaining the composition of the module for terahertz waves concerning the present invention. 本発明に係るテラヘルツ波用モジュールから出力されるテラヘルツ波の強度を測定した結果を説明する図である。It is a figure explaining the result of having measured the intensity of the terahertz wave outputted from the module for terahertz waves concerning the present invention. 本発明に係る光学部品を説明する二面図である。It is a two-sided view explaining the optical component which concerns on this invention. 本発明に係る光学部品を説明する斜視図である。It is a perspective view explaining the optical component concerning the present invention. 本発明に係る光学部品に入射するテラヘルツ波を説明する図である。It is a figure explaining the terahertz wave which injects into the optical component which concerns on this invention. 本発明に係る光学部品を説明する二面図である。It is a two-sided view explaining the optical component which concerns on this invention.
 以下、本発明の実施形態について、図面を用いて説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present invention will be described using the drawings. The embodiments described below are examples of implementation of the present invention, and the present invention is not limited to the following embodiments. These implementation examples are merely illustrative, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, components having the same reference numerals denote the same components.
[実施形態1]
 本実施形態では、射出成型および粉体成型により製造したアルミナ板材の複素屈折率を評価した結果について以下に記載する。
Embodiment 1
In the present embodiment, the results of evaluating the complex refractive index of the alumina plate manufactured by injection molding and powder molding will be described below.
 評価するアルミナ板材の製造方法は、所望形状の金型を用い、前記金型空洞内にアルミナを充填して成型する射出成型工程と、前記射出成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、を含む。 The method for producing an alumina plate material to be evaluated is an injection molding process in which alumina is filled and molded in the mold cavity using a mold having a desired shape, and the alumina molded body after the injection molding process is sintered to And an optical component.
 射出成型による板材製造について簡単に説明する。図3は、板材製造方法を簡単に説明した図である。板材の形が削られた上部金型(3-1)と、原料投入通路(3-3)および原料排出通路(3-4)が形成された下部金型(3-2)を用い、両金型を密着させた状態で原料投入通路(3-3)よりアルミナと成型用バインダーとの混合物を送り込み、金型空洞部に充填する。この際十分に充填するために、投入部に対向する位置に原料排出通路(3-4)を設ける。このようにして成型されたアルミナ材料は、金型より取り出された後、脱脂のための熱処理、およびより高温での焼成により図3に示すアルミナ成型体(3-5)として得られる。 A brief description will be given of plate material production by injection molding. FIG. 3 is a view briefly explaining a plate manufacturing method. Using the upper mold (3-1) in which the shape of the plate is cut, and the lower mold (3-2) in which the raw material feeding passage (3-3) and the raw material discharging passage (3-4) are formed With the mold closely adhered, a mixture of alumina and a molding binder is fed from the raw material feeding path (3-3) and filled in the mold cavity. At this time, a raw material discharge passage (3-4) is provided at a position opposite to the input portion in order to sufficiently fill the space. The alumina material thus molded is obtained as an alumina molded body (3-5) shown in FIG. 3 by heat treatment for degreasing and firing at a higher temperature after being taken out of the mold.
 上記射出成型により製造した板状アルミナ成型体は100%アルミナである。図4は、当該板状アルミナ成型体のテラヘルツ波領域での屈折率と吸収係数を評価した結果である。測定範囲は、0.5THzから2.5THzである。当該測定範囲で、アルミナ成型体の屈折率はおおよそ3.1であり、Si単結晶の屈折率3.4よりは若干低い。しかし、当該測定範囲で、アルミナ成型体の吸収係数がSi単結晶の吸収係数と同程度に低く、テラヘルツ波用の高屈折率透過材料として十分使えることが分かった。また、屈折率及び吸収係数のスペクトル形状の評価結果からは、2.5THz以上でも十分使用出来ることが分かった。 The plate-like alumina compact manufactured by the said injection molding is 100% alumina. FIG. 4 shows the results of evaluating the refractive index and the absorption coefficient in the terahertz wave region of the plate-like alumina molded body. The measurement range is 0.5 THz to 2.5 THz. In the measurement range, the refractive index of the alumina molded body is approximately 3.1, which is slightly lower than the refractive index 3.4 of the Si single crystal. However, in the measurement range, it was found that the absorption coefficient of the alumina molded body is as low as that of the Si single crystal, and can be sufficiently used as a high refractive index transmission material for terahertz waves. Also, from the evaluation results of the spectral shapes of the refractive index and the absorption coefficient, it was found that even 2.5 THz or more can be sufficiently used.
 アルミナ板材の製造方法は、所望形状の金型を用い、前記金型空洞内にアルミナ粉末を充填して押し固める粉体成型工程と、前記粉体成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、を含む製造方法であってもよい。粉体成型で製造した板状アルミナ成型体も、射出成型と同様にテラヘルツ領域で3.1前後の高屈折率と低い吸収係数を持っており、テラヘルツ波用の高屈折率透過材料として有用なことが分かった。 The method of manufacturing the alumina plate material is a powder forming process of filling the alumina powder into the mold cavity and compacting it using a mold having a desired shape, and sintering the alumina formed body after the powder forming process. And Sintering as the optical component. The plate-like alumina molded body manufactured by powder molding also has a high refractive index of about 3.1 and a low absorption coefficient in the terahertz region as in the injection molding, and is useful as a high refractive index transmission material for terahertz waves I found that.
 金型形状を変更することで、テラヘルツ波を透過する所望形状のアルミナ成型体を量産することができる。すなわち、上記製造方法は、アルミナで形成され、前記アルミナ内をテラヘルツの電磁波が透過する光学部品を製造することができる。 By changing the mold shape, it is possible to mass-produce an alumina molded body having a desired shape that transmits the terahertz wave. That is, the said manufacturing method can form the optical component which is formed with an alumina and the electromagnetic wave of terahertz permeate | transmits the inside of the said alumina.
[実施形態2]
 本実施形態では、テラヘルツ波の電磁波を透過する光学部品として非球面レンズを製造した結果について示す。図5は、屈折率3.16のアルミナに対して設計した非球面レンズの形状(設計値)を示した図である。レンズ形状は、片面が平面で、反対面が非球面凸形状である。横軸(R軸)はレンズの光軸からの距離(R;単位はmm)、縦軸はレンズ平面から光軸方向のレンズの厚み(y;単位はmm)である。図中には、レンズ形状の数値データを表にして示した。このレンズでは、(R,y)=(0,-0.2)の位置にテラヘルツ波点発振源を置くことにより、アルミナレンズ側にコリメートされたテラヘルツ波ビームが取り出せる設計となる。
Second Embodiment
In this embodiment, the result of manufacturing an aspheric lens as an optical component that transmits the electromagnetic wave of terahertz wave will be described. FIG. 5 is a view showing the shape (design value) of an aspheric lens designed for alumina having a refractive index of 3.16. The lens shape is a flat surface on one side and an aspheric convex shape on the opposite surface. The horizontal axis (R axis) is the distance from the optical axis of the lens (R; unit is mm), and the vertical axis is the lens thickness from the lens plane to the optical axis direction (y; unit in mm). In the figure, numerical data of lens shapes are shown as a table. In this lens, by placing the terahertz wave point oscillation source at the position of (R, y) = (0, -0.2), the terahertz wave beam collimated to the alumina lens side can be extracted.
 実施形態1の射出成型法を用いて図5の設計値の非球面レンズを製造した。製造した非球面レンズの光軸を含み直交する2平面での断面形状を、三次元測定器を用いて測定した結果、設計値通りの非球面レンズが製造できていることを確認した。なお、「設計値通り」とは次の意味である。非球面レンズの製造誤差はμmオーダーであった。1THzのテラヘルツ波の波長が300μmであるので製造誤差は波長の1/10以下である。このため、製造した非球面レンズは光学部品として十分な精度を有している。 The injection molding method of Embodiment 1 was used to manufacture an aspheric lens of the design value of FIG. As a result of measuring the cross-sectional shape in 2 planes orthogonal including the optical axis of the manufactured aspherical lens using a three-dimensional measuring device, it confirmed that the aspherical lens as a design value was able to be manufactured. Note that "as designed" means the following. The manufacturing error of the aspheric lens was on the order of μm. Since the wavelength of the 1 THz terahertz wave is 300 μm, the manufacturing error is 1/10 or less of the wavelength. For this reason, the manufactured aspheric lens has sufficient accuracy as an optical component.
 また、このレンズを用いて実施形態1と同様に屈折率と吸収係数を測定した結果、実施形態1と同様に屈折率3.16で、吸収係数もSi単結晶と同程度に低いことが分かった。射出成型においては、金型で成型されたアルミナ成型体は脱脂および焼成の熱処理を行ったのみで、非球面側の研磨加工は行ってないにもかかわらず精度良く非球面形状が実現できた。このことは、アルミナ材料が量産性に優れたテラヘルツ波用透過材料である事を示すものである。 Moreover, as a result of measuring a refractive index and an absorption coefficient similarly to Embodiment 1 using this lens, it is understood that an absorption coefficient is as low as Si single crystal by refractive index 3.16 similarly to Embodiment 1. The In the injection molding, the alumina molded body molded by the mold was subjected only to the heat treatment of degreasing and baking, and the aspherical shape could be realized with high accuracy although the aspherical surface side was not polished. This indicates that the alumina material is a transparent material for terahertz wave excellent in mass productivity.
[実施形態3]
 本実施形態では、アルミナで形成された光学部品と、前記光学部品の前記アルミナ内へテラヘルツの電磁波を放射する電磁波放射手段と、を備えるテラヘルツ波用モジュールについて説明する。
Third Embodiment
In this embodiment, a terahertz wave module including an optical component formed of alumina and an electromagnetic wave emitting unit for emitting a terahertz electromagnetic wave into the alumina of the optical component will be described.
 実施形態2で示したアルミナ非球面レンズを用い、その裏面にUTC-PD(単一走行キャリア-フォトダイオード)構造のフォトミキサチップを実装したテラヘルツ波発生モジュールを製造した結果について説明する。図6は、本実施形態のテラヘルツ波発生モジュールの構造を説明する図である。テラヘルツ波発生モジュールは、筐体1-1’の装着孔1-1a’に実施形態2で製造した非球面レンズ1-2’がはめ込まれている。そして、非球面レンズ1-2’の裏面(反レンズ側)中心部にフォトミキサチップ1-3’が配置されている。フォトミキサチップ1-3’は裏面入射型である。さらに筐体1-1’内に上部反射鏡1-5’、第1レンズ1-6’、レンズ保持部品1-7’、及び第2レンズ1-8’を所定位置に配置している。テラヘルツ波発生モジュールは、光ファイバ1-9’から入射する光信号を第2レンズ1-8’、第1レンズ1-6’、及び上部反射鏡1-5’を経由させフォトミキサチップ1-3’の裏面に照射させる。フォトミキサチップ1-3’は、当該光信号をテラヘルツの電磁波に変換して非球面レンズ1-2’側へ放出する。このため、テラヘルツ波発生モジュールは、入力される光信号に応じたテラヘルツの電磁波を出力する。なお、テラヘルツ波発生モジュールは、上部反射鏡1-5’の無い、第1レンズ1-6’から直接チップ裏面に入射する構造であってもよい。 The result of manufacturing a terahertz wave generation module in which a photomixer chip of UTC-PD (single traveling carrier-photodiode) structure is mounted on the back surface using the alumina aspheric lens shown in Embodiment 2 will be described. FIG. 6 is a view for explaining the structure of the terahertz wave generation module of this embodiment. In the terahertz wave generation module, the aspherical lens 1-2 'manufactured in the second embodiment is inserted into the mounting hole 1-1a' of the housing 1-1 '. The photo mixer chip 1-3 'is disposed at the center of the back surface (anti-lens side) of the aspheric lens 1-2'. The photomixer chip 1-3 'is a back illuminated type. Further, the upper reflecting mirror 1-5 ', the first lens 1-6', the lens holding part 1-7 ', and the second lens 1-8' are disposed at predetermined positions in the housing 1-1 '. The terahertz wave generation module transmits an optical signal incident from the optical fiber 1-9 'to the photo mixer chip 1- via the second lens 1-8', the first lens 1-6 ', and the upper reflecting mirror 1-5'. Irradiate the back of 3 '. The photo mixer chip 1-3 'converts the light signal into a terahertz electromagnetic wave and emits it to the aspheric lens 1-2' side. Therefore, the terahertz wave generation module outputs a terahertz electromagnetic wave according to the input light signal. The terahertz wave generation module may have a structure in which the first lens 1-6 ′ is directly incident on the back surface of the chip without the upper reflecting mirror 1-5 ′.
 次に、テラヘルツ波発生モジュールの特性を評価した結果について次に説明する。測定には、テラヘルツ波発生モジュールに光ファイバ1-9’から1.55μm帯の周波数の異なる2波長の光を入射し、その光周波数の差を300GHzから1800GHzまで変化させ、そのときに発生し、非球面レンズ1-2’を透過したテラヘルツ波ビームをゴーレーセル(テラヘルツ波用パワーメータ)で測定した。 Next, the results of evaluating the characteristics of the terahertz wave generation module will be described next. For measurement, light of two wavelengths with different frequencies of 1.55 μm band is made incident to the terahertz wave generation module from the optical fiber 1-9 ', and the difference in the light frequency is changed from 300 GHz to 1800 GHz, and generated at that time. The terahertz wave beam transmitted through the aspheric lens 1-2 'was measured by a Golay cell (power meter for terahertz wave).
 光ファイバ入力部に入射された周波数の異なる2光波は、フォトミキサチップ1-3’上に集光される。フォトミキサチップ1-3’内では、各々の光波に対応してキャリア(電子及びホール)が発生する。このキャリアによりフォトカレントがアノードカソード間を流れるが、2光波の周波数が異なるために、その周波数差に応じたビートが発生する。このビートに対応しフォトカレントが変調され、結果としてアノードカソード間に交流電場が発生する。この交流電場でフォトミキサチップ1-3’上に集積されたアンテナが励振され、ビート周波数(2光波の差周波数)に対応したテラヘルツ波が放射される。テラヘルツ波は、非球面レンズ1-2’により集光され外部に取り出される。2種類の光はほぼ同じ光量とし、合計の光量は28mWとした。28mWの光を入射した状態でフォトミキサチップ1-3’で発生する光電流は6mAであった。 The two light waves of different frequencies incident on the optical fiber input section are condensed on the photo mixer chip 1-3 '. In the photo mixer chip 1-3 ', carriers (electrons and holes) are generated corresponding to each light wave. Although the photocurrent flows between the anode and the cathode by this carrier, since the frequency of the two light waves is different, a beat corresponding to the frequency difference is generated. The photocurrent is modulated corresponding to the beat, and as a result, an alternating electric field is generated between the anode and the cathode. An antenna integrated on the photo mixer chip 1-3 'is excited by this AC electric field, and a terahertz wave corresponding to a beat frequency (difference frequency between two light waves) is emitted. The terahertz wave is collected by the aspheric lens 1-2 'and taken out to the outside. The two types of light had almost the same light quantity, and the total light quantity was 28 mW. When 28 mW of light was incident, the photocurrent generated by the photo mixer chip 1-3 'was 6 mA.
 図7は、図6のテラヘルツ波発生モジュールからのテラヘルツ波出力を、入力光の差周波数を変えて測定した結果である。1THzのテラヘルツ波で1μWのテラヘルツ波が観測された。この値は、図6のテラヘルツ波発生モジュールでアルミナ非球面レンズ1-2’の代わりにSi球面レンズを使用した場合とほぼ同等のテラヘルツ波出力であった。Si球面レンズに関しては、球面収差がゼロになる条件でUTC-PDチップが貼り付けられている。Si球面レンズの場合には、モジュールから出射されるテラヘルツ波が拡散ビームであるため、モジュールとゴーレーセル間にテラヘルツ波用レンズを2枚用いた共焦点系を構成しないとゴーレーセルにテラヘルツ波ビームを効率よく入射できないが、本実施形態のアルミナ非球面レンズ1-2’の場合には、モジュールとゴーレーセル間に共焦点系を構成することなくゴーレーセルにテラヘルツ波ビームを効率よく入射できた。このことは、非球面レンズ1-2’によりテラヘルツ波ビームがコリメート状態で出射されていることの証である。 FIG. 7 shows the results of measuring the terahertz wave output from the terahertz wave generation module of FIG. 6 while changing the difference frequency of the input light. A terahertz wave of 1 μW was observed as a terahertz wave of 1 THz. This value is a terahertz wave output substantially equivalent to the case where a Si spherical lens is used instead of the alumina aspheric lens 1-2 'in the terahertz wave generation module of FIG. For the Si spherical lens, the UTC-PD chip is attached under the condition that the spherical aberration becomes zero. In the case of the Si spherical lens, since the terahertz wave emitted from the module is a diffused beam, if the confocal system using two terahertz wave lenses between the module and the Golay cell is not configured, the terahertz wave efficiency of the golay cell Although the light can not be well incident, in the case of the alumina aspheric lens 1-2 ′ of this embodiment, the terahertz wave beam can be efficiently incident on the Golay cell without forming a confocal system between the module and the Golay cell. This is evidence that the terahertz wave beam is emitted in a collimated state by the aspheric lens 1-2 '.
[実施形態4]
 本実施形態のテラヘルツ波発生モジュールは、図6のテラヘルツ波発生モジュールと構造が同じであるが、フォトミキサチップ1-3’がUTC-PDではなくLT(低温成長)InGaAsを用いた光伝導アンテナチップである。UTC-PDの場合と同様に、アルミナ非球面レンズの平面部分より0.2mm離した位置に、光伝導アンテナのアンテナ面が位置するように実装した。
Fourth Embodiment
The terahertz wave generation module of the present embodiment has the same structure as the terahertz wave generation module of FIG. 6, but the photomixer chip 1-3 'is a photoconductive antenna using LT (low temperature growth) InGaAs instead of UTC-PD. It is a chip. As in the case of UTC-PD, the antenna surface of the photoconductive antenna was mounted at a position 0.2 mm away from the planar portion of the alumina aspheric lens.
 本実施形態のテラヘルツ波発生モジュールの特性評価を次のように行った。光ファイバ1-9’から1.55μm帯のパルス光を入射した。実際には、1.65μm帯のフェムト秒のパルス発振ファイバレーザを使用した。
 光パルスの時間幅をΔt(sec)とし、このパルス光のスペクトル幅をΔf(sec-1)とすると、
ΔtΔf=k
(kはパルス波形形状により決まる定数、ガウスパルスの場合k=0.441)
が成立する。すなわち、パルス光を入射することは、Δfの範囲で多数の周波数の光を同時に入射したことと等価となる。このため、当該パルス光が入射される光伝導アンテナチップからはΔfの範囲のテラヘルツ波が発生する。たとえば、ガウス型の光パルス(Δt=0.1psec)を入射すると、当該光パルスの入射はΔf=4.4THzまでの周波数成分を持った光を入射したことになるので、光伝導アンテナチップからは4.4THzまでのテラヘルツ波が発生する。
 また、実施形態3で説明したように、本モジュールで発生したテラヘルツ波は非球面レンズ1-2’でコリメートされ外部に出力されることが分かった。
Characteristic evaluation of the terahertz wave generation module of the present embodiment was performed as follows. Pulsed light of 1.55 μm band was made incident from the optical fiber 1-9 '. In practice, a femtosecond pulsed fiber laser of 1.65 μm band was used.
Assuming that the time width of the light pulse is Δt (sec) and the spectrum width of this pulse light is Δf (sec −1 ),
ΔtΔf = k
(K is a constant determined by the pulse waveform shape, k = 0.441 for Gaussian pulse)
Is established. That is, incidence of pulsed light is equivalent to simultaneous incidence of light of many frequencies in the range of Δf. Therefore, a terahertz wave in the range of Δf is generated from the photoconductive antenna chip on which the pulse light is incident. For example, when a Gaussian light pulse (Δt = 0.1 psec) is incident, the light pulse is incident with light having a frequency component up to Δf = 4.4 THz, so from the photoconductive antenna chip Generates terahertz waves of up to 4.4 THz.
Further, as described in the third embodiment, it was found that the terahertz wave generated in this module is collimated by the aspheric lens 1-2 ′ and output to the outside.
[実施形態5]
 本実施形態では、アルミナで形成された光学部品と、前記光学部品の前記アルミナ内からテラヘルツの電磁波を受信する電磁波受信手段と、を備えるテラヘルツ波用モジュールについて説明する。
Fifth Embodiment
In this embodiment, a terahertz wave module including an optical component formed of alumina and an electromagnetic wave receiving unit that receives a terahertz electromagnetic wave from the alumina of the optical component will be described.
 本実施形態のテラヘルツ波受信モジュールは、図6のテラヘルツ波発生モジュールと構造が同じであるが、フォトミキサチップ1-3’の代替として受信チップを配置する。受信チップは、例えば、ショットキーバリアダイオード(SBD)上にボータイ型のアンテナを集積したものである。 The terahertz wave reception module of this embodiment has the same structure as the terahertz wave generation module of FIG. 6, but a reception chip is disposed as an alternative to the photo mixer chip 1-3 '. The receiving chip is, for example, one in which a bow-tie antenna is integrated on a Schottky barrier diode (SBD).
 テラヘルツ波送信機としては実施形態3に記載のテラヘルツ波発生モジュールを使用した。テラヘルツ波送信機には、差周波1THzのテラヘルツ波の2光波を28mWで入力した。テラヘルツ波送信機と本実施形態のテラヘルツ波受信モジュールとを10cm離して対向させた。 The terahertz wave generation module described in the third embodiment is used as the terahertz wave transmitter. Two light waves of a terahertz wave with a difference frequency of 1 THz were input to the terahertz wave transmitter at 28 mW. The terahertz wave transmitter and the terahertz wave receiving module of the present embodiment are opposed by 10 cm and face each other.
 比較のため、レンズ部分のみをSi球面レンズを使用したテラヘルツ波受信モジュールでも同様の実験を行った。Si球面レンズを使用した比較用テラヘルツ波受信モジュールではSBDに検波電流を検出することはできなかった。一方、本実施形態のテラヘルツ波受信モジュールではSBDに検波電流を検出できており、アルミナ非球面レンズのコリメート出力が実証できると共に、アルミナ非球面レンズがテラヘルツ波透過用光学材料として優れた性能を持っていることが分かった。 For comparison, the same experiment was conducted with a terahertz wave receiving module using only a lens portion of a Si spherical lens. In the terahertz wave receiving module for comparison using the Si spherical lens, the detection current could not be detected in the SBD. On the other hand, in the terahertz wave receiving module of this embodiment, the detection current can be detected in the SBD, and the collimated output of the alumina aspheric lens can be demonstrated, and the alumina aspheric lens has excellent performance as an optical material for terahertz wave transmission. It turned out that it was.
(本実施形態の効果)
 以上述べたように、本発明によれば、射出成型或いは粉体成型が可能なアルミナを材料とした各種光学部品を実現することができる。切削加工ではなく、成型技術を用いることで量産性と同時に製造にかかる価格低減が期待できる。テラヘルツ領域において高屈折率でかつ低損失なアルミナを用いることで、テラヘルツ波発生あるいは受信用の半導体チップをアルミナ製レンズに直接搭載した簡易な構造のモジュールが実現できる。また、上記実施形態では、フォトミキサやショットキーバリアダイオードなどと組み合わせた送受信モジュールについて示したが、送受信機能を持たせる半導体デバイスとしてはこれらに限定されるものでなく、共鳴型トンネルダイオードのような純電子デバイスも含まれる。
(Effect of this embodiment)
As described above, according to the present invention, it is possible to realize various optical components made of alumina that can be injection-molded or powder-molded. By using molding technology instead of cutting, mass production and price reduction can be expected. By using alumina having a high refractive index and low loss in the terahertz region, a module having a simple structure in which a semiconductor chip for terahertz wave generation or reception is directly mounted on an alumina lens can be realized. Further, in the above embodiment, the transmitting / receiving module combined with a photo mixer, a Schottky barrier diode, etc. is shown, but the semiconductor device having the transmitting / receiving function is not limited to these, and a resonant tunnel diode or the like is used. Also included are pure electronic devices.
(他の実施形態)
 上記実施形態では非球面レンズについて述べたが、上述した製造方法により球面レンズ、シリンドリカルレンズ、コーナキューブ、プリズム、ビームスプリッタ、ミラー、ポラライザー、ウィンドウ、マイクロレンズアレイ等についてもアルミナで成型することができ、テラヘルツ領域において高屈折率でかつ低損失な光学部品を提供できる。
(Other embodiments)
Although the aspheric lens has been described in the above embodiment, spherical lenses, cylindrical lenses, corner cubes, prisms, beam splitters, mirrors, polarizers, windows, microlens arrays, etc. can also be molded with alumina by the above-described manufacturing method. And an optical component with high refractive index and low loss in the terahertz region.
[シリンドリカルレンズ]
 シリンドリカルレンズとして、図8のような形状のレンズを製造した。製造方法は実施形態1で説明した射出成型である。シリンドリカルレンズのパラメータの設計値と実測値は下記の通りである。
  設計値 A=B=10mm 実測値 A=9.98mm B=10.01mm
  設計値 fb=6.0mm 実測値 fb=5.98mm  
[Cylindrical lens]
A lens having a shape as shown in FIG. 8 was manufactured as a cylindrical lens. The manufacturing method is the injection molding described in the first embodiment. The designed values and measured values of the parameters of the cylindrical lens are as follows.
Design value A = B = 10 mm Actual value A = 9.98 mm B = 10.01 mm
Design value fb = 6.0 mm Actual value fb = 5.98 mm
[プリズム、コーナキューブ]
 プリズムとして、図9のような形状の光学部品を製造した。製造方法は実施形態1で説明した射出成型である。プリズムのパラメータの設計値と実測値は下記の通りである。
  設計値 A=B=C=10mm
  実測値 A=9.98mm B=10.01mm C=10.02mm
このプリズムで、図10のようにテラヘルツ波を入射させた。A面に対して垂直に入射させた。アルミナの臨界角は約18度であり、予想通りC面で全反射され、B面より出射されることが確認され、プリズムとして機能していることが分かった。なお、コーナキューブも製造したが、上記プリズムと同じように所望の機能を実現できた。
[Prism, corner cube]
An optical component having a shape as shown in FIG. 9 was manufactured as a prism. The manufacturing method is the injection molding described in the first embodiment. The designed values and measured values of the parameters of the prism are as follows.
Design value A = B = C = 10 mm
Measured value A = 9.98 mm B = 10.01 mm C = 10.02 mm
A terahertz wave was made incident by this prism as shown in FIG. The light was incident perpendicularly to the A plane. The critical angle of alumina was about 18 degrees, and it was confirmed that the light was totally reflected from the C surface and emitted from the B surface as expected, and it was found that it functions as a prism. Although a corner cube was also manufactured, a desired function could be realized in the same manner as the above-mentioned prism.
[ビームスプリッタ、ミラー、ウィンドウ]
 ビームスプリッタとして、図11のようなウエッジ形状の光学部品を製造した。製造方法は実施形態1で説明した粉体成型である。ビームスプリッタのパラメータの設計値と実測値は下記の通りである。
  設計値 D=20mm 実測値 D=19.98mm
  設計値 t=2mm  実測値 t=1.98mm
  設計値 W=2度  実測値 W=1.9度
入射角45°のテラヘルツ波による設計上の特性は、p偏光入射でのアルミナの屈折率で期待される反射率は9.6%である。このビームスプリッタでの実測値は8.5%であり、期待した機能が実現できていることが分かった。なお、このビームスプリッタ上に金属を蒸着することで、ミラーとしての機能も確認された。また、ウィンドウは、上記ビームスプリッタを用いてテラヘルツ波を垂直入射させて使用するが、これについても期待した特性が得られた。ミラーとしては、平面のみでなく軸外し放物面鏡なども、型の形状偏光で対応出来ることは言うまでもない。
[Beam splitter, mirror, window]
A wedge-shaped optical component as shown in FIG. 11 was manufactured as a beam splitter. The manufacturing method is the powder molding described in the first embodiment. Design values and measured values of beam splitter parameters are as follows.
Design value D = 20 mm Actual value D = 19.98 mm
Design value t = 2 mm Actual value t = 1.98 mm
Design value W = 2 degrees Actual value W = 1.9 degrees Design characteristics by terahertz wave with an incident angle of 45 degrees are the expected reflectance of 9.6% for the refractive index of alumina at p-polarization incidence . The measured value with this beam splitter is 8.5%, and it was found that the expected function was realized. In addition, the function as a mirror was also confirmed by vapor-depositing metal on this beam splitter. In addition, the window is used with the terahertz wave vertically incident using the above-mentioned beam splitter, and the expected characteristics are also obtained. It goes without saying that as a mirror, not only a flat surface but also an off-axis parabolic mirror can be handled by the shape polarization of the mold.
[非球面マイクロレンズアレイ]
 非球面マイクロレンズアレイとして、次のパラメータの光学部品を製造した。製造方法は実施形態1で説明した射出成型である。
設計値:レンズ配置(3×3)で各々のレンズ間の距離は125μmのマス目配置
レンズ形状:図5に記載のレンズ形状を1/40に縮小した形状
実際に作成したマイクロレンズアレイは、非球面部分の設計置からのずれが約5μあったが、テラヘルツ波の波長に比べて1/10以下であり、レンズとしての機能は問題無いことが確認できた。
[Aspheric micro lens array]
Optical components of the following parameters were manufactured as an aspheric microlens array. The manufacturing method is the injection molding described in the first embodiment.
Design value: Lens arrangement (3 × 3), distance between each lens is 125 μm, and mass arrangement lens shape: shape of lens shape described in FIG. 5 reduced to 1/40 The microlens array actually created is Although the deviation from the design position of the aspheric surface part was about 5μ, it is 1/10 or less compared to the wavelength of the terahertz wave, and it has been confirmed that the function as a lens has no problem.
1-1、1-1’:筐体
1-1a、1-1a’:装着孔
1-2:球面レンズ(シリコン)
1-2’:非球面レンズ(アルミナ)
1-3、1-3’:フォトミキサチップ
1-4:下部反射鏡
1-5、1-5’:上部反射鏡
1-6、1-6’:第1レンズ
1-7、1-7’:レンズ保持部品
1-8、1-8’:第2レンズ
1-9、1-9’:光ファイバ
2-1:球面レンズ中心
2-2:球面レンズ面
3-1:上部金型
3-2:下部金型
3-3:原料投入通路
3-4:原料排出通路
3-5:アルミナ成型体
1-1, 1-1 ': Case 1-1a, 1-1a': Mounting hole 1-2: spherical lens (silicon)
1-2 ': Aspheric lens (alumina)
1-3, 1-3 ': photo mixer chip 1-4: lower reflecting mirror 1-5, 1-5': upper reflecting mirror 1-6, 1-6 ': first lens 1-7, 1-7 ': Lens holding part 1-8, 1-8': second lens 1-9, 1-9 ': optical fiber 2-1: spherical lens center 2-2: spherical lens surface 3-1: upper mold 3 -2: Lower mold 3-3: Raw material feeding passage 3-4: Raw material discharging passage 3-5: Alumina molded body

Claims (7)

  1.  アルミナで形成され、前記アルミナ内をテラヘルツの電磁波が透過する光学部品。 An optical component formed of alumina through which a terahertz electromagnetic wave passes.
  2.  少なくとも表面の一部が非球面のレンズ形状を有することを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein at least a part of the surface has an aspheric lens shape.
  3.  シリンドリカルレンズ、プリズム、コーナキューブ、ビームスプリッタ、ミラー、ウィンドウ、又はマイクロレンズアレイであることを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein the optical component is a cylindrical lens, a prism, a corner cube, a beam splitter, a mirror, a window, or a microlens array.
  4.  請求項1又は2に記載の光学部品と、
     前記光学部品の前記アルミナ内へテラヘルツの電磁波を放射する電磁波放射手段と、
    を備えるテラヘルツ波用モジュール。
    An optical component according to claim 1 or 2;
    Electromagnetic wave emitting means for emitting a terahertz electromagnetic wave into the alumina of the optical component;
    Module for terahertz wave provided with
  5.  請求項1又は2に記載の光学部品と、
     前記光学部品の前記アルミナ内からテラヘルツの電磁波を受信する電磁波受信手段と、
    を備えるテラヘルツ波用モジュール。
    An optical component according to claim 1 or 2;
    Electromagnetic wave receiving means for receiving a terahertz electromagnetic wave from within the alumina of the optical component;
    Module for terahertz wave provided with
  6.  請求項1から3のいずれかに記載の光学部品を製造する光学部品製造方法であって、
     所望形状の金型を用い、前記金型空洞内にアルミナを充填して成型する射出成型工程と、
     前記射出成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、
    を含むことを特徴とする光学部品製造方法。
    An optical component manufacturing method for manufacturing the optical component according to any one of claims 1 to 3,
    An injection molding step of filling and molding alumina in the mold cavity using a mold of a desired shape;
    A sintering step of sintering the alumina molded body after the injection molding step into the optical component;
    A method of manufacturing an optical component, comprising:
  7.  請求項1から3のいずれかに記載の光学部品を製造する光学部品製造方法であって、
     所望形状の金型を用い、前記金型空洞内にアルミナ粉末を充填して押し固める粉体成型工程と、
     前記粉体成型工程後のアルミナ成型体を焼結して前記光学部品とする焼結工程と、
    を含むことを特徴とする光学部品製造方法。
    An optical component manufacturing method for manufacturing the optical component according to any one of claims 1 to 3,
    A powder molding step of filling and compacting alumina powder in the mold cavity using a mold of a desired shape;
    A sintering step of sintering the alumina molded body after the powder molding step into the optical component;
    A method of manufacturing an optical component, comprising:
PCT/JP2013/072888 2012-10-15 2013-08-27 Optical component, terahertz wave module, and optical component manufacturing method WO2014061350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228369A JP2014081448A (en) 2012-10-15 2012-10-15 Optical component, terahertz wave module, and optical component manufacturing method
JP2012-228369 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061350A1 true WO2014061350A1 (en) 2014-04-24

Family

ID=50487927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072888 WO2014061350A1 (en) 2012-10-15 2013-08-27 Optical component, terahertz wave module, and optical component manufacturing method

Country Status (2)

Country Link
JP (1) JP2014081448A (en)
WO (1) WO2014061350A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281252B2 (en) 2018-05-24 2023-05-25 浜松ホトニクス株式会社 Optical components for terahertz waves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503579A (en) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lens device for converging radar waves
JP2003515917A (en) * 1999-10-14 2003-05-07 ピコメトリックス インコーポレイテッド Compact fiber pigtail coupled terahertz module
JP2008500541A (en) * 2004-05-26 2008-01-10 ピコメトリクス、エルエルシー Terahertz imaging in reflection and transmission modes for inspection of luggage and people

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503579A (en) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Lens device for converging radar waves
JP2003515917A (en) * 1999-10-14 2003-05-07 ピコメトリックス インコーポレイテッド Compact fiber pigtail coupled terahertz module
JP2008500541A (en) * 2004-05-26 2008-01-10 ピコメトリクス、エルエルシー Terahertz imaging in reflection and transmission modes for inspection of luggage and people

Also Published As

Publication number Publication date
JP2014081448A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
Lochbaum et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design
CN106415309B (en) Scanning laser radar and its manufacturing method
CN100354699C (en) Tunable optical instruments
Pagies et al. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser
US20210285992A1 (en) Photonic Crystal Receivers
CN105933002B (en) Optical module and atomic oscillator
US8502452B2 (en) High-stability light source system and method of manufacturing
US20170276870A1 (en) Cmos based micro-photonic systems
CN110488340B (en) Subminiature interference type ultrafast X-ray optical fiber detector
CN101779161B (en) Optical configurations for wavelength-converted laser sources
CN102684694A (en) Optical module for atomic oscillator and atomic oscillator
CN102853914A (en) Simple, low power microsystem for saturation spectroscopy
CN109565283A (en) Atomic oscillator and electronic equipment
KR101273525B1 (en) Manufacturing method of terahertz transceiver module having ball lens formed with photoconductive antenna device
WO2014061350A1 (en) Optical component, terahertz wave module, and optical component manufacturing method
CN103776536B (en) Tandem type big optical path difference bullet light modulation interferometer
Rickert et al. Fiber-pigtailing quantum-dot cavity-enhanced light emitting diodes
JP2017181562A (en) Optical receptacle, optical module, and manufacturing method for optical module
KR101191385B1 (en) The THz Tx/Rx Module has Silicon Ball Lens is bonded to Antenna Device and Manufacturing Method thereof
CN102035136B (en) External cavity semiconductor laser
CN102331650A (en) Right-angle prism resonance cavity-based broadband terahertz wave radiation source
CN103887695B (en) Laser transmitting radial polarized beams based on conical uniaxial crystal
JP2017009296A (en) Electromagnetic wave propagation device and information acquisition device
US10241274B2 (en) Dispersion-compensative optical assembly
KR20120059314A (en) THz Emitter/Detector System having one Tx/Rx module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847889

Country of ref document: EP

Kind code of ref document: A1