WO2014061244A1 - Toxicity screening method - Google Patents

Toxicity screening method Download PDF

Info

Publication number
WO2014061244A1
WO2014061244A1 PCT/JP2013/006068 JP2013006068W WO2014061244A1 WO 2014061244 A1 WO2014061244 A1 WO 2014061244A1 JP 2013006068 W JP2013006068 W JP 2013006068W WO 2014061244 A1 WO2014061244 A1 WO 2014061244A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatocytes
culture
solution
cells
area
Prior art date
Application number
PCT/JP2013/006068
Other languages
French (fr)
Japanese (ja)
Inventor
正剛 佐能
太田 茂
征岳 山頭
洋子 江尻
雅也 細田
賢 綾野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2014541937A priority Critical patent/JP6035343B2/en
Publication of WO2014061244A1 publication Critical patent/WO2014061244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5067Liver cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/795Porphyrin- or corrin-ring-containing peptides
    • G01N2333/80Cytochromes

Definitions

  • the present invention relates to methods of screening compounds, and in particular to analytical techniques.
  • Hepatocytes have numerous physiological functions and have important functions in the metabolism of drugs, food additives, environmental pollutants and the like. It is said that metabolism involves many enzymes present in hepatocytes, for example, hydrolases such as esters, cytochrome P450 which is a phase I drug metabolizing enzyme that plays an important role in oxidation reactions, and reduction There is an enzyme and a conjugated enzyme that imparts a phase II drug metabolizing enzyme such as sulfuric acid, acetic acid, glutathione or glucuronic acid. Reactive intermediates (reactive metabolites) may be produced by these enzymatic reactions.
  • hydrolases such as esters
  • cytochrome P450 which is a phase I drug metabolizing enzyme that plays an important role in oxidation reactions, and reduction
  • There is an enzyme and a conjugated enzyme that imparts a phase II drug metabolizing enzyme such as sulfuric acid, acetic acid, glutathione or glucuronic acid.
  • Reactive intermediates reactive metabolites may be produced by these
  • Patent Document 1 discloses a method of screening drug candidates for toxic effects on human cells, and a method of measuring the toxicity of idiosyncrasies of test compounds. More specifically, Patent Document 1 discloses a method of screening whether or not a metabolite produced by a test compound being metabolized by a phase I drug metabolizing enzyme exhibits toxicity. A method using cells expressing a phase I drug metabolizing enzyme is disclosed, and it is preferable to use a plurality of cells expressing different cytochrome P450 and to express a phase I drug metabolizing enzyme. It is recommended that the factor II drug metabolizing enzymes be 20 times larger.
  • phase II drug metabolizing enzyme reaction This eliminates the influence of the phase II drug metabolizing enzyme reaction, since the compound metabolized by the phase II drug metabolizing enzyme may be metabolized by the phase II drug metabolizing enzyme to produce a toxic compound or be detoxified.
  • cells with the above-mentioned characteristics are used. In this way, accurate toxicity can be evaluated by combining methods for intentionally controlling the metabolic function in cells in evaluating the toxicity of metabolites.
  • Non-Patent Document 1 discloses culture using human primary hepatocytes by a sandwich method of collagen-matrigel, visualizing the amount of active oxygen, mitochondrial membrane activity, and consumption of glutathione (GSH) which is an antioxidant. Methods have been disclosed to predict the mechanism of toxicity development in the body. However, as shown in Patent Document 1, it is possible that intracellularly metabolized metabolites produced by the phase I drug metabolizing enzyme are metabolized by the phase II drug metabolizing enzyme to produce a substance exhibiting toxicity. In this method, it is not possible to accurately determine which metabolic enzyme has been metabolized or not.
  • GSH glutathione
  • Patent Document 1 a plurality of cells in which the phase I drug metabolizing enzyme is significantly higher than the expression amount of the phase II drug metabolizing enzyme are used. For this reason, there is a problem that maintenance and management of cells take time and effort.
  • the sandwich method used in Non-Patent Document 1 is excellent in that the function of primary hepatocytes can be maintained for a long time, there is a problem that handling of the gel is not easy and operation becomes complicated.
  • matrigel is expensive, there is a problem that the cost is high.
  • the operation of the general plate culture method is simple and low cost, the cell has a form completely different from that in the living body flatly spread on the culture bottom.
  • Non-Patent Document 1 it is known that cell functions can not be reproduced in vitro. As a result, cell death due to reactive metabolites may not be detectable in plating.
  • many methods for reproducing tissue structures close to in vivo in vitro for example, methods for producing aggregate-like masses, have been studied and marketed.
  • three-dimensional culture systems such as AlgiMatrix (registered trademark) are commercially available. In these methods, the operation is complicated and the light transmittance of the carrier is lower than that of the flat plate. Therefore, it is not suitable for the imaging method disclosed in Non-Patent Document 1.
  • the inventors discovered a new screening method for visualizing live cells and dead cells and evaluating whether they are toxic due to metabolites by simultaneously adding a test substance and a metabolic enzyme inhibitor to sterically cultured cells.
  • the toxicity screening method of one embodiment is a method of determining whether a test compound is metabolized by a drug metabolizing enzyme in the liver and exhibits toxicity, and includes the following configuration. (1) Three-dimensionally culturing a plurality of hepatocytes. (2) Each of a first solution not containing the test compound, a second solution containing the test compound, and a third solution of one or more inhibitors inhibiting the drug metabolism enzyme reaction and the test compound, Obtaining the plurality of hepatocytes contacted with different solutions by exposing each hepatocyte.
  • each hepatocyte is exposed to any one of the first to third solutions to obtain three types of hepatocytes which are in contact with one of the first to third solutions.
  • the present invention it is possible to provide an analytical technique for identifying metabolic enzymes that cause toxicity by metabolizing a test compound by using a three-dimensional cultured cell capable of maintaining a high degree of cellular function by an imaging method. .
  • FIG. 2 is a cross-sectional view taken along line II-II of the culture plate shown in FIG.
  • FIG. 2 is another cross-sectional view of the culture plate shown in FIG. 1 along the line II-II.
  • FIG. 4 is a cross-sectional view of the culture vessel shown in FIG. 3 taken along line IV-IV.
  • It is the schematic showing the state which culture
  • It is a figure which shows the schematic diagram explaining an example of the preferable size of the aggregate cultured by culture space.
  • FIG. 1 It is a figure which shows the schematic diagram explaining an example of the preferable size of the spheroid cultured by culture space. It is a figure which shows the example of another shape of culture space. It is a figure which shows the example of another shape of culture space. It is sectional drawing which shows the example of a shape of the other side of culture space. It is sectional drawing which shows the example of a shape of the further another side of culture space. It is sectional drawing which shows the example of a shape of the further another side of culture space. It is a photograph which shows an example of the culture plate used in the Example. It is a photograph which shows an example of the hepatocyte cultured by the Example.
  • cytochrome P450 is an enzyme that plays a role in foreign body (drug) metabolism, which is present in almost all organisms from bacteria to plants to mammals. In animals, they are mainly present in the liver.
  • well plate refers to an experimental / inspection instrument consisting of a flat plate with a large number of depressions (holes or wells), wherein each well is used as a test tube or petri dish.
  • the number of wells includes, for example, 6, 24, 96, 384, etc., and the number of wells is more than that.
  • the bottom of the well may be flat or round, or may be a combination of many elongated microtubes (deep well plate).
  • drug metabolizing enzyme is a generic term for enzymes involved in reactions to degrade or excrete in vitro substances such as drugs and toxic substances (xenobiotics Xenobiotics, also referred to as foreign substances).
  • phase I drug metabolizing enzyme refers to a group of enzymes involved in hydrolysis, oxidation reaction, reduction reaction of ester etc. as a reaction that lowers (degrades) or does not significantly change the molecular weight of the target substance called phase I reaction It is.
  • the oxidation reaction is mainly oxidation by cytochrome P450 (P450).
  • phase II drug metabolizing enzyme is a reaction that adds another molecule called a phase II reaction (the molecular weight increases), and as a molecule to be added in a reaction also referred to as conjugation (googau), sulfuric acid, It is a group of enzymes that conjugate acetic acid, glutathione, glucuronic acid and the like. In the present specification, “phase II drug metabolizing enzyme” is also described as “phase II enzyme group”.
  • the term “range from value A to value B” means “value A or more and value B or less” unless otherwise specified.
  • “these combinations” described as “A, B,..., C, and combinations thereof” are two or more of A, B,. Means any combination of numbers. In other words, "A, B, ..., C, and a combination thereof” is any one of A, B, ..., C, and any combination of these. It can also be said.
  • One embodiment provides a new screening system for visualizing live cells and dead cells to evaluate whether or not they are toxic due to a metabolite by simultaneously adding a test substance and a metabolic enzyme inhibitor to cells cultured in three dimensions.
  • three-dimensional culture can be performed without using a gel as described in Non-Patent Document 1, and furthermore, since it is a culture method with high light permeability, visualization using a microscope is also possible.
  • the toxicity screening method carries out, for example, the procedures of the first to fourth steps. The outline of the first to fourth steps will be described below. The first to fourth steps are obtained by dividing the steps in order to facilitate the description, and the present invention is not limited thereto.
  • the first step is a culture treatment of culturing a plurality of hepatocytes in a three-dimensional manner.
  • the second step is a test compound treatment in which a solution containing a test compound, a solution containing a test compound and an inhibitor of a drug metabolizing enzyme, or a solution not containing a test compound is brought into contact with a plurality of hepatocytes cultured sterically.
  • the third step is fluorescent probe treatment in which a solution containing a fluorescent probe is brought into contact with a plurality of hepatocytes.
  • the fourth step is a determination process of determining the toxicity of the test compound.
  • the culture vessel used in the culture treatment will be described first, and then the procedure of the toxicity screening method for performing from the culture treatment to the determination treatment will be described in detail.
  • the culture container uses a culture container capable of three-dimensionally culturing hepatocytes.
  • any culture vessel may be used as long as a plurality of cells are stacked to produce hepatocytes having a three-dimensional shape.
  • a preferred example of a container for forming aggregates will be described as an example of the culture container.
  • FIG. 1 is a view showing the whole culture plate used in one embodiment of the present invention.
  • FIG. 2A is a cross-sectional view taken along line II-II of the culture plate shown in FIG. 1, and FIG. 2B shows a cross-sectional view of another embodiment.
  • the culture plate 1 comprises a plurality of wells 21.
  • the plurality of wells 21 are separated from the adjacent wells 21 by the partition portion 22.
  • a culture vessel 10 is formed in each of the plurality of wells 21.
  • the structural example of the culture container used by FIG. 3 at embodiment of this invention is shown.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of the culture vessel shown in FIG.
  • the culture vessel 10 has a culture space 11, a wall 12 and a bottom 13.
  • the culture space 11 is a region partitioned by the wall 12 and the bottom 13, and serves as a three-dimensional space region (culture region) in which cells are cultured.
  • the culture space 11 is also referred to simply as "space” or "microspace”.
  • the wall 12 is a partition that divides the culture space 11, and can be said to be a convex portion that forms a concavo-convex pattern in the culture container 10.
  • the wall 12 may be the same as a part of the wall of the partition 22 as shown in FIG. 2A, or as shown in FIG. 2B.
  • the wall 12 may be disposed adjacent to the wall surface.
  • the bottom portion 13 functions as a substrate of the culture container 10, and the surface on which the culture space 11 is disposed is a part of the culture region (culture surface).
  • the bottom 13 is the same area as the bottom of each well 21 formed in the culture plate 1, and the bottom of each well 21 is used.
  • the bottom 13 forms the bottom of the culture space 11.
  • the surface of the bottom which is a part of the surface of the bottom 13 which forms the culture space 11 and which is to be a culture region is also referred to as “bottom culture surface 14”.
  • FIG. 3 and 4 show the equivalent diameter D, height (depth) H, width (thickness) W of the wall 12 and thickness T of the bottom 13 with respect to the culture space 11 formed in the culture vessel 10 .
  • the bottom part 13 has shown the case where it was produced integrally with the wall 12.
  • the equivalent diameter D refers to the diameter of the inscribed circle inscribed in the culture space 11.
  • the equivalent diameter D is the shape of the surface parallel to the bottom 13 of the culture space 11 (front shape), in other words, the inscribed circle of the shape perpendicular to the direction of the height H of the culture space 11
  • the diameter of is taken as the equivalent diameter.
  • the height H is a length from the bottom of the culture space 11 (bottom culture surface 14) to the upper surface of the wall 12, and can also be said to be the depth of the culture space 11.
  • the height H is the same as the height of the wall 12.
  • the width W of the wall 12 is the thickness of the wall 12 and can also be said to be the distance separating the adjacent culture spaces 11.
  • culture container 10 In culture container 10 (in other words, in each well 21), a plurality of culture spaces 11 are arranged in an array as shown in FIG.
  • the number or size of culture spaces 11 contained in culture vessel 10 depends on the number of wells 21 (size of wells 21) prepared in culture plate 1 and the sizes of culture spaces 11 and walls 12 . Specifically, as the number of wells 21 increases, the number of culture spaces 11 decreases. In the case of wells 21 of the same size, the number of culture spaces 11 in the wells 21 has a relation of decreasing when the equivalent diameter D is large or the width W is large.
  • FIGS. 1 to 4 are schematic views in which the number of culture spaces 11 is reduced to express the configuration in an easily understandable manner, and the number of culture spaces 11 included in the culture vessel 10 is different from the actual number. In addition, in FIGS. 3 and 4, nine culture spaces 11 are shown. This is shown for the purpose of explanation, and does not correspond to the number of culture spaces 11 included in the actual culture container 10 (each well 21).
  • the diameter of the aggregates is between 30 and 200 ⁇ m, and in order to make aggregates of this size, the equivalent diameter D is 1 to 5 times the diameter of the desired aggregates, and the height is A culture vessel 10 having a plurality of culture spaces 11 in which H is 0.1 times to 3 times the equivalent diameter D and having a water contact angle of 45 degrees or less on the surface of the culture spaces is used. It has been found that by culturing the cells it is possible to culture aggregates of hepatocytes of the above mentioned diameter.
  • the size, shape, etc. of the micro-order culture space 11 for forming a desired aggregate and characteristics of the culture surface will be described with reference to FIGS. 1 to 4. * Size and shape of culture space, etc. After seeding the cells, they will not move over the wall 11 and move to the adjacent culture space 11, that is, the cells may be retained in the culture space 11 until aggregates are formed. It becomes important. Therefore, it is preferable that the height H be 0.1 to 3 times the equivalent diameter D. It is preferable that H be high to retain cells, and high to smoothly supply nutrients. The height H is more preferably 0.2 to 1 times the equivalent diameter D because the height H is preferably lower.
  • the equivalent diameter D of the culture space 11 is preferably in the range of 1 to 5 times the desired diameter of the aggregate and in the range of 1.2 to 4 times More preferable.
  • the height H of the equivalent diameter is within the range of 1 to 5 times the desired diameter of the aggregate, ie, the equivalent diameter D is 100 to 500 ⁇ m.
  • a culture vessel 10 having a bottom 13 in which culture spaces 11 ranging from 0.1 to 3 times are regularly arranged is used.
  • the diameter of the aggregate in order to diffuse or transport the test solution to the center of the aggregate, is preferably at most 200 ⁇ m, preferably 150 ⁇ m or less. In addition, in order to maximize interaction between cells, the diameter of the aggregate is preferably at least 50 ⁇ m, more preferably in the range of 60 ⁇ m to 150 ⁇ m.
  • the width W of the wall 12 is the thickness of the wall 12 separating the culture space 11 and the culture space 11 adjacent thereto. Therefore, the width W of the wall 12 is 10 ⁇ m or more and less than 50 ⁇ m in order to prevent migration of cells beyond the upper surface of the wall 12 and to facilitate entry of the cells into the culture space 11.
  • the size of one body or less that is, the range of 5 to 30 ⁇ m is preferable, and the range of 5 to 10 ⁇ m is more preferable.
  • the angle ⁇ between the upper surface of the wall 12 and the side surface of the culture space 11 is preferably in the range of 90 to 135 degrees, and more preferably in the range of 90 degrees to 120 degrees.
  • FIG. 5A is a schematic view showing a state in which the aggregate is cultured in the culture space 11.
  • the aggregate 9 is indicated by a circle using the cross-sectional view shown in FIG.
  • Aggregates 9 are cultured in each of a plurality of culture spaces 11.
  • aggregates can be cultured using a well plate, it becomes possible to use an apparatus or the like used in conventional cell culture.
  • the equivalent diameter D of the culture space 11 is preferably in the range from the value dsp to five times the value dsp (dsp ⁇ D ⁇ 5 dsp) .
  • the height H of the culture space 11 is preferably in the range of 0.3 times the value dsp to 25 times (5 ⁇ 5) the value dsp (0.3 dsp ⁇ H ⁇ 25 dsp).
  • FIG. 5B is a schematic view illustrating an example of a preferable size of the aggregate cultured in the culture space.
  • FIG. 5B is a view schematically showing an end face of a cut portion cut along the equivalent diameter D of the aggregate 9.
  • the average diameter of the aggregates is preferably 30 ⁇ m or more and less than 200 ⁇ m, and particularly preferably in the range of 60 ⁇ m to 150 ⁇ m.
  • FIG. 5B shows that the end face of the cut portion of aggregate 9 is formed of five cells 8.
  • the diameter DCL of the cells 8 is 20 ⁇ m and the diameter DSP of the aggregates 9 forms the aggregates 9 of 60 ⁇ m, for example, three cells 8 are formed in a straight line.
  • the diameter DSP of the aggregate 9 forms an aggregate 9 of 150 ⁇ m, it is formed, for example, by arranging five cells 8 on a straight line.
  • FIG. 5B schematically shows the cells 8 aligned on a straight line for ease of explanation, and the cells 8 are not necessarily aligned on a straight line.
  • the steric cells to be cultured may be in the case of culturing spheroids, which is a subordinate concept of aggregate 9.
  • FIG. 5C is a schematic view showing a state in which the spheroid 9a is cultured in the culture space 11
  • FIG. 5D is a schematic view illustrating an example of a preferable size of the spheroid 9a cultured in the culture space.
  • the spheroid 9 a is a cell mass which is formed more spherically than the aggregate 9.
  • the aggregate in one test area contains 70% or more of the whole whose diameter is within the half width range. In other words, it is preferable that the diameters of the aggregates have the same size.
  • the reason is as follows. First, since it is known that the value of the metabolic activity varies depending on the size of the aggregate, high accuracy results can not be obtained when aggregates of various diameters are mixed. In addition, it is known that the metabolic function of small aggregates (less than 50 ⁇ m) is extremely low. That is, small aggregates may have a small amount of metabolite and cell death may not be observed. When determining the toxicity, there is a possibility that the presence or absence of the toxicity can not be accurately determined because a part where cell death is occurring and a part where it does not exist are mixed in one well.
  • the shape of the culture space 11 (the shape of the front) or the shape of the plane parallel to the bottom 13 is not limited to the shape shown in FIG. 3 and may be, for example, a shape as shown in FIGS. Also, it may be another shape (such as an ellipse or a rhombus). In order to form an aggregate having a higher density and uniform diameter, it is preferable that the structure is symmetrical.
  • the shape of the side surface of the culture space 11 is not limited to the shape shown in FIG. 4, and may be, for example, the shape shown in FIGS. 7A to 7C.
  • acrylic resin polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin, ethylene / vinyl alcohol It is selected from the group consisting of a base copolymer resin, a thermoplastic elastomer, a vinyl chloride resin, a silicone resin, and a combination thereof.
  • the thickness T of the bottom portion 13 of the culture vessel 10 is preferably 1 mm or less from the viewpoint of observability. However, 1 mm or more may be sufficient as long as it does not affect observation with a microscope, and the thickness T of the bottom portion 13 is not limited.
  • the total light transmittance of the polymer constituting the bottom 13 of the culture vessel 10 is preferably 85% or more and less than 99%.
  • the total luminous transmittance is measured in accordance with Japanese Industrial Standard (JIS K7375). By increasing the total light transmittance, the observability of the aggregate cultured on the bottom 13 can be secured. Furthermore, the thickness of the bottom of the culture vessel 10 (well) is preferably 300 ⁇ m or less.
  • the culture surface can not cover the surface because the culture medium contains the culture medium in each culture space 11, and when the coating solution is used, the solution does not enter the culture space 11. For this reason, it is preferable to make a water contact angle 45 degrees or less. More preferably, it is in the range of 0 degrees to 20 degrees. Further, the value of the water contact angle is assumed to be a value obtained by preparing and measuring a flat plate on which the concavo-convex pattern of the culture space 11 and the wall 12 is not formed, under the same conditions as the culture vessel 10.
  • the culture space 11 When the culture space 11 is arranged in an array, if the surface is highly hydrophobic and the water contact angle exceeds 45 degrees, that is, if the wettability is low, air bubbles will form in the space when the culture medium or the coating solution is added. It may be easy to enter, resulting in spaces where cells can not be cultured. Therefore, it is necessary to perform hydrophilization so that the water contact angle is 45 degrees or less.
  • a method of making it hydrophilic a method of depositing SiO 2 and a method of performing plasma treatment may be mentioned.
  • aggregates in order to form aggregates efficiently in the culture vessel 10, it is preferable to increase cell adhesion in primary hepatocytes and to suppress cell adhesion in the case of established hepatocytes.
  • aggregates can be efficiently formed by coating a substance that promotes cell adhesion or a substance that suppresses cell adhesion to control adhesion.
  • poly-L-lysine may be coated to enhance cell adhesion.
  • a culture plate provided with a plurality of wells from the viewpoint of operability.
  • a culture vessel having a plurality of culture spaces formed by the concavo-convex pattern be formed in each well of the culture plate. Therefore, in one embodiment, the case of performing the steps from the culture treatment to the fluorescent probe treatment in one well 21 of the plurality of wells 21 using the plurality of wells 21 of the culture plate 1 shown in FIG. 1 will be described Do.
  • culture treatment, test compound treatment, and fluorescent probe treatment are performed in one well 21 and cells are not moved to another well 21 in each treatment.
  • an automatic culture apparatus or an automatic analyzer is used.
  • a plurality of culture spaces 11 formed by the culture vessel 10 described above are used.
  • a plurality of culture spaces 11 are formed in each well 21 in the well plate.
  • the hepatocytes are three-dimensionally cultured in each culture space 11 to form a plurality of hepatocytes in a plurality of culture spaces 11.
  • cells are three-dimensionally cultured in a well plate to form a plurality of hepatocytes of a desired size.
  • the source of hepatocytes to be cultured is preferably selected from any of human, rodent, rat, dog and monkey.
  • the hepatocytes are more preferably primary hepatocytes.
  • the equivalent diameter of the hepatocytes to be produced is preferably 30 ⁇ m or more and less than 200 ⁇ m. It is preferable to carry out the addition treatment after confirming whether the formed aggregate expresses a metabolic enzyme that metabolizes the test compound.
  • the method for obtaining the hepatocytes in the aggregate form is not particularly limited, such as roller bottle culture, spinner flask culture, hanging drop culture and the like.
  • an apparatus corresponding to the culture method since an apparatus corresponding to the culture method is used, it is necessary to perform aggregate formation treatment and contact treatment in separate containers.
  • the inventors discovered that the aggregate formation treatment and the contact treatment can be performed in the same container by using the well 21 in which the culture container 10 described above is formed. This simplifies the operation and makes it possible to add the first to third media to the cells without moving the formed aggregates.
  • any of the first to third solutions containing the test compound or not containing the test compound is exposed to sterically cultured hepatocytes.
  • the first solution is a control solution containing no test substance.
  • the second solution is a test solution containing a test compound.
  • the third solution is a mixed solution in which one or more compounds (inhibitors of drug metabolizing enzyme) that inhibit the drug metabolizing enzyme reaction are mixed with a test compound.
  • a plurality of hepatocytes exposed to the first solution, a plurality of hepatocytes exposed to the second solution, and a plurality of hepatocytes exposed to the third solution are obtained.
  • a solvent used for the first to third solutions to be brought into contact with each hepatocyte it is preferable to use a medium containing no phenol red in order to reduce background when obtaining a fluorescent staining image.
  • serum in the range of 0.1 to 1% may be added to maintain the physiological function of the cells.
  • the solvent of each of the first to third solutions may have an osmotic pressure of 200 to 315 mOsm / kg ⁇ H 2 O, and may have a buffer action in the pH range of 6.8 to 8.4.
  • one containing glucose and nutrients such as amino acids and vitamins.
  • DEM Dulbecco's modified Eagle's medium
  • Nutrient Mixture F-12 the physiological function can be kept constant.
  • the concentrations of the test substance and the drug metabolizing enzyme inhibitor are prepared by bringing a solution of any drug concentration into contact with hepatocytes in the range of 1 hour to 96 hours, and adopting a concentration with a survival rate of over 80%. If the concentration is too low, it is assumed that no toxicity due to reactive metabolites is observed, so it is preferable to use a solution of a test substance with a concentration as high as possible without exceeding a viability of 80% as the maximum concentration. It is more preferable to use multiple concentrations of the test substance in the range of 1/2 to 1/100 of the maximum concentration.
  • Fluorescent probe treatment brings the solution containing the fluorescent probe into contact with a plurality of hepatocytes.
  • the fluorescent probe is selected from the group consisting of a fluorescent probe that recognizes living cells, a fluorescent probe that recognizes dead cells, and a combination thereof.
  • a confocal laser microscope or a fluorescence microscope is used as an apparatus for obtaining a fluorescent stained image.
  • the fourth step is a determination process for determining the toxicity of the test compound.
  • a fluorescent stained image is obtained using a plurality of stained hepatocytes, and the toxicity of the test compound is determined based on the data of the fluorescent stained image.
  • the determination condition is satisfied from the fluorescent staining image
  • the test compound is metabolized by a drug-metabolizing enzyme possessed by hepatocytes
  • the determination of the fluorescent staining image uses a fluorescent region or a fluorescent intensity. Three types of determination conditions are shown below. It can be determined using any one or more of these determination conditions.
  • the fluorescent region is defined as follows.
  • a fluorescent region that recognizes living cells of hepatocytes contacted with the first solution is referred to as a first live region (A).
  • a fluorescent region that recognizes living cells of hepatocytes contacted with the second solution is referred to as a second live region (B).
  • a fluorescent region that recognizes living cells of hepatocytes contacted with the third solution is referred to as a third live region (C).
  • the second dead area (E) of the fluorescent area that recognizes dead cells of the hepatocytes contacted with the second solution is used.
  • the first determination condition is that at least one of the following (1) and (2) determines that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity.
  • (1) The first live area is larger than the second live area, and the second live area is smaller than the third live area (A> B and B ⁇ C).
  • the first dead area is smaller than the second dead area, and the second dead area is larger than the third dead area (D ⁇ E and E> F)
  • the second judgment condition is The value obtained by dividing the first dead area by the first live area is smaller than the value obtained by dividing the second dead area by the second live area, and the value obtained by dividing the second dead area by the second live area is the third
  • it is determined that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity. It will be the following relational expression when it expresses with a symbol. (D / A) ⁇ (E / B) and (E / B)> (F / C)
  • the fluorescence intensity is defined as follows.
  • the fluorescence intensity for recognizing living cells of the hepatocytes brought into contact with the first solution is taken as a first life intensity (G).
  • the fluorescence intensity for recognizing live cells of the hepatocytes brought into contact with the second solution is taken as the second life intensity (H).
  • the fluorescence intensity for recognizing live cells of the hepatocytes brought into contact with the third solution is taken as the third life intensity (I).
  • the second death intensity (K) of the fluorescence intensity for recognizing dead cells of the hepatocytes contacted with the second solution is used.
  • the third death intensity (L) of the fluorescence intensity for recognizing dead cells of the hepatocytes contacted with the third solution is used.
  • the determination condition is determined that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity when at least one of the following (3) and (4).
  • (3) The first green strength is larger than the second green strength, and the second green strength is smaller than the third green strength (G> H and H ⁇ I).
  • the first dead strength is smaller than the second dead strength, and the second dead strength is larger than the third dead strength (J ⁇ K and K> L).
  • the region to be subjected to the fluorescence observation is determined by a method of comparing the fluorescence intensity or the area (region) of the hepatocytes brought into contact with the first to third solutions visually or quantitatively. For this reason, the state of the cells prior to the test compound treatment operation needs to be the same in all observation areas. Even in the case of culturing under the same conditions (cell seeding density, medium, etc.), it is assumed that the adhesion area of cells on the bottom of the culture differs depending on the field of view. Therefore, before performing the test compound treatment operation, a microscope is used in advance to select several places having the same area (area) in which the hepatocytes brought into contact with the first to third solutions are present, and select several steps. Then, it is preferable to shoot a predetermined place. When this method can not be used, it is preferable to calculate and determine the ratio of the area of dead cells to the area of living cells (area of dead cells / area of living cells).
  • the culture treatment of one embodiment can evaluate which metabolic enzyme is caused when a single cell expresses toxicity as compared to the culture method of Patent Document 1, multiple cells are maintained. It is excellent at the point which can save time and effort.
  • the culture step of one embodiment can be three-dimensional culture without using a gel as described in Non-Patent Document 1.
  • the process from the culture treatment to the fluorescent probe treatment uses a culture plate with high light permeability and uses the same culture plate in a series of treatments. Therefore, it is excellent in that visualization with a microscope is also possible.
  • Example 1 Cell preparation (culture treatment) (1-1) Preparation of Hepatocytes
  • Primary rat hepatocytes used for culture were prepared as follows. A surflow indwelling needle was inserted into the portal vein of a 6-week-old SD rat, and the blood containing an EDTA solution was flushed to perform blood removal, and then the collagenase solution was refluxed. Thereafter, the collagenase solution-treated liver was added to the culture solution, and hepatocytes were dispersed by pipetting with a female pipette. The hepatocyte suspension was washed three times to remove cells other than hepatocytes, and the isolated hepatocytes were used for culture.
  • FIG. 8 (1-2) Culture container A culture plate (24 well culture plate) 1a having 24 wells 21a shown in FIG. 8 was used. A plurality of culture vessels 10a are formed on the bottom culture surface of each well 21a by a concavo-convex pattern (fine pattern). Each culture container 10a has a culture space 11a formed with a corresponding diameter D of 200 ⁇ m and a height H of 50 ⁇ m in the bottom culture surface 14 (culture bottom). Also, the width W of the wall 12a is 10 ⁇ m.
  • the above-mentioned concavo-convex pattern was produced by photolithography and Ni electrolytic plating was performed to obtain a mold having a corresponding concavo-convex shape.
  • (1-3) Culture Method Primary rat hepatocytes were seeded in a medium at 1 ⁇ 10 5 cells / cm 2 and cultured for 5 days.
  • the culture solution used for culture was prepared as follows. 10% fetal bovine serum, 1 ⁇ g / ml insulin, 1 ⁇ 10 -7 mol / L dexamethasone, 10 mM nicotinamide, 2 mmol / L L-glutamine, 50 ⁇ m ⁇ -mercaptoethanol, 5 mmol / L HEPES, 59 ⁇ g in DMEM / F12 medium ml penicillin, 100 ⁇ g / ml streptomycin, 20 ng / ml EGF were added.
  • Hepatocytes were seeded at a concentration of 1.0 ⁇ 10 5 cells / cm 2 on the concavo-convex patterned substrate, and cultured at 37 ° C. for 5 minutes with 5 vol% CO 2 .
  • medium exchange was performed every one to two days using 0.5 mL of fresh medium of the same composition.
  • FIG. 9 shows cultured hepatocytes. It can be seen that three-dimensional culture is possible.
  • Test compounds Solutions (i) to (iii) shown in Table 1 were used.
  • acetaminophen and 1-aminobenzotriazole (ABT) were used as an inhibitor of cytochrome P450.
  • Acetaminophen is known to be metabolized by CYP2E1 belonging to the cytochrome P450 species and to exhibit toxicity.
  • Test procedure Item 1 Hepatocytes are sterically cultured according to the procedure described in cell preparation. Next, after the medium is sucked and washed with phosphate buffer, any one of solutions (i) to (iii) of Table 1 is added to each well to obtain a plurality of wells to which different solutions are added. In each well, hepatocytes and the added solution were allowed to react for 24 hours. After the reaction, two fluorescent reagents, Calcein-AM and MCB, were used to stain live cells. Calcein-AM is cell permeable and is hydrolyzed by intracellular esterases to form Calcein and exhibits green fluorescence. In addition, since cell death is known to occur by depletion of glutathione, cells were stained using MCB (monochlorobimane) that reacts with glutathione and emits blue fluorescence.
  • MCB dichlorobimane
  • FIG. 10 shows photographs of fluorescent stained images of hepatocytes contacted with solutions (i) to (iii).
  • the column of Calcein is a fluorescent stained image stained with Calcein-AM.
  • the row of MCB is a fluorescent stained image stained with MCB.
  • the Merge column is an image obtained by combining the fluorescent stained image of Calcein-AM and the fluorescent stained image of MCB. The difference in the fluorescence intensity is observed by the solutions (i) to (iii). It can be judged that Calcein which recognizes living cells and MCB show toxicity as A> B and B ⁇ C, and acetaminophen is metabolized by cytochrome P450.
  • Test procedure Item 1 The hepatocytes are cultured using planar culture plates according to the procedure described in cell preparation. Next, after the medium is sucked and washed with phosphate buffer, any one of solutions (i) to (iii) of Table 2 is added to each well to obtain a plurality of wells to which different solutions are added. In each well, hepatocytes and the added solution were allowed to react for 24 hours. After the reaction, two fluorescent reagents, Calcein-AM and MCB, were used to stain live cells. 3. Test result (visual observation result) FIG. 11 shows photographs of fluorescent stained images of hepatocytes contacted with solutions (i) to (iii). FIG. 11 shows the results for each staining reagent stained in each row, as in FIG. No toxicity could be detected at the same level of staining intensity for all solutions (i) to (iii).
  • test substance the metabolic enzyme, and the inhibitor thereof used in the above-described examples are examples, and the evaluation method of one embodiment can be applied to other inhibitors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A toxicity screening method is a method for determining whether or not a compound of interest is metabolized with a drug-metabolizing enzyme in the liver to cause toxicity. The method comprises the steps of: culturing multiple hepatocytes three-dimensionally (e.g., producing agglomerates); bringing each of the hepatocyte into contact with each of a first solution that does not contain the compound of interest, a second solution that contains the compound of interest, and a third solution that contains both at least one compound capable of inhibiting a drug-metabolizing enzyme reaction and the compound of interest, thereby obtaining multiple hepatocytes that have been contacted respectively with the different solutions; bringing the multiple hepatocytes into contact with a solution containing a fluorescent probe capable of recognizing living cells or a fluorescent probe capable of recognizing dead cells; and obtaining fluorescently stained images using the multiple hepatocytes that are stained, and then determining the presence of toxicity of the compound of interest on the basis of the data of the fluorescently stained images.

Description

毒性スクリーニング方法Toxicity screening method
 本発明は、化合物のスクリーニング方法に関し、特に分析技術に関する。 The present invention relates to methods of screening compounds, and in particular to analytical techniques.
 肝細胞は非常に多くの生理的機能を有しており、薬物、食品添加物、環境汚染物質などの代謝に重要な機能を有している。代謝には肝細胞に存在する多くの酵素が関与しているといわれており、例えば、エステルなどの加水分解酵素、酸化反応に重要な役割を果たす第I相薬物代謝酵素であるチトクロムP450、還元酵素、及び、第II相薬物代謝酵素である、硫酸、酢酸、グルタチオン、またはグルクロン酸などを付与する抱合酵素がある。これら酵素反応により反応性に富む中間体(反応性代謝物)が生成される場合がある。反応性代謝物の化学構造は不安定で寿命が短く、ほとんどが内在性のグルタチオンにより解毒されるが、タンパク質やDNAとも結合し肝毒性を示すことがある。また、反応性代謝物が大量に生成されるとグルタチオンが枯渇するため、周辺のタンパク質やDNAと結合し非常に強い毒性を発現する。その結果、重篤な肝障害を招くことがある。このため、肝細胞の代謝物毒性を解析する様々な方法が開発されている。 Hepatocytes have numerous physiological functions and have important functions in the metabolism of drugs, food additives, environmental pollutants and the like. It is said that metabolism involves many enzymes present in hepatocytes, for example, hydrolases such as esters, cytochrome P450 which is a phase I drug metabolizing enzyme that plays an important role in oxidation reactions, and reduction There is an enzyme and a conjugated enzyme that imparts a phase II drug metabolizing enzyme such as sulfuric acid, acetic acid, glutathione or glucuronic acid. Reactive intermediates (reactive metabolites) may be produced by these enzymatic reactions. The chemical structures of reactive metabolites are unstable and short-lived, and most of them are detoxified by endogenous glutathione, but they may also bind to proteins and DNA and exhibit hepatotoxicity. In addition, if a large amount of reactive metabolite is produced, glutathione is depleted and thus binds to surrounding proteins and DNAs, resulting in extremely strong toxicity. As a result, serious liver damage may occur. For this reason, various methods for analyzing metabolite toxicity of hepatocytes have been developed.
 例えば、特許文献1には、ヒト細胞に及ぼす毒性影響について薬物候補をスクリーニングする方法、被験化合物の特異体質の毒性を測定する方法が開示されている。より具体的には、特許文献1では、被験化合物が第I相薬物代謝酵素による代謝を受けて生成された代謝物が毒性を示すか否かをスクリーニングする方法について開示されている。第I相薬物代謝酵素が発現している細胞を用いる方法が開示されており、好ましい様態として、各々異なるチトクロムP450を発現する複数の細胞を使用することと、第I相薬物代謝酵素の発現が第II相薬物代謝酵素の20倍大きいことが推奨されている。これは、第I相薬物代謝酵素による代謝の後に第II相薬物代謝酵素により代謝されて毒性を示す化合物が生成、または無毒化されることがあるため第II相薬物代謝酵素反応の影響を排除するために上述したような特性をもつ細胞を使用している。このように、代謝物の毒性を評価するうえで細胞内の代謝機能を意図的にコントロールする方法を組合せることで正確な毒性が評価できるようになる。 For example, Patent Document 1 discloses a method of screening drug candidates for toxic effects on human cells, and a method of measuring the toxicity of idiosyncrasies of test compounds. More specifically, Patent Document 1 discloses a method of screening whether or not a metabolite produced by a test compound being metabolized by a phase I drug metabolizing enzyme exhibits toxicity. A method using cells expressing a phase I drug metabolizing enzyme is disclosed, and it is preferable to use a plurality of cells expressing different cytochrome P450 and to express a phase I drug metabolizing enzyme. It is recommended that the factor II drug metabolizing enzymes be 20 times larger. This eliminates the influence of the phase II drug metabolizing enzyme reaction, since the compound metabolized by the phase II drug metabolizing enzyme may be metabolized by the phase II drug metabolizing enzyme to produce a toxic compound or be detoxified. In order to do this, cells with the above-mentioned characteristics are used. In this way, accurate toxicity can be evaluated by combining methods for intentionally controlling the metabolic function in cells in evaluating the toxicity of metabolites.
 また、非特許文献1には、ヒト初代肝細胞を用いコラーゲン-マトリゲルのサンドウィッチ法で培養、活性酸素量、ミトコンドリア膜活性、抗酸化物質であるグルタチオン(GSH)の消費量を可視化することで生体内における毒性発現のメカニズムを予測する方法が開示されている。しかし、特許文献1に示されているように、細胞内には第I相薬物代謝酵素で代謝され生成した代謝物が第II相薬物代謝酵素で代謝されて毒性を示す物質が生成される可能性もあり、この方法ではどの代謝酵素で代謝されたか否かを正確に判定することはできない。 In addition, Non-Patent Document 1 discloses culture using human primary hepatocytes by a sandwich method of collagen-matrigel, visualizing the amount of active oxygen, mitochondrial membrane activity, and consumption of glutathione (GSH) which is an antioxidant. Methods have been disclosed to predict the mechanism of toxicity development in the body. However, as shown in Patent Document 1, it is possible that intracellularly metabolized metabolites produced by the phase I drug metabolizing enzyme are metabolized by the phase II drug metabolizing enzyme to produce a substance exhibiting toxicity. In this method, it is not possible to accurately determine which metabolic enzyme has been metabolized or not.
特表2005-511093号公報Japanese Patent Publication No. 2005-511093
 特許文献1では、第I相薬物代謝酵素が第II相薬物代謝酵素の発現量に対して大幅に高い複数種の細胞を用いる。このため細胞の維持管理に手間を要するという問題がある。また、非特許文献1で用いられているサンドウィッチ法は初代肝細胞の機能を長期間維持できる点で優れているが、ゲルの取扱いには容易ではなく操作が煩雑になるという問題がある。加えて、マトリゲルは高価であるため、コストが高くなるという問題もある。一方、一般的な平板培養法の操作は簡便で低コストであるものの、細胞が培養底面に扁平に広がった生体内とまったく異なる形態をしている。このため、細胞機能をin vitroで再現できないことが知られている。その結果、平板培養では反応性代謝物による細胞死が検知できない可能性がある。
 この課題を解決するために、生体内に近い組織構造をin vitroで再現する方法、例えば凝集体状の塊を作製するための方法が多く研究され市販されている。例えば、AlgiMatrix(登録商標)など3次元培養システムが販売されている。これらの方法では、操作が煩雑である上、担体の光透過性が平板と比較して低い。このため、非特許文献1に開示されたイメージング手法には適さない。
 このような事情から、化合物のスクリーニング方法において、細胞機能を高度に保つことができる三次元培養細胞を用い、被験化合物が代謝されることにより毒性を生じさせる薬物代謝酵素をイメージング法で特定する分析技術が要請されていた。
In Patent Document 1, a plurality of cells in which the phase I drug metabolizing enzyme is significantly higher than the expression amount of the phase II drug metabolizing enzyme are used. For this reason, there is a problem that maintenance and management of cells take time and effort. Although the sandwich method used in Non-Patent Document 1 is excellent in that the function of primary hepatocytes can be maintained for a long time, there is a problem that handling of the gel is not easy and operation becomes complicated. In addition, since matrigel is expensive, there is a problem that the cost is high. On the other hand, although the operation of the general plate culture method is simple and low cost, the cell has a form completely different from that in the living body flatly spread on the culture bottom. For this reason, it is known that cell functions can not be reproduced in vitro. As a result, cell death due to reactive metabolites may not be detectable in plating.
In order to solve this problem, many methods for reproducing tissue structures close to in vivo in vitro, for example, methods for producing aggregate-like masses, have been studied and marketed. For example, three-dimensional culture systems such as AlgiMatrix (registered trademark) are commercially available. In these methods, the operation is complicated and the light transmittance of the carrier is lower than that of the flat plate. Therefore, it is not suitable for the imaging method disclosed in Non-Patent Document 1.
Under these circumstances, in a method of screening a compound, analysis using a three-dimensional cultured cell capable of maintaining a high degree of cell function and identifying a drug metabolizing enzyme that causes toxicity by metabolizing a test compound by an imaging method Technology was required.
 発明者らは、立体的に培養した細胞に被験物質と代謝酵素阻害剤を同時に添加することによって、代謝物による毒性か否かを生細胞と死細胞を可視化して評価する新しいスクリーニング方法を発見した。
 一実施形態の毒性スクリーニング方法は、被験化合物が肝臓の薬物代謝酵素によって代謝されて毒性を示すか否かを判定する方法であり、次の構成を含む。
(1)複数の肝細胞を立体的に培養する工程。
(2)前記被験化合物を含まない第1溶液、前記被験化合物を含む第2溶液、及び、薬物代謝酵素反応を阻害する1種類以上の阻害剤と前記被験化合物との第3溶液のそれぞれを、各肝細胞に曝露させることによって、異なる溶液と接触させた前記複数の肝細胞を取得する工程。ここでは、各肝細胞に第1乃至第3溶液のいずれかを曝露させ、第1乃至第3溶液のうちの一つと接触させた、3種類の肝細胞を得る。
(3)生細胞を認識する蛍光プローブ、死細胞を認識する蛍光プローブ、及びこれらの組合せからなる群から選択される蛍光プローブを含む溶液と前記複数の肝細胞とを接触させる工程。
(4)染色後の前記複数の肝細胞を用いて蛍光染色像を得て、前記蛍光染色像のデータを元に被験化合物の毒性を判定する工程。
 立体的に培養した細胞に、被験物質と代謝酵素阻害剤を同時に添加することによって、肝細胞と同様の代謝機能を発現することが可能になる。加えて、蛍光プローブを用いて解析することにより、培養した肝細胞の代謝酵素が被験化合物を代謝した代謝物による毒性か否かを、生細胞と死細胞を可視化して評価することができる。
The inventors discovered a new screening method for visualizing live cells and dead cells and evaluating whether they are toxic due to metabolites by simultaneously adding a test substance and a metabolic enzyme inhibitor to sterically cultured cells. did.
The toxicity screening method of one embodiment is a method of determining whether a test compound is metabolized by a drug metabolizing enzyme in the liver and exhibits toxicity, and includes the following configuration.
(1) Three-dimensionally culturing a plurality of hepatocytes.
(2) Each of a first solution not containing the test compound, a second solution containing the test compound, and a third solution of one or more inhibitors inhibiting the drug metabolism enzyme reaction and the test compound, Obtaining the plurality of hepatocytes contacted with different solutions by exposing each hepatocyte. Here, each hepatocyte is exposed to any one of the first to third solutions to obtain three types of hepatocytes which are in contact with one of the first to third solutions.
(3) contacting the plurality of hepatocytes with a solution containing a fluorescent probe that recognizes live cells, a fluorescent probe that recognizes dead cells, and a fluorescent probe selected from the group consisting of a combination thereof;
(4) A step of obtaining a fluorescent stained image using the plurality of hepatocytes after staining, and determining the toxicity of the test compound based on the data of the fluorescent stained image.
By simultaneously adding a test substance and a metabolic enzyme inhibitor to sterically cultured cells, it becomes possible to express the same metabolic function as hepatocytes. In addition, by analyzing using a fluorescent probe, it is possible to visualize live cells and dead cells to evaluate whether or not the metabolic enzymes of the cultured hepatocytes are toxic due to the metabolite that metabolized the test compound.
 本発明によれば、細胞機能を高度に保つことができる三次元培養細胞を用い、被験化合物が代謝されることにより毒性を生じさせる代謝酵素をイメージング法で特定する分析技術を提供することができる。 According to the present invention, it is possible to provide an analytical technique for identifying metabolic enzymes that cause toxicity by metabolizing a test compound by using a three-dimensional cultured cell capable of maintaining a high degree of cellular function by an imaging method. .
本発明の一実施形態で用いる培養プレートの全体を示す図である。It is a figure which shows the whole culture plate used by one embodiment of this invention. 図1に示す培養プレートのII-II線断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the culture plate shown in FIG. 図1に示す培養プレートの他のII-II線断面図である。FIG. 2 is another cross-sectional view of the culture plate shown in FIG. 1 along the line II-II. 本発明の一実施形態で用いる培養容器の全体を示す図である。It is a figure which shows the whole culture vessel used by one embodiment of this invention. 図3に示す培養容器のIV-IV線断面図である。FIG. 4 is a cross-sectional view of the culture vessel shown in FIG. 3 taken along line IV-IV. 培養空間で凝集体を培養する状態を表す概略図である。It is the schematic showing the state which culture | cultivates an aggregate in culture space. 培養空間で培養した凝集体の好ましいサイズの一例を説明する模式図を示す図である。It is a figure which shows the schematic diagram explaining an example of the preferable size of the aggregate cultured by culture space. 培養空間でスフェロイドを培養する状態を表す概略図である。It is the schematic showing the state which culture | cultivates a spheroid in culture space. 培養空間で培養したスフェロイドの好ましいサイズの一例を説明する模式図を示す図である。It is a figure which shows the schematic diagram explaining an example of the preferable size of the spheroid cultured by culture space. 培養空間の他の形状例を示す図である。It is a figure which shows the example of another shape of culture space. 培養空間のさらに他の形状例を示す図である。It is a figure which shows the example of another shape of culture space. 培養空間の他の側面の形状例を示す断面図である。It is sectional drawing which shows the example of a shape of the other side of culture space. 培養空間のさらに他の側面の形状例を示す断面図である。It is sectional drawing which shows the example of a shape of the further another side of culture space. 培養空間のさらに他の側面の形状例を示す断面図である。It is sectional drawing which shows the example of a shape of the further another side of culture space. 実施例で用いる培養プレートの一例を示す写真である。It is a photograph which shows an example of the culture plate used in the Example. 実施例で培養した肝細胞の一例を示す写真である。It is a photograph which shows an example of the hepatocyte cultured by the Example. 実施例において、溶液(i)~(iii)を接触させた肝細胞の蛍光染色像の写真である。In the examples, it is a photograph of a fluorescent staining image of hepatocytes contacted with solutions (i) to (iii). 比較例において、溶液(i)~(iii)を接触させた肝細胞の蛍光染色像の写真である。In a comparative example, it is a photograph of a fluorescence stained picture of hepatocyte which contacted solution (i)-(iii).
 以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において同一の構成または機能を有する構成要素および相当部分には、同一の符号を付し、その説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. The following description and drawings are omitted and simplified as appropriate for clarification of the explanation. Components and corresponding parts having the same configuration or function in the drawings are denoted by the same reference numerals, and the description thereof will be omitted.
 本明細書では次の用語を用いる。
 用語「凝集体」は、複数の細胞が少なくとも2層以上積層し立体的な形状を有する態様をいう。
 用語「チトクロムP450(CYP)」は、細菌から植物,哺乳動物に至るまでのほとんどすべての生物に存在する、異物(薬物)代謝の役割を果たす酵素である。動物では、主に肝臓に存在する。
The following terms are used herein.
The term "aggregate" refers to an embodiment in which a plurality of cells are stacked in two or more layers and have a three-dimensional shape.
The term "cytochrome P450 (CYP)" is an enzyme that plays a role in foreign body (drug) metabolism, which is present in almost all organisms from bacteria to plants to mammals. In animals, they are mainly present in the liver.
 用語「ウェルプレート」は、多数のくぼみ(穴またはウェル)のついた平板からなる実験・検査器具であり、各ウェルを試験管あるいはシャーレとして利用するものをいう。ウェルの数には、ウェルの数には例えば、6、24、96、384などがあり、それ以上の数のものもある。ウェルの底は平らなもの、丸いもののほか、細長いマイクロチューブを多数組み合わせた形式のもの(ディープウェルプレート)もある。
 用語「薬物代謝酵素」は、薬、毒物などの生体外物質(ゼノバイオティクスXenobiotics、異物ともいう)を分解あるいは排出するための反応に関わる酵素の総称である。
 用語「第I相薬物代謝酵素」は、第I相反応と呼ばれる対象物質の分子量を低くする(分解)、または大きく変えない反応として、エステルなどの加水分解、酸化反応、還元反応に関わる酵素群である。酸化反応は、主にシトクロムP450(P450)による酸化である。
 用語「第II相薬物代謝酵素」は、第II相反応と呼ばれる他の分子を付加する(分子量は大きくなる)反応で、抱合(ほうごう)ともいう反応において、付加される分子として、硫酸、酢酸、グルタチオン、グルクロン酸などを抱合する酵素群である。本明細書では「第II相薬物代謝酵素」を、「第II相酵素群」とも記載する。
The term "well plate" refers to an experimental / inspection instrument consisting of a flat plate with a large number of depressions (holes or wells), wherein each well is used as a test tube or petri dish. The number of wells includes, for example, 6, 24, 96, 384, etc., and the number of wells is more than that. The bottom of the well may be flat or round, or may be a combination of many elongated microtubes (deep well plate).
The term "drug metabolizing enzyme" is a generic term for enzymes involved in reactions to degrade or excrete in vitro substances such as drugs and toxic substances (xenobiotics Xenobiotics, also referred to as foreign substances).
The term "phase I drug metabolizing enzyme" refers to a group of enzymes involved in hydrolysis, oxidation reaction, reduction reaction of ester etc. as a reaction that lowers (degrades) or does not significantly change the molecular weight of the target substance called phase I reaction It is. The oxidation reaction is mainly oxidation by cytochrome P450 (P450).
The term “phase II drug metabolizing enzyme” is a reaction that adds another molecule called a phase II reaction (the molecular weight increases), and as a molecule to be added in a reaction also referred to as conjugation (googau), sulfuric acid, It is a group of enzymes that conjugate acetic acid, glutathione, glucuronic acid and the like. In the present specification, “phase II drug metabolizing enzyme” is also described as “phase II enzyme group”.
 以下の説明において、「値Aから値Bの範囲」という場合には、特に明記していない限り、「値A以上値B以下」を意味する。
 加えて、「A、B、・・・、C、及びこれらの組合せ」という記載の「これらの組合せ」は、その前に記載のA、B、・・・、Cのうちの二つ以上の任意の数の組合せであることを意味する。言い換えると、「A、B、・・・、C、及びこれらの組合せ」は、A、B、・・・、Cのうちのいずれか一つと、これらの任意の数の組合せとのうちの一方、ということもできる。
In the following description, the term “range from value A to value B” means “value A or more and value B or less” unless otherwise specified.
In addition, “these combinations” described as “A, B,..., C, and combinations thereof” are two or more of A, B,. Means any combination of numbers. In other words, "A, B, ..., C, and a combination thereof" is any one of A, B, ..., C, and any combination of these. It can also be said.
 一実施形態は、立体培養した細胞に被験物質と代謝酵素阻害剤を同時に添加することで代謝物による毒性か否かを生細胞と死細胞を可視化して評価する新しいスクリーニング系を提供する。この方法では、非特許文献1のようなゲルを用いることなく立体培養でき、さらに、光透過性の高い培養方法であるため顕微鏡を使った可視化も可能である。毒性スクリーニング方法は、例えば、第1乃至第4工程の手順を実施する。以下に第1乃至第4工程の概略を説明する。なお、第1乃至第4工程は説明を容易にするために工程を分けたものであり、これに限られるものではない。
 第1工程は、複数の肝細胞を立体的に培養する培養処理である。
 第2工程は、被験化合物を含む溶液、被験化合物と薬物代謝酵素の阻害剤を含む溶液、または被験化合物を含まない溶液を立体的に培養した複数の肝細胞と接触させる被験化合物処理である。
 第3工程は、蛍光プローブを含む溶液と複数の肝細胞とを接触させる蛍光プローブ処理である。
 第4工程は、被験化合物の毒性を判定する判定処理である。
 以下、一実施形態の評価方法について、最初に培養処理で用いる培養容器について説明し、次に、培養処理から判定処理までを実施する毒性スクリーニング方法の手順について詳細に説明する。
One embodiment provides a new screening system for visualizing live cells and dead cells to evaluate whether or not they are toxic due to a metabolite by simultaneously adding a test substance and a metabolic enzyme inhibitor to cells cultured in three dimensions. In this method, three-dimensional culture can be performed without using a gel as described in Non-Patent Document 1, and furthermore, since it is a culture method with high light permeability, visualization using a microscope is also possible. The toxicity screening method carries out, for example, the procedures of the first to fourth steps. The outline of the first to fourth steps will be described below. The first to fourth steps are obtained by dividing the steps in order to facilitate the description, and the present invention is not limited thereto.
The first step is a culture treatment of culturing a plurality of hepatocytes in a three-dimensional manner.
The second step is a test compound treatment in which a solution containing a test compound, a solution containing a test compound and an inhibitor of a drug metabolizing enzyme, or a solution not containing a test compound is brought into contact with a plurality of hepatocytes cultured sterically.
The third step is fluorescent probe treatment in which a solution containing a fluorescent probe is brought into contact with a plurality of hepatocytes.
The fourth step is a determination process of determining the toxicity of the test compound.
In the following, regarding the evaluation method of one embodiment, the culture vessel used in the culture treatment will be described first, and then the procedure of the toxicity screening method for performing from the culture treatment to the determination treatment will be described in detail.
1.培養容器
 培養容器は、肝細胞を立体的に培養できる培養容器を用いる。言い換えると、複数の細胞が積層して立体的な形状を有する肝細胞を製造できる培養容器であればよい。特に、凝集体形状を有する肝細胞を製造することが好ましい。以下に、培養容器の一例として、凝集体を形成させるための容器の好ましい例を説明する。
1. Culture Container The culture container uses a culture container capable of three-dimensionally culturing hepatocytes. In other words, any culture vessel may be used as long as a plurality of cells are stacked to produce hepatocytes having a three-dimensional shape. In particular, it is preferable to produce hepatocytes having an aggregate shape. Hereinafter, a preferred example of a container for forming aggregates will be described as an example of the culture container.
* 培養容器の概略
 図1は、本発明の一実施形態で用いる培養プレートの全体を示す図である。図2Aは、図1に示す培養プレートのII-II線断面図であり、図2Bに、他の態様の断面図を示す。培養プレート1は、複数のウェル21を備える。複数のウェル21は、仕切り部22によって、隣り合うウェル21と隔てられる。複数のウェル21それぞれには、培養容器10が形成されている。
 図3に、本発明の実施形態で用いる培養容器の構成例を示す。図4は、図3に示す培養容器のIV-IV線断面図である。
 培養容器10は、培養空間11と、壁12と、底部13とを有する。
 培養空間11は、壁12と底部13とで仕切られた領域であり、細胞を培養する三次元の空間領域(培養領域)となる。培養空間11は、単に「空間」、または「マイクロ空間」とも称する。
 壁12は、培養空間11を仕切る隔壁であり、培養容器10に凹凸パターンを形成する凸部ともいえる。培養空間11が仕切り部22に隣接する場合、壁12は、図2Aに示すように、仕切り部22の壁面の一部分と同じになってもよいし、図2Bに示すように、仕切り部22の壁面に隣接して壁12が配置されてもよい。
 底部13は、培養容器10の基板として機能するとともに、培養空間11が配置される側の表面は、培養領域(培養表面)の一部となる。底部13は、培養プレート1に形成された各ウェル21の底部と同じ領域であり、各ウェル21の底部が用いられる。底部13は、培養空間11の底を形成する。底部13のうち、培養空間11を形成する面の一部分であり、かつ、培養領域となる底部の表面を、「底部培養面14」とも称する。
* Outline of Culture Container FIG. 1 is a view showing the whole culture plate used in one embodiment of the present invention. FIG. 2A is a cross-sectional view taken along line II-II of the culture plate shown in FIG. 1, and FIG. 2B shows a cross-sectional view of another embodiment. The culture plate 1 comprises a plurality of wells 21. The plurality of wells 21 are separated from the adjacent wells 21 by the partition portion 22. A culture vessel 10 is formed in each of the plurality of wells 21.
The structural example of the culture container used by FIG. 3 at embodiment of this invention is shown. FIG. 4 is a cross-sectional view taken along line IV-IV of the culture vessel shown in FIG.
The culture vessel 10 has a culture space 11, a wall 12 and a bottom 13.
The culture space 11 is a region partitioned by the wall 12 and the bottom 13, and serves as a three-dimensional space region (culture region) in which cells are cultured. The culture space 11 is also referred to simply as "space" or "microspace".
The wall 12 is a partition that divides the culture space 11, and can be said to be a convex portion that forms a concavo-convex pattern in the culture container 10. When the culture space 11 is adjacent to the partition 22, the wall 12 may be the same as a part of the wall of the partition 22 as shown in FIG. 2A, or as shown in FIG. 2B. The wall 12 may be disposed adjacent to the wall surface.
The bottom portion 13 functions as a substrate of the culture container 10, and the surface on which the culture space 11 is disposed is a part of the culture region (culture surface). The bottom 13 is the same area as the bottom of each well 21 formed in the culture plate 1, and the bottom of each well 21 is used. The bottom 13 forms the bottom of the culture space 11. The surface of the bottom which is a part of the surface of the bottom 13 which forms the culture space 11 and which is to be a culture region is also referred to as “bottom culture surface 14”.
 図3,4では、培養容器10に形成される培養空間11に関して、相当直径D、高さ(深さ)H、壁12の幅(厚さ)W、及び、底部13の厚さTを示す。図3,4では、底部13は、壁12と一体として作製された場合を示している。
 相当直径Dは、培養空間11に内接する内接円の直径をいう。より詳しくは、相当直径Dは、培養空間11の底部13と平行する面の形状(正面の形状)、言い換えると、培養空間11の高さHの方向と垂直になる面の形状の内接円の直径をいう。培養空間11の正面の形状が、高さHに応じて異なる場合、肝細胞を培養する空間領域の最大値を相当直径とする。
 高さHは、培養空間11の底(底部培養面14)から壁12の上面までの長さであり、培養空間11の深さでもあるともいえる。また、底部培養面14が平面の場合、高さHは、壁12の高さと同じである。
 壁12の幅Wは、壁12の厚さであるとともに、隣接する培養空間11間を隔てる距離であるともいえる。
3 and 4 show the equivalent diameter D, height (depth) H, width (thickness) W of the wall 12 and thickness T of the bottom 13 with respect to the culture space 11 formed in the culture vessel 10 . In FIG.3, 4, the bottom part 13 has shown the case where it was produced integrally with the wall 12. As shown in FIG.
The equivalent diameter D refers to the diameter of the inscribed circle inscribed in the culture space 11. More specifically, the equivalent diameter D is the shape of the surface parallel to the bottom 13 of the culture space 11 (front shape), in other words, the inscribed circle of the shape perpendicular to the direction of the height H of the culture space 11 The diameter of When the shape of the front of the culture space 11 differs depending on the height H, the maximum value of the space area for culturing the hepatocytes is taken as the equivalent diameter.
The height H is a length from the bottom of the culture space 11 (bottom culture surface 14) to the upper surface of the wall 12, and can also be said to be the depth of the culture space 11. When the bottom culture surface 14 is flat, the height H is the same as the height of the wall 12.
The width W of the wall 12 is the thickness of the wall 12 and can also be said to be the distance separating the adjacent culture spaces 11.
 培養容器10内(言い換えると、各ウェル21内)において、複数の培養空間11は、図3に示すようにアレイ状に配置される。培養容器10に含まれる培養空間11の数または大きさは、培養プレート1に作製されるウェル21の数(ウェル21の大きさ)と培養空間11及び壁12の大きさに依存するものである。具体的には、ウェル21の数が多くなるに従って、培養空間11の数が小さくなる関係にある。同じ大きさのウェル21のとき、ウェル21の中の培養空間11の数は、相当直径Dが大きい場合や幅Wが大きい場合に小さくなる関係にある。図1乃至4では、構成をわかりやすく説明するため、培養空間11の数を少なくして表した概略図であり、培養容器10に含まれる培養空間11の数は実際とは異なる。加えて、図3,4では、9個の培養空間11を示している。これは説明のために示したものであり、実際の培養容器10(各ウェル21)に含まれる培養空間11の数に対応するものではない。 In culture container 10 (in other words, in each well 21), a plurality of culture spaces 11 are arranged in an array as shown in FIG. The number or size of culture spaces 11 contained in culture vessel 10 depends on the number of wells 21 (size of wells 21) prepared in culture plate 1 and the sizes of culture spaces 11 and walls 12 . Specifically, as the number of wells 21 increases, the number of culture spaces 11 decreases. In the case of wells 21 of the same size, the number of culture spaces 11 in the wells 21 has a relation of decreasing when the equivalent diameter D is large or the width W is large. FIGS. 1 to 4 are schematic views in which the number of culture spaces 11 is reduced to express the configuration in an easily understandable manner, and the number of culture spaces 11 included in the culture vessel 10 is different from the actual number. In addition, in FIGS. 3 and 4, nine culture spaces 11 are shown. This is shown for the purpose of explanation, and does not correspond to the number of culture spaces 11 included in the actual culture container 10 (each well 21).
 発明者らは、凝集体の直径が30~200μmであって、この大きさの凝集体を作製するためには、相当直径Dが所望する凝集体の直径の1~5倍であり、高さHが相当直径Dの0.1倍~3倍である培養空間11を複数有するとともに、該培養空間表面の水接触角が45度以下である培養容器10を使用し、各培養空間11で肝細胞を培養することによって、上述した直径の肝細胞の凝集体を培養することができることを見出した。 We have found that the diameter of the aggregates is between 30 and 200 μm, and in order to make aggregates of this size, the equivalent diameter D is 1 to 5 times the diameter of the desired aggregates, and the height is A culture vessel 10 having a plurality of culture spaces 11 in which H is 0.1 times to 3 times the equivalent diameter D and having a water contact angle of 45 degrees or less on the surface of the culture spaces is used. It has been found that by culturing the cells it is possible to culture aggregates of hepatocytes of the above mentioned diameter.
 図1乃至4を参照して、所望の凝集体を形成させるためのマイクロオーダの培養空間11の大きさ、形状等と、培養表面の特性を説明する。
* 培養空間の大きさ、形状等
 細胞を播種した後、壁11を乗り越えて隣り合う培養空間11に移動しない、すなわち凝集体を形成するまでは、培養空間11に細胞を保持しておくことが重要となる。そのため、高さHが相当直径Dの0.1倍~3倍であることが好ましく、細胞を保持するためにはHは高いほうがよく、かつ、栄養分の供給を円滑に行うためには、高さHは低い方が良いことから、高さHが相当直径Dの0.2~1倍がより好ましい。凝集体の相当直径は、培養空間11によって規定されるため、培養空間11の相当直径Dは、所望する凝集体の直径の1~5倍の範囲が好ましく、1.2~4倍の範囲がより好ましい。
 例えば、直径100μmの肝細胞の凝集体を形成させるために、所望する凝集体の直径の1~5倍の範囲、即ち、相当直径Dが100~500μmの範囲で、高さHが相当直径の0.1~3倍の範囲の培養空間11が規則的に配置されている底部13を有する培養容器10を用いる。
The size, shape, etc. of the micro-order culture space 11 for forming a desired aggregate and characteristics of the culture surface will be described with reference to FIGS. 1 to 4.
* Size and shape of culture space, etc. After seeding the cells, they will not move over the wall 11 and move to the adjacent culture space 11, that is, the cells may be retained in the culture space 11 until aggregates are formed. It becomes important. Therefore, it is preferable that the height H be 0.1 to 3 times the equivalent diameter D. It is preferable that H be high to retain cells, and high to smoothly supply nutrients. The height H is more preferably 0.2 to 1 times the equivalent diameter D because the height H is preferably lower. Since the equivalent diameter of the aggregate is defined by the culture space 11, the equivalent diameter D of the culture space 11 is preferably in the range of 1 to 5 times the desired diameter of the aggregate and in the range of 1.2 to 4 times More preferable.
For example, in order to form aggregates of hepatocytes having a diameter of 100 μm, the height H of the equivalent diameter is within the range of 1 to 5 times the desired diameter of the aggregate, ie, the equivalent diameter D is 100 to 500 μm. A culture vessel 10 having a bottom 13 in which culture spaces 11 ranging from 0.1 to 3 times are regularly arranged is used.
 一実施形態では、試験溶液を凝集体中心部まで拡散または輸送させるためには、凝集体の直径は最大200μm未満、好ましくは150μm以下が好ましい。さらに加えて、細胞間の相互作用を最大限に引き出すためには、凝集体の直径は、最小50μmが好ましく、60μm~150μmの範囲がより好ましい。 In one embodiment, in order to diffuse or transport the test solution to the center of the aggregate, the diameter of the aggregate is preferably at most 200 μm, preferably 150 μm or less. In addition, in order to maximize interaction between cells, the diameter of the aggregate is preferably at least 50 μm, more preferably in the range of 60 μm to 150 μm.
 壁12の幅Wは、培養空間11と隣接する培養空間11を隔てる壁12の厚みである。従って、壁12の幅Wは、壁12の上面を超えて細胞が移動することを防ぐため、かつ、細胞が培養空間11内に入りやすくするため、10μm以上50μm未満がよく、好ましくは、細胞体1個以下の大きさ、即ち5~30μmの範囲が好ましく、5~10μmの範囲がより好ましい。さらに、同様の観点から、壁12の上面と培養空間11の側面とのなす角θは、90~135度の範囲が好ましく、90度~120度の範囲がより好ましい。 The width W of the wall 12 is the thickness of the wall 12 separating the culture space 11 and the culture space 11 adjacent thereto. Therefore, the width W of the wall 12 is 10 μm or more and less than 50 μm in order to prevent migration of cells beyond the upper surface of the wall 12 and to facilitate entry of the cells into the culture space 11. The size of one body or less, that is, the range of 5 to 30 μm is preferable, and the range of 5 to 10 μm is more preferable. Furthermore, from the same viewpoint, the angle θ between the upper surface of the wall 12 and the side surface of the culture space 11 is preferably in the range of 90 to 135 degrees, and more preferably in the range of 90 degrees to 120 degrees.
 図5Aに、培養空間11で凝集体を培養する状態を表す概略図を示す。図5Aでは、図4に示す断面図を用い、凝集体9を、○印で示す。凝集体9は、複数の培養空間11それぞれにおいて培養される。
 図1に示す培養プレート1で培養する場合、ウェル21毎に培養条件の設定、培地の交換等を実施することになる。そのため、各ウェル21に複数の培養空間11を形成するため、各ウェル21において、同条件で複数の凝集体を培養することが可能になる。加えて、ウェルプレートを用いて凝集体を培養することができるため、従来の細胞培養で用いる装置等を利用することが可能になる。
 凝集体9の直径DSPを値dsp(dspは正の数値)とすると、培養空間11の相当直径Dは、値dspから値dspの5倍の範囲(dsp≦D≦5dsp)が好ましい範囲となる。また、培養空間11の高さHは、値dspの0.3倍から値dspの25倍(5×5)の範囲(0.3dsp≦H≦25dsp)が好ましい範囲となる。
FIG. 5A is a schematic view showing a state in which the aggregate is cultured in the culture space 11. In FIG. 5A, the aggregate 9 is indicated by a circle using the cross-sectional view shown in FIG. Aggregates 9 are cultured in each of a plurality of culture spaces 11.
In the case of culturing on the culture plate 1 shown in FIG. Therefore, in order to form a plurality of culture spaces 11 in each well 21, it becomes possible to culture a plurality of aggregates under the same conditions in each well 21. In addition, since aggregates can be cultured using a well plate, it becomes possible to use an apparatus or the like used in conventional cell culture.
Assuming that the diameter DSP of the aggregate 9 is a value dsp (dsp is a positive numerical value), the equivalent diameter D of the culture space 11 is preferably in the range from the value dsp to five times the value dsp (dsp ≦ D ≦ 5 dsp) . Further, the height H of the culture space 11 is preferably in the range of 0.3 times the value dsp to 25 times (5 × 5) the value dsp (0.3 dsp ≦ H ≦ 25 dsp).
 図5Bに、培養空間で培養した凝集体の好ましいサイズの一例を説明する模式図を示す。図5Bは、凝集体9の相当直径Dに沿って切断した切断部端面を模式的に示した図である。上述したように、凝集体の直径の平均が30μm以上200μm未満であることが好ましく、特に、60μm~150μmの範囲が好ましい。図5Bでは、凝集体9の切断部端面が5個の細胞8により形成されている様子を示す。例えば、細胞8の直径DCLが20μmであり、凝集体9の直径DSPが60μmの凝集体9を形成する場合には、例えば、細胞8が直線上に3個並ぶことにより形成される。同様に、凝集体9の直径DSPが150μmの凝集体9を形成する場合には、例えば、細胞8が直線上に5個並ぶことにより形成される。図5Bは説明を容易にするために細胞8を直線上に並べて模式的に示したものであり、細胞8は必ずしも直線上に並ぶとは限らない。
 加えて、培養する立体的な細胞は、凝集体9の下位概念である、スフェロイドを培養する場合であってもよい。図5Cに、培養空間11でスフェロイド9aを培養する状態を表す概略図を示し、図5Dに、培養空間で培養したスフェロイド9aの好ましいサイズの一例を説明する模式図を示す。スフェロイド9aは、凝集体9より球状に形成される細胞塊である。
FIG. 5B is a schematic view illustrating an example of a preferable size of the aggregate cultured in the culture space. FIG. 5B is a view schematically showing an end face of a cut portion cut along the equivalent diameter D of the aggregate 9. As described above, the average diameter of the aggregates is preferably 30 μm or more and less than 200 μm, and particularly preferably in the range of 60 μm to 150 μm. FIG. 5B shows that the end face of the cut portion of aggregate 9 is formed of five cells 8. For example, in the case where the diameter DCL of the cells 8 is 20 μm and the diameter DSP of the aggregates 9 forms the aggregates 9 of 60 μm, for example, three cells 8 are formed in a straight line. Similarly, when the diameter DSP of the aggregate 9 forms an aggregate 9 of 150 μm, it is formed, for example, by arranging five cells 8 on a straight line. FIG. 5B schematically shows the cells 8 aligned on a straight line for ease of explanation, and the cells 8 are not necessarily aligned on a straight line.
In addition, the steric cells to be cultured may be in the case of culturing spheroids, which is a subordinate concept of aggregate 9. FIG. 5C is a schematic view showing a state in which the spheroid 9a is cultured in the culture space 11, and FIG. 5D is a schematic view illustrating an example of a preferable size of the spheroid 9a cultured in the culture space. The spheroid 9 a is a cell mass which is formed more spherically than the aggregate 9.
 加えて、1試験領域(1ウェル、1シャーレ)にある凝集体は、その直径が半値幅の範囲内にあるものが全体の70%以上含まれることが好ましい。言い換えると、凝集体の直径の大きさがそろっていることが好ましい。その理由は以下の通りである。まず、凝集体の大きさによって代謝活性値が異なることが知られていることから、様々な直径の凝集体が混在していると精度の高い結果が得られない。また、小さい(50μm以下の)凝集体の代謝機能は極端に低いことが知られている。即ち小さい凝集体は代謝物の生成量が少なく細胞死が観察できない場合が考えられる。毒性を判定する際には、1ウェル内で細胞死が起きている部分とそうでない部分が混在するため毒性有無を正確に判定することができない可能性がある。 In addition, it is preferable that the aggregate in one test area (one well, one petri dish) contains 70% or more of the whole whose diameter is within the half width range. In other words, it is preferable that the diameters of the aggregates have the same size. The reason is as follows. First, since it is known that the value of the metabolic activity varies depending on the size of the aggregate, high accuracy results can not be obtained when aggregates of various diameters are mixed. In addition, it is known that the metabolic function of small aggregates (less than 50 μm) is extremely low. That is, small aggregates may have a small amount of metabolite and cell death may not be observed. When determining the toxicity, there is a possibility that the presence or absence of the toxicity can not be accurately determined because a part where cell death is occurring and a part where it does not exist are mixed in one well.
 培養空間11の形状(正面の形状)、あるいは、底部13と平行な面の形状は、図3に示す形状に限定されるものではなく、例えば、図6A~6Bに示すような形状であっても、その他の形状(楕円や菱形など)であってもよい。より高密度で均一な直径を有する凝集体を形成させるためには、左右対称構造であることが好ましい。
 培養空間11の側面の形状は、図4に示す形状に限定されるものではなく、例えば、図7A~7Cに示すような形状であってもよい。
The shape of the culture space 11 (the shape of the front) or the shape of the plane parallel to the bottom 13 is not limited to the shape shown in FIG. 3 and may be, for example, a shape as shown in FIGS. Also, it may be another shape (such as an ellipse or a rhombus). In order to form an aggregate having a higher density and uniform diameter, it is preferable that the structure is symmetrical.
The shape of the side surface of the culture space 11 is not limited to the shape shown in FIG. 4, and may be, for example, the shape shown in FIGS. 7A to 7C.
 培養容器10を構成する材料としては、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、シリコン樹脂、及びこれらの組合せからなる群から選択される。 As materials constituting the culture vessel 10, acrylic resin, polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin, ethylene / vinyl alcohol It is selected from the group consisting of a base copolymer resin, a thermoplastic elastomer, a vinyl chloride resin, a silicone resin, and a combination thereof.
 培養容器10の底部13の厚さTは、観察性の観点から、1mm以下が好ましい。ただし、顕微鏡での観察に支障をきたさない限り、1mm以上であってもよく、底部13の厚さTを限定するものではない。培養容器の底部13の観察性を確保することにより、培養プレートをそのまま用いて、培養した凝集体を観察することが可能になる。培養容器の観察性を確保することにより、培養容器をそのまま用いて、免疫組織学法による蛍光染色観察などのイメージング技術を適用することが可能となる。
 加えて、培養容器10の底部13を構成するポリマーの全光線透過率が、85%以上99%未満であることが好ましい。全光線透過率(total luminous transmittance)は、日本工業規格(JIS K7375)により測定する。全光線透過率を高くすることにより、底部13の上に培養された凝集体の観察性を確保することができる。さらに加えて、培養容器10(ウェル)の底部の厚さが300μm以下であることが好ましい。
The thickness T of the bottom portion 13 of the culture vessel 10 is preferably 1 mm or less from the viewpoint of observability. However, 1 mm or more may be sufficient as long as it does not affect observation with a microscope, and the thickness T of the bottom portion 13 is not limited. By securing the observability of the bottom 13 of the culture vessel, it is possible to observe the cultured aggregate using the culture plate as it is. By securing the observability of the culture vessel, it becomes possible to apply an imaging technique such as fluorescence staining observation by an immunohistological method by using the culture vessel as it is.
In addition, the total light transmittance of the polymer constituting the bottom 13 of the culture vessel 10 is preferably 85% or more and less than 99%. The total luminous transmittance is measured in accordance with Japanese Industrial Standard (JIS K7375). By increasing the total light transmittance, the observability of the aggregate cultured on the bottom 13 can be secured. Furthermore, the thickness of the bottom of the culture vessel 10 (well) is preferably 300 μm or less.
* 培養表面の特性
 次に、細胞を培養する培養表面、すなわち、培養空間11を囲む壁12及び底部培養面14の特性、特に親水化処理について説明する。培養表面は、各培養空間11内に培地を入れるため、また、コーティング溶液を用いる場合には、その溶液が培養空間11内に入り込まなければ表面を覆うことができない。このため、水接触角を45度以下にすることが好ましい。より好ましくは0度~20度の範囲である。また、水接触角の値は、培養空間11と壁12の凹凸パターンが形成されていない平板を、培養容器10と同条件で作製して測定した値を前提とする。
* Characteristics of Culture Surface Next, the characteristics of the culture surface on which cells are cultured, that is, the wall 12 surrounding the culture space 11 and the bottom culture surface 14, in particular, the hydrophilization treatment will be described. The culture surface can not cover the surface because the culture medium contains the culture medium in each culture space 11, and when the coating solution is used, the solution does not enter the culture space 11. For this reason, it is preferable to make a water contact angle 45 degrees or less. More preferably, it is in the range of 0 degrees to 20 degrees. Further, the value of the water contact angle is assumed to be a value obtained by preparing and measuring a flat plate on which the concavo-convex pattern of the culture space 11 and the wall 12 is not formed, under the same conditions as the culture vessel 10.
 培養空間11をアレイ状に配置した表面に関して、当該表面の疎水性が高く水接触角が45度を超えると、すなわち濡れ性が低い場合は、培地やコート溶液を添加した際、空間に気泡が入りやすくなり、細胞が培養できない空間が生じることがある。そのため、水接触角が45度以下になるよう、親水化を行うことが必要である。親水化する方法としては、SiOを蒸着する方法や、プラズマ処理を行う方法が挙げられる。 When the culture space 11 is arranged in an array, if the surface is highly hydrophobic and the water contact angle exceeds 45 degrees, that is, if the wettability is low, air bubbles will form in the space when the culture medium or the coating solution is added. It may be easy to enter, resulting in spaces where cells can not be cultured. Therefore, it is necessary to perform hydrophilization so that the water contact angle is 45 degrees or less. As a method of making it hydrophilic, a method of depositing SiO 2 and a method of performing plasma treatment may be mentioned.
 加えて、培養容器10で効率よく凝集体を形成させるため、初代肝細胞では細胞接着性を高め、株化肝細胞の場合は細胞接着性を抑制することが好ましい。
上述した親水化処理を行った後、細胞接着性を促進する物質または細胞接着性を抑制する物質をコートして接着性を制御することにより、効率よく凝集体を形成させることができる。例えば、プラズマ処理を施し、水接触角を45度以下にした後、ポリ‐L-リシンをコートして細胞接着性を高めてもよい。
In addition, in order to form aggregates efficiently in the culture vessel 10, it is preferable to increase cell adhesion in primary hepatocytes and to suppress cell adhesion in the case of established hepatocytes.
After performing the above-described hydrophilization treatment, aggregates can be efficiently formed by coating a substance that promotes cell adhesion or a substance that suppresses cell adhesion to control adhesion. For example, after plasma treatment to reduce the water contact angle to 45 degrees or less, poly-L-lysine may be coated to enhance cell adhesion.
2.培養処理から判定処理までの手順
 一実施形態の毒性スクリーニング方法は、操作性の観点から、複数のウェルを備える培養プレートを用いることが好ましい。特に、培養処理(第1工程)から蛍光プローブ処理(第3工程)までを同一のウェル21内(言い換えると、同一の細胞容器10内)で行うことがより好ましい。特に、培養プレートの各ウェルには、凹凸パターンによって形成される複数の培養空間を有する培養容器が形成されていることが好ましい。そのため、一実施形態では、図1に示す培養プレート1の複数のウェル21を用い、複数のウェル21のうち、一つのウェル21内で培養処理から蛍光プローブ処理までの工程を実施する場合を説明する。言い換えると、一つのウェル21内で培養処理、被験化合物処理、及び蛍光プローブ処理を実施し、各処理で細胞を別のウェル21に移動させることはない。
 例えば、多数の化合物を同時にスクリーニングするような場合、自動培養装置や自動分析装置を用いる。このような場合には、コンタミネーションのリスクを減らすために、培養処理で形成させた立体的に培養した肝細胞を別の容器に移し替えることなく被験化合物処理及び蛍光プローブ処理を行うことが望ましい。
 加えて、複数のウェルを有する培養プレート(ウェルプレート)形状を使用し検体数に応じて、6、24、48、96、384ウェルのいずれかの培養プレートを選択することが好ましい。
2. Procedure from culture treatment to judgment treatment In the toxicity screening method of one embodiment, it is preferable to use a culture plate provided with a plurality of wells from the viewpoint of operability. In particular, it is more preferable to perform culture treatment (first step) to fluorescence probe treatment (third step) in the same well 21 (in other words, in the same cell container 10). In particular, it is preferable that a culture vessel having a plurality of culture spaces formed by the concavo-convex pattern be formed in each well of the culture plate. Therefore, in one embodiment, the case of performing the steps from the culture treatment to the fluorescent probe treatment in one well 21 of the plurality of wells 21 using the plurality of wells 21 of the culture plate 1 shown in FIG. 1 will be described Do. In other words, culture treatment, test compound treatment, and fluorescent probe treatment are performed in one well 21 and cells are not moved to another well 21 in each treatment.
For example, when screening a large number of compounds simultaneously, an automatic culture apparatus or an automatic analyzer is used. In such a case, in order to reduce the risk of contamination, it is desirable to perform the test compound treatment and the fluorescent probe treatment without transferring the sterically cultured hepatocytes formed by the culture treatment to another container. .
In addition, it is preferable to select any of 6, 24, 48, 96, and 384-well culture plates according to the number of specimens using a culture plate (well plate) shape having a plurality of wells.
* 培養処理
 培養処理では、上述した培養容器10によって形成される複数の培養空間11を用いる。ウェルプレート内の各ウェル21には複数の培養空間11が形成されている。各培養空間11で肝細胞を立体的に培養し、複数の培養空間11に複数の肝細胞を形成させる。言い換えると、ウェルプレート内で細胞を三次元的に培養し、所望の大きさの複数の肝細胞を形成する。
 培養する肝細胞の由来は、ヒト、げっ歯類、ラット、イヌ、及びサルのうちいずれかから選択されることが好ましい。加えて、肝細胞は、初代肝細胞であることがより好ましい。
* Culture treatment In the culture treatment, a plurality of culture spaces 11 formed by the culture vessel 10 described above are used. A plurality of culture spaces 11 are formed in each well 21 in the well plate. The hepatocytes are three-dimensionally cultured in each culture space 11 to form a plurality of hepatocytes in a plurality of culture spaces 11. In other words, cells are three-dimensionally cultured in a well plate to form a plurality of hepatocytes of a desired size.
The source of hepatocytes to be cultured is preferably selected from any of human, rodent, rat, dog and monkey. In addition, the hepatocytes are more preferably primary hepatocytes.
 製造する肝細胞の相当直径は、30μm以上200μm未満が好ましい。
 形成した凝集体が、被験化合物を代謝する代謝酵素を発現しているかを確認したうえで添加処理を実施することが好ましい。
The equivalent diameter of the hepatocytes to be produced is preferably 30 μm or more and less than 200 μm.
It is preferable to carry out the addition treatment after confirming whether the formed aggregate expresses a metabolic enzyme that metabolizes the test compound.
 凝集体形状の肝細胞を得る方法として、ローラーボトル培養、スピナーフラスコ培養、ハンギングドロップ培養など特に限定されない。しかし、これらの方法では培養方法に応じた装置を使用するため、凝集体形成処理と接触処理とを別々の容器で行う必要が生じる。発明者らは、上述した培養容器10が形成されたウェル21を用いることにより、同一の容器で凝集体形成処理と接触処理とを実施できることを発見した。これにより、操作が簡便になり、形成した凝集体を移動させることなく、細胞に第1乃至第3培地を添加することが可能になる。特に、多くの化合物を一度に評価するような医薬品のスクリーニングにおいて、自動培養装置に利用することが可能となる。加えて、細胞の損傷や汚染を防止することが可能になる。 The method for obtaining the hepatocytes in the aggregate form is not particularly limited, such as roller bottle culture, spinner flask culture, hanging drop culture and the like. However, in these methods, since an apparatus corresponding to the culture method is used, it is necessary to perform aggregate formation treatment and contact treatment in separate containers. The inventors discovered that the aggregate formation treatment and the contact treatment can be performed in the same container by using the well 21 in which the culture container 10 described above is formed. This simplifies the operation and makes it possible to add the first to third media to the cells without moving the formed aggregates. In particular, it becomes possible to use for an automatic culture apparatus in the screening of medicines which evaluate many compounds at once. In addition, it becomes possible to prevent cell damage and contamination.
* 被験化合物処理
 被験化合物処理では、被験化合物を含むまたは被験化合物を含まない、第1乃至第3溶液のいずれかを立体的に培養した肝細胞へ曝露させる。第1溶液は、被験物質を含まないコントロール溶液である。第2溶液は、被験化合物を含む被験溶液である。第3溶液は、薬物代謝酵素反応を阻害する1種類以上の化合物(薬物代謝酵素の阻害剤)と被験化合物とを混合した混合溶液である。第1乃至第3溶液のいずれかを各肝細胞へ曝露させることにより、異なる溶液と接触させた複数の肝細胞を得る。言い換えると、第1溶液と曝露させた複数の肝細胞、第2溶液と曝露させた複数の肝細胞、及び、第3溶液と曝露させた複数の肝細胞を得る。
 各肝細胞に接触させる第1乃至第3溶液に用いる溶媒としては、蛍光染色像を得る際のバックグラウンドを小さくするためにフェノールレッドを含まない培地を用いることが好ましい。加えて、血清中に含まれるサイトカインによる細胞への影響を排除するために血清を含まないことが好ましい。一方で、各試験溶液と細胞を48時間以上接触させる場合は細胞の生理機能を保つため0.1~1%の範囲の血清を加えても良い。
* Test compound treatment In the test compound treatment, any of the first to third solutions containing the test compound or not containing the test compound is exposed to sterically cultured hepatocytes. The first solution is a control solution containing no test substance. The second solution is a test solution containing a test compound. The third solution is a mixed solution in which one or more compounds (inhibitors of drug metabolizing enzyme) that inhibit the drug metabolizing enzyme reaction are mixed with a test compound. By exposing any of the first to third solutions to each hepatocyte, a plurality of hepatocytes contacted with different solutions are obtained. In other words, a plurality of hepatocytes exposed to the first solution, a plurality of hepatocytes exposed to the second solution, and a plurality of hepatocytes exposed to the third solution are obtained.
As a solvent used for the first to third solutions to be brought into contact with each hepatocyte, it is preferable to use a medium containing no phenol red in order to reduce background when obtaining a fluorescent staining image. In addition, it is preferable not to contain serum in order to eliminate the influence on cells by cytokines contained in the serum. On the other hand, when each test solution is brought into contact with cells for 48 hours or more, serum in the range of 0.1 to 1% may be added to maintain the physiological function of the cells.
 第1乃至第3溶液の溶媒は200~315mOsm/kg・HOの浸透圧であって、pH域が6.8~8.4に緩衝作用があればよい。加えて、細胞の生理機能を一定に保つためには、グルコース及びアミノ酸、ビタミン類などの栄養素が含まれているものを使用することが好ましい。例えばダルベッコ変法イーグル培地(DEM:Dulbecco's Eagle medium)とNutrient Mixture F-12の混合培地を用いることで生理機能が一定に保たれる。
 被験物質および薬物代謝酵素阻害剤の濃度は、任意の薬剤の濃度の溶液を1時間から96時間の範囲で肝細胞と接触させ、生存率が80%を超える濃度を採用する。濃度が低すぎる場合は反応性代謝物による毒性が観察されない場合も想定されるため、生存率が80%を下回らない範囲でできる限り高い濃度の被験物質の溶液を最大濃度として用いることが好ましい。最大濃度の1/2~1/100の範囲の複数の濃度の被験物質を用いることがより好ましい。
The solvent of each of the first to third solutions may have an osmotic pressure of 200 to 315 mOsm / kg · H 2 O, and may have a buffer action in the pH range of 6.8 to 8.4. In addition, in order to keep the physiological function of the cells constant, it is preferable to use one containing glucose and nutrients such as amino acids and vitamins. For example, by using a mixed medium of Dulbecco's modified Eagle's medium (DEM: Dulbecco's Eagle medium) and Nutrient Mixture F-12, the physiological function can be kept constant.
The concentrations of the test substance and the drug metabolizing enzyme inhibitor are prepared by bringing a solution of any drug concentration into contact with hepatocytes in the range of 1 hour to 96 hours, and adopting a concentration with a survival rate of over 80%. If the concentration is too low, it is assumed that no toxicity due to reactive metabolites is observed, so it is preferable to use a solution of a test substance with a concentration as high as possible without exceeding a viability of 80% as the maximum concentration. It is more preferable to use multiple concentrations of the test substance in the range of 1/2 to 1/100 of the maximum concentration.
* 蛍光プルーブ処理
 蛍光プローブ処理は、蛍光プローブを含む溶液と複数の肝細胞とを接触させる。蛍光プローブは、生細胞を認識する蛍光プローブ、死細胞を認識する蛍光プローブ、及びこれらの組合せからなる群から選択される。
 蛍光染色像を得る装置としては、共焦点レーザ顕微鏡または蛍光顕微鏡を用いる。
* Fluorescent Probe Treatment Fluorescent probe treatment brings the solution containing the fluorescent probe into contact with a plurality of hepatocytes. The fluorescent probe is selected from the group consisting of a fluorescent probe that recognizes living cells, a fluorescent probe that recognizes dead cells, and a combination thereof.
A confocal laser microscope or a fluorescence microscope is used as an apparatus for obtaining a fluorescent stained image.
* 判定処理
 第4工程は、被験化合物の毒性を判定する判定処理である。判定処理は、染色後の複数の肝細胞を用いて蛍光染色像を得て、蛍光染色像のデータを元に被験化合物の毒性を判定する。蛍光染色像から判定条件を満たすことが検出されると、肝細胞による代謝を受けた被験化合物(反応性代謝物)が細胞毒性の要因であると判定する。言い換えると、被験化合物が肝細胞に有する薬物代謝酵素によって代謝を受けると、反応性代謝物が生成され、細胞毒性の要因となると判定できる。
 蛍光染色像の判定は、蛍光領域または蛍光強度を用いる。以下に、3種類の判定条件を示す。これらの判定条件のいずれか一つまたは複数を用いて判定することができる。
* Determination Process The fourth step is a determination process for determining the toxicity of the test compound. In the determination process, a fluorescent stained image is obtained using a plurality of stained hepatocytes, and the toxicity of the test compound is determined based on the data of the fluorescent stained image. When it is detected that the determination condition is satisfied from the fluorescent staining image, it is determined that the test compound (reactive metabolite) metabolized by the hepatocytes is a factor of cytotoxicity. In other words, when the test compound is metabolized by a drug-metabolizing enzyme possessed by hepatocytes, it can be determined that a reactive metabolite is produced and becomes a factor of cytotoxicity.
The determination of the fluorescent staining image uses a fluorescent region or a fluorescent intensity. Three types of determination conditions are shown below. It can be determined using any one or more of these determination conditions.
 蛍光領域を用いる場合には次の二種類の判定条件がある。
 蛍光領域を次のように定義する。
 第1溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第1生領域(A)とする。
 第2溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第2生領域(B)とする。
 第3溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第3生領域(C)とする。
 第1溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第1死領域(D)とする。
 第2溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第2死領域(E)とする。
 第3溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第3死領域(F)とする。
When using a fluorescent region, there are the following two types of determination conditions.
The fluorescent region is defined as follows.
A fluorescent region that recognizes living cells of hepatocytes contacted with the first solution is referred to as a first live region (A).
A fluorescent region that recognizes living cells of hepatocytes contacted with the second solution is referred to as a second live region (B).
A fluorescent region that recognizes living cells of hepatocytes contacted with the third solution is referred to as a third live region (C).
Let it be the first dead area (D) of the fluorescent area that recognizes dead cells of the hepatocytes contacted with the first solution.
The second dead area (E) of the fluorescent area that recognizes dead cells of the hepatocytes contacted with the second solution is used.
Let it be the third dead area (F) of the fluorescent area that recognizes dead cells of the hepatocytes contacted with the third solution.
 一つ目の判定条件は、以下の(1)と(2)との少なくとも一方であるときに肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定する。
(1)第1生領域が第2生領域より大きく、かつ、第2生領域が第3生領域より小さい(A>B、かつ、B<C)。
(2)第1死領域が第2死領域より小さく、かつ、第2死領域が第3死領域より大きい(D<E、かつ、E>F)
 二つ目の判定条件は、
 第1死領域を第1生領域で割った値が、第2死領域を第2生領域で割った値より小さく、かつ、第2死領域を第2生領域で割った値が、第3死領域を第3生領域で割った値より大きいとき、肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定する。記号で表すと次のような関係式になる。
 (D/A)<(E/B)、かつ、(E/B)>(F/C)
The first determination condition is that at least one of the following (1) and (2) determines that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity.
(1) The first live area is larger than the second live area, and the second live area is smaller than the third live area (A> B and B <C).
(2) The first dead area is smaller than the second dead area, and the second dead area is larger than the third dead area (D <E and E> F)
The second judgment condition is
The value obtained by dividing the first dead area by the first live area is smaller than the value obtained by dividing the second dead area by the second live area, and the value obtained by dividing the second dead area by the second live area is the third When it is larger than the value obtained by dividing the dead area by the third live area, it is determined that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity. It will be the following relational expression when it expresses with a symbol.
(D / A) <(E / B) and (E / B)> (F / C)
 蛍光強度を用いる場合には次の判定条件となる。
 蛍光強度を次のように定義する。
 第1溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第1生強度(G)とする。
 第2溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第2生強度(H)とする。
 第3溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第3生強度(I)とする。
 第1溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第1死強度(J)とする。
 第2溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第2死強度(K)とする。
 第3溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第3死強度(L)とする。
 判定条件は、以下の(3)と(4)との少なくとも一方であるときに肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定する。
(3)第1生強度が第2生強度より大きく、かつ、第2生強度が第3生強度より小さい(G>H、かつ、H<I)。
(4)第1死強度が第2死強度より小さく、かつ、第2死強度が第3死強度より大きい(J<K、かつ、K>L)。
In the case of using the fluorescence intensity, the following determination conditions are satisfied.
The fluorescence intensity is defined as follows.
The fluorescence intensity for recognizing living cells of the hepatocytes brought into contact with the first solution is taken as a first life intensity (G).
The fluorescence intensity for recognizing live cells of the hepatocytes brought into contact with the second solution is taken as the second life intensity (H).
The fluorescence intensity for recognizing live cells of the hepatocytes brought into contact with the third solution is taken as the third life intensity (I).
Let the first death intensity (J) of the fluorescence intensity that recognizes dead cells of the hepatocytes brought into contact with the first solution.
The second death intensity (K) of the fluorescence intensity for recognizing dead cells of the hepatocytes contacted with the second solution is used.
The third death intensity (L) of the fluorescence intensity for recognizing dead cells of the hepatocytes contacted with the third solution is used.
The determination condition is determined that the test compound that has been metabolized by hepatocytes is a factor of cytotoxicity when at least one of the following (3) and (4).
(3) The first green strength is larger than the second green strength, and the second green strength is smaller than the third green strength (G> H and H <I).
(4) The first dead strength is smaller than the second dead strength, and the second dead strength is larger than the third dead strength (J <K and K> L).
 蛍光観察を行う領域について、目視または定量化して第1乃至第3溶液を接触させた肝細胞の蛍光強度または面積(領域)を比較する方法で判定する。このため、被験化合物処理の操作の前の細胞の状態がすべての観察領域で同じである必要がある。同条件(細胞播種密度、培地等)で培養した場合であっても培養底面の細胞の接着面積が視野によって異なることが想定される。そのため、被験化合物処理の操作を行う前にあらかじめ顕微鏡を用い、第1乃至第3溶液それぞれを接触させた肝細胞が存在する領域(面積)が同じ場所を数箇所選択し、蛍光プルーブ処理の工程では、あらかじめ決定しておいた場所を撮影することが好ましい。
 この方法を用いることができない場合は、死細胞の面積と生細胞の面積との割合(死細胞の面積/生細胞の面積)を計算し判定することが好ましい。
The region to be subjected to the fluorescence observation is determined by a method of comparing the fluorescence intensity or the area (region) of the hepatocytes brought into contact with the first to third solutions visually or quantitatively. For this reason, the state of the cells prior to the test compound treatment operation needs to be the same in all observation areas. Even in the case of culturing under the same conditions (cell seeding density, medium, etc.), it is assumed that the adhesion area of cells on the bottom of the culture differs depending on the field of view. Therefore, before performing the test compound treatment operation, a microscope is used in advance to select several places having the same area (area) in which the hepatocytes brought into contact with the first to third solutions are present, and select several steps. Then, it is preferable to shoot a predetermined place.
When this method can not be used, it is preferable to calculate and determine the ratio of the area of dead cells to the area of living cells (area of dead cells / area of living cells).
 以上説明したように、一実施形態によれば、立体的に培養した細胞に被験物質と代謝酵素阻害剤を同時に添加することによって、被験物質が代謝酵素により代謝された代謝物による毒性か否かを生細胞と死細胞を可視化して評価する新しいスクリーニング系を提供することができる。
 また、一実施形態の培養処理は、特許文献1の培養方法に比べ、単一の細胞で毒性が発現した場合にそれがどの代謝酵素によるものかを評価できるので、複数種の細胞を維持する手間を省くことができる点で優れている。加えて、一実施形態の培養工程は、非特許文献1のようなゲルを用いることなく立体培養できる。さらに、一実施形態のスクリーニング方法は、培養処理から蛍光プローブ処理までの工程を、光透過性の高い培養プレートを用い、かつ、一連の処理を同じ培養プレートを用いる。このため、顕微鏡を使った可視化も可能である点で優れている。
As described above, according to one embodiment, whether the test substance is toxic due to a metabolite metabolized by a metabolic enzyme by simultaneously adding the test substance and the metabolic enzyme inhibitor to sterically cultured cells It can provide a new screening system to visualize and evaluate live and dead cells.
In addition, since the culture treatment of one embodiment can evaluate which metabolic enzyme is caused when a single cell expresses toxicity as compared to the culture method of Patent Document 1, multiple cells are maintained. It is excellent at the point which can save time and effort. In addition, the culture step of one embodiment can be three-dimensional culture without using a gel as described in Non-Patent Document 1. Furthermore, in the screening method of one embodiment, the process from the culture treatment to the fluorescent probe treatment uses a culture plate with high light permeability and uses the same culture plate in a series of treatments. Therefore, it is excellent in that visualization with a microscope is also possible.
 一実施形態の毒性スクリーニング方法の実施例について説明するが、一実施形態はこれら実施例に限定されるものではない。 Although the example of the toxicity screening method of one embodiment is described, one embodiment is not limited to these examples.
[実施例]
1.細胞の準備(培養処理)
(1-1)肝細胞の調製
 培養に用いる初代ラット肝細胞は以下のように調製した。6週齢のSD系ラットの門脈にサーフロー留置針を挿入し、EDTA含有溶液を流して脱血液を行った後、コラゲナーゼ溶液を還流した。その後、コラゲナーゼ溶液で処理された肝臓を培養液へ入れ、メスピペットによるピペッティングで肝細胞を分散させた。肝細胞懸濁液を3回洗浄し、肝細胞以外の細胞を除去し、単離した肝細胞を培養に用いた。
[Example]
1. Cell preparation (culture treatment)
(1-1) Preparation of Hepatocytes Primary rat hepatocytes used for culture were prepared as follows. A surflow indwelling needle was inserted into the portal vein of a 6-week-old SD rat, and the blood containing an EDTA solution was flushed to perform blood removal, and then the collagenase solution was refluxed. Thereafter, the collagenase solution-treated liver was added to the culture solution, and hepatocytes were dispersed by pipetting with a female pipette. The hepatocyte suspension was washed three times to remove cells other than hepatocytes, and the isolated hepatocytes were used for culture.
(1-2)培養容器
 図8に示す、24個のウェル21aを有する培養プレート(24ウェル培養プレート)1aを使用した。各ウェル21aの底部培養面には凹凸パターン(微細パターン)によって複数の培養容器10aが形成されている。各培養容器10aは、相当直径Dが200μm、高さHが50μmで形成される培養空間11aを、底部培養面14(培養底面)に有する。また、壁12aの幅Wは10μmである。
 上述の凹凸パターンをフォトリソグラフィにより作製し、Ni電解メッキを行い、対応する凹凸形状を有する金型を得た。その金型を用い、ホットエンボス成形によりポリスチレン上にパターン転写を行い、前記寸法の樹脂基材を作製した。その樹脂基材表面へ真空蒸着により二酸化ケイ素膜を100nm形成させ、γ線滅菌を行い、凹凸パターンによって形成される複数の細胞容器10を得た。複数の培養容器10によって形成される複数の培養空間11で肝細胞を培養した。
(1-2) Culture container A culture plate (24 well culture plate) 1a having 24 wells 21a shown in FIG. 8 was used. A plurality of culture vessels 10a are formed on the bottom culture surface of each well 21a by a concavo-convex pattern (fine pattern). Each culture container 10a has a culture space 11a formed with a corresponding diameter D of 200 μm and a height H of 50 μm in the bottom culture surface 14 (culture bottom). Also, the width W of the wall 12a is 10 μm.
The above-mentioned concavo-convex pattern was produced by photolithography and Ni electrolytic plating was performed to obtain a mold having a corresponding concavo-convex shape. Using the mold, pattern transfer was performed on polystyrene by hot embossing, and a resin base of the above dimensions was produced. A silicon dioxide film was formed to 100 nm on the surface of the resin base material by vacuum deposition, and gamma ray sterilization was performed to obtain a plurality of cell containers 10 formed by the concavo-convex pattern. The hepatocytes were cultured in a plurality of culture spaces 11 formed by a plurality of culture vessels 10.
(1-3)培養方法
 ラット初代肝細胞を1×10個/cmになるように培地に播種して5日間培養した。
 培養に用いる培養液は以下のように調製した。DMEM/F12培地に10% ウシ胎児血清、1μg/ml インシュリン、1×10-7mol/L デキサメタゾン、10mM ニコチンアミド、2mmol/L L-グルタミン、50μm β-メルカプトエタノール、5mmol/L HEPES、59μg/ml ペニシリン、100μg/ml ストレプトマイシン、20ng/ml EGFを添加した。凹凸パターン基材上に、1.0×10細胞/cmの濃度で肝細胞を播種し、5vol%CO、37℃で所定時間培養した。また、同組成の新鮮培地0.5mLを用い、1日から2日毎に培地交換を行った。
(1-3) Culture Method Primary rat hepatocytes were seeded in a medium at 1 × 10 5 cells / cm 2 and cultured for 5 days.
The culture solution used for culture was prepared as follows. 10% fetal bovine serum, 1 μg / ml insulin, 1 × 10 -7 mol / L dexamethasone, 10 mM nicotinamide, 2 mmol / L L-glutamine, 50 μm β-mercaptoethanol, 5 mmol / L HEPES, 59 μg in DMEM / F12 medium ml penicillin, 100 μg / ml streptomycin, 20 ng / ml EGF were added. Hepatocytes were seeded at a concentration of 1.0 × 10 5 cells / cm 2 on the concavo-convex patterned substrate, and cultured at 37 ° C. for 5 minutes with 5 vol% CO 2 . In addition, medium exchange was performed every one to two days using 0.5 mL of fresh medium of the same composition.
(1-4)培養した細胞
 図9に培養した肝細胞を示す。立体的に培養できていることが分かる。
(1-4) Cultured Cells FIG. 9 shows cultured hepatocytes. It can be seen that three-dimensional culture is possible.
2.試験条件・手順
(2-1)被験化合物
 表1に示す溶液(i)~(iii)を用いた。被験物質として、アセトアミノフェン、チトクロムP450の阻害剤として、1-アミノベンゾトリアゾール(ABT)を用いた。
 アセトアミノフェンはチトクロムP450種に属するCYP2E1により代謝され毒性を示すことが知られている。
2. Test conditions and procedures (2-1) Test compounds Solutions (i) to (iii) shown in Table 1 were used. As a test substance, acetaminophen and 1-aminobenzotriazole (ABT) were used as an inhibitor of cytochrome P450.
Acetaminophen is known to be metabolized by CYP2E1 belonging to the cytochrome P450 species and to exhibit toxicity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2-1)試験手順
 項目1.細胞の準備で説明した手順に従って、肝細胞を立体的に培養する。
 次に、培地を吸い取り燐酸緩衝液で洗浄した後、表1の溶液(i)~(iii)のいずれかをそれぞれのウェルに添加し、異なる溶液を添加した複数のウェルを得る。各ウェルにおいて、肝細胞と添加した溶液とを24時間反応させた。
 反応後、生細胞を染色するためにCalcein-AMとMCBの2種類の蛍光試薬を用いた。Calcein-AMは細胞透過性があり、細胞内のエステラ-ゼによる加水分解を受けてCalceinになり緑色の蛍光を示す。また、細胞死はグルタチオンの枯渇によって起こることが知られていることから、グルタチオンと反応し青色の蛍光を発するMCB(monochlorobimane)を用いて細胞を染色した。
(2-1) Test procedure Item 1. Hepatocytes are sterically cultured according to the procedure described in cell preparation.
Next, after the medium is sucked and washed with phosphate buffer, any one of solutions (i) to (iii) of Table 1 is added to each well to obtain a plurality of wells to which different solutions are added. In each well, hepatocytes and the added solution were allowed to react for 24 hours.
After the reaction, two fluorescent reagents, Calcein-AM and MCB, were used to stain live cells. Calcein-AM is cell permeable and is hydrolyzed by intracellular esterases to form Calcein and exhibits green fluorescence. In addition, since cell death is known to occur by depletion of glutathione, cells were stained using MCB (monochlorobimane) that reacts with glutathione and emits blue fluorescence.
3.試験結果(目視観察結果)
 図10に溶液(i)~(iii)を接触させた肝細胞の蛍光染色像の写真を示す。
 Calceinの列は、Calcein-AMで染色した蛍光染色像である。MCBの列は、MCBで染色した蛍光染色像である。Mergeの列は、Calcein-AMの蛍光染色像とMCBの蛍光染色像とを合併させた画像である。
 溶液(i)~(iii)により蛍光強度に違いが見られる。生細胞を認識するCalcein、MCBは、A>B、B<CとなりアセトアミノフェンがチトクロムP450で代謝されたことにより毒性を示すことが判断できる。
3. Test result (visual observation result)
FIG. 10 shows photographs of fluorescent stained images of hepatocytes contacted with solutions (i) to (iii).
The column of Calcein is a fluorescent stained image stained with Calcein-AM. The row of MCB is a fluorescent stained image stained with MCB. The Merge column is an image obtained by combining the fluorescent stained image of Calcein-AM and the fluorescent stained image of MCB.
The difference in the fluorescence intensity is observed by the solutions (i) to (iii). It can be judged that Calcein which recognizes living cells and MCB show toxicity as A> B and B <C, and acetaminophen is metabolized by cytochrome P450.
[比較例]
1.細胞の準備(培養処理)
 培養プレートは市販されている培養底面が平板な培養プレート(ベクトン・ディッキンソン製、ファルコン(登録商標)のγ線滅菌済み平面状24ウェル培養プレート)を用いた。
 ラット初代肝細胞を1×10個/cmになるように播種し7日間培養した。
 上記以外は実施例と同じ条件とした。
2.試験条件・手順
(2-1)被験化合物
 表2に示す溶液(i)~(iii)を用いた。
[Comparative example]
1. Cell preparation (culture treatment)
The culture plate used was a commercially available culture bottom plate (Becton Dickinson, Falcon (registered trademark) γ-ray-sterilized flat 24-well culture plate).
Rat primary hepatocytes were seeded at 1 × 10 5 cells / cm 2 and cultured for 7 days.
The conditions were the same as in the example except for the above.
2. Test conditions and procedures (2-1) Test compounds Solutions (i) to (iii) shown in Table 2 were used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2-1)試験手順
 項目1.細胞の準備で説明した手順に従って、肝細胞を平面状の培養プレートを用いて培養する。
 次に、培地を吸い取り燐酸緩衝液で洗浄した後、表2の溶液(i)~(iii)のいずれかをそれぞれのウェルに添加し、異なる溶液を添加した複数のウェルを得る。各ウェルにおいて、肝細胞と添加した溶液とを24時間反応させた。
 反応後、生細胞を染色するためにCalcein-AMとMCBの2種類の蛍光試薬を用いた。
3.試験結果(目視観察結果)
 図11に溶液(i)~(iii)を接触させた肝細胞の蛍光染色像の写真を示す。図11は、図10と同様に、各列に染色した染色試薬ごとに結果を示している。
 溶液(i)~(iii)ともに同程度の染色強度で毒性が検知できなかった。
(2-1) Test procedure Item 1. The hepatocytes are cultured using planar culture plates according to the procedure described in cell preparation.
Next, after the medium is sucked and washed with phosphate buffer, any one of solutions (i) to (iii) of Table 2 is added to each well to obtain a plurality of wells to which different solutions are added. In each well, hepatocytes and the added solution were allowed to react for 24 hours.
After the reaction, two fluorescent reagents, Calcein-AM and MCB, were used to stain live cells.
3. Test result (visual observation result)
FIG. 11 shows photographs of fluorescent stained images of hepatocytes contacted with solutions (i) to (iii). FIG. 11 shows the results for each staining reagent stained in each row, as in FIG.
No toxicity could be detected at the same level of staining intensity for all solutions (i) to (iii).
 上述した実施例で用いた被験物質、代謝酵素、及びその阻害剤は一例であり、他の阻害剤であっても一実施形態の評価方法を適用することができることは言うまでもない。 It goes without saying that the test substance, the metabolic enzyme, and the inhibitor thereof used in the above-described examples are examples, and the evaluation method of one embodiment can be applied to other inhibitors.
 なお、本発明は上記に示す実施形態に限定されるものではない。本発明の範囲において、上記実施形態の各要素を、当業者であれば容易に考えうる内容に変更、追加、変換することが可能である。 The present invention is not limited to the embodiments described above. Within the scope of the present invention, each element of the above embodiments can be changed, added or converted into contents that can be easily considered by those skilled in the art.
 この出願は、2012年10月18日に出願された日本出願特願2012-231226を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-231226, filed Oct. 18, 2012, the entire disclosure of which is incorporated herein.
1、1a 培養プレート
8 細胞
9 凝集体
9a スフェロイド
10、10a 培養容器
11、11a 培養空間
12 壁
13 底部
14 底部培養面
21、21a ウェル
22 仕切り部
DESCRIPTION OF SYMBOLS 1, 1a culture plate 8 cell 9 aggregate 9a spheroid 10, 10a culture container 11 and 11a culture space 12 wall 13 bottom part 14 bottom part culture surface 21, 21a well 22 partition part

Claims (20)

  1.  被験化合物が肝臓の薬物代謝酵素によって代謝されて毒性を示すか否かを判定する毒性スクリーニング方法であって、
     複数の肝細胞を立体的に培養する工程と、
     前記被験化合物を含まない第1溶液、前記被験化合物を含む第2溶液、及び、薬物代謝酵素反応を阻害する1種類以上の阻害剤と前記被験化合物との第3溶液のそれぞれを、各肝細胞と曝露させることによって、異なる溶液と接触させた前記複数の肝細胞を取得する工程と、
     生細胞を認識する蛍光プローブ、死細胞を認識する蛍光プローブ、及びこれらの組合せからなる群から選択される蛍光プローブを含む溶液と前記複数の肝細胞とを接触させる工程と、
     染色後の前記複数の肝細胞を用いて蛍光染色像を得て、前記蛍光染色像のデータを元に被験化合物の毒性を判定する工程と、
    を含む毒性スクリーニング方法。
    A toxicity screening method for determining whether a test compound is metabolized by a drug metabolizing enzyme in the liver and exhibits toxicity,
    Three-dimensionally culturing a plurality of hepatocytes;
    Each of the first solution not containing the test compound, the second solution containing the test compound, and the third solution of one or more inhibitors inhibiting the drug-metabolizing enzyme reaction and the test compound Obtaining the plurality of hepatocytes contacted with different solutions by exposing to
    Contacting the plurality of hepatocytes with a solution containing a fluorescent probe selected from the group consisting of a fluorescent probe that recognizes living cells, a fluorescent probe that recognizes dead cells, and a combination thereof;
    Obtaining a fluorescent stained image using the plurality of hepatocytes after staining, and determining the toxicity of the test compound based on the data of the fluorescent stained image;
    Toxicity screening methods including:
  2.  前記被験化合物の毒性を判定する工程は、前記第1溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第1生領域、前記第2溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第2生領域、前記第3溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第3生領域、前記第1溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第1死領域、前記第2溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第2死領域、前記第3溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第3死領域とした場合、
     第1生領域>第2生領域、かつ、第2生領域<第3生領域と、
     第1死領域<第2死領域、かつ、第2死領域>第3死領域と、
    の少なくともとも一方であるとき、各肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定することを特徴とする請求項1記載の毒性スクリーニング方法。
    In the step of determining the toxicity of the test compound, a fluorescent region recognizing live cells of hepatocytes contacted with the first solution is recognized as a first live region, and live cells of hepatocytes contacted with the second solution are recognized. Second fluorescent region, the fluorescent region that recognizes living cells of hepatocytes in contact with the third solution, the third biological region, fluorescence that recognizes dead cells of the liver cells in contact with the first solution A first dead area of the area, a second dead area of a fluorescent area that recognizes dead cells of the hepatocytes contacted with the second solution, a fluorescent area that recognizes dead cells of the hepatocytes contacted with the third solution In the case of the third death zone,
    First live area> second live area, and second live area <third live area, and
    First dead area <second dead area, and second dead area> third dead area,
    2. The toxicity screening method according to claim 1, wherein the test compound that has been metabolized by each hepatocyte is determined to be a factor of cytotoxicity when it is at least one of the above.
  3.  前記被験化合物の毒性を判定する工程は、前記第1溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第1生領域、前記第2溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第2生領域、前記第3溶液と接触させた肝細胞の生細胞を認識する蛍光領域を第3生領域、前記第1溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第1死領域、前記第2溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第2死領域、前記第3溶液と接触させた肝細胞の死細胞を認識する蛍光領域の第3死領域とした場合、
     (第1死領域/第1生領域)<(第2死領域/第2生領域)、かつ、(第2死領域/第2生領域)>(第3死領域/第3生領域)であるとき、各肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定することを特徴とする請求項1記載の毒性スクリーニング方法。
    In the step of determining the toxicity of the test compound, a fluorescent region recognizing live cells of hepatocytes contacted with the first solution is recognized as a first live region, and live cells of hepatocytes contacted with the second solution are recognized. Second fluorescent region, the fluorescent region that recognizes living cells of hepatocytes in contact with the third solution, the third biological region, fluorescence that recognizes dead cells of the liver cells in contact with the first solution A first dead area of the area, a second dead area of a fluorescent area that recognizes dead cells of the hepatocytes contacted with the second solution, a fluorescent area that recognizes dead cells of the hepatocytes contacted with the third solution In the case of the third death zone,
    (First dead area / first live area) <(second dead area / second live area) and (second dead area / second live area)> (third dead area / third live area) 2. The toxicity screening method according to claim 1, wherein the test compound that has been metabolized by each hepatocyte is determined to be a factor of cytotoxicity at one time.
  4.  前記被験化合物の毒性を判定する工程は、前記第1溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第1生強度、前記第2溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第2生強度、前記第3溶液と接触させた肝細胞の生細胞を認識する蛍光強度を第3生強度、前記第1溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第1死強度、前記第2溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第2死強度、前記第3溶液と接触させた肝細胞の死細胞を認識する蛍光強度の第3死強度とした場合、
     第1生強度>第2生強度、かつ、第2生強度<第3生強度と、
     第1死強度<第2死強度、かつ、第2死強度>第3死強度と、
    の少なくともとも一方であるとき、各肝細胞による代謝を受けた被験化合物が細胞毒性の要因であると判定することを特徴とする請求項1記載の毒性スクリーニング方法。
    In the step of determining the toxicity of the test compound, the fluorescence intensity that recognizes living cells of the hepatocytes contacted with the first solution has a first life intensity, and the living cells of the hepatocytes contacted with the second solution are recognized The second fluorescence intensity is the second fluorescence intensity, the fluorescence intensity of the living cells of the hepatocytes contacted with the third solution is recognized. The third fluorescence intensity is the fluorescence intensity of dead cells of the hepatocytes contacted with the first solution. Strong first death intensity, second death intensity of fluorescence intensity to recognize dead cells of hepatocytes contacted with the second solution, fluorescence intensity of dead cells of hepatocytes contacted to the third solution If the third death intensity,
    First green strength> second green strength, and second green strength <third green strength,
    1st death intensity <2nd death intensity and 2nd death intensity> 3rd death intensity,
    2. The toxicity screening method according to claim 1, wherein the test compound that has been metabolized by each hepatocyte is determined to be a factor of cytotoxicity when it is at least one of the above.
  5.  前記複数の肝細胞は、複数のウェルを有する培養プレートを用いて培養され、
     各ウェル内で前記複数の肝細胞を培養し、培養した前記複数の肝細胞を他の容器に移し替えることなく、前記各ウェルに前記第1乃至第3溶液のいずれかを添加し反応させた後、前記各ウェルに前記蛍光プローブを添加することを特徴とする請求項1乃至4のいずれか一項に記載の毒性スクリーニング方法。
    The plurality of hepatocytes are cultured using a culture plate having a plurality of wells,
    The plurality of hepatocytes are cultured in each well, and any one of the first to third solutions is added to each well and reacted without transferring the plurality of cultured hepatocytes to another container. The toxicity screening method according to any one of claims 1 to 4, wherein the fluorescent probe is subsequently added to each of the wells.
  6.  各肝細胞は、細胞が凝集した凝集体を形成していることを特徴とする請求項1乃至5のいずれか一項に記載の毒性スクリーニング方法。 The toxicity screening method according to any one of claims 1 to 5, wherein each hepatocyte forms an aggregate in which cells are aggregated.
  7.  前記凝集体の相当直径が30μm以上200μm未満であることを特徴とする請求項6記載の毒性スクリーニング方法。 The toxicity screening method according to claim 6, wherein the equivalent diameter of the aggregate is 30 μm or more and less than 200 μm.
  8.  前記薬物代謝酵素反応を阻害する1種類以上の化合物が、チトクロムP450酵素群、第II相薬物代謝酵素、及びこれらの組合せからなる群から選択されることを特徴とする請求項1乃至7のいずれか一項に記載の毒性スクリーニング方法。 The compound according to any one of claims 1 to 7, wherein the one or more compounds that inhibit the drug metabolizing enzyme reaction are selected from the group consisting of a cytochrome P450 enzyme group, a phase II drug metabolizing enzyme, and a combination thereof. The toxicity screening method according to any one of the above.
  9.  前記薬物代謝酵素反応を阻害する1種類以上の化合物が、チトクロムP450酵素群であって、CYP1A1、CYP1A2、CYP3A4、CYP2B6、CYP2C9、CYP2C19、CYP2C11、CYP2D6、及びCYP2E1からなる群から選択されることを特徴とする請求項1乃至7のいずれか一項に記載の毒性スクリーニング方法。 The one or more compounds that inhibit the drug metabolizing enzyme reaction are selected from the group consisting of cytochrome P450 enzymes, which are selected from the group consisting of CYP1A1, CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2C11, CYP2D6, and CYP2E1. The toxicity screening method according to any one of claims 1 to 7, which is characterized.
  10.  前記複数の肝細胞の由来が、ヒト、げっ歯類、ラット、イヌ、及びサルのうちいずれかから選択されることを特徴とする請求項1乃至9のいずれか一項に記載の毒性スクリーニング方法。 The toxicity screening method according to any one of claims 1 to 9, wherein the plurality of hepatocytes are selected from any of human, rodent, rat, dog, and monkey. .
  11.  前記複数の肝細胞が初代肝細胞であることを特徴とする請求項1乃至10のいずれか一項に記載の毒性スクリーニング方法。 The toxicity screening method according to any one of claims 1 to 10, wherein the plurality of hepatocytes are primary hepatocytes.
  12.  前記複数の肝細胞は、複数のウェルを有する培養プレートを用いて培養され、
     各ウェルは、複数の培養空間を有する培養容器が形成され、
     前記複数の培養空間は、各培養容器の底からの高さが25~500μmの範囲の壁で囲まれ、かつ、相当直径50~1000μmの範囲の空間が規則的に配列して形成され、
     前記複数の肝細胞を立体的に培養する工程は、前記複数の培養空間を用いて複数の肝細胞の凝集体を作製することを特徴とする請求項1乃至4のいずれか一項に記載の毒性スクリーニング方法。
    The plurality of hepatocytes are cultured using a culture plate having a plurality of wells,
    Each well is formed with a culture vessel having a plurality of culture spaces,
    The plurality of culture spaces are formed such that the height from the bottom of each culture vessel is surrounded by a wall in the range of 25 to 500 μm, and spaces in the range of 50 to 1000 μm in equivalent diameter are regularly arranged.
    The step of culturing the plurality of hepatocytes in a three-dimensional manner comprises producing aggregates of the plurality of hepatocytes using the plurality of culture spaces, according to any one of claims 1 to 4. Toxicity screening method.
  13.  前記壁の厚さが10μm以上50μm未満であることを特徴とする請求項12記載の毒性スクリーニング方法。 The toxicity screening method according to claim 12, wherein the thickness of the wall is 10 μm or more and less than 50 μm.
  14.  前記培養容器の底部を構成するポリマーの全光線透過率が85%以上99%未満であることを特徴とする請求項12または13に記載の毒性スクリーニング方法。 The toxicity screening method according to claim 12 or 13, wherein the total light transmittance of the polymer constituting the bottom of the culture vessel is 85% or more and less than 99%.
  15.  前記培養容器が、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、シリコン樹脂、及びこれらの組合せからなる群から選択される樹脂成形品であることを特徴とする請求項12乃至14のいずれか一項に記載の毒性スクリーニング方法。 The culture vessel is made of acrylic resin, polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer resin, The toxicity screening method according to any one of claims 12 to 14, which is a resin molded product selected from the group consisting of thermoplastic elastomers, vinyl chloride resins, silicone resins, and combinations thereof.
  16.  前記培養容器の底部の厚さが300μm以下であることを特徴とする請求項12乃至15のいずれか一項に記載の毒性スクリーニング方法。 The thickness of the bottom part of the said culture container is 300 micrometers or less, The toxicity screening method as described in any one of the Claims 12 thru | or 15 characterized by the above-mentioned.
  17.  前記培養容器の底部培養面が親水化処理されていることを特徴とする請求項12乃至16のいずれか一項に記載の毒性スクリーニング方法。 The toxicity screening method according to any one of claims 12 to 16, wherein the bottom culture surface of the culture vessel is hydrophilized.
  18.  前記培養容器の底部培養面が、ガラスであって、水接触角を45度以下になるように処理されたことを特徴とする請求項12乃至17のいずれか一項に記載の毒性スクリーニング方法。 The toxicity screening method according to any one of claims 12 to 17, wherein the bottom culture surface of the culture vessel is made of glass and treated to have a water contact angle of 45 degrees or less.
  19.  前記培養容器の底部培養面が、プラズマ処理により官能基を形成させて、水接触角を45度以下になるように処理されたことを特徴とする請求項12乃至18のいずれか一項に記載の毒性スクリーニング方法。 The bottom culture surface of the said culture container was made to form a functional group by plasma processing, and was processed so that a water contact angle might be 45 degrees or less. Toxicity screening method.
  20.  前記親水化処理された前記底部培養面に、さらに、細胞接着性を促進するポリマーである、ポリ-L-リシン、ポリ-D-リシン、コラーゲン、ラミニン、フィブロネクチン、及びこれら組合せからなる群から選択されるポリマーが固定化されていることを特徴とする請求項17記載の毒性スクリーニング方法。 The hydrophilized bottom culture surface is further selected from the group consisting of poly-L-lysine, poly-D-lysine, collagen, laminin, fibronectin, and combinations thereof, which are polymers promoting cell adhesion. The toxicity screening method according to claim 17, characterized in that the polymer to be immobilized is immobilized.
PCT/JP2013/006068 2012-10-18 2013-10-10 Toxicity screening method WO2014061244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014541937A JP6035343B2 (en) 2012-10-18 2013-10-10 Toxicity screening method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231226 2012-10-18
JP2012-231226 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061244A1 true WO2014061244A1 (en) 2014-04-24

Family

ID=50487823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006068 WO2014061244A1 (en) 2012-10-18 2013-10-10 Toxicity screening method

Country Status (2)

Country Link
JP (1) JP6035343B2 (en)
WO (1) WO2014061244A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035081A (en) * 2015-08-13 2017-02-16 サントリーホールディングス株式会社 Test method of animal cell toxicity or antioxidant ability
WO2018064675A1 (en) * 2016-09-30 2018-04-05 Novira Therapeutics, Inc. Metabolic restriction in cell-based assays
JP2018108038A (en) * 2016-12-28 2018-07-12 クアーズテック株式会社 Cell culture carrier
US10377555B2 (en) 2015-04-15 2019-08-13 Dow Global Technologies Llc Flexible container with a spray valve
RU2715388C1 (en) * 2018-09-17 2020-02-27 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации имени А.И. Бурназяна" (ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России) Method of preparation and cytomic analysis of hepatocytes of laboratory animals and humans for assessing cytogenetic and cytotoxic action of factors of different nature
WO2020149246A1 (en) * 2019-01-18 2020-07-23 東洋製罐グループホールディングス株式会社 Culture container, culture method and culture device
JP2020202816A (en) * 2019-06-19 2020-12-24 リプロサポートメディカルリサーチセンター株式会社 Instrument used in stage before cell freezing
JP2022046639A (en) * 2015-11-25 2022-03-23 コーニング インコーポレイテッド Systems and methods for expressing proteins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027598A (en) * 2003-07-09 2005-02-03 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell culture chip and incubator and method for culturing cell by using those, cell-carrying module carrying spherical cell tissue body and spherical cell tissue body
JP2005514042A (en) * 2002-01-14 2005-05-19 ユニヴァーシティ オブ ザ ウエスト オブ イングランド ブリストル Toxicity test
JP2009513160A (en) * 2005-11-01 2009-04-02 レンセレアー ポリテクニック インスティテュート 3D cell array chip and platform for toxicology assays
WO2010047132A1 (en) * 2008-10-24 2010-04-29 株式会社クラレ Cell culture kit, screening method, and cell culture kit manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514042A (en) * 2002-01-14 2005-05-19 ユニヴァーシティ オブ ザ ウエスト オブ イングランド ブリストル Toxicity test
JP2005027598A (en) * 2003-07-09 2005-02-03 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell culture chip and incubator and method for culturing cell by using those, cell-carrying module carrying spherical cell tissue body and spherical cell tissue body
JP2009513160A (en) * 2005-11-01 2009-04-02 レンセレアー ポリテクニック インスティテュート 3D cell array chip and platform for toxicology assays
WO2010047132A1 (en) * 2008-10-24 2010-04-29 株式会社クラレ Cell culture kit, screening method, and cell culture kit manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASATAKA SANTO ET AL.: "Rat Shodai Kan Saibo Spheroid ni Okeru Keiko Probe o Mochiita Acetaminophen ni yoru Kan Dokusei Hyoka", ABSTRACTS OF 133RD ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 3, February 2013 (2013-02-01), pages 156 *
MORGAN, J. ET AL.: "Manipulation of in vitro toxicant sensors in an ultrasonic standing wave.", TOXICOLOGY IN VITRO, vol. 18, no. 1, 2004, pages LL5 - 120 *
YOKO EJIRI ET AL.: "Iyakuhin Kaihatsu no Tameno Shinki Hito Kan Saibo Baiyokei no Kochiku", DAI 16 KAI HUMAN & ANIMAL BRIDGEING RESEARCH ORGANIZATION GAKUJUTSU NENKAI PROGRAM . YOSHISHU, 22 May 2009 (2009-05-22), pages 63 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377555B2 (en) 2015-04-15 2019-08-13 Dow Global Technologies Llc Flexible container with a spray valve
JP2017035081A (en) * 2015-08-13 2017-02-16 サントリーホールディングス株式会社 Test method of animal cell toxicity or antioxidant ability
JP2022046639A (en) * 2015-11-25 2022-03-23 コーニング インコーポレイテッド Systems and methods for expressing proteins
WO2018064675A1 (en) * 2016-09-30 2018-04-05 Novira Therapeutics, Inc. Metabolic restriction in cell-based assays
EP3519814B1 (en) * 2016-09-30 2021-06-02 Novira Therapeutics, Inc. Metabolic restriction in cell-based assays
JP2018108038A (en) * 2016-12-28 2018-07-12 クアーズテック株式会社 Cell culture carrier
RU2715388C1 (en) * 2018-09-17 2020-02-27 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации имени А.И. Бурназяна" (ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России) Method of preparation and cytomic analysis of hepatocytes of laboratory animals and humans for assessing cytogenetic and cytotoxic action of factors of different nature
WO2020149246A1 (en) * 2019-01-18 2020-07-23 東洋製罐グループホールディングス株式会社 Culture container, culture method and culture device
JP2020202816A (en) * 2019-06-19 2020-12-24 リプロサポートメディカルリサーチセンター株式会社 Instrument used in stage before cell freezing
WO2020255444A1 (en) * 2019-06-19 2020-12-24 リプロサポートメディカルリサーチセンター株式会社 Tool for manipulating cells
CN114008185A (en) * 2019-06-19 2022-02-01 株式会社先端生殖技术研究所 Instrument for use in manipulating cells

Also Published As

Publication number Publication date
JPWO2014061244A1 (en) 2016-09-05
JP6035343B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2014061244A1 (en) Toxicity screening method
Derda et al. Multizone paper platform for 3D cell cultures
Colella et al. Sarcoma spheroids and organoids—promising tools in the era of personalized medicine
JP6731916B2 (en) Cell culture insert
CA2788575C (en) Hanging drop devices, systems and/or methods
Hinman et al. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels
CN102449135B (en) Apparatus for cell or tissue culture
CA2848559C (en) Method for inspecting susceptibility of bacteria or fungi to antimicrobial drug and system for use in the same
MX2014000303A (en) Filter support with a phase-changing medium.
JP6113999B2 (en) Compound screening method
Pirlo et al. Biochip/laser cell deposition system to assess polarized axonal growth from single neurons and neuron/glia pairs in microchannels with novel asymmetrical geometries
Gumuscu et al. Compartmentalized 3D tissue culture arrays under controlled microfluidic delivery
WO2009095666A1 (en) Microtrench and tumour proliferation assay
Maher et al. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing
Kulkeaw et al. Progress and Challenges in the Use of a Liver-on-a-Chip for Hepatotropic Infectious Diseases
Bulut et al. Three‐Dimensional Vessels‐on‐a‐Chip Based on hiPSC‐derived Vascular Endothelial and Smooth Muscle Cells
Carpignano et al. A new cell-selective three-dimensional microincubator based on silicon photonic crystals
Mai et al. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing
Charwat et al. The third dimension in cell culture: From 2D to 3D culture formats
EP2048223B1 (en) Cell chip
CN105087459A (en) In-vitro small intestine stem cell culture medium and culture method
Ryu et al. Human pluripotent stem cells for high-throughput drug screening and characterization of small molecules
Fernekorn et al. In vitro cultivation of biopsy derived primary hepatocytes leads to a more metabolic genotype in perfused 3D scaffolds than static 3D cell culture
Ermis et al. A Cell Culture Chip with Transparent, Micropillar-Decorated Bottom for Live Cell Imaging and Screening of Breast Cancer Cells
Hsiao 3D spheroid culture systems for metastatic prostate cancer dormancy studies and anti-cancer therapeutics development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847891

Country of ref document: EP

Kind code of ref document: A1