WO2014059681A1 - 非接触式儿科测量方法和测量设备 - Google Patents

非接触式儿科测量方法和测量设备 Download PDF

Info

Publication number
WO2014059681A1
WO2014059681A1 PCT/CN2012/083258 CN2012083258W WO2014059681A1 WO 2014059681 A1 WO2014059681 A1 WO 2014059681A1 CN 2012083258 W CN2012083258 W CN 2012083258W WO 2014059681 A1 WO2014059681 A1 WO 2014059681A1
Authority
WO
WIPO (PCT)
Prior art keywords
infant
data
human body
pediatric
contact
Prior art date
Application number
PCT/CN2012/083258
Other languages
English (en)
French (fr)
Inventor
殷实
Original Assignee
因美吉智能科技(济南)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 因美吉智能科技(济南)有限公司 filed Critical 因美吉智能科技(济南)有限公司
Priority to PCT/CN2012/083258 priority Critical patent/WO2014059681A1/zh
Priority to CN201310492325.1A priority patent/CN103750817B/zh
Priority to US14/059,112 priority patent/US9289129B2/en
Priority to EP13189591.4A priority patent/EP2721998A1/en
Priority to CA2830889A priority patent/CA2830889C/en
Publication of WO2014059681A1 publication Critical patent/WO2014059681A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/04Babies, e.g. for SIDS detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/06Children, e.g. for attention deficit diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/448Hair evaluation, e.g. for hair disorder diagnosis

Definitions

  • the present invention relates to a pediatric measurement method, and more particularly to a non-contact pediatric measurement method, and to a non-contact pediatric measurement device.
  • Length/height, weight, head circumference, chest circumference, sitting height, and some other anthropometric data are important growth indicators set by the World Health Organization's Child Growth Standards for assessing children's development and growth. monitor. Since the growth of children and the physical indicators such as length and weight are closely related to children's health, the above anthropometric data is an important indicator for monitoring the growth of infants and young children.
  • the weight in the weighing unit includes a weighing unit, a height sitting height measuring unit, a head circumference measuring unit, a chest circumference limb measuring unit, etc., wherein the weight in the weighing unit
  • the sensor is fixed on the detector chassis, the other end of the weight sensor supports the measuring plate bed as the weighing table, and the weight sensor is connected to the microprocessor through the A/D conversion circuit; the left end of the measuring plate bed is provided with a curved plate and the right end is provided.
  • a guardrail with a scale is arranged on both sides of the gauge bed, and a sliding guide is arranged on the inner side of the guardrail on both sides.
  • the upper part is equipped with a mobile data collection box for collecting the length and the sitting height; and the head circumference of the head circumference measuring unit and the chest circumference of the bust measuring unit are respectively arranged on the measuring board bed near the curved surface of the head and slightly away from the head curved shape.
  • the position of the board, and the mobile data collection box, the head circumference and the chest circumference of the collection length and sitting height are respectively connected to the microprocessor through the interface circuit.
  • the smart medical instrument can simultaneously input various anthropometric data such as head circumference, chest circumference, weight, length and sitting height of infants. Measurement, but this kind of equipment is still a contact measuring device. There are some mandatory requirements for the physical posture of infants during the measurement process.
  • infants and young children are required to straighten their limbs during the measurement process, or they need to touch the baby with a ruler.
  • the limbs of young children due to the incompatibility of infants and young children, make the measurement process very difficult to measure and may affect the accuracy of the measurement results.
  • the technical problem to be solved by the present invention is to provide a non-contact pediatric measurement method for obtaining an anthropometric data of an infant.
  • the technical problem to be solved by the present invention is to provide a non-contact pediatric measuring device which is measured by the above method.
  • a non-contact pediatric measurement method comprising the following steps:
  • the infant human body model is composed of a plurality of joint points and a three-dimensional surface model. Further, step (35) is further included between step (3) and step (4), step (35): collecting hair thickness and clothing thickness of the infant to be tested, and according to the collected hair thickness And the thickness of the garment, the infant human body model is updated.
  • step (3) the following sub-steps are included:
  • step (31) collecting joint point data of the infant to be tested, generating a body topology model by using the joint point data, and updating the infant human body model according to the joint point data and the body topology model; (32) determining whether the plurality of joint points are all updated and modeled in the infant human body model, and if yes, proceeding to step (35), and if not, returning to step (31).
  • the present invention further provides a non-contact pediatric measuring device for implementing the above measuring method, comprising: a data collecting and processing unit; a plurality of size collecting modules respectively bidirectionally connected to the data collecting and processing unit,
  • the size acquisition module is configured to collect three-dimensional size data of the infant to be tested; a plurality of image acquisition modules respectively connected to the data acquisition and processing unit in two directions, the image acquisition module is configured to collect joint point data and limb morphology;
  • a data output module bidirectionally coupled to the data acquisition and processing unit.
  • the data acquisition and processing unit has an algorithm module for establishing an infant human body model, and an algorithm module for acquiring anthropometric data from the infant human body model;
  • the infant human body model consists of a plurality of joints Point, body topology model and 3D surface model.
  • a plurality of ultrasonic sensors for measuring the thickness of the clothes and the thickness of the hair are also included, the ultrasonic sensors being bidirectionally coupled to the data acquisition and processing unit.
  • the pediatric measuring device further includes a bed for placing the infant to be tested.
  • a plurality of the image acquisition modules are respectively disposed at one end of the bed for placing the head, a side of the bed, and above the bed; and the plurality of the size collection modules are respectively set Around the bed body; a plurality of the ultrasonic sensors are respectively disposed at one end of the bed body for placing the head, the side of the bed body or above the bed body.
  • the pediatric measuring device further comprises a weighing sensor disposed at the bottom of the bed, the weighing sensor being coupled to the data acquisition and processing unit.
  • the non-contact pediatric measurement method and measuring device establishes an infant human body model including N joint points, a human body topological model and a three-dimensional surface model by collecting images and three-dimensional size data of the infant to be tested, and Analyze the final established human body model of the infant to obtain anthropometric data of the infant to be tested, such as: length / height, head circumference, chest circumference and so on.
  • the infant's human body model can be corrected by removing the hair thickness and the thickness of the infant to be tested, thereby obtaining more accurate measurement data.
  • the non-contact pediatric measurement method and measuring device do not need to contact the body of the person to be tested during the measurement process, and the measurement process is more humanized.
  • DRAWINGS 1 is a schematic diagram of measurement of a non-contact pediatric measurement method provided by the present invention
  • FIG. 2 is a schematic structural view of a pediatric measuring device provided by the present invention.
  • Figure 3 is a schematic view showing the state of use of the pediatric measuring device shown in Figure 2;
  • Fig. 4 is a flow chart showing the data processing of the data acquisition and processing unit in the pediatric measuring device provided by the present invention.
  • the non-contact pediatric measurement method obtaineds the human body image, the three-dimensional size data and the joint point data of the infant (hereinafter referred to as infant) to be tested through the measuring device, and then performs human body modeling to establish an infant human body model. Finally, the anthropometric data of infants and young children, such as body length, head circumference, chest circumference, and body weight, are obtained from the infant human body model. In this measurement method, the measuring device does not need to contact the infant's limb, and the infant is not required to maintain a specific posture, and is more humanized.
  • the pediatric measurement method includes the measurement steps as shown in FIG. 1: Step S10: collecting images and three-dimensional size data of the infant to be tested; and step S20: establishing an infant human body model according to the collected image and the three-dimensional size data; Step S30: collecting a plurality of joint point data of the infant to be tested, and updating the infant human body model; Step S35: collecting hair thickness and clothing thickness of the infant to be tested, and according to the collected hair thickness and the thickness of the clothing, The infant human body model is updated; Step S40: Obtaining an anthropometric data of the infant to be tested from the updated infant human body model.
  • the image and the three-dimensional size data are obtained through steps S10 and S20, and an initial infant human body model is established.
  • the infant human body model refers to a model composed of a plurality of joint points and a human body surface model, through the steps.
  • a plurality of joint point data are obtained in S30, a body topology model is generated by using the joint point data, and the infant human body model is updated to obtain an accurate infant human body model.
  • step S30 collecting a plurality of joint point data of the infant to be tested, and updating the infant human body model
  • the following substeps are further included: S31: collecting joint point data of the infant, according to the joint point data, the infant The child human body model is updated; S32: determining whether the plurality of joint points are all updated and modeled in the infant human body model, and if yes, proceeding to step S35, wherein step S35 is used to correct the infant human body model; if not, then returning Go to step S31 to collect the next joint point data.
  • Step S35 collecting the hair thickness and the thickness of the baby to be tested, and updating the infant human body model according to the collected hair thickness and the thickness of the clothing.
  • step S30 and step S35 can obtain a more accurate infant human body model.
  • the anthropometric data of infants and young children such as: length / height, head circumference, chest circumference, etc., are obtained.
  • the image and the three-dimensional size data of the infant in step S10 and step S20 can be obtained by the image acquisition device and the distance measurement device, respectively, or can be obtained by combining the image acquisition device with the standard background.
  • Multiple human body images, and three-dimensional size data are obtained from human body image analysis. For example, infants and young children with a ruler or fixed feature points are placed in the infant bed, and the three-dimensional size data of the infant can be analyzed by combining the feature points of the image background.
  • the number of collection devices for collecting joint point data, and the number of collection devices for collecting hair thickness and clothing thickness can be specifically determined based on measurement accuracy, operational comfort, and the like. In the actual measurement, the thickness of the clothes and the hair can be obtained by the ultrasonic sensor, and the joint point data of the infant human body model can be obtained by the collecting device disposed near the joint point position.
  • the non-contact pediatric measuring device comprises a data acquisition and processing unit 1, and a plurality of ultrasonic sensors 2, a plurality of image acquisition modules 3, and a plurality of sizes for bidirectional connection with the data acquisition and processing unit 1, respectively.
  • the data acquisition and processing unit 1 is a microprocessor (or SoC system) with an algorithm module for establishing a standard infant human body model and an algorithm module for acquiring anthropometric data from the infant human body model.
  • the data acquisition and processing unit 1 further includes a data storage module for storing the established infant model library and anthropometric data.
  • the above algorithm module can be implemented in firmware in a microprocessor or in software.
  • the data storage module can be implemented in SRAM mode or in a non-volatile memory mode.
  • the infant human body model is composed of a plurality of joint points, a human body topological model and a three-dimensional surface model
  • the image collecting module 3 is configured to collect an image including the limb shape and the joint point data of the infant to be tested
  • the size collecting module 4 is used.
  • the acquisition and processing unit 1 establishes an infant human body model by analyzing the image and the three-dimensional size data.
  • the non-contact type The measuring device can measure the hair thickness and the thickness of the infant by analyzing the ultrasonic waves emitted and received by the ultrasonic sensor 2, thereby correcting the established infant human body model.
  • the data acquisition and processing unit 1 applies a built-in anthropometric algorithm, and finally obtains an anthropometric data from the corrected human body model.
  • the data output module 6 includes a display, a printer, and the like for displaying the measurement results to a doctor or a family member, or printing the measurement results.
  • the pediatric measuring device further comprises a bed for placing the infant to be tested. 7, at the bottom of the bed 7, a load cell 5 is also provided, and the load cell 5 is connected to the acquisition and processing unit 1.
  • a plurality of image capturing modules 3 are respectively disposed at one end of the bed 7 for placing the head, the side of the bed 7 and above the bed 7.
  • the plurality of size acquisition modules 4 are respectively disposed at positions around the bed 7, preferably at joint points.
  • the ultrasonic sensor 2 needs to be disposed at the top position, the upper body and the side of the body, and the plurality of ultrasonic sensors 2 are respectively disposed at the end of the bed 7 for placing the head, the bed body.
  • the specific number and setting position of the image acquisition module 3, the size acquisition module 4, and the ultrasonic sensor 2 can be adjusted according to measurement accuracy, operational comfort, and the like.
  • step S1 establishing a measurement file by inputting the identity information of the infant to be tested manually or through a digital storage, for example, inputting identity information such as name, date of birth, age, etc., and proceeding to step S2;
  • Step S2 The initial infant human body model is established according to the image acquired by the image acquisition module 3 and the three-dimensional size information collected by the size acquisition module 4, combined with the built-in algorithm.
  • the infant human body model is mainly composed of N joint point information, a human body topological model and a three-dimensional surface model, where N is a positive integer.
  • the infant human body model is stored in the infant human body model library, and proceeds to step S3;
  • Step S3 collecting sensor data, proceeding to step S4;
  • Step S4 updating the parameters of the infant human body model according to the obtained sensor data, and storing the updated infant human body model into the model library, and proceeding to step S5;
  • Step S5 According to the infant human body model stored in the model library, it is judged whether the N joint point data has been completely modeled, and if yes, proceed to step S6, if no, return to step S3 to continue collecting sensor data;
  • step S6 according to the model library The latest infant human body model stored is subjected to anthropometric calculation, the measurement result is obtained and output, and the calculation procedure is ended.
  • step S3 the sensor data in the image acquisition module 3 and the size acquisition module 4 are respectively acquired, and joint point information and size information are obtained therefrom, and in step S3, the data of the ultrasonic sensor 2 may be collected to obtain hair and clothing.
  • the thickness is such that the corrected infant human body model is obtained through step S4.
  • the data output module 6 is a display on which an established infant human body model is displayed, and N joint point marks are synchronously displayed on the image.
  • step S5 It is judged whether or not the modeling process is completed by detecting whether the information of the position of the N joint points in the image has been completely updated.
  • step S6 the data acquisition and processing unit 1 performs anthropometric calculation on the infant human body model in the display according to the built-in algorithm, and obtains data such as body length/height, head circumference, and chest circumference.
  • the non-contact pediatric measuring device collects images through the image acquisition module, collects the three-dimensional size data of the infant through the size acquisition module, and performs the human body modeling of the infant through the data acquisition and processing unit, and finally passes the established infant.
  • the anthropometric data is obtained from the infant human body model.
  • the measurement process does not require equipment to contact the limbs of the infant, and there is no special requirement for the posture of the infant, which is easy to implement.
  • the anthropometric data of each stage of the infant can be combined to map the physical development curve of the infant. By comparing with the average developmental curve of local infants and young children, it is possible to grasp the development of infants and young children, so that pediatricians and parents can more accurately grasp the development of infants and young children.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

本发明提供了一种非接触式儿科测量方法,通过采集待测婴幼儿的图像和三维尺寸数据,建立婴幼儿人体模型;并通过采集多个关节点数据,对建立的婴幼儿人体模型进行更新;最后从更新获得的婴幼儿人体模型中获得待测婴幼儿的人体测量学数据。同时,本发明还提供了一种实现上述测量方法的非接触式儿科测量设备,通过图像采集模块采集的图像和尺寸采集模块采集的三维尺寸数据,结合数据采集与处理单元内置的算法,建立包含多个关节点和三维表面模型的婴幼儿人体模型,并通过分析该婴幼儿人体模型获得人体测量学数据。该非接触式儿科测量方法和测量设备,在测量过程中不需要接触待测者的身体,使测量过程更加人性化。

Description

非接触式儿科测量方法和测量设备
技术领域
本发明涉及一种儿科测量方法, 尤其涉及一种非接触式儿科测量方法, 本发明同时涉及一种非接触式儿科测量设备。
背景技术
身长 /身高、 体重、 头围、 胸围、 坐高以及一些其他人体测量学数据是 由世界卫生组织发布的儿童成长标准中规定的重要的成长指标, 用于评价儿 童的发育和成长状况, 需要定期监测。 由于儿童的成长状况以及身长、 体重 等形体指标与儿童的健康密切相关, 因此, 上述人体测量学数据是婴幼儿成 长过程中需要监测的重要指标。
从 20 世纪初期开始, 儿科测量一直采用接触式测量方法进行测量, 从 未改变, 而对儿科测量设备的改进也都集中于接触式测量设备。 例如, 早期 的儿科测量设备有: 用于称量婴幼儿体重的便携式儿童秤、 用于测量婴幼儿 身长 /身高的软尺, 等。 随着医疗器械的发展, 儿科测量设备逐渐从人工读数 发展成自动化智能化测量, 而多个独立的测量设备也逐渐集成化, 发展成可 以同时测量体重、 身长、 头围等多个指标的智能设备。 如专利号为 ZL 200920084234. 3的中国发明中公开的婴幼儿智能体检仪, 包括称重单元、 身 长坐高测量单元、 头围测量单元、 胸围肢体测量单元等, 其中, 称重单元中 的重量传感器固定在检测仪底架上, 重量传感器的另一端支撑起量板床作为 称重台面, 并且重量传感器通过 A/D转换电路与微处理器连接; 量板床左端 设有头弧形板、 右端设有脚弧形板, 在脚弧形版上设置有红外接收器和数据 复位触头, 量板床的两侧设有带刻度尺的护栏, 在两侧护栏的内侧设置有滑 动导轨, 在滑动导轨上部安装有用于采集身长和坐高的移动数据采集盒; 而 头围测量单元中的头围尺和胸围测量单元中的胸围尺分别设置在量板床上靠 近头弧形板和略远离头弧形板的位置, 并且采集身长和坐高的移动数据采集 盒、 头围尺和胸围尺均分别通过接口电路与微处理器连接。 该智能体检仪可 以同时对婴幼儿的头围、 胸围、 体重、 身长和坐高等多种人体测量学数据进 行测量, 但该种设备仍然属于接触式测量设备, 在测量过程中对婴幼儿的形 体姿势有一些强制性的要求, 例如, 需要婴幼儿在测量过程中伸直肢体, 又 或者需要尺子接触婴幼儿的肢体, 而由于婴幼儿的不配合使得测量过程存在 很大的测量难度, 并可能影响测量结果的精确性。
虽然近年来也出现过一些简单的非接触式儿科测量设备, 但此类设备主 要是针对成人设计, 对于婴幼儿并不适用, 尤其是对于不能站立的婴儿。 而 由于婴幼儿在儿科测量过程中很难配合, 也使得测量过程费时费力, 增加了 儿科测量的难度。
发明内容
本发明所要解决的技术问题在于提供一种用于获得婴幼儿人体测量学数 据的非接触式儿科测量方法。
同时, 本发明所要解决的技术问题还在于提供一种采用上述方法进行测 量的非接触式儿科测量设备。
为了实现上述发明目的, 本发明采用下述的技术方案:
一种非接触式儿科测量方法, 包括下列步骤:
( 1 ) 采集待测婴幼儿的图像和三维尺寸数据;
( 2 )根据采集到的所述图像和所述三维尺寸数据,建立婴幼儿人体模型;
( 3 )采集所述待测婴幼儿的多个关节点数据, 利用所述关节点数据生成 人体拓扑模型, 并对所述婴幼儿人体模型进行更新;
( 4 )从更新后的所述婴幼儿人体模型中获得所述待测婴幼儿的人体测量 学数据。
进一步地, 所述婴幼儿人体模型由多个关节点和三维表面模型组成。 进一步地, 在步骤(3 )和步骤(4 )之间还包括步骤(35 ), 步骤(35 ) : 采集所述待测婴幼儿的头发厚度和衣物厚度, 并根据采集到的所述头发厚度 和所述衣物厚度, 对所述婴幼儿人体模型进行更新。
进一步地, 在步骤 (3 ) 中, 包括下列子步骤:
( 31 ) 采集所述待测婴幼儿的关节点数据, 利用所述关节点数据生成人 体拓扑模型, 根据所述关节点数据和人体拓扑模型, 对所述婴幼儿人体模型 进行更新; ( 32 ) 判断所述婴幼儿人体模型中, 多个关节点是否全部更新建模, 如 果是, 则进入步骤 (35 ), 如果否, 则回到步骤 (31 )。
同时, 本发明还提供一种用于实现上述测量方法的非接触式儿科测量设 备, 其包括数据采集与处理单元; 分别与所述数据采集与处理单元双向连接 的多个尺寸采集模块, 所述尺寸采集模块用于采集待测婴幼儿的三维尺寸数 据; 分别与所述数据采集与处理单元双向连接的多个图像采集模块, 所述图 像采集模块用于采集关节点数据及肢体形态; 还包括与所述数据采集与处理 单元双向连接的数据输出模块。
进一步地, 所述数据采集与处理单元内置有用于建立婴幼儿人体模型的 算法模块, 以及从所述婴幼儿人体模型中获取人体测量学数据的算法模块; 所述婴幼儿人体模型由多个关节点、 人体拓扑模型和三维表面模型组成。
较优地, 还包括多个用于测量衣物厚度及头发厚度的超声波传感器, 所 述超声波传感器与所述数据采集与处理单元双向连接。
进一步地, 所述儿科测量设备还包括用于放置所述待测婴幼儿的床体。 较优地, 多个所述图像采集模块分别设置于所述床体的用于放置头部的 一端、 所述床体的侧面以及所述床体的上方; 多个所述尺寸采集模块分别设 置于所述床体四周; 多个所述超声波传感器分别设置于所述床体的用于放置 头部的一端、 所述床体的侧面或者所述床体的上方。
较优地, 所述儿科测量设备还包括设置在所述床体底部的称重传感器, 所述称重传感器与所述数据采集与处理单元连接。
本发明所提供的非接触式儿科测量方法和测量设备, 通过采集待测婴幼 儿的图像和三维尺寸数据, 建立包含 N个关节点、 人体拓扑模型和三维表面 模型的婴幼儿人体模型, 并通过分析最终建立的婴幼儿人体模型获得待测婴 幼儿的人体测量学数据, 如: 身长 /身高、 头围、 胸围等。 其中, 在对婴幼儿 人体模型的关节点和人体拓扑模型进行更新之后, 还可以通过去除待测婴幼 儿的头发厚度和衣物厚度, 对婴幼儿人体模型进行修正, 从而获得更准确的 测量数据。 该非接触式儿科测量方法和测量设备, 在测量过程中不需要接触 待测者的身体, 测量过程更加人性化。
附图说明 图 1为本发明所提供的非接触式儿科测量方法的测量原理图;
图 2为本发明所提供的儿科测量设备的结构示意图;
图 3为图 2所示儿科测量设备的使用状态示意图;
图 4为本发明所提供的儿科测量设备中, 数据采集与处理单元的数据处 理流程图。
具体实施方式
下面结合附图和具体实施例对本发明的发明内容做详细说明。
本发明提供的非接触式儿科测量方法, 通过测量设备获得待测婴幼儿 (下文, 简称婴幼儿) 的人体图像、 三维尺寸数据和关节点数据, 然后进行 人体建模, 建立婴幼儿人体模型, 最后从婴幼儿人体模型中获得婴幼儿的人 体测量学数据, 如身长、 头围、 胸围、 体重等。 在该测量方法中, 测量设备 不需接触婴幼儿肢体, 同时不需要婴幼儿保持特定的姿势, 更加人性化。
该儿科测量方法, 包括如图 1所示的测量步骤: 步骤 S 10 : 采集待测婴 幼儿的图像和三维尺寸数据;步骤 S20 :根据采集到的图像和三维尺寸数据, 建立婴幼儿人体模型; 步骤 S30 : 采集待测婴幼儿的多个关节点数据, 并对 婴幼儿人体模型进行更新; 步骤 S35 : 采集待测婴幼儿的头发厚度和衣物厚 度, 并根据采集到的头发厚度和衣物厚度, 对婴幼儿人体模型进行更新; 步 骤 S40 : 从更新后的婴幼儿人体模型中获得待测婴幼儿的人体测量学数据。
上述儿科测量方法,通过步骤 S 10和步骤 S20获得图像和三维尺寸数据, 并建立最初的婴幼儿人体模型, 该婴幼儿人体模型是指由多个关节点和人体 表面模型组成的模型, 通过步骤 S30中获得多个关节点数据, 利用关节点数 据生成人体拓扑模型, 并对该婴幼儿人体模型进行更新, 从而获得准确的婴 幼儿人体模型。 在步骤 S30采集待测婴幼儿的多个关节点数据, 并对婴幼儿 人体模型进行更新的过程中, 还包括如下子步骤: S31 : 采集婴幼儿的关节点 数据, 根据关节点数据, 对婴幼儿人体模型进行更新; S32 : 判断婴幼儿人体 模型中, 多个关节点是否全部更新建模, 如果是, 则进入步骤 S35 , 步骤 S35 用于对婴幼儿人体模型进行修正; 如果否, 则回到步骤 S31 , 采集下一个关 节点数据。 步骤 S35 : 采集待测婴幼儿的头发厚度和衣物厚度, 并根据采集 到的头发厚度和衣物厚度, 对婴幼儿人体模型进行更新。 通过步骤 S30和步 骤 S35的更新, 可以获得较为准确的婴幼儿人体模型。 最后, 通过对建立的 婴幼儿人体模型进行分析, 获得婴幼儿的人体测量学数据, 如: 身长 /身高、 头围、 胸围等。
在该儿科测量方法的实现过程中, 步骤 S 10和步骤 S20中的婴幼儿的图 像和三维尺寸数据, 可以分别通过图像采集设备和距离测量设备获得, 也可 以通过图像采集设备结合标准的背景获得多幅人体图像, 并从人体图像中分 析获得三维尺寸数据。 例如, 采用带有标尺或者固定特征点的婴幼儿体检床 放置婴幼儿,通过结合图像背景的特征点可以分析出婴幼儿的三维尺寸数据。 而在步骤 S30和步骤 S35中, 用于采集关节点数据的采集设备的数量, 以及 采集头发厚度和衣物厚度的采集设备的数量, 可以根据测量的精度、 操作舒 适性等具体确定。 在实际测量中, 可以通过超声波传感器获得衣物和头发的 厚度, 并通过设置在关节点位置附近的采集设备获得婴幼儿人体模型的关节 点数据。
上文对本发明所提供的非接触式儿科测量方法进行了介绍, 下面, 将结 合附图对本发明提供的用于实现上述测量方法的非接触式儿科测量设备进行 介绍。 如图 2所示, 该非接触式儿科测量设备包括数据采集与处理单元 1, 以及分别与数据采集与处理单元 1 双向连接的多个超声波传感器 2、 多个图 像采集模块 3、 多个尺寸采集模块 4和数据输出模块 6。 其中, 数据采集与处 理单元 1是一个微处理器(或者 SoC系统), 内置有用于建立标准婴幼儿人体 模型的算法模块, 以及从婴幼儿人体模型中获取人体测量学数据的算法模块。 该数据采集与处理单元 1还包括数据存储模块, 用于存储建立的婴幼儿人体 模型库及人体测量学数据。上述算法模块可以在微处理器中以固件方式实现, 也可以以软件方式实现。 数据存储模块可以以 SRAM方式实现, 也可以以非易 失性存储器方式实现。 这些是本领域技术人员都能掌握的惯用技术手段, 在 此就不详细说明了。
具体地说, 婴幼儿人体模型由多个关节点、 人体拓扑模型和三维表面模 型组成, 图像采集模块 3用于采集包括待测婴幼儿的肢体形态和关节点数据 的图像, 尺寸采集模块 4用于采集待测婴幼儿的三维尺寸数据, 采集与处理 单元 1通过分析图像和三维尺寸数据, 建立婴幼儿人体模型。 该非接触式儿 科测量设备通过分析超声波传感器 2发射和接收的超声波可以测量出婴幼儿 的头发厚度和衣物厚度, 从而对建立的婴幼儿人体模型进行修正。 数据采集 与处理单元 1应用内置的人体测量学算法, 最终从修正后的人体模型中分析 获得人体测量学数据。 数据输出模块 6包括显示器、 打印机等设备, 用于将 测量结果显示给医生或者家属, 或者打印测量结果。
结合图 3可知,该儿科测量设备中还包括用于放置待测婴幼儿的床体 7, 在床体 7 的底部还设置有称重传感器 5, 称重传感器 5与采集与处理单元 1 连接。 多个图像采集模块 3分别设置于床体 7的用于放置头部的一端、 床体 7的侧面以及床体 7的上方。 多个尺寸采集模块 4分别设置于床体 7四周的 位置, 优选为关节点位置。 同样, 为了测量头发的厚度和衣物的厚度, 超声 波传感器 2需要设置于头顶位置、 身体上方和身体侧面, 多个超声波传感器 2将分别设置于床体 7的用于放置头部的一端、 床体 7的侧面或者床体 7的 上方。 图像采集模块 3、 尺寸采集模块 4和超声波传感器 2的具体数量和设 置位置可以根据测量精度、 操作舒适性等进行调整。
上面对该儿科测量设备的具体结构进行了介绍, 下面结合附图对该儿科 测量设备中数据采集与处理单元 1的数据处理过程进行详细说明。
如图 4所示, 步骤 S 1 : 通过手工或通过数字储存器输入待测婴幼儿的身 份信息建立测量档案, 例如输入姓名、 出生日期、 年龄等身份信息, 进入步 骤 S2 ;
步骤 S2 :根据图像采集模块 3采集的图像和尺寸采集模块 4采集的三维 尺寸信息, 结合内置的算法建立最初的婴幼儿人体模型。 该婴幼儿人体模型 主要由 N个关节点信息、 人体拓扑模型和三维表面模型组成, 其中 N为正整 数。 将该婴幼儿人体模型存入婴幼儿人体模型库中, 进入步骤 S3 ;
步骤 S3 : 采集传感器数据, 进入步骤 S4 ; 步骤 S4 : 根据获得的传感器 数据对婴幼儿人体模型的参数进行更新, 并将更新后的婴幼儿人体模型存入 模型库, 进入步骤 S5 ; 步骤 S5 : 根据模型库中存储的婴幼儿人体模型, 判断 N个关节点数据是否已全部建模, 如果是, 进入步骤 S6 , 如果否, 回到步骤 S3 , 继续采集传感器数据; 步骤 S6 : 根据模型库中存储的最新婴幼儿人体模 型进行人体测量学计算, 获得测量结果并输出, 结束计算程序。 在上述步骤 S3中, 分别采集图像采集模块 3和尺寸采集模块 4中的传 感器数据, 从中获得关节点信息和尺寸信息, 在步骤 S3中, 还可以包括采集 超声波传感器 2的数据获得头发和衣物的厚度,从而通过步骤 S4获得修正后 的婴幼儿人体模型。
如图 3所示, 在该实施例中, 数据输出模块 6是显示器, 在该显示器上 显示有建立的婴幼儿人体模型, 在该图像上同步显示有 N个关节点标记, 在 步骤 S5中, 通过检测图像中的 N个关节点位置的信息是否已全部更新, 判断 建模过程是否完成。 建模结束后, 在步骤 S6中, 数据采集与处理单元 1根据 内置的算法对显示器中的婴幼儿人体模型进行人体测量学计算, 获得身长 / 身高、 头围、 胸围等数据。
综上所述, 该非接触式儿科测量设备, 通过图像采集模块采集图像, 通 过尺寸采集模块采集婴幼儿三维尺寸数据, 并通过数据采集与处理单元进行 婴幼儿人体建模, 最后通过建立的婴幼儿人体模型获得人体测量学数据。 该 测量过程无需设备接触婴幼儿的肢体, 对婴幼儿的姿势也无特殊的要求, 容 易实现。 并且, 通过将婴幼儿人体模型和测量结果进行存储, 可以将婴幼儿 各个阶段的人体测量学数据结合在一起, 绘制出婴幼儿的体格发育曲线。 通 过与本地婴幼儿的平均发育曲线做比较, 可以掌握婴幼儿的发育情况, 便于 儿科医生和父母更准确地掌握婴幼儿的发育情况。
上面对本发明所提供的非接触式儿科测量方法和测量设备进行了详细的 说明。 对本领域的一般技术人员而言, 在不背离本发明实质精神的前提下对 它所做的任何显而易见的改动, 都将构成对本发明专利权的侵犯, 将承担相 应的法律责任。

Claims

权 利 要 求
1. 一种非接触式儿科测量方法, 其特征在于包括下列步骤:
(1) 采集待测婴幼儿的图像和三维尺寸数据;
(2)根据采集到的所述图像和所述三维尺寸数据,建立婴幼儿人体模型;
(3)采集所述待测婴幼儿的多个关节点数据, 利用所述关节点数据生成 人体拓扑模型, 并对所述婴幼儿人体模型进行更新;
(4)从更新后的所述婴幼儿人体模型中获得所述待测婴幼儿的人体测量 学数据。
2. 如权利要求 1所述的非接触式儿科测量方法, 其特征在于: 所述婴幼儿人体模型由多个关节点和三维表面模型组成。
3. 如权利要求 1所述的非接触式儿科测量方法, 其特征在于: 在步骤 (3) 和步骤 (4) 之间还包括步骤 (35), 步骤 (35): 采集所述 待测婴幼儿的头发厚度和衣物厚度, 并根据采集到的所述头发厚度和所述衣 物厚度, 对所述婴幼儿人体模型进行更新。
4. 如权利要求 3所述的非接触式儿科测量方法, 其特征在于: 在步骤 (3) 中, 包括下列子步骤:
(31) 采集所述待测婴幼儿的关节点数据, 利用所述关节点数据生成人 体拓扑模型, 根据所述关节点数据和人体拓扑模型, 对所述婴幼儿人体模型 进行更新;
(32) 判断所述婴幼儿人体模型中, 多个关节点是否全部更新建模, 如 果是, 则进入步骤 (35), 如果否, 则回到步骤 (31)。
5. 一种用于实现权利要求 1所述测量方法的非接触式儿科测量设备,其 特征在于包括:
数据采集与处理单元;
分别与所述数据采集与处理单元双向连接的多个尺寸采集模块, 所述尺 寸采集模块用于采集待测婴幼儿的三维尺寸数据;
分别与所述数据采集与处理单元双向连接的多个图像采集模块, 所述图 像采集模块用于采集关节点数据及肢体形态; 与所述数据采集与处理单元双向连接的数据输出模块。
6. 如权利要求 5所述的非接触式儿科测量设备, 其特征在于: 所述数据采集与处理单元内置有用于建立婴幼儿人体模型的算法模块, 以及从所述婴幼儿人体模型中获取人体测量学数据的算法模块; 所述婴幼儿 人体模型由多个关节点、 人体拓扑模型和三维表面模型组成。
7. 如权利要求 4所述的非接触式儿科测量设备,其特征在于还包括多个 用于测量衣物厚度及头发厚度的超声波传感器, 所述超声波传感器与所述数 据采集与处理单元双向连接。
8. 如权利要求 7所述的非接触式儿科测量设备,其特征在于还包括用于 放置所述待测婴幼儿的床体。
9. 如权利要求 8所述的非接触式儿科测量设备, 其特征在于: 多个所述图像采集模块分别设置于所述床体的用于放置头部的一端、 所 述床体的侧面以及所述床体的上方; 多个所述尺寸采集模块分别设置于所述 床体四周; 多个所述超声波传感器分别设置于所述床体的用于放置头部的一 端、 所述床体的侧面或者所述床体的上方。
10. 如权利要求 8所述的非接触式儿科测量设备, 其特征在于还包括设 置在所述床体底部的称重传感器, 所述称重传感器与所述数据采集与处理单 元连接。
PCT/CN2012/083258 2012-10-20 2012-10-20 非接触式儿科测量方法和测量设备 WO2014059681A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/083258 WO2014059681A1 (zh) 2012-10-20 2012-10-20 非接触式儿科测量方法和测量设备
CN201310492325.1A CN103750817B (zh) 2012-10-20 2013-10-18 非接触式儿科测量方法和测量设备
US14/059,112 US9289129B2 (en) 2012-10-20 2013-10-21 Non-contact measuring method and apparatus in pediatrics
EP13189591.4A EP2721998A1 (en) 2012-10-20 2013-10-21 Non-contact measuring method and apparatus in pediatrics
CA2830889A CA2830889C (en) 2012-10-20 2013-10-21 Non-contact measuring method and apparatus in pediatrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083258 WO2014059681A1 (zh) 2012-10-20 2012-10-20 非接触式儿科测量方法和测量设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/059,112 Continuation US9289129B2 (en) 2012-10-20 2013-10-21 Non-contact measuring method and apparatus in pediatrics

Publications (1)

Publication Number Publication Date
WO2014059681A1 true WO2014059681A1 (zh) 2014-04-24

Family

ID=49486346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083258 WO2014059681A1 (zh) 2012-10-20 2012-10-20 非接触式儿科测量方法和测量设备

Country Status (4)

Country Link
US (1) US9289129B2 (zh)
EP (1) EP2721998A1 (zh)
CA (1) CA2830889C (zh)
WO (1) WO2014059681A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656400B2 (en) * 2012-11-21 2017-05-23 Matthew W. Krenik Hair cutting techniques for automated hair cutting system
US10259131B2 (en) * 2014-02-06 2019-04-16 Matthew W. Krenik User interface and modeling techniques for automated hair cutting system
US9953242B1 (en) * 2015-12-21 2018-04-24 Amazon Technologies, Inc. Identifying items in images using regions-of-interest
US10007860B1 (en) 2015-12-21 2018-06-26 Amazon Technologies, Inc. Identifying items in images using regions-of-interest
CN106725358A (zh) * 2016-12-29 2017-05-31 杭州博博科技有限公司 一种病房体温测量数据采集系统
US20190066244A1 (en) * 2017-08-30 2019-02-28 International Business Machines Corporation Personalized healthcare image analysis system
CN112137592A (zh) * 2020-10-20 2020-12-29 山东大学齐鲁医院(青岛) 一种动静脉显影装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564209A (zh) * 2009-03-06 2009-10-28 谢琴 服装在线人体尺寸测量方法
CN101639349A (zh) * 2009-08-25 2010-02-03 东华大学 三维人体模型的全自动测量方法
CN102178530A (zh) * 2011-01-24 2011-09-14 天津大学 基于三维点云数据的人体尺寸自动测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358208B1 (en) * 1998-11-21 2002-03-19 Philipp Lang Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid
AU2003245758A1 (en) * 2002-06-21 2004-01-06 Cedara Software Corp. Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement
JP3738291B2 (ja) * 2003-06-09 2006-01-25 住友大阪セメント株式会社 三次元形状測定装置
WO2005019984A2 (en) * 2003-08-04 2005-03-03 Brigham & Women's Hospital, Inc. Superresolution ultrasound
US20140193336A1 (en) * 2005-07-19 2014-07-10 Biosensors International Group, Ltd. Imaging protocols
GB0822605D0 (en) * 2008-12-11 2009-01-21 Pneumacare Ltd Method and apparatus for monitoring an object
US20130261470A1 (en) * 2010-12-09 2013-10-03 David Allison Systems and methods for estimating body composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564209A (zh) * 2009-03-06 2009-10-28 谢琴 服装在线人体尺寸测量方法
CN101639349A (zh) * 2009-08-25 2010-02-03 东华大学 三维人体模型的全自动测量方法
CN102178530A (zh) * 2011-01-24 2011-09-14 天津大学 基于三维点云数据的人体尺寸自动测量方法

Also Published As

Publication number Publication date
CA2830889A1 (en) 2014-04-20
CA2830889C (en) 2018-07-31
US20140114192A1 (en) 2014-04-24
EP2721998A1 (en) 2014-04-23
US9289129B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
WO2014059681A1 (zh) 非接触式儿科测量方法和测量设备
Robert-Lachaine et al. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis
CN103750817B (zh) 非接触式儿科测量方法和测量设备
Cheikh Ismail et al. Anthropometric protocols for the construction of new international fetal and newborn growth standards: the INTERGROWTH‐21st Project
CN105468896B (zh) 关节运动检测系统及方法
TWI344837B (zh)
KR101448562B1 (ko) 신체 분석 시스템
US8848994B2 (en) Fetus modeling method and image processing apparatus therefor
CN107708555A (zh) 测量装置和测量方法
WO2020211255A1 (zh) 人体形体及体质数据采集方法、装置及存储介质
CN108113120A (zh) 三维脚型与足底压力集成测量仪
CN107274478A (zh) 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
CN205426317U (zh) 一种能测量体温的综合身高体重腰围测量仪
JP2016096988A (ja) 身長計測方法、身長測定装置、及び、身長測定プログラム
WO2011081030A1 (ja) 体部位等別重量変動測定システム、測定方法、その利用システム及び利用方法
CN210277171U (zh) 生物力线小站融合多传感器信息的健康检测装置
CN108523898A (zh) 一种老年人体质测试椅
CN202403787U (zh) 一种新生儿身长体重测量仪
CN206080525U (zh) 婴儿体检装置
CN113080867A (zh) 一种用于形体塑造的快速扫描用户体脂率的方法及系统
CN204007830U (zh) 一种人体生理参数测量设备
CN112806989A (zh) 一种优化的脊柱侧弯检测装置
Aliverti et al. Transfer impedance of the respiratory system by forced oscillation technique and optoelectronic plethysmography
Xing et al. Design and validation of depth camera-based static posture assessment system
CN206443699U (zh) 一种婴儿头颅三维测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886758

Country of ref document: EP

Kind code of ref document: A1