WO2014059422A1 - Novel process for making compounds for use in the treatment of cancer - Google Patents

Novel process for making compounds for use in the treatment of cancer Download PDF

Info

Publication number
WO2014059422A1
WO2014059422A1 PCT/US2013/064866 US2013064866W WO2014059422A1 WO 2014059422 A1 WO2014059422 A1 WO 2014059422A1 US 2013064866 W US2013064866 W US 2013064866W WO 2014059422 A1 WO2014059422 A1 WO 2014059422A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
iii
vii
group
Prior art date
Application number
PCT/US2013/064866
Other languages
French (fr)
Inventor
Sriram Naganathan
Nathan GUZ
Matthew PFEIFFER
Original Assignee
Exelixis, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015536988A priority Critical patent/JP6300042B2/en
Priority to UAA201504532A priority patent/UA115455C2/en
Priority to NZ706723A priority patent/NZ706723A/en
Priority to ES13780303.7T priority patent/ES2671502T3/en
Priority to KR1020157012066A priority patent/KR102204520B1/en
Priority to SG11201502795VA priority patent/SG11201502795VA/en
Priority to AU2013328929A priority patent/AU2013328929B2/en
Priority to IN3928DEN2015 priority patent/IN2015DN03928A/en
Priority to CN201380064338.7A priority patent/CN104837826B/en
Priority to MA38085A priority patent/MA38085B1/en
Priority to PL13780303T priority patent/PL2909188T3/en
Priority to MYPI2015000897A priority patent/MY186549A/en
Priority to EP13780303.7A priority patent/EP2909188B1/en
Priority to PE2019002024A priority patent/PE20191818A1/en
Priority to SI201331045T priority patent/SI2909188T1/en
Priority to EA201590700A priority patent/EA030613B1/en
Application filed by Exelixis, Inc. filed Critical Exelixis, Inc.
Priority to MX2015004660A priority patent/MX2015004660A/en
Priority to BR112015008113-4A priority patent/BR112015008113B1/en
Priority to CR20200237A priority patent/CR20200237A/en
Priority to CA2889466A priority patent/CA2889466C/en
Publication of WO2014059422A1 publication Critical patent/WO2014059422A1/en
Priority to IL238116A priority patent/IL238116B/en
Priority to PH12015500785A priority patent/PH12015500785A1/en
Priority to ZA2015/02349A priority patent/ZA201502349B/en
Priority to SA515360271A priority patent/SA515360271B1/en
Priority to US14/684,826 priority patent/US9771347B2/en
Priority to CR20150245A priority patent/CR20150245A/en
Priority to HK16101572.6A priority patent/HK1213567A1/en
Priority to HK16101725.2A priority patent/HK1213878A1/en
Priority to US15/686,333 priority patent/US10239858B2/en
Priority to HRP20180670TT priority patent/HRP20180670T1/en
Priority to US16/271,215 priority patent/US10793541B2/en
Priority to PE2019001563A priority patent/PE20200387A1/en
Priority to US17/003,570 priority patent/US11414396B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a process for making certain compounds that inhibit MEK that are useful for the treatment of hyerproliferative disorders such as cancer.
  • Such compounds are described in WO2007044515, the entire contents of which is incorporated by reference, and in ACS Med. Chem Lett., 2012, 3, 416-421.
  • ME 1 MAPK/ERK Kinase
  • the MEK-ERK signal transduction cascade is a conserved pathway which regulates cell growth, proliferation, differentiation, and apoptosis in response to growth factors, cytokines, and hormones. This pathway operates downstream of Ras which is often upregulated or mutated in human tumors.
  • MEK is a critical effector of Ras function.
  • the ERK/MAPK pathway is upregulated in 30% of all tumors, and oncogenic activating mutations in K-Ras and B-Raf have been identified in 22% and 18% of all cancers respectively (Allen et al., 2003; Bamford S, 2004; Davies et al., 2002; Malumbres and Barbacid, 2003).
  • a large portion of human cancers including 66% (B-Raf) of malignant melanomas, 60% (K-Ras) and 4% (B-Raf) of pancreatic cancers, 50% of colorectal cancers (colon, in particular, K-Ras: 30%, B-Raf: 15%), 20% (K-Ras) of lung cancers, 27% (B-Raf) papillary and anaplastic thyroid cancer, and 10-20% (B-Raf) of endometriod ovarian cancers, harbor activating Ras and Raf mutations.
  • Inhibition of the ERK pathway results in anti-metastatic and anti-angiogenic effects largely due to a reduction of cell-cell contact and motility as well as downregulation of vascular endothelial growth factor (VEGF) expression.
  • VEGF vascular endothelial growth factor
  • expression of dominant negative MEK or ERK reduced the transforming ability of mutant Ras as seen in cell culture and in primary and metastatic growth of human tumor xenografts in vivo. Therefore, the MEK-ERK signal transduction pathway is an appropriate pathway to target for therapeutic intervention and compounds that target MEK present considerable therapeutic potential.
  • Ring A is arylene or heteroarylene optionally substituted with one, two, three, or four groups selected from R 6 , R 7 , R 8 , and R 9 , each of which are independently selected from hydrogen, halo, halo(Ci-C8)alkyl, hydroxy, (C 1 -C 6 )alkoxy, and halo(Ci-C6)alkoxy;
  • X is alkyl, halo, halo(Ci-Cg)alkyl, or halo(Cj-C6)alkoxy;
  • R 1 , R 2 , R 3 , and R 4 are each independently hydrogen, (Ci-Cg)alkyl, or halo(Ci-Cg)alkyl;
  • R 5 is hydrogen, halo, or (Ci-Cg)alkyl;
  • a substituent "R” may reside on any atom of the ring system, assuming replacement of a depicted, implied, or expressly defined hydrogen from one of the ring atoms, so long as a stable structure is formed.
  • the "R” group may reside on either the 5-membered or the 6-membered ring of the fused ring system.
  • Halogen or "halo” refers to fluorine, chlorine, bromine, or iodine.
  • Alkyl refers to a branched or straight hydrocarbon chain of one to eight carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, and heptyl. (Ci-C 6 )alkyl is preferred.
  • alkoxy refers to a moiety of the formula -OR a , wherein R a is an (Ci-C6)alkyl moiety as defined herein.
  • alkoxy moieties include, but are not limited to, methoxy, ethoxy, isopropoxy, and the like.
  • Alkoxy carbonyl refers to a group -C(0)-R b wherein R b is (Ci-C 6 )alkoxy as defined herein.
  • Aryl means a monovalent six- to fourteen-membered, mono- or bi-carbocyclic ring, wherein the monocyclic ring is aromatic and at least one of the rings in the bicyclic ring is aromatic. Unless stated otherwise, the valency of the group may be located on any atom of any ring within the radical, valency rules permitting. Representative examples include phenyl, naphthyl, and indanyl, and the like.
  • Arylene means a divalent six- to fourteen-membered, mono- or bi-carbocyclic ring, wherein the monocyclic ring is aromatic and at least one of the rings in the bicyclic ring is aromatic.
  • Representative examples include phenylene, naphthylene, and indanylene, and the like.
  • (C3-C8)Cycloalkyl refers to a single saturated carbocyclic ring of three to eight ring carbons, such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Cycloalkyl may optionally be substituted with one or more substituents, preferably one, two, or three
  • cycloalkyl substituent is selected from the group consisting of (C
  • C 6 )alkyl hydroxy, (Ci-C 6 )alkoxy, halo(Ci-C 6 )alkyl, halo(CrC 6 )alkoxy, halo, amino, mono- and di(Ci-C 6 )alkylamino, hetero(Ci-C 6 )alkyl, acyl, aryl, and heteroaryl.
  • Cycloalkyloxycarbonyl means a group -C(O)-OR c wherein R c is (C 3 -C 6 )cycloalkyl as defined herein.
  • Phenyloxycarbonyl refers to a group -C(0)-Ophenyl.
  • Heteroaryl means a monocyclic, fused bicyclic, or fused tricyclic, monovalent radical of 5 to 14 ring atoms containing one or more, preferably one, two, three, or four ring heteroatoms independently selected from -0-, -S(O) n - (n is 0, 1, or 2), -N-, -N(R X )-, and the remaining ring atoms being carbon, wherein the ring comprising a monocyclic radical is aromatic and wherein at least one of the fused rings comprising a bicyclic or tricyclic radical is aromatic.
  • R x is hydrogen, alkyl, hydroxy, alkoxy, acyl, or alkylsulfonyl.
  • the valency may be located on any atom of any ring of the heteroaryl group, valency rules permitting. In particular, when the point of valency is located on the nitrogen, R x is absent.
  • heteroaryl includes, but is not limited to, 1,2,4-triazolyl, 1,3,5-triazolyl, phthalimidyl, pyridinyl, pyrrolyl, imidazolyl, thienyl, furanyl, indolyl, 2,3-dihydro-lH-indolyl (including, for example,
  • isoindolyl 2,3-dihydro-lH-indol-2-yl or 2,3-dihydro-lH-indol-5-yl, and the like), isoindolyl, indolinyl, isoindolinyl, benzimidazolyl, benzodioxol-4-yl, benzofuranyl, cinnolinyl, indolizinyl, naphthyridin-3-yl, phthalazin-3-yl, phthalazin-4-yl, pteridinyl, purinyl, quinazolinyl,
  • Heteroarylene means a monocyclic, fused bicyclic, or fused tricyclic, divalent radical of 5 to 14 ring atoms containing one or more, preferably one, two, three, or four ring heteroatoms independently selected from -O-, -S(O) n - (n is 0, 1, or 2), -N-, -N(R 19 )-, and the remaining ring atoms being carbon, wherein the ring comprising a monocyclic radical is aromatic and wherein at least one of the fused rings comprising a bicyclic or tricyclic radical is aromatic.
  • R 19 is hydrogen, alkyl, or alkenyl.
  • the valencies may be located on any atom of any ring of the heteroarylene group, valency rules permitting. In particular, when the point of valency is located on the nitrogen, R x is absent.
  • heteroaryl includes, but is not limited to, thien-diyl, benzo[cT
  • Heterogeneous transition metal hydrogenation catalyst refers to a transition metal hydrogenation catalyst which acts in a different phase than the substrate. Especially the transition metal hydrogenation catalyst is in the solid phase.
  • the "support” can be merely a surface on which the metal is spread to increase the surface area.
  • the supports are porous materials with a high surface area, most commonly alumina or various kinds of carbon. Further examples of supports include, but are not limited to, silicon dioxide, titanium dioxide, calcium carbonate, barium sulfate, diatomaceous earth, and clay.
  • the metal itself can also act as a support, if no other support is present.
  • heterogeneous transition metal hydrogenation catalyst includes but is not limited to, a Raney catalyst, Pd/C, Pd(OH) 2 /C, Pd(OAc) 2 polyurea microcapsules (NP Pd(0) EncatTM 30),Au/TiO 2 , Rh/C, Ru/Al 2 O 3 , Ir/CaCO 3 , and Pt/C, or a mixture thereof.
  • NP Pd(0) EncatTM 30 is Palladium(O), microencapsulated in polyurea matrix, and is available from Sigma Aldrich as Product Number 653667.
  • This catalyst is available as a 45 percent mixture of nanoparticles of palladium approximately 2 nm in size in water, typically containing 0.4 mmol/g Pd(0) (dry basis), where the unit weight includes the weight of water. See Ley, S. V. et. al. Org Lett. 2003 Nov 27;5(24):4665-8.
  • the "heterogeneous transition metal hydrogenation catalyst" is not pre-treated with sulphide.
  • “Strong base” refers to conjugate bases of weak acids with a pK a > 13 such as alkali metal salts of carbanion, alkoxides, amides, hydroxides, and hydrides, in particular the strong bases are lithium, sodium, potassium, rubidium, or cesium salts of carbanion, alkoxides, amides, hydroxides, and hydrides.
  • strong base refers to sodium, potassium, or lithium amide or phenylithium, most particularly to butyllithium, t- butyllithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, lithium diethylamide, potassium t-butoxide, lithium t-butoxide, sodium amide, and sodium hydride.
  • the strong base is butyllithium, lithium diisopropylamide, lithium
  • the strong acids include, but are not limited to: sulphuric acid (H 2 SO 4 ), hydrohalogenic acid (i.e. HX" wherein X" is I, Br, CI or F), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), and combinations thereof.
  • HX hydrohalogenic acid
  • HNO 3 nitric acid
  • phosphoric acid H 3 PO 4
  • the strong acid is H 2 SO 4 or hydrohalogenic acid, wherein X" is Br or CI.
  • the strong acid is HC1.
  • the concentration of HC1 in water is in the range of 10% to 90%, more particularly 20% to 40%, most particularly 37 %.
  • amino protecting groups refers to an acid or base labile amino protecting groups, such as Ci-C 6 alkoxycarbonyl, C 3 -C 6 cycloalkyloxycarbonyl, phenyloxycarbonyl, or
  • amino protecting groups include, but are not limited to, tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), -Toluenesulfonyl (Ts), and
  • amino protecting groups refers to tert- butoxycarbonyl. (See Peter G. M. Wuts & Theodora W. Greene, Greene's Protective Groups in Organic Synthesis, 4 th ed. (2006)). [00026] Particularly, for the terms which definitions are given above are those specifically exemplified in the Examples.
  • Yield for each of the reactions described herein is expressed as a percentage of the theoretical yield.
  • any one of the process steps or sequences disclosed and/or claimed herein can be performed under an inert gas atmosphere, more particularly under argon or nitrogen.
  • the methods of the present invention may be carried out as semi-continuous or continuous processes, more preferably as continuous processes.
  • the present invention provides a process for preparing a compound of formula I, comprising contacting a compound of formula II a -l with a compound of formula II- 1, wherein X and R 5 are as defined above, and wherein R 10 is F, CI, Br, I, or -OSO 2 -CF 3 and the other variables are as reviously defined.
  • X and R 5 in a compound of formula II a -l are each
  • X is F and R 5 is I.
  • the compound of formula II- 1 is the compound of formula II-2,
  • R 11 is as H or a protecting group and Ring A is optionally substituted with one, two, three, or four groups selected from R 6 , R 7 , R 8 , and R 9 , each of which are independently selected from halo, halo(CrC 8 )alkyl, (Ci-C6)alkoxy, and halo(Ci-C 6 )alkoxy.
  • Ring A is phenyl or pyridyl. More particularly, Ring A is phenyl substituted with R 12a and R 12b which are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
  • the compound of formula II- 1 is the compound of formula II-3,
  • R 11 is as defined previously and R 10 is F, CI, Br, I, or OSO 2 CF 3 , and R 12a and R 12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
  • R 10 is F, CI, Br, or I
  • R 12a and R 12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
  • R 10 is F and R 12a and R 12b are each independently F, CI, I, alkyl, or alkoxy.
  • R 10 is F and R 12 and R 12b are each independently F, CI, I, or alkyl.
  • the present invention provides a process for preparing a compound of formula P, comprising contacting a compound of formula II a with a compound of formula II, the synthesis of which is described below.
  • the present invention provides a process for preparing a compound of formula ⁇ , comprising contacting a compound of formula II a with a compound of formula II in the presence of a strong base.
  • the strong base is selected from the group consisting of butyllithium, t-butyllithium, the lithium, sodium, or potassium salts of mono or bis substituted alkyl or aromatic amines, and silylalkyl or
  • the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine,
  • the strong base is selected from the group consisting of the lithium, sodium, and potassium salts of bis(trimethylsilyl)amine.
  • the strong base is selected from the group consisting of lithium diisopropylamide, lithium bis(trimethylsilyl)amide, and lithium diethylamide. More particularly, the base is lithium bis(trimethylsilyl)amide.
  • the strong base can be obtained commercially or generated in situ using conventional methods.
  • the reaction of a compound of formula II with a compound of formula II a is typically performed in the presence of a solvent.
  • the solvent is selected from the group consisting of a an ether-like solvent (e.g., tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, dioxane, or 2-methyl tetrahydrofuran (2-MeTHF)); an aromatic solvent (e.g., toluene or t-butyl-benzene), an aliphatic hydrocarbon solvent (e.g., hexanes, heptanes, or pentane); a saturated alicyclic hydrocarbon solvent (e.g., cyclohexane or cyclopentane); and a polar aprotic solvent (e.g., dimethylformamide or dimethyl sulfoxide), or a mixture thereof.
  • a ether-like solvent
  • Preferred solvents include toluene and tetrahydrofuran.
  • the solvent is tetrahydrofuran.
  • the compound of formula II a is generally commercially available or is readily prepared using methods well known to the person skilled in the art.
  • the compound of formula II a is available from Sigma Aldrich as 2-fluoro-4-iodo-aniline (CAS Registry Number (CASRN) 29632-74-4).
  • a strong base such as lithium bis(trimethylsilyl) amide (LiHMDS) is added to mixture of a compound of formula II- 1 such as a compound of formula II and 2-fluoro-4-iodo aniline in a suitable ether-like solvent such as THF.
  • the reaction mixture is typically quenched with aqueous acid, typically aqueous sulphuric acid or hydrochloric acid, and then worked-up according to conventional methods to provide a compound of formula I such as a compound of formula ⁇ .
  • the present invention provides a process for preparing a compound of
  • the deprotection is accomplished in a suitable solvent using H 2 in the presence of a heterogeneous hydrogenation transition metal catalyst, or by treatment with chloroethyl chloroformate in the presence of MeCN or Na/NH 3 .
  • the deprotection occurs by catalytic hydrogenolysis in the presence of a mineral acid such as HC1 or an organic acid such as acetic acid or a mixture thereof, which accelerates the reaction.
  • the deprotection is accomplished via hydrogenolysis in the presence of a suitable solvent and in the presence of an acid such as hydrochloric acid or acetic acid or a mixture thereof.
  • the deprotection is accomplished in the presence of HCI and acetic acid.
  • the heterogeneous hydrogenation transition metal catalyst can be any such catalyst known in the art.
  • the catalyst is typically a heterogeneous transition metal catalyst which is typically selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH) 2 /C, Pd(OAc) 2 polyurea microcapsules (NP Pd(0) EncatTM 30), Au/TiO 2 , Rh/C, Ru/Al 2 O 3, Ir/CaCO 3 , and Pt/C, or a mixture thereof.
  • NP Pd(0) EncatTM 30 is Palladium(O), microencapsulated in polyurea matrix, and is available from Sigma Aldrich as Product Number 653667.
  • the hydrogenation catalyst is selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH) 2 /C, Au/TiO 2 , Rh/C, Ru/Al 2 O 3 , Ir/CaCO 3 , and Pt/C, or a mixture thereof. More particularly, the hydrogenation catalyst is Pd/C, Pd(OH) 2 /C, Au/TiO 2 , Rh/C, Ra-Ni, or Pt/C. Most particularly, the hydrogenation catalyst is Pd C or Ra-Ni.
  • Palladium is used in catalytic amounts, e.g. 0.001 to 0.1 equivalents, preferably 0.01 to 0.1 equivalents, with respect to the compound of formula III.
  • the catalyst loading for the catalytic hydrogenolysis is typically 0.1 to 20 weight percent. More typically, the catalyst loading for the catalytic hydrogenolysis is typically 5 to 15 weight percent.
  • the catalytic hydrogenolysis may be performed in the presence of a suitable solvent.
  • suitable solvents include alcohols (e.g. methanol or ethanol), ethers (e.g.
  • ester e.g. ethyl acetate
  • aromatic hydrocarbons e.g. toluene or t-butyl-benzene
  • aliphatic hydrocarbons e.g. hexanes, heptanes, or pentane
  • saturated alicyclic hydrocarbons e.g. cyclohexane or cyclopentane
  • aprotic polar solvents e.g.
  • the solvent is toluene, ethyl acetate or tetrahydrofuran, or a mixture thereof, optionally in the presence of water.
  • the solvent is a mixture of tetrahydrofuran and ethyl acetate.
  • the solvent is toluene.
  • the catalytic hydrogenolysis is typically performed at a temperature between 0 and 50 °C. More typically, the deprotection is performed at a temperature between 10 and 40 °C. In a particular embodiment, the temperature is between 15 and 25 °C.
  • the H 2 is added at a pressure of at least 0.1 bar, and more preferably at a pressure between 0.1 to 100 bar. More particularly, the H 2 is added at a pressure between 0.2 bar to 30 bar, and more particularly, the H 2 is added at a pressure of 1 to 10 bar. In a preferred embodiment, the 3 ⁇ 4 is added at a pressure of approximately 2 bar.
  • the present invention provides a process for preparing a compound of formula III, comprising contacting a compound of formula IV with a compound of formula IV a .
  • the compound of formula IV a (CASRN 157373-08-5) is generally available from commercial sources or is readily prepared by a skilled artisan.
  • the compound of formula r a can be prepared from the corresponding carboxylic acid (CASRN 61079-72-9) using thionyl chloride or oxalyl chloride or the like in the presence of a catalyst such as pyridine, dimethylformamide, triethyl amine, or diisopropylethyl amine.
  • the present invention provides a process for preparing a compound of formula III, comprising contacting a compound of formula IV with a compound of formula IV a in the presence of a base.
  • the base is an inorganic base, which is preferably an alkali or alkali earth metal hydroxide, phosphate, or carbonate. More particularly, the inorganic base is selected from the group consisting of LiOH, NaOH, KOH, CsOH, NH 4 OH, RbOH, Mg(OH) 2 , Ca(OH) 2 , Ba(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , (NH4) 2 CO 3 , and
  • the base is K 3 PO 4 , 2 CO 3 , or KOH. In a more particular embodiment, the base is K 3 PO 4 , K 2 CO 3 , or KOH.
  • the base is typically used as a mixture in water.
  • the reaction is accomplished in a suitable solvent in the presence of the base.
  • the solvent is selected from the group consisting of an ether (e.g. tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, or dioxane, 2-MeTHF); an alcohol such as methanol or ethanol or the like; toluene; or a mixture thereof.
  • the solvent is toluene.
  • the solvent is a mixture of tetrahydrofuran and water. The reaction is typically performed at a temperature of approximately 10 to 20 °C.
  • the present invention provides a process for preparing a compound of formula rv a , comprising reacting a compound of formula IV b with oxalyl chloride, thionyl chloride, or the like, in the presence of a catalyst such as pyridine, dimethylformamide, triethyl amine, or diisopropyl
  • the conversion of compound IV b to rv a is carried out in the presence of pyridine or dimethylformamide, particularly in the presence of trace amount of pyridine, more particularly wherein between about 0.001 and 0.02 eq of pyridine is being used, most particularly wherein about 0.005 eq of pyridine is being used.
  • the present invention provides a process for preparing a compound of
  • PG is an amino protecting group.
  • the amino protecting group is an FMoc, CBz, or BOC protecting group.
  • the amino protecting group is a BOC protecting group.
  • the deprotection of a compound of formula V may be performed in the presence of a solvent, such as an alcohol (e.g. methanol or ethanol), an ether-like solvent (e.g.
  • ester-like solvent e.g. ethyl acetate
  • aromatic solvent e.g. toluene or t-butyl- benzene
  • an aliphatic hydrocarbon solvent e.g. hexanes, heptanes, or pentane
  • a saturated alicyclic hydrocarbon solvent e.g. cyclohexane or cyclopentane
  • an aprotic polar solvents e.g.
  • dimethylformamide dimethyl sulfoxide
  • a mineral or organic co-catalyst preferably in the presence of methanol, ethanol, isopropanol, tert-butanol, tetrahydrofuran, 2- methyltetrahydrofuran, toluene, or dimethylformamide and hydrochloric acid or acetic acid.
  • the deprotection is carried out in a solvent in the presence of a strong mineral or organic acid, particularly trifluoroacetic acid, methansulfonic acid, p-toleunensulfonic acid, Lewis acids, particularly trialkylsilyl iodides, trimethylsilyl halides, boron trifuoride diethyl etherate, zinc halides, tin halides, or an inorganic acid. More particularly the acid is sulfuric acid, HBr, or HC1. Common conditions include HCl/dioxane, trifluoroacetic acid/methylene chloride.
  • the deprotection is carried out in a heterogeneous mixture containing aqueous HC1 and toluene.
  • the present invention provides a process for preparing a compound of formula V wherein PG is an amino protecting group, comprising reducing a compound of
  • the reaction occurs in the presence of a reducing agent.
  • the reducing agent can be selected from the group consisting of borohydrides.
  • the reducing agent is selected from the group consisting of NaBHU, NaBH(OAc)3, and NaBH 3 CN. More preferably, the reducing agent is NaBH 3 CN or NaBIL; and LiCN, NaCN, or KCN under conditions used in typical reductive amination procedures.
  • a typical reductive animation procedure involves combining an amine and a carbonyl compound in the presence of a complex metal hydride such as NaBFLj, L1BH 4 , NaBHaCN, Zn(BH 4 ) 2 , sodium triacetoxyborohydride, or borane/pyridine under mild acidic conditions, conveniently at a pH of 1-5, which promotes formation of the intermediate iminium salt which is then reduced by the metal hydride.
  • a complex metal hydride such as NaBFLj, L1BH 4 , NaBHaCN, Zn(BH 4 ) 2 , sodium triacetoxyborohydride, or borane/pyridine
  • the reducing agent is NaBH 3 CN.
  • the preparation of a compound of formula V may be performed in the presence of a solvent, such as an alcohol solvent (e.g. methanol or ethanol), an ether-like solvent (e.g.
  • ester-like solvent e.g. ethyl acetate
  • aromatic solvent e.g. toluene or t-butyl- benzene
  • an aliphatic hydrocarbon solvent e.g. hexanes, heptanes, or pentane
  • a saturated alicyclic hydrocarbon solvent e.g. cyclohexane or cyclopentane
  • an aprotic polar solvents e.g.
  • dimethylformamide dimethyl sulfoxide
  • a mineral or organic co-catalyst preferably in the presence of methanol, ethanol, isopropanol, tert-butanol, tetrahydrofuran, 2- methyltetrahydrofuran, toluene, or dimethylformamide.
  • the present invention provides a process for preparing a compound of formula VI comprising reacting a compound of formula VII (CASR 106565-71- 3) with a compound of formula VII
  • PG is an amino protecting group such as Fmoc, Cbz, or Boc or the like.
  • the compound of formula VII a is generally available from commercial sources or is readily prepared using methods well known to the person skilled in the art. (See, for example, Rice, K. et al. Med. Chem. Lett. 2012, 3, 416, and Podlech, J. and Seebach, D. Helv. Chim. Acta 1995, 1238.)
  • the compound of formula VII a wherein PG is Boc is commercially available from Sigma Aldrich as 1-Boc-azetidinone (tert-butyl 3-oxo-l-azetidinecarboxylate, CASRN 398489- 26-4).
  • the compound of formula VII is generally available from commercial sources or is readily prepared using methods well known to the person skilled in the art. (See, for example, N. R. Guz et al, Org. Proc. Res. Develop. 2010 14(6): 1476).
  • the compound of formula VII is commercially available, from Sigma Aldrich, as (3S,5R,8aS)-3- phenyl-hexahydro-oxazolo[3,2-a]pyridine-carbonitrile (CAS Reg. No. 106565-71-3).
  • the reaction is accomplished in a suitable solvent in the presence of a base.
  • the solvent is a polar aprotic solvent selected from ethers such as tetrahydrofuran, diisopropyl ether, /-butylmethyl ether, dibutyl ether, dimethyl acetal, dioxane, or 2-MeTHF or mixtures thereof, used alone or in combination with a polar aprotic solvent such as l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone (DMPU).
  • DMPU l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone
  • the solvent is THF used in combination with DMPU.
  • the base is an amine base such as the lithium, sodium, or potassium salts of mono or bis substituted alkyl or aromatic amines, and silylalkyl or silylaromatic amines.
  • the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine,
  • the strong base is selected from the group consisting of the lithium, sodium, and potassium salts of bis(trimethylsilyl)amine. More particularly, the strong base is selected from the group consisting of lithium diisopropylamide, lithium bis(trimethylsilyl)amide, and lithium diethylamide. More particularly, the base is lithium diisopropylamide.
  • the reaction is typically performed at low temperature.
  • the reaction temperature is about 0 to -80 °C.
  • the reaction temperature is about -20 to -80 °C.
  • the reaction temperature is about -50 to - 80 °C.
  • the reaction temperature is about -70 to -80 °C.
  • the present invention provides a process for preparing a compound of formula V, comprising the following steps:
  • steps 1 to 2 steps can be telescoped.
  • the present invention provides a process for the preparation of the compound of formula IV, which comprises the following steps:
  • any combination of steps 1 to 3 or all steps can be telescoped. More particularly steps 2 and 3 are telescoped.
  • the present invention provides a process for the preparation of the compound of formula III, which comprises the following steps: 1) reacting a compound of formula VII with a compound of formula VII a as previously described to provide a compound of formula VI;
  • any combination of steps 1 to 4 or all steps can be telescoped. More particularly steps 2 to 4 are telescoped.
  • the present invention provides a process for the preparation of the compound of formula II, which comprises the following steps:
  • steps 1 to 5 Any combination of steps 1 to 5 or all steps can be telescoped. More particularly steps 2 to 5 are telescoped.
  • the present invention provides a process for the preparation of a compound of formula F, which comprises the following steps:
  • steps 1 to 6 or all steps can be telescoped. More particularly, steps 2 to 5 are telescoped.
  • the present invention provides a process for the preparation of the compound of formula ⁇ , which comprises the following steps:
  • steps (a) and (b) can be telescoped.
  • the present invention provides a process for the preparation of the compound of formula ⁇ , which comprises the following steps:
  • any combination of steps (a) to (c) or all steps can be telescoped. More particularly steps (a) and (b) are telescoped.
  • the present invention provides a process for the preparation of the compound of formula ⁇ , which comprises the following steps:
  • any combination of steps a) to d) or all steps can be telescoped. More particularly steps (a) and (c) are telescoped.
  • the present invention provides a process for the preparation of the compound of formula ⁇ , which comprises the following steps:
  • IVa IV III d hydro enation of a compound of formula III, as previousl described;
  • any combination of steps (a) to (e) or all steps can be telescoped. More particularly steps (a) to (d) are telescoped.
  • the present invention provides a process for the preparation of a compound of formula I obtained by any of the processes and conditions mentioned previously.
  • a further aspect of the present invention provides a compound of formula VI;
  • PG is an amino protecting group.
  • PG is tert-butyloxycarbonyl (Boc).
  • PG is an amino protecting group.
  • PG is tert-butyloxycarbonyl (Boc).
  • a further aspect of the pre ides a compound of formula IV.
  • the present invention also includes the following additional embodiments.
  • Embodiment 1 A rocess for making a compound of formula I:
  • A is arylene or heteroarylene optionally substituted with one, two, three, or four groups selected from R 6 , R 7 , R 8 , and R 9 , each of which are independently selected from hydrogen, halo, (Ci-Cg)alkyl, halo(Ci-C8)alkyl, hydroxy, (Ci-C6)alkoxy, and halo(Ci-C6)alkoxy;
  • X is alkyl, halo, halo(C 1 -Cg)alkyl, or halo(C C 6 )alkoxy;
  • R 1 , R 2 , R 3 , and R 4 are each independently hydrogen, (Ci-C8)alkyl, or halo(Ci-C8)alkyl;
  • R 5 is hydrogen, halo, or (Ci-Cg)alkyl;
  • Embodiment 2 The process of any one of embodiments 1 or 2, wherein X and R 5 in a compound of formula II a -l are each independently F, CI, Br, or I.
  • Embodiment 3 The process of any one of embodiments 1 to 3, wherein X is F and R 5 is I.
  • Embodiment 4 The process of any one of embodiments 1 to 3 wherein the compound of formula II- 1 is the compound of formula II-2,
  • R is H or protecting group and Ring A is optionally substituted with one, two, three or four groups selected from R , R , R , and R , each of which are independently selected from halo, (Ci-C 8 )alkyl, halo(C 1 -C 8 )alkyl, (Ci-C 6 )alkoxy, and halo(CrC 6 )alkoxy.
  • Embodiment 5 The process of any one of embodiments 1 to 4, wherein the compound of formula II- 1 is the compound of formula II-3,
  • R 11 is as defined previously;
  • R 10 is F, CI, Br, I, or OSO 2 CF 3 ; and
  • R 12a and R 12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
  • Embodiment 6 The process of embodiment 5, wherein R 10 in the compound of formula II-3 is F, CI, Br, or I, and R 12a and R 12b are each independently F, CI, Br, alkyl, haloalkyl, alkoxy, or haloalkoxy.
  • Embodiment 7 The process of any one of embodiments 1 to 6, wherein R 10 in the compound of formula II-3 is F and R 12a and R 12b are each independently F, CI, alkyl, or alkoxy.
  • Embodiment 8 The process of any of embodiments 1-7 wherein the strong base is selected from the group consisting of butyllithium, t-butyllithium, the lithium, sodium, or potassium salts of mono or bis- substituted alkyl or aromatic amines, and silylalkyl or silylaromatic amines.
  • Embodiment 9. The process of any of embodiments 1-8, wherein the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine, bis(trimethylsilyl)amine, diethylamine, and dimethylamine.
  • Embodiment 10 The process of any one of embodiments 1 to 9, wherein the strong base is lithium bis(trimethylsilyl)amide.
  • Embodiment 11 The process of any one of embodiments 1 to 10, wherein reaction is performed in the presence of a solvent which is tetrahydrofuran.
  • Embodiment 12 The process of any of embodiments 1 to 11, wherein the compound of formula II a -l is a compound of formula II a ; the compound of formula II- 1 is a
  • Embodiment 13 A process for preparing a compound of formula II,
  • deprotection comprises hydrogenation using H 2 in the presence of a heterogeneous transition metal hydrogenation catalyst or treatment with chloroethyl chloroformate in the presence of MeCN or Na/NH 3 .
  • Embodiment 14 The process of embodiment 13, wherein the heterogeneous transition metal hydrogenation catalyst is selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH) 2 /C, Pd(OAc) 2 , Au/TiO 2 , Rh/C, Ru/Al 2 O 3 , Ir/CaCO 3 , Pt/C, and Palladium(O) microencapsulated in polyurea matrix as a 45 percent mixture of nanoparticles of palladium approximately 2 nm in size in water, containing 0.4 mmol/g Pd(0) (dry basis), where the unit weight includes the weight of water (NP Pd(0) EncatTM 30), or a mixture thereof.
  • a Raney catalyst Pd/C, Pd(OH) 2 /C, Pd(OAc) 2 , Au/TiO 2 , Rh/C, Ru/Al 2 O 3 , Ir/CaCO 3 , Pt/C, and Palladium(O) microencapsulated
  • Embodiment 15 The process of embodiment 14, wherein the heterogeneous transition metal hydrogenation catalyst is Pd/C.
  • Embodiment 16 A process for preparing a compound of formula III, comp
  • Embodiment 17 The process of embodiment 16 in the presence of an inorganic base which is an alkali or alkali earth metal hydroxide, phosphate, or carbonate.
  • an inorganic base which is an alkali or alkali earth metal hydroxide, phosphate, or carbonate.
  • Embodiment 18 The process of any one of embodiments embodiment 16 to 17, wherein the inorganic base is selected from the group consisting of LiOH, NaOH, KOH, CsOH, NH 4 OH, RbOH, Mg(OH) 2 , Ca(OH) 2 , Ba(OH) 2 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 ,
  • Embodiment 19 The process of any one of embodiments 16 to 18, wherein the inorganic base is K 3 PO 4 , K 2 CO 3 , or KOH.
  • Embodiment 20 A process for preparing a compound of formula IV, comprising dep
  • Embodiment 21 The process of embodiment 20, wherein the protecting group is a BOC protecting group.
  • Embodiment 22 A process for preparing a compound of formula V wherein PG is an amino protecting group, comprising reducing a compound of formula VI with a reducing agent select from the group consisting of boroh drides.
  • Embodiment 23 A process for preparing a compound of formula VI comprising reacting a compound of formula VII with a compound of formula VII a in the presence of base wherein PG is an amino rotecting group.
  • Embodiment 24 A process for the preparation of the compound of formula
  • Embodiment 25 A process for the preparation of the compound of formula P which comprises contacting a compound of formula II and compound of formula II a in the pre
  • Embodiment 26 The process of embodiment 25, further comprising the step of hydrogenation of a compound of formula III to provide a compound of formula II.
  • Embodiment 27 The process of embodiment 26, further comprising the step of reacting a compound of formula IV with a compound of formula IV a to provide a compound of formula III.
  • Embodiment 28 The process of embodiment 27, further comprising the step of deprotecting the azetidinyl ring of a compound of formula V.
  • Embodiment 29 The process of embodiment 28, further comprising reducing a compound of formula VI with a reducing agent selected from the group consisting of borohydrides to provide a compound of formula V.
  • Embodiment 30 The process of embodiment 29, further comprising reacting a compound of formula VII with a compound of formula VII a in the presence of base.
  • Embodiment 31 A compound which is:
  • Embodiment 32 The compound of embodiment 31 , wherein PG in the compound of formulas VI and V is BOC. Synthesis
  • Compounds of this invention can be made by the synthetic procedures described below.
  • the starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as Sigma Aldrich Chemical Co. (Miivvaukee, Wis.), or Bachem (Torrance, Calif.), or are prepared by methods known to those skilled in the an following procedures set forth in references such as Fieser and Fieser s Reagents for Organic Synthesis, Volumes 1- 17 (John Wiley and Sons, 1991); Rodd's Chemistry of Carbon
  • the compounds disclosed and claimed herein have asymmetric carbon atoms or cyuaiernized nitrogen atoms in their structure and may be prepared through the through syntheses described herein as single stereoisomers, racemaies, and as mixtures of enantiomers and diasiereomers.
  • the compounds may also exist as geometric isomers. Ail such single
  • Some of the compounds of the invention may exist as tautomers.
  • the molecule may exist in the enol form; where an amide is present, the molecule may exist as the imidic acid; and where an enamine is present, the molecule may exist as an imine. All such tautomers are within the scope of the invention.
  • optically active (R)- and (S)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
  • Enantiomers may be resolved by methods known to one of ordinary skill in the art, for example by: formation of diastereomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereomeric derivatives which may be separated, for example, by crystallization; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent.
  • enantiomers may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents or by converting on enantiomer to the other by asymmetric transformation.
  • the major component enantiomer may be further enriched (with concomitant loss in yield) by recrystallization.
  • the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like.
  • pharmaceutically acceptable solvents such as water, ethanol, and the like.
  • the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
  • the methods of the present invention may be carried out as semi-continuous or continuous processes, more preferably as continuous processes.
  • the present invention as described above unless indicated otherwise may be carried out in the presence of a solvent or a mixture of two or more solvents.
  • the solvent is an aqueous or an organic solvent such as the ether-like solvent (e.g. tetrahydrofuran,
  • aliphatic hydrocarbon solvent e.g. hexane, heptane or pentane
  • saturated alicyclic hydrocarbon solvent e.g. cyclohexane or cyclopentane
  • aromatic solvent e.g. toluene, o- m- or p-xylene or t- butyl-benzene
  • CDCI3 ⁇ 7.30 - 7.50 (m, 5 H), 4.17 - 4.27 (m, 3 H), 3.94 - 4.01 (m, 2 H), 4.11 - 4.1 (m, 2 H), 4.09 (d, 1 H), 3.95 (d, 1 H), 3.87 (dd, 1 H), 3.76 (dd, 1 H), 3.54 - 3.70 (br, 1 H), 2.85 - 3.03 (br, 1 H), 2.18 - 2.25 (m, 1 H), 2.12 (br, 1 H), 1.97 - 2.04 (m, 1 H), 1.85 - 1.94 (m, 1 H), 1.61 - 1.79 (m, 3 H), 1.41 (s, 9 H).
  • MS (EI): m/z 400.48 ([M+H] + , 100%).
  • the resulting mixture was subsequently stirred for another 3 h at 70 to 75 °C. After complete reaction, the mixture was cooled to 23 °C and slowly dosed within 30 min into a mixture of toluene (100 mL) and aqueous NaOH (60g, 10%-w/w) and stirred for 15 min. The reaction flask was rinsed with the quenched mixture. The layers were separated, and the organic phase was washed with toluene (30 mL). The combined organic phases were
  • the product solution was fully concentrated in the rotary evaporator, treated with EtOH and again fully concentrated resulting in 19.2 g of a foamy product.
  • the residue was dissolved in a mixture of ethyl acetate (30 mL) and MeOH (15mL) and purified by flash chromatography over 120 g silica gel using ethyl acetate as eluent.
  • Toluene (360 mL) was partially removed by distillation under vacuum (jacket temperature: 60 to 70 °C, pressure: 200 to 100 mbar). The solution was cooled to room temperature, resulting in 636 g of a yellowish and slightly turbid solution that was stored under N 2 atmosphere and used in the subsequent step without any further treatment. HPLC purity: 99.2%-area.
  • the product solution (90 mL) was filtered and the filter residue was washed with EtOH (15 ml).
  • EtOH 15 ml
  • the solution was completely concentrated, and the residue was taken up in MTBE (40 mL), subsequently again fully concentrated, then taken up in a mixture of ethyl acetate (29 mL) and heptane (40 mL), then fully concentrated, then again taken up in a mixture of MTBE (20 mL) and heptane (50 mL) and again fully concentrated resulting, finally, in a foamy solid (32.5 g).
  • the mixture was treated with EtOH (13 mL), Acetic acid (4.15 mL, 72 mmol, 2.5 eq.) and with aqueous hydrochloric acid (2.5 ml, 37%-w/w, 30 mmol, 1.0 eq.).
  • the autoclave was rendered inert, pressurized with 2 bar of 3 ⁇ 4, and the reaction was run at 2 bar 3 ⁇ 4 pressure at 25 °C for 12 h. The pressure was released from the autoclave, and the suspension was treated with MeOH (25 mL) and kept stirring for 30 min and filtered under argon protection over filter paper. The autoclave and the filter residue were rinsed with MeOH (4 mL).
  • the combined filtrates were evaporated under reduced pressure to approximately 20-30 percent of the initial volume.
  • the residue was treated with isopropanol (38.5 mL) at 30 to 35 °C, stirred for 1 h, cooled to 20 to 25 °C, and treated with water (0.58 g) and with aqueous hydrochloric acid (2.5 mL, 37%-ww, 30 mmol, 1.0 eq.).
  • the resulting suspension was concentrated under vacuum at 25 to 35 °C until a volume of approximately 22 mL was reached, and MTBE (31 mL) was added at 25 to 35 °C.
  • the final suspension was cooled to 5 to 10 °C, stirred for 1 h, and then filtered.

Abstract

Disclosed herein is a process of making a compound of formula I The compound of formula I is an inhibitor of MEK and thus can be used to treat cancer.

Description

Novel Process for Making Compounds for Use in the Treatment of Cancer
Priority Claim
[0001] This application claims priority to United States Application Serial No. 61/713,104, filed October 12, 2012. The entire contents of the aforementioned application are incorporated herein by reference.
Field of the Invention
[0002] The invention relates to a process for making certain compounds that inhibit MEK that are useful for the treatment of hyerproliferative disorders such as cancer. Such compounds are described in WO2007044515, the entire contents of which is incorporated by reference, and in ACS Med. Chem Lett., 2012, 3, 416-421.
Background of the Invention
[0003] Like Abl kinase inhibition, ME 1 (MAPK/ERK Kinase) inhibition represents a promising strategy for treating cancers caused by aberrant ERK/MAPK pathway signaling (Solit et al., 2006; Wellbrock et al., 2004). The MEK-ERK signal transduction cascade is a conserved pathway which regulates cell growth, proliferation, differentiation, and apoptosis in response to growth factors, cytokines, and hormones. This pathway operates downstream of Ras which is often upregulated or mutated in human tumors. MEK is a critical effector of Ras function. The ERK/MAPK pathway is upregulated in 30% of all tumors, and oncogenic activating mutations in K-Ras and B-Raf have been identified in 22% and 18% of all cancers respectively (Allen et al., 2003; Bamford S, 2004; Davies et al., 2002; Malumbres and Barbacid, 2003). A large portion of human cancers, including 66% (B-Raf) of malignant melanomas, 60% (K-Ras) and 4% (B-Raf) of pancreatic cancers, 50% of colorectal cancers (colon, in particular, K-Ras: 30%, B-Raf: 15%), 20% (K-Ras) of lung cancers, 27% (B-Raf) papillary and anaplastic thyroid cancer, and 10-20% (B-Raf) of endometriod ovarian cancers, harbor activating Ras and Raf mutations. Inhibition of the ERK pathway, and in particular inhibition of MEK kinase activity, results in anti-metastatic and anti-angiogenic effects largely due to a reduction of cell-cell contact and motility as well as downregulation of vascular endothelial growth factor (VEGF) expression. Furthermore, expression of dominant negative MEK or ERK reduced the transforming ability of mutant Ras as seen in cell culture and in primary and metastatic growth of human tumor xenografts in vivo. Therefore, the MEK-ERK signal transduction pathway is an appropriate pathway to target for therapeutic intervention and compounds that target MEK present considerable therapeutic potential.
[0004] Accordingly, there is an ongoing need for the identification of compounds that inhibit MEK for the treatment of cancer as well as processes for making such compounds.
Summary of the Invention
Provided herein is a process for makin compounds of formula I:
Figure imgf000003_0001
wherein:
Ring A is arylene or heteroarylene optionally substituted with one, two, three, or four groups selected from R6, R7, R8, and R9, each of which are independently selected from hydrogen, halo,
Figure imgf000003_0002
halo(Ci-C8)alkyl, hydroxy, (C1-C6)alkoxy, and halo(Ci-C6)alkoxy;
X is alkyl, halo, halo(Ci-Cg)alkyl, or halo(Cj-C6)alkoxy;
R1, R2, R3, and R4 are each independently hydrogen, (Ci-Cg)alkyl, or halo(Ci-Cg)alkyl; R5 is hydrogen, halo, or (Ci-Cg)alkyl;
comprising:
contacting a compound of formula IIa-l with a compound of formula II- 1 to provide a compound of formula I, wherein X and R5 are as defined above, and wherein R10 is F, Br, CI, or - OSO2-CF3 and R1 1 is H or a rotecting group.
Figure imgf000003_0003
Detailed Description of the Invention
Abbreviations and Definitions
[0006] The following abbreviations and terms have the indicated meanings throughout:
Figure imgf000004_0001
Abbreviation Meaning
N Normal or normality
nM Nanomolar
NMR Nuclear magnetic resonance spectroscopy
Pd/C Palladium on carbon
Q Quartet
RT Room temperature
s Singlet
soln Solution
S/C Substrate/catalyst ratio
t or tr Triplet
THF Tetrahydrofuran
TLC Thin layer chromatography
v/v Volume to volume
[0007] The symbol "-" means a single bond, "=" means a double bond.
[0008] When chemical structures are depicted or described, unless explicitly stated otherwise, all carbons are assumed to have hydrogen substitution to conform to a valence of four. For example, in the structure on the left-hand side of the schematic below, there are nine hydrogens implied. The nine hydrogens are depicted in the right-hand structure. Sometimes a particular atom in a structure is described in textual formula as having a hydrogen or hydrogens as substitution (expressly defined hydrogen), for example, -CH2CH2-. It is understood by one of ordinary skill in the art that the aforementioned descriptive techniques are common in the chemical arts to provide brevity and simplicity to description of otherwise complex structures.
Figure imgf000005_0001
[0009] If a group "R" is depicted as "floating" on a ring system, as for example in the formula:
Figure imgf000005_0002
then, unless otherwise defined, a substituent "R" may reside on any atom of the ring system, assuming replacement of a depicted, implied, or expressly defined hydrogen from one of the ring atoms, so long as a stable structure is formed.
[00010] If a group "R" is depicted as floating on a fused ring system, as for example in the formulae:
Figure imgf000006_0001
then, unless otherwise defined, a substituent "R" may reside on any atom of the fused ring system, assuming replacement of a depicted hydrogen (for example the -NH- in the formula above), implied hydrogen (for example as in the formula above, where the hydrogens are not shown but understood to be present), or expressly defined hydrogen (for example where in the formula above, "Z" equals =CH-) from one of the ring atoms, so long as a stable structure is formed. In the example depicted, the "R" group may reside on either the 5-membered or the 6-membered ring of the fused ring system. When a group "R" is depicted as existing on a ring system containing saturated carbons, as e formula:
Figure imgf000006_0002
where, in this example, "y" can be more than one, assuming each replaces a currently depicted, implied, or expressly defined hydrogen on the ring; then, unless otherwise defined, where the resulting structure is stable, two "R's" may reside on the same carbon. A simple example is when R is a methyl group, there can exist a geminal dimethyl on a carbon of the depicted ring (an "annular" carbon). In another example, two R's on the same carbon, including that carbon, may form a ring, thus creating a spirocyclic ring (a "spirocyclyl" group) structure with the depicted ring as for example in the formula:
Figure imgf000006_0003
[00011] "Halogen" or "halo" refers to fluorine, chlorine, bromine, or iodine.
[00012] "Alkyl" refers to a branched or straight hydrocarbon chain of one to eight carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, and heptyl. (Ci-C6)alkyl is preferred.
[00013] "Alkoxy" refers to a moiety of the formula -ORa, wherein Ra is an (Ci-C6)alkyl moiety as defined herein. Examples of alkoxy moieties include, but are not limited to, methoxy, ethoxy, isopropoxy, and the like.
[00014] " Alkoxy carbonyl" refers to a group -C(0)-Rb wherein Rb is (Ci-C6)alkoxy as defined herein. [00015] "Aryl" means a monovalent six- to fourteen-membered, mono- or bi-carbocyclic ring, wherein the monocyclic ring is aromatic and at least one of the rings in the bicyclic ring is aromatic. Unless stated otherwise, the valency of the group may be located on any atom of any ring within the radical, valency rules permitting. Representative examples include phenyl, naphthyl, and indanyl, and the like.
[00016] "Arylene" means a divalent six- to fourteen-membered, mono- or bi-carbocyclic ring, wherein the monocyclic ring is aromatic and at least one of the rings in the bicyclic ring is aromatic. Representative examples include phenylene, naphthylene, and indanylene, and the like.
[00017] "(C3-C8)Cycloalkyl" refers to a single saturated carbocyclic ring of three to eight ring carbons, such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Cycloalkyl may optionally be substituted with one or more substituents, preferably one, two, or three
substituents. Preferably, cycloalkyl substituent is selected from the group consisting of (C
C6)alkyl, hydroxy, (Ci-C6)alkoxy, halo(Ci-C6)alkyl, halo(CrC6)alkoxy, halo, amino, mono- and di(Ci-C6)alkylamino, hetero(Ci-C6)alkyl, acyl, aryl, and heteroaryl.
[00018] "Cycloalkyloxycarbonyl" means a group -C(O)-ORc wherein Rc is (C3-C6)cycloalkyl as defined herein.
[00019] "Phenyloxycarbonyl" refers to a group -C(0)-Ophenyl.
[00020] "Heteroaryl" means a monocyclic, fused bicyclic, or fused tricyclic, monovalent radical of 5 to 14 ring atoms containing one or more, preferably one, two, three, or four ring heteroatoms independently selected from -0-, -S(O)n- (n is 0, 1, or 2), -N-, -N(RX)-, and the remaining ring atoms being carbon, wherein the ring comprising a monocyclic radical is aromatic and wherein at least one of the fused rings comprising a bicyclic or tricyclic radical is aromatic. One or two ring carbon atoms of any nonaromatic rings comprising a bicyclic or tricyclic radical may be replaced by a -C(O)-, -C(S)-, or -C(=NH)- group. Rx is hydrogen, alkyl, hydroxy, alkoxy, acyl, or alkylsulfonyl. Unless stated otherwise, the valency may be located on any atom of any ring of the heteroaryl group, valency rules permitting. In particular, when the point of valency is located on the nitrogen, Rx is absent. More specifically, the term heteroaryl includes, but is not limited to, 1,2,4-triazolyl, 1,3,5-triazolyl, phthalimidyl, pyridinyl, pyrrolyl, imidazolyl, thienyl, furanyl, indolyl, 2,3-dihydro-lH-indolyl (including, for example,
2,3-dihydro-lH-indol-2-yl or 2,3-dihydro-lH-indol-5-yl, and the like), isoindolyl, indolinyl, isoindolinyl, benzimidazolyl, benzodioxol-4-yl, benzofuranyl, cinnolinyl, indolizinyl, naphthyridin-3-yl, phthalazin-3-yl, phthalazin-4-yl, pteridinyl, purinyl, quinazolinyl,
quinoxalinyl, tetrazoyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isooxazolyl, oxadiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, tetrahydroisoquinolinyl (including, for example, tetrahydroisoquinolin-4-yl or tetrahydroisoquinolin-6-yl, and the like), pyrrolo[3,2- c]pyridinyl (including, for example, pyrrolo[3,2-c]pyridin-2-yl or pyrrolo[3,2-c]pyridin-7-yl, and the like), benzopyranyl, thiazolyl, isothiazolyl, thiadiazolyl, benzothiazolyl, benzothienyl, and the derivatives thereof, or N-oxide or a protected derivative thereof.
[00021] "Heteroarylene" means a monocyclic, fused bicyclic, or fused tricyclic, divalent radical of 5 to 14 ring atoms containing one or more, preferably one, two, three, or four ring heteroatoms independently selected from -O-, -S(O)n- (n is 0, 1, or 2), -N-, -N(R19)-, and the remaining ring atoms being carbon, wherein the ring comprising a monocyclic radical is aromatic and wherein at least one of the fused rings comprising a bicyclic or tricyclic radical is aromatic. One or two ring carbon atoms of any nonaromatic rings comprising a bicyclic or tricyclic radical may be replaced by a -C(O)-, -C(S)-, or -C(=NH)- group. R19 is hydrogen, alkyl, or alkenyl. Unless stated otherwise, the valencies may be located on any atom of any ring of the heteroarylene group, valency rules permitting. In particular, when the point of valency is located on the nitrogen, Rx is absent. More specifically, the term heteroaryl includes, but is not limited to, thien-diyl, benzo[cT|isoxazol-diyl, benzo[i/]isothiazol-diyl, lH-indazol-diyl (optionally
substituted at the Nl position with R19), benzo[i/]oxazol-diyl, benzo[cT]thiazol-diyl,
lH-benzo[i/]imidazol-diyl (optionally substituted at the Nl position with R19),
lH-benzo[i/][l,2,3]triazol-diyl (optionally substituted at the Nl position with R19), imidazo[l,2- fl]pyridin-diyl, cinnolin-diyl, quinolin-diyl, pyridin-diyl, 1-oxido-pyridin-diyl,
[l,2,4]triazolo[4,3-a]pyridin-diyl, and 2,3-dihydroimidazo[l,2-a]pyridin-diyl, and the like.
[00022] "Heterogeneous transition metal hydrogenation catalyst" (hydrogenation catalyst) refers to a transition metal hydrogenation catalyst which acts in a different phase than the substrate. Especially the transition metal hydrogenation catalyst is in the solid phase. The "support" can be merely a surface on which the metal is spread to increase the surface area. The supports are porous materials with a high surface area, most commonly alumina or various kinds of carbon. Further examples of supports include, but are not limited to, silicon dioxide, titanium dioxide, calcium carbonate, barium sulfate, diatomaceous earth, and clay. The metal itself can also act as a support, if no other support is present. More specifically the term "heterogeneous transition metal hydrogenation catalyst" includes but is not limited to, a Raney catalyst, Pd/C, Pd(OH)2/C, Pd(OAc)2 polyurea microcapsules (NP Pd(0) Encat™ 30),Au/TiO2, Rh/C, Ru/Al2O3, Ir/CaCO3, and Pt/C, or a mixture thereof. NP Pd(0) Encat™ 30 is Palladium(O), microencapsulated in polyurea matrix, and is available from Sigma Aldrich as Product Number 653667. This catalyst is available as a 45 percent mixture of nanoparticles of palladium approximately 2 nm in size in water, typically containing 0.4 mmol/g Pd(0) (dry basis), where the unit weight includes the weight of water. See Ley, S. V. et. al. Org Lett. 2003 Nov 27;5(24):4665-8. In a particular embodiment, the "heterogeneous transition metal hydrogenation catalyst" is not pre-treated with sulphide.
[00023] "Strong base" refers to conjugate bases of weak acids with a pKa > 13 such as alkali metal salts of carbanion, alkoxides, amides, hydroxides, and hydrides, in particular the strong bases are lithium, sodium, potassium, rubidium, or cesium salts of carbanion, alkoxides, amides, hydroxides, and hydrides. More particularly strong base according to the invention refers to sodium, potassium, or lithium amide or phenylithium, most particularly to butyllithium, t- butyllithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, lithium diethylamide, potassium t-butoxide, lithium t-butoxide, sodium amide, and sodium hydride. Even more particularly, the strong base is butyllithium, lithium diisopropylamide, lithium
bis(trimethylsilyl)amide, or lithium diethylamide.
[00024] "Strong acid" refers to an acid that dissociates completely in an aqueous solution with a pH < 2. The strong acids include, but are not limited to: sulphuric acid (H2SO4), hydrohalogenic acid (i.e. HX" wherein X" is I, Br, CI or F), nitric acid (HNO3), phosphoric acid (H3PO4), and combinations thereof. Particularly, the strong acid is H2SO4 or hydrohalogenic acid, wherein X" is Br or CI. Most particularly, the strong acid is HC1. Particularly the concentration of HC1 in water is in the range of 10% to 90%, more particularly 20% to 40%, most particularly 37 %.
[00025] "Amino protecting groups" refers to an acid or base labile amino protecting groups, such as Ci-C6alkoxycarbonyl, C3-C6cycloalkyloxycarbonyl, phenyloxycarbonyl, or
toluenesulfonyl. In particular, examples of "amino protecting groups" include, but are not limited to, tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), -Toluenesulfonyl (Ts), and
fluorenylmethyloxycarbonyl (FMoc). In particular, "amino protecting groups" refers to tert- butoxycarbonyl. (See Peter G. M. Wuts & Theodora W. Greene, Greene's Protective Groups in Organic Synthesis, 4th ed. (2006)). [00026] Particularly, for the terms which definitions are given above are those specifically exemplified in the Examples.
[00027] "Yield" for each of the reactions described herein is expressed as a percentage of the theoretical yield.
[00028] Any one of the process steps or sequences disclosed and/or claimed herein can be performed under an inert gas atmosphere, more particularly under argon or nitrogen. In addition, the methods of the present invention may be carried out as semi-continuous or continuous processes, more preferably as continuous processes.
[00029] Moreover, many of the process steps and sequences that are described herein can be telescoped.
Embodiments of the Invention
[00030] In one aspect, the present invention provides a process for preparing a compound of formula I, comprising contacting a compound of formula IIa-l with a compound of formula II- 1, wherein X and R5 are as defined above, and wherein R10 is F, CI, Br, I, or -OSO2-CF3 and the other variables are as reviously defined.
Figure imgf000010_0001
[00031] In one embodiment, X and R5 in a compound of formula IIa-l are each
independently F, CI, Br, or I. In another embodiment, X is F and R5 is I.
[00032] In one embodiment, the compound of formula II- 1 is the compound of formula II-2,
Figure imgf000010_0002
II-2 wherein R11 is as H or a protecting group and Ring A is optionally substituted with one, two, three, or four groups selected from R6, R7, R8, and R9, each of which are independently selected from halo,
Figure imgf000011_0001
halo(CrC8)alkyl, (Ci-C6)alkoxy, and halo(Ci-C6)alkoxy.
[00033] In a particular embodiment of the present invention, Ring A is phenyl or pyridyl. More particularly, Ring A is phenyl substituted with R12a and R12b which are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
[00034] In another embodiment, the compound of formula II- 1 is the compound of formula II-3,
Figure imgf000011_0002
II-3
wherein R11 is as defined previously and R10 is F, CI, Br, I, or OSO2CF3, and R12a and R12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
[00035] In one embodiment of the compound of formula II- 1, II-2, or II-3, R10 is F, CI, Br, or I, and R12a and R12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
[00036] In another embodiment of the compound of formula II- 1, II-2, or II-3, R10 is F and R12a and R12b are each independently F, CI, I, alkyl, or alkoxy.
[00037] In another embodiment the compound of formula II- 1, II-2 or II-3, R10 is F and R12 and R12b are each independently F, CI, I, or alkyl.
[00038] In one embodiment, the present invention provides a process for preparing a compound of formula P, comprising contacting a compound of formula IIa with a compound of formula II, the synthesis of which is described below.
Figure imgf000012_0001
a II r
[00039] In another embodiment, the present invention provides a process for preparing a compound of formula Γ, comprising contacting a compound of formula IIa with a compound of formula II in the presence of a strong base. In a particular embodiment, the strong base is selected from the group consisting of butyllithium, t-butyllithium, the lithium, sodium, or potassium salts of mono or bis substituted alkyl or aromatic amines, and silylalkyl or
silylaromatic amines.
[00040] In a more particular embodiment, the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine,
bis(trimethylsilyl)amine, diethylamine, and dimethylamine.
[00041] In another embodiment, the strong base is selected from the group consisting of the lithium, sodium, and potassium salts of bis(trimethylsilyl)amine.
[00042] In another embodiment, the strong base is selected from the group consisting of lithium diisopropylamide, lithium bis(trimethylsilyl)amide, and lithium diethylamide. More particularly, the base is lithium bis(trimethylsilyl)amide.
[00043] The skilled artisan will understand that in these and other embodiments, the strong base can be obtained commercially or generated in situ using conventional methods.
[00044] The reaction of a compound of formula II with a compound of formula IIa is typically performed in the presence of a solvent. Typically, the solvent is selected from the group consisting of a an ether-like solvent (e.g., tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, dioxane, or 2-methyl tetrahydrofuran (2-MeTHF)); an aromatic solvent (e.g., toluene or t-butyl-benzene), an aliphatic hydrocarbon solvent (e.g., hexanes, heptanes, or pentane); a saturated alicyclic hydrocarbon solvent (e.g., cyclohexane or cyclopentane); and a polar aprotic solvent (e.g., dimethylformamide or dimethyl sulfoxide), or a mixture thereof. Preferred solvents include toluene and tetrahydrofuran. In a particular embodiment, the solvent is tetrahydrofuran. [00045] The compound of formula IIa is generally commercially available or is readily prepared using methods well known to the person skilled in the art. For example, the compound of formula IIa is available from Sigma Aldrich as 2-fluoro-4-iodo-aniline (CAS Registry Number (CASRN) 29632-74-4).
[00046] In a typical procedure, a strong base such as lithium bis(trimethylsilyl) amide (LiHMDS) is added to mixture of a compound of formula II- 1 such as a compound of formula II and 2-fluoro-4-iodo aniline in a suitable ether-like solvent such as THF. The reaction mixture is typically quenched with aqueous acid, typically aqueous sulphuric acid or hydrochloric acid, and then worked-up according to conventional methods to provide a compound of formula I such as a compound of formula Γ.
[00047] In another embodiment, the present invention provides a process for preparing a compound of
Figure imgf000013_0001
Ill II
[00048] In one embodiment, the deprotection is accomplished in a suitable solvent using H2 in the presence of a heterogeneous hydrogenation transition metal catalyst, or by treatment with chloroethyl chloroformate in the presence of MeCN or Na/NH3. Preferably, the deprotection occurs by catalytic hydrogenolysis in the presence of a mineral acid such as HC1 or an organic acid such as acetic acid or a mixture thereof, which accelerates the reaction. More particularly, the deprotection is accomplished via hydrogenolysis in the presence of a suitable solvent and in the presence of an acid such as hydrochloric acid or acetic acid or a mixture thereof. Most particularly, the deprotection is accomplished in the presence of HCI and acetic acid.
[00049] The heterogeneous hydrogenation transition metal catalyst can be any such catalyst known in the art. The catalyst is typically a heterogeneous transition metal catalyst which is typically selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH)2/C, Pd(OAc)2 polyurea microcapsules (NP Pd(0) Encat™ 30), Au/TiO2, Rh/C, Ru/Al2O3, Ir/CaCO3, and Pt/C, or a mixture thereof. NP Pd(0) Encat™ 30 is Palladium(O), microencapsulated in polyurea matrix, and is available from Sigma Aldrich as Product Number 653667.
[00050] More particularly, the hydrogenation catalyst is selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH)2/C, Au/TiO2, Rh/C, Ru/Al2O3, Ir/CaCO3, and Pt/C, or a mixture thereof. More particularly, the hydrogenation catalyst is Pd/C, Pd(OH)2/C, Au/TiO2, Rh/C, Ra-Ni, or Pt/C. Most particularly, the hydrogenation catalyst is Pd C or Ra-Ni.
Palladium is used in catalytic amounts, e.g. 0.001 to 0.1 equivalents, preferably 0.01 to 0.1 equivalents, with respect to the compound of formula III.
[00051] The catalyst loading for the catalytic hydrogenolysis is typically 0.1 to 20 weight percent. More typically, the catalyst loading for the catalytic hydrogenolysis is typically 5 to 15 weight percent.
[00052] As indicated, the catalytic hydrogenolysis may be performed in the presence of a suitable solvent. Suitable solvents include alcohols (e.g. methanol or ethanol), ethers (e.g.
tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, or dioxane), ester (e.g. ethyl acetate), aromatic hydrocarbons (e.g. toluene or t-butyl-benzene), aliphatic hydrocarbons (e.g. hexanes, heptanes, or pentane), saturated alicyclic hydrocarbons (e.g. cyclohexane or cyclopentane), and aprotic polar solvents (e.g. dimethylformamide, or dimethyl sulfoxide) and a mineral or organic acid co-catalyst), used alone or as a mixture. More particularly, the solvent is toluene, ethyl acetate or tetrahydrofuran, or a mixture thereof, optionally in the presence of water. In one particular embodiment, the solvent is a mixture of tetrahydrofuran and ethyl acetate. In another particular embodiment, the solvent is toluene.
[00053] The catalytic hydrogenolysis is typically performed at a temperature between 0 and 50 °C. More typically, the deprotection is performed at a temperature between 10 and 40 °C. In a particular embodiment, the temperature is between 15 and 25 °C.
[00054] Typically, the H2 is added at a pressure of at least 0.1 bar, and more preferably at a pressure between 0.1 to 100 bar. More particularly, the H2 is added at a pressure between 0.2 bar to 30 bar, and more particularly, the H2 is added at a pressure of 1 to 10 bar. In a preferred embodiment, the ¾ is added at a pressure of approximately 2 bar.
[00055] In another embodiment, the present invention provides a process for preparing a compound of formula III, comprising contacting a compound of formula IV with a compound of formula IVa.
Figure imgf000015_0001
IV, a IV III
[00056] The compound of formula IVa (CASRN 157373-08-5) is generally available from commercial sources or is readily prepared by a skilled artisan. For instance, the compound of formula r a can be prepared from the corresponding carboxylic acid (CASRN 61079-72-9) using thionyl chloride or oxalyl chloride or the like in the presence of a catalyst such as pyridine, dimethylformamide, triethyl amine, or diisopropylethyl amine.
[00057] In another embodiment, the present invention provides a process for preparing a compound of formula III, comprising contacting a compound of formula IV with a compound of formula IVa in the presence of a base.
[00058] In a particular embodiment of the invention, the base is an inorganic base, which is preferably an alkali or alkali earth metal hydroxide, phosphate, or carbonate. More particularly, the inorganic base is selected from the group consisting of LiOH, NaOH, KOH, CsOH, NH4OH, RbOH, Mg(OH)2, Ca(OH)2, Ba(OH)2, Li2CO3, Na2CO3, K2CO3, Cs2CO3, (NH4)2CO3, and
K3PO4. In a particular embodiment, the base is K3PO4, 2CO3, or KOH. In a more particular embodiment, the base is K3PO4, K2CO3, or KOH. The base is typically used as a mixture in water.
[00059] In one embodiment, the reaction is accomplished in a suitable solvent in the presence of the base. In one embodiment, the solvent is selected from the group consisting of an ether (e.g. tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, or dioxane, 2-MeTHF); an alcohol such as methanol or ethanol or the like; toluene; or a mixture thereof. In one particular embodiment, the solvent is toluene. In another particular embodiment, the solvent is a mixture of tetrahydrofuran and water. The reaction is typically performed at a temperature of approximately 10 to 20 °C.
[00060] In another embodiment, the present invention provides a process for preparing a compound of formula rva, comprising reacting a compound of formula IVb with oxalyl chloride, thionyl chloride, or the like, in the presence of a catalyst such as pyridine, dimethylformamide, triethyl amine, or diisopropyl
Figure imgf000016_0001
IVb IV,
[00061] In a particular embodiment, the conversion of compound IVb to rva is carried out in the presence of pyridine or dimethylformamide, particularly in the presence of trace amount of pyridine, more particularly wherein between about 0.001 and 0.02 eq of pyridine is being used, most particularly wherein about 0.005 eq of pyridine is being used.
[00062] In another embodiment, the present invention provides a process for preparing a compound of
Figure imgf000016_0002
V IV
wherein PG is an amino protecting group. In one embodiment, the amino protecting group is an FMoc, CBz, or BOC protecting group. In a particular embodiment, the amino protecting group is a BOC protecting group.
[00063] The deprotection of a compound of formula V may be performed in the presence of a solvent, such as an alcohol (e.g. methanol or ethanol), an ether-like solvent (e.g.
tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, or dioxane), ester-like solvent (e.g. ethyl acetate), aromatic solvent (e.g. toluene or t-butyl- benzene), an aliphatic hydrocarbon solvent (e.g. hexanes, heptanes, or pentane), a saturated alicyclic hydrocarbon solvent (e.g. cyclohexane or cyclopentane), an aprotic polar solvents (e.g. dimethylformamide), or dimethyl sulfoxide and a mineral or organic co-catalyst, preferably in the presence of methanol, ethanol, isopropanol, tert-butanol, tetrahydrofuran, 2- methyltetrahydrofuran, toluene, or dimethylformamide and hydrochloric acid or acetic acid. [00064] In a particular embodiment, the deprotection is carried out in a solvent in the presence of a strong mineral or organic acid, particularly trifluoroacetic acid, methansulfonic acid, p-toleunensulfonic acid, Lewis acids, particularly trialkylsilyl iodides, trimethylsilyl halides, boron trifuoride diethyl etherate, zinc halides, tin halides, or an inorganic acid. More particularly the acid is sulfuric acid, HBr, or HC1. Common conditions include HCl/dioxane, trifluoroacetic acid/methylene chloride. In one embodiment the deprotection is carried out in a heterogeneous mixture containing aqueous HC1 and toluene.
[00065] In another embodiment, the present invention provides a process for preparing a compound of formula V wherein PG is an amino protecting group, comprising reducing a compound of
Figure imgf000017_0001
VI V
[00066] In one embodiment, the reaction occurs in the presence of a reducing agent. The reducing agent can be selected from the group consisting of borohydrides. In particular, the reducing agent is selected from the group consisting of NaBHU, NaBH(OAc)3, and NaBH3CN. More preferably, the reducing agent is NaBH3CN or NaBIL; and LiCN, NaCN, or KCN under conditions used in typical reductive amination procedures. A typical reductive animation procedure involves combining an amine and a carbonyl compound in the presence of a complex metal hydride such as NaBFLj, L1BH4, NaBHaCN, Zn(BH4)2, sodium triacetoxyborohydride, or borane/pyridine under mild acidic conditions, conveniently at a pH of 1-5, which promotes formation of the intermediate iminium salt which is then reduced by the metal hydride. More preferably, the reducing agent is NaBH3CN.
[00067] The preparation of a compound of formula V may be performed in the presence of a solvent, such as an alcohol solvent (e.g. methanol or ethanol), an ether-like solvent (e.g.
tetrahydrofuran, diisopropyl ether, t-butylmethyl ether, dibutyl ether, dimethyl acetal, or dioxane), ester-like solvent (e.g. ethyl acetate), aromatic solvent (e.g. toluene or t-butyl- benzene), an aliphatic hydrocarbon solvent (e.g. hexanes, heptanes, or pentane), a saturated alicyclic hydrocarbon solvent (e.g. cyclohexane or cyclopentane), an aprotic polar solvents (e.g. dimethylformamide), or dimethyl sulfoxide and a mineral or organic co-catalyst, preferably in the presence of methanol, ethanol, isopropanol, tert-butanol, tetrahydrofuran, 2- methyltetrahydrofuran, toluene, or dimethylformamide.
[00068] In another embodiment, the present invention provides a process for preparing a compound of formula VI comprising reacting a compound of formula VII (CASR 106565-71- 3) with a compound of formula VII
Figure imgf000018_0001
VII VI
wherein PG is an amino protecting group such as Fmoc, Cbz, or Boc or the like. The compound of formula VIIa is generally available from commercial sources or is readily prepared using methods well known to the person skilled in the art. (See, for example, Rice, K. et al. Med. Chem. Lett. 2012, 3, 416, and Podlech, J. and Seebach, D. Helv. Chim. Acta 1995, 1238.) For example, the compound of formula VIIa wherein PG is Boc is commercially available from Sigma Aldrich as 1-Boc-azetidinone (tert-butyl 3-oxo-l-azetidinecarboxylate, CASRN 398489- 26-4). Similarly, the compound of formula VII is generally available from commercial sources or is readily prepared using methods well known to the person skilled in the art. (See, for example, N. R. Guz et al, Org. Proc. Res. Develop. 2010 14(6): 1476). For example, the compound of formula VII is commercially available, from Sigma Aldrich, as (3S,5R,8aS)-3- phenyl-hexahydro-oxazolo[3,2-a]pyridine-carbonitrile (CAS Reg. No. 106565-71-3).
[00069] In one embodiment, the reaction is accomplished in a suitable solvent in the presence of a base. In one embodiment, the solvent is a polar aprotic solvent selected from ethers such as tetrahydrofuran, diisopropyl ether, /-butylmethyl ether, dibutyl ether, dimethyl acetal, dioxane, or 2-MeTHF or mixtures thereof, used alone or in combination with a polar aprotic solvent such as l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone (DMPU). In a particular embodiment, the solvent is THF used in combination with DMPU.
[00070] In this and other embodiments, the base is an amine base such as the lithium, sodium, or potassium salts of mono or bis substituted alkyl or aromatic amines, and silylalkyl or silylaromatic amines. In a particular embodiment, the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine,
bis(trimethylsilyl)amine, diethylamine, and dimethylamine. In another embodiment, the strong base is selected from the group consisting of the lithium, sodium, and potassium salts of bis(trimethylsilyl)amine. More particularly, the strong base is selected from the group consisting of lithium diisopropylamide, lithium bis(trimethylsilyl)amide, and lithium diethylamide. More particularly, the base is lithium diisopropylamide.
[00071] The reaction is typically performed at low temperature. In one embodiment, the reaction temperature is about 0 to -80 °C. In another embodiment, the reaction temperature is about -20 to -80 °C. In a more preferable embodiment, the reaction temperature is about -50 to - 80 °C. In another preferable embodiment, the reaction temperature is about -70 to -80 °C.
[00072] In another embodiment, the present invention provides a process for preparing a compound of formula V, comprising the following steps:
1) reacting a compound of formula VII with a compound of formula VIIa as previously described to provide a com ound of formula VI;
Figure imgf000019_0001
VII VI
and
2) reducing a compound of formula VI with a reducing agent as previously described to provide a comp
Figure imgf000019_0002
VI V
In one embodiment, steps 1 to 2 steps can be telescoped. [00073] In another embodiment, the present invention provides a process for the preparation of the compound of formula IV, which comprises the following steps:
1) reacting a compound of formula VII with a compound of formula VIIa as previously described to provide a com ound of formula VI;
Figure imgf000020_0001
VII VI
2) reducing a compound of formula VI with a reducing agent as previously described to provide a compound of formula V;
Figure imgf000020_0002
VI V
and
3) deprotecting the azetidinyl ring of a compound of formula V as previously described to provide a comp
Figure imgf000020_0003
V IV
In particular, any combination of steps 1 to 3 or all steps can be telescoped. More particularly steps 2 and 3 are telescoped.
[00074] In another embodiment, the present invention provides a process for the preparation of the compound of formula III, which comprises the following steps: 1) reacting a compound of formula VII with a compound of formula VIIa as previously described to provide a compound of formula VI;
Figure imgf000021_0001
VII VI
2) reducing a compound of formula VI with a reducing agent as previously described to provide a compound of formula V;
Figure imgf000021_0002
VI V
3) deprotecting the azetidinyl ring of a compound of formula V as previously described to provide a c
Figure imgf000021_0003
V IV
4) reacting a compound of formula IV with a compound of formula IVa, as previously described to provide a com ound of formula III.
Figure imgf000021_0004
IVa IV III In particular, any combination of steps 1 to 4 or all steps can be telescoped. More particularly steps 2 to 4 are telescoped.
[00075] In another embodiment, the present invention provides a process for the preparation of the compound of formula II, which comprises the following steps:
1) reacting a compound of formula VII with a compound of formula VIIa as previously described;
Figure imgf000022_0001
VII VI
2) reducing a compound of formula VI with a reducing agent as previously described, to provide a compound of formula V;
Figure imgf000022_0002
VI V
3) deprotecting the azetidinyl ring of a compound of formula V as previously described to provide a compound of formula IV;
Figure imgf000022_0003
V IV
4) reacting a compound of formula IV with a compound of formula IVa as previously described to provide a compound of formula III;
Figure imgf000023_0001
IVa IV III
and
5) hydrogenation of a compound of formula III, as previously described to provide a compound of
Figure imgf000023_0002
III II
Any combination of steps 1 to 5 or all steps can be telescoped. More particularly steps 2 to 5 are telescoped.
[00076] In another embodiment, the present invention provides a process for the preparation of a compound of formula F, which comprises the following steps:
1) reacting a compound of formula VII with a compound of formula VIIa as previously described to provide a compound of formula VI;
Figure imgf000023_0003
2) reducing a compound of formula VI with a reducing agent as previously described to provide a compound of formula V;
Figure imgf000024_0001
VI V
3) deprotecting the azetidinyl ring of a compound of formula V as previously described to provide a compound of formula IV;
Figure imgf000024_0002
V IV
4) reacting a compound of formula IV with a compound of formula IVa as previously described to provide a com ound of formula III;
Figure imgf000024_0003
5) hydrogenation of a compound of formula III as previously described to provide a compound of formula II;
Figure imgf000024_0004
III II
and 6) reacting a compound of formula II with a compound of formula IIa as previously
Figure imgf000025_0001
In particular, any combination of steps 1 to 6 or all steps can be telescoped. More particularly, steps 2 to 5 are telescoped.
[00077] In another embodiment, the present invention provides a process for the preparation of the compound of formula Γ, which comprises the following steps:
(a) hydrogenation of a compound of formula III as previously described to provide a compound of formula II;
Figure imgf000025_0002
III II
and
(b) reacting a compound of formula II with a compound of formula IIa as previously described to provide a compound of formula I.
Figure imgf000025_0003
IIa II Γ In particular, steps (a) and (b) can be telescoped.
[00078] In another embodiment, the present invention provides a process for the preparation of the compound of formula Γ, which comprises the following steps:
(a) reacting a compound of formula IV with a compound of formula rva as previously descr
Figure imgf000026_0001
IVa IV III
(b) hydrogenation of a compound of formula III, as previously described to provide a compound of formula II;
Figure imgf000026_0002
III II
and
(c) reacting a compound of formula II with a compound of formula IIa as previously de
Figure imgf000026_0003
In particular, any combination of steps (a) to (c) or all steps can be telescoped. More particularly steps (a) and (b) are telescoped. [00079] In another embodiment, the present invention provides a process for the preparation of the compound of formula Γ, which comprises the following steps:
(a) deprotecting the azetidinyl ring of a compound of formula V as previously described to provide a compound of formula IV;
Figure imgf000027_0001
V IV
(b) reacting a compound of formula IV with a compound of formula IVa as previously described to provide a com ound of formula III;
Figure imgf000027_0002
(c) hydrogenation of a compound of formula III as previously described to provide a compound of formula II;
Figure imgf000027_0003
III II
and
(d) reacting a compound of formula II with a compound of formula IIa as previously described to provide a compound of formula P.
■a II r
In particular, any combination of steps a) to d) or all steps can be telescoped. More particularly steps (a) and (c) are telescoped.
[00080] In another embodiment, the present invention provides a process for the preparation of the compound of formula Γ, which comprises the following steps:
a) reactin ly described;
Figure imgf000028_0002
VI V
b) deprotectin the azetidinyl ring of a compound of formula V as previously described;
Figure imgf000028_0003
V IV
c) reacting a compound of formula IV with a compound of formula IVa, as previously described;
Figure imgf000028_0004
IVa IV III d) hydro enation of a compound of formula III, as previousl described;
Figure imgf000029_0001
III II
and
e) reacting a compound of formula II with a compound of formula IIa, as previously de
Figure imgf000029_0002
IIa II Γ
In particular, any combination of steps (a) to (e) or all steps can be telescoped. More particularly steps (a) to (d) are telescoped.
[00081] In a further embodiment the present invention provides a process for the preparation of a compound of formula I obtained by any of the processes and conditions mentioned previously.
[00082] A further aspect of the present invention provides a compound of formula VI;
VI
wherein PG is an amino protecting group. In one embodiment, PG is tert-butyloxycarbonyl (Boc). [00083] A further aspect of the s a compound of formula V:
Figure imgf000030_0001
V
wherein PG is an amino protecting group. In one embodiment, PG is tert-butyloxycarbonyl (Boc).
[00084] A further aspect of the pre ides a compound of formula IV.
Figure imgf000030_0002
IV
[00085] A further aspect of the s a compound of formula III.
Figure imgf000030_0003
III
[00086] A further aspect of the pr des a compound of formula II.
Figure imgf000030_0004
II Additional Embodiments
[00087] The present invention also includes the following additional embodiments.
[00088] Embodiment 1. A rocess for making a compound of formula I:
Figure imgf000031_0001
I
wherein:
A is arylene or heteroarylene optionally substituted with one, two, three, or four groups selected from R6, R7, R8, and R9, each of which are independently selected from hydrogen, halo, (Ci-Cg)alkyl, halo(Ci-C8)alkyl, hydroxy, (Ci-C6)alkoxy, and halo(Ci-C6)alkoxy;
X is alkyl, halo, halo(C1-Cg)alkyl, or halo(C C6)alkoxy;
R1, R2, R3, and R4 are each independently hydrogen, (Ci-C8)alkyl, or halo(Ci-C8)alkyl; R5 is hydrogen, halo, or (Ci-Cg)alkyl;
comprising:
contacting a compound of formula II- 1 wherein X and R5 are as defined above and a compound of formula IIa-l wherein R10 is F, Br, CI, or -OSO2-CF3 and R11 is H or a protecting grou in the presence of a strong base to provide a compound of formula I.
Figure imgf000031_0002
[00089] Embodiment 2. The process of any one of embodiments 1 or 2, wherein X and R5 in a compound of formula IIa-l are each independently F, CI, Br, or I.
[00090] Embodiment 3. The process of any one of embodiments 1 to 3, wherein X is F and R5 is I. [00091] Embodiment 4. The process of any one of embodiments 1 to 3 wherein the compound of formula II- 1 is the compound of formula II-2,
Figure imgf000032_0001
II-2
wherein R is H or protecting group and Ring A is optionally substituted with one, two, three or four groups selected from R , R , R , and R , each of which are independently selected from halo, (Ci-C8)alkyl, halo(C1-C8)alkyl, (Ci-C6)alkoxy, and halo(CrC6)alkoxy.
[00092] Embodiment 5. The process of any one of embodiments 1 to 4, wherein the compound of formula II- 1 is the compound of formula II-3,
Figure imgf000032_0002
II-3
wherein R11 is as defined previously; R10 is F, CI, Br, I, or OSO2CF3; and R12a and R12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
[00093] Embodiment 6. The process of embodiment 5, wherein R10 in the compound of formula II-3 is F, CI, Br, or I, and R12a and R12b are each independently F, CI, Br, alkyl, haloalkyl, alkoxy, or haloalkoxy.
[00094] Embodiment 7. The process of any one of embodiments 1 to 6, wherein R10 in the compound of formula II-3 is F and R12a and R12b are each independently F, CI, alkyl, or alkoxy.
[00095] Embodiment 8. The process of any of embodiments 1-7 wherein the strong base is selected from the group consisting of butyllithium, t-butyllithium, the lithium, sodium, or potassium salts of mono or bis- substituted alkyl or aromatic amines, and silylalkyl or silylaromatic amines. [00096] Embodiment 9. The process of any of embodiments 1-8, wherein the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine, bis(trimethylsilyl)amine, diethylamine, and dimethylamine.
[00097] Embodiment 10. The process of any one of embodiments 1 to 9, wherein the strong base is lithium bis(trimethylsilyl)amide.
[00098] Embodiment 11. The process of any one of embodiments 1 to 10, wherein reaction is performed in the presence of a solvent which is tetrahydrofuran.
[00099] Embodiment 12. The process of any of embodiments 1 to 11, wherein the compound of formula IIa-l is a compound of formula IIa; the compound of formula II- 1 is a
Figure imgf000033_0001
IIa II Γ
[000100] Embodiment 13. A process for preparing a compound of formula II,
comprising deprotecting a compound of formula III,
Figure imgf000033_0002
III II
wherein deprotection comprises hydrogenation using H2 in the presence of a heterogeneous transition metal hydrogenation catalyst or treatment with chloroethyl chloroformate in the presence of MeCN or Na/NH3.
[000101] Embodiment 14. The process of embodiment 13, wherein the heterogeneous transition metal hydrogenation catalyst is selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH)2/C, Pd(OAc)2, Au/TiO2, Rh/C, Ru/Al2O3, Ir/CaCO3, Pt/C, and Palladium(O) microencapsulated in polyurea matrix as a 45 percent mixture of nanoparticles of palladium approximately 2 nm in size in water, containing 0.4 mmol/g Pd(0) (dry basis), where the unit weight includes the weight of water (NP Pd(0) Encat™ 30), or a mixture thereof.
[000102] Embodiment 15. The process of embodiment 14, wherein the heterogeneous transition metal hydrogenation catalyst is Pd/C.
[000103] Embodiment 16. A process for preparing a compound of formula III, comp
Figure imgf000034_0001
[000104] Embodiment 17. The process of embodiment 16 in the presence of an inorganic base which is an alkali or alkali earth metal hydroxide, phosphate, or carbonate.
[000105] Embodiment 18. The process of any one of embodiments embodiment 16 to 17, wherein the inorganic base is selected from the group consisting of LiOH, NaOH, KOH, CsOH, NH4OH, RbOH, Mg(OH)2, Ca(OH)2, Ba(OH)2, Li2CO3, Na2CO3, K2CO3, Cs2CO3,
(NH4)2CO3, and K3PO4.
[000106] Embodiment 19. The process of any one of embodiments 16 to 18, wherein the inorganic base is K3PO4, K2CO3, or KOH.
[000107] Embodiment 20. A process for preparing a compound of formula IV, comprising dep
Figure imgf000034_0002
V IV
wherein PG is an amino protecting group selected from the group consisting of FMoc, CBz, or BOC protecting group. [000108] Embodiment 21. The process of embodiment 20, wherein the protecting group is a BOC protecting group.
[000109] Embodiment 22. A process for preparing a compound of formula V wherein PG is an amino protecting group, comprising reducing a compound of formula VI with a reducing agent select from the group consisting of boroh drides.
Figure imgf000035_0001
VI V
[000110] Embodiment 23. A process for preparing a compound of formula VI comprising reacting a compound of formula VII with a compound of formula VIIa in the presence of base wherein PG is an amino rotecting group.
Figure imgf000035_0002
VII VI
[000111] Embodiment 24. A process for the preparation of the compound of formula
Γ
Figure imgf000035_0003
Γ
which comprises the following steps:
1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI;
Figure imgf000036_0001
VII VI
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of bo
Figure imgf000036_0002
VI V
3) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV;
Figure imgf000036_0003
V IV
4) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III
Figure imgf000036_0004
rva IV III
5) hydrogenation of a compound of formula III to provide a compound of formula II;
Figure imgf000037_0001
III II
and
6) reacting a compound of formula II with a compound of formula IIa to provide a com ound of formula Γ
Figure imgf000037_0002
IIa II Γ
[000112] Embodiment 25. A process for the preparation of the compound of formula P which comprises contacting a compound of formula II and compound of formula IIa in the pre
Figure imgf000037_0003
[000113] Embodiment 26. The process of embodiment 25, further comprising the step of hydrogenation of a compound of formula III to provide a compound of formula II.
Figure imgf000038_0001
III II
[000114] Embodiment 27. The process of embodiment 26, further comprising the step of reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III.
Figure imgf000038_0002
IVa IV III
[000115] Embodiment 28. The process of embodiment 27, further comprising the step of deprotecting the azetidinyl ring of a compound of formula V.
Figure imgf000038_0003
V IV
[000116] Embodiment 29. The process of embodiment 28, further comprising reducing a compound of formula VI with a reducing agent selected from the group consisting of borohydrides to provide a compound of formula V.
Figure imgf000038_0004
[000117] Embodiment 30. The process of embodiment 29, further comprising reacting a compound of formula VII with a compound of formula VIIa in the presence of base.
Figure imgf000039_0001
VII VI
[000118] Embodiment 31. A compound which is:
group;
Figure imgf000039_0002
[000119] Embodiment 32. The compound of embodiment 31 , wherein PG in the compound of formulas VI and V is BOC. Synthesis
[000120] Compounds of this invention can be made by the synthetic procedures described below. The starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as Sigma Aldrich Chemical Co. (Miivvaukee, Wis.), or Bachem (Torrance, Calif.), or are prepared by methods known to those skilled in the an following procedures set forth in references such as Fieser and Fieser s Reagents for Organic Synthesis, Volumes 1- 17 (John Wiley and Sons, 1991); Rodd's Chemistry of Carbon
Compounds, Volumes 1-5 and Supplemental (Elsevier Science Publishers, ! 989); Organic Reactions, Volumes 1 -40 (John Wiley and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley and Sons, 4lh Edition) and Larock's Comprehensive Organic Trans ormations (VCH Publishers inc.. 1 89). These schemes are merely illustrative of some methods by which the compounds of this invention can be synthesized, and various modifications to these schemes can be made and will be suggested to one ski lled in the art having referred to this disclosure. The starting materials and the intermediates of the reaction may be isolated and purified if desired using conventional techniques, including bu not limited to filtration, distillation, crystallization, chromatography, and the like. Such materials may be characterized using conventional means, including physical constants and spectral data.
[000! 21 J Unless specified to the contrary, the reactions described herein take place at atmospheric pressure and over a temperature range from about -78 °C to about 150 °C, more preferably from about 0 °C to about 125 °C, and most preferably at about room (or ambient) temperature, e.g., about: 20 °C. Unless otherwise stated (as in the case of a hydrogen.at.ion), all reactions are performed under an atmosphere of nitrogen.
[000122] The compounds disclosed and claimed herein have asymmetric carbon atoms or cyuaiernized nitrogen atoms in their structure and may be prepared through the through syntheses described herein as single stereoisomers, racemaies, and as mixtures of enantiomers and diasiereomers. The compounds may also exist as geometric isomers. Ail such single
stereoisomers, racemates, and mixtures thereof, and geometric isomers are intended to be within the scope of this invention.
1000123] Some of the compounds of the invention may exist as tautomers. For example, where a ketone or aldehyde is present, the molecule may exist in the enol form; where an amide is present, the molecule may exist as the imidic acid; and where an enamine is present, the molecule may exist as an imine. All such tautomers are within the scope of the invention.
[000124] Methods for the preparation and/or separation and isolation of single stereoisomers from racemic mixtures or non-racemic mixtures of stereoisomers are well known in the art. For example, optically active (R)- and (S)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. Enantiomers (R- and S-isomers) may be resolved by methods known to one of ordinary skill in the art, for example by: formation of diastereomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereomeric derivatives which may be separated, for example, by crystallization; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent. It will be appreciated that where a desired enantiomer is converted into another chemical entity by one of the separation procedures described above, a further step may be required to liberate the desired enantiomeric form. Alternatively, specific enantiomers may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents or by converting on enantiomer to the other by asymmetric transformation. For a mixture of enantiomers, enriched in a particular enantiomer, the major component enantiomer may be further enriched (with concomitant loss in yield) by recrystallization.
[000125] In addition, the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.
[000126] The methods of the present invention may be carried out as semi-continuous or continuous processes, more preferably as continuous processes.
[000127] The present invention as described above unless indicated otherwise may be carried out in the presence of a solvent or a mixture of two or more solvents. In particular the solvent is an aqueous or an organic solvent such as the ether-like solvent (e.g. tetrahydrofuran,
methyltetrahydrofuran, diisopropyl ether, t-butylmethyl ether or dibutyl ether)aliphatic hydrocarbon solvent (e.g. hexane, heptane or pentane), saturated alicyclic hydrocarbon solvent (e.g. cyclohexane or cyclopentane) or aromatic solvent (e.g. toluene, o- m- or p-xylene or t- butyl-benzene) or mixture thereof.
[000128] The starting materials and reagents, which do not have their synthetic route explicitly disclosed herein, are generally available from commercial sources or are readily prepared using methods well known to the person skilled in the art.
[000129] In general, the nomenclature used in this Application is based on AUTONOM™ 2000, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. Chemical structures shown herein were prepared using MDL ISIS™ version 2.5 SP5. Any open valency appearing on a carbon, oxygen or nitrogen atom in the structures herein indicates the presence of a hydrogen atom.
[000130] Compounds of formula I, particularly the compound of formula Γ, can be prepared as generally depicted in Scheme 1. Reaction of commercially available (3S,5R,8aS)-3-phenyl- hexahydro-oxazolo[3,2-a]pyridine-carbonitrile VIIa with commercially available tert-butyl-3- oxo-l-azetidinecarboxylate VII in the presence of base provides compound VI. Compound VI is treated with a hydride reducing agent such as sodium cyanoborohydride in the presence of acid, followed by treatment with aqueous sodium hydroxide, to provide compound V.
Deprotection of V using acid gives compound IV, which is coupled to acid chloride IVa in the presence of a catalytic amount of pyridine to provide III. Hydrogenation of III provided piperidine derivative II. Finally, coupling of II with 2-fluoro-4-iodo aniline II„ provides the desired compound.
Scheme 1
Figure imgf000043_0001
00131] The following examples are provided for the purpose of further illustration and aret intended to limit the scope of the claimed invention.
Example 1
Synthesis of 3-((3S,5R,8aS)-5-Cyano-3-phenyl-hexahydro-oxazolo [3,2-a] pyridin-5-yl)-3- hydroxy-azetidine-l-carboxyli acid tert-butyl ester
Figure imgf000043_0002
[000132] A mixture of (3S,5R,8aS)-3-phenyl-hexahydro-oxazolo[3,2-a]pyridine-carbonitrile (20.0g, 87.6 mmol, l .Oeq.) and dimethyltetrahydropyrimidone (DMPU, 1 1.3 g, 87.6 mmol, 1.0 eq.) in THF (95.1 mL) was stirred for 10 min until a clear solution was observed. The mixture was then cooled to -70 to -80 °C and lithium diisopropylamide (28% soln. in heptane, THF and ethylbenzene) (35.2 g, 92 mmol, 1.05 eq.) was added over 30 min while maintaining the internal temperature between -70 to -80 °C. After complete addition, the mixture was stirred at -70 to - 80°C for an additional 2 h, followed by dosing a solution of 3-oxo-azetidine-l-carboxylic acid tert-butyl ester (16.2 g, 94.6 mmol, 1.08 eq.) in THF (16.4 g) over 30 min while maintaining the internal temperature between -70 to -80 °C. After complete dosage, the reaction mixture was stirred at -70 to -80°c for 1 h.
[000133] In a separate flask, a solution of sodium chloride (10.3 g), deionized water (103.0 g) and acetic acid (5.29 g, 87.6 mmol, 1.0 eq.) was prepared and cooled to 0 °C. The reaction mixture was dosed onto the quench mixture over 30 min while maintaining the internal temperature at less than 10 °C. The flask of the reaction mixture was rinsed with THF (26.7 g) and the rinse was combined with the quenched mixture. After vigorously stirring for 20 min at 5°C, agitation was stopped and the layers were allowed to separate. The lower aqueous phase was discarded. Ethyl acetate (61.8 g) and deionized water (68.5 g) were added to the organic phase. After vigorously stirring at 5 °C for 10 min, agitation was stopped, the layers were allowed to separate, and the lower aqueous phase was discarded. The washing procedure was repeated once with deionized water (68.5 g).
[000134] The organic phase was concentrated under reduced pressure (jacket temperature approximately 40-45°C, pressure = 200-180 mbar) until a total volume of approximately 120 mL of distillate was collected resulting in a yellowish solution. The vacuum was released and heptane (102.0 g) was added over 10 min. Distillation under reduced pressure was continued (jacket temperature approximately 35-40 °C, pressure approximately 250-1 10 mbar) by adding heptane (177 g) at a rate so that the residual volume was kept constant. After 10 min of distilling, a thick, stirrable suspension was obtained. The vacuum was released and isopropanol (10.2 g) was added over 15 min at 35 °C. The suspension was heated at 45 °C and stirred for 30 min. Thereafter, the suspension was cooled to 0 °C over 2 h and held at 0 °C for 1 h. The suspension was filtered over a glass filter. The flask and filter cake were rinsed with pre-cooled (approximately 5 °C) heptane (46.6 g), and the wet cake was dried overnight at 40 °C under reduced pressure until constant weight to yield the title compound as slightly beige crystals. HPLC purity: 91.9%-area. Mp. (DSC): extrapolated peak:,151.80°C. Ή-NMR (600 MHz,
CDCI3): δ 7.30 - 7.50 (m, 5 H), 4.17 - 4.27 (m, 3 H), 3.94 - 4.01 (m, 2 H), 4.11 - 4.1 (m, 2 H), 4.09 (d, 1 H), 3.95 (d, 1 H), 3.87 (dd, 1 H), 3.76 (dd, 1 H), 3.54 - 3.70 (br, 1 H), 2.85 - 3.03 (br, 1 H), 2.18 - 2.25 (m, 1 H), 2.12 (br, 1 H), 1.97 - 2.04 (m, 1 H), 1.85 - 1.94 (m, 1 H), 1.61 - 1.79 (m, 3 H), 1.41 (s, 9 H). MS (EI): m/z = 400.48 ([M+H]+ , 100%).
Example 2
Synthesis of 3-Hydroxy-3-[(5)-l-((,S)-2-hydroxy-l^ehyI-ethyl)-piperidin-2-yl]a2etidine-l-
Figure imgf000045_0001
[000135] A mixture of 3-((3S, 5R, 8aS)-5-cyano-3-phenyl-hexahydro-oxazolo[3,2-a]pyridin- 5-yl)-3-hydroxy-azetidine-l-carboxylic acid tert-butyl ester (12.0 g, 30.0 mmol, 1.0 eq.) and sodium cyanoborohydride (3.18 g, 50.6 mmol, 1.68 eq.) in EtOH (70 mL) was heated to 30 °C and slowly added within two h to a warm mixture (70 °C) of acetic acid (3.63 ml, 63.5 mmol, 2.1 eq.) in EtOH (20 mL). The resulting mixture was subsequently stirred for another 3 h at 70 to 75 °C. After complete reaction, the mixture was cooled to 23 °C and slowly dosed within 30 min into a mixture of toluene (100 mL) and aqueous NaOH (60g, 10%-w/w) and stirred for 15 min. The reaction flask was rinsed with the quenched mixture. The layers were separated, and the organic phase was washed with toluene (30 mL). The combined organic phases were
concentrated under vacuum (200 to 85 mbar at 35 to 40°C jacket temperature) until 80 mL (70.82 g) of a yellowish product solution was obtained. HPLC purity: 97.6% area.
[000136] For analytical purposes, the product solution was fully concentrated in the rotary evaporator, treated with EtOH and again fully concentrated resulting in 19.2 g of a foamy product. The residue was dissolved in a mixture of ethyl acetate (30 mL) and MeOH (15mL) and purified by flash chromatography over 120 g silica gel using ethyl acetate as eluent.
Fractions 3 to 5 of 6 fractions of 100 mL each were combined and fully concentrated under vacuum in the rotary evaporator resulting in 14.6 g of colorless foam. This residue was again dissolved in a minimum of a mixture of heptane/ethyl acetate 2: 1 (v/v) and purified by flash chromatography over 190 g of silica gel using heptane/ethyl acetate 2: 1 (v/v) as eluent. After a forerun of 700 mL, ten subsequent fractions (800 mL total) were combined, fully evaporated in the rotary evaporator under vacuum (bath temperature 35 °C, pressure > 20 mbar) and the residue was dried overnight at 35 °C and under vacuum until constant weight to yield the title compound as a colorless solid. Mp. (DSC): extrapolated peak: 220.9 °C (melting accompanied by exothermic decomposition). 1H-NMR (600 MHz, CDC13): δ 7.38 - 7.41 (m, 2 H), 7.34 - 7.38 (m, 2 H), 7.27 - 7.30 (m, 1 H), 4.28 - 4.50 (br, 1 H), 4.19 (dd, 1 H), 4.11 - 4.1 (m, 2 H), 4.09 (d, 1 H), 3.95 (d, 1 H), 3.87 (dd, 1 H), 3.83 (t, 1 H), 3.08 - 3.16 (m, 1 H), 2.85 (ddd, 1 H), 2.57 (ddd, 1 H), 1.76 - 1.84 (m, 1 H), 1.68 - 1.75 (m, 1 H), 1.53 - 1.58 (m, 1 H), 1.41 - 1.48 (bs, 9 H), 1.31 - 1.41 (m, 2 H), 1.21 - 1.31 (m, 2 H). MS (EI): m/z = 377.24 ([M+H]+ , 100%). EA for
C21H32N2O4: calcd: C 66.99, H 8.57, N 7.44; found C 67.38, H 8.50, N 7.29.
Example 3
Synthesis of 3-[(5)-l-((.S)-2-Hydroxy-l-phenyl-ethyl)-piperidiii-2-yl]-azetidiii-3-ol di
Figure imgf000046_0001
[000137] A solution of 3-hydroxy-3-[(5)- 1 -((S)-2-hydroxy- 1 -phenyl-ethyl)-piperidin-2- yl]azetidine-l-carboxylic acid teri-butyl ester (69.8 g, 29.6 mmol, 1.0 eq.) in toluene was treated at 23-27 °C within 12 min with a mixture of water (30.1 g) and HC1 (37%, 7.22 g, 73.3 mmol, 2.5 eq.) and stirred for 10 min. The resulting biphasic mixture was heated to 50 °C within 30 min and kept stirring for 4 h at 50 °C. After complete conversion, the mixture was cooled down to room temperature and the phases were allowed to separate. The aqueous phase was washed with toluene (36 mL) and the phases were allowed to separate, resulting in 44.2 g of a yellowish aqueous product solution. HPLC purity: 96.3%-area.
[000138] For analytical purposes, the product solution was fully concentrated in the rotary evaporator (bath temperature 45 °C). The yellow oily residue was dissolved in MeOH (190 mL) and again fully concentrated in the rotary evaporator and under vacuum. The residue was taken up in a minimum of a mixture of MeOH/ethyl acetate 1 : 1 (v/v) and purified by flash
chromatography over silica gel (150 g) using a mixture of MeOH/ethyl acetate 1 :1 (v/v) as eluent. A forerun of 400 mL was taken and discarded and the subsequent fractions (1.5 L) were combined and completely concentrated in the rotary evaporator under vacuum (bath temperature 40°C, pressure >20 mbar) resulting in a yellow oil that was dissolved in MeOH (20 mL). The oil was added drop-wise at room temperature to ethyl acetate (80 mL), whereupon the product precipitated. The solids were filtered and rinsed with ethyl acetate (30 mL). Drying overnight at 30 °C under vacuum until constant weight resulted in the title compound (22.0 g) as a colorless solid. Mp. (DSC): T0set 1 14.2 °C, extrapolated peak: 123.4 °C. Ή NMR (600 MHz, DMSO- d6): δ 9.50 - 9.64 (br, 1 H), 8.91 - 9.03 (br, 1 H), 7.78 (s, 1 H), 7.62 - 7.56 (m, 2 H), 7.41 - 7.52 (m, 3 H), 6.03 (bs, 1 H), 4.56 - 4.67 (m, 1 H), 4.45 (dd, 1 H), 4.25 - 4.33 (m, 2 H), 4.23 (dd, 1 H), 4.18 (dd, 1 H), 3.95 - 4.05 (m, 1 H), 3.83 (dd, 1 H), 3.45 - 3.54 (m, 1 H), 3.26 - 3.40 (m, 1 H), 1.67 - 1.86 (m, 4 H), 1.55 - 1.65 (m, 1 H), 1.37 - 1.51 (m, 1 H). MS (EI): m/z = 277 ([M+H]+ of free base' 100%). EA for Ci6H26N2O2Cl2, corrected for water (9.2%-w/w) and HC1 (2.1 eq. instead of 2.0 eq.): calcd: C 49.44, H 7.80, N 7.21, O 16.40, CI 19.15; found C 48.76, H 7.48, N 7.36, O 16.44, CI 19.11.
Example 4
{3-Hydroxy-3-[(S)-l-((.S)-2-hydro^
trifluoro- henyl)-methanone
Figure imgf000047_0001
2,3»4-Trifluoro-benzoyI chloride:
[000139] 2,3,4-Trifluorobenzoic acid (100 g, 568 mmol, 1.0 eq.) was suspended in toluene (1000 mL) and treated with pyridine (0.254 mL, 3.15 mmol, 0.0055 eq.). The resulting suspension was heated to 60 to 70 °C, whereupon the mixture became a clear yellowish solution. At this temperature, oxalyl chloride (94.4 g, 729 mmol, 1.3 eq.) was slowly added over 156 minutes. After complete addition, the mixture was kept stirring for 10 min until complete.
Toluene (360 mL) was partially removed by distillation under vacuum (jacket temperature: 60 to 70 °C, pressure: 200 to 100 mbar). The solution was cooled to room temperature, resulting in 636 g of a yellowish and slightly turbid solution that was stored under N2 atmosphere and used in the subsequent step without any further treatment. HPLC purity: 99.2%-area.
{3-Hydroxy-3^(.S)-l-((S)-2-hydroxy-l-phenyl-eth^
trifluoro-phenyl)-methanone:
[000140] The aqueous solution of 3-[(S)-l-((S)-2-hydroxy-l-phenyl-ethyl)-piperidin-2-yl]- azetidin-3-ol di hydrochloride (43.5 g) was treated with EtOH (24 mL) and stirred for 10 min at room temperature. To this mixture was added a solution of tripotassium phosphate (28.8 g, 136 mmol, 4.7 eq.) in 261 mL water within 14 min at a batch temperature of 10 to 20 °C and the mixture was stirred for 15 min at 15 °C (pH 1 1.9). To this solution was added via dropping funnel 34 g of the above described 2,3,4-Trifluoro-benzoyl chloride solution (34.0 g, 29.8 mmol, 1.0 eq.) over 32 min at a batch temperature of 10 to 20 °C while vigorously stirring. The dropping funnel was rinsed with toluene (1.2 ml) and the biphasic mixture was stirred at room temperature for 60 min. The layers were allowed to separate, and the aqueous phase was discarded. The organic phase was washed with a solution of sodium carbonate (3.36 g, 31.5 mmol, 1.09 eq.) in water (42 g) and stirred for 30 min at room temperature. The layers were allowed to separate, and the organic phase was washed with aqueous sodium chloride (30 g, 10%-w/w). In the rotary evaporator (bath temperature 50 °C, pressure < 200 mbar), the organic phase was concentrated to a volume of approximately 30%. The residue was taken up in EtOH (23 mL) and stirred for 5 min at 40 to 50 °C. The solution was again concentrated in the rotary evaporator (bath temperature 50 °C, pressure less than 200 mbar, 17 ml distillate), resulting in a very viscous oil. The residue was again taken up in EtOH (23 mL) and stirred for 10 min and again further diluted with EtOH (12 mL) in order to reach the target volume (53 mL, 46.06 g). HPLC purity: 85.0%-area.
[000141] For analytical purposes, the product solution (90 mL) was filtered and the filter residue was washed with EtOH (15 ml). In the rotary evaporator (bath temperature 40°C, pressure < 150 mbar), the solution was completely concentrated, and the residue was taken up in MTBE (40 mL), subsequently again fully concentrated, then taken up in a mixture of ethyl acetate (29 mL) and heptane (40 mL), then fully concentrated, then again taken up in a mixture of MTBE (20 mL) and heptane (50 mL) and again fully concentrated resulting, finally, in a foamy solid (32.5 g). The solid residue (32.0 g) was dissolved in ethyl acetate (20 mL) and purified by flash chromatography over silica gel (150 g) using ethyl acetate as eluent. After a forerun of 200 mL, 6 fractions (800 mL) were combined and completely concentrated in the rotary evaporator (bath temperature: 40 °C, pressure > 20mbar) resulting in 28.0 g of a slightly yellowish oil. At room temperature, the oily residue was taken up in dichloromethane (20 mL), diluted with heptane (150 mL) and again fully concentrated in the rotary evaporator, followed by dissolving the residue in MTBE (20 mL) and again by complete removal of the solvent in the rotary evaporator resulting in a rubber-like foam. This foam was dissolved in toluene (30 mL, room temperature) and dosed over 20 min added drop-wise by dropping funnel at room temperature to heptane (400 mL), whereupon the product started to precipitate. The dropping funnel was rinsed with toluene (4 mL) and the suspension was kept stirring for 1 h at room temperature. The solids were filtered off and the reactor and filter cake were twice rinsed with the filtrate and subsequently with heptane (15 mL). Drying under vacuum at 35°C until weight constancy resulted in 17.88 g of a colorless solid. HPLC purity: 97.0%-area, residual solvents: toluene (1.2%-w/w) and heptane (2.3%-w/w). Mp (visually): Tonset: 55 - 73°C (melting accompanied by exothermic decomposition). 1H NMR (400 MHz, DMSO-< , 120°C): δ 7.41 - 7.47 (m, 2 H), 7.27 - 7.32 (m, 2 H), 7.21 - 7.26 (m, 2 H), 7.12 - 7.19 (m, 1 H), 5.21 (bs, 1 H), 4.35 (bd, 1 H), 4.22 (bs, 1 H), 4.05 (dd, 1 H), 3.91 - 4.01 (m, 1 H), 3.74 - 3.90 (m, 4 H), 3.01 (dd, 1 H), 2.75 - 2.84 (m, 1 H), 2.49 - 2.59 (m, 1 H), 1.68 - 1.81 (m, 1 H), 1.51 - 1.65 (m, 1 H), 1.23 - 1.50 (m, 3 H), 1.09 - 1.22 (m, 1 H). MS (EI): m/z = 435 ([M+H]+, 100%). EA for C23H25F3N2O3, corrected for residual toluene (1.2%-w/w) and heptane (2.3%-w/w): calcd: C 64.38, H 6.07, F 12.66, N 6.22; found C 64.01, H 6.04, F 12.63, N 6.35.
Example 5
Synthesis of ((.S)-3-Hydroxy-3-piperidin-2-yl-azetidiii-l -yl)-(2,3,4-trifluoro-phenyl)- methanone hydrochloride
Figure imgf000050_0001
[000142] A 185 mL glass autoclave under argon was charged with Pd/C (3.37 g, 1.3 mmol, 0.04 eq, 60.2%ww water, 10% ww Pd on C), water (0.22 g) and a solution of {3- hydroxy-3 - [(S)- 1 -((S)-2-hydroxy- 1 -pheny l-ethyl)-piperidin-2-y 1] -azetidin- 1 -yl } -(2,3 ,4-trifluoro- phenyl)-methanone in EtOH (53 mL, 46 g, 29 mmol, 1.0 eq.). The mixture was treated with EtOH (13 mL), Acetic acid (4.15 mL, 72 mmol, 2.5 eq.) and with aqueous hydrochloric acid (2.5 ml, 37%-w/w, 30 mmol, 1.0 eq.). The autoclave was rendered inert, pressurized with 2 bar of ¾, and the reaction was run at 2 bar ¾ pressure at 25 °C for 12 h. The pressure was released from the autoclave, and the suspension was treated with MeOH (25 mL) and kept stirring for 30 min and filtered under argon protection over filter paper. The autoclave and the filter residue were rinsed with MeOH (4 mL). The combined filtrates were evaporated under reduced pressure to approximately 20-30 percent of the initial volume. The residue was treated with isopropanol (38.5 mL) at 30 to 35 °C, stirred for 1 h, cooled to 20 to 25 °C, and treated with water (0.58 g) and with aqueous hydrochloric acid (2.5 mL, 37%-ww, 30 mmol, 1.0 eq.). The resulting suspension was concentrated under vacuum at 25 to 35 °C until a volume of approximately 22 mL was reached, and MTBE (31 mL) was added at 25 to 35 °C. The final suspension was cooled to 5 to 10 °C, stirred for 1 h, and then filtered. The filter cake was rinsed with cold MTBE (12 mL) and dried under vacuum at 35 °C until weight constancy to yield the title compound (5.08 g) as a colorless solid. HPLC purity: 99.6%-area. Mp. (DSC): Tonset: 246.3°C, extrapolated peak: 248.8°C (melting accompanied by exothermic decomposition). Ή NMR (400 MHz, DMSO-i/6, 120°C): δ 8.59 (bs, 2 H), 7.14 - 7.48 (m, 2 H), 6.54 (bs, 1 H), 4.39 (dd, 1 H), 4.23 (dd, 1 H), 3.85 - 3.97 (m, 2 H), 3.27 - 3.35 (m, 1H), 3.20 - 3.27 (m, 1 H), 2.80 - 2.95 (m, 1 H), 1.78 - 1.88 (m, 2 H), 1.64 - 1.78 (m, 2 H), 1.40 - 1.64 (m, 2 H). MS (EI): m/z = 315 ([M+H]+ of free base, 100%). EA for C15Hi7F3N2O2 X HCl: calcd: C 51.36, H 5.17, N 7.99, F 16.25; found C 51.19, H 4.89, N 7.91, F 16.06. Example 6
Synthesis of [3,4-Difluoro-2-(2-fluoro-4-iodo-phenylaniino)-phenyl]-((5)-3-hydroxy-3- piperidin-2-yI-azetidin-l-yI)-methanone
Figure imgf000051_0001
[000143] To a solution of ((S)-3-hydroxy-3-piperidin-2-yl-azetidin-l-yl)-(2,3,4-trifluoro- phenyl)-methanone hydrochloride (15.0 g,42.8 mmol, 1.0 eq.) and 2-flouro-4-iodo-anilin (1 1.1 g, 47 mmol, 1.1 eq.) in THF (90 ml), a solution of LiHMDS in THF (149 g, 20.7% w/w, 184 mmol, 4.3 eq.) was dosed over 88 min at 20 to 30 °C. Stirring was continued for 2 h. After complete conversion, the mixture was dosed to a mixture of sulfuric acid (12.0 g, 96%- w/w, 1 18 mmol, 2.75 eq.) in water (75 mL) over 25 min and kept stirring for 1 h. The layers were allowed to separate, and the organic phase was washed with a mixture of water (60 mL) and toluene (96 mL). The organic phase was concentrated under vacuum to a volume of approximately 150 mL. Toluene (250 mL) was added and residual THF was removed by distillation at 55 °C jacket temperature and at a pressure of 84 mbar while keeping the batch volume constant by continuous dosing of toluene (400 mL), resulting in slow precipitation of the product. The batch
temperature was then lowered to 10 °C within 2 h, and the suspension was kept stirring overnight at 10 °C. The product was filtered off, and the cake was rinsed with cold toluene (150 mL). Drying overnight under vacuum at 35 °C until weight constancy yielded the title compound (20.66 g) as a colorless product. HPLC purity: 99.7%-area. M.p (DSC): TonSet: 166.7°C, extrapolated peak: 168.2°C (91.5 J/g). Ή NMR (600 MHz, CDC13): δ 8.28 - 8.48 (br, 1 H), 7.39 (dd, 1 H), 7.32 (ddd, 1 H), 7.09 - 7.14 (m, 1 H), 6.75 - 6.86 (br, 1 H), 6.60 (ddd, 1 H), 4.10 (d, 2 H), 4.05 - 4.20 (br, 1 H), 3.93 - 4.04 (br, 1 H), 3.09 (d, 1 H), 2.70 (d, 1 H), 2.56 - 2.67 (br, 1 H), 1.68 - 1.87 (m, 1 H), 1.50 - 1.64 (m, 2 H), 1.25 - 1.38 (m, 2 H), 1.07 - 1.24 (m, 1 H). MS (EI): m/z = 532 ([M+H]+, 100%). EA for C2iH2,F3IN2O3: calcd: C 47.47, H 3.98, N 7.91, F 10.73; found C 47.68, H 4.00, N 7.66, F 10.80.
Other Embodiments
[000144] The foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity and understanding. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications can be made while remaining within the spirit and scope of the invention. It will be obvious to one of skill in the art that changes and modifications can be practiced within the scope of the appended claims. Therefore, it is to be understood that the above description is intended to be illustrative and not restrictive.
[000145] The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the following appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims

Claims
1. A process for making a com ound of formula I:
Figure imgf000053_0001
I
wherein:
A is arylene or heteroarylene optionally substituted with one, two, three, or four groups selected from R6, R7, R8, and R9, each of which are independently selected from hydrogen, halo, (Ci-Cg)alkyl, halo(Ci-Cs)alkyl, hydroxy, (Ci-C6)alkoxy, and halo(C C6)alkoxy;
X is alkyl, halo, halo(C C8)alkyl, or halo(Ci-C6)alkoxy;
R1, R2, R3, and R4 are each independently hydrogen, (Ci-C8)alkyl, or halo(Ci-C8)alkyl; R5 is hydrogen, halo, or (Ci-Cs)alkyl;
comprising:
contacting a compound of formula II- 1 wherein X and R5 are as defined above with a compound of formula IIa-l wherein R10 is F, Br, CI, or -OSO2-CF3 and R11 is H or a protecting grou to provide a compound of formula I.
Figure imgf000053_0002
2. The process of any one of claims 1, wherein X and R5 in a compound of formula IIa-l are each independently F, CI, Br, or I.
3. The process of any one of claims 1 or 2, wherein X is F and R5 is I.
4. The process of any one of claims 1 to 3 wherein the compound of formula II- 1 is the compound of formula II-2:
Figure imgf000054_0001
II-2
wherein R11 is H or a protecting group and Ring A is optionally substituted with one, two, three or four groups selected from R6, R7, R8, and R9, each of which are independently selected from halo, (Ci-C8)alkyl, halo(Ci-C8)alkyl, (d-C6)alkoxy, and halo(CrC6)alkoxy.
5. The process of any one of claims 1 to 4, wherein Ring A in the compound of formula II-2 is phenyl or pyridyl.
6. The process of any one of claims 1 to 5, wherein the compound of formula II- 1 is the compound of formula II-3:
Figure imgf000054_0002
II-3
wherein R11 is as defined previously and R10 is F, CI, Br, I, or OSO2CF3, and R12a and R12b are each independently F, CI, Br, I, alkyl, haloalkyl, alkoxy, or haloalkoxy.
7. The process of claim 6, wherein R10 in the compound of formula II-3 is F, CI, Br, or I, and R12a and R12b are each independently F, CI, Br, alkyl, haloalkyl, alkoxy, or haloalkoxy.
8. The process of any one of claims 1 to 6, wherein R10 in the compound of formula II-3 is F and R12a and R12b are each independently F, CI, alkyl, or alkoxy.
9. A process for preparing a compound of formula Γ, comprising contacting a compound of formula IIa with a compound of formula II.
Figure imgf000055_0001
Ila II Γ
10. The process of claim 9, further comprising a strong base.
11. The process of claim 10, wherein the strong base is selected from the group consisting of butyllithium, t-butyllithium, the lithium, sodium, or potassium salts of mono or bis substituted alkyl or aromatic amines, and silylalkyl or silylaromatic amines.
12. The process of any one of claims 10 or 11, wherein the strong base is selected from the group consisting of the lithium, sodium, or potassium salts of diisopropyl amine,
bis(trimethylsilyl)amine, diethylamine, and dimethylamine.
13. The process of any one of claims 10 to 12, wherein the strong base is selected from the group consisting of preferably the lithium, sodium, or potassium salts of
bis(trimethylsilyl)amine.
14. The process of any one of claims 10 to 13, wherein the strong base is selected from the group consisting of lithium diisopropylamide, lithium bis(trimethylsilyl)amide, or lithium diethylamide.
15. The process of any one of claims 10 to 14, wherein the strong base is lithium
bis(trimethylsilyl)amide.
16. The process of any one of claims 10 to 15 , wherein reaction is performed in the presence of a solvent which is tetrahydrofuran.
17. A process for preparing a compound of formula II, comprising deprotecting a compound of formula III.
Figure imgf000056_0001
III
18. The process of claim 17, wherein deprotection comprises hydrogenation using H2 in the presence of a heterogeneous transition metal hydrogenation catalyst or treatment with chloroethyl chloroformate in the presence of MeCN or Na/NH3.
19. The process of claim 18, wherein the heterogeneous transition metal hydrogenation catalyst is selected from the group consisting of a Raney catalyst, Pd/C, Pd(OH)2/C, Pd(OAc)2, Au/TiO2, Rh/C, Ru/Al2O3, Ir/CaCO3, Pt/C, and Palladium(O) microencapsulated in polyurea matrix as a 45 percent mixture of nanoparticles of palladium approximately 2 nm in size in water, containing 0.4 mmol/g Pd(0) (dry basis), where the unit weight includes the weight of water (NP Pd(0) Encat™ 30), or a mixture thereof.
20. The process of claim 18 in the presence of HC1 and acetic acid.
21. The process of claims 17 to 20, wherein the heterogeneous transition metal
hydrogenation catalyst is Pd/C.
22. A process for preparing a compound of formula III, comprising contacting a compound of formula IVa with a compound of formula IV.
Figure imgf000057_0001
IV III
23. The process of claim 22 in the presence of an inorganic base.
24. The process of claim 22, wherein the inorganic base is an alkali or alkali earth metal hydroxide, phosphate, or carbonate.
25. The process of any one of claims claim 22 to 24, wherein the inorganic base is selected from the group consisting LiOH, NaOH, KOH, CsOH, NH4OH, RbOH, Mg(OH)2, Ca(OH)2, Ba(OH)2, Li2CO3, Na2CO3, K2CO3, Cs2CO3, (NH4)2CO3, and K3PO4.
26. The process of any one of claims 22 to 25, wherein the inorganic base is K3PO4, K2CO3, or KOH.
27. A process for preparing a compound of formula IV, comprising deprotecting a compound of formula V:
Figure imgf000057_0002
V IV
wherein PG is an amino protecting group.
28. The process of claim 27, wherein the protecting group is an FMoc, CBz, or BOC protecting group.
29. The process of any one of claims 26 to 28, wherein the protecting group is a BOC protecting group.
30. A process for preparing a compound of formula V wherein PG is an amino protecting group, comprisin reducing a compound of formula VI.
Figure imgf000058_0001
V
31. A process according to claim 30, in the presence of a reducing agent, in particular wherein the reducing agent is selected from the group consisting of borohydrides.
32. A process for preparing a compound of formula VI comprising reacting a compound of formula VII with a com ound of formula VIIa in the presence of base:
Figure imgf000058_0002
VII VI
wherein PG is an amino protecting group.
33. A process for preparing a compound of formula V, comprising:
1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI;
Figure imgf000059_0001
VII VI
and
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of borohydrides to provide a compound of formula V.
Figure imgf000059_0002
VI V
34. A process for the preparation of the compound of formula IV, comprising:
1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI
Figure imgf000059_0003
VII VI
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of borohydrides to provide a compound of formula V;
Figure imgf000060_0001
VI v
and
3) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV.
Figure imgf000060_0002
V IV
35. A process for the preparation of the compound of formula III, comprising:
1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI
Figure imgf000060_0003
VII VI
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of b
Figure imgf000060_0004
VI V 3) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV;
Figure imgf000061_0001
V IV
and
4) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III.
Figure imgf000061_0002
IVa IV III
36. A process for the preparation of the compound of formula II, comprising:
1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI
Figure imgf000061_0003
VII VI
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of borohydrides to provide a compound of formula V;
Figure imgf000062_0001
VI V
3) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV;
Figure imgf000062_0002
V IV
4) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula II
Figure imgf000062_0003
IV III
5) hy formula II.
Figure imgf000062_0004
III II
37. A process for the preparation of the compound of formula Γ, comprising: 1) reacting a compound of formula VII with a compound of formula VIIa to provide a compound of formula VI
Figure imgf000063_0001
VII VI
2) reducing a compound of formula VI with a reducing agent selected from the group consisting of b
Figure imgf000063_0002
VI V
3) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV;
Figure imgf000063_0003
V IV
4) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III
Figure imgf000063_0004
IVa IV HI 5) hydro formula II;
Figure imgf000064_0001
III II
and
6) reacting a compound of formula II with a compound of formula IIa to provide a compound of formula Γ
Figure imgf000064_0002
IL II F
A process for the preparation of the compound of formula P, comprising:
a) formula II;
Figure imgf000064_0003
III II
and
b) reacting a compound of formula II with a compound of formula IIa to provide a compound of formula P.
Figure imgf000065_0001
39. A process for the preparation of the compound of formula Γ, comprising:
a) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III;
Figure imgf000065_0002
b) hydrogenation of a compound of formula III to provide a compound of formula II;
Figure imgf000065_0003
III II
and
c) reacting a compound of formula II with a compound of formula IIa to provide a compound of formula Γ.
Figure imgf000066_0001
40. A process for the preparation of the compound of formula Γ, comprising:
a) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV;
Figure imgf000066_0002
V IV
b) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III;
Figure imgf000066_0003
c) hydrogenation of a compound of formula III to provide a compound of formula II;
Figure imgf000067_0001
Figure imgf000067_0002
41. A process for the preparation of the compound of formula Γ, comprising:
a) reducing a compound of formula VI with a reducing agent selected from the group consisting of bo
Figure imgf000067_0003
VI V
b) deprotecting the azetidinyl ring of a compound of formula V to provide a compound of formula IV
Figure imgf000068_0001
V IV
c) reacting a compound of formula IV with a compound of formula IVa to provide a compound of formula III
Figure imgf000068_0002
IVa IV III
d) hydrogenation of a compound of formula III to provide a compound of formula II;
Figure imgf000068_0003
III II
and
e) reacting a compound of formula II with a compound of formula IIa to provide a compound of formula P
Figure imgf000068_0004
IL II P
42. A compound which is:
Figure imgf000069_0001
(VI), wherein PG is a protecting group;
rein PG is an amino protecting group;
Figure imgf000069_0002
The compound of claim 42 which is a compound of formula V:
Figure imgf000069_0003
v
wherein PG is an amino protecting group.
44. The compound of claim 37 which is a compound of formula VI:
Figure imgf000070_0001
wherein PG is an amino protecting group.
45. The compounds of claims 43 or 44, wherein the amino protecting group
46. A compound of formula IV.
Figure imgf000070_0002
IV
47. A compound of formula III.
Figure imgf000070_0003
A compound of foraiula II.
Figure imgf000071_0001
PCT/US2013/064866 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer WO2014059422A1 (en)

Priority Applications (33)

Application Number Priority Date Filing Date Title
MX2015004660A MX2015004660A (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer.
NZ706723A NZ706723A (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
UAA201504532A UA115455C2 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
KR1020157012066A KR102204520B1 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
BR112015008113-4A BR112015008113B1 (en) 2012-10-12 2013-10-14 New process to prepare compounds for use in cancer treatment
AU2013328929A AU2013328929B2 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
IN3928DEN2015 IN2015DN03928A (en) 2012-10-12 2013-10-14
CN201380064338.7A CN104837826B (en) 2012-10-12 2013-10-14 Prepare the novel method of the compound for treating cancer
MA38085A MA38085B1 (en) 2012-10-12 2013-10-14 New process for the production of compounds for use in the treatment of cancer
PL13780303T PL2909188T3 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
MYPI2015000897A MY186549A (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
EP13780303.7A EP2909188B1 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
PE2019002024A PE20191818A1 (en) 2012-10-12 2013-10-14 PROCESS FOR THE PREPARATION OF 1 - ({3,4-DIFLUORO-2 - [(2-FLUORO-4-IODOPHENYL) AMINO] PHENYL} CARBONYL) -3 - [(2S) -PIPERIDIN-2-IL] AZETIDIN-3OL
SI201331045T SI2909188T1 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
EA201590700A EA030613B1 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
JP2015536988A JP6300042B2 (en) 2012-10-12 2013-10-14 Method for producing a compound for use in the treatment of cancer
ES13780303.7T ES2671502T3 (en) 2012-10-12 2013-10-14 Novel process to prepare compounds for use in cancer treatment
SG11201502795VA SG11201502795VA (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
CR20200237A CR20200237A (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
CA2889466A CA2889466C (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer
IL238116A IL238116B (en) 2012-10-12 2015-04-02 Process for making compounds for use in the treatment of cancer
PH12015500785A PH12015500785A1 (en) 2012-10-12 2015-04-08 Novel process for making compounds for use in the treatment of cancer
ZA2015/02349A ZA201502349B (en) 2012-10-12 2015-04-08 Novel process for making compounds for use in the treatment of cancer
SA515360271A SA515360271B1 (en) 2012-10-12 2015-04-12 Novel process for making compounds for use in the treatment of cancer
US14/684,826 US9771347B2 (en) 2012-10-12 2015-04-13 Process for making compounds for use in the treatment of cancer
CR20150245A CR20150245A (en) 2012-10-12 2015-05-11 NEW PROCESS FOR THE PREPARATION OF COMPOUNDS FOR USE IN CANCER TREATMENT
HK16101572.6A HK1213567A1 (en) 2012-10-12 2016-02-12 Novel process for making compounds for use in the treatment of cancer
HK16101725.2A HK1213878A1 (en) 2012-10-12 2016-02-18 Novel process for making compounds for use in the treatment of cancer
US15/686,333 US10239858B2 (en) 2012-10-12 2017-08-25 Process for making compounds for use in the treatment of cancer
HRP20180670TT HRP20180670T1 (en) 2012-10-12 2018-04-26 Novel process for making compounds for use in the treatment of cancer
US16/271,215 US10793541B2 (en) 2012-10-12 2019-02-08 Process for making compounds for use in the treatment of cancer
PE2019001563A PE20200387A1 (en) 2012-10-12 2019-08-08 NOVEL PROCESS FOR THE ELABORATION OF COMPOUNDS FOR USE IN THE TREATMENT OF CANCER
US17/003,570 US11414396B2 (en) 2012-10-12 2020-08-26 Process for making compounds for use in the treatment of cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261713104P 2012-10-12 2012-10-12
US61/713,104 2012-10-12

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14684826 A-371-Of-International 2013-10-14
US14/684,826 Continuation US9771347B2 (en) 2012-10-12 2015-04-13 Process for making compounds for use in the treatment of cancer
US15/686,333 Division US10239858B2 (en) 2012-10-12 2017-08-25 Process for making compounds for use in the treatment of cancer

Publications (1)

Publication Number Publication Date
WO2014059422A1 true WO2014059422A1 (en) 2014-04-17

Family

ID=49474740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/064866 WO2014059422A1 (en) 2012-10-12 2013-10-14 Novel process for making compounds for use in the treatment of cancer

Country Status (31)

Country Link
US (4) US9771347B2 (en)
EP (1) EP2909188B1 (en)
JP (2) JP6300042B2 (en)
KR (1) KR102204520B1 (en)
CN (2) CN108948043B (en)
AU (1) AU2013328929B2 (en)
BR (1) BR112015008113B1 (en)
CA (1) CA2889466C (en)
CL (1) CL2015000926A1 (en)
CR (2) CR20200237A (en)
EA (1) EA030613B1 (en)
ES (1) ES2671502T3 (en)
GE (1) GEP201706690B (en)
HK (2) HK1213567A1 (en)
HR (1) HRP20180670T1 (en)
IL (1) IL238116B (en)
IN (1) IN2015DN03928A (en)
MA (1) MA38085B1 (en)
MX (2) MX2015004660A (en)
MY (1) MY186549A (en)
NZ (1) NZ706723A (en)
PE (3) PE20151494A1 (en)
PH (1) PH12015500785A1 (en)
PL (1) PL2909188T3 (en)
SA (1) SA515360271B1 (en)
SG (1) SG11201502795VA (en)
SI (1) SI2909188T1 (en)
TR (1) TR201807861T4 (en)
UA (1) UA115455C2 (en)
WO (1) WO2014059422A1 (en)
ZA (1) ZA201502349B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330643A (en) * 2015-12-09 2016-02-17 苏州明锐医药科技有限公司 Preparation method of cobimetinib
CN106045969A (en) * 2016-05-27 2016-10-26 湖南欧亚生物有限公司 Synthesis method of cobimetinib
US9532987B2 (en) 2013-09-05 2017-01-03 Genentech, Inc. Use of a combination of a MEK inhibitor and an ERK inhibitor for treatment of hyperproliferative diseases
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
WO2018064299A1 (en) 2016-09-29 2018-04-05 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a taxane
WO2020187674A1 (en) 2019-03-15 2020-09-24 Sandoz Ag Crystalline (s)-[3,4-difluoro-2-(2-fluoro-4-iodophenylamino)phenyl][3-hydroxy-3-(piperidin-2-yl)azetidin-1-yl]methanone hemisuccinate
EP3881833A1 (en) 2015-06-30 2021-09-22 Genentech, Inc. Immediate-release tablets containing a drug and processes for forming the tablets
WO2022192202A1 (en) 2021-03-09 2022-09-15 Genentech, Inc. Belvarafenib for use in treatment of brain cancers
WO2022216719A1 (en) 2021-04-06 2022-10-13 Genentech, Inc. Combination therapy with belvarafenib and cobimetinib or with belvarafenib, cobimetinib, and atezolizumab

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186549A (en) 2012-10-12 2021-07-26 Exelixis Inc Novel process for making compounds for use in the treatment of cancer
AR105483A1 (en) 2015-06-30 2017-10-11 Exelixis Inc CRYSTAL FUMARATE SALT OF (S) - [3,4-DIFLUORO-2- (2-FLUORO-4-IODOPHENYLAMINE) PHENYL] [3-HIDROXI-3- (PIPERIDIN-2-IL) AZETIDIN-1-IL] - METANONE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007044515A1 (en) 2005-10-07 2007-04-19 Exelixis, Inc. Azetidines as mek inhibitors for the treatment of proliferative diseases
WO2008076415A1 (en) * 2006-12-14 2008-06-26 Exelixis, Inc. Methods of using mek inhibitors

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1563587A (en) * 1924-09-20 1925-12-01 Raney Murray Method of preparing catalytic material
US1628190A (en) * 1926-05-14 1927-05-10 Raney Murray Method of producing finely-divided nickel
US1915473A (en) * 1930-12-31 1933-06-27 Raney Murray Method of preparing catalytic material
US4510139A (en) 1984-01-06 1985-04-09 Sterling Drug Inc. Substituted aminobenzamides and their use as agents which inhibit lipoxygenase activity
US5155110A (en) 1987-10-27 1992-10-13 Warner-Lambert Company Fenamic acid hydroxamate derivatives having cyclooxygenase and 5-lipoxygenase inhibition
CA2186947A1 (en) 1994-04-01 1995-10-12 Kazuo Ueda Oxime derivative and bactericide containing the same as active ingredients
AU6966696A (en) 1995-10-05 1997-04-28 Warner-Lambert Company Method for treating and preventing inflammation and atherosclerosis
WO1998037881A1 (en) 1997-02-28 1998-09-03 Warner Lambert Company Method of treating or preventing septic shock by administering a mek inhibitor
WO1999001426A1 (en) 1997-07-01 1999-01-14 Warner-Lambert Company 4-bromo or 4-iodo phenylamino benzhydroxamic acid derivatives and their use as mek inhibitors
DE69836378T2 (en) * 1997-07-01 2007-10-11 Warner-Lambert Co. Llc Benzoic acid and benzamide derivatives of anthranilic acid and their use as MEK inhibitors
US6310060B1 (en) * 1998-06-24 2001-10-30 Warner-Lambert Company 2-(4-bromo or 4-iodo phenylamino) benzoic acid derivatives and their use as MEK inhibitors
US6974878B2 (en) 2001-03-21 2005-12-13 Symyx Technologies, Inc. Catalyst ligands, catalytic metal complexes and processes using same
EP1140046A1 (en) 1998-12-15 2001-10-10 Warner-Lambert Company Use of a mek inhibitor for preventing transplant rejection
EP1143957A3 (en) 1998-12-16 2002-02-27 Warner-Lambert Company Treatment of arthritis with mek inhibitors
ATE310567T1 (en) 1998-12-22 2005-12-15 Warner Lambert Co CHEMOTHERAPY WITH AN ANTIMITOTIC AGENT AND A MEK INHIBITOR
KR20000047461A (en) 1998-12-29 2000-07-25 성재갑 Thrombin inhibitors
CA2358438A1 (en) 1999-01-07 2000-07-13 David Thomas Dudley Antiviral method using mek inhibitors
BR9916785A (en) 1999-01-07 2001-10-23 Warner Lambert Co Treatment of asthma with mek inhibitors
WO2000042003A1 (en) 1999-01-13 2000-07-20 Warner-Lambert Company Benzenesulfonamide derivatives and their use as mek inhibitors
CN1149204C (en) 1999-01-13 2004-05-12 沃尼尔·朗伯公司 1-heterocycle substd. diarylamines
CA2348236A1 (en) 1999-01-13 2000-07-20 Stephen Douglas Barrett 4-arylamino, 4-aryloxy, and 4-arylthio diarylamines and derivatives thereof as selective mek inhibitors
ID30439A (en) 1999-01-13 2001-12-06 Warner Lambert Co BENZOHETEROSICLUS AND ITS USE AS A RESERVE MEK
CA2349180A1 (en) 1999-01-13 2000-07-20 Stephen Douglas Barrett Anthranilic acid derivatives
CA2378381A1 (en) 1999-07-16 2001-01-25 Warner-Lambert Company Method for treating chronic pain using mek inhibitors
EP1202732A2 (en) 1999-07-16 2002-05-08 Warner-Lambert Company Llc Method for treating chronic pain using mek inhibitors
NZ515567A (en) 1999-07-16 2004-03-26 Warner Lambert Co Method for treating chronic pain using MEK inhibitors
KR20020015376A (en) 1999-07-16 2002-02-27 로즈 암스트롱, 크리스틴 에이. 트러트웨인 Method for Treating Chronic Pain Using MEK Inhibitors
NZ517829A (en) 1999-09-17 2004-12-24 Millennium Pharm Inc Benzamides and related inhibitors of factor Xa
CA2403017A1 (en) 2000-03-15 2001-09-20 Warner-Lambert Company 5-amide substituted diarylamines as mex inhibitors
AR033517A1 (en) 2000-04-08 2003-12-26 Astrazeneca Ab PIPERIDINE DERIVATIVES, PROCESS FOR THE PREPARATION AND USE OF THESE DERIVATIVES IN THE MANUFACTURE OF MEDICINES
SI1301472T1 (en) 2000-07-19 2014-05-30 Warner-Lambert Company Llc Oxygenated esters of 4-iodo phenylamino benzhydroxamic acids
CZ2003477A3 (en) * 2000-08-25 2003-10-15 Warner - Lambert Company Llc Process for preparing N-aryl-anthranilic acids and derivatives thereof
US7105682B2 (en) 2001-01-12 2006-09-12 Amgen Inc. Substituted amine derivatives and methods of use
IL149462A0 (en) 2001-05-09 2002-11-10 Warner Lambert Co Method of treating or inhibiting neutrophil chemotaxis by administering a mek inhibitor
US20040039208A1 (en) * 2001-07-20 2004-02-26 Chen Michael Huai Gu Process for making n-aryl-anthranilic acids and their derivatives
DE10141266A1 (en) 2001-08-21 2003-03-06 Syntec Ges Fuer Chemie Und Tec Electroluminescent derivatives of 2,5-diamino-terephthalic acid and their use in organic light-emitting diodes
US7085492B2 (en) 2001-08-27 2006-08-01 Ibsen Photonics A/S Wavelength division multiplexed device
BR0213696A (en) 2001-10-31 2004-10-26 Pfizer Prod Inc Nicotinic Acetylcholine Receptor Agonists In The Treatment Of Restless Leg Syndrome
DOP2003000556A (en) 2002-01-23 2003-10-31 Warner Lambert Co ESTERES HYDROXAMATE ACID N- (4-PHENYL-REPLACED) -ANTRANILICO.
BR0307060A (en) 2002-01-23 2004-10-26 Warner Lambert Co n- (phenyl-4-substituted) -anthanilic acid hydroxamate esters
PT2275102E (en) 2002-03-13 2015-10-27 Array Biopharma Inc N3 alkylated benzimidazole derivatives as mek inhibitors
US7235537B2 (en) 2002-03-13 2007-06-26 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as MEK inhibitors
TW200406203A (en) 2002-03-13 2004-05-01 Array Biopharma Inc N3 alkylated banzimidazole derivatives as MEK inhibitors
WO2003103590A2 (en) 2002-06-11 2003-12-18 Merck & Co., Inc. (halo-benzo carbonyl)heterobicyclic p38 kinase inhibiting agents
GB0214268D0 (en) 2002-06-20 2002-07-31 Celltech R&D Ltd Chemical compounds
WO2004004644A2 (en) 2002-07-05 2004-01-15 Beth Israel Deaconess Medical Center Combination of mtor inhibitor and a tyrosine kinase inhibitor for the treatment of neoplasms
US20050004186A1 (en) 2002-12-20 2005-01-06 Pfizer Inc MEK inhibiting compounds
JP4617299B2 (en) 2003-03-03 2011-01-19 アレイ バイオファーマ、インコーポレイテッド p38 inhibitors and methods of use thereof
TW200505834A (en) 2003-03-18 2005-02-16 Sankyo Co Sulfamide derivative and the pharmaceutical composition thereof
JP2005162727A (en) 2003-03-18 2005-06-23 Sankyo Co Ltd Sulfamide derivative and medicinal preparation thereof
GB0308185D0 (en) 2003-04-09 2003-05-14 Smithkline Beecham Corp Novel compounds
EP1641804A1 (en) 2003-06-20 2006-04-05 Celltech R &amp; D Limited Thienopyridone derivatives as kinase inhibitors
WO2005000818A1 (en) 2003-06-27 2005-01-06 Warner-Lambert Company Llc 5-substituted-4-`(substituted phenyl)!amino!-2-pyridone deviatives for use as mek inhibitors
US20050049276A1 (en) 2003-07-23 2005-03-03 Warner-Lambert Company, Llc Imidazopyridines and triazolopyridines
WO2005009975A2 (en) 2003-07-24 2005-02-03 Warner-Lambert Company Llc Benzimidazole derivatives as mek inhibitors
US7144907B2 (en) 2003-09-03 2006-12-05 Array Biopharma Inc. Heterocyclic inhibitors of MEK and methods of use thereof
US7538120B2 (en) 2003-09-03 2009-05-26 Array Biopharma Inc. Method of treating inflammatory diseases
TW200520745A (en) 2003-09-19 2005-07-01 Chugai Pharmaceutical Co Ltd Novel 4-phenylamino-benzaldoxime derivatives and uses thereof as mitogen-activated protein kinase kinase (MEK) inhibitors
US7517994B2 (en) 2003-11-19 2009-04-14 Array Biopharma Inc. Heterocyclic inhibitors of MEK and methods of use thereof
WO2005051301A2 (en) 2003-11-19 2005-06-09 Array Biopharma Inc. Heterocyclic inhibitors of mek and methods of use thereof
ATE384058T1 (en) 2003-12-08 2008-02-15 Hoffmann La Roche THIAZOLE DERIVATIVES
MY144232A (en) 2004-07-26 2011-08-15 Chugai Pharmaceutical Co Ltd 5-substituted-2-phenylamino benzamides as mek inhibitors
KR101318012B1 (en) * 2004-10-20 2013-10-14 메르크 세로노 에스.에이. 3-arylamino pyridine derivatives
WO2006061712A2 (en) 2004-12-10 2006-06-15 Pfizer Inc. Use of mek inhibitors in treating abnormal cell growth
US7547782B2 (en) 2005-09-30 2009-06-16 Bristol-Myers Squibb Company Met kinase inhibitors
AU2007284562B2 (en) 2006-08-16 2013-05-02 Exelixis, Inc. Using PI3K and MEK modulators in treatments of cancer
MY186549A (en) 2012-10-12 2021-07-26 Exelixis Inc Novel process for making compounds for use in the treatment of cancer
ES2702891T3 (en) 2014-02-07 2019-03-06 Sumitomo Chemical Co Method to produce (R) -1,1,3-Trimethyl-4-aminoindane
AR105483A1 (en) 2015-06-30 2017-10-11 Exelixis Inc CRYSTAL FUMARATE SALT OF (S) - [3,4-DIFLUORO-2- (2-FLUORO-4-IODOPHENYLAMINE) PHENYL] [3-HIDROXI-3- (PIPERIDIN-2-IL) AZETIDIN-1-IL] - METANONE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007044515A1 (en) 2005-10-07 2007-04-19 Exelixis, Inc. Azetidines as mek inhibitors for the treatment of proliferative diseases
WO2008076415A1 (en) * 2006-12-14 2008-06-26 Exelixis, Inc. Methods of using mek inhibitors

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Fieser and Fieser's Reagents for Organic Synthesis", vol. 1-17, 1991, JOHN WILEY AND SONS
"Larock's Comprehensive Organic Transformations", 1989, VCH PUBLISHERS INC.
"March's Advanced Organic Chemistry", JOHN WILEY AND SONS
"Organic Reactions", vol. 1-40, 1991, JOHN WILEY AND SONS
"Rodd's Chemistry of Carbon Compounds", vol. 1-5, 1989, ELSEVIER SCIENCE PUBLISHERS
ACS MED. CHEM LETT., vol. 3, 2012, pages 416 - 421
LEY, S. V., ORE LETT., vol. 5, no. 24, 27 November 2003 (2003-11-27), pages 4665 - 8
N. R. GUZ ET AL., ORG. PROC. RES. DEVELOP., vol. 14, no. 6, 2010, pages 1476
PODLECH, J.; SEEBACH, D., HELV. CHIM. ACTA, 1995, pages 1238
RICE, K. ET AL., MED. CHEM. LETT., vol. 3, 2012, pages 416

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532987B2 (en) 2013-09-05 2017-01-03 Genentech, Inc. Use of a combination of a MEK inhibitor and an ERK inhibitor for treatment of hyperproliferative diseases
EP3881833A1 (en) 2015-06-30 2021-09-22 Genentech, Inc. Immediate-release tablets containing a drug and processes for forming the tablets
EP4272735A1 (en) 2015-06-30 2023-11-08 Genentech, Inc. Immediate-release tablets containing a drug and processes for forming the tablets
CN105330643A (en) * 2015-12-09 2016-02-17 苏州明锐医药科技有限公司 Preparation method of cobimetinib
CN105330643B (en) * 2015-12-09 2017-12-05 苏州明锐医药科技有限公司 Card is than the preparation method for Buddhist nun
CN106045969A (en) * 2016-05-27 2016-10-26 湖南欧亚生物有限公司 Synthesis method of cobimetinib
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
WO2018064299A1 (en) 2016-09-29 2018-04-05 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a taxane
WO2020187674A1 (en) 2019-03-15 2020-09-24 Sandoz Ag Crystalline (s)-[3,4-difluoro-2-(2-fluoro-4-iodophenylamino)phenyl][3-hydroxy-3-(piperidin-2-yl)azetidin-1-yl]methanone hemisuccinate
WO2022192202A1 (en) 2021-03-09 2022-09-15 Genentech, Inc. Belvarafenib for use in treatment of brain cancers
WO2022216719A1 (en) 2021-04-06 2022-10-13 Genentech, Inc. Combination therapy with belvarafenib and cobimetinib or with belvarafenib, cobimetinib, and atezolizumab

Also Published As

Publication number Publication date
PE20191818A1 (en) 2019-12-27
PL2909188T3 (en) 2018-08-31
SG11201502795VA (en) 2015-05-28
CR20200237A (en) 2020-07-26
MA38085A1 (en) 2018-08-31
MX2015004660A (en) 2015-08-07
PH12015500785B1 (en) 2015-06-15
PE20200387A1 (en) 2020-02-24
US20170349569A1 (en) 2017-12-07
MA38085B1 (en) 2018-11-30
US20190185447A1 (en) 2019-06-20
HK1213567A1 (en) 2016-07-08
US10239858B2 (en) 2019-03-26
US20150210668A1 (en) 2015-07-30
PE20151494A1 (en) 2015-11-06
CA2889466A1 (en) 2014-04-17
EP2909188B1 (en) 2018-03-07
HRP20180670T1 (en) 2018-07-13
CN108948043A (en) 2018-12-07
US11414396B2 (en) 2022-08-16
SA515360271B1 (en) 2016-05-19
HK1213878A1 (en) 2016-07-15
MX2020005533A (en) 2020-10-12
IN2015DN03928A (en) 2015-10-02
JP6300042B2 (en) 2018-03-28
US20200392104A1 (en) 2020-12-17
ES2671502T3 (en) 2018-06-06
BR112015008113A2 (en) 2017-07-04
JP2018052973A (en) 2018-04-05
US10793541B2 (en) 2020-10-06
SI2909188T1 (en) 2018-07-31
UA115455C2 (en) 2017-11-10
CN104837826B (en) 2018-07-27
KR102204520B1 (en) 2021-01-20
CN104837826A (en) 2015-08-12
KR20150067339A (en) 2015-06-17
ZA201502349B (en) 2019-12-18
CR20150245A (en) 2015-11-19
AU2013328929B2 (en) 2018-01-04
CA2889466C (en) 2021-09-14
CL2015000926A1 (en) 2015-08-28
EA030613B1 (en) 2018-08-31
GEP201706690B (en) 2017-06-26
BR112015008113B1 (en) 2022-05-24
EP2909188A1 (en) 2015-08-26
AU2013328929A1 (en) 2015-04-30
NZ706723A (en) 2018-07-27
TR201807861T4 (en) 2018-06-21
IL238116B (en) 2018-06-28
EA201590700A1 (en) 2015-09-30
JP2015533175A (en) 2015-11-19
MY186549A (en) 2021-07-26
US9771347B2 (en) 2017-09-26
PH12015500785A1 (en) 2015-06-15
CN108948043B (en) 2021-05-04

Similar Documents

Publication Publication Date Title
EP2909188B1 (en) Novel process for making compounds for use in the treatment of cancer
EP3572413B1 (en) 1,2-dihydro-3h-pyrazolo[3,4-d]pyrimidin-3-one derivative as wee1 inhibitor
TW201321378A (en) Processes and intermediates for producing azaindoles
AU2021241879A1 (en) Monoacylglycerol lipase modulators
WO2021191390A1 (en) Azaspirocycles as monoacylglycerol lipase modulators
US20090281331A1 (en) Method of producing polycyclic proline derivative or acid addition salt thereof
WO2021191384A1 (en) Aryl piperidines as monoacylglycerol lipase modulators
PT2346823E (en) Intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
EP3166924A1 (en) Aromatic heterocyclic derivatives and pharmaceutical applications thereof
CA3195738A1 (en) Cyclobutyl amide monoacylglycerol lipase modulators
JP2006083085A (en) Method for producing bicyclic pyrimidine derivative and its synthetic intermediate
JP2024509864A (en) Tricyclic pyridine as a cyclin-dependent kinase 7 (CDK7) inhibitor
EA042733B1 (en) SYNTHESIS OF N-(HETEROARYL)PYRROLO[3,2-d]PYRIMIDINE-2-AMINES
TW201713632A (en) Method for preparing DOTA derivative organic ligand which is a precursor DOTA-tris(tBu ester) of hypoxic tissue contrast agent DOTA-Ni with significant cost advantage in the preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2889466

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 238116

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12015500785

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2015536988

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/004660

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P470/2015

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 000485-2015

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2013328929

Country of ref document: AU

Date of ref document: 20131014

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201590700

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20157012066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15105981

Country of ref document: CO

Ref document number: IDP00201502759

Country of ref document: ID

Ref document number: 38085

Country of ref document: MA

Ref document number: A201504532

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 13824

Country of ref document: GE

Ref document number: CR2015-000245

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 2013780303

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015008113

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015008113

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150410