WO2014058332A1 - Hydrogeochemical method for determining accumulations of shale gas - Google Patents

Hydrogeochemical method for determining accumulations of shale gas Download PDF

Info

Publication number
WO2014058332A1
WO2014058332A1 PCT/RU2012/000811 RU2012000811W WO2014058332A1 WO 2014058332 A1 WO2014058332 A1 WO 2014058332A1 RU 2012000811 W RU2012000811 W RU 2012000811W WO 2014058332 A1 WO2014058332 A1 WO 2014058332A1
Authority
WO
WIPO (PCT)
Prior art keywords
samples
benzene
accumulations
extract
solvent
Prior art date
Application number
PCT/RU2012/000811
Other languages
French (fr)
Russian (ru)
Inventor
Елена Давыдовна ЖУРАВЛЕВА
Александр Николаевич ШИБАЛОВ
Original Assignee
Zhuravleva Elena Davydovna
Shibalov Alexandr Nikolaevich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuravleva Elena Davydovna, Shibalov Alexandr Nikolaevich filed Critical Zhuravleva Elena Davydovna
Priority to PCT/RU2012/000811 priority Critical patent/WO2014058332A1/en
Publication of WO2014058332A1 publication Critical patent/WO2014058332A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Water organic contamination in water
    • G01N33/1833Oil in water

Definitions

  • the invention relates to organic petroleum geology and can be used to predict the accumulation of shale gas during geological exploration within local oil and gas areas without environmental risks.
  • SU 1695249 discloses a method for determining aromatic hydrocarbons in formation waters when searching for hydrocarbon deposits, including treating samples with a solvent matrix, freezing the arenas extract and solvent mixture with liquid nitrogen or liquid hydrogen, followed by fine-structure luminescence analysis.
  • a solvent matrix As the matrix solvent, a mixture of normal hexane and carbon tetrachloride in a mass ratio of 1: 1 with the addition of 0.33 ml of ammonia is used.
  • this method does not allow to make an unambiguous conclusion about the presence of accumulations of shale gas.
  • hydrochemical method for searching for hydrocarbon deposits based on the spectral determination of the quantitative content of benzene in groundwater, according to which groundwater samples are treated with cyclohexane, simultaneously with the spectrum of benzene, the quasilinear luminescence spectrum of naphthalene, obtained cyclohexane extract and the amount of benzene and naphthalene or naphthalene judge the presence of hydrocarbon deposits.
  • This method allows to detect the presence of hydrocarbon deposits in small quantities in the extract at the same time naphthalene and benzene, which are direct hydrochemical indicators of oil and gas. However, like the above method, this method does not allow to reliably determine the presence of accumulations of shale gas.
  • the objectives of the invention is to increase the reliability of identifying accumulations of shale gas, simplifying the technology of their search, as well as reducing environmental risks.
  • surface water samples are additionally taken; normal hexane is used as a solvent for each sample; the intensities of the analytical lines of benzene in the spectra of groundwater and surface water samples are compared, and if the intensities of the analytical lines of benzene in the spectra of groundwater samples are exceeded, the presence of shale gas accumulations is judged.
  • the extract of organic compounds in normal hexane is frozen using liquid nitrogen or liquid hydrogen.
  • the method according to the invention allows to avoid errors in the determination of benzene in organic matter (OM) of ground and surface waters, which is a direct (local) hydrochemical indicator of gas content, saves time and money, and also increases the reliability of detecting accumulations of shale gas by its small amounts in groundwater samples .
  • OM organic matter
  • FIG. 1 shows a flow chart of operations with water samples in a method according to the present invention
  • FIG. 2 quasilinear fluorescence spectrum of benzene in a normal hexane extract from an underground water sample in the presence of gas accumulation.
  • groundwater samples are taken in several places. Groundwater samples are taken, for example, using auger drilling from a depth of 20-30 m.
  • Samples of surface waters are also taken, for example, from puddles, ponds, etc.
  • Each of the water samples is placed in a glass flask.
  • step 1 normal hexane is added as an organic solvent to a glass flask with a sample of water.
  • the resulting mixture of water with a solvent is thoroughly mixed (step 2), for example, using an apparatus for shaking liquids, sedimented and then the obtained benzene extract with other arenas in the solvent is separated from water, placing this extract in a quartz cuvette (step 3).
  • the separated extract is frozen (step 4), placing the indicated quartz cuvette with the extract in a Dewar vessel with liquid nitrogen ( ⁇ 77 ° K), until formation of a crystalline solution.
  • Liquid hydrogen ⁇ 20 ° K can also be used for freezing.
  • the resulting frozen extract was examined in a fluorescence spectrophotometer.
  • a quartz cuvette with frozen extract is transferred to the Dewar vessel of the low-temperature attachment of this device (step 5).
  • the study of the frozen extract is carried out in a device with registration of a quasilinear spectrum (step 6).
  • a search feature of a gas deposit is the concentration of benzene in groundwater that exceeds the concentration of benzene in surface water (background concentration).
  • FIG. Figure 2 shows the quasilinear fluorescence spectrum of benzene in a normal hexane extract from an underground water sample of a gas reservoir.
  • the method allows to determine the presence of accumulations of shale gas in clay shales of Carboniferous age (Barnett formation) by very low concentrations of benzene (10 "6 mg / ml) in the OM of groundwater.
  • a direct study of an underground water sample avoids the errors in determining benzene, saves time and money, and also increases the reliability of identifying accumulations of shale gas by its small amounts using a highly sensitive, selective, rapid method of quasilinear fluorescence spectra without environmental risks.

Abstract

The hydrogeochemical method for determining accumulations of hydrocarbons comprises the following stages: taking samples of underground water, processing the samples taken with an organic solvent in order to produce an extract of organic compounds in said solvent, separating the extract produced from the aqueous medium, freezing the extract produced, for example with liquid nitrogen or liquid hydrogen, carrying out fine-structural spectral analysis of said frozen extract, with a quasi-linear spectrum of luminescence of benzene being recorded, and measuring the intensity of the analytical line of benzene in the spectrum, on the basis of which an opinion is formed regarding the presence of accumulations of hydrocarbons. According to the invention, samples of underground water are taken; samples of surface water are additionally taken; standard hexane is used as the solvent for each sample; the intensity of the analytical lines of benzene in the spectra of the samples of underground and surface water is compared; and, in the event that the intensity of the analytical lines of benzene in the spectra of the samples of underground water is exceeded, an opinion is formed regarding the presence of accumulations of shale gas. Such a method makes it possible to increase the reliability of identifying accumulations specifically of shale gas, to simplify prospecting technology and also to reduce economic and ecological risks.

Description

ГИДРОГЕОХИМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ СКОПЛЕНИЙ  HYDROGEOCHEMICAL METHOD FOR DETERMINING CLUSTERS
СЛАНЦЕВОГО ГАЗА  SHALE GAS
Область техники Technical field
Изобретение относится к органической нефтяной геологии и может быть использовано для прогноза скоплений сланцевого газа при проведении геологоразведочных работ в пределах локальных нефтегазоносных площадей без экологических рисков.  The invention relates to organic petroleum geology and can be used to predict the accumulation of shale gas during geological exploration within local oil and gas areas without environmental risks.
Предшествующий уровень техники State of the art
Известны способы поисков залежей углеводородов, основанные на исследовании проб подземных (пластовых) вод, представляющих собой вытяжки из водной среды смеси полиароматических углеводородов (аренов), а именно для прогноза углеводородных скоплений.  Known methods for the search for hydrocarbon deposits, based on the study of underground (formation) water samples, which are extracts from the aqueous medium of a mixture of polyaromatic hydrocarbons (arenas), namely, for the forecast of hydrocarbon accumulations.
Так в документе US 2767320 описан способ поисков залежей углеводородов, который заключается в определении количественного содержания ароматических углеводородов в пробах подземных вод методом спектрального УФ-анализа. Он предусматривает отделение органических от неорганических компонентов, затем разделение органических компонентов на фракции с целью отделения бензола от нафталина, т.е. осуществление множественных операций по отделению мешающих компонентов. Следующим этапом анализа является регистрация ультрафиолетового спектра. По наличию бензола в спектре судят о присутствии углеводородной залежи. Однако известный способ требует обязательного отделения нафталина, аналитический максимум которого маскирует максимум бензола, что приводит к потерям количественного содержания бензола и тем самым снижает достоверность полученных результатов.  So in the document US 2767320 describes a method of searching for hydrocarbon deposits, which consists in determining the quantitative content of aromatic hydrocarbons in groundwater samples by spectral UV analysis. It involves the separation of organic from inorganic components, then the separation of organic components into fractions in order to separate benzene from naphthalene, i.e. performing multiple operations to separate interfering components. The next step in the analysis is the registration of the ultraviolet spectrum. The presence of benzene in the spectrum judges the presence of a hydrocarbon deposit. However, the known method requires the mandatory separation of naphthalene, the analytical maximum of which masks the maximum of benzene, which leads to losses in the quantitative content of benzene and thereby reduces the reliability of the results.
Из документа SU 1695249 известен способ определения ароматических уг- леводородов в пластовых водах при поисках залежей углеводородов, включающий обработку проб растворителем-матрицей, замораживание экстракта аренов и смеси растворителя жидким азотом или жидким водородом с последующим тонкоструктурным люминесцентным анализом. В качестве растворителя-матрицы используют смесь нормального гексана и четыреххлористого углерода в массовом соотношении 1 : 1 с добавлением 0,33 мл аммиака. Однако данный способ не позволяет сделать однозначный вывод о наличии скоплений именно сланцевого газа. SU 1695249 discloses a method for determining aromatic hydrocarbons in formation waters when searching for hydrocarbon deposits, including treating samples with a solvent matrix, freezing the arenas extract and solvent mixture with liquid nitrogen or liquid hydrogen, followed by fine-structure luminescence analysis. As the matrix solvent, a mixture of normal hexane and carbon tetrachloride in a mass ratio of 1: 1 with the addition of 0.33 ml of ammonia is used. However, this method does not allow to make an unambiguous conclusion about the presence of accumulations of shale gas.
Известен также гидрохимический способ поисков залежей углеводородов по авторскому свидетельству SU 913316, основанный на спектральном определении количественного содержания бензола в подземных водах, согласно которому пробы подземной воды обрабатывают циклогексаном, одновременно со спектром бензола регистрируют квазилинейчатый спектр люминесценции нафталина, полученного циклогексанового экстракта и по количеству бензола и нафталина или нафталина судят о присутствии залежей углеводородов.  There is also a hydrochemical method for searching for hydrocarbon deposits according to the copyright certificate SU 913316, based on the spectral determination of the quantitative content of benzene in groundwater, according to which groundwater samples are treated with cyclohexane, simultaneously with the spectrum of benzene, the quasilinear luminescence spectrum of naphthalene, obtained cyclohexane extract and the amount of benzene and naphthalene or naphthalene judge the presence of hydrocarbon deposits.
Этот способ позволяет выявлять наличие залежей углеводородов по малым количествам в экстракте одновременно нафталина и бензола, которые являются прямымм гидрохимическими показателями нефтегазоносности. Однако, как и указанный выше способ, данный способ не позволяет достоверно определить наличие скоплений именно сланцевого газа.  This method allows to detect the presence of hydrocarbon deposits in small quantities in the extract at the same time naphthalene and benzene, which are direct hydrochemical indicators of oil and gas. However, like the above method, this method does not allow to reliably determine the presence of accumulations of shale gas.
Задачами изобретения является повышение достоверности выявления скоплений сланцевого газа, упрощение технологии их поисков, а также снижение экологических рисков.  The objectives of the invention is to increase the reliability of identifying accumulations of shale gas, simplifying the technology of their search, as well as reducing environmental risks.
Раскрытие изобретения Disclosure of invention
Указанные задачи решены в гидрогеохимическом способе определения скоплений углеводородов, включающим этапы, на которых отбирают пробы подземных вод, обрабатывают взятые пробы органическим растворителем, получая экстракт органических соединений в этом растворителе, отделяют полученный экстракт от водной среды; полученный экстракт замораживают; осуществляют тонкоструктурный спектральный анализ указанного замороженного экстракта, регистрируя квазилинейчатый спектр люминесценции бензола; измеряют интенсивность аналитической линии бензола в спектре, по которой судят о присутствии скоплений углеводородов.  These problems are solved in the hydrogeochemical method for determining accumulations of hydrocarbons, including the steps at which groundwater samples are taken, the samples taken are treated with an organic solvent, obtaining an extract of organic compounds in this solvent, the obtained extract is separated from the aqueous medium; the resulting extract is frozen; performing a fine-structured spectral analysis of the indicated frozen extract by recording the quasilinear luminescence spectrum of benzene; measure the intensity of the analytical line of benzene in the spectrum, which is used to judge the presence of accumulations of hydrocarbons.
Согласно изобретению дополнительно отбирают пробы поверхностных вод; используют в качестве растворителя для каждой пробы нормальный гексан; сравнивают интенсивности аналитических линий бензола в спектрах проб подземных и поверхностных вод и в случае превышения интенсивности аналитических линий бензола в спектрах проб подземных вод судят о присутствии скоплений сланцевого газа. Преимущественно экстракт органических соединений в нормальном гексане замораживают с использованием жидкого азота или жидкого водорода. According to the invention, surface water samples are additionally taken; normal hexane is used as a solvent for each sample; the intensities of the analytical lines of benzene in the spectra of groundwater and surface water samples are compared, and if the intensities of the analytical lines of benzene in the spectra of groundwater samples are exceeded, the presence of shale gas accumulations is judged. Advantageously, the extract of organic compounds in normal hexane is frozen using liquid nitrogen or liquid hydrogen.
Способ согласно изобретению позволяет избежать ошибок определения бензола в органическом веществе (ОВ) подземных и поверхностных вод, который является прямым (локальным) гидрохимическим показателем газоносности, экономит время и средства, а также повышает достоверность выявления скоплений сланцевого газа по малым его количествам в пробах подземных вод.  The method according to the invention allows to avoid errors in the determination of benzene in organic matter (OM) of ground and surface waters, which is a direct (local) hydrochemical indicator of gas content, saves time and money, and also increases the reliability of detecting accumulations of shale gas by its small amounts in groundwater samples .
Особенности и преимущества настоящего изобретения будут более понятны из дальнейшего подробного описания со ссылкой на чертежи.  Features and advantages of the present invention will be more apparent from the following detailed description with reference to the drawings.
Краткое описание чертежей Brief Description of the Drawings
На фиг. 1 показана схема выполнения операций с пробами воды в способе согласно настоящему изобретению;  In FIG. 1 shows a flow chart of operations with water samples in a method according to the present invention;
на фиг. 2 - квазилинейчатый спектр флуоресценции бензола в нормальном гексановом экстракте из пробы подземной воды при наличии газового скопления.  in FIG. 2 - quasilinear fluorescence spectrum of benzene in a normal hexane extract from an underground water sample in the presence of gas accumulation.
Вариант осуществления изобретения An embodiment of the invention
В пределах исследуемой нефтегазоносной площади отбирают пробы подземных вод в нескольких местах. Пробы подземных вод отбирают, например, с использованием шнекового бурения с глубины 20-30 м.  Within the studied oil and gas bearing area, groundwater samples are taken in several places. Groundwater samples are taken, for example, using auger drilling from a depth of 20-30 m.
Также отбирают пробы поверхностных вод, например, из луж, водоемов и т. д.  Samples of surface waters are also taken, for example, from puddles, ponds, etc.
Каждую из проб воды помещают в стеклянную колбу.  Each of the water samples is placed in a glass flask.
Далее с каждой из проб воды (как подземногй, так и поверхностной) осуществляют следующие действия, схематично показанные на фиг. 1.  Then, with each of the water samples (both underground and surface), the following actions are carried out, schematically shown in FIG. one.
На этапе 1 в стеклянную колбу с пробой воды добавляют в качестве органического растворителя нормальный гексан. Полученную смесь воды с растворителем тщательно перемешивают (этап 2), например, с помощью аппарата для встряхивания жидкостей, отстаивают и затем отделяют от воды полученный экстракт бензола с другими аренами в растворителе, помещая этот экстракт в кварцевую кювету (этап 3).  In step 1, normal hexane is added as an organic solvent to a glass flask with a sample of water. The resulting mixture of water with a solvent is thoroughly mixed (step 2), for example, using an apparatus for shaking liquids, sedimented and then the obtained benzene extract with other arenas in the solvent is separated from water, placing this extract in a quartz cuvette (step 3).
Затем отделенный экстракт замораживают (этап 4), помещая указанную кварцевую кювету с экстрактом в сосуд Дьюара с жидким азотом (~77°К), до образования кристаллического раствора. Для замораживания также может быть использован жидкий водород (~20°К). Then, the separated extract is frozen (step 4), placing the indicated quartz cuvette with the extract in a Dewar vessel with liquid nitrogen (~ 77 ° K), until formation of a crystalline solution. Liquid hydrogen (~ 20 ° K) can also be used for freezing.
Полученный замороженный экстракт исследуют в флуоресцентном спектрофотометре.  The resulting frozen extract was examined in a fluorescence spectrophotometer.
При использовании флуоресцентного спектрофотометра, например, F7000 фирмы Hitachi с низкотемпературной приставкой кварцевую кювету с замороженным экстрактом переносят в сосуд Дьюара низкотемпературной приставки этого прибора (этап 5).  When using a fluorescence spectrophotometer, for example, a Hitachi F7000 with a low-temperature attachment, a quartz cuvette with frozen extract is transferred to the Dewar vessel of the low-temperature attachment of this device (step 5).
Исследование замороженного экстракта проводят в приборе с регистрацией квазилинейчатого спектра (этап 6).  The study of the frozen extract is carried out in a device with registration of a quasilinear spectrum (step 6).
Регистрация спектра бензола в комплексе с другими аренами производится при возбуждении бензола светом с длиной волны λΒ036. ~ 255 нм с выходом аналитического максимума флуоресценции бензола на Β6ιχ 292 нм. The spectrum of benzene in complex with other arenas is recorded upon excitation of benzene with light with a wavelength of λ Β 03 6. ~ 255 nm with the yield of the analytical maximum of benzene fluorescence at ι6 ιχ - 292 nm.
Поисковым признаком газовой залежи является концентрация бензола в подземных водах, превышающая концентрацию бензола в поверхностных водах (фоновую концентрацию).  A search feature of a gas deposit is the concentration of benzene in groundwater that exceeds the concentration of benzene in surface water (background concentration).
Спектры всех проб (поверхностных и подземных вод) регистрируют в одних и тех же условиях для получения сопоставимых результатов.  The spectra of all samples (surface and groundwater) are recorded under the same conditions to obtain comparable results.
На фиг. 2 показан квазилинейчатый спектр флуоресценции бензола в нормальном гексановом экстракте из пробы подземной воды газовой залежи.  In FIG. Figure 2 shows the quasilinear fluorescence spectrum of benzene in a normal hexane extract from an underground water sample of a gas reservoir.
Пунктиром показан квазилинейчатый спектр флуоресценции спектрально чистого нормального гексана, аналитический максимум которого (Хвък = 255 нм) отстоит от максимума аналитической линии бензола (λΒΜΧ = 292 нм) на 37 нм, в связи с чем максимум аналитической линии бензола не маскируется. The dashed line shows the fluorescence spectrum quasilinear spectrally pure normal hexane, analytical whose maximum (X vk = 255 nm) is spaced from the highest analytical line benzene (λ ΒΜΧ = 292 nm) at 37 nm, and therefore the maximum benzene analytical line is not masked.
Способ позволяет определять наличие скоплений сланцевого газа в глинистых сланцах каменноугольного возраста (формация Барнетт) по очень малым концентрациям бензола (10"6 мг/мл) в ОВ подземных вод. The method allows to determine the presence of accumulations of shale gas in clay shales of Carboniferous age (Barnett formation) by very low concentrations of benzene (10 "6 mg / ml) in the OM of groundwater.
Непосредственное исследование пробы подземной воды позволяет избежать ошибок определения бензола, экономит время и средства, а также повышает достоверность выявления скоплений сланцевого газа по малым его количествам высокочувствительным, селективным, экспрессным методом квазилинейчатых спектров флуоресценции без экологических рисков.  A direct study of an underground water sample avoids the errors in determining benzene, saves time and money, and also increases the reliability of identifying accumulations of shale gas by its small amounts using a highly sensitive, selective, rapid method of quasilinear fluorescence spectra without environmental risks.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Гидрогеохимический способ определения скоплений углеводородов, включающий этапы, на которых: 1. A hydrogeochemical method for determining accumulations of hydrocarbons, comprising the steps of:
- отбирают пробы подземных вод,  - take samples of groundwater,
- обрабатывают взятые пробы органическим растворителем, получая экстракт органических соединений в этом растворителе,  - process the samples taken with an organic solvent, obtaining an extract of organic compounds in this solvent,
- отделяют полученный экстракт от водной среды;  - separate the obtained extract from the aqueous medium;
- полученный экстракт замораживают;  - the resulting extract is frozen;
- осуществляют тонкоструктурный спектральный анализ указанного замороженного экстракта, регистрируя квазилинейчатый спектр люминесценции бензола;  - carry out a fine-structured spectral analysis of the specified frozen extract, registering a quasilinear luminescence spectrum of benzene;
- измеряют интенсивность аналитической линии бензола в спектре, по которой судят о присутствии скоплений углеводородов,  - measure the intensity of the analytical line of benzene in the spectrum, which is used to judge the presence of accumulations of hydrocarbons,
отличающийся тем, что  characterized in that
- дополнительно отбирают пробы поверхностных вод;  - additionally take samples of surface water;
- используют в качестве растворителя для каждой пробы нормальный гексан;  - use normal hexane as a solvent for each sample;
- сравнивают интенсивности аналитических линий бензола в спектрах проб подземных и поверхностных вод;  - compare the intensities of the analytical lines of benzene in the spectra of samples of groundwater and surface water;
- в случае превышения интенсивности аналитических линий бензола в спектрах проб подземных вод судят о присутствии скоплений сланцевого газа.  - if the intensity of the analytical lines of benzene in the spectra of groundwater samples is exceeded, the presence of shale gas accumulations is judged.
2. Способ по п. 1 , отличающийся тем, что экстракт органических соединений в нормальном гексане замораживают с использованием жидкого азота или жидкого водорода.  2. The method according to p. 1, characterized in that the extract of organic compounds in normal hexane is frozen using liquid nitrogen or liquid hydrogen.
PCT/RU2012/000811 2012-10-08 2012-10-08 Hydrogeochemical method for determining accumulations of shale gas WO2014058332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000811 WO2014058332A1 (en) 2012-10-08 2012-10-08 Hydrogeochemical method for determining accumulations of shale gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000811 WO2014058332A1 (en) 2012-10-08 2012-10-08 Hydrogeochemical method for determining accumulations of shale gas

Publications (1)

Publication Number Publication Date
WO2014058332A1 true WO2014058332A1 (en) 2014-04-17

Family

ID=50477677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000811 WO2014058332A1 (en) 2012-10-08 2012-10-08 Hydrogeochemical method for determining accumulations of shale gas

Country Status (1)

Country Link
WO (1) WO2014058332A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767320A (en) * 1952-11-24 1956-10-16 Gulf Research Development Co Method of geochemical prospecting
SU1076853A1 (en) * 1982-04-16 1984-02-29 Туркменская Опытно-Методическая Экспедиция Hydrocarbon accumulation locating method
SU1449963A1 (en) * 1987-07-16 1989-01-07 Украинский научно-исследовательский институт природных газов Method of prospecting the hydrocarbon deposits in coal-bearing formations
SU1695249A1 (en) * 1988-02-22 1991-11-30 Московский Институт Нефти И Газа Им.И.М.Губкина Method of determining aromatic hydrocarbons in underground waters at hydrocarbon prospecting
US6943358B1 (en) * 2001-03-21 2005-09-13 The United States Of America As Represented By The Secretary Of The Navy Method for developing a calibration algorithm for quantifying the hydrocarbon content of aqueous media

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767320A (en) * 1952-11-24 1956-10-16 Gulf Research Development Co Method of geochemical prospecting
SU1076853A1 (en) * 1982-04-16 1984-02-29 Туркменская Опытно-Методическая Экспедиция Hydrocarbon accumulation locating method
SU1449963A1 (en) * 1987-07-16 1989-01-07 Украинский научно-исследовательский институт природных газов Method of prospecting the hydrocarbon deposits in coal-bearing formations
SU1695249A1 (en) * 1988-02-22 1991-11-30 Московский Институт Нефти И Газа Им.И.М.Губкина Method of determining aromatic hydrocarbons in underground waters at hydrocarbon prospecting
US6943358B1 (en) * 2001-03-21 2005-09-13 The United States Of America As Represented By The Secretary Of The Navy Method for developing a calibration algorithm for quantifying the hydrocarbon content of aqueous media

Similar Documents

Publication Publication Date Title
Munz Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications
Agrawal et al. Molecular characterization of kerogen and its implications for determining hydrocarbon potential, organic matter sources and thermal maturity in Marcellus Shale
Liu et al. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history
Kavanagh et al. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy
Carstea Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems
Mendoza et al. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill
Ryder Analysis of crude petroleum oils using fluorescence spectroscopy
US5686724A (en) Method for determining oil content of an underground formation using wet cuttings
Pozebon et al. Heavy metals contribution of non-aqueous fluids used in offshore oil drilling
Driskill et al. Monitoring polycyclic aromatic hydrocarbon (PAH) attenuation in Arctic waters using fluorescence spectroscopy
Liu et al. Fluorescence evidence of polar hydrocarbon interaction on mineral surfaces and implications to alteration of reservoir wettability
Permanyer et al. FTIR and SUVF spectroscopy as an alternative method in reservoir studies. Application to Western Mediterranean oils
US2767320A (en) Method of geochemical prospecting
Hou et al. Species identification and effects of aromatic hydrocarbons on the fluorescence spectra of different oil samples in seawater
Lambert A literature review of portable fluorescence-based oil-in-water monitors
van den Heuvel et al. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters
Geng et al. A comprehensive review on the excitation-emission matrix fluorescence spectroscopic characterization of petroleum-containing substances: principles, methods, and applications
Chen et al. UV Raman spectroscopy of hydrocarbon-bearing inclusions in rock salt from the Dongying sag, eastern China
Al-Tameemi et al. Photoluminescence spectroscopy of anthrathiophenes and benzonaphthothiophenes in Shpol'skii matrixes
Rose et al. Variation in riverine dissolved organic matter (DOM) optical quality during snowmelt-and rainfall-driven events in a forested wetland watershed
WO2014058332A1 (en) Hydrogeochemical method for determining accumulations of shale gas
Sherwood et al. Compound-specific stable isotope analysis of natural and produced hydrocarbon gases surrounding oil and gas operations
CN112082979B (en) Method for rapidly detecting petroleum hydrocarbon organic matters in underground water
SU1695249A1 (en) Method of determining aromatic hydrocarbons in underground waters at hydrocarbon prospecting
Jun et al. Characterization Techniques of Dissolved Organic Pollutants in Wastewater by Three-Dimensional Fluorescent Spectroscopy and and Its Application in Environmental Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12886177

Country of ref document: EP

Kind code of ref document: A1