WO2014058322A1 - Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues - Google Patents

Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues Download PDF

Info

Publication number
WO2014058322A1
WO2014058322A1 PCT/NO2012/000058 NO2012000058W WO2014058322A1 WO 2014058322 A1 WO2014058322 A1 WO 2014058322A1 NO 2012000058 W NO2012000058 W NO 2012000058W WO 2014058322 A1 WO2014058322 A1 WO 2014058322A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
rocks
nutrient
acid
production
Prior art date
Application number
PCT/NO2012/000058
Other languages
English (en)
Inventor
Harald Johansen
Öyvind BRANDVOLL.
Arne RÅHEIM
Ingo Machenbach
Original Assignee
Institutt For Energiteknikk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institutt For Energiteknikk filed Critical Institutt For Energiteknikk
Priority to PCT/NO2012/000058 priority Critical patent/WO2014058322A1/fr
Priority to US14/051,645 priority patent/US20140073011A1/en
Publication of WO2014058322A1 publication Critical patent/WO2014058322A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • Microalgae, and other phototrophic microorganisms are a diverse group of microorganisms that reside in marine and freshwater habitats.
  • the key process for microalgae growth is photosynthesis, a process that uses light energy to convert C0 2, water and nutrients into hydrocarbons, while oxygen is being discharged.
  • Microalgae have been investigated as energy source for several decades with the US DOE's Aquatic Species Program (1978-1996) and the Japanese RITE Program (1990-2000) being the most prominent research investments.
  • the driving force behind most of this research is the high biomass yield from microalgae compared to terrestrial feedstock. Biomass yield from microalgae ranges 7-31 times higher than oil palm, the best oil yielding terrestrial plant (Kent and Andrews, 2007).
  • their naturally high lipid content (20-50% of dry weight) renders cultivation of microalgae interesting as source for biofuel production.
  • bio- energy production from algae culture has not gained a competitive edge so far, simply because the production cost at present is too high.
  • Micro-algal biomass contains approximately 50% carbon by dry weight (Christi, 2007) depending on the species. Since phototrophic algae species use C0 2 as their sole carbon source, production of 100 tons of algal biomass fixes roughly 183 tons of carbon dioxide. Most microalgae can tolerate high levels of C0 2 , typically up to 150 000 ppmv (Bilanovic et al., 2009). However, the pH-decreasing effect of C0 2 dissolution must be buffered as most species achieve highest productivity at neutral pH.
  • Microalgae are grown in an aqueous growth medium that provides the inorganic elements constituting the algal cell. Carbon, nitrogen and phosphorous are the most important nutrients (macronutrients) for algae cultivation. Diatom algae require silica as macronutrient to build their outer cell walls. Other (potentially) important nutrients include calcium, magnesium, sodium, potassium, and sulphur. Micronutrients, trace elements required by plants and animals in very small quantities, include manganese, copper, zinc, cobalt, and molybdenum (Horn and Goldman 1994). The growth medium must contain nutrients in significant excess.
  • phosphorus -normally added as phosphate- forms complexes with metal ions, rendering part of the added phosphorous unavailable to uptake by algae cells.
  • fast-growing species prefer ammonium over nitrate as nitrogen source, some microalgae can fix nitrogen in the form of NO x (Brennan and Owende, 2010).
  • NO x Bacillus and Owende, 2010
  • the growth medium In order to minimize nutrient consumption, the growth medium must be recycled efficiently and nutrients consumed by algae growth must be replenished.
  • Today, profitable production of microalgae raw material used in refined products of the medicine, pharmacy, dietary supplement and cosmetics industries, is very profitable. Raw materials used as ingredients in fish and animal feeds may also in some cases be profitable.
  • An algae plant of this size would yield about 550 000 tons of dry algae mass per year.
  • Minimal nutrient consumption estimated based on an average elemental algae composition determined by ECN (www.ecn.nl/phyllis) yields: Table 1. Annual nutrient consumption for binding 1 Mt C0 2 in algae.
  • Figure 6 describes a process where carbon nutrients is obtained from carbonate salts, directly form crushed carbonate rocks in seawater slurry, with C0 2 only from air.
  • the resulting liquid is adjusted, by mixing in, lacking ingredients from rocks of suitable composition dissolved in nitric acid, or other mineral acid, to achieve an optimal nutrient composition tailor-made for the growth of different algae species.
  • the naturally occurring rocks are selected as to contain a convenient mixture of minerals in relation to the algae nutrition needs, which may differ from algae specie to algae specie .
  • the naturally occurring rocks may include apatite containing rocks typically selected among plagifoyaite, nepheline-syenite and carbonatite, or any combination of same.
  • a combination of rock types, compositions and acid(s) for their dissolving are selected so as to tailor the blend of minerals for a particular type of algae.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cultivation Of Seaweed (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne un procédé pour la production d'une source nutritive aqueuse pour des fermes aquacoles de macro et micro algues et la source nutritive ainsi formée. Des roches contenant du phosphore sont dissoutes dans au moins un acide minéral pour donner une solution contenant un mélange d'ions des minéraux présents dans les roches et dans l'acide sous une forme assimilable par les algues et du carbone est ajouté sous la forme de C02, d'acide carbonique, ou de sels de carbonate. L'invention concerne également un procédé pour approvisionner une ferme aquacole d'algues avec ladite source nutritive.
PCT/NO2012/000058 2011-04-11 2012-10-11 Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues WO2014058322A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/NO2012/000058 WO2014058322A1 (fr) 2012-10-11 2012-10-11 Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues
US14/051,645 US20140073011A1 (en) 2011-04-11 2013-10-11 Method for the production of aqueous nutrient source for algae aquaculture farming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NO2012/000058 WO2014058322A1 (fr) 2012-10-11 2012-10-11 Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues

Publications (1)

Publication Number Publication Date
WO2014058322A1 true WO2014058322A1 (fr) 2014-04-17

Family

ID=47172853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2012/000058 WO2014058322A1 (fr) 2011-04-11 2012-10-11 Procédé pour la production de source nutritive aqueuse pour des fermes aquacoles d'algues

Country Status (1)

Country Link
WO (1) WO2014058322A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153282A (zh) * 2015-09-28 2015-12-16 华南理工大学 一种十肽及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181622A1 (fr) * 1984-11-09 1986-05-21 Kei Mori Dispositif de culture d'algues
SU1428746A1 (ru) * 1985-07-08 1988-10-07 Институт химии и технологии редких элементов и минерального сырья Кольского филиала им.С.М.Кирова АН СССР Способ комплексной переработки апатитонефелиновых руд
WO2002024583A1 (fr) * 2000-09-25 2002-03-28 Söll Holding GmbH Culture microbiologique servant a amorcer des processus microbiologiques dans des eaux
US6391238B1 (en) * 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
JP2009011197A (ja) * 2007-07-02 2009-01-22 Univ Of Miyazaki 焼却灰を利用する光合成生物の培養培地およびその製造方法、並びに光合成生物の培養方法
WO2011063129A2 (fr) 2009-11-19 2011-05-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Bioréacteur en accordéon
US20120053355A1 (en) 2009-05-11 2012-03-01 Korea Institute Of Industrial Technology Method for Producing Biofuel Using Marine Algae-Derived Galactan
EP2430175A1 (fr) 2009-05-11 2012-03-21 Phycal Llc Production de biocarburant à partir d'algues

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181622A1 (fr) * 1984-11-09 1986-05-21 Kei Mori Dispositif de culture d'algues
SU1428746A1 (ru) * 1985-07-08 1988-10-07 Институт химии и технологии редких элементов и минерального сырья Кольского филиала им.С.М.Кирова АН СССР Способ комплексной переработки апатитонефелиновых руд
US6391238B1 (en) * 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
WO2002024583A1 (fr) * 2000-09-25 2002-03-28 Söll Holding GmbH Culture microbiologique servant a amorcer des processus microbiologiques dans des eaux
JP2009011197A (ja) * 2007-07-02 2009-01-22 Univ Of Miyazaki 焼却灰を利用する光合成生物の培養培地およびその製造方法、並びに光合成生物の培養方法
US20120053355A1 (en) 2009-05-11 2012-03-01 Korea Institute Of Industrial Technology Method for Producing Biofuel Using Marine Algae-Derived Galactan
EP2430175A1 (fr) 2009-05-11 2012-03-21 Phycal Llc Production de biocarburant à partir d'algues
WO2011063129A2 (fr) 2009-11-19 2011-05-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Bioréacteur en accordéon

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Else-Ragnhild Neumann: Petrology of the plutonic rocks, in Paleorift systems with emphasis on the Permian Oslo rift (1977): A review and guide to excursions", 1978, pages: 337
ACKMAN R. G.; JANGAARD P. M.; HOYLE R. J.; BROCKERHOFF H.: "Origin of marine fatty acids. . Analysis of the fatty acids produced by the diatom Skeletonema costatum", J. FISH, 1964
BILANOVIC D.; ANDARGATCHEW A.; KROEGER T.; SHELEF G.: "Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - response surface methodology analysis", ENERGY CONV. MANAGEM., vol. 50, no. 2, 2009, pages 262 - 267, XP025684583, DOI: doi:10.1016/j.enconman.2008.09.024
CHRISTI Y.: "Biodiesel from microalgae", BIOTECHNOL. ADV., vol. 25, 2007, pages 294 - 306
HORNE A. J.; GOLDMAN C. R.: "Limnology", 1994, MCGRAW HILL INC.
KENT M. S.; ANDREWS K. M.: "Sandia report SAND2006-7221", 2007, SANDIA NATIONAL LABORATORIES, article "Biological research survey for the efficient conversion of biomass to bio-fuels"
RES. BOARD CANADA, vol. 21, pages 747 - 756

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153282A (zh) * 2015-09-28 2015-12-16 华南理工大学 一种十肽及其应用
CN105153282B (zh) * 2015-09-28 2018-02-23 华南理工大学 一种十肽及其应用

Similar Documents

Publication Publication Date Title
Chew et al. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review
Markou et al. Microalgal and cyanobacterial cultivation: The supply of nutrients
Zuccaro et al. Microalgae cultivation systems
Mobin et al. Biofuel production from algae utilizing wastewater
Morillas-España et al. Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges
Barbera et al. Nutrients recovery and recycling in algae processing for biofuels production
Slocombe et al. Microalgal production for biomass and high-value products
Zhou et al. Microalgae cultivation and photobioreactor design
Rehman et al. Impact of cultivation conditions on microalgae biomass productivity and lipid content
Choi et al. Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries: a review
US10900013B2 (en) Systems and methods of producing compositions from the nutrients recovered from waste streams
Davis et al. Growth of mono-and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source
Veerabadhran et al. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts
Sukumaran et al. Potential of fresh POME as a growth medium in mass production of Arthrospira platensis
Sukumaran et al. Formulation of cost-effective medium using urea as a nitrogen source for Arthrospira platensis cultivation under real environment
EL-SAYED et al. Outdoor cultivation of Spirulina platensis for mass production
Shaikh et al. Effect of nutrients deficiency on biofilm formation and single cell protein production with a purple non-sulphur bacteria enriched culture
Markou et al. Nutrient recycling for sustainable production of algal biofuels
Sow et al. Cultivation of Spirulina: An innovative approach to boost up agricultural productivity
Chakraborty et al. Transition from synthetic to alternative media for microalgae cultivation: A critical review
Lim et al. Use of an extremophile red microalga (Galdieria sulphuraria) to produce phycocyanin from tangerine peel waste
Wang et al. Cultivation of microalgae on agricultural wastewater for recycling energy, water, and fertilizer nutrients
US20140073011A1 (en) Method for the production of aqueous nutrient source for algae aquaculture farming
Tao et al. Microalgae production in human urine: Fundamentals, opportunities, and perspectives
Markou Overview of microalgal cultivation, biomass processing and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12784353

Country of ref document: EP

Kind code of ref document: A1