WO2014058027A1 - Ion generating element and ion generating apparatus - Google Patents

Ion generating element and ion generating apparatus Download PDF

Info

Publication number
WO2014058027A1
WO2014058027A1 PCT/JP2013/077635 JP2013077635W WO2014058027A1 WO 2014058027 A1 WO2014058027 A1 WO 2014058027A1 JP 2013077635 W JP2013077635 W JP 2013077635W WO 2014058027 A1 WO2014058027 A1 WO 2014058027A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
needle
ion
duct
electrodes
Prior art date
Application number
PCT/JP2013/077635
Other languages
French (fr)
Japanese (ja)
Inventor
世古口 美徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014058027A1 publication Critical patent/WO2014058027A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to an ion generation element and an ion generation apparatus, and more particularly to an ion generation element and an ion generation apparatus that generate ions by discharge.
  • an ion generating element using a discharge phenomenon it is known that a sharp portion of an electrode for generating discharge is consumed due to discharge. With respect to the consumption of the electrode, it is possible to reduce the consumption of the electrode by appropriately selecting the shape, material, discharge intensity and the like of the electrode. Thus, it is considered possible to configure the electrode so that it can withstand actual use.
  • Japanese Patent Application Laid-Open No. 2006-210311 is a technique that takes into account the wear due to discharge.
  • the ion generator disclosed in this publication has a needle electrode to which a high voltage is applied, and a ground electrode having leg portions located on both sides in the radial direction of the needle electrode. It is described in the above publication that this configuration stabilizes the amount of ion generation because the wire diameter of the needle electrode does not change with time.
  • the tip of the needle electrode may be consumed by discharge, and in that case, the ion generation performance may be affected.
  • this ion generating element is incorporated in an electric device and used, there is no way for the user to confirm the situation. For this reason, it is difficult to estimate how long the ion generation performance is maintained, and the control is difficult.
  • the present invention has been made in view of the above problems, and its object is to easily control the duration of ion generation and improve the uniformity of ion distribution in the air path. It is providing a generating element and an ion generator.
  • the ion generating element of the present invention includes a support, a first needle electrode, and a second needle electrode.
  • the support portion has an opening that forms at least a part of the air passage.
  • the 1st acicular electrode has the 1st front-end
  • the second needle-like electrode is supported by the support portion, is located on an extension line in the direction in which the first needle-like electrode extends, and has a second tip portion facing away from the first tip portion within the opening.
  • the first and second acicular electrodes are configured to generate ions by generating a discharge between the first and second acicular electrodes, and the first and second acicular electrodes are open. It is arranged along the center line of the part.
  • the second needle-like electrode is disposed on the extension line of the first needle-like electrode, and the first tip portion and the second needle-like electrode of the first needle-like electrode are arranged.
  • the first and second needle-shaped electrodes are consumed due to the discharge generated between the first and second needle-shaped electrodes, and the distance between the first and second tip portions is increased and discharged. Is configured to stop.
  • the period in which ion generation performance is maintained can be easily controlled by adjusting the space
  • first and second needle-like electrodes are arranged along the center line of the opening, it is easy to make the ion distribution uniform with respect to the air path.
  • the ions are more ionized than when the first and second needle-like electrodes are arranged away from the center line. Becomes difficult to be taken into the wall surface of the air passage.
  • the diameter of the first needle electrode is larger than the diameter of the second needle electrode. Therefore, it is possible to suppress discharge from the outer peripheral portion other than the first tip portion of the first needle-like electrode having a large diameter.
  • the first and second needle-shaped electrodes are consumed by the discharge generated between the first and second needle-shaped electrodes, so that the distance between the first and second tip portions is increased.
  • the discharge is stopped. Thereby, the period in which the ion generation performance is maintained can be easily controlled by adjusting the distance between the first and second tip portions.
  • the diameter of the first needle electrode is 0.1 mm or more and 0.4 mm or less.
  • An ion generating apparatus includes any one of the above-described ion generating elements, a detection unit for detecting the presence or absence of discharge generated in the ion generation element, and an electrode in response to a result of determining that there is no discharge in the detection unit. And a display unit for displaying replacement.
  • the ion generation apparatus of the present invention since the ion generation element is provided, it is easy to control the period during which the ion generation performance is maintained, and the uniformity of the ion distribution in the air path is improved. An ion generator that can be made to be obtained can be obtained. Moreover, since the display of electrode replacement appears on the display unit, the user can replace the electrode at an appropriate time.
  • an ion generating element and an ion generating apparatus that can easily control the period during which ion generation performance is maintained and can improve the uniformity of ion distribution in the air path. Can be obtained.
  • FIG. 2 is a cross-sectional view seen from the direction of arrows II-II in FIG. It is a top view which shows roughly the structure of the modification of the ion generating element in one embodiment of this invention.
  • FIG. 4 is a cross-sectional view seen from the direction of arrows IV-IV in FIG. 3. It is sectional drawing which shows the structure of the ion generator which has an ion generating element which concerns on one embodiment of this invention.
  • FIG. 6 is a cross-sectional view seen from the direction of arrows VI-VI in FIG. 5. It is sectional drawing seen from the VII-VII line arrow direction of FIG.
  • ion generating element 10 of the present embodiment mainly includes frame body (supporting portion) 1, first needle-like electrode 2, and second needle-like electrode 3.
  • the frame body 1 is formed with a through hole (opening) 1a at the center thereof. This through hole 1a constitutes at least a part of the air passage.
  • the first needle-like electrode 2 is supported by the frame 1 and has a distal end portion 2a located in the through hole 1a.
  • the 2nd acicular electrode 3 has the front-end
  • the second needle-like electrode 3 is located on an extension line in the extending direction of the first needle-like electrode 2 (one-dot chain line AA in the figure) and extends along the extension line AA.
  • the tip portion 3a of the second needle electrode 3 is opposed to the first tip portion 2a of the first needle electrode 2 in the through hole 1a.
  • the first and second needle-like electrodes 2 and 3 are configured to generate ions by generating a discharge between the first and second needle-like electrodes 2 and 3. Both the first and second needle-like electrodes 2 and 3 are arranged along the center line AA of the through hole 1a. That is, the center line AA of the through hole 1a and the extension line AA of the first and second needle electrodes are the same straight line.
  • the center line AA of the through hole 1a is a bisector that bisects the through hole 1a when the through hole 1a is viewed from directly above the through direction of the through hole 1a as shown in FIG. . Therefore, by the center line AA, the left side portion of the frame body 1 in FIG. 1 is equally divided into the dimension L1 portion, and the right side portion of the frame body 1 in FIG. 1 is equally divided into the dimension L2 portion. Yes.
  • the dimension L1 is equal to the dimension L2.
  • the total length of the left side portion of the frame body 1 and the total length of the right side portion are preferably the same, but may be different from each other.
  • the first and second needle-like electrodes 2 and 3 extend to the tip portions 2a and 3a while maintaining substantially the same diameters D1 and D2, and have a cylindrical shape with a minute diameter. For this reason, each of the front-end
  • One of the first and second acicular electrodes 2 and 3 is a discharge electrode to which a positive or negative high voltage is applied, for example, and the other is an induction electrode to which a zero potential is applied, for example.
  • the distance (distance between electrodes) D between the tip 2a of the first needle electrode 2 and the tip 3a of the second needle electrode 3 is preferably 15 mm or more and 200 mm or less. As will be described later, the interelectrode distance D is particularly preferably 80 mm. Moreover, it is preferable that each of the diameter of the 1st and 2nd acicular electrodes 2 and 3 is 0.1 mm or more and 0.4 mm or less.
  • the diameter D1 of the first needle electrode 2 and the diameter D2 of the second needle electrode 3 shown in FIGS. 1 and 2 are the same. However, as shown in FIGS. 3 and 4, the diameter D1 of the first needle-like electrode 2 and the diameter D2 of the second needle-like electrode 3 may be different from each other. For example, the diameter D1 of the first needle electrode 2 may be larger than the diameter D2 of the second needle electrode 3.
  • ion generation apparatus 100 includes ion generation element 10, ion sensor (detection unit) 101, housing 110, and first and second ducts 117 and 118. And the blowing cylinders 113 and 114 and the air blowing mechanism (the impellers 40 and 41 and the motor 30).
  • the casing 110 has an upper casing 111 and a lower casing 112 that are combined with each other, and has a substantially rectangular parallelepiped shape.
  • the upper housing 111 and the lower housing 112 are engaged with each other by a snap fit member and are detachably combined.
  • the upper casing 111 has two fitting holes in the upper part.
  • the blowing cylinder 113 is detachably fitted in one of the two fitting holes.
  • the blowing cylinder 114 is detachably fitted into the other fitting hole of the two fitting holes.
  • the blowing cylinders 113 and 114 have a tapered outer shape in the longitudinal section.
  • the upper end of the blowing cylinder 113 is the outlet 113a.
  • a protective net 115 is arranged so as to cover the lower end of the blowing cylinder 113.
  • the upper end of the blowout cylinder 114 is the blowout outlet 114a.
  • a protective net 116 is arranged so as to cover the lower end of the blowing cylinder 114.
  • the protective nets 115 and 116 are provided to prevent foreign objects such as fingers from being inserted from the outside.
  • the lower housing 112 has two suction ports 112a and 112b on the side.
  • An impeller 40 is disposed in the lower housing 112 so as to face one of the suction ports 112a.
  • An impeller 41 is disposed in the lower housing 112 so as to face the other suction port 112b.
  • the impellers 40 and 41 are multi-blade impellers having a plurality of blades whose rotational center side is displaced in the rotation direction with respect to the outer edge.
  • the impellers 40 and 41 are cylindrical sirocco impellers.
  • the impellers 40 and 41 have a bearing plate at one end. A shaft hole is provided in the center of the bearing plate. The output shaft of the motor 30 is attached to this shaft hole.
  • the impellers 40 and 41 have through holes on the surfaces facing the suction ports 112a and 112b.
  • the impellers 40 and 41 are configured so that a gas such as air sucked from the through hole into the central cavity is discharged from between the blades of the outer peripheral portion.
  • the impellers 40 and 41 and the motor 30 constitute a blower mechanism.
  • the ion generator 100 In order to distribute separately the gas discharged from the impeller 40 and the gas discharged from the impeller 41, the ion generator 100 has two flow paths.
  • the first flow path is a flow path of the gas sucked from the suction port 112a and released from the impeller 40, and is constituted by the first duct 117. That is, the first duct 117 constitutes a first flow path through which a part of the gas blown by the blower mechanism flows.
  • the upper part of the first duct 117 has a cylindrical outer shape that is rectangular in plan view and extends in the vertical direction.
  • the lower portion of the first duct 117 has a cylindrical outer shape that is substantially circular in a side view and surrounds the periphery of the impeller 40 along the outer shape of the impeller 40.
  • the first duct 117 has an opening facing the lower end of the blowing cylinder 113 at the upper end.
  • a protection net 115 is attached to the upper end of the first duct 117 so as to close the opening.
  • the opening at the upper end of the first duct 117 is completely covered by the protective net 115.
  • the second flow path is a flow path for the gas sucked from the suction port 112b and discharged from the impeller 41, and is constituted by the second duct 118. That is, the 2nd duct 118 comprises the 2nd flow path through which the remainder of the gas ventilated by the ventilation mechanism distribute
  • the second duct 118 is located adjacent to the first duct 117.
  • the upper part of the second duct 118 has a cylindrical outer shape that is rectangular in plan view and extends in the vertical direction.
  • the lower part of the second duct 118 has a cylindrical outer shape that is substantially circular in a side view so as to surround the periphery of the impeller 41 along the outer shape of the impeller 41.
  • the second duct 118 has an opening at the upper end facing the lower end of the blowing cylinder 114.
  • a protection net 116 is attached to the upper end of the second duct 118 so as to close the opening.
  • the opening at the upper end of the second duct 118 is completely covered by the protective net 116.
  • the ion generator 100 has the ion generating element 10 that is detachably attached to the first duct 117 and the second duct 118.
  • Ion generation element 10 includes, for example, positive ion generation unit 120 and negative ion generation unit 130.
  • the ion generating element 10 mainly has a frame (supporting portion) 1, a first needle electrode 2, and a second needle electrode 3.
  • Two through holes (openings) 1a are formed in the frame 1.
  • Each of the two through holes 1a constitutes at least a part of the air passage.
  • One of the two through holes 1a corresponds to the positive ion generator 120, and the other corresponds to the negative ion generator 130.
  • the first needle-like electrode 2 has a tip 2a that is supported by the frame 1 and located in the through hole 1a.
  • the 2nd acicular electrode 3 has the front-end
  • the second needle-like electrode 3 is located on an extension line in the extending direction of the first needle-like electrode 2 and extends along the extension line.
  • the tip portion 3a of the second needle electrode 3 is opposed to the first tip portion 2a of the first needle electrode 2 in the through hole 1a.
  • the first and second needle-like electrodes 2 and 3 are configured to generate ions by generating a discharge between the first and second needle-like electrodes 2 and 3. Both the first and second needle-like electrodes 2 and 3 are arranged along the center line of the through hole 1a.
  • Each first needle electrode 2 is arranged so that the extension line of the first needle electrode 2 in the positive ion generator 120 and the extension line of the first needle electrode 2 in the negative ion generator 130 are parallel to each other. Has been.
  • the through-hole 1a of the rectangular parallelepiped positive ion generator 120 and the through-hole 1a of the rectangular parallelepiped negative ion generator 130 are arranged in parallel.
  • a predetermined gap 1 b is provided between the through hole 1 a of the positive ion generator 120 and the through hole 1 a of the negative ion generator 130.
  • the skeleton of the ion generating element 10 is composed of a frame 1 made of a resin molded product.
  • the first needle electrode 2 of the positive ion generator 120 is provided so as to penetrate the first electrode substrate 141.
  • the distal end portion 2a of the first needle-like electrode 2 protruding to the one main surface side of the first electrode substrate 141 passes through the frame body 1 and is located in the opening 1a.
  • the base portion of the first needle electrode 2 protruding to the other main surface side of the first electrode substrate 141 is electrically connected to the first connector 184 provided on the other main surface of the first electrode substrate 141. It is connected.
  • the first electrode substrate 141 and the first connector 184 are accommodated in the cavity at the other end of the frame body 1.
  • the first needle electrode 2 of the negative ion generator 130 is provided so as to penetrate the second electrode substrate 171.
  • the distal end portion 2a of the first needle-like electrode 2 protruding to one main surface side of the second electrode substrate 171 passes through the frame body 1 and is located in the opening 1a.
  • the base portion of the first needle electrode 2 protruding to the other main surface side of the second electrode substrate 171 is electrically connected to the second connector 187 provided on the other main surface of the second electrode substrate 171. It is connected.
  • the second electrode substrate 171 and the second connector 187 are accommodated in the cavity at the other end of the frame 1.
  • Each of the second needle-like electrode 3 of the positive ion generator 120 and the second needle-like electrode 3 of the negative ion generator 130 is provided so as to penetrate the third electrode substrate 151.
  • a conductive pattern (not shown) is provided on the main surface of the third electrode substrate 151.
  • the second needle electrode 3 of the positive ion generator 120 and the second needle electrode 3 of the negative ion generator 130 are connected to each other by a conductive pattern and have the same potential. Yes.
  • the conductive pattern is electrically connected to the third connector 152 provided on the main surface of the third electrode substrate 151.
  • the third electrode substrate 151 and the third connector 152 are accommodated in a cavity at one end of the frame 1.
  • the tip of the third connector 152 faces the gap 1 b provided in the frame body 1.
  • the power supply circuit unit 11 and the control unit 12 are provided in the upper casing 111 on the sides of the first duct 117 and the second duct 118.
  • the control unit 12 includes a control board and a power supply unit (not shown). As shown in FIG. 6, the power supply unit is connected to an AC (alternating current) cord 90 that is pulled out from the lower portion of the lower housing 112 and connected to a commercial power supply, and can supply an alternating current.
  • the control unit 12 is fixed to the first duct 117 and the second duct 118.
  • the power supply circuit unit 11 is electrically connected to the ion generating element 10, thereby applying a positive voltage to the first needle electrode 2 of the positive ion generating unit 120 and the first ion generating unit 130.
  • a negative voltage can be applied to the needle electrode 2.
  • the power supply circuit unit 11 can apply a zero potential to each second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130. Accordingly, the first needle-like electrodes 2 of each of the positive ion generator 120 and the negative ion generator 130 correspond to the discharge electrodes, and the second needle-like of each of the positive ion generator 120 and the negative ion generator 130.
  • the electrode 3 corresponds to an induction electrode.
  • power supply circuit unit 11 has a first terminal 11 a connected to first connector 184 and a second terminal 11 b connected to second connector 187.
  • a positive voltage can be applied from the power supply circuit unit 11 to the first needle electrode 2 of the positive ion generator 120 via the first terminal 11 a and the first connector 184.
  • a negative voltage can be applied from the power supply circuit unit 11 to the second needle electrode 2 of the negative ion generator 130 via the second terminal 11b and the second connector 187.
  • the power supply circuit unit 11 has a third terminal 153 connected to the secondary winding of the step-up transformer 17 (FIG. 12).
  • the third terminal 153 is electrically connected to the third connector 152 by a conducting wire 185.
  • the first connector 184 and the first terminal 11a, the second connector 187 and the second terminal 11b, and the third connector 152 and the third terminal 153 are detachably connected to each other. Thereby, the ion generating element 10 is detachably attached to the first duct 117 and the second duct 118.
  • ion generating element 10 can be attached to and detached from first duct 117 and second duct 118 in a state where upper casing 111 is detached from lower casing 112.
  • a first opening 117 a for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the first duct 117.
  • an opening 117b for attaching / detaching the ion generating element 10 is provided in a position facing the first opening 117a in the upper wall portion of the first duct 117.
  • a second opening (not shown) for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the second duct 118 so as to extend continuously from the first opening 117a.
  • an opening for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the second duct 118 at a position facing the second opening.
  • the ion generating element 10 can be attached to and detached from the first duct 117 and the second duct 118 by moving the ion generating element 10 in the direction indicated by the arrow 60 with respect to the first duct 117 and the second duct 118. .
  • negative ion generation unit 130 is inserted through first opening 117 a, and negative ion generation unit 130
  • the first and second needle-like electrodes 2 and 3 are located away from each other at both ends in the cross section of the first flow path.
  • the first and second acicular electrodes 2 and 3 of the negative ion generator 130 do not necessarily have to be located at both ends in the cross section of the first flow path, and are at least located in the first flow path. Just do it.
  • the positive ion generator 120 is inserted through the second opening, and the first and second needle-like electrodes 2 and 3 of the positive ion generator 120 are positioned away from each other at both ends of the cross section of the second flow path. is doing.
  • the first and second acicular electrodes 2 and 3 of the positive ion generator 120 do not necessarily have to be located at both ends in the cross section of the second flow path, and are at least located in the second flow path. Just do it.
  • the positive ion generating part 120 and the negative ion generating part 130 can be arranged in separate flow paths.
  • a part of the first flow path can be configured by the through hole 1 a of the negative ion generation unit 130.
  • a part of the second flow path can be constituted by the through-hole 1a of the positive ion generator 120.
  • power supply circuit unit 11 is detachably connected by being moved in the direction indicated by arrow 70 with respect to control unit 12. That is, the power supply circuit unit 11 is detachably attached to the first duct 117 and the second duct 118. Specifically, each of the power supply circuit unit 11 and the control unit 12 has a terminal portion that is detachably engaged with each other.
  • a power supply circuit is configured by connecting the ion generating element 10, the power supply circuit unit 11, and the control unit 12 to each other.
  • the power supply circuit unit 11 has a step-up transformer 17. Further, the power supply circuit unit 11 has a power supply circuit connected between the primary side of the step-up transformer 17 and the power supply unit of the control unit 12.
  • a diode 18 and a diode 19 are connected in parallel to the secondary side of the step-up transformer 17. From the secondary side of the step-up transformer 17, a step-up AC voltage obtained by boosting the commercial AC voltage is output from the diode 18 and the diode 19.
  • the cathode terminal of the diode 18 is electrically connected to the first needle electrode 2 of the positive ion generator 120.
  • the positive voltage of the step-up AC voltage output from the secondary side of the step-up transformer 17 can be applied to the first needle electrode 2 of the positive ion generator 120.
  • the anode terminal of the diode 19 is electrically connected to the first needle electrode 2 of the negative ion generator 130.
  • a negative voltage of the step-up AC voltage output from the secondary side of the step-up transformer 17 can be applied to the first needle electrode 2 of the negative ion generator 130.
  • a voltage on the secondary side of the step-up transformer 17 can be applied to each second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130.
  • a high voltage is applied from the power supply unit of the control unit 12
  • corona discharge occurs between the first and second needle-like electrodes 2 and 3 of the positive ion generation unit 120, and positive ions are generated.
  • corona discharge occurs between the first and second needle-like electrodes 2 and 3 of the negative ion generator 130 to generate negative ions.
  • the potential difference between the first and second acicular electrodes 2 and 3 of the positive ion generator 120 and between the first and second acicular electrodes 2 and 3 of the negative ion generator 130 is 3 kV or more and 10 kV or less. It is preferable that When the potential difference is smaller than 3 kV, corona discharge is difficult to occur and ions cannot be generated sufficiently. When the potential difference is greater than 10 kV, there is a high possibility that arc discharge will occur, and the ion generator 100 may fail.
  • the potential of the second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130 is set to zero.
  • the zero potential means that the second needle-like electrode 3 of each of the positive ion generator and the negative ion generator is grounded, or the second needle of each of the positive ion generator 120 and the negative ion generator 130.
  • the second needle-like electrodes 3 of the positive ion generation unit 120 and the negative ion generation unit 130 are connected by the third connector 152, the third terminal 153, and the conducting wire 185.
  • the potential is 0.
  • the electric potential of the 1st induction electrode 150 and the 2nd induction electrode 160 can be stabilized, and the discharge in the positive ion generation part 120 and the negative ion generation part 130 can be stabilized.
  • the release of positive ions and the release of negative ions are performed alternately every half cycle of the boosted AC voltage.
  • an AC power supply is used in this embodiment, a DC power supply may be used.
  • the gas sucked from the suction port 112a as shown by the arrow 210 in FIG. 5 is blown by the blowing mechanism as shown by the arrow 210a.
  • the air flows upward through the first flow path, passes through the negative ion generator 130, and is blown out from the outlet 113a as indicated by an arrow 210b.
  • the negative ions generated between the first and second needle-like electrodes 2 and 3 of the negative ion generator are released from the air outlet 113a by a part of the gas blown by the blower mechanism.
  • the gas sucked from the suction port 112b as shown by the arrow 220 in FIG. 5 is blown by the blower mechanism as shown by the arrow 220a and the second flow path. It rises inside, passes through the positive ion generator 120, and is blown out from the outlet 114a as indicated by an arrow 220b.
  • positive ions generated between the first and second needle-like electrodes 2 and 3 of the positive ion generator are released from the outlet 114a by the remaining part of the gas blown by the blower mechanism.
  • ion sensor 101 is arranged on the downstream side of each of positive ion generator 120 and negative ion generator 130, between positive ion generator 120 and air outlet 114 a, and negative ions. It arrange
  • the ion sensor 101 is installed on the wall surfaces of the first and second ducts. The ion sensor 101 is for detecting the presence or absence of discharge generated in the ion generation element 10 (positive ion generation unit 120, negative ion generation unit 130).
  • a control unit 102 is electrically connected to the ion sensor 101, and a display unit 103 is electrically connected to the control unit 102.
  • the control unit 102 determines whether or not there is a discharge from the detection result of the ion sensor 101 and outputs a signal based on the determination result. Specifically, when the output of the ion sensor 101 is equal to or lower than a predetermined value, the control unit 102 reduces the amount of generated ions to be lower than a specified value (this state is expressed as “discharge stopped”). Judge.
  • the display unit 103 is for displaying an electrode exchange in response to a result determined by the control unit 102 that there is no discharge.
  • the display unit 103 is disposed outside the housing 110 so as to be in contact with the user's eyes, and includes, for example, a blinkable lamp.
  • the ion sensor 101 detects the presence or absence of a discharge generated in the ion generation element 10 (positive ion generation unit 120, negative ion generation unit 130) (step S1).
  • a detection signal from the ion sensor 101 is input to the control unit 102.
  • the control unit 102 determines whether or not the ion generating element 10 (positive ion generating unit 120, negative ion generating unit 130) has been discharged (step S2).
  • step S2 determines that a discharge has occurred
  • step S3 determines that there is no discharge
  • the display unit 103 displays electrode replacement based on the signal output from the control unit 102 (step S3). Specifically, the lamp (not shown) of the display unit 103 is blinked to prompt the user to replace the electrode unit. In this way, display of electrode replacement on the display unit 103 is performed.
  • the second needle-like electrode 3 is disposed on the extended line of the first needle-like electrode 2, and the first tip portion 2a of the first needle-like electrode 2 and the second needle
  • the second tip 3a of the electrode 3 is opposed to each other.
  • both the first and second needle-like electrodes 2 and 3 are consumed by the discharge generated between the first and second needle-like electrodes 2 and 3, so that the first and second tip portions 2 a are consumed.
  • the distance 3a is increased to stop the discharge.
  • each of the first and second needle-like electrodes 2 and 3 is arranged along the center line AA of the through hole 1a, it is easy to make the ion distribution uniform with respect to the air path. Further, since the first and second needle-like electrodes 2 and 3 are disposed along the center line AA of the through hole 1a, the first and second needle-like electrodes 2 and 3 are arranged along the center line AA. The phenomenon that ions collide with the airway wall surface and disappear is more difficult than in the case where they are arranged away from each other.
  • both the first and second needle electrodes 2 and 3 have a needle shape. For this reason, compared with the case where an electrode is formed in plate shape or ring shape, a strong electric field can be concentrated between electrodes which oppose. Therefore, the distance D between the first needle-like electrode 2 and the second needle-like electrode 3 can be increased while suppressing an increase in the applied voltage necessary for the discharge. Thereby, compared with the case where the distance D between the first acicular electrode 2 and the second acicular electrode 3 is small, ions generated in the vicinity of the first acicular electrode 2 (for example, the discharge electrode) are reduced. It can be made hard to be absorbed by the 2nd acicular electrode 3 side (for example, induction electrode side).
  • the distance D between the first acicular electrode 2 and the second acicular electrode 3 is large, ions generated in the vicinity of the first acicular electrode 2 enter the second acicular electrode 3. Before being absorbed, the ions can be carried by the wind passing between the electrodes. As a result, ions can be generated efficiently.
  • each of the first and second needle-like electrodes 2 and 3 is needle-like, the size (diameter) of the tip changes as the needle-like tip of the electrode due to discharge wears out and discharges. Is not stable.
  • each of the first and second needle-like electrodes 2 and 3 has a needle-like shape (for example, a cylindrical shape having a fine diameter). For this reason, since the size (diameter) of the tip does not change even if the tip of the electrode is consumed by the discharge, the discharge can be stabilized.
  • the diameter D1 of the first needle-like electrode 2 is larger than the diameter D2 of the second needle-like electrode 3. For this reason, the discharge from outer peripheral parts other than the 1st front-end
  • the diameter of the first needle electrode 2 is 0.1 mm or more and 0.4 mm or less. Thereby, the balance between the time required for the consumption of the first needle-like electrode 2 and the influence on the performance of ion generation can be improved.
  • the distance D between the first needle-like electrode 2 and the second needle-like electrode 3 is preferably 15 mm or more and 200 mm or less.
  • the interelectrode distance D is less than 15 mm, arc discharge is likely to occur, and ozone gas may be generated at a high concentration.
  • the electrodes are located close to each other, the proportion of ions generated in the vicinity of the first acicular electrode 2 is absorbed by the second acicular electrode 3 is increased. That is, the ion generation efficiency decreases.
  • the distance between the electrodes is larger than 200 mm, corona discharge is not generated between the first needle-like electrode 2 and the second needle-like electrode 3 but between another object existing near the electrode and the electrode. It tends to occur. For example, corona discharge may occur between the inner wall of the frame 1 that exists near the second needle-like electrode 3 and the first needle-like electrode 2, and the ion generation efficiency may be reduced.
  • the user can replace the electrode at an appropriate time. It can be performed. That is, according to the ion generating apparatus 100 of the present embodiment, it is possible to realize a structure in which the discharge performance is maintained for a certain time and the discharge stops thereafter, and if the end of the discharge is detected, the electrode is provided to the user. Can be used in a state where good performance is always obtained.
  • positive ions and negative ions are H + (H 2 O) m (m is an arbitrary natural number) and negative ions are O 2 ⁇ (H 2 O) n (n is an arbitrary natural number), positive ions and negative ions are It attaches to the surface of airborne bacteria to generate active species such as hydrogen peroxide (H 2 O 2 ) or hydroxyl radical (.OH), and a bactericidal effect can be obtained by its action.
  • active species such as hydrogen peroxide (H 2 O 2 ) or hydroxyl radical (.OH)
  • the ion generator 100 when the discharge electrode deteriorates with the passage of time of use, the ion generating element 10 can be removed from the power supply circuit unit 11 and easily replaced. Further, when the power supply circuit unit 11 is deteriorated, the power supply circuit unit 11 can be removed from the control unit 12 and easily replaced.
  • Example 1 As shown in FIGS. 15 and 16, air was blown into the common duct 900 having a flow path having a length of 604 mm and a width of 34 mm on the electrode by a cross flow fan (not shown) at a flow rate of 5 m / sec.
  • an interval of 20 mm is placed between the first duct 217 having a flow path having a length of 103 mm and a width of 34 mm in the upper center of the common duct 900 and the first duct 217.
  • the second duct 218 having a flow path having a length of 103 mm and a width of 34 mm was provided.
  • the distance between the outer wall of the first duct 217 and the outer wall of the second duct 218 that are positioned opposite to each other and facing each other was 245 mm.
  • the first needle-like electrode 240 protruding 11.5 mm from the inner wall of the first duct 217 opposite to the second duct 218 side was provided.
  • a second needle-like electrode 250 projecting 11.5 mm was provided so as to face the first needle-like electrode 240 from the inner wall of the first duct 217 on the second duct 218 side.
  • the distance between the tip of the first needle electrode 240 and the tip of the second needle electrode 250 was 80 mm.
  • the first needle-like electrode 270 protruding 11.5 mm from the inner wall of the second duct 218 opposite to the first duct 217 side was provided.
  • a second needle electrode 260 protruding 11.5 mm was provided so as to face the first needle electrode 270 from the inner wall of the second duct 218 on the first duct 217 side.
  • the distance between the tip of the first needle electrode 270 and the tip of the second needle electrode 260 was 80 mm.
  • the first needle electrode 240 and the second needle electrode 250 in the first duct 217 are connected as shown in FIG.
  • the first duct 217 is positioned so as to be biased to one side in the path direction (width direction).
  • the central axes of the first acicular electrode 240 and the second acicular electrode 250 are positioned at a position 8 mm from one end in the path direction between the one end and the other end of the first duct 217.
  • the first acicular electrode 240 and the second acicular electrode 250 were arranged.
  • first needle-like electrode 270 and the second needle-like electrode 260 in the second duct 218 were positioned so as to be biased toward one side in the path direction (width direction) of the second duct 218.
  • the central axes of the first needle-like electrode 270 and the second needle-like electrode 260 are located at a position 8 mm from one end in the path direction between the one end and the other end of the second duct 218.
  • the first acicular electrode 270 and the second acicular electrode 260 were arranged.
  • a duct 910 having a channel having a length of 235.5 mm and a width of 34 mm is provided at the upper center of the common duct 900. Air was blown into the common duct 900 at a flow rate of 5 m / sec on the electrode by a cross flow fan (not shown). The ion generating part 800 was arranged on the inner wall on one side in the width direction of the duct 910.
  • the ion generation unit 800 includes a first needle electrode 810 and a second needle electrode 820 that protrude from the power supply circuit unit 850 (FIG. 18).
  • the first and second needle-like electrodes 810 and 820 are located in parallel with a space therebetween.
  • the ion generator 800 has a predetermined distance from the tip of the first needle electrode 810 and the tip of the second needle electrode 820 and the annular first induction electrode 830 facing the tip of the first needle electrode 810. And an annular second induction electrode 840 facing each other.
  • the ion generator 800 is arranged so that the tips of the first needle electrode 810 and the second needle electrode 820 are in contact with the flow path in the duct 910.
  • the power supply circuit unit 850 applies a positive high voltage to the first needle electrode 810 and a negative high voltage to the second needle electrode 820, so that the first induction electrode 830 and the second induction electrode 840 are applied.
  • positive ions were generated from the vicinity of the tip of the first needle electrode 810 and negative ions were generated from the vicinity of the tip of the second needle electrode 820.
  • FIG. 19 is a graph showing the positive ion concentration distribution measured at a position 250 mm away from the electrode above the first duct 217 and the second duct 218 in the reference example shown in FIG.
  • FIG. 20 is a graph showing the concentration distribution of positive ions measured at a position 1 m away from the electrode above the first duct 217 and the second duct 218 in the reference example.
  • FIG. 21 is a graph showing the negative ion concentration distribution measured at a position 250 mm away from the electrode above the first duct 217 and the second duct 218 in the reference example shown in FIG.
  • FIG. 22 is a graph showing the negative ion concentration distribution measured at a position 1 m away from the electrode above the first duct 217 and the second duct 218 in the reference example.
  • FIG. 23 is a graph showing the concentration distribution of positive ions measured at a position 250 mm away from the electrode above the duct 910 in the comparative example shown in FIGS.
  • FIG. 24 is a graph showing the concentration distribution of positive ions measured at a position 1 m away from the electrode above the duct 910 in the comparative example.
  • FIG. 25 is a graph showing the concentration distribution of negative ions measured at a position 250 mm away from the electrode above the duct 910 in the comparative example shown in FIGS.
  • FIG. 26 is a graph showing the concentration distribution of negative ions measured at a position 1 m away from the electrode above the duct 910 in the comparative example.
  • the vertical axis represents the duct width direction coordinate
  • the horizontal axis represents the duct length direction coordinate
  • the normalized ion concentration is represented by contour lines.
  • the center position of the flow path in the common duct 900 is set to 0 on the coordinate axis.
  • a high concentration region of positive ions exists on the first needle electrode 240 side on the first duct 217 at a position 250 mm away from the electrode in the reference example.
  • a high concentration region of negative ions is present on the first needle electrode 270 side on the second duct 218 at a position 250 mm away from the electrode in the reference example. Therefore, most of the positive ions and the negative ions are located away from each other immediately after the release, and the bond annihilation of the positive ions and the negative ions is suppressed.
  • positive ions are diffused radially from substantially the center of the common duct 900 at a position 1 m away from the electrode in the reference example.
  • negative ions are diffused radially from substantially the center of the common duct 900 at a position 1 m away from the electrode in the reference example. Therefore, positive ions and negative ions are mixed in a wide area of the released space.
  • positive ions are diffused radially from substantially the center of the duct 910 at a position 1 m away from the electrode in the comparative example.
  • negative ions are diffused radially from substantially the center of the duct 910. Therefore, positive ions and negative ions are mixed in the released space.
  • concentration of released positive ions and negative ions was lower than that of the reference example, and the range of released positive ions and negative ions was also narrower than that of the reference example.
  • Example 2 Using the ion generator of the comparative example (FIG. 15) and the ion generators of the reference examples (FIGS. 16 to 18) used in Experimental Example 1, the amount of ions at a position 500 mm from the electrode was compared. The amount of ions was measured at a total of 35 points in a lattice shape of 5 points at 25 mm intervals in the width direction of the common duct 900 and 7 points at 50 mm intervals in the length direction.
  • Table 1 summarizes the maximum value of the positive ion amount, the maximum value of the negative ion amount, and the integrated value of the ion amount at the 35 measurement points among the 35 measurement points in the comparative example and the reference example. is there.
  • the maximum value of the positive ion amount in the comparative example was 4.2 nA
  • the maximum value of the negative ion amount was 3.9 nA
  • the integrated value of the ion amount at 35 measurement points was 39.9 nA.
  • the maximum positive ion amount in the reference example is 5.4 nA, 129% of the comparative example, the maximum negative ion amount is 5.1 nA, 131% of the comparative example, and the integrated value of the ion amount at 35 measurement points is 94.1 nA. It was 236% of the comparative example.
  • the ion generator of the reference example was able to supply more positive ions and negative ions than the ion generator of the comparative example. Moreover, it was confirmed that many ions can be supplied by setting the distance between electrodes to 80 mm.
  • Example 3 As shown in FIG. 1, the electric field vector generated in the through hole 1 a when the first and second needle-like electrodes 2 and 3 are arranged along the center line of the through hole 1 a of the frame 1 was examined.
  • the length, width, and height of the through-hole 1a are 50 mm, 30 mm, and 30 mm, respectively, and the diameter ( ⁇ ) of each of the first and second needle electrodes is 0.4 mm.
  • the length of each of the first and second acicular electrodes was 11.75 mm. As a result, a result as shown in FIG. 27 was obtained.
  • the present invention can be widely applied to a high voltage generation circuit, an ion generation device including an ion generation element, a portable electric device, a battery-driven ion generation device, and the like.

Abstract

A first needle-like electrode (2) is supported by a frame body (1), and has a first leading end portion (2a) that is positioned in a through hole (1a). A second needle-like electrode (3) is supported by the frame body (1), and is positioned on an extension line (A-A) in the direction in which the first needle-like electrode (2) extends, said second needle-like electrode having a second leading end portion (3a) that faces the first leading end portion (2a) in the through hole (1a) by being spaced apart from the first leading end portion. The first and second needle-like electrodes (2, 3) are configured such that the needle-like electrodes generate ions by generating electric discharge between the first and second needle-like electrodes (2, 3), and the first and second needle-like electrodes (2, 3) are disposed along the center line (A-A) of the through hole (1a).

Description

イオン発生素子およびイオン発生装置Ion generator and ion generator
 本発明は、イオン発生素子およびイオン発生装置に関し、特に、放電によりイオンを生成するイオン発生素子およびイオン発生装置に関するものである。 The present invention relates to an ion generation element and an ion generation apparatus, and more particularly to an ion generation element and an ion generation apparatus that generate ions by discharge.
 放電現象を利用したイオン発生素子において、特に放電を生じさせるための電極の先鋭部が放電により消耗することが知られている。この電極の消耗に対しては、電極の形状、材質、放電の強さなどを適切に選ぶことにより電極の消耗を低減することができる。これにより、電極を実際の使用に耐えられるように構成することは可能であると考えられる。 In an ion generating element using a discharge phenomenon, it is known that a sharp portion of an electrode for generating discharge is consumed due to discharge. With respect to the consumption of the electrode, it is possible to reduce the consumption of the electrode by appropriately selecting the shape, material, discharge intensity and the like of the electrode. Thus, it is considered possible to configure the electrode so that it can withstand actual use.
 放電による消耗を考慮した技術として、たとえば特開2006-210311号公報(特許文献1参照)がある。この公報に開示されたイオン発生装置は、高電圧を印加される針状電極と、針状電極の径方向の両側に位置する脚部を有するグランド電極とを有している。この構成により、経時変化で針状電極の線径が変化しないためイオン発生量が安定することが上記公報に記載されている。 For example, Japanese Patent Application Laid-Open No. 2006-210311 (see Patent Document 1) is a technique that takes into account the wear due to discharge. The ion generator disclosed in this publication has a needle electrode to which a high voltage is applied, and a ground electrode having leg portions located on both sides in the radial direction of the needle electrode. It is described in the above publication that this configuration stabilizes the amount of ion generation because the wire diameter of the needle electrode does not change with time.
特開2006-210311号公報JP 2006-210311 A
 しかしながら上記公報に記載のイオン発生装置においても、針状電極の先端部が放電により消耗する場合があり得、その場合にはイオン発生の性能に影響が出る場合がある。このイオン発生素子が電気機器に組み込まれ、使用された場合、使用者はその状況を確認するすべがない。このため、イオン発生の性能がどの程度の時間維持されるのかを推定することが難しく、その制御が困難である。 However, even in the ion generator described in the above publication, the tip of the needle electrode may be consumed by discharge, and in that case, the ion generation performance may be affected. When this ion generating element is incorporated in an electric device and used, there is no way for the user to confirm the situation. For this reason, it is difficult to estimate how long the ion generation performance is maintained, and the control is difficult.
 また上記公報には、風路に対してイオンを均一に分布させることの検討はなされていない。 Also, the above publication does not discuss the uniform distribution of ions in the air path.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、イオン発生の持続期間の制御が容易で、かつ風路内でのイオンの分布の均一性を向上させることができるイオン発生素子およびイオン発生装置を提供することである。 The present invention has been made in view of the above problems, and its object is to easily control the duration of ion generation and improve the uniformity of ion distribution in the air path. It is providing a generating element and an ion generator.
 本発明のイオン発生素子は、支持部と、第1の針状電極と、第2の針状電極とを備えている。支持部は、風路の少なくとも一部を構成する開口部を有している。第1の針状電極は、支持部に支持され、かつ開口部内に位置する第1の先端部を有している。第2の針状電極は、支持部に支持され、第1の針状電極の延びる方向の延長線上に位置し、かつ開口部内で第1の先端部と離れて対向する第2の先端部を有している。第1および第2の針状電極は第1および第2の針状電極の間で放電を生じさせてイオンを発生するように構成されており、かつ第1および第2の針状電極は開口部の中心線に沿って配置されている。 The ion generating element of the present invention includes a support, a first needle electrode, and a second needle electrode. The support portion has an opening that forms at least a part of the air passage. The 1st acicular electrode has the 1st front-end | tip part which is supported by the support part and is located in an opening part. The second needle-like electrode is supported by the support portion, is located on an extension line in the direction in which the first needle-like electrode extends, and has a second tip portion facing away from the first tip portion within the opening. Have. The first and second acicular electrodes are configured to generate ions by generating a discharge between the first and second acicular electrodes, and the first and second acicular electrodes are open. It is arranged along the center line of the part.
 本発明のイオン発生素子によれば、第1の針状電極の延長線上に第2の針状電極が配置され、かつ第1の針状電極の第1の先端部と第2の針状電極の第2の先端部とが互いに離れて対向している。これにより、第1および第2の針状電極の間で生じる放電により第1および第2の針状電極の双方が消耗することで、第1および第2の先端部の距離が拡大して放電が停止するように構成されている。このような構成とすることで、第1および第2の先端部の間隔などを調整することでイオン発生性能の維持される期間を容易に制御することができる。 According to the ion generating element of the present invention, the second needle-like electrode is disposed on the extension line of the first needle-like electrode, and the first tip portion and the second needle-like electrode of the first needle-like electrode are arranged. Are opposed to each other at a distance from each other. As a result, both the first and second needle-shaped electrodes are consumed due to the discharge generated between the first and second needle-shaped electrodes, and the distance between the first and second tip portions is increased and discharged. Is configured to stop. By setting it as such a structure, the period in which ion generation performance is maintained can be easily controlled by adjusting the space | interval of the 1st and 2nd front-end | tip part, etc.
 また第1および第2の針状電極は開口部の中心線に沿って配置されているため、風路に対するイオンの分布を均一にすることが容易となる。また第1および第2の針状電極は開口部の中心線に沿って配置されているため、第1および第2の針状電極が当該中心線に対して片寄って配置される場合よりもイオンが風路壁面に取り込まれにくくなる。 Also, since the first and second needle-like electrodes are arranged along the center line of the opening, it is easy to make the ion distribution uniform with respect to the air path. In addition, since the first and second needle-like electrodes are arranged along the center line of the opening, the ions are more ionized than when the first and second needle-like electrodes are arranged away from the center line. Becomes difficult to be taken into the wall surface of the air passage.
 上記のイオン発生素子において、第1の針状電極の径は第2の針状電極の径よりも大きい。これにより径の大きい第1の針状電極の第1の先端部以外の外周部からの放電を抑制することができる。 In the above ion generating element, the diameter of the first needle electrode is larger than the diameter of the second needle electrode. Thereby, it is possible to suppress discharge from the outer peripheral portion other than the first tip portion of the first needle-like electrode having a large diameter.
 上記のイオン発生素子において、第1および第2の針状電極は、第1および第2の針状電極の間で生じる放電により消耗することで第1および第2の先端部の距離が拡大して放電が停止するように構成されている。これにより、第1および第2の先端部の間隔などを調整することでイオン発生性能の維持される期間を容易に制御することができる。 In the above ion generating element, the first and second needle-shaped electrodes are consumed by the discharge generated between the first and second needle-shaped electrodes, so that the distance between the first and second tip portions is increased. The discharge is stopped. Thereby, the period in which the ion generation performance is maintained can be easily controlled by adjusting the distance between the first and second tip portions.
 上記のイオン発生素子において、第1の針状電極の直径が0.1mm以上0.4mm以下である。これにより、第1の針状電極の消耗に要する時間とイオン発生の性能への影響とのバランスを良好にすることができる。 In the above ion generating element, the diameter of the first needle electrode is 0.1 mm or more and 0.4 mm or less. Thereby, the balance between the time required for the consumption of the first needle electrode and the influence on the ion generation performance can be improved.
 本発明のイオン発生装置は、上記いずれかのイオン発生素子と、そのイオン発生素子で生じる放電の有無を検出するための検出部と、その検出部で放電が無いと判断した結果を受けて電極交換の表示を行う表示部とを備えている。 An ion generating apparatus according to the present invention includes any one of the above-described ion generating elements, a detection unit for detecting the presence or absence of discharge generated in the ion generation element, and an electrode in response to a result of determining that there is no discharge in the detection unit. And a display unit for displaying replacement.
 本発明のイオン発生装置によれば、上記のイオン発生素子が備えられているため、イオン発生性能の維持される期間の制御が容易で、かつ風路内でのイオンの分布の均一性を向上させることができるイオン発生装置を得ることができる。また表示部に電極交換の表示が出るため、使用者は適切な時期に電極の交換を行うことができる。 According to the ion generation apparatus of the present invention, since the ion generation element is provided, it is easy to control the period during which the ion generation performance is maintained, and the uniformity of the ion distribution in the air path is improved. An ion generator that can be made to be obtained can be obtained. Moreover, since the display of electrode replacement appears on the display unit, the user can replace the electrode at an appropriate time.
 つまり一定時間までは放電性能を持続させ、それ以降は放電が止まってしまう構造が実現でき、その放電の終了を検出すれば、使用者に電極の交換を知らせ、常に良い性能が得られる状態で使ってもらうことができる。 In other words, it is possible to realize a structure in which the discharge performance is maintained until a certain time and the discharge stops thereafter, and if the end of the discharge is detected, the user is notified of the electrode replacement, and a good performance is always obtained. You can use it.
 以上説明したように本発明によれば、イオン発生性能の維持される期間の制御が容易で、かつ風路内でのイオンの分布の均一性を向上させることができるイオン発生素子およびイオン発生装置を得ることができる。 As described above, according to the present invention, an ion generating element and an ion generating apparatus that can easily control the period during which ion generation performance is maintained and can improve the uniformity of ion distribution in the air path. Can be obtained.
本発明の一実施の形態におけるイオン発生素子の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the ion generating element in one embodiment of this invention. 図1のII-II線矢印方向から見た断面図である。FIG. 2 is a cross-sectional view seen from the direction of arrows II-II in FIG. 本発明の一実施の形態におけるイオン発生素子の変形例の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the modification of the ion generating element in one embodiment of this invention. 図3のIV-IV線矢印方向から見た断面図である。FIG. 4 is a cross-sectional view seen from the direction of arrows IV-IV in FIG. 3. 本発明の一実施の形態に係るイオン発生素子を有するイオン発生装置の構成を示す断面図である。It is sectional drawing which shows the structure of the ion generator which has an ion generating element which concerns on one embodiment of this invention. 図5のVI-VI線矢印方向から見た断面図である。FIG. 6 is a cross-sectional view seen from the direction of arrows VI-VI in FIG. 5. 図6のVII-VII線矢印方向から見た断面図である。It is sectional drawing seen from the VII-VII line arrow direction of FIG. 図5のイオン発生装置に係るイオン発生素子の外観を示す斜視図である。It is a perspective view which shows the external appearance of the ion generating element which concerns on the ion generator of FIG. 図5のイオン発生装置に係るイオン発生素子の外観を示す平面図である。It is a top view which shows the external appearance of the ion generating element which concerns on the ion generator of FIG. 図5のイオン発生装置に係るイオン発生素子の構成を示す断面図である。It is sectional drawing which shows the structure of the ion generating element which concerns on the ion generator of FIG. 図5のイオン発生装置においてイオン発生素子を第1ダクトおよび第2ダクトに着脱する状態を示す断面図である。It is sectional drawing which shows the state which attaches / detaches an ion generating element to a 1st duct and a 2nd duct in the ion generator of FIG. 図5のイオン発生装置に含まれる電源回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply circuit contained in the ion generator of FIG. 図5のイオン発生装置に含まれるイオンセンサ、制御部および表示部の接続の様子を示すブロック図である。It is a block diagram which shows the mode of the connection of the ion sensor, control part, and display part which are included in the ion generator of FIG. 図5のイオン発生装置に含まれるイオンセンサからの出力に応じて電極交換を表示するフロー図である。It is a flowchart which displays electrode replacement | exchange according to the output from the ion sensor contained in the ion generator of FIG. 参考例に係るイオン発生装置の構成を示す平面図である。It is a top view which shows the structure of the ion generator which concerns on a reference example. 比較例に係るイオン発生装置の構成を示す平面図である。It is a top view which shows the structure of the ion generator which concerns on a comparative example. 比較例に係るイオン発生部の構成を示す平面図である。It is a top view which shows the structure of the ion generation part which concerns on a comparative example. 図17のイオン発生部を矢印XVIIIから見た図である。It is the figure which looked at the ion generating part of FIG. 17 from arrow XVIII. 参考例にて第1ダクトおよび第2ダクトの上方において電極から250mm離れた位置で計測された正イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the positive ion measured in the position 250 mm away from the electrode above the 1st duct and the 2nd duct in the reference example. 参考例にて第1ダクトおよび第2ダクトの上方において電極から1m離れた位置で計測された正イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the positive ion measured in the position 1 m away from the electrode above the 1st duct and the 2nd duct in a reference example. 参考例にて第1ダクトおよび第2ダクトの上方において電極から250mm離れた位置で計測された負イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the negative ion measured in the position 250 mm away from the electrode above the 1st duct and the 2nd duct in the reference example. 参考例にて第1ダクトおよび第2ダクトの上方において電極から1m離れた位置で計測された負イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the negative ion measured in the position 1 m away from the electrode above the 1st duct and the 2nd duct in a reference example. 比較例にてダクトの上方において電極から250mm離れた位置で計測された正イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the positive ion measured in the position 250 mm away from the electrode above the duct in the comparative example. 比較例にてダクトの上方において電極から1m離れた位置で計測された正イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the positive ion measured in the position 1 m away from the electrode above the duct in the comparative example. 比較例にてダクトの上方において電極から250mm離れた位置で計測された負イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the negative ion measured in the position 250 mm away from the electrode above the duct in the comparative example. 比較例にてダクトの上方において電極から1m離れた位置で計測された負イオンの濃度分布を示すグラフである。It is a graph which shows the density | concentration distribution of the negative ion measured in the position 1 m away from the electrode above the duct in the comparative example. 図1のイオン発生素子における電界ベクトルを示す図である。It is a figure which shows the electric field vector in the ion generating element of FIG.
 まず、本発明の一実施の形態におけるイオン発生素子の構成について図1~図4を用いて説明する。 First, the configuration of an ion generating element according to an embodiment of the present invention will be described with reference to FIGS.
 図1および図2を参照して、本実施の形態のイオン発生素子10は、枠体(支持部)1と、第1の針状電極2と、第2の針状電極3とを主に有している。枠体1には、その中央部分に貫通孔(開口部)1aが形成されている。この貫通孔1aは、風路の少なくとも一部を構成している。 Referring to FIGS. 1 and 2, ion generating element 10 of the present embodiment mainly includes frame body (supporting portion) 1, first needle-like electrode 2, and second needle-like electrode 3. Have. The frame body 1 is formed with a through hole (opening) 1a at the center thereof. This through hole 1a constitutes at least a part of the air passage.
 第1の針状電極2は、枠体1に支持され、かつ貫通孔1a内に位置する先端部2aを有している。第2の針状電極3は、枠体1に支持され、かつ貫通孔1a内に位置する先端部3aを有している。 The first needle-like electrode 2 is supported by the frame 1 and has a distal end portion 2a located in the through hole 1a. The 2nd acicular electrode 3 has the front-end | tip part 3a supported by the frame 1 and located in the through-hole 1a.
 第2の針状電極3は、第1の針状電極2の延びる方向の延長線(図中の一点鎖線A-A)上に位置してその延長線A-Aに沿って延びている。第2の針状電極3の先端部3aは、貫通孔1a内で第1の針状電極2の第1の先端部2aと離れて対向している。 The second needle-like electrode 3 is located on an extension line in the extending direction of the first needle-like electrode 2 (one-dot chain line AA in the figure) and extends along the extension line AA. The tip portion 3a of the second needle electrode 3 is opposed to the first tip portion 2a of the first needle electrode 2 in the through hole 1a.
 第1および第2の針状電極2、3は、第1および第2の針状電極2、3の間で放電を生じさせてイオンを発生するように構成されている。これらの第1および第2の針状電極2、3の双方は、貫通孔1aの中心線A-Aに沿って配置されている。つまり貫通孔1aの中心線A-Aと第1および第2の針状電極の延長線A-Aとは同じ直線である。 The first and second needle- like electrodes 2 and 3 are configured to generate ions by generating a discharge between the first and second needle- like electrodes 2 and 3. Both the first and second needle- like electrodes 2 and 3 are arranged along the center line AA of the through hole 1a. That is, the center line AA of the through hole 1a and the extension line AA of the first and second needle electrodes are the same straight line.
 貫通孔1aの中心線A-Aとは、図1に示すように貫通孔1aの貫通方向真上から貫通孔1aを見たときに、貫通孔1aを二等分する二等分線である。このため中心線A-Aにより、枠体1の図1中の左辺部分は寸法L1の部分に等分され、また枠体1の図1中の右辺部分は寸法L2の部分に等分されている。この枠体1の左辺部分の全長と右辺部分の全長とが同じ場合には、上記寸法L1は上記寸法L2に等しい。枠体1の左辺部分の全長と右辺部分の全長とは同じあることが好ましいが、互いに異なっていてもよい。 The center line AA of the through hole 1a is a bisector that bisects the through hole 1a when the through hole 1a is viewed from directly above the through direction of the through hole 1a as shown in FIG. . Therefore, by the center line AA, the left side portion of the frame body 1 in FIG. 1 is equally divided into the dimension L1 portion, and the right side portion of the frame body 1 in FIG. 1 is equally divided into the dimension L2 portion. Yes. When the total length of the left side portion of the frame 1 is the same as the total length of the right side portion, the dimension L1 is equal to the dimension L2. The total length of the left side portion of the frame body 1 and the total length of the right side portion are preferably the same, but may be different from each other.
 第1および第2の針状電極2、3は、実質的に同一の径D1、D2を維持しながら先端部2a、3aまで延びており、微小な径の円柱形状を有している。このため、先端部2a、3aの各々は、先端が尖った形状を有していない。なお、先端部2a、3aの各々は、先端が尖った形状をしていてもよい。この場合は、放電により尖った形状をしている先端が消耗してきて、徐々に微小な径の円柱形状へ変化していく。 The first and second needle- like electrodes 2 and 3 extend to the tip portions 2a and 3a while maintaining substantially the same diameters D1 and D2, and have a cylindrical shape with a minute diameter. For this reason, each of the front-end | tip parts 2a and 3a does not have the shape where the front-end | tip sharpened. In addition, each of the front-end | tip parts 2a and 3a may have the shape where the front-end | tip sharpened. In this case, the sharpened tip is consumed by the discharge, and gradually changes to a cylindrical shape with a small diameter.
 第1および第2の針状電極2、3のいずれか一方がたとえば正または負の高電圧を印加される放電電極であり、いずれか他方がたとえば0電位を印加される誘導電極である。 One of the first and second acicular electrodes 2 and 3 is a discharge electrode to which a positive or negative high voltage is applied, for example, and the other is an induction electrode to which a zero potential is applied, for example.
 第1の針状電極2の先端部2aと第2の針状電極3の先端部3aとの間の距離(電極間距離)Dは15mm以上200mm以下であることが好ましい。後述するように、電極間距離Dは80mmであることが特に好ましい。また第1および第2の針状電極2、3の直径の各々は0.1mm以上0.4mm以下であることが好ましい。 The distance (distance between electrodes) D between the tip 2a of the first needle electrode 2 and the tip 3a of the second needle electrode 3 is preferably 15 mm or more and 200 mm or less. As will be described later, the interelectrode distance D is particularly preferably 80 mm. Moreover, it is preferable that each of the diameter of the 1st and 2nd acicular electrodes 2 and 3 is 0.1 mm or more and 0.4 mm or less.
 図1および図2に示す第1の針状電極2の直径D1と第2の針状電極3の直径D2は互いに同じである。しかし図3および図4に示すように、第1の針状電極2の直径D1と第2の針状電極3の直径D2は互いに異なっていてもよい。たとえば第1の針状電極2の直径D1は第2の針状電極3の直径D2よりも大きくてもよい。 The diameter D1 of the first needle electrode 2 and the diameter D2 of the second needle electrode 3 shown in FIGS. 1 and 2 are the same. However, as shown in FIGS. 3 and 4, the diameter D1 of the first needle-like electrode 2 and the diameter D2 of the second needle-like electrode 3 may be different from each other. For example, the diameter D1 of the first needle electrode 2 may be larger than the diameter D2 of the second needle electrode 3.
 なお図3および図4に示すイオン発生素子10の上記以外の構成は、図1および図2に示すイオン発生素子10の構成とほぼ同じであるため、同一の要素について同一の符号を付し、その説明を繰り返さない。 In addition, since the structure of the other than the above of the ion generating element 10 shown in FIG.3 and FIG.4 is substantially the same as the structure of the ion generating element 10 shown in FIG.1 and FIG.2, the same code | symbol is attached | subjected about the same element, The description will not be repeated.
 次に、本実施の形態のイオン発生素子10が用いられたイオン発生装置100の構成について図5~図11を用いて説明する。 Next, the configuration of the ion generating apparatus 100 using the ion generating element 10 of the present embodiment will be described with reference to FIGS.
 図5および図6を参照して、本実施の形態に係るイオン発生装置100は、イオン発生素子10と、イオンセンサ(検出部)101と、筺体110と、第1および第2ダクト117、118と、吹出筒113、114と、送風機構(羽根車40、41およびモータ30)とを主に有している。 Referring to FIGS. 5 and 6, ion generation apparatus 100 according to the present embodiment includes ion generation element 10, ion sensor (detection unit) 101, housing 110, and first and second ducts 117 and 118. And the blowing cylinders 113 and 114 and the air blowing mechanism (the impellers 40 and 41 and the motor 30).
 筺体110は、互いに組み合わされる上部筐体111と下部筐体112とを有し、かつ略直方体の形状を有している。上部筐体111と下部筐体112とは、スナップフィット部材により係合しており、着脱自在に組み合わされている。 The casing 110 has an upper casing 111 and a lower casing 112 that are combined with each other, and has a substantially rectangular parallelepiped shape. The upper housing 111 and the lower housing 112 are engaged with each other by a snap fit member and are detachably combined.
 上部筐体111は、上部に2つの嵌合孔を有している。2つの嵌合孔のうちの一方の嵌合孔に、吹出筒113が着脱可能に嵌め込まれている。2つの嵌合孔のうちの他方の嵌合孔に、吹出筒114が着脱可能に嵌め込まれている。吹出筒113、114は、縦断面においてテーパ状の外形を有している。 The upper casing 111 has two fitting holes in the upper part. The blowing cylinder 113 is detachably fitted in one of the two fitting holes. The blowing cylinder 114 is detachably fitted into the other fitting hole of the two fitting holes. The blowing cylinders 113 and 114 have a tapered outer shape in the longitudinal section.
 吹出筒113の上端が、吹出口113aとなる。吹出筒113の下端を覆うように、防護網115が配置されている。吹出筒114の上端が、吹出口114aとなる。吹出筒114の下端を覆うように、防護網116が配置されている。防護網115、116は、外部から指などの異物が挿入されるのを防ぐために設けられている。 The upper end of the blowing cylinder 113 is the outlet 113a. A protective net 115 is arranged so as to cover the lower end of the blowing cylinder 113. The upper end of the blowout cylinder 114 is the blowout outlet 114a. A protective net 116 is arranged so as to cover the lower end of the blowing cylinder 114. The protective nets 115 and 116 are provided to prevent foreign objects such as fingers from being inserted from the outside.
 下部筐体112は、側部に2つの吸込口112a、112bを有している。一方の吸込口112aと対向するように、下部筐体112内に羽根車40が配置されている。他方の吸込口112bと対向するように、下部筐体112内に羽根車41が配置されている。 The lower housing 112 has two suction ports 112a and 112b on the side. An impeller 40 is disposed in the lower housing 112 so as to face one of the suction ports 112a. An impeller 41 is disposed in the lower housing 112 so as to face the other suction port 112b.
 羽根車40、41は、外縁に対し回転中心側が回転方向へ変位する複数の羽根を有する多翼羽根車である。言い換えると、羽根車40、41は、円筒形状をなすシロッコ羽根車である。羽根車40、41は、一端に軸受板を有している。軸受板の中心に、軸孔が設けられている。この軸孔にモータ30の出力軸が取付けられている。 The impellers 40 and 41 are multi-blade impellers having a plurality of blades whose rotational center side is displaced in the rotation direction with respect to the outer edge. In other words, the impellers 40 and 41 are cylindrical sirocco impellers. The impellers 40 and 41 have a bearing plate at one end. A shaft hole is provided in the center of the bearing plate. The output shaft of the motor 30 is attached to this shaft hole.
 羽根車40、41は、吸込口112a、112bと対向する面に貫通孔を有している。この貫通孔から中心部の空洞へ吸込んだ空気などの気体を外周部の羽根同士の間から放出するように、羽根車40、41が構成されている。羽根車40、41とモータ30とから送風機構が構成されている。 The impellers 40 and 41 have through holes on the surfaces facing the suction ports 112a and 112b. The impellers 40 and 41 are configured so that a gas such as air sucked from the through hole into the central cavity is discharged from between the blades of the outer peripheral portion. The impellers 40 and 41 and the motor 30 constitute a blower mechanism.
 羽根車40から放出された気体と、羽根車41から放出された気体とを別々に流通させるために、イオン発生装置100は2つの流路を有している。 In order to distribute separately the gas discharged from the impeller 40 and the gas discharged from the impeller 41, the ion generator 100 has two flow paths.
 2つの流路のうちの第1流路は、吸込口112aから吸い込まれて羽根車40から放出された気体の流路であり、第1ダクト117により構成されている。すなわち、第1ダクト117は、送風機構により送風された気体の一部が流通する第1流路を構成している。 Of the two flow paths, the first flow path is a flow path of the gas sucked from the suction port 112a and released from the impeller 40, and is constituted by the first duct 117. That is, the first duct 117 constitutes a first flow path through which a part of the gas blown by the blower mechanism flows.
 第1ダクト117の上部は、平面視矩形状で上下方向に延びる筒状の外形を有している。第1ダクト117の下部は、羽根車40の周囲を羽根車40の外形に沿って囲むように側面視略円形状で上方が開放した筒状の外形を有している。 The upper part of the first duct 117 has a cylindrical outer shape that is rectangular in plan view and extends in the vertical direction. The lower portion of the first duct 117 has a cylindrical outer shape that is substantially circular in a side view and surrounds the periphery of the impeller 40 along the outer shape of the impeller 40.
 第1ダクト117は、上端に吹出筒113の下端と対向する開口を有している。この開口を塞ぐように、第1ダクト117の上端に、防護網115が取り付けられている。第1ダクト117の上端の開口は、防護網115によって完全に覆われている。 The first duct 117 has an opening facing the lower end of the blowing cylinder 113 at the upper end. A protection net 115 is attached to the upper end of the first duct 117 so as to close the opening. The opening at the upper end of the first duct 117 is completely covered by the protective net 115.
 2つの流路のうちの第2流路は、吸込口112bから吸い込まれて羽根車41から放出された気体の流路であり、第2ダクト118により構成されている。すなわち、第2ダクト118は、送風機構により送風された気体の残部が流通する第2流路を構成している。第2ダクト118は、第1ダクト117に隣接して位置している。 Of the two flow paths, the second flow path is a flow path for the gas sucked from the suction port 112b and discharged from the impeller 41, and is constituted by the second duct 118. That is, the 2nd duct 118 comprises the 2nd flow path through which the remainder of the gas ventilated by the ventilation mechanism distribute | circulates. The second duct 118 is located adjacent to the first duct 117.
 第2ダクト118の上部は、平面視矩形状で上下方向に延びる筒状の外形を有している。第2ダクト118の下部は、羽根車41の周囲を羽根車41の外形に沿って囲むように側面視略円形状で上方が開放した筒状の外形を有している。 The upper part of the second duct 118 has a cylindrical outer shape that is rectangular in plan view and extends in the vertical direction. The lower part of the second duct 118 has a cylindrical outer shape that is substantially circular in a side view so as to surround the periphery of the impeller 41 along the outer shape of the impeller 41.
 第2ダクト118は、上端に吹出筒114の下端と対向する開口を有している。この開口を塞ぐように、第2ダクト118の上端に、防護網116が取り付けられている。第2ダクト118の上端の開口は、防護網116によって完全に覆われている。 The second duct 118 has an opening at the upper end facing the lower end of the blowing cylinder 114. A protection net 116 is attached to the upper end of the second duct 118 so as to close the opening. The opening at the upper end of the second duct 118 is completely covered by the protective net 116.
 イオン発生装置100は、第1ダクト117および第2ダクト118に着脱自在に装着されるイオン発生素子10を有している。イオン発生素子10は、たとえば正イオン発生部120および負イオン発生部130を含む。 The ion generator 100 has the ion generating element 10 that is detachably attached to the first duct 117 and the second duct 118. Ion generation element 10 includes, for example, positive ion generation unit 120 and negative ion generation unit 130.
 図7~図10を参照して、イオン発生素子10は、枠体(支持部)1と、第1の針状電極2と、第2の針状電極3とを主に有している。枠体1には、2つの貫通孔(開口部)1aが形成されている。2つの貫通孔1aの各々は風路の少なくとも一部を構成している。2つの貫通孔1aの一方は正イオン発生部120に対応し、他方は負イオン発生部130に対応する。 7 to 10, the ion generating element 10 mainly has a frame (supporting portion) 1, a first needle electrode 2, and a second needle electrode 3. Two through holes (openings) 1a are formed in the frame 1. Each of the two through holes 1a constitutes at least a part of the air passage. One of the two through holes 1a corresponds to the positive ion generator 120, and the other corresponds to the negative ion generator 130.
 正イオン発生部120および負イオン発生部130のそれぞれにおいて、第1の針状電極2は、枠体1に支持され、かつ貫通孔1a内に位置する先端部2aを有している。第2の針状電極3は、枠体1に支持され、かつ貫通孔1a内に位置する先端部3aを有している。 In each of the positive ion generator 120 and the negative ion generator 130, the first needle-like electrode 2 has a tip 2a that is supported by the frame 1 and located in the through hole 1a. The 2nd acicular electrode 3 has the front-end | tip part 3a supported by the frame 1 and located in the through-hole 1a.
 第2の針状電極3は、図1および図2で説明したように、第1の針状電極2の延びる方向の延長線上に位置してその延長線に沿って延びている。第2の針状電極3の先端部3aは、貫通孔1a内で第1の針状電極2の第1の先端部2aと離れて対向している。 As described with reference to FIGS. 1 and 2, the second needle-like electrode 3 is located on an extension line in the extending direction of the first needle-like electrode 2 and extends along the extension line. The tip portion 3a of the second needle electrode 3 is opposed to the first tip portion 2a of the first needle electrode 2 in the through hole 1a.
 第1および第2の針状電極2、3は、第1および第2の針状電極2、3の間で放電を生じさせてイオンを発生するように構成されている。これらの第1および第2の針状電極2、3の双方は、貫通孔1aの中心線に沿って配置されている。 The first and second needle- like electrodes 2 and 3 are configured to generate ions by generating a discharge between the first and second needle- like electrodes 2 and 3. Both the first and second needle- like electrodes 2 and 3 are arranged along the center line of the through hole 1a.
 正イオン発生部120における第1の針状電極2の延長線と負イオン発生部130における第1の針状電極2の延長線とが平行となるように各第1の針状電極2が配置されている。 Each first needle electrode 2 is arranged so that the extension line of the first needle electrode 2 in the positive ion generator 120 and the extension line of the first needle electrode 2 in the negative ion generator 130 are parallel to each other. Has been.
 イオン発生素子10においては、直方体状の正イオン発生部120の貫通孔1aと直方体状の負イオン発生部130の貫通孔1aとが平行に並んでいる。正イオン発生部120の貫通孔1aと負イオン発生部130の貫通孔1aとの間には、所定の間隙1bが設けられている。イオン発生素子10の骨格は、樹脂成型品の枠体1により構成されている。 In the ion generating element 10, the through-hole 1a of the rectangular parallelepiped positive ion generator 120 and the through-hole 1a of the rectangular parallelepiped negative ion generator 130 are arranged in parallel. A predetermined gap 1 b is provided between the through hole 1 a of the positive ion generator 120 and the through hole 1 a of the negative ion generator 130. The skeleton of the ion generating element 10 is composed of a frame 1 made of a resin molded product.
 主に図7および図10を参照して、正イオン発生部120の第1の針状電極2は、第1電極基板141を貫通するように設けられている。第1電極基板141の一方の主面側に突出している第1の針状電極2の先端部2aは、枠体1を貫通して開口1a内に位置している。第1電極基板141の他方の主面側に突出している第1の針状電極2の根元部は、第1電極基板141の他方の主面上に設けられた第1コネクタ184と電気的に接続されている。第1電極基板141および第1コネクタ184は、枠体1の他方端の空洞部内に収容されている。 Referring mainly to FIG. 7 and FIG. 10, the first needle electrode 2 of the positive ion generator 120 is provided so as to penetrate the first electrode substrate 141. The distal end portion 2a of the first needle-like electrode 2 protruding to the one main surface side of the first electrode substrate 141 passes through the frame body 1 and is located in the opening 1a. The base portion of the first needle electrode 2 protruding to the other main surface side of the first electrode substrate 141 is electrically connected to the first connector 184 provided on the other main surface of the first electrode substrate 141. It is connected. The first electrode substrate 141 and the first connector 184 are accommodated in the cavity at the other end of the frame body 1.
 負イオン発生部130の第1の針状電極2は、第2電極基板171を貫通するように設けられている。第2電極基板171の一方の主面側に突出している第1の針状電極2の先端部2aは、枠体1を貫通して開口1a内に位置している。第2電極基板171の他方の主面側に突出している第1の針状電極2の根元部は、第2電極基板171の他方の主面上に設けられた第2コネクタ187と電気的に接続されている。第2電極基板171および第2コネクタ187は、枠体1の他方端の空洞部内に収容されている。 The first needle electrode 2 of the negative ion generator 130 is provided so as to penetrate the second electrode substrate 171. The distal end portion 2a of the first needle-like electrode 2 protruding to one main surface side of the second electrode substrate 171 passes through the frame body 1 and is located in the opening 1a. The base portion of the first needle electrode 2 protruding to the other main surface side of the second electrode substrate 171 is electrically connected to the second connector 187 provided on the other main surface of the second electrode substrate 171. It is connected. The second electrode substrate 171 and the second connector 187 are accommodated in the cavity at the other end of the frame 1.
 正イオン発生部120の第2の針状電極3と負イオン発生部130の第2の針状電極3との各々は、第3電極基板151を貫通するように設けられている。第3電極基板151の主面上には、図示しない導電パターンが設けられている。本実施の形態においては、正イオン発生部120の第2の針状電極3と負イオン発生部130の第2の針状電極3とが、導電パターンにより互いに接続されて同電位を有している。導電パターンは、第3電極基板151の主面上に設けられた第3コネクタ152と電気的に接続されている。 Each of the second needle-like electrode 3 of the positive ion generator 120 and the second needle-like electrode 3 of the negative ion generator 130 is provided so as to penetrate the third electrode substrate 151. A conductive pattern (not shown) is provided on the main surface of the third electrode substrate 151. In the present embodiment, the second needle electrode 3 of the positive ion generator 120 and the second needle electrode 3 of the negative ion generator 130 are connected to each other by a conductive pattern and have the same potential. Yes. The conductive pattern is electrically connected to the third connector 152 provided on the main surface of the third electrode substrate 151.
 第3電極基板151および第3コネクタ152は、枠体1の一方端の空洞部内に収容されている。第3コネクタ152の先端は、枠体1に設けられた間隙1bに面している。 The third electrode substrate 151 and the third connector 152 are accommodated in a cavity at one end of the frame 1. The tip of the third connector 152 faces the gap 1 b provided in the frame body 1.
 図6を参照して、上部筐体111内において、第1ダクト117および第2ダクト118の側方に、電源回路ユニット11および制御部12が設けられている。 Referring to FIG. 6, the power supply circuit unit 11 and the control unit 12 are provided in the upper casing 111 on the sides of the first duct 117 and the second duct 118.
 制御部12は、図示しない制御基板および電源部などを含む。電源部は、図6に示すように下部筐体112の下部から引き出されて商用電源に接続されるAC(alternating current)コード90と図示しない配線により接続されて、交流電流を供給可能である。制御部12は、第1ダクト117および第2ダクト118に固定されている。 The control unit 12 includes a control board and a power supply unit (not shown). As shown in FIG. 6, the power supply unit is connected to an AC (alternating current) cord 90 that is pulled out from the lower portion of the lower housing 112 and connected to a commercial power supply, and can supply an alternating current. The control unit 12 is fixed to the first duct 117 and the second duct 118.
 電源回路ユニット11は、イオン発生素子10と電気的に接続されることにより、正イオン発生部120の第1の針状電極2に正電圧を印加し、かつ負イオン発生部130の第1の針状電極2に負電圧を印加可能である。また電源回路ユニット11は、正イオン発生部120および負イオン発生部130の各々の第2の針状電極3に0電位を印加可能である。これにより、正イオン発生部120および負イオン発生部130の各々の第1の針状電極2は放電電極に対応し、正イオン発生部120および負イオン発生部130の各々の第2の針状電極3は誘導電極に対応する。 The power supply circuit unit 11 is electrically connected to the ion generating element 10, thereby applying a positive voltage to the first needle electrode 2 of the positive ion generating unit 120 and the first ion generating unit 130. A negative voltage can be applied to the needle electrode 2. The power supply circuit unit 11 can apply a zero potential to each second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130. Accordingly, the first needle-like electrodes 2 of each of the positive ion generator 120 and the negative ion generator 130 correspond to the discharge electrodes, and the second needle-like of each of the positive ion generator 120 and the negative ion generator 130. The electrode 3 corresponds to an induction electrode.
 具体的には、図7を参照して、電源回路ユニット11は、第1コネクタ184と接続される第1端子11aと、第2コネクタ187と接続される第2端子11bとを有している。第1端子11aおよび第1コネクタ184を経由して、電源回路ユニット11から正イオン発生部120の第1の針状電極2に正電圧が印加可能である。第2端子11bおよび第2コネクタ187を経由して、電源回路ユニット11から負イオン発生部130の第2の針状電極2に負電圧が印加可能である。 Specifically, referring to FIG. 7, power supply circuit unit 11 has a first terminal 11 a connected to first connector 184 and a second terminal 11 b connected to second connector 187. . A positive voltage can be applied from the power supply circuit unit 11 to the first needle electrode 2 of the positive ion generator 120 via the first terminal 11 a and the first connector 184. A negative voltage can be applied from the power supply circuit unit 11 to the second needle electrode 2 of the negative ion generator 130 via the second terminal 11b and the second connector 187.
 電源回路ユニット11は、昇圧トランス17(図12)の2次巻線に接続された第3端子153を有している。第3端子153は、導線185により第3コネクタ152と電気的に接続されている。 The power supply circuit unit 11 has a third terminal 153 connected to the secondary winding of the step-up transformer 17 (FIG. 12). The third terminal 153 is electrically connected to the third connector 152 by a conducting wire 185.
 第1コネクタ184と第1端子11a、第2コネクタ187と第2端子11b、および、第3コネクタ152と第3端子153とは、それぞれ着脱可能に接続されている。それにより、イオン発生素子10が第1ダクト117および第2ダクト118に着脱自在に装着されている。 The first connector 184 and the first terminal 11a, the second connector 187 and the second terminal 11b, and the third connector 152 and the third terminal 153 are detachably connected to each other. Thereby, the ion generating element 10 is detachably attached to the first duct 117 and the second duct 118.
 図11を参照して、上部筐体111が下部筐体112から取り外された状態で、イオン発生素子10を第1ダクト117および第2ダクト118に着脱することが可能である。 Referring to FIG. 11, ion generating element 10 can be attached to and detached from first duct 117 and second duct 118 in a state where upper casing 111 is detached from lower casing 112.
 第1ダクト117の上側の壁部には、イオン発生素子10を着脱するための第1開口117aが設けられている。また、第1ダクト117の上側の壁部には、第1開口117aと対向する位置に、イオン発生素子10を着脱するための開口117bが設けられている。 A first opening 117 a for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the first duct 117. In addition, an opening 117b for attaching / detaching the ion generating element 10 is provided in a position facing the first opening 117a in the upper wall portion of the first duct 117.
 同様に、第2ダクト118の上側の壁部には、第1開口117aと連続するように延在する、イオン発生素子10を着脱するための図示しない第2開口が設けられている。また、第2ダクト118の上側の壁部には、第2開口と対向する位置に、イオン発生素子10を着脱するための開口が設けられている。 Similarly, a second opening (not shown) for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the second duct 118 so as to extend continuously from the first opening 117a. In addition, an opening for attaching and detaching the ion generating element 10 is provided in the upper wall portion of the second duct 118 at a position facing the second opening.
 イオン発生素子10を第1ダクト117および第2ダクト118に対して矢印60で示す方向に移動させることにより、イオン発生素子10を第1ダクト117および第2ダクト118に着脱することが可能である。 The ion generating element 10 can be attached to and detached from the first duct 117 and the second duct 118 by moving the ion generating element 10 in the direction indicated by the arrow 60 with respect to the first duct 117 and the second duct 118. .
 図6を参照して、イオン発生素子10が第1ダクト117および第2ダクト118に装着された状態において、負イオン発生部130が第1開口117aに挿通されており、負イオン発生部130の第1および第2の針状電極2、3が第1流路の横断面における両端に互いに離れて位置している。なお、負イオン発生部130の第1および第2の針状電極2、3は、必ずしも第1流路の横断面における両端に位置しなくてもよく、少なくとも第1流路内に位置していればよい。 Referring to FIG. 6, in a state where ion generation element 10 is attached to first duct 117 and second duct 118, negative ion generation unit 130 is inserted through first opening 117 a, and negative ion generation unit 130 The first and second needle- like electrodes 2 and 3 are located away from each other at both ends in the cross section of the first flow path. The first and second acicular electrodes 2 and 3 of the negative ion generator 130 do not necessarily have to be located at both ends in the cross section of the first flow path, and are at least located in the first flow path. Just do it.
 また、正イオン発生部120が第2開口に挿通されており、正イオン発生部120の第1および第2の針状電極2、3が第2流路の横断面における両端に互いに離れて位置している。なお、正イオン発生部120の第1および第2の針状電極2、3は、必ずしも第2流路の横断面における両端に位置しなくてもよく、少なくとも第2流路内に位置していればよい。 The positive ion generator 120 is inserted through the second opening, and the first and second needle- like electrodes 2 and 3 of the positive ion generator 120 are positioned away from each other at both ends of the cross section of the second flow path. is doing. The first and second acicular electrodes 2 and 3 of the positive ion generator 120 do not necessarily have to be located at both ends in the cross section of the second flow path, and are at least located in the second flow path. Just do it.
 このように、イオン発生素子10を第1ダクト117および第2ダクト118に装着することにより、別々の流路に正イオン発生部120と負イオン発生部130とを配置することができる。また、負イオン発生部130の貫通孔1aにより第1流路の一部を構成することができる。同様に、正イオン発生部120の貫通孔1aにより第2流路の一部を構成することができる。 Thus, by attaching the ion generating element 10 to the first duct 117 and the second duct 118, the positive ion generating part 120 and the negative ion generating part 130 can be arranged in separate flow paths. In addition, a part of the first flow path can be configured by the through hole 1 a of the negative ion generation unit 130. Similarly, a part of the second flow path can be constituted by the through-hole 1a of the positive ion generator 120.
 図11を参照して、電源回路ユニット11は、制御部12に対して矢印70で示す方向に移動させられることにより取り外し可能に接続されている。すなわち、電源回路ユニット11は、第1ダクト117および第2ダクト118に着脱自在に装着されている。具体的には、電源回路ユニット11および制御部12の各々が、互いに取り外し可能に係合する端子部を有している。 Referring to FIG. 11, power supply circuit unit 11 is detachably connected by being moved in the direction indicated by arrow 70 with respect to control unit 12. That is, the power supply circuit unit 11 is detachably attached to the first duct 117 and the second duct 118. Specifically, each of the power supply circuit unit 11 and the control unit 12 has a terminal portion that is detachably engaged with each other.
 上記のように、イオン発生素子10と電源回路ユニット11と制御部12とを互いに接続することにより、電源回路が構成されている。 As described above, a power supply circuit is configured by connecting the ion generating element 10, the power supply circuit unit 11, and the control unit 12 to each other.
 次に、イオン発生素子10と電源回路ユニット11と制御部12とを互いに接続することにより構成される電源回路の構成について図12を用いて説明する。 Next, the configuration of a power supply circuit configured by connecting the ion generating element 10, the power supply circuit unit 11, and the control unit 12 to each other will be described with reference to FIG.
 図12を参照して、電源回路ユニット11は、昇圧トランス17を有している。また、電源回路ユニット11は、昇圧トランス17の1次側と制御部12の電源部との間に接続された電源回路を有している。 Referring to FIG. 12, the power supply circuit unit 11 has a step-up transformer 17. Further, the power supply circuit unit 11 has a power supply circuit connected between the primary side of the step-up transformer 17 and the power supply unit of the control unit 12.
 昇圧トランス17の2次側に、ダイオード18およびダイオード19が並列に接続されている。昇圧トランス17の2次側からは、商用交流電圧を昇圧した昇圧交流電圧が、ダイオード18およびダイオード19から出力される。 A diode 18 and a diode 19 are connected in parallel to the secondary side of the step-up transformer 17. From the secondary side of the step-up transformer 17, a step-up AC voltage obtained by boosting the commercial AC voltage is output from the diode 18 and the diode 19.
 ダイオード18のカソード端子は、正イオン発生部120の第1の針状電極2と電気的に接続されている。この結果、昇圧トランス17の2次側から出力される昇圧交流電圧の正電圧が正イオン発生部120の第1の針状電極2に印加可能である。 The cathode terminal of the diode 18 is electrically connected to the first needle electrode 2 of the positive ion generator 120. As a result, the positive voltage of the step-up AC voltage output from the secondary side of the step-up transformer 17 can be applied to the first needle electrode 2 of the positive ion generator 120.
 ダイオード19のアノード端子は、負イオン発生部130の第1の針状電極2と電気的に接続されている。この結果、昇圧トランス17の2次側から出力される昇圧交流電圧の負電圧が負イオン発生部130の第1の針状電極2に印加可能である。 The anode terminal of the diode 19 is electrically connected to the first needle electrode 2 of the negative ion generator 130. As a result, a negative voltage of the step-up AC voltage output from the secondary side of the step-up transformer 17 can be applied to the first needle electrode 2 of the negative ion generator 130.
 正イオン発生部120および負イオン発生部130の各々の第2の針状電極3には、ともに、昇圧トランス17の2次側の電圧が印加可能である。制御部12の電源部から高電圧が印加されると、正イオン発生部120の第1および第2の針状電極2、3の間でコロナ放電が起こって正イオンが発生する。また負イオン発生部130の第1および第2の針状電極2、3の間でコロナ放電が起こって負イオンが発生する。 A voltage on the secondary side of the step-up transformer 17 can be applied to each second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130. When a high voltage is applied from the power supply unit of the control unit 12, corona discharge occurs between the first and second needle- like electrodes 2 and 3 of the positive ion generation unit 120, and positive ions are generated. Further, corona discharge occurs between the first and second needle- like electrodes 2 and 3 of the negative ion generator 130 to generate negative ions.
 正イオン発生部120の第1および第2の針状電極2、3の間、および負イオン発生部130の第1および第2の針状電極2、3の間の電位差は、3kV以上10kV以下であることが好ましい。電位差が3kVより小さい場合、コロナ放電が生じにくく、イオンを十分に発生させることができない。電位差が10kVより大きい場合、アーク放電が起こる可能性が高くなり、イオン発生装置100が故障する可能性がある。 The potential difference between the first and second acicular electrodes 2 and 3 of the positive ion generator 120 and between the first and second acicular electrodes 2 and 3 of the negative ion generator 130 is 3 kV or more and 10 kV or less. It is preferable that When the potential difference is smaller than 3 kV, corona discharge is difficult to occur and ions cannot be generated sufficiently. When the potential difference is greater than 10 kV, there is a high possibility that arc discharge will occur, and the ion generator 100 may fail.
 本実施の形態においては、正イオン発生部120および負イオン発生部130の各々の第2の針状電極3の電位が0電位とされている。ここで、0電位とは、正イオン発生部および負イオン発生部の各々の第2の針状電極3を接地させる、または正イオン発生部120および負イオン発生部130の各々の第2の針状電極3を電気的に浮かせることにより得られる電位であり、0Vおよび0V近傍を含む。 In the present embodiment, the potential of the second needle electrode 3 of each of the positive ion generator 120 and the negative ion generator 130 is set to zero. Here, the zero potential means that the second needle-like electrode 3 of each of the positive ion generator and the negative ion generator is grounded, or the second needle of each of the positive ion generator 120 and the negative ion generator 130. Potential obtained by electrically floating the electrode 3, and includes 0V and the vicinity of 0V.
 本実施の形態においては、上述の通り、正イオン発生部120および負イオン発生部130の各々の第2の針状電極3を、第3コネクタ152、第3端子153および導線185により接続して0電位にしている。これにより、第1誘導電極150および第2誘導電極160の電位を安定させて、正イオン発生部120および負イオン発生部130における放電を安定させることができる。 In the present embodiment, as described above, the second needle-like electrodes 3 of the positive ion generation unit 120 and the negative ion generation unit 130 are connected by the third connector 152, the third terminal 153, and the conducting wire 185. The potential is 0. Thereby, the electric potential of the 1st induction electrode 150 and the 2nd induction electrode 160 can be stabilized, and the discharge in the positive ion generation part 120 and the negative ion generation part 130 can be stabilized.
 上記の構成により、正イオンの放出と負イオンの放出とは、昇圧交流電圧の半周期毎に交互に行なわれる。なお、本実施の形態においては交流電源を用いたが、直流電源が用いられてもよい。 With the above configuration, the release of positive ions and the release of negative ions are performed alternately every half cycle of the boosted AC voltage. Although an AC power supply is used in this embodiment, a DC power supply may be used.
 イオン発生装置100において、第1流路を上記のように構成することにより、図5の矢印210で示すように吸込口112aから吸い込まれた気体は、矢印210aで示すように送風機構により送風されて第1流路内を上昇して負イオン発生部130を通過し、吹出口113aから矢印210bで示すように吹き出される。その結果、送風機構により送風された気体の一部によって、負イオン発生部の第1および第2の針状電極2、3の間で発生した負イオンが吹出口113aから放出される。 In the ion generator 100, by configuring the first flow path as described above, the gas sucked from the suction port 112a as shown by the arrow 210 in FIG. 5 is blown by the blowing mechanism as shown by the arrow 210a. As a result, the air flows upward through the first flow path, passes through the negative ion generator 130, and is blown out from the outlet 113a as indicated by an arrow 210b. As a result, the negative ions generated between the first and second needle- like electrodes 2 and 3 of the negative ion generator are released from the air outlet 113a by a part of the gas blown by the blower mechanism.
 また第2流路を上記のように構成することにより、図5の矢印220で示すように吸込口112bから吸い込まれた気体は、矢印220aで示すように送風機構により送風されて第2流路内を上昇して正イオン発生部120を通過し、吹出口114aから矢印220bで示すように吹き出される。その結果、送風機構により送風された気体の残部によって、正イオン発生部の第1および第2の針状電極2、3の間で発生した正イオンが吹出口114aから放出される。 Further, by configuring the second flow path as described above, the gas sucked from the suction port 112b as shown by the arrow 220 in FIG. 5 is blown by the blower mechanism as shown by the arrow 220a and the second flow path. It rises inside, passes through the positive ion generator 120, and is blown out from the outlet 114a as indicated by an arrow 220b. As a result, positive ions generated between the first and second needle- like electrodes 2 and 3 of the positive ion generator are released from the outlet 114a by the remaining part of the gas blown by the blower mechanism.
 次に、イオンセンサ(検出部)101による電極交換の表示のための構成およびその制御動作について図5、図13および図14を用いて説明する。 Next, a configuration for electrode exchange display by the ion sensor (detection unit) 101 and a control operation thereof will be described with reference to FIGS.
 図5を参照して、イオンセンサ101は、正イオン発生部120および負イオン発生部130の各々の下流側に配置されており、正イオン発生部120と吹出口114aとの間、および負イオン発生部130と吹出口113aとの間に配置されている。イオンセンサ101は、第1および第2ダクトの壁面に設置されている。このイオンセンサ101は、イオン発生素子10(正イオン発生部120、負イオン発生部130)で生じる放電の有無を検出するためのものである。 Referring to FIG. 5, ion sensor 101 is arranged on the downstream side of each of positive ion generator 120 and negative ion generator 130, between positive ion generator 120 and air outlet 114 a, and negative ions. It arrange | positions between the generating part 130 and the blower outlet 113a. The ion sensor 101 is installed on the wall surfaces of the first and second ducts. The ion sensor 101 is for detecting the presence or absence of discharge generated in the ion generation element 10 (positive ion generation unit 120, negative ion generation unit 130).
 図13を参照して、このイオンセンサ101には制御部102が電気的に接続されており、制御部102には表示部103が電気的に接続されている。制御部102は、イオンセンサ101の検出結果から放電の有無を判断し、その判断結果に基づいた信号を出力するためのものである。具体的には、制御部102は、イオンセンサ101の出力が所定値以下になった場合、イオンの発生量が減少し規定以下になった(この状態を「放電が止まった」と表現する)と判断する。 Referring to FIG. 13, a control unit 102 is electrically connected to the ion sensor 101, and a display unit 103 is electrically connected to the control unit 102. The control unit 102 determines whether or not there is a discharge from the detection result of the ion sensor 101 and outputs a signal based on the determination result. Specifically, when the output of the ion sensor 101 is equal to or lower than a predetermined value, the control unit 102 reduces the amount of generated ions to be lower than a specified value (this state is expressed as “discharge stopped”). Judge.
 表示部103は、制御部102で放電が無いと判断された結果を受けて電極交換の表示を行うためのものである。この表示部103は使用者の目に触れるように筺体110の外側に配置されており、たとえば点滅可能なランプからなっている。 The display unit 103 is for displaying an electrode exchange in response to a result determined by the control unit 102 that there is no discharge. The display unit 103 is disposed outside the housing 110 so as to be in contact with the user's eyes, and includes, for example, a blinkable lamp.
 図14を参照して、制御動作においては、まずイオンセンサ101によりイオン発生素子10(正イオン発生部120、負イオン発生部130)で生じる放電の有無が検出される(ステップS1)。このイオンセンサ101からの検出信号が制御部102に入力される。制御部102では、イオンセンサ101の検出信号に基づいてイオン発生素子10(正イオン発生部120、負イオン発生部130)で放電があったか否かの判断がなされる(ステップS2)。 Referring to FIG. 14, in the control operation, first, the ion sensor 101 detects the presence or absence of a discharge generated in the ion generation element 10 (positive ion generation unit 120, negative ion generation unit 130) (step S1). A detection signal from the ion sensor 101 is input to the control unit 102. Based on the detection signal of the ion sensor 101, the control unit 102 determines whether or not the ion generating element 10 (positive ion generating unit 120, negative ion generating unit 130) has been discharged (step S2).
 制御部102で放電があったと判断された場合には、イオンセンサ101からの検出信号に基づく制御部102による判断(ステップS2)が引き続き行われる。制御部102で放電が無いと判断された場合には、制御部102から出力された信号に基づいて表示部103にて電極交換の表示がなされる(ステップS3)。具体的には、表示部103のランプ(不図示)を点滅させることで、使用者に電極ユニットの交換を促す。このようにして表示部103における電極交換の表示が行われる。 If the controller 102 determines that a discharge has occurred, the determination by the controller 102 based on the detection signal from the ion sensor 101 (step S2) is continued. If the control unit 102 determines that there is no discharge, the display unit 103 displays electrode replacement based on the signal output from the control unit 102 (step S3). Specifically, the lamp (not shown) of the display unit 103 is blinked to prompt the user to replace the electrode unit. In this way, display of electrode replacement on the display unit 103 is performed.
 次に、本実施の形態の作用効果について説明する。
 まず本実施の形態においては、第1の針状電極2の延長線上に第2の針状電極3が配置され、かつ第1の針状電極2の第1の先端部2aと第2の針状電極3の第2の先端部3aとが互いに離れて対向している。これにより、第1および第2の針状電極2、3の間で生じる放電により第1および第2の針状電極2、3の双方が消耗することで、第1および第2の先端部2a、3aの距離が拡大して放電が停止するように構成されている。このような構成とすることで、第1および第2の先端部2a、3aの間隔などを調整することでイオン発生の持続期間を容易に制御することができる。
Next, the effect of this Embodiment is demonstrated.
First, in the present embodiment, the second needle-like electrode 3 is disposed on the extended line of the first needle-like electrode 2, and the first tip portion 2a of the first needle-like electrode 2 and the second needle The second tip 3a of the electrode 3 is opposed to each other. Thus, both the first and second needle- like electrodes 2 and 3 are consumed by the discharge generated between the first and second needle- like electrodes 2 and 3, so that the first and second tip portions 2 a are consumed. The distance 3a is increased to stop the discharge. By setting it as such a structure, the duration of ion generation can be easily controlled by adjusting the space | interval etc. of the 1st and 2nd front-end | tip parts 2a and 3a.
 また第1および第2の針状電極2、3の各々は貫通孔1aの中心線A-Aに沿って配置されているため、風路に対するイオンの分布を均一にすることが容易となる。また第1および第2の針状電極2、3は貫通孔1aの中心線A-Aに沿って配置されているため、第1および第2の針状電極2、3が中心線A-Aに対して片寄って配置される場合よりもイオンが風路壁面に衝突して消滅するという現象が起き難くなる。 Further, since each of the first and second needle- like electrodes 2 and 3 is arranged along the center line AA of the through hole 1a, it is easy to make the ion distribution uniform with respect to the air path. Further, since the first and second needle- like electrodes 2 and 3 are disposed along the center line AA of the through hole 1a, the first and second needle- like electrodes 2 and 3 are arranged along the center line AA. The phenomenon that ions collide with the airway wall surface and disappear is more difficult than in the case where they are arranged away from each other.
 また第1および第2の針状電極2、3の双方が針状の形状を有している。このため、電極を板状またはリング状に形成する場合に比べて、対向する電極同士間に強い電界を集中させることができる。そのため、放電に必要な印加電圧の増加を抑制しつつ、第1の針状電極2と第2の針状電極3との間の距離Dを大きくすることができる。これにより、第1の針状電極2と第2の針状電極3との間の距離Dが小さい場合に比べて、第1の針状電極2(たとえば放電電極)の近傍で発生したイオンを第2の針状電極3側(たとえば誘導電極側)に吸収されにくくすることができる。具体的には、第1の針状電極2と第2の針状電極3との距離Dが大きいため、第1の針状電極2の近傍で発生したイオンが第2の針状電極3に吸収される前に、そのイオンを電極間を通過する風によって運ぶことができる。その結果、イオンを効率よく発生させることができる。 Further, both the first and second needle electrodes 2 and 3 have a needle shape. For this reason, compared with the case where an electrode is formed in plate shape or ring shape, a strong electric field can be concentrated between electrodes which oppose. Therefore, the distance D between the first needle-like electrode 2 and the second needle-like electrode 3 can be increased while suppressing an increase in the applied voltage necessary for the discharge. Thereby, compared with the case where the distance D between the first acicular electrode 2 and the second acicular electrode 3 is small, ions generated in the vicinity of the first acicular electrode 2 (for example, the discharge electrode) are reduced. It can be made hard to be absorbed by the 2nd acicular electrode 3 side (for example, induction electrode side). Specifically, since the distance D between the first acicular electrode 2 and the second acicular electrode 3 is large, ions generated in the vicinity of the first acicular electrode 2 enter the second acicular electrode 3. Before being absorbed, the ions can be carried by the wind passing between the electrodes. As a result, ions can be generated efficiently.
 仮に第1および第2の針状電極2、3の各々の先端が針状になっている場合には、放電による電極の針状先端が消耗することにより先端の大きさ(径)が変わり放電が安定しない。これに対して本実施の形態においては、第1および第2の針状電極2、3の各々は、針状の形状(たとえば径の微細な円柱形状)を有している。このため、放電によって電極の先端が消耗しても先端の大きさ(径)は変化しないため放電を安定させることができる。 If the tip of each of the first and second needle- like electrodes 2 and 3 is needle-like, the size (diameter) of the tip changes as the needle-like tip of the electrode due to discharge wears out and discharges. Is not stable. On the other hand, in the present embodiment, each of the first and second needle- like electrodes 2 and 3 has a needle-like shape (for example, a cylindrical shape having a fine diameter). For this reason, since the size (diameter) of the tip does not change even if the tip of the electrode is consumed by the discharge, the discharge can be stabilized.
 また図3および図4に示すように第1の針状電極2の径D1は第2の針状電極3の径D2よりも大きい。このため、径の大きい第1の針状電極2の第1の先端部2a以外の外周部からの放電を抑制することができる。 As shown in FIGS. 3 and 4, the diameter D1 of the first needle-like electrode 2 is larger than the diameter D2 of the second needle-like electrode 3. For this reason, the discharge from outer peripheral parts other than the 1st front-end | tip part 2a of the 1st acicular electrode 2 with a large diameter can be suppressed.
 また第1の針状電極2の直径が0.1mm以上0.4mm以下である。これにより、第1の針状電極2の消耗に要する時間とイオン発生の性能への影響とのバランスを良好にすることができる。 Further, the diameter of the first needle electrode 2 is 0.1 mm or more and 0.4 mm or less. Thereby, the balance between the time required for the consumption of the first needle-like electrode 2 and the influence on the performance of ion generation can be improved.
 また第1の針状電極2と第2の針状電極3との間の距離Dは、15mm以上200mm以下であることが好ましい。電極間距離Dが15mmより小さい場合、アーク放電が起こりやすくなり、オゾンガスが高い濃度で発生する可能性がある。また、電極同士が近くに位置するため、第1の針状電極2の近傍で発生したイオンにおいて、第2の針状電極3に吸収される割合が多くなる。すなわち、イオンの発生効率が低下する。また電極間距離が200mmより大きい場合、コロナ放電が、第1の針状電極2と第2の針状電極3との間ではなく、電極の近傍に存在する他の物体と電極との間で生じやすくなる。たとえば、第2の針状電極3より近くに存在する枠体1の内壁と第1の針状電極2との間でコロナ放電が生じて、イオンの発生効率が低下することがある。 Further, the distance D between the first needle-like electrode 2 and the second needle-like electrode 3 is preferably 15 mm or more and 200 mm or less. When the interelectrode distance D is less than 15 mm, arc discharge is likely to occur, and ozone gas may be generated at a high concentration. Further, since the electrodes are located close to each other, the proportion of ions generated in the vicinity of the first acicular electrode 2 is absorbed by the second acicular electrode 3 is increased. That is, the ion generation efficiency decreases. When the distance between the electrodes is larger than 200 mm, corona discharge is not generated between the first needle-like electrode 2 and the second needle-like electrode 3 but between another object existing near the electrode and the electrode. It tends to occur. For example, corona discharge may occur between the inner wall of the frame 1 that exists near the second needle-like electrode 3 and the first needle-like electrode 2, and the ion generation efficiency may be reduced.
 本実施の形態のイオン発生装置100によれば、イオンセンサ101で放電を検出した結果に基づいて表示部103に電極交換の表示を出すことができるため、使用者は適切な時期に電極の交換を行うことができる。つまり本実施の形態のイオン発生装置100によれば、一定時間までは放電性能を持続させ、それ以降は放電が止まってしまう構造が実現でき、その放電の終了を検出すれば、使用者に電極の交換を知らせ、常に良い性能が得られる状態で使ってもらうことができる。 According to the ion generating apparatus 100 of the present embodiment, since the display of electrode replacement can be displayed on the display unit 103 based on the result of detecting discharge by the ion sensor 101, the user can replace the electrode at an appropriate time. It can be performed. That is, according to the ion generating apparatus 100 of the present embodiment, it is possible to realize a structure in which the discharge performance is maintained for a certain time and the discharge stops thereafter, and if the end of the discharge is detected, the electrode is provided to the user. Can be used in a state where good performance is always obtained.
 また正イオンと負イオンとをそれぞれ別々の流路を通過させて放出することにより、流路内における正イオンと負イオンとの中和または再結合を抑制して、第1ダクト117および第2ダクト118内において消滅するイオンの数を低減することができる。 Further, by discharging positive ions and negative ions through separate flow paths, neutralization or recombination of positive ions and negative ions in the flow paths is suppressed, and the first duct 117 and the second duct are suppressed. The number of ions that disappear in the duct 118 can be reduced.
 よって、イオン発生装置100から離れた位置まで十分な数の正イオンおよび負イオンを供給して、正イオンと負イオンとを広範囲の空間に高密度で混在させることができる。正イオンをH+(H2O)m(mは任意の自然数)、負イオンをO2 -(H2O)n(nは任意の自然数)とする場合には、正イオンおよび負イオンが浮遊細菌の表面に付着して過酸化水素(H22)または水酸基ラジカル(・OH)などの活性種を生成させ、その働きにより殺菌効果を得られる。 Therefore, it is possible to supply a sufficient number of positive ions and negative ions to a position away from the ion generator 100 and to mix the positive ions and negative ions in a wide range of space with high density. When positive ions are H + (H 2 O) m (m is an arbitrary natural number) and negative ions are O 2 (H 2 O) n (n is an arbitrary natural number), positive ions and negative ions are It attaches to the surface of airborne bacteria to generate active species such as hydrogen peroxide (H 2 O 2 ) or hydroxyl radical (.OH), and a bactericidal effect can be obtained by its action.
 このように正イオンおよび負イオンを空気中に放出させることで、空気中に浮遊するカビ菌またはウィルスの分解、ニオイの除去、集塵などの効果を得ることができる。 By releasing positive ions and negative ions into the air in this way, effects such as decomposition of fungi or viruses floating in the air, removal of odors, and dust collection can be obtained.
 イオン発生装置100においては、使用時間の経過により放電電極が劣化した場合に、イオン発生素子10を電源回路ユニット11から取り外して容易に交換することができる。また、電源回路ユニット11が劣化した場合に、電源回路ユニット11を制御部12から取り外して容易に交換することができる。 In the ion generator 100, when the discharge electrode deteriorates with the passage of time of use, the ion generating element 10 can be removed from the power supply circuit unit 11 and easily replaced. Further, when the power supply circuit unit 11 is deteriorated, the power supply circuit unit 11 can be removed from the control unit 12 and easily replaced.
 以下、比較例のイオン発生装置と参考例のイオン発生装置とから放出されたイオンの濃度分布を比較した実験例1について説明する。 Hereinafter, Experimental Example 1 in which the concentration distributions of ions emitted from the ion generator of the comparative example and the ion generator of the reference example are compared will be described.
 (実験例1)
 図15および図16に示すように、長さ604mm、幅34mmの流路を有する共通ダクト900内に、図示しないクロスフローファンにより電極上で5m/secとなる流速で空気を送風した。
(Experimental example 1)
As shown in FIGS. 15 and 16, air was blown into the common duct 900 having a flow path having a length of 604 mm and a width of 34 mm on the electrode by a cross flow fan (not shown) at a flow rate of 5 m / sec.
 図15に示すように、参考例においては、共通ダクト900の上部中央に、長さ103mm、幅34mmの流路を有する第1ダクト217と、第1ダクト217との間に20mmの間隔を置いて、長さ103mm、幅34mmの流路を有する第2ダクト218とを設けた。互いに反対側に位置して対向する第1ダクト217の外壁と第2ダクト218の外壁との距離を245mmとした。 As shown in FIG. 15, in the reference example, an interval of 20 mm is placed between the first duct 217 having a flow path having a length of 103 mm and a width of 34 mm in the upper center of the common duct 900 and the first duct 217. The second duct 218 having a flow path having a length of 103 mm and a width of 34 mm was provided. The distance between the outer wall of the first duct 217 and the outer wall of the second duct 218 that are positioned opposite to each other and facing each other was 245 mm.
 第1ダクト217の第2ダクト218側とは反対側の内壁から11.5mm突出する第1の針状電極240を設けた。第1ダクト217の第2ダクト218側の内壁から第1の針状電極240と対向するように11.5mm突出する第2の針状電極250を設けた。第1の針状電極240の先端と第2の針状電極250の先端との距離は80mmとした。 The first needle-like electrode 240 protruding 11.5 mm from the inner wall of the first duct 217 opposite to the second duct 218 side was provided. A second needle-like electrode 250 projecting 11.5 mm was provided so as to face the first needle-like electrode 240 from the inner wall of the first duct 217 on the second duct 218 side. The distance between the tip of the first needle electrode 240 and the tip of the second needle electrode 250 was 80 mm.
 第2ダクト218の第1ダクト217側とは反対側の内壁から11.5mm突出する第1の針状電極270を設けた。第2ダクト218の第1ダクト217側の内壁から第1の針状電極270と対向するように11.5mm突出する第2の針状電極260を設けた。第1の針状電極270の先端と第2の針状電極260の先端との距離は80mmとした。 The first needle-like electrode 270 protruding 11.5 mm from the inner wall of the second duct 218 opposite to the first duct 217 side was provided. A second needle electrode 260 protruding 11.5 mm was provided so as to face the first needle electrode 270 from the inner wall of the second duct 218 on the first duct 217 side. The distance between the tip of the first needle electrode 270 and the tip of the second needle electrode 260 was 80 mm.
 図16~図18に示す比較例のイオン発生部800と条件を近づけるために、図15に示すように、第1ダクト217内の第1の針状電極240および第2の針状電極250を、第1ダクト217の経路方向(幅方向)の一方側に偏って位置させた。具体的には、第1ダクト217の一方端と他方端との間の経路方向の一方端から8mmの位置に第1の針状電極240および第2の針状電極250の各中心軸が位置するように、第1の針状電極240および第2の針状電極250を配置した。 In order to bring the conditions closer to those of the ion generator 800 of the comparative example shown in FIGS. 16 to 18, the first needle electrode 240 and the second needle electrode 250 in the first duct 217 are connected as shown in FIG. The first duct 217 is positioned so as to be biased to one side in the path direction (width direction). Specifically, the central axes of the first acicular electrode 240 and the second acicular electrode 250 are positioned at a position 8 mm from one end in the path direction between the one end and the other end of the first duct 217. Thus, the first acicular electrode 240 and the second acicular electrode 250 were arranged.
 同様に、第2ダクト218内の第1の針状電極270および第2の針状電極260を、第2ダクト218の経路方向(幅方向)の一方側に偏って位置させた。具体的には、第2ダクト218の一方端と他方端との間の経路方向の一方端から8mmの位置に第1の針状電極270および第2の針状電極260の各中心軸が位置するように、第1の針状電極270および第2の針状電極260を配置した。 Similarly, the first needle-like electrode 270 and the second needle-like electrode 260 in the second duct 218 were positioned so as to be biased toward one side in the path direction (width direction) of the second duct 218. Specifically, the central axes of the first needle-like electrode 270 and the second needle-like electrode 260 are located at a position 8 mm from one end in the path direction between the one end and the other end of the second duct 218. Thus, the first acicular electrode 270 and the second acicular electrode 260 were arranged.
 図16~18に示すように、比較例においては、共通ダクト900の上部中央に、長さ235.5mm、幅34mmの流路を有するダクト910を設けた。共通ダクト900内に、図示しないクロスフローファンにより電極上で5m/secとなる流速で空気を送風した。ダクト910の幅方向の一方側の内壁にイオン発生部800を配置した。 16 to 18, in the comparative example, a duct 910 having a channel having a length of 235.5 mm and a width of 34 mm is provided at the upper center of the common duct 900. Air was blown into the common duct 900 at a flow rate of 5 m / sec on the electrode by a cross flow fan (not shown). The ion generating part 800 was arranged on the inner wall on one side in the width direction of the duct 910.
 イオン発生部800は、電源回路部850(図18)から突出した第1の針状電極810と、第2の針状電極820とを含んでいる。第1および第2の針状電極810、820は互いに間隔を置いて平行に位置している。またイオン発生部800は、第1の針状電極810の先端と所定の間隔を置いて対向する円環状の第1誘導電極830と、第2の針状電極820の先端と所定の間隔を置いて対向する円環状の第2誘導電極840とを含んでいる。 The ion generation unit 800 includes a first needle electrode 810 and a second needle electrode 820 that protrude from the power supply circuit unit 850 (FIG. 18). The first and second needle- like electrodes 810 and 820 are located in parallel with a space therebetween. In addition, the ion generator 800 has a predetermined distance from the tip of the first needle electrode 810 and the tip of the second needle electrode 820 and the annular first induction electrode 830 facing the tip of the first needle electrode 810. And an annular second induction electrode 840 facing each other.
 イオン発生部800は、第1の針状電極810および第2の針状電極820の先端がダクト910内の流路と接するように配置されている。 The ion generator 800 is arranged so that the tips of the first needle electrode 810 and the second needle electrode 820 are in contact with the flow path in the duct 910.
 電源回路部850によって、第1の針状電極810に正の高電圧を印加し、第2の針状電極820に負の高電圧を印加して、第1誘導電極830および第2誘導電極840を接地電位に固定することにより、第1の針状電極810の先端近傍から正イオンを、第2の針状電極820の先端近傍から負イオンを発生させた。 The power supply circuit unit 850 applies a positive high voltage to the first needle electrode 810 and a negative high voltage to the second needle electrode 820, so that the first induction electrode 830 and the second induction electrode 840 are applied. Was fixed to the ground potential, positive ions were generated from the vicinity of the tip of the first needle electrode 810 and negative ions were generated from the vicinity of the tip of the second needle electrode 820.
 図19は、図15に示す参考例にて第1ダクト217および第2ダクト218の上方において電極から250mm離れた位置で計測された正イオンの濃度分布を示すグラフである。図20は、参考例にて第1ダクト217および第2ダクト218の上方において電極から1m離れた位置で計測された正イオンの濃度分布を示すグラフである。 FIG. 19 is a graph showing the positive ion concentration distribution measured at a position 250 mm away from the electrode above the first duct 217 and the second duct 218 in the reference example shown in FIG. FIG. 20 is a graph showing the concentration distribution of positive ions measured at a position 1 m away from the electrode above the first duct 217 and the second duct 218 in the reference example.
 図21は、図15に示す参考例にて第1ダクト217および第2ダクト218の上方において電極から250mm離れた位置で計測された負イオンの濃度分布を示すグラフである。図22は、参考例にて第1ダクト217および第2ダクト218の上方において電極から1m離れた位置で計測された負イオンの濃度分布を示すグラフである。 FIG. 21 is a graph showing the negative ion concentration distribution measured at a position 250 mm away from the electrode above the first duct 217 and the second duct 218 in the reference example shown in FIG. FIG. 22 is a graph showing the negative ion concentration distribution measured at a position 1 m away from the electrode above the first duct 217 and the second duct 218 in the reference example.
 図23は、図16~図18に示す比較例にてダクト910の上方において電極から250mm離れた位置で計測された正イオンの濃度分布を示すグラフである。図24は、比較例にてダクト910の上方において電極から1m離れた位置で計測された正イオンの濃度分布を示すグラフである。 FIG. 23 is a graph showing the concentration distribution of positive ions measured at a position 250 mm away from the electrode above the duct 910 in the comparative example shown in FIGS. FIG. 24 is a graph showing the concentration distribution of positive ions measured at a position 1 m away from the electrode above the duct 910 in the comparative example.
 図25は、図16~図18に示す比較例にてダクト910の上方において電極から250mm離れた位置で計測された負イオンの濃度分布を示すグラフである。図26は、比較例にてダクト910の上方において電極から1m離れた位置で計測された負イオンの濃度分布を示すグラフである。 FIG. 25 is a graph showing the concentration distribution of negative ions measured at a position 250 mm away from the electrode above the duct 910 in the comparative example shown in FIGS. FIG. 26 is a graph showing the concentration distribution of negative ions measured at a position 1 m away from the electrode above the duct 910 in the comparative example.
 図19~図26においては、縦軸にダクトの幅方向の座標、横軸にダクトの長さ方向の座標を示し、規格化したイオン濃度を等高線で示している。なお、共通ダクト900内の流路の中心位置を座標軸の0としている。 19 to 26, the vertical axis represents the duct width direction coordinate, the horizontal axis represents the duct length direction coordinate, and the normalized ion concentration is represented by contour lines. The center position of the flow path in the common duct 900 is set to 0 on the coordinate axis.
 図19に示すように、参考例にて電極から250mm離れた位置においては、第1ダクト217上の第1の針状電極240側に正イオンの高濃度領域が存在している。図21に示すように、参考例にて電極から250mm離れた位置においては、第2ダクト218上の第1の針状電極270側に負イオンの高濃度領域が存在している。よって、放出直後に正イオンおよび負イオンのほとんどは互いに離れて位置しており、正イオンおよび負イオンの結合消滅が抑制されている。 As shown in FIG. 19, a high concentration region of positive ions exists on the first needle electrode 240 side on the first duct 217 at a position 250 mm away from the electrode in the reference example. As shown in FIG. 21, a high concentration region of negative ions is present on the first needle electrode 270 side on the second duct 218 at a position 250 mm away from the electrode in the reference example. Therefore, most of the positive ions and the negative ions are located away from each other immediately after the release, and the bond annihilation of the positive ions and the negative ions is suppressed.
 図20に示すように、参考例にて電極から1m離れた位置においては、正イオンが共通ダクト900の略中心上から放射状に拡散して存在している。図22に示すように、参考例にて電極から1m離れた位置においては、負イオンが共通ダクト900の略中心上から放射状に拡散して存在している。よって、放出された空間の広範囲の領域において正イオンと負イオンとが混在している。 As shown in FIG. 20, positive ions are diffused radially from substantially the center of the common duct 900 at a position 1 m away from the electrode in the reference example. As shown in FIG. 22, negative ions are diffused radially from substantially the center of the common duct 900 at a position 1 m away from the electrode in the reference example. Therefore, positive ions and negative ions are mixed in a wide area of the released space.
 このように参考例においては、イオン発生装置から離れた位置まで十分な数の正イオンおよび負イオンを供給することができることが確認された。 Thus, in the reference example, it was confirmed that a sufficient number of positive ions and negative ions could be supplied to a position away from the ion generator.
 図23に示すように、比較例にて電極から250mm離れた位置においては、正イオンがダクト910の長さ方向の略中心かつ幅方向の一方側の内壁近傍から放射状に拡散して存在している。図25に示すように、比較例にて電極から250mm離れた位置においては、負イオンがダクト910の長さ方向の略中心かつ幅方向の一方側の内壁近傍から放射状に拡散して存在している。よって、放出直後に正イオンおよび負イオンの多くは互いに結合して消滅する。 As shown in FIG. 23, in the comparative example, at a position 250 mm away from the electrode, positive ions are diffused radially from the vicinity of the inner wall on one side in the width direction and at the approximate center in the length direction of the duct 910. Yes. As shown in FIG. 25, at a position 250 mm away from the electrode in the comparative example, negative ions are diffused radially from the center of the longitudinal direction of the duct 910 and from the vicinity of the inner wall on one side in the width direction. Yes. Therefore, immediately after release, many of the positive ions and negative ions are bonded to each other and disappear.
 図24に示すように、比較例にて電極から1m離れた位置においては、正イオンがダクト910の略中心上から放射状に拡散して存在している。図26に示すように、比較例にて電極から1m離れた位置においては、負イオンがダクト910の略中心上から放射状に拡散して存在している。よって、放出された空間において正イオンと負イオンとは混在している。ただし、放出された正イオンおよび負イオンの濃度は、参考例に比較して低く、また、正イオンおよび負イオンの放出された範囲も参考例に比較して狭かった。 As shown in FIG. 24, positive ions are diffused radially from substantially the center of the duct 910 at a position 1 m away from the electrode in the comparative example. As shown in FIG. 26, in the comparative example, at a position 1 m away from the electrode, negative ions are diffused radially from substantially the center of the duct 910. Therefore, positive ions and negative ions are mixed in the released space. However, the concentration of released positive ions and negative ions was lower than that of the reference example, and the range of released positive ions and negative ions was also narrower than that of the reference example.
 この比較例の場合、正イオンと負イオンとが結合することによる、空気中に浮遊するカビ菌またはウィルスの分解、ニオイの除去、集塵などの効果をさらに向上できる余地がある。 In the case of this comparative example, there is room for further improvement of effects such as decomposition of fungi or viruses floating in the air, removal of odors, dust collection, etc. by combining positive ions and negative ions.
 以下、上記の比較例のイオン発生装置と参考例のイオン発生装置とから放出されたイオンの量を比較した実験例2について説明する。 Hereinafter, Experimental Example 2 in which the amount of ions released from the ion generator of the above comparative example and the ion generator of the reference example is compared will be described.
 (実験例2)
 実験例1で用いた比較例のイオン発生装置(図15)および参考例のイオン発生装置(図16~図18)を用いて、電極から500mmの位置におけるイオンの量を比較した。なお、イオンの量は、共通ダクト900の幅方向において25mm間隔で5点、長さ方向において50mm間隔で7点の格子状に合計35点で計測した。
(Experimental example 2)
Using the ion generator of the comparative example (FIG. 15) and the ion generators of the reference examples (FIGS. 16 to 18) used in Experimental Example 1, the amount of ions at a position 500 mm from the electrode was compared. The amount of ions was measured at a total of 35 points in a lattice shape of 5 points at 25 mm intervals in the width direction of the common duct 900 and 7 points at 50 mm intervals in the length direction.
 以下の表1は、比較例および参考例において、上記35計測点の中で正イオン量の最大値、負イオン量の最大値、および、35計測点におけるイオン量の積分値をまとめたものである。 Table 1 below summarizes the maximum value of the positive ion amount, the maximum value of the negative ion amount, and the integrated value of the ion amount at the 35 measurement points among the 35 measurement points in the comparative example and the reference example. is there.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例における正イオン量の最大値が4.2nA、負イオン量の最大値が3.9nAで、35計測点のイオン量の積分値が39.9nAであった。 As shown in Table 1, the maximum value of the positive ion amount in the comparative example was 4.2 nA, the maximum value of the negative ion amount was 3.9 nA, and the integrated value of the ion amount at 35 measurement points was 39.9 nA.
 参考例における正イオン量の最大値は5.4nAで比較例の129%、負イオン量の最大値は5.1nAで比較例の131%、35計測点のイオン量の積分値が94.1nAで比較例の236%であった。 The maximum positive ion amount in the reference example is 5.4 nA, 129% of the comparative example, the maximum negative ion amount is 5.1 nA, 131% of the comparative example, and the integrated value of the ion amount at 35 measurement points is 94.1 nA. It was 236% of the comparative example.
 上記の実験結果から、参考例のイオン発生装置では、比較例のイオン発生装置に比較して、正イオンおよび負イオンを多く供給できていることが確認できた。また、電極間距離を80mmとすることにより、多くのイオンを供給できることが確認された。 From the above experimental results, it was confirmed that the ion generator of the reference example was able to supply more positive ions and negative ions than the ion generator of the comparative example. Moreover, it was confirmed that many ions can be supplied by setting the distance between electrodes to 80 mm.
 (実験例3)
 図1に示すように第1および第2の針状電極2、3を枠体1の貫通孔1aの中心線に沿って配置した場合の貫通孔1a内に生じる電界ベクトルについて調べた。この電界シミュレーションに用いた条件として、貫通孔1aの長さ、幅、高さをそれぞれ50mm、30mm、30mmとし、第1および第2の針状電極のそれぞれの直径(φ)を0.4mmとし、第1および第2の針状電極のそれぞれの長さを11.75mmとした。これにより、図27に示すような結果が得られた。
(Experimental example 3)
As shown in FIG. 1, the electric field vector generated in the through hole 1 a when the first and second needle- like electrodes 2 and 3 are arranged along the center line of the through hole 1 a of the frame 1 was examined. As conditions used for this electric field simulation, the length, width, and height of the through-hole 1a are 50 mm, 30 mm, and 30 mm, respectively, and the diameter (φ) of each of the first and second needle electrodes is 0.4 mm. The length of each of the first and second acicular electrodes was 11.75 mm. As a result, a result as shown in FIG. 27 was obtained.
 図27に示すように、第1および第2の針状電極2、3の延長線により2等分される貫通孔のそれぞれの空間内において電界がほぼ線対称に分布していることが分かった。このことから、第1および第2の針状電極2、3を枠体1の貫通孔1aの中心線に沿って配置することによって、片寄って配置した場合よりも、風路に対するイオンの分布を均一にすることが容易となるとともに、イオンが風路壁面に衝突し難くなることが分かった。 As shown in FIG. 27, it was found that the electric field was distributed almost line-symmetrically in each space of the through hole divided into two equal parts by the extension lines of the first and second needle- like electrodes 2 and 3. . Therefore, by arranging the first and second needle- like electrodes 2 and 3 along the center line of the through hole 1a of the frame body 1, the distribution of ions with respect to the air path can be more improved than when the first and second needle- like electrodes 2 and 3 are arranged away from each other. It was found that it was easy to make uniform, and it was difficult for ions to collide with the airway wall surface.
 今回開示された実施の形態および実験例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and experimental examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、高電圧発生回路、イオン発生素子を備えたイオン発生装置、携帯型電気機器、電池駆動イオン発生装置などに広く適用され得る。 The present invention can be widely applied to a high voltage generation circuit, an ion generation device including an ion generation element, a portable electric device, a battery-driven ion generation device, and the like.
 1 枠体、1a 貫通孔、1b 間隙、2 第1の針状電極、2a 第1の先端部、3 第2の針状電極、3a 第2の先端部、10 イオン発生素子、11 電源回路ユニット、11a 第1端子、11b 第2端子、12,102 制御部、18,19 ダイオード、17 昇圧トランス、30 モータ、40,41 羽根車、90 コード、100 イオン発生装置、101 イオンセンサ、103 表示部、110 筺体、111 上部筐体、112 下部筐体、112a,112b 吸込口、113,114 吹出筒、113a,114a 吹出口、115,116 防護網、117 第1ダクト、117a 第1開口、117b 開口、118 第2ダクト、120 正イオン発生部、130 負イオン発生部、141 第1電極基板、150,830 第1誘導電極、151 第3電極基板、152 第3コネクタ、153 第3端子、160,840 第2誘導電極、171 第2電極基板、184 第1コネクタ、185 導線、187 第2コネクタ、800 イオン発生部、850 電源回路部、900 共通ダクト、910 ダクト。 1 frame, 1a through-hole, 1b gap, 2nd needle-like electrode, 2a first tip, 3nd needle-like electrode, 3a second tip, 10 ion generating element, 11 power circuit unit , 11a 1st terminal, 11b 2nd terminal, 12,102 control unit, 18, 19 diode, 17 step-up transformer, 30 motor, 40, 41 impeller, 90 cord, 100 ion generator, 101 ion sensor, 103 display unit , 110 housing, 111 upper housing, 112 lower housing, 112a, 112b inlet, 113, 114 outlet cylinder, 113a, 114a outlet, 115, 116 protective net, 117 first duct, 117a first opening, 117b opening , 118 second duct, 120 positive ion generator, 130 negative ion generator, 141 first Polar substrate, 150, 830, first induction electrode, 151, third electrode substrate, 152, third connector, 153, third terminal, 160,840, second induction electrode, 171, second electrode substrate, 184, first connector, 185 conductor, 187 Second connector, 800 ion generator, 850 power circuit, 900 common duct, 910 duct.

Claims (5)

  1.  風路の少なくとも一部を構成する開口部を有する支持部と、
     前記支持部に支持され、かつ前記開口部内に位置する第1の先端部を有する第1の針状電極と、
     前記支持部に支持され、前記第1の針状電極の延びる方向の延長線上に位置し、かつ前記開口部内で前記第1の先端部と離れて対向する第2の先端部を有する第2の針状電極とを備え、
     前記第1および第2の針状電極は前記第1および第2の針状電極の間で放電を生じさせてイオンを発生するように構成されており、かつ前記第1および第2の針状電極は前記開口部の中心線に沿って配置されている、イオン発生素子。
    A support part having an opening part constituting at least a part of the air path;
    A first acicular electrode supported by the support and having a first tip located within the opening;
    A second end portion that is supported by the support portion, is positioned on an extension line in the extending direction of the first needle-like electrode, and has a second tip portion that faces away from the first tip portion within the opening. With a needle-like electrode,
    The first and second acicular electrodes are configured to generate an electric discharge between the first and second acicular electrodes to generate ions, and the first and second acicular electrodes An ion generating element, wherein the electrode is disposed along the center line of the opening.
  2.  前記第1の針状電極の径は前記第2の針状電極の径よりも大きい、請求項1に記載のイオン発生素子。 The ion generating element according to claim 1, wherein a diameter of the first acicular electrode is larger than a diameter of the second acicular electrode.
  3.  前記第1および第2の針状電極は、前記第1および第2の針状電極の間で生じる放電により消耗することで前記第1および第2の先端部の距離が拡大して放電が停止するように構成されている、請求項1または2に記載のイオン発生素子。 The first and second needle-like electrodes are consumed by the discharge generated between the first and second needle-like electrodes, and the distance between the first and second tip portions is increased to stop the discharge. The ion generating element according to claim 1, wherein the ion generating element is configured to.
  4.  前記第1の針状電極の直径が0.1mm以上0.4mm以下である、請求項1~3のいずれかに記載のイオン発生素子。 The ion generating element according to any one of claims 1 to 3, wherein a diameter of the first needle electrode is 0.1 mm or more and 0.4 mm or less.
  5.  請求項1~4のいずれかに記載の前記イオン発生素子と、
     前記イオン発生素子で生じる放電の有無を検出するための検出部と、
     前記検出部で放電が無いと判断した結果を受けて電極交換の表示を行う表示部とを備えた、イオン発生装置。
    The ion generating element according to any one of claims 1 to 4,
    A detection unit for detecting the presence or absence of a discharge generated in the ion generating element;
    An ion generator comprising: a display unit that displays a result of electrode replacement in response to a result of determining that there is no discharge in the detection unit.
PCT/JP2013/077635 2012-10-11 2013-10-10 Ion generating element and ion generating apparatus WO2014058027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225815 2012-10-11
JP2012225815A JP2014078415A (en) 2012-10-11 2012-10-11 Ion generating element and ion generating device

Publications (1)

Publication Number Publication Date
WO2014058027A1 true WO2014058027A1 (en) 2014-04-17

Family

ID=50477492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077635 WO2014058027A1 (en) 2012-10-11 2013-10-10 Ion generating element and ion generating apparatus

Country Status (2)

Country Link
JP (1) JP2014078415A (en)
WO (1) WO2014058027A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214918A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A device for ionization of a fluid
WO2023214916A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method and a device for ionization of a fluid
WO2023214920A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method for ionization of a fluid
WO2023214917A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method for ionization of a fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203292A (en) * 2004-01-19 2005-07-28 Keyence Corp Static eliminator
JP2008226647A (en) * 2007-03-13 2008-09-25 Shishido Seidenki Kk Ion generator
JP2011060537A (en) * 2009-09-09 2011-03-24 Three M Innovative Properties Co Static eliminator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203292A (en) * 2004-01-19 2005-07-28 Keyence Corp Static eliminator
JP2008226647A (en) * 2007-03-13 2008-09-25 Shishido Seidenki Kk Ion generator
JP2011060537A (en) * 2009-09-09 2011-03-24 Three M Innovative Properties Co Static eliminator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214918A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A device for ionization of a fluid
WO2023214916A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method and a device for ionization of a fluid
WO2023214920A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method for ionization of a fluid
WO2023214917A1 (en) * 2022-05-02 2023-11-09 Brairtech Sweden Ab A method for ionization of a fluid

Also Published As

Publication number Publication date
JP2014078415A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2010013570A1 (en) Ion generator and electrical device
WO2013176214A1 (en) Charged particle delivery device, and air-blowing device
WO2014058027A1 (en) Ion generating element and ion generating apparatus
WO2010122862A1 (en) Ion generator and air conditioner
JP6133546B2 (en) Blower
WO2018189928A1 (en) Discharge device and electric machine
JP5840888B2 (en) Ion delivery device and electrical apparatus equipped with the same
JP5809009B2 (en) Blower with ion generation function
JP2015075282A (en) Ion delivery device
JP2014060064A (en) Blowing device
JP2008181697A (en) Ion generator
WO2014065333A1 (en) Ion generation element and ion generation device
JP5273733B2 (en) Ion generator and electrical equipment using the same
JP2014006974A (en) Ion generating device
JP5809021B2 (en) Blower and ion generator
JP2007305418A (en) Ion generating element, ion generater, and electric device
JP2013161551A (en) Ion generation cartridge and ion transmission device with the same
JP5484259B2 (en) Ion generator and electrical equipment
JP2013245854A (en) Charged particle delivery device
JP6000684B2 (en) Charged particle generator
JP5819702B2 (en) Ion delivery device
JP2014007028A (en) Ion generating device
JP5774936B2 (en) Ion delivery device and electrical apparatus equipped with the same
WO2014061628A1 (en) Air blower
JP5781839B2 (en) Blower with ion generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844607

Country of ref document: EP

Kind code of ref document: A1