WO2014057987A1 - Inspection method and inspection system for composite container - Google Patents

Inspection method and inspection system for composite container Download PDF

Info

Publication number
WO2014057987A1
WO2014057987A1 PCT/JP2013/077511 JP2013077511W WO2014057987A1 WO 2014057987 A1 WO2014057987 A1 WO 2014057987A1 JP 2013077511 W JP2013077511 W JP 2013077511W WO 2014057987 A1 WO2014057987 A1 WO 2014057987A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite container
liner
acoustic emission
reinforcing layer
container
Prior art date
Application number
PCT/JP2013/077511
Other languages
French (fr)
Japanese (ja)
Inventor
幸次郎 中川
順二 岡崎
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2014540873A priority Critical patent/JP6238901B2/en
Publication of WO2014057987A1 publication Critical patent/WO2014057987A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Definitions

  • the present invention relates to a composite container inspection method and inspection system.
  • Patent Document 1 describes that an ultrasonic flaw detection test is employed as a nondestructive inspection method for a steel container.
  • a composite container in which fibers are wound around a liner is being used instead of the container having the structure.
  • Such a composite container is advantageous in that although it has sufficient strength, it is easy to handle because of its light weight, and its price is low.
  • the structure of the composite container is different from that of a steel container, there is a problem that an appropriate inspection cannot be performed when the non-destructive inspection method generally used for steel containers is adopted. It was.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a composite container inspection method capable of appropriately inspecting a composite container.
  • An inspection method for a composite container is a composite container inspection method including a liner that forms a container, and a reinforcing layer that is formed by winding a fiber around the liner, and is attached to the composite container.
  • a signal acquisition step of acquiring an acoustic emission signal from the acoustic emission sensor, and whether or not a first condition indicating a sign of fatigue failure of the liner is satisfied based on the acoustic emission signal acquired by the signal acquisition step.
  • 1 determination step and the first condition is a condition determined based on the energy of acoustic emission.
  • the present inventors have found that a predetermined relationship is established between the energy of acoustic emission and the progress of liner fatigue. Therefore, it is possible to set the first condition indicating a sign of fatigue fracture of the liner based on the measurement result of acoustic emission measured in advance.
  • the first determination step whether or not the first condition is satisfied based on an acoustic emission signal acquired from an acoustic emission sensor attached to the composite container. Judgment. This makes it possible to inspect signs of fatigue failure of the liner of the composite container related to the inspection target, and to appropriately inspect the composite container.
  • the composite container inspection method may further include a second determination step of determining whether or not a second condition indicating damage of the reinforcing layer is satisfied based on the acoustic emission signal acquired by the signal acquisition step.
  • a relationship different from the degree of progress of fatigue of the liner is established between the damage of the reinforcing layer formed by winding the fiber around the liner and the acoustic emission. Therefore, by setting the second condition that is different from the first condition that indicates the signs of fatigue failure of the liner, the reinforcing layer can be inspected appropriately.
  • the acoustic emission sensor may be attached to the surface of the liner and the reinforcing layer.
  • the first condition indicating an indication of fatigue failure of the liner.
  • the second condition indicating damage to the reinforcing layer.
  • the acoustic emission sensor attached to the surface of the reinforcing layer may be disposed in the cylinder portion of the composite container.
  • the cylinder part that causes the destruction in the circumferential direction is set to be more easily broken than the dome part that causes the destruction in the axial direction. Therefore, by attaching an acoustic emission sensor to the cylinder portion, it is possible to more accurately inspect the reinforcement layer for damage.
  • the acoustic emission sensor attached to the surface of the reinforcing layer may be disposed in the dome portion of the composite container. Since the liner of the composite container is exposed at the tip end side of the dome portion, an acoustic emission sensor is attached to the position. Therefore, the acoustic emission sensor attached to the surface of the reinforcing layer is also arranged in the dome portion, so that the attachment positions of both sensors are close and the sensor attachment work at the time of inspection is facilitated.
  • An inspection system for a composite container is an inspection system for a composite container comprising a liner forming the container and a reinforcing layer formed by winding fibers around the liner, and an acoustic emission sensor attached to the composite container; Based on the signal acquisition unit that acquires the acoustic emission signal from the acoustic emission sensor and the acoustic emission signal acquired by the signal acquisition unit, it is determined whether or not the first condition indicating the sign of fatigue fracture of the liner is satisfied A first condition is a condition determined based on the energy of acoustic emission.
  • the composite container can be inspected appropriately.
  • FIG. 1 is a diagram showing a configuration of an inspection system for carrying out a composite container inspection method according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the contents of the cycle test of the composite container.
  • FIG. 3 is a schematic graph showing the relationship between the number of cycles and the AE energy for the liner.
  • FIG. 4 is a schematic graph showing the relationship between pressure and AE energy for the reinforcing layer.
  • FIG. 5 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an inspection system for carrying out a composite container inspection method according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the contents of the cycle test of the composite
  • FIG. 8 is a diagram showing the attachment position of the AE sensor for measuring the data shown in FIG.
  • FIG. 9 is a graph plotting the relationship between the number of cycles and the AE accumulated energy based on the measurement results.
  • FIG. 10 is a view showing a modified example of the composite container.
  • the composite container 1 includes a cylindrical liner 2 and a reinforcing layer 3 provided to cover the outer surface side of the liner 2. Both ends of the liner 2 are formed in a dome shape, and a base 4 is attached to the tip of the both ends.
  • the material of the liner 2 is not particularly limited, but resin or metal is selected depending on the application. Examples of the resin-made liner 2 include those obtained by forming a thermoplastic base resin such as high-density polyethylene into a container shape by rotational molding or blow molding, and a metal base 4 attached thereto.
  • the metal liner 2 examples include those that form the shape of the base 4 after forming a container shape by spinning or the like from a pipe shape or a plate shape made of aluminum alloy, steel, or the like.
  • the reinforcing layer 3 is formed by winding a fiber in which a curable resin is pre-impregnated around a liner.
  • the fiber include carbon fiber, glass fiber, aramid fiber, boron fiber, polyethylene fiber, steel fiber, Zylon fiber, and vinylon fiber. Particularly, high-strength, high elastic modulus and lightweight carbon fiber is used. Good.
  • the composite container 1 is provided with the cylindrical cylinder part 1a and the dome part 1b of both ends by the above structures.
  • the entire region of the cylinder portion 1a and the substantially entire region of the dome portion 1b are covered with the reinforcing layer 3, and the surface of the liner 2 is exposed at the base 4 (and its peripheral region) at the tip of the dome portion 1b.
  • the composite container 1 is a container for storing a fuel gas such as hydrogen or natural gas at a high pressure.
  • the composite container 1 may be used as a stationary type or mounted on a moving body.
  • the composite container 1 has a total length of 0.5 to 10 m and a diameter of about 200 to 1000 mm, and can withstand a pressure of about 0 to 150 MPa when used.
  • the composite container 1 is not limited to such a numerical range.
  • an inspection system 100 for inspecting a composite container 1 controls an acoustic emission sensor (hereinafter referred to as “AE”) 5 attached to the composite container 1 and the entire system.
  • AE acoustic emission sensor
  • a control unit 10, a display unit 11, and an input unit 12 are provided.
  • the AE sensor 5 is a sensor that detects an AE that occurs when a material is deformed or damage such as a microcrack is generated in the material, or an AE that is generated when a crack grows and the material is destroyed. .
  • the AE sensor 5A is attached to the surface of the liner 2 with respect to the portion where the liner 2 is exposed
  • the AE sensor 5B is attached to the surface of the reinforcing layer 3 in the dome portion 1b
  • the cylinder portion 1a An AE sensor 5C is attached to the surface of the reinforcing layer 3 in FIG.
  • the AE sensor 5A attached to the surface of the liner 2 makes it easy to detect signs of fatigue failure of the liner 2.
  • the number of AE sensors 5 is not particularly limited. Moreover, regarding the attachment position, you may attach to at least one location of the surface of the liner 2, the surface of the reinforcement layer 3 in the dome part 1b, and the surface of the reinforcement layer 3 in the cylinder part 1a.
  • the AE sensor 5 may not be provided only on the surface of the liner 2 and the dome portion 1b and may not be provided on the cylinder portion 1a, and the AE sensor 5 may be provided only on the surface of the liner 2 and the cylinder portion 1a and not provided on the dome portion 1b.
  • the AE sensor 5 is electrically connected to the control unit 10 and outputs the detected AE signal to the control unit 10.
  • the display unit 11 has a function of displaying information to an operator who performs inspection, and is configured by a display or the like.
  • the display unit 11 displays information transmitted from the control unit 10. Note that information may be output by voice through a speaker or the like.
  • the input unit 12 has a function of inputting necessary information by an operator's operation, and includes a mouse, a touch panel, a pen tablet, a keyboard, and the like.
  • the input unit 12 transmits the input information to the control unit 10.
  • the control part 10 is comprised by CPU, ROM, RAM, etc., for example.
  • the control unit 10 includes a signal acquisition unit 13, a measurement unit 14, a determination unit 15, and a processing unit 16.
  • the signal acquisition unit 13 has a function of acquiring an AE signal output from the AE sensor 5.
  • the measurement unit 14 has a function of measuring various values used for determination for inspection using the AE signal acquired by the signal acquisition unit 13. Note that when the noise is included in the AE signal due to the relationship between the inspection location and the like, the measurement unit 14 can measure the measurement value using the AE signal excluding the noise.
  • the measurement unit 14 can measure AE caused by damage caused by fatigue of the liner 2 and can measure AE caused by damage of the reinforcing layer 3 (fiber damage, curable resin damage).
  • the determination unit 15 has a function of performing various determinations for inspection.
  • the determination unit 15 determines whether or not the first condition indicating a sign of fatigue fracture of the liner 2 is satisfied based on the measurement value by the measurement unit 14, that is, based on the AE signal acquired by the signal acquisition unit 13. It has a function to do. For example, the determination unit 15 determines that the first condition is satisfied when the measurement value by the measurement unit 14 is equal to or greater than a preset threshold value.
  • the threshold value set for the determination of the first condition is not particularly limited as long as it is a value indicating a sign of fatigue fracture of the liner 2 and how much the threshold value indicates the degree of progress of fatigue. .
  • a value indicating that it is immediately before fatigue failure may be set as a threshold value
  • a value indicating that it is an intermediate period from the start of use to fatigue failure may be set as a threshold value.
  • the threshold value used for the determination of the first condition is set with respect to a value based on the energy of the AE detected by the AE sensor 5, and specifically, the accumulated energy of the AE (for example, from the start of measurement). (Accumulated energy), AE energy amount within a predetermined time, and AE hit rate. Note that the AE energy may be calculated from the waveform of the AE signal, but may be approximately calculated to facilitate the calculation.
  • the number of AEs is considered to be equivalent to the magnitude of the AE accumulated energy, and the count number of the AE number may be set as the AE accumulated energy (Note that the number of AEs may be simply counted, or a large AE. Are considered to have high energy and may be counted according to their size).
  • the first condition may be that an AE signal having a sign of fatigue failure of the liner 2 or an AE signal having an AE frequency distribution is detected.
  • the AE signal generated due to the fatigue of the liner 2 from the start of use until the liner 2 eventually undergoes fatigue failure. Can be detected.
  • FIG. 2 after the fluid is put into the composite container 1 and the internal pressure is raised, the fluid is taken out from the composite container 1 and the internal pressure is lowered as one cycle. AE sound is detected by the AE sensor 5.
  • FIG. 3 a substantially silent state continues from the initial stage of use to the middle period, and an AE signal indicating the occurrence of fatigue / cracking of the liner 2 of the composite container 1 at the number indicated by P1. Is detected.
  • an AE signal indicating an increase in fatigue crack growth is detected at the number of times indicated by P3.
  • the final fatigue failure of the liner 2 occurs (leak occurs) at the number of times indicated by P3, and the AE signal generated by the fatigue failure is detected.
  • the progress of the fatigue of the liner 2 can be inspected by measuring the AE sound during the inspection of the composite container 1. For example, it can be determined that the fatigue of the liner 2 has progressed to some extent by performing an inspection based on the AE signal detected at P1 and P2.
  • L2 shown in FIG. 3 can be set as the threshold value.
  • the liner 2 is in a state immediately before fatigue failure by performing an inspection based on the AE signal immediately before the detection of the AE signal at P3.
  • L1 shown in FIG. 3 can be set as the threshold value.
  • the first condition used for the determination by the determination unit 15 is determined based on the data indicating the relationship between the use cycle of the composite container 1 and the AE caused by the fatigue of the liner 2 measured in advance.
  • the first condition may be that the accumulated energy of AE corresponding to P1 or P2 is set as a threshold, and the accumulated energy of AE measured by the measurement unit 14 is equal to or greater than the threshold.
  • the first condition may be that the accumulated energy of AE immediately before reaching P3 is set as a threshold, and the accumulated energy of AE measured by the measurement unit 14 is equal to or greater than the threshold.
  • the determination unit 15 determines whether or not the second condition indicating damage to the reinforcing layer 3 is satisfied based on the measurement value obtained by the measurement unit 14, that is, based on the AE signal acquired by the signal acquisition unit 13. It has a function to do. Since the AE signal generated by the damage of the reinforcing layer 3 has a different specification from the AE signal generated by the fatigue of the liner 2, the second condition can be set as a condition different from the first condition. . For example, the determination unit 15 determines that the second condition is satisfied when the measurement value by the measurement unit 14 is greater than or equal to a preset threshold value.
  • the threshold value used for the determination of the second condition may be set with respect to a value based on the energy of the AE detected by the AE sensor 5, and specifically, the accumulated energy of the AE (for example, measurement) Cumulative energy from the start), AE energy amount within a predetermined time, and AE hit rate.
  • the second condition may be that an AE signal indicating damage to the reinforcing layer 3 is detected. Note that the AE signal due to damage to the reinforcing layer 3 clearly shows the damage to the reinforcing layer 3 than the AE signal due to fatigue of the liner 2, and it is easier to make a determination by analyzing the AE signal.
  • the processing unit 16 has a function of executing various control processes in the system. For example, the processing unit 16 executes an operation start / operation stop process for the composite container 1, a process for feeding back information to that effect when it is detected that there is a sign of fatigue failure of the liner 2, and the like.
  • FIGS. 5 to 7 The processing in FIGS. 5 to 7 is processing executed in the control unit 10.
  • an inspection method for the composite container 1 a constant monitoring method for constantly monitoring the composite container 1 in operation may be employed, or a periodic inspection method for performing regular inspection may be employed.
  • FIG. 5 shows an example of processing when the composite container 1 in operation is constantly monitored.
  • the AE accumulated energy immediately before the final fatigue failure is set as a threshold, and the measured value of the AE accumulated energy is equal to or greater than the threshold.
  • the AE accumulated energy in the vicinity of P3 where the final fatigue failure occurs can be set as the threshold value.
  • step S10 preparation for the inspection of the composite container 1 is performed.
  • the AE sensor 5 is attached to the composite container 1, and the composite container 1 is installed in the hydrogen station.
  • the processing unit 16 executes an operation start process for the composite container 1.
  • the processing unit 16 starts operation of an apparatus or an apparatus for supplying and taking out fuel from the composite container 1 (step S10).
  • step S11 a cycle in which fuel is supplied to the composite container 1 to increase the pressure and fuel is taken out from the composite container 1 to decrease the pressure is repeated.
  • the control unit 10 grasps noise specific to the hydrogen station that enters the AE sensor 5 when the composite container 1 is actually operated at the hydrogen station (step S11).
  • the inherent noise for example, ambient noise caused by gas compressor, electromagnetic valve operation sound, vehicle traffic, and the like can be cited.
  • the measurement unit 14 grasps the noise by analyzing the AE signal acquired by the signal acquisition unit 13.
  • the signal acquisition unit 13 acquires the AE signal from the AE sensor 5, and the measurement unit 14 measures the AE accumulated energy based on the AE signal (step S12). At this time, the measurement unit 14 measures the AE accumulated energy by subtracting the AE energy due to the noise grasped in S11.
  • the determination unit 15 determines whether or not the reinforcing layer 3 is damaged by determining whether or not the second condition is satisfied based on the AE signal acquired in S12 (step S13). Specifically, when the AE accumulated energy indicating damage to the reinforcing layer 3 is set as the threshold, the determination unit 15 determines whether or not the AE accumulated energy measured in S12 is equal to or greater than the threshold.
  • the determination unit 15 determines whether or not the enhancement layer 3 is damaged by determining whether or not an AE signal indicating damage to the enhancement layer 3 is detected as a result of the analysis of the AE signal by the measurement unit 14. Determine whether.
  • the processing unit 16 executes an operation stop process for stopping the operation of the composite container 1 (step S16).
  • the processing unit 16 stops the operation of the apparatus and equipment for supplying and taking out fuel from the composite container 1.
  • the strength of the composite container 1 is affected, so that the use of the composite container 1 needs to be stopped immediately. Therefore, the operation stop process is performed immediately after the determination of S13.
  • the determination unit 15 determines whether the first condition is satisfied based on the AE signal acquired in S12. It is determined whether or not fatigue failure is near (step S14). Specifically, the determination unit 15 determines whether or not the fatigue failure of the liner 2 is near by determining whether or not the AE accumulated energy measured in S12 is equal to or greater than a threshold value.
  • FIG. 6 shows an example of processing when the composite container 1 in operation is constantly monitored.
  • the AE accumulated energy in the intermediate period from the start of operation to the final fatigue failure is set as a threshold, and the AE accumulated energy is set. It was set on condition that the measured value of became more than the said threshold value.
  • the AE accumulated energy in the vicinity of P1 where the AE signal due to the fatigue of the liner 2 is detected in the intermediate period can be set as the threshold value.
  • the determination unit 15 determines whether or not the first condition is satisfied based on the AE signal acquired in S12. It is determined whether there is a sign of destruction (step S17). Specifically, the determination unit 15 determines whether or not there is a sign of fatigue failure of the liner 2 by determining whether or not the AE accumulated energy measured in S12 is equal to or greater than a threshold value.
  • step S17 when it is determined that the fatigue fracture of the liner 2 is not near, the process is repeated from S12. On the other hand, when it is determined in S17 that there is a sign of fatigue fracture of the liner 2, the processing unit 16 executes a process of feeding back information to the operator that the liner 2 has a sign of fatigue fracture (step S18). .
  • information feedback is performed instead of the operation stop processing of the composite container 1. For example, the processing unit 16 may feed back the number of cycles at the present time and the estimated value of the remaining usable cycles to the operator.
  • the processing unit 16 feeds back that fatigue failure will occur earlier (slower) than the life (for example, 15 years) set for the composite container 1. It's okay. At that time, the remaining remaining life as a guide may be fed back.
  • the processing unit 16 feeds back information by outputting the information to the display unit 11.
  • the process shown in FIG. 6 is completed.
  • the process is terminated by the operation stop process of S16, the composite container 1 related to the inspection target is removed from the hydrogen station.
  • the process may proceed to S12 in FIG. 5 and it may be determined that the fatigue failure of the liner 2 is close.
  • information feedback processing may be performed at a time when further fatigue has progressed.
  • FIG. 7 shows an example of processing when the composite container 1 is inspected during the periodic inspection of the hydrogen station.
  • the processing unit 16 executes a process of increasing the pressure inside the container for the pressure resistance test in the composite container 1 (step S20).
  • the signal acquisition unit 13 acquires an AE signal from the AE sensor 5.
  • the determination unit 15 determines whether the AE signal acquired in S21 is a signal related to sound or a signal related to silence (step S22). Note that the determination unit 15 determines that a sound that is extremely small and close to silence is also silent. When it determines with it being silence in S22, the determination part 15 determines with the composite container 1 which concerns on a test
  • the determination unit 15 determines whether or not the sound is noise (step S23). If it is determined in S23 that the noise is noise, the composite container itself does not generate a sound of destruction, so the determination unit 15 determines that the composite container 1 related to the inspection is in a healthy state (step S28). .
  • the processing unit 16 further proceeds with the inspection.
  • the boosting process is performed again (step S24).
  • the measuring unit 14 measures the amount of AE energy at the time of boosting (step S26).
  • the determination unit 15 determines whether or not the AE energy amount measured in S26 is greater than or equal to a preset threshold value (step S27).
  • a threshold value for determining fatigue of the liner 2 for example, a threshold value set in the processing examples of FIGS. 5 and 6) may be set. Further, at the timing of S27, it may be determined whether or not the reinforcing layer 3 is damaged.
  • step S27 when it is determined that the AE energy amount is less than the threshold, the determination unit 15 determines that the composite container 1 related to the inspection is in a healthy state (step S28). On the other hand, in S28, when it is determined that the AE energy amount is equal to or greater than the threshold, the determination unit 15 determines that the composite container 1 related to the inspection is not in a healthy state (step S29).
  • the periodic inspection is finished and the use of the composite container 1 at the hydrogen station is continued.
  • the composite container 1 is removed from the hydrogen station (the state of unhealthy that requires immediate replacement). If). Alternatively, information such as the remaining life of the composite container 1 is fed back.
  • the setting method of the first condition is not limited to this.
  • a 300 L container having a length of 3800 mm and an outer diameter of 480 mm was used as a composite container 1 used for measurement.
  • the normal pressure of this composite container 1 was 82 MPa.
  • a preamplifier built-in type AE sensor (V150-RIC) was attached to the composite container 1.
  • the plurality of AE sensors 5 are attached to both ends of the composite container and the cylinder portion at predetermined intervals.
  • FIG. 8A it is attached at a position indicated by A in a pattern as shown in FIG. 8B when viewed from the axial direction, and at a position indicated by B as shown in FIG. 8C when viewed from the axial direction. It was attached with a pattern like this.
  • AMSY-5M37 manufactured by Vallen was used as an AE measurement unit
  • “VisualAE” manufactured by Vallen was used as measurement software.
  • a silicon adhesive or the like was used, and silicon grease or the like was used as a contact medium.
  • a cycle test was performed using the equipment as described above, and the AE accumulated energy during the cycle was measured. In addition, the value which accumulated the number of AE in a cycle was made into AE accumulated energy. The measurement results are shown in FIG. Note that the number of cycles was 25,000 when the cycle test was stopped assuming that cracks grew due to fatigue of the liner 2 and eventually fatigue failure occurred.
  • the “cycle count” on the horizontal axis in FIG. 9 is a numerical value made dimensionless by dividing the corresponding count by 25000 times.
  • the “AE accumulated energy” on the vertical axis is a numerical value made dimensionless by dividing the measured value of the corresponding AE accumulated energy by the measured value at 25000 times.
  • the first step there are three steps from the start of operation of the composite container 1 to the final fatigue failure.
  • the first step there is almost no sound.
  • the first step continues from the start of use until the number of cycles is around 0.5.
  • an AE signal indicating a crack or the like due to fatigue of the composite container 1 is generated.
  • the AE accumulated energy increases rapidly at first, and then increases gradually.
  • the second step continues from around the cycle number 0.5 to around 0.8.
  • the third step the AE accumulated energy sequentially increases toward fatigue failure.
  • the third step continues from the cycle number around 0.8 to the final fatigue failure.
  • the first condition for determining the signs of fatigue failure of the liner 2 can be set. it can.
  • the allowable energy value L3 indicated by the dotted line in FIG. 9 can be set as a threshold for determining that the liner 2 is immediately before fatigue failure.
  • non-destructive inspection means for conventional steel containers that do not have the reinforcing layer 3.
  • a test method for a steel container a magnetic jet flaw test, a penetrating deep flaw test, an ultrasonic flaw test, a radiation transmission test, an overflow flaw test, and the like have been adopted.
  • the composite container 1 in which the reinforcing layer 3 is formed by winding the fiber around the liner 2 cannot be inspected by the method described above. Since the steel container has a uniform tube thickness and a smooth surface, it can be satisfactorily inspected by the method described above. However, since the composite container 1 winds the fibers, the surface is not smooth and the layer structure in the thickness direction is not completely uniform depending on the location. Therefore, even if the method used in the steel container is employed in the composite container 1, the inspection cannot be performed satisfactorily.
  • the reinforcing layer 3 does not have magnetism, it is impossible to employ a magnetic flaw detection test, and since the surface is not smooth, it is possible to employ a penetrating deep wound test in which a chemical is applied to the surface scratch. Furthermore, since the tube wall structure is not uniform, an ultrasonic flaw detection test in which ultrasonic waves are emitted from a sensor for observation cannot be employed, and other methods cannot be employed structurally.
  • the steel container is a container that is resistant to fatigue failure, in the inspection, it is only necessary to determine whether the steel container is healthy or not, and the necessity of determining the degree of fatigue is low.
  • the liner 2 of the composite container 1 has a configuration in which fatigue failure is likely to occur (particularly when an aluminum alloy is employed) compared to a steel container.
  • the steel container is resistant to fatigue failure, and it is unlikely that the fatigue failure will occur before the predetermined specified life.
  • the period until the fatigue failure occurs depends on the operating environment and conditions. The life of the liner 2 itself may fluctuate due to the operating environment and conditions.
  • the life can be influenced by changing the use environment and use conditions.
  • a suitable inspection method has been demanded so that the composite container 1 which is greatly different from the steel container in terms of the situation and premise can be satisfactorily inspected.
  • the present inventors have found that it is preferable to employ the AE method as a nondestructive inspection method for the composite container 1. Further, the present inventors have found that a predetermined relationship is established between the degree of progress of fatigue of the liner 2 of the composite container 1 and the energy of AE. Furthermore, it is possible to determine whether or not there is a sign of fatigue failure in the liner 2 of the composite container 1 related to the inspection by setting conditions based on the measurement result of AE measured in advance. I found.
  • the method for inspecting the composite container 1 based on the AE signal acquired from the AE sensor 5 attached to the composite container 1 in the step of determining the first condition such as S14, S17, and S27. Whether or not the first condition is satisfied is determined. Accordingly, it is possible to inspect signs of fatigue failure of the liner 2 of the composite container 1 to be inspected, and it is possible to inspect the composite container 1 appropriately.
  • the fiber of the reinforcing layer 3 can firmly support the composite container 1 so as not to be deformed even when subjected to a load, but after the composite container 1 has expanded, the fiber breaks, the resin cracks, etc. Are more likely to occur (compared to the liner 2).
  • the liner 2 is more susceptible to fatigue than the reinforcement layer 3 with respect to fatigue due to repeated cycles, and the reinforcement layer 3 is more susceptible to damage than the liner 2 with respect to damage caused by increased pressure.
  • the liner 2 and the reinforcing layer 3 have different structural properties, and thus have different damage modes. Therefore, the AE signal generated by the damage also has different properties.
  • the method for inspecting the composite container 1 according to the present embodiment further includes a step (S13, S27, etc.) of determining whether or not the second condition indicating damage to the reinforcing layer 3 is satisfied based on the acquired AE signal.
  • the steel container has a simple structure in which the pipe wall is composed of only a single steel material, even if the conventional AE method for steel containers is diverted to the composite container 1, sufficient inspection cannot be performed. There was sex.
  • the composite container 1 can be more appropriately inspected by performing an inspection in consideration of the structure (including the liner 2 and the reinforcing layer 3) and the properties of the composite container 1.
  • the AE sensor 5 is attached to the surfaces of the liner 2 and the reinforcing layer 3.
  • an AE sensor By attaching an AE sensor to the surface of the liner 2, it is possible to accurately determine the first condition that indicates a sign of fatigue failure of the liner 2.
  • the AE sensor 5 by attaching the AE sensor 5 to the surface of the reinforcing layer 3, the second condition indicating damage to the reinforcing layer 3 can be accurately determined.
  • appropriate inspection can be performed for each portion. For example, it is difficult to determine where an AE is generated even if an AE is detected when only the AE signal from the same location is detected.
  • the AE sensor 5 attached to the surface of the reinforcing layer 3 is disposed in the cylinder portion 1a of the composite container 1.
  • the cylinder portion 1 a that causes destruction in the circumferential direction is more likely to break than the dome portion 1 b that causes destruction in the axial direction. Therefore, by attaching the acoustic emission sensor 5 to the cylinder part 1a, it is possible to inspect the reinforcing layer 3 for damage more accurately.
  • the AE sensor 5 attached to the surface of the reinforcing layer 3 is disposed on the dome portion 1b of the composite container 1. Since the liner 2 of the composite container 1 is exposed at the distal end side of the dome portion 1b, the AE sensor attached to the surface of the liner 2 is attached at this position. Therefore, by arranging the AE sensor attached to the surface of the reinforcing layer 3 in the dome portion 1b, the attachment positions of both sensors become close, and the sensor attachment work at the time of inspection becomes easy.
  • the present invention is not limited to the embodiment described above.
  • the structure of the inspection system used for the inspection method may not be related to the above-described embodiment, and the inspection flow is not limited to the above-described embodiment.
  • a composite container having a liner and a reinforcing layer is taken as an example of a composite container to be inspected.
  • the composite container is composed of a plurality of different properties and materials, the composite container described above is used.
  • the inspection method of the present invention can be applied to any composite container without being limited to the container. That is, the composite container only needs to include at least a liner and a reinforcing layer formed by winding a fiber.
  • the composite container may have another layer outside the reinforcing layer.
  • the liner may include a container body made of metal or resin, and may have layers of different materials on the outer peripheral side or inner peripheral side of the container main body. In the composite container shown in FIG.
  • the base 4 protrudes from the reinforcing layer 3.
  • the base 4 may be embedded in the reinforcing layer 3.
  • the composite container may include members such as a valve and an extension pipe attached to the liner base. Therefore, “attaching the AE sensor to the composite container” includes attaching the AE sensor to such a member.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An inspection method for a composite container is a method for inspecting a composite container provided with a liner that forms the container, and a reinforcing layer that is formed by winding a fiber around the liner, the method being provided with: a signal acquisition step for acquiring an acoustic emission signal from an acoustic emission sensor attached to the composite container; and a first determination step for determining, on the basis of the acoustic emission signal acquired in the signal acquisition step, whether or not a first condition showing a sign of a fatigue failure of the liner is satisfied, and the first condition being a condition set on the basis of acoustic emission energy.

Description

複合容器の検査方法及び検査システムInspection method and inspection system for composite container
 本発明は、複合容器の検査方法及び検査システムに関する。 The present invention relates to a composite container inspection method and inspection system.
 従来、流体を封入する容器の非破壊検査の方法として、多様な検査方法を採用することが知られている。例えば、鋼製の容器の非破壊検査方法として、磁噴探傷試験、浸透深傷試験、超音波探傷試験、放射線透過試験、過流探傷試験などが採用されていた。例えば、特許文献1では、鋼製容器の非破壊検査方法として、超音波探傷試験を採用していることが記載されている。 Conventionally, it has been known to employ various inspection methods as a non-destructive inspection method for containers enclosing a fluid. For example, as a nondestructive inspection method for a steel container, a magnetic jet flaw test, a penetrating deep flaw test, an ultrasonic flaw detection test, a radiation transmission test, an overflow flaw test, and the like have been adopted. For example, Patent Document 1 describes that an ultrasonic flaw detection test is employed as a nondestructive inspection method for a steel container.
特開平10―38858号JP-A-10-38858
 ここで、鋼製容器は重量が重く価格も高いため、当該構成の容器に代えて、ライナーに繊維を巻き付けた複合容器の利用が進んでいる。このような複合容器は、十分な強度を有するにもかかわらず、重量が軽いため取扱い易く、価格も低いというメリットがある。しかしながら、複合容器は、構造が鋼製容器と異なっているため、鋼製容器で一般的に採用されていた非破壊検査方法を採用した場合に、適切な検査を行うことができないという問題があった。 Here, since the steel container is heavy and expensive, a composite container in which fibers are wound around a liner is being used instead of the container having the structure. Such a composite container is advantageous in that although it has sufficient strength, it is easy to handle because of its light weight, and its price is low. However, since the structure of the composite container is different from that of a steel container, there is a problem that an appropriate inspection cannot be performed when the non-destructive inspection method generally used for steel containers is adopted. It was.
 本発明は、このような課題を解決するためになされたものであり、複合容器を適切に検査することができる複合容器の検査方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a composite container inspection method capable of appropriately inspecting a composite container.
 本発明の一形態に係る複合容器の検査方法は、容器を形成するライナー、及びライナーに繊維を巻き付けることで形成される強化層を備える複合容器の検査方法であって、複合容器に取り付けられたアコースティックエミッションセンサからアコースティックエミッション信号を取得する信号取得工程と、信号取得工程によって取得されたアコースティックエミッション信号に基づいて、ライナーの疲労破壊の兆候を示す第1の条件を満たすか否かを判定する第1の判定工程と、を備え、第1の条件は、アコースティックエミッションのエネルギーに基づいて定められる条件である。 An inspection method for a composite container according to an aspect of the present invention is a composite container inspection method including a liner that forms a container, and a reinforcing layer that is formed by winding a fiber around the liner, and is attached to the composite container. Based on a signal acquisition step of acquiring an acoustic emission signal from the acoustic emission sensor, and whether or not a first condition indicating a sign of fatigue failure of the liner is satisfied based on the acoustic emission signal acquired by the signal acquisition step. 1 determination step, and the first condition is a condition determined based on the energy of acoustic emission.
 本発明者らは、鋭意研究の結果、アコースティックエミッションのエネルギーとライナーの疲労の進行度合いとの間には所定の関係性が成り立つことを見出した。従って、予め測定しておいたアコースティックエミッションの測定結果に基づいて、ライナーの疲労破壊の兆候を示す第1の条件を設定することが可能となる。本発明の一形態に係る複合容器の検査方法では、第1の判定工程において、複合容器に取り付けられたアコースティックエミッションセンサから取得したアコースティックエミッション信号に基づいて、第1の条件を満たすか否かを判定している。これによって、検査対象に係る複合容器のライナーの疲労破壊の兆候を検査することが可能となり、複合容器を適切に検査することが可能となる。 As a result of intensive studies, the present inventors have found that a predetermined relationship is established between the energy of acoustic emission and the progress of liner fatigue. Therefore, it is possible to set the first condition indicating a sign of fatigue fracture of the liner based on the measurement result of acoustic emission measured in advance. In the composite container inspection method according to an aspect of the present invention, in the first determination step, whether or not the first condition is satisfied based on an acoustic emission signal acquired from an acoustic emission sensor attached to the composite container. Judgment. This makes it possible to inspect signs of fatigue failure of the liner of the composite container related to the inspection target, and to appropriately inspect the composite container.
 複合容器の検査方法において、信号取得工程によって取得されたアコースティックエミッション信号に基づいて、強化層の損傷を示す第2の条件を満たすか否かを判定する第2の判定工程を更に備えてよい。繊維をライナーに巻き付けることによって形成される強化層の損傷とアコースティックエミッションとの間には、ライナーの疲労の進行度合いとは異なった関係性が成り立つ。従って、ライナーの疲労破壊の兆候を示す第1の条件とは異なる第2の条件を設定することによって、強化層の検査も適切に行うことができる。 The composite container inspection method may further include a second determination step of determining whether or not a second condition indicating damage of the reinforcing layer is satisfied based on the acoustic emission signal acquired by the signal acquisition step. A relationship different from the degree of progress of fatigue of the liner is established between the damage of the reinforcing layer formed by winding the fiber around the liner and the acoustic emission. Therefore, by setting the second condition that is different from the first condition that indicates the signs of fatigue failure of the liner, the reinforcing layer can be inspected appropriately.
 複合容器の検査方法において、アコースティックエミッションセンサは、ライナー及び強化層の表面に取り付けられてよい。ライナーの表面にアコースティックエミッションセンサを取り付けることで、ライナーの疲労破壊の兆候を示す第1の条件を正確に判定することが可能となる。一方、強化層の表面にアコースティックエミッションセンサを取り付けることで強化層の損傷を示す第2の条件を正確に判定することが可能となる。このように、一つの複合容器の中に性質の異なるライナーと強化層が存在している場合でも、各箇所について適切な検査を行うことができる。 In the composite container inspection method, the acoustic emission sensor may be attached to the surface of the liner and the reinforcing layer. By attaching an acoustic emission sensor to the surface of the liner, it is possible to accurately determine the first condition indicating an indication of fatigue failure of the liner. On the other hand, by attaching an acoustic emission sensor to the surface of the reinforcing layer, it is possible to accurately determine the second condition indicating damage to the reinforcing layer. Thus, even when a liner and a reinforcing layer having different properties are present in one composite container, appropriate inspection can be performed for each location.
 複合容器の検査方法において、強化層の表面に取り付けられるアコースティックエミッションセンサは、複合容器のシリンダ部に配置されてよい。強化層のうち、軸方向への破壊を生じるドーム部よりも、周方向への破壊を生じるシリンダ部の方が破壊を生じやすく設定されている。従って、シリンダ部にアコースティックエミッションセンサを取り付けることにより、強化層の損傷をより正確に検査することができる。 In the composite container inspection method, the acoustic emission sensor attached to the surface of the reinforcing layer may be disposed in the cylinder portion of the composite container. Of the reinforced layer, the cylinder part that causes the destruction in the circumferential direction is set to be more easily broken than the dome part that causes the destruction in the axial direction. Therefore, by attaching an acoustic emission sensor to the cylinder portion, it is possible to more accurately inspect the reinforcement layer for damage.
 複合容器の検査方法において、強化層の表面に取り付けられるアコースティックエミッションセンサは、複合容器のドーム部に配置されてよい。複合容器のうちライナーはドーム部の先端側で露出しているため、当該位置にアコースティックエミッションセンサが取り付けられる。従って、強化層の表面に取り付けられるアコースティックエミッションセンサもドーム部に配置することにより、両センサの取付位置が近くなり、検査の際のセンサ取付作業が容易になる。 In the composite container inspection method, the acoustic emission sensor attached to the surface of the reinforcing layer may be disposed in the dome portion of the composite container. Since the liner of the composite container is exposed at the tip end side of the dome portion, an acoustic emission sensor is attached to the position. Therefore, the acoustic emission sensor attached to the surface of the reinforcing layer is also arranged in the dome portion, so that the attachment positions of both sensors are close and the sensor attachment work at the time of inspection is facilitated.
 本発明に係る複合容器の検査システムは、容器を形成するライナー、及びライナーに繊維を巻き付けることで形成される強化層を備える複合容器の検査システムであって、複合容器に取り付けられるアコースティックエミッションセンサと、アコースティックエミッションセンサからアコースティックエミッション信号を取得する信号取得部と、信号取得部によって取得されたアコースティックエミッション信号に基づいて、ライナーの疲労破壊の兆候を示す第1の条件を満たすか否かを判定する判定部と、を備え、第1の条件は、アコースティックエミッションのエネルギーに基づいて定められる条件である。 An inspection system for a composite container according to the present invention is an inspection system for a composite container comprising a liner forming the container and a reinforcing layer formed by winding fibers around the liner, and an acoustic emission sensor attached to the composite container; Based on the signal acquisition unit that acquires the acoustic emission signal from the acoustic emission sensor and the acoustic emission signal acquired by the signal acquisition unit, it is determined whether or not the first condition indicating the sign of fatigue fracture of the liner is satisfied A first condition is a condition determined based on the energy of acoustic emission.
 この検査システムによれば、上述の複合容器の検査方法と同様な作用・効果を得ることができる。 According to this inspection system, it is possible to obtain the same operations and effects as the above-described composite container inspection method.
 本発明によれば、複合容器を適切に検査することができる。 According to the present invention, the composite container can be inspected appropriately.
図1は、本発明の実施形態に係る複合容器の検査方法を実施するための検査システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of an inspection system for carrying out a composite container inspection method according to an embodiment of the present invention. 図2は、複合容器のサイクル試験の内容を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining the contents of the cycle test of the composite container. 図3は、ライナーに関して、サイクル回数とAEエネルギーとの関係を示す模式的なグラフである。FIG. 3 is a schematic graph showing the relationship between the number of cycles and the AE energy for the liner. 図4は、強化層に関して、圧力とAEエネルギーとの関係を示す模式的なグラフである。FIG. 4 is a schematic graph showing the relationship between pressure and AE energy for the reinforcing layer. 図5は、本発明の実施形態に係る複合容器の検査方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention. 図6は、本発明の実施形態に係る複合容器の検査方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention. 図7は、本発明の実施形態に係る複合容器の検査方法の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the composite container inspection method according to the embodiment of the present invention. 図8は、図9に示すデータを測定するためのAEセンサの取付位置を示す図である。FIG. 8 is a diagram showing the attachment position of the AE sensor for measuring the data shown in FIG. 図9は、測定結果に基づいて、サイクル回数とAE累積エネルギーとの関係をプロットしたグラフである。FIG. 9 is a graph plotting the relationship between the number of cycles and the AE accumulated energy based on the measurement results. 図10は、複合容器の変形例を示す図である。FIG. 10 is a view showing a modified example of the composite container.
 以下、本発明の好適な実施形態について図面を参照して説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiment.
 図1に示すように、複合容器1は、円筒形状のライナー2と、ライナー2の外面側を覆うように設けられた強化層3と、を備えている。ライナー2の両端部はドーム状に形成されており、当該両端部の先端には、口金4が取り付けられている。ライナー2の材料は特に限定されないが、用途によって、樹脂製、金属製が選択される。樹脂製のライナー2としては、高密度ポリエチレン等の熱可塑性樹脂を回転成形やブロー成形にて容器形状に賦形されたものに、金属製の口金4が付けられているものが挙げられる。金属製のライナー2は、例えば、アルミニウム合金製や鋼鉄製等からなるパイプ形状や板形状からスピニング加工等により容器形状を形成したあとで、口金4の形状を形成するものが挙げられる。強化層3は、ライナーに硬化性樹脂が予め含浸された繊維を巻き付けることによって形成される。繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、スチール繊維、ザイロン繊維、ビニロン繊維等が挙げられるが、特に高強度、高弾性率かつ軽量な炭素繊維を用いてよい。 As shown in FIG. 1, the composite container 1 includes a cylindrical liner 2 and a reinforcing layer 3 provided to cover the outer surface side of the liner 2. Both ends of the liner 2 are formed in a dome shape, and a base 4 is attached to the tip of the both ends. The material of the liner 2 is not particularly limited, but resin or metal is selected depending on the application. Examples of the resin-made liner 2 include those obtained by forming a thermoplastic base resin such as high-density polyethylene into a container shape by rotational molding or blow molding, and a metal base 4 attached thereto. Examples of the metal liner 2 include those that form the shape of the base 4 after forming a container shape by spinning or the like from a pipe shape or a plate shape made of aluminum alloy, steel, or the like. The reinforcing layer 3 is formed by winding a fiber in which a curable resin is pre-impregnated around a liner. Examples of the fiber include carbon fiber, glass fiber, aramid fiber, boron fiber, polyethylene fiber, steel fiber, Zylon fiber, and vinylon fiber. Particularly, high-strength, high elastic modulus and lightweight carbon fiber is used. Good.
 以上のような構成により、複合容器1は、円筒状のシリンダ部1aと、両端側のドーム部1bと、を備える。シリンダ部1aの全域、及びドーム部1bの略全域は強化層3で覆われており、ドーム部1bの先端の口金4(及びその周辺領域)は、ライナー2の表面が露出している。 The composite container 1 is provided with the cylindrical cylinder part 1a and the dome part 1b of both ends by the above structures. The entire region of the cylinder portion 1a and the substantially entire region of the dome portion 1b are covered with the reinforcing layer 3, and the surface of the liner 2 is exposed at the base 4 (and its peripheral region) at the tip of the dome portion 1b.
 複合容器1は、特に用途は限定されないが、例えば、水素や天然ガスなどの燃料ガスを高圧で貯蔵するための容器である。複合容器1は、据え置き型として用いられてもよく、移動体に搭載されて用いられてもよい。複合容器1は、例えば、全長が0.5~10m、直径が200~1000mm程度に設定され、使用時には、0~150MPa程度の圧力に耐えることができる。ただし、複合容器1は、このような数値範囲に限定されるものではない。 The use of the composite container 1 is not particularly limited. For example, the composite container 1 is a container for storing a fuel gas such as hydrogen or natural gas at a high pressure. The composite container 1 may be used as a stationary type or mounted on a moving body. For example, the composite container 1 has a total length of 0.5 to 10 m and a diameter of about 200 to 1000 mm, and can withstand a pressure of about 0 to 150 MPa when used. However, the composite container 1 is not limited to such a numerical range.
 図1に示すように、複合容器1を検査するための検査システム100は、複合容器1に取り付けられるアコースティックエミッションセンサ(以下、アコースティックエミッションを「AE」と称する)5と、システム全体の制御を行う制御部10と、表示部11と、入力部12と、を備えている。 As shown in FIG. 1, an inspection system 100 for inspecting a composite container 1 controls an acoustic emission sensor (hereinafter referred to as “AE”) 5 attached to the composite container 1 and the entire system. A control unit 10, a display unit 11, and an input unit 12 are provided.
 AEセンサ5は、材料が変形、または材料中に微小な亀裂などの損傷が生成する際に発生するAEや、亀裂が成長して材料が破壊されるときに発生するAEを検出するセンサである。図1に示す例では、ライナー2が露出している部分に対してライナー2の表面にAEセンサ5Aが取り付けられ、ドーム部1bにおける強化層3の表面にAEセンサ5Bが取り付けられ、シリンダ部1aにおける強化層3の表面にAEセンサ5Cが取り付けられている。ライナー2の表面に取り付けられたAEセンサ5Aにより、ライナー2の疲労破壊の兆候を検出し易くなる。また、強化層3の表面に取り付けたAEセンサ5B,5Cにより、強化層3の損傷を検出し易くなる。なお、AEセンサ5の数量は特に限定されない。また、取付位置に関しても、ライナー2の表面、ドーム部1bにおける強化層3の表面、及びシリンダ部1aにおける強化層3の表面の少なくとも一の箇所に取り付けてよい。例えば、ライナー2の表面及びドーム部1bのみにAEセンサ5を設けてシリンダ部1aに設けなくともよく、ライナー2の表面及びシリンダ部1aのみにAEセンサ5を設けてドーム部1bに設けなくともよい。AEセンサ5は、制御部10と電気的に接続されており、検出したAE信号を制御部10へ出力する。 The AE sensor 5 is a sensor that detects an AE that occurs when a material is deformed or damage such as a microcrack is generated in the material, or an AE that is generated when a crack grows and the material is destroyed. . In the example shown in FIG. 1, the AE sensor 5A is attached to the surface of the liner 2 with respect to the portion where the liner 2 is exposed, the AE sensor 5B is attached to the surface of the reinforcing layer 3 in the dome portion 1b, and the cylinder portion 1a. An AE sensor 5C is attached to the surface of the reinforcing layer 3 in FIG. The AE sensor 5A attached to the surface of the liner 2 makes it easy to detect signs of fatigue failure of the liner 2. Moreover, it becomes easy to detect the damage of the reinforcement layer 3 by the AE sensors 5B and 5C attached to the surface of the reinforcement layer 3. The number of AE sensors 5 is not particularly limited. Moreover, regarding the attachment position, you may attach to at least one location of the surface of the liner 2, the surface of the reinforcement layer 3 in the dome part 1b, and the surface of the reinforcement layer 3 in the cylinder part 1a. For example, the AE sensor 5 may not be provided only on the surface of the liner 2 and the dome portion 1b and may not be provided on the cylinder portion 1a, and the AE sensor 5 may be provided only on the surface of the liner 2 and the cylinder portion 1a and not provided on the dome portion 1b. Good. The AE sensor 5 is electrically connected to the control unit 10 and outputs the detected AE signal to the control unit 10.
 表示部11は、検査を行う作業者に対して情報を表示する機能を有しており、ディスプレイなどによって構成されている。表示部11は、制御部10から送信される情報を表示する。なお、スピーカーなどにより音声によって情報を出力してもよい。入力部12は、作業者の操作によって必要な情報を入力する機能を有しており、マウス、タッチパネル、ペンタブレット、キーボードなどによって構成される。入力部12は、入力された情報を制御部10へ送信する。制御部10は、例えばCPU、ROM、及びRAM等により構成されている。制御部10は、信号取得部13と、測定部14と、判定部15と、処理部16と、を備えている。 The display unit 11 has a function of displaying information to an operator who performs inspection, and is configured by a display or the like. The display unit 11 displays information transmitted from the control unit 10. Note that information may be output by voice through a speaker or the like. The input unit 12 has a function of inputting necessary information by an operator's operation, and includes a mouse, a touch panel, a pen tablet, a keyboard, and the like. The input unit 12 transmits the input information to the control unit 10. The control part 10 is comprised by CPU, ROM, RAM, etc., for example. The control unit 10 includes a signal acquisition unit 13, a measurement unit 14, a determination unit 15, and a processing unit 16.
 信号取得部13は、AEセンサ5から出力されるAE信号を取得する機能を有している。測定部14は、信号取得部13で取得されたAE信号を用いて、検査のための判定に用いられる各種値を測定する機能を有している。なお、測定部14は、検査場所などの関係により、AE信号にノイズが含まれる場合は、当該ノイズを除いたAE信号による測定値を測定可能である。また、測定部14は、ライナー2の疲労に起因する損傷によって生じるAEを測定可能であると共に、強化層3の損傷(繊維の損傷、硬化性樹脂の損傷)によるAEを測定可能である。 The signal acquisition unit 13 has a function of acquiring an AE signal output from the AE sensor 5. The measurement unit 14 has a function of measuring various values used for determination for inspection using the AE signal acquired by the signal acquisition unit 13. Note that when the noise is included in the AE signal due to the relationship between the inspection location and the like, the measurement unit 14 can measure the measurement value using the AE signal excluding the noise. The measurement unit 14 can measure AE caused by damage caused by fatigue of the liner 2 and can measure AE caused by damage of the reinforcing layer 3 (fiber damage, curable resin damage).
 判定部15は、検査のための各種判定を行う機能を有している。判定部15は、測定部14による測定値に基づいて、すなわち信号取得部13によって取得されたAE信号に基づいて、ライナー2の疲労破壊の兆候を示す第1の条件を満たすか否かを判定する機能を有している。例えば、判定部15は、測定部14による測定値が予め設定された閾値以上である場合に、第1の条件を満たすと判定する。第1の条件の判定のために設定される閾値は、ライナー2の疲労破壊の兆候を示す値であればよく、その閾値がどの程度の疲労の進行度合いを示す値であるかは特に限定されない。例えば、疲労破壊の直前であることを示す値を閾値として設定してもよく、使用開始から疲労破壊までの中間時期であることを示す値を閾値として設定してもよい。また、第1の条件の判定のために用いられる閾値は、AEセンサ5で検出されたAEのエネルギーに基づいた値に対して設定され、具体的には、AEの累積エネルギー(例えば測定開始からの累積エネルギー)や、所定時間内におけるAEエネルギー量や、AEのヒットレートに対して設定される。なお、AEのエネルギーは、AE信号の波形から演算されてもよいが、演算を容易にするために近似的に演算してもよい。例えば、AEの数をAE累積エネルギーの大きさと同等なものと見なし、AEの数のカウント数をAE累積エネルギーとしてもよい(なお、AEの数を単純にカウントしてもよく、大きいAEの場合はエネルギーが大きいものとみなし、大きさに応じて加算してカウントしてもよい)。または、ライナー2の疲労破壊の兆候を示すAE波形やAEの周波数分布を有するAE信号が検出されること自体を第1の条件としてもよい。 The determination unit 15 has a function of performing various determinations for inspection. The determination unit 15 determines whether or not the first condition indicating a sign of fatigue fracture of the liner 2 is satisfied based on the measurement value by the measurement unit 14, that is, based on the AE signal acquired by the signal acquisition unit 13. It has a function to do. For example, the determination unit 15 determines that the first condition is satisfied when the measurement value by the measurement unit 14 is equal to or greater than a preset threshold value. The threshold value set for the determination of the first condition is not particularly limited as long as it is a value indicating a sign of fatigue fracture of the liner 2 and how much the threshold value indicates the degree of progress of fatigue. . For example, a value indicating that it is immediately before fatigue failure may be set as a threshold value, and a value indicating that it is an intermediate period from the start of use to fatigue failure may be set as a threshold value. Further, the threshold value used for the determination of the first condition is set with respect to a value based on the energy of the AE detected by the AE sensor 5, and specifically, the accumulated energy of the AE (for example, from the start of measurement). (Accumulated energy), AE energy amount within a predetermined time, and AE hit rate. Note that the AE energy may be calculated from the waveform of the AE signal, but may be approximately calculated to facilitate the calculation. For example, the number of AEs is considered to be equivalent to the magnitude of the AE accumulated energy, and the count number of the AE number may be set as the AE accumulated energy (Note that the number of AEs may be simply counted, or a large AE. Are considered to have high energy and may be counted according to their size). Alternatively, the first condition may be that an AE signal having a sign of fatigue failure of the liner 2 or an AE signal having an AE frequency distribution is detected.
 ライナー2の疲労破壊に関し、複合容器1の使用を繰り返すサイクル試験を行うことで、使用開始から最終的にライナー2が疲労破壊を起こすまでの間に、ライナー2の疲労の影響によって発生するAE信号を検出することができる。例えば、図2に示すように、複合容器1に流体を入れて内圧を上げた後、流体を複合容器1から出して内圧を下げることを1サイクルとして、当該サイクルを繰り返しながら、その時に発生するAE音をAEセンサ5で検出する。このようなサイクル試験を行った場合、図3に示すように、使用初期から中期にかけては略無音状態が続き、P1に示す回数において、複合容器1のライナー2の疲労・亀裂発生を示すAE信号が検出される。更にサイクルを続けると、P3に示す回数において、疲労亀裂の進展増加を示すAE信号が検出される。そして、更にサイクルを続けてゆくと、P3に示す回数においてライナー2の最終的な疲労破壊が発生し(リークが発生する)、当該疲労破壊によって発生するAE信号が検出される。このような試験結果より、複合容器1の検査中にAE音を測定することによって、ライナー2の疲労の進行度合いを検査することができる。例えば、P1やP2で検出されるAE信号に基づいて検査を行うことで、ライナー2の疲労がある程度進んでいることを判断できる。例えば、図3に示すL2を閾値として設定することができる。あるいは、P3でのAE信号が検出される直前のAE信号に基づいて検査を行うことで、ライナー2が疲労破壊直前の状態であることを判断できる。例えば、図3に示すL1を閾値として設定することができる。以上より、判定部15の判定に用いる第1の条件は、予め測定された、複合容器1の使用サイクルとライナー2の疲労によって生じるAEとの関係を示すデータに基づいて定められる。例えば、P1やP2に対応するAEの累積エネルギーを閾値として設定し、測定部14で測定されたAEの累積エネルギーが当該閾値以上であることを第1の条件としてもよい。または、P3へ至る直前のAEの累積エネルギーを閾値として設定し、測定部14で測定されたAEの累積エネルギーが当該閾値以上であることを第1の条件としてもよい。 Regarding the fatigue failure of the liner 2, by performing a cycle test in which the composite container 1 is repeatedly used, the AE signal generated due to the fatigue of the liner 2 from the start of use until the liner 2 eventually undergoes fatigue failure. Can be detected. For example, as shown in FIG. 2, after the fluid is put into the composite container 1 and the internal pressure is raised, the fluid is taken out from the composite container 1 and the internal pressure is lowered as one cycle. AE sound is detected by the AE sensor 5. When such a cycle test is performed, as shown in FIG. 3, a substantially silent state continues from the initial stage of use to the middle period, and an AE signal indicating the occurrence of fatigue / cracking of the liner 2 of the composite container 1 at the number indicated by P1. Is detected. As the cycle continues further, an AE signal indicating an increase in fatigue crack growth is detected at the number of times indicated by P3. As the cycle continues further, the final fatigue failure of the liner 2 occurs (leak occurs) at the number of times indicated by P3, and the AE signal generated by the fatigue failure is detected. From such a test result, the progress of the fatigue of the liner 2 can be inspected by measuring the AE sound during the inspection of the composite container 1. For example, it can be determined that the fatigue of the liner 2 has progressed to some extent by performing an inspection based on the AE signal detected at P1 and P2. For example, L2 shown in FIG. 3 can be set as the threshold value. Alternatively, it is possible to determine that the liner 2 is in a state immediately before fatigue failure by performing an inspection based on the AE signal immediately before the detection of the AE signal at P3. For example, L1 shown in FIG. 3 can be set as the threshold value. As described above, the first condition used for the determination by the determination unit 15 is determined based on the data indicating the relationship between the use cycle of the composite container 1 and the AE caused by the fatigue of the liner 2 measured in advance. For example, the first condition may be that the accumulated energy of AE corresponding to P1 or P2 is set as a threshold, and the accumulated energy of AE measured by the measurement unit 14 is equal to or greater than the threshold. Alternatively, the first condition may be that the accumulated energy of AE immediately before reaching P3 is set as a threshold, and the accumulated energy of AE measured by the measurement unit 14 is equal to or greater than the threshold.
 また、判定部15は、測定部14による測定値に基づいて、すなわち信号取得部13によって取得されたAE信号に基づいて、強化層3の損傷を示す第2の条件を満たすか否かを判定する機能を有している。強化層3の損傷によって生じるAE信号は、ライナー2の疲労によって生じるAE信号とは異なる特定を有しているため、第1の条件とは異なる条件として、第2の条件を設定することができる。例えば、判定部15は、測定部14による測定値が予め設定された閾値以上である場合に、第2の条件を満たすと判定する。また、第2の条件の判定のために用いられる閾値は、AEセンサ5で検出されたAEのエネルギーに基づいた値に対して設定してよく、具体的には、AEの累積エネルギー(例えば測定開始からの累積エネルギー)や、所定時間内におけるAEエネルギー量や、AEのヒットレートに対して設定される。または、強化層3の損傷を示すAE信号が検出されること自体を第2の条件としてもよい。なお、ライナー2の疲労によるAE信号よりも強化層3の損傷によるAE信号の方が、強化層3の損傷を明確に示しており、AE信号の解析による判別を行い易い。 Further, the determination unit 15 determines whether or not the second condition indicating damage to the reinforcing layer 3 is satisfied based on the measurement value obtained by the measurement unit 14, that is, based on the AE signal acquired by the signal acquisition unit 13. It has a function to do. Since the AE signal generated by the damage of the reinforcing layer 3 has a different specification from the AE signal generated by the fatigue of the liner 2, the second condition can be set as a condition different from the first condition. . For example, the determination unit 15 determines that the second condition is satisfied when the measurement value by the measurement unit 14 is greater than or equal to a preset threshold value. Further, the threshold value used for the determination of the second condition may be set with respect to a value based on the energy of the AE detected by the AE sensor 5, and specifically, the accumulated energy of the AE (for example, measurement) Cumulative energy from the start), AE energy amount within a predetermined time, and AE hit rate. Alternatively, the second condition may be that an AE signal indicating damage to the reinforcing layer 3 is detected. Note that the AE signal due to damage to the reinforcing layer 3 clearly shows the damage to the reinforcing layer 3 than the AE signal due to fatigue of the liner 2, and it is easier to make a determination by analyzing the AE signal.
 強化層3の損傷に関し、図4に示すように、通常使用時の圧力をPL1としたとき、当該圧力PL1よりも更に圧力を高くしてゆくと、強化層6の繊維や樹脂の損傷が進んでゆき、圧力PL2で複合容器1の破壊が生じる。このときの強化層6の損傷に基づくAE音は順次増加してゆく。従って、複合容器1の検査中において、通常の使用圧力で使用しているにも関わらず、損傷を示すAE信号が強化層6から検出されたら(例えば、破壊が起きる前段階の圧力PL3で検出されるようなAE信号)、強化層6に損傷が発生していることを判断することができる。以上より、判定部15の判定に用いる第2の条件は、予め測定された、複合容器1の圧力と強化層6の損傷によって生じるAE信号との関係を示すデータに基づいて定められる。 Regarding damage to the reinforcing layer 3, as shown in FIG. 4, when the pressure during normal use is PL1, if the pressure is further increased beyond the pressure PL1, damage to the fibers and the resin of the reinforcing layer 6 proceeds. The composite container 1 is destroyed at the pressure PL2. At this time, the AE sound based on the damage of the reinforcing layer 6 increases sequentially. Accordingly, during the inspection of the composite container 1, when an AE signal indicating damage is detected from the reinforcing layer 6 even though the composite container 1 is used at a normal operating pressure (for example, detected at the pressure PL3 at the stage before the breakdown occurs). It is possible to determine that the reinforced layer 6 is damaged. From the above, the second condition used for the determination by the determination unit 15 is determined based on the data indicating the relationship between the pressure of the composite container 1 and the AE signal generated by the damage of the reinforcing layer 6 measured in advance.
 処理部16は、システム内の各種制御処理を実行する機能を有している。例えば、処理部16は、複合容器1の運用開始・運用停止処理や、ライナー2の疲労破壊の兆候があることを検出した際にその旨の情報をフィードバックするための処理などを実行する。 The processing unit 16 has a function of executing various control processes in the system. For example, the processing unit 16 executes an operation start / operation stop process for the composite container 1, a process for feeding back information to that effect when it is detected that there is a sign of fatigue failure of the liner 2, and the like.
 次に、本実施形態に係る複合容器1の検査方法の一例について、図5~図7を参照して説明する。図5~図7の処理は、制御部10において実行される処理である。なお、複合容器1の検査方法として、運用中の複合容器1を常時監視する常時監視方法を採用してもよく、定期的に検査を行う定期検査方法を採用してもよい。 Next, an example of an inspection method for the composite container 1 according to this embodiment will be described with reference to FIGS. The processing in FIGS. 5 to 7 is processing executed in the control unit 10. As an inspection method for the composite container 1, a constant monitoring method for constantly monitoring the composite container 1 in operation may be employed, or a periodic inspection method for performing regular inspection may be employed.
 まず、図5に示す検査方法について説明する。図5は、運用中の複合容器1を常時監視する場合の処理の一例を示している。図5の例では、ライナー2の疲労破壊の兆候を示す第1の条件として、最終的な疲労破壊の直前におけるAE累積エネルギーを閾値として設定し、AE累積エネルギーの測定値が当該閾値以上となることを条件として設定した。例えば、図3の例では、最終的な疲労破壊が起こるP3の付近におけるAE累積エネルギーを閾値として設定できる。 First, the inspection method shown in FIG. 5 will be described. FIG. 5 shows an example of processing when the composite container 1 in operation is constantly monitored. In the example of FIG. 5, as a first condition indicating signs of fatigue failure of the liner 2, the AE accumulated energy immediately before the final fatigue failure is set as a threshold, and the measured value of the AE accumulated energy is equal to or greater than the threshold. Was set as a condition. For example, in the example of FIG. 3, the AE accumulated energy in the vicinity of P3 where the final fatigue failure occurs can be set as the threshold value.
 図5の処理を開始する前に、複合容器1の検査の準備が行われる。複合容器1にAEセンサ5を取り付け、当該複合容器1を水素ステーションに設置する。次に、処理部16は、複合容器1の運用開始処理を実行する。処理部16は、複合容器1に対して燃料を供給・取り出しするための装置や機器の運転を開始する(ステップS10)。これによって、複合容器1に燃料が供給されて圧力が上昇し、複合容器1から燃料が取り出されて圧力が低下するサイクルが繰り返し行われる。次に、制御部10は、複合容器1を水素ステーションで実際に運用した場合にAEセンサ5に入ってくる、水素ステーション固有のノイズを把握する(ステップS11)。固有ノイズとして、例えば、ガス圧縮機や電磁弁作動音や車通行などによる周辺環境音などが挙げられる。測定部14は、信号取得部13によって取得されたAE信号を解析することによってノイズを把握する。 Before the process of FIG. 5 is started, preparation for the inspection of the composite container 1 is performed. The AE sensor 5 is attached to the composite container 1, and the composite container 1 is installed in the hydrogen station. Next, the processing unit 16 executes an operation start process for the composite container 1. The processing unit 16 starts operation of an apparatus or an apparatus for supplying and taking out fuel from the composite container 1 (step S10). As a result, a cycle in which fuel is supplied to the composite container 1 to increase the pressure and fuel is taken out from the composite container 1 to decrease the pressure is repeated. Next, the control unit 10 grasps noise specific to the hydrogen station that enters the AE sensor 5 when the composite container 1 is actually operated at the hydrogen station (step S11). As the inherent noise, for example, ambient noise caused by gas compressor, electromagnetic valve operation sound, vehicle traffic, and the like can be cited. The measurement unit 14 grasps the noise by analyzing the AE signal acquired by the signal acquisition unit 13.
 次に、信号取得部13は、AEセンサ5からのAE信号を取得すると共に、測定部14は、当該AE信号に基づいてAE累積エネルギーを測定する(ステップS12)。このとき、測定部14は、S11で把握したノイズによるAEエネルギーを差し引いてAE累積エネルギーを測定する。次に、判定部15は、S12で取得されたAE信号に基づいて、第2の条件を満たすか否かを判定することによって、強化層3の損傷が有るか否かを判定する(ステップS13)。具体的には、強化層3の損傷を示すようなAE累積エネルギーが閾値として設定されていた場合、判定部15は、S12で測定されたAE累積エネルギーが閾値以上であるか否かを判定することによって、強化層3の損傷が有るか否かを判定する。あるいは、判定部15は、測定部14によってAE信号の解析を行った結果、強化層3の損傷を示すAE信号が検出されたか否かを判定することによって、強化層3の損傷が有るか否かを判定する。 Next, the signal acquisition unit 13 acquires the AE signal from the AE sensor 5, and the measurement unit 14 measures the AE accumulated energy based on the AE signal (step S12). At this time, the measurement unit 14 measures the AE accumulated energy by subtracting the AE energy due to the noise grasped in S11. Next, the determination unit 15 determines whether or not the reinforcing layer 3 is damaged by determining whether or not the second condition is satisfied based on the AE signal acquired in S12 (step S13). ). Specifically, when the AE accumulated energy indicating damage to the reinforcing layer 3 is set as the threshold, the determination unit 15 determines whether or not the AE accumulated energy measured in S12 is equal to or greater than the threshold. Thus, it is determined whether or not the reinforcing layer 3 is damaged. Alternatively, the determination unit 15 determines whether or not the enhancement layer 3 is damaged by determining whether or not an AE signal indicating damage to the enhancement layer 3 is detected as a result of the analysis of the AE signal by the measurement unit 14. Determine whether.
 S13において、強化層3の損傷が有ると判定された場合、処理部16は、複合容器1の運用を停止する運用停止処理を実行する(ステップS16)。処理部16は、複合容器1に対して燃料を供給・取り出しするための装置や機器の運転を停止する。強化層3が損傷している場合は、複合容器1の強度に影響があるため、複合容器1の使用を直ちに止める必要があるため、S13の判定の後、直ちに運用停止処理を行っている。 When it is determined in S13 that the reinforcing layer 3 is damaged, the processing unit 16 executes an operation stop process for stopping the operation of the composite container 1 (step S16). The processing unit 16 stops the operation of the apparatus and equipment for supplying and taking out fuel from the composite container 1. When the reinforcing layer 3 is damaged, the strength of the composite container 1 is affected, so that the use of the composite container 1 needs to be stopped immediately. Therefore, the operation stop process is performed immediately after the determination of S13.
 S13において、強化層3の損傷が無いと判定された場合、判定部15は、S12で取得されたAE信号に基づいて、第1の条件を満たすか否かを判定することによって、ライナー2の疲労破壊が近いか否かを判定する(ステップS14)。具体的には、判定部15は、S12で測定されたAE累積エネルギーが、閾値以上であるか否かを判定することによって、ライナー2の疲労破壊が近いか否かを判定する。 When it is determined in S13 that the reinforcing layer 3 is not damaged, the determination unit 15 determines whether the first condition is satisfied based on the AE signal acquired in S12. It is determined whether or not fatigue failure is near (step S14). Specifically, the determination unit 15 determines whether or not the fatigue failure of the liner 2 is near by determining whether or not the AE accumulated energy measured in S12 is equal to or greater than a threshold value.
 S14において、ライナー2の疲労破壊が近くないと判定された場合、S12から再び処理を繰り返す。一方、S14において、ライナー2の疲労破壊が近いと判定された場合、S16へ移行し、処理部16は、複合容器1の運用停止処理を実行する。以上により、図5に示す処理が終了し、水素ステーションから検査対象に係る複合容器1が撤去される。 In S14, when it is determined that the fatigue failure of the liner 2 is not near, the process is repeated from S12. On the other hand, when it is determined in S14 that the liner 2 is close to fatigue failure, the process proceeds to S16, and the processing unit 16 executes the operation stop process of the composite container 1. Thus, the process shown in FIG. 5 is completed, and the composite container 1 related to the inspection object is removed from the hydrogen station.
 次に、図6に示す検査方法について説明する。図6は、運用中の複合容器1を常時監視する場合の処理の一例を示している。図6の例では、ライナー2の疲労破壊の兆候を示す第1の条件として、運用開始から最終的な疲労破壊に至るまでの間の中間時期におけるAE累積エネルギーを閾値として設定し、AE累積エネルギーの測定値が当該閾値以上となることを条件として設定した。例えば、図3の例では、中間時期においてライナー2の疲労によるAE信号が検出されたP1付近におけるAE累積エネルギーを閾値として設定できる。 Next, the inspection method shown in FIG. 6 will be described. FIG. 6 shows an example of processing when the composite container 1 in operation is constantly monitored. In the example of FIG. 6, as a first condition indicating a sign of fatigue failure of the liner 2, the AE accumulated energy in the intermediate period from the start of operation to the final fatigue failure is set as a threshold, and the AE accumulated energy is set. It was set on condition that the measured value of became more than the said threshold value. For example, in the example of FIG. 3, the AE accumulated energy in the vicinity of P1 where the AE signal due to the fatigue of the liner 2 is detected in the intermediate period can be set as the threshold value.
 図6においては、S10、S11、S12、S13、S16で図5と同様な処理がなされる。S13において強化層3の損傷が無いと判定された場合、判定部15は、S12で取得されたAE信号に基づいて、第1の条件を満たすか否かを判定することによって、ライナー2の疲労破壊の兆候があるか否かを判定する(ステップS17)。具体的には、判定部15は、S12で測定されたAE累積エネルギーが、閾値以上であるか否かを判定することによって、ライナー2の疲労破壊の兆候があるか否かを判定する。 In FIG. 6, the same processing as in FIG. 5 is performed in S10, S11, S12, S13, and S16. When it is determined in S13 that the reinforcing layer 3 is not damaged, the determination unit 15 determines whether or not the first condition is satisfied based on the AE signal acquired in S12. It is determined whether there is a sign of destruction (step S17). Specifically, the determination unit 15 determines whether or not there is a sign of fatigue failure of the liner 2 by determining whether or not the AE accumulated energy measured in S12 is equal to or greater than a threshold value.
 S17において、ライナー2の疲労破壊が近くないと判定された場合、S12から再び処理を繰り返す。一方、S17において、ライナー2の疲労破壊の兆候があると判定された場合、処理部16は、ライナー2に疲労破壊の兆候があるという情報を作業者へフィードバックする処理を実行する(ステップS18)。ここでは、直ちに複合容器1の使用を停止する程に疲労が進行していない状態を検出しているため、複合容器1の運用停止処理に代えて、情報のフィードバックを行っている。例えば、処理部16は、現時点におけるサイクル数及び残りの使用可能サイクルの推定値を作業者にフィードバックしてよい。または、処理部16は、使用のサイクルが想定よりも早い(遅い)場合、複合容器1に対して設定されている寿命(例えば15年)よりも早く(遅く)疲労破壊が来る旨をフィードバックしてよい。その際、目安となる残りの寿命をフィードバックしてよい。処理部16は、情報を表示部11へ出力することによって、情報をフィードバックする。 In S17, when it is determined that the fatigue fracture of the liner 2 is not near, the process is repeated from S12. On the other hand, when it is determined in S17 that there is a sign of fatigue fracture of the liner 2, the processing unit 16 executes a process of feeding back information to the operator that the liner 2 has a sign of fatigue fracture (step S18). . Here, since a state in which fatigue has not progressed to such an extent that the use of the composite container 1 is immediately stopped is detected, information feedback is performed instead of the operation stop processing of the composite container 1. For example, the processing unit 16 may feed back the number of cycles at the present time and the estimated value of the remaining usable cycles to the operator. Alternatively, when the cycle of use is earlier (slower) than expected, the processing unit 16 feeds back that fatigue failure will occur earlier (slower) than the life (for example, 15 years) set for the composite container 1. It's okay. At that time, the remaining remaining life as a guide may be fed back. The processing unit 16 feeds back information by outputting the information to the display unit 11.
 以上により図6に示す処理が終了する。S16の運用停止処理によって終了した場合、水素ステーションから検査対象に係る複合容器1が撤去される。S18の情報フィードバク処理によって終了した場合、図5のS12へ移行し、ライナー2の疲労破壊が近いことを判定してもよい。あるいは、図6のS17で設定された閾値よりも高い閾値を設定することで、更に疲労が進行した時期に情報フィードバック処理を行うようにしてもよい。 Thus, the process shown in FIG. 6 is completed. When the process is terminated by the operation stop process of S16, the composite container 1 related to the inspection target is removed from the hydrogen station. When the process is terminated by the information feedback process in S18, the process may proceed to S12 in FIG. 5 and it may be determined that the fatigue failure of the liner 2 is close. Alternatively, by setting a threshold value higher than the threshold value set in S <b> 17 of FIG. 6, information feedback processing may be performed at a time when further fatigue has progressed.
 次に、図7に示す検査方法について説明する。図7は、水素ステーションの定期検査時に複合容器1の検査を行う場合の処理の一例を示している。 Next, the inspection method shown in FIG. 7 will be described. FIG. 7 shows an example of processing when the composite container 1 is inspected during the periodic inspection of the hydrogen station.
 図7の処理を開始する前に、複合容器1の検査の準備が行われる。水素ステーションに既に設置されている複合容器1にAEセンサ5を取り付ける。次に、処理部16は、複合容器1内の耐圧試験のために、容器内部の圧力を昇圧する処理を実行する(ステップS20)。次に、信号取得部13は、AEセンサ5からのAE信号を取得する。判定部15は、S21で取得したAE信号が有音に係る信号であるか、無音に係る信号であるかを判定する(ステップS22)。なお、判定部15は、限りなく小さく無音に近い音も無音であるものと判定する。S22において、無音であると判定された場合、判定部15は検査に係る複合容器1は健全な状態であると判定する(ステップS28)。 Before the processing of FIG. 7 is started, preparation for the inspection of the composite container 1 is performed. The AE sensor 5 is attached to the composite container 1 already installed in the hydrogen station. Next, the processing unit 16 executes a process of increasing the pressure inside the container for the pressure resistance test in the composite container 1 (step S20). Next, the signal acquisition unit 13 acquires an AE signal from the AE sensor 5. The determination unit 15 determines whether the AE signal acquired in S21 is a signal related to sound or a signal related to silence (step S22). Note that the determination unit 15 determines that a sound that is extremely small and close to silence is also silent. When it determines with it being silence in S22, the determination part 15 determines with the composite container 1 which concerns on a test | inspection being a healthy state (step S28).
 一方、S22において有音と判定されると、判定部15は、当該音がノイズであるか否かを判定する(ステップS23)。S23においてノイズであると判定された場合、複合容器自体に破壊音が発生しているわけではないので、判定部15は検査に係る複合容器1は健全な状態であると判定する(ステップS28)。 On the other hand, when it is determined that there is sound in S22, the determination unit 15 determines whether or not the sound is noise (step S23). If it is determined in S23 that the noise is noise, the composite container itself does not generate a sound of destruction, so the determination unit 15 determines that the composite container 1 related to the inspection is in a healthy state (step S28). .
 一方、S23においてノイズだけではないと判定された場合、破壊音が発生している可能性があり、健全性が損なわれている可能性があるため、処理部16は、更に検査を進めるために、再度の昇圧処理を実行する(ステップS24)。測定部14は、昇圧時のAEエネルギー量を測定する(ステップS26)。判定部15は、S26で測定したAEエネルギー量が、予め設定しておいた閾値以上であるか否かを判定する(ステップS27)。閾値として、ライナー2の疲労を判定するための閾値(例えば、図5や図6の処理の例で設定した閾値)を設定してよい。また、S27のタイミングで、強化層3の損傷が有るか否かの判定を行ってもよい。S27において、AEエネルギー量が閾値未満であると判定された場合は、判定部15は検査に係る複合容器1は健全な状態であると判定する(ステップS28)。一方、S28において、AEエネルギー量が閾値以上であると判定された場合は、判定部15は検査に係る複合容器1は健全な状態ではないと判定する(ステップS29)。 On the other hand, if it is determined in S23 that it is not only noise, there is a possibility that destructive sound is generated, and soundness may be impaired, so that the processing unit 16 further proceeds with the inspection. Then, the boosting process is performed again (step S24). The measuring unit 14 measures the amount of AE energy at the time of boosting (step S26). The determination unit 15 determines whether or not the AE energy amount measured in S26 is greater than or equal to a preset threshold value (step S27). As the threshold value, a threshold value for determining fatigue of the liner 2 (for example, a threshold value set in the processing examples of FIGS. 5 and 6) may be set. Further, at the timing of S27, it may be determined whether or not the reinforcing layer 3 is damaged. In S27, when it is determined that the AE energy amount is less than the threshold, the determination unit 15 determines that the composite container 1 related to the inspection is in a healthy state (step S28). On the other hand, in S28, when it is determined that the AE energy amount is equal to or greater than the threshold, the determination unit 15 determines that the composite container 1 related to the inspection is not in a healthy state (step S29).
 S28にて複合容器1が健全であると判定されて図7に示す処理が終了した場合、定期検査は終了し、引き続き水素ステーションでの複合容器1の使用が継続される。一方、S28にて複合容器1が健全ではないと判定されて図7に示す処理が終了した場合、水素ステーションから複合容器1が撤去される(直ちに交換が必要な程度の不健全性であった場合)。あるいは、複合容器1の残り寿命がどの程度であるかなどの情報がフィードバックされる。 When it is determined in S28 that the composite container 1 is healthy and the processing shown in FIG. 7 is finished, the periodic inspection is finished and the use of the composite container 1 at the hydrogen station is continued. On the other hand, when it is determined in S28 that the composite container 1 is not healthy and the process shown in FIG. 7 is completed, the composite container 1 is removed from the hydrogen station (the state of unhealthy that requires immediate replacement). If). Alternatively, information such as the remaining life of the composite container 1 is fed back.
 次に、図8及び図9を参照して、実際の測定データを用いて、ライナー2の疲労破壊の兆候を示す第1の条件を設定する設定方法の一例について説明する。ただし、第1の条件の設定方法は、これに限定されるものではない。 Next, with reference to FIG. 8 and FIG. 9, an example of a setting method for setting the first condition indicating the signs of fatigue fracture of the liner 2 using actual measurement data will be described. However, the setting method of the first condition is not limited to this.
 まず、測定に用いる複合容器1として、長さが3800mm、外径480mmの300Lのものを用いた。この複合容器1の常用圧力は82MPaであった。この複合容器1に対して、プリアンプ内臓式のAEセンサ(V150-RIC)を取り付けた。取付箇所は、図8(a)に示すように、複合容器の両端と、シリンダ部に所定間隔で複数のAEセンサ5を取り付けた。図8(a)においてAで示す位置には、軸方向から見て図8(b)に示すようなパターンで取り付け、Bで示す位置には、軸方向から見て図8(c)に示すようなパターンで取り付けた。また、AE計測用ユニットとしてVallen社製の「AMSY-5M37」を用い、計測用ソフトウェアとしてVallen社製の「VisualAE」を用いた。また、複合容器1へのAEセンサ5の設置方法としては、シリコン接着剤などを用い、接触媒体としてシリコングリスなどを用いた。 First, as a composite container 1 used for measurement, a 300 L container having a length of 3800 mm and an outer diameter of 480 mm was used. The normal pressure of this composite container 1 was 82 MPa. A preamplifier built-in type AE sensor (V150-RIC) was attached to the composite container 1. As shown in FIG. 8 (a), the plurality of AE sensors 5 are attached to both ends of the composite container and the cylinder portion at predetermined intervals. In FIG. 8A, it is attached at a position indicated by A in a pattern as shown in FIG. 8B when viewed from the axial direction, and at a position indicated by B as shown in FIG. 8C when viewed from the axial direction. It was attached with a pattern like this. In addition, “AMSY-5M37” manufactured by Vallen was used as an AE measurement unit, and “VisualAE” manufactured by Vallen was used as measurement software. Further, as a method for installing the AE sensor 5 in the composite container 1, a silicon adhesive or the like was used, and silicon grease or the like was used as a contact medium.
 上述のような設備を用いて、サイクル試験を行い、当該サイクル中のAE累積エネルギーを測定した。なお、サイクル中のAEの数を累積した値をAE累積エネルギーとした。測定結果を図9に示す。なお、ライナー2の疲労により亀裂が成長し、最終的に疲労破壊が発生したと見なしてサイクル試験を停止したときのサイクル数は25000回であった。図9の横軸の「サイクル回数」は、対応する回数を25000回で割ることによって無次元化された数値である。また、縦軸の「AE累積エネルギー」は、対応するAE累積エネルギーの測定値を、25000回の時の測定値で割ることによって無次元化された数値である。 A cycle test was performed using the equipment as described above, and the AE accumulated energy during the cycle was measured. In addition, the value which accumulated the number of AE in a cycle was made into AE accumulated energy. The measurement results are shown in FIG. Note that the number of cycles was 25,000 when the cycle test was stopped assuming that cracks grew due to fatigue of the liner 2 and eventually fatigue failure occurred. The “cycle count” on the horizontal axis in FIG. 9 is a numerical value made dimensionless by dividing the corresponding count by 25000 times. The “AE accumulated energy” on the vertical axis is a numerical value made dimensionless by dividing the measured value of the corresponding AE accumulated energy by the measured value at 25000 times.
 図9に示すように、複合容器1の運用開始から最終的な疲労破壊に至るまでに、三段階のステップを経ている。第1のステップでは、ほぼ無音の状態となる。第1のステップは、使用開始からサイクル回数0.5付近まで続いている。第2のステップでは、複合容器1の疲労による亀裂等を示すAE信号が発生する。第2のステップでは初めにAE累積エネルギーが急激に増加し、その後は緩やかに増加する。第2のステップは、サイクル回数0.5付近から0.8付近まで続いている。第3のステップでは、疲労破壊に向けてAE累積エネルギーが順次増加する。第3のステップは、サイクル回数0.8付近から最終的な疲労破壊へ至るまで続く。 As shown in FIG. 9, there are three steps from the start of operation of the composite container 1 to the final fatigue failure. In the first step, there is almost no sound. The first step continues from the start of use until the number of cycles is around 0.5. In the second step, an AE signal indicating a crack or the like due to fatigue of the composite container 1 is generated. In the second step, the AE accumulated energy increases rapidly at first, and then increases gradually. The second step continues from around the cycle number 0.5 to around 0.8. In the third step, the AE accumulated energy sequentially increases toward fatigue failure. The third step continues from the cycle number around 0.8 to the final fatigue failure.
 このような、複合容器の使用サイクルとライナー2の疲労によって生じるAE信号との関係を示す測定データに基づいて、ライナー2の疲労破壊の兆候を判定するための第1の条件を設定することができる。例えば、ライナー2が疲労破壊の直前であることを判定するための閾値として、図9において点線で示すエネルギー許容値L3を設定することができる。複合容器1の検査時においては、AE累積エネルギーの測定値がエネルギー許容値L3以上となったら、第1の条件が満たされたとして、複合容器1の運用を停止する。 Based on the measurement data indicating the relationship between the use cycle of the composite container and the AE signal generated by the fatigue of the liner 2, the first condition for determining the signs of fatigue failure of the liner 2 can be set. it can. For example, the allowable energy value L3 indicated by the dotted line in FIG. 9 can be set as a threshold for determining that the liner 2 is immediately before fatigue failure. When the composite container 1 is inspected, if the measured value of the AE accumulated energy is equal to or greater than the allowable energy value L3, the operation of the composite container 1 is stopped assuming that the first condition is satisfied.
 次に、本実施形態に係る複合容器1の検査方法の作用・効果について説明する。 Next, the operation and effect of the inspection method for the composite container 1 according to the present embodiment will be described.
 まず、強化層3を有していない従来の鋼製容器に対しては、非破壊検査手段として多様な検査方法を採用することが可能であった。例えば、鋼製容器の試験方法として、磁噴探傷試験、浸透深傷試験、超音波探傷試験、放射線透過試験、過流探傷試験などが採用されていた。 First, it was possible to employ various inspection methods as non-destructive inspection means for conventional steel containers that do not have the reinforcing layer 3. For example, as a test method for a steel container, a magnetic jet flaw test, a penetrating deep flaw test, an ultrasonic flaw test, a radiation transmission test, an overflow flaw test, and the like have been adopted.
 一方、ライナー2に繊維を巻き付けて強化層3を形成している複合容器1においては、上述のような方法で検査を行うことができない。鋼製容器は均一な管厚を有していると共に滑らかな表面を有しているために、上述のような方法によって良好に検査を行うことができた。しかしながら、複合容器1は、繊維を巻き付けるために、表面が滑らかではない上、厚み方向における層構造も場所によって完全に均一とならない。従って、複合容器1において、鋼製容器で用いられる方法を採用しても、良好に検査を行うことができない。例えば、強化層3が磁性を有していないため磁噴探傷試験を採用することはできず、表面が滑らかではないため、表面の傷に薬品を塗布する浸透深傷試験を採用することはできず、管壁構造が均一ではないためセンサから超音波を発して観測する超音波探傷試験を採用することはできず、その他の方法も構造上採用することができない。 On the other hand, the composite container 1 in which the reinforcing layer 3 is formed by winding the fiber around the liner 2 cannot be inspected by the method described above. Since the steel container has a uniform tube thickness and a smooth surface, it can be satisfactorily inspected by the method described above. However, since the composite container 1 winds the fibers, the surface is not smooth and the layer structure in the thickness direction is not completely uniform depending on the location. Therefore, even if the method used in the steel container is employed in the composite container 1, the inspection cannot be performed satisfactorily. For example, since the reinforcing layer 3 does not have magnetism, it is impossible to employ a magnetic flaw detection test, and since the surface is not smooth, it is possible to employ a penetrating deep wound test in which a chemical is applied to the surface scratch. Furthermore, since the tube wall structure is not uniform, an ultrasonic flaw detection test in which ultrasonic waves are emitted from a sensor for observation cannot be employed, and other methods cannot be employed structurally.
 更に、鋼製容器は疲労破壊に強い容器であるため、検査においては、鋼製容器が健全であるか健全でないかの判断ができればよく、疲労の進行度を判断する必要性が低かった。それに対して、複合容器1のライナー2は、(特にアルミニウム合金を採用した場合)疲労破壊が鋼製容器に比して起こりやすい構成である。また、鋼製容器は疲労破壊に強く、予め定められた規定の寿命より前に疲労破壊が起こる可能性が低かったが、複合容器1の場合、疲労破壊へ至るまでの期間が運転環境や条件によって大きく左右されることにより、ライナー2の寿命自体も、運用環境や条件の影響により変動する場合がある。従って、複合容器に対して規定の寿命が定められていたとしても、使用環境や使用条件を変更することによって、寿命が左右され得る。このように、鋼製容器とは状況や前提が大きく異なる複合容器1を良好に検査できるように、好適な検査方法が求められていた。 Furthermore, since the steel container is a container that is resistant to fatigue failure, in the inspection, it is only necessary to determine whether the steel container is healthy or not, and the necessity of determining the degree of fatigue is low. On the other hand, the liner 2 of the composite container 1 has a configuration in which fatigue failure is likely to occur (particularly when an aluminum alloy is employed) compared to a steel container. In addition, the steel container is resistant to fatigue failure, and it is unlikely that the fatigue failure will occur before the predetermined specified life. However, in the case of the composite container 1, the period until the fatigue failure occurs depends on the operating environment and conditions. The life of the liner 2 itself may fluctuate due to the operating environment and conditions. Therefore, even if the specified life is determined for the composite container, the life can be influenced by changing the use environment and use conditions. As described above, a suitable inspection method has been demanded so that the composite container 1 which is greatly different from the steel container in terms of the situation and premise can be satisfactorily inspected.
 そこで、本発明者らは、鋭意研究の結果、複合容器1の非破壊検査方法として、AE法を採用することが好適であることを見出した。また、本発明者らは、複合容器1のライナー2の疲労の進行度合いとAEのエネルギーとの間には、所定の関係性が成り立つことを見出した。さらに、予め測定しておいたAEの測定結果に基づいて条件を設定することで、検査に係る複合容器1のライナー2に疲労破壊の兆候があるかどうかの判定を行うことが可能であることを見出した。 Therefore, as a result of intensive studies, the present inventors have found that it is preferable to employ the AE method as a nondestructive inspection method for the composite container 1. Further, the present inventors have found that a predetermined relationship is established between the degree of progress of fatigue of the liner 2 of the composite container 1 and the energy of AE. Furthermore, it is possible to determine whether or not there is a sign of fatigue failure in the liner 2 of the composite container 1 related to the inspection by setting conditions based on the measurement result of AE measured in advance. I found.
 そこで、本実施形態に係る複合容器1の検査方法では、S14,S17,S27などの第1の条件を判定する工程において、複合容器1に取り付けられたAEセンサ5から取得したAE信号に基づいて、第1の条件を満たすか否かを判定している。これによって、検査対象に係る複合容器1のライナー2の疲労破壊の兆候を検査することが可能となり、複合容器1を適切に検査することが可能となる。 Therefore, in the method for inspecting the composite container 1 according to this embodiment, based on the AE signal acquired from the AE sensor 5 attached to the composite container 1 in the step of determining the first condition such as S14, S17, and S27. Whether or not the first condition is satisfied is determined. Accordingly, it is possible to inspect signs of fatigue failure of the liner 2 of the composite container 1 to be inspected, and it is possible to inspect the composite container 1 appropriately.
 ここで、繊維をライナー2に巻き付けることによって形成される強化層3の損傷とAEとの間には、ライナー2の疲労の進行度合いとは異なった関係性が成り立つ。ライナー2は、高圧と低圧のサイクルを繰り返すことで疲労による損傷を(強化層3に比して)生じやすい一方、繊維はサイクルの繰り返しに強いため強化層3はサイクルの数が多くなっても疲労による損傷が生じにくい。次に、複合容器1内の圧力が通常使用時における圧力よりも高くなり、複合容器1が膨張する場合について説明する。ライナー2は伸びやすい材料で構成されているため複合容器1が膨張しても直ちに損傷には至らない。一方、強化層3の繊維は荷重を受けても変形しないように強固に複合容器1を支持することができるが、複合容器1が膨張するに至った後は、繊維の破断や樹脂の割れなどの損傷が(ライナー2に比して)起きやすい。以上のように、サイクルの繰り返しによる疲労に関しては、強化層3よりもライナー2が影響を受け易く、圧力が高くなることによるダメージに関しては、ライナー2よりも強化層3が影響を受け易い。このように、ライナー2と強化層3とでは、構造上の性質が異なっていることにより、損傷の態様が異なっているため、損傷によって生じるAE信号も性質が異なったものとなる。 Here, a relationship different from the progress of fatigue of the liner 2 is established between the damage of the reinforcing layer 3 formed by winding the fiber around the liner 2 and the AE. The liner 2 is likely to be damaged due to fatigue (compared to the reinforcing layer 3) by repeating the high-pressure and low-pressure cycles. On the other hand, since the fiber is strong against repeated cycles, the reinforcing layer 3 has a large number of cycles. Damage due to fatigue is less likely to occur. Next, the case where the pressure in the composite container 1 becomes higher than the pressure during normal use and the composite container 1 expands will be described. Since the liner 2 is made of a material that is easy to stretch, even if the composite container 1 expands, it does not immediately cause damage. On the other hand, the fiber of the reinforcing layer 3 can firmly support the composite container 1 so as not to be deformed even when subjected to a load, but after the composite container 1 has expanded, the fiber breaks, the resin cracks, etc. Are more likely to occur (compared to the liner 2). As described above, the liner 2 is more susceptible to fatigue than the reinforcement layer 3 with respect to fatigue due to repeated cycles, and the reinforcement layer 3 is more susceptible to damage than the liner 2 with respect to damage caused by increased pressure. As described above, the liner 2 and the reinforcing layer 3 have different structural properties, and thus have different damage modes. Therefore, the AE signal generated by the damage also has different properties.
 本実施形態に係る複合容器1の検査方法は、取得されたAE信号に基づいて、強化層3の損傷を示す第2の条件を満たすか否かを判定する工程(S13,S27など)を更に備えている。上述のように、繊維をライナー2に巻き付けることによって形成される強化層3の損傷とAEとの間には、ライナー2の疲労の進行度合いとは異なった関係性が成り立つ。従って、ライナー2の疲労破壊の兆候を示す第1の条件とは異なる第2の条件を設定することによって、強化層3の検査も適切に行うことができる。鋼製容器は、管壁が単一の鋼材のみで構成された単純な構造であるため、鋼製容器用の従来のAE法を複合容器1に転用しても、十分な検査が行えない可能性があった。一方、本実施形態では、複合容器1の構造(ライナー2と強化層3を含んでいる)と性質を考慮した検査を行うことにより、複合容器1についてより適切な検査を行うことができる。 The method for inspecting the composite container 1 according to the present embodiment further includes a step (S13, S27, etc.) of determining whether or not the second condition indicating damage to the reinforcing layer 3 is satisfied based on the acquired AE signal. I have. As described above, a relationship different from the degree of progress of fatigue of the liner 2 is established between the damage of the reinforcing layer 3 formed by winding the fiber around the liner 2 and AE. Therefore, by setting the second condition different from the first condition indicating the signs of fatigue failure of the liner 2, the reinforcing layer 3 can be appropriately inspected. Since the steel container has a simple structure in which the pipe wall is composed of only a single steel material, even if the conventional AE method for steel containers is diverted to the composite container 1, sufficient inspection cannot be performed. There was sex. On the other hand, in this embodiment, the composite container 1 can be more appropriately inspected by performing an inspection in consideration of the structure (including the liner 2 and the reinforcing layer 3) and the properties of the composite container 1.
 本実施形態に係る複合容器1の検査方法において、AEセンサ5は、ライナー2及び強化層3の表面に取り付けられている。ライナー2の表面にAEセンサを取り付けることで、ライナー2の疲労破壊の兆候を示す第1の条件を正確に判定することが可能となる。一方、強化層3の表面にAEセンサ5を取り付けることで強化層3の損傷を示す第2の条件を正確に判定することが可能となる。このように、一つの複合容器1の中に性質の異なるライナー2と強化層3が存在している場合でも、各箇所について適切な検査を行うことができる。例えば、同一箇所からのAE信号のみの判断では、AEが検出された場合であっても、どこから発生したAEであるかの判断が難しいが、上述のような構成とすることにより、例えば、ライナー2表面(強化層3表面)から検出されるAE信号が小さい一方、強化層3表面(ライナー2表面)から検出されるAE信号が大きい場合、強化層3(ライナー2)での損傷が大きいことを判断できる。 In the inspection method of the composite container 1 according to this embodiment, the AE sensor 5 is attached to the surfaces of the liner 2 and the reinforcing layer 3. By attaching an AE sensor to the surface of the liner 2, it is possible to accurately determine the first condition that indicates a sign of fatigue failure of the liner 2. On the other hand, by attaching the AE sensor 5 to the surface of the reinforcing layer 3, the second condition indicating damage to the reinforcing layer 3 can be accurately determined. As described above, even when the liner 2 and the reinforcing layer 3 having different properties are present in one composite container 1, appropriate inspection can be performed for each portion. For example, it is difficult to determine where an AE is generated even if an AE is detected when only the AE signal from the same location is detected. 2 When the AE signal detected from the surface (the surface of the reinforcing layer 3) is small, while the AE signal detected from the surface of the reinforcing layer 3 (the surface of the liner 2) is large, the damage on the reinforcing layer 3 (the liner 2) is large. Can be judged.
 本実施形態に係る複合容器1の検査方法において、強化層3の表面に取り付けられるAEセンサ5は、複合容器1のシリンダ部1aに配置されている。強化層3のうち、軸方向への破壊を生じるドーム部1bよりも、周方向への破壊を生じるシリンダ部1aの方が破壊が生じやすい。従って、シリンダ部1aにアコースティックエミッションセンサ5を取り付けることにより、強化層3の損傷をより正確に検査することができる。 In the inspection method of the composite container 1 according to the present embodiment, the AE sensor 5 attached to the surface of the reinforcing layer 3 is disposed in the cylinder portion 1a of the composite container 1. Of the reinforced layer 3, the cylinder portion 1 a that causes destruction in the circumferential direction is more likely to break than the dome portion 1 b that causes destruction in the axial direction. Therefore, by attaching the acoustic emission sensor 5 to the cylinder part 1a, it is possible to inspect the reinforcing layer 3 for damage more accurately.
 本実施形態に係る複合容器1の検査方法において、強化層3の表面に取り付けられるAEセンサ5は、複合容器1のドーム部1bに配置されている。複合容器1のうちライナー2はドーム部1bの先端側で露出しているため、ライナー2の表面に取り付けられるAEセンサは、当該位置に取り付けられる。従って、強化層3の表面に取り付けられるAEセンサもドーム部1bに配置することにより、両センサの取付位置が近くなり、検査の際のセンサ取付作業が容易になる。 In the inspection method of the composite container 1 according to the present embodiment, the AE sensor 5 attached to the surface of the reinforcing layer 3 is disposed on the dome portion 1b of the composite container 1. Since the liner 2 of the composite container 1 is exposed at the distal end side of the dome portion 1b, the AE sensor attached to the surface of the liner 2 is attached at this position. Therefore, by arranging the AE sensor attached to the surface of the reinforcing layer 3 in the dome portion 1b, the attachment positions of both sensors become close, and the sensor attachment work at the time of inspection becomes easy.
 本発明は、上述の実施形態に限定されるものではない。例えば、検査方法に用いられる検査システムの構造は、上述の実施形態に係るものでなくともよく、検査のフローも上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above. For example, the structure of the inspection system used for the inspection method may not be related to the above-described embodiment, and the inspection flow is not limited to the above-described embodiment.
 なお、上述の実施形態では、検査対象に係る複合容器として、ライナーと強化層を有する複合容器を例として挙げたが、複数の異なる性質の状態、材料からなる複合容器であれば、上述の複合容器に限られず、あらゆる複合容器に本発明の検査方法を適用することができる。すなわち、複合容器は、少なくともライナーと繊維の巻き付けによって形成される強化層とを備えていればよく、例えば、強化層の外側に他の層を有してもよい。また、ライナーが、金属や樹脂からなる容器本体を備え、当該容器本体の外周側や内周側に異なる材料の層を有していてもよい。また、図1に示す複合容器では、口金4が強化層3から突出していたが、例えば図10に示すように、口金4が強化層3に埋め込まれた構成としてよい。なお、このような複合容器1に対してライナー2の表面にAEセンサ5Aを取り付ける場合、口金4の端面付近であって強化層3から露出している部分に取り付けてよい。なお、複合容器は、ライナーの口金に取り付けられるバルブや延長パイプ等の部材を含むことがある。従って、「複合容器にAEセンサを取り付ける」とは、そのような部材にAEセンサを取り付けることも含まれる。 In the above-described embodiment, a composite container having a liner and a reinforcing layer is taken as an example of a composite container to be inspected. However, if the composite container is composed of a plurality of different properties and materials, the composite container described above is used. The inspection method of the present invention can be applied to any composite container without being limited to the container. That is, the composite container only needs to include at least a liner and a reinforcing layer formed by winding a fiber. For example, the composite container may have another layer outside the reinforcing layer. The liner may include a container body made of metal or resin, and may have layers of different materials on the outer peripheral side or inner peripheral side of the container main body. In the composite container shown in FIG. 1, the base 4 protrudes from the reinforcing layer 3. However, for example, as shown in FIG. 10, the base 4 may be embedded in the reinforcing layer 3. In addition, when attaching AE sensor 5A to the surface of liner 2 with respect to such a composite container 1, you may attach to the part exposed to the vicinity of the end surface of the nozzle | cap | die 4, and the reinforcement layer 3. FIG. The composite container may include members such as a valve and an extension pipe attached to the liner base. Therefore, “attaching the AE sensor to the composite container” includes attaching the AE sensor to such a member.
 1…複合容器、1a…シリンダ部、1b…ドーム部、2…ライナー、3…強化層、4…口金、5…アコースティックエミッションセンサ、10…制御部、13…信号取得部、14…測定部、15…判定部、16…処理部、100…検査システム。 DESCRIPTION OF SYMBOLS 1 ... Composite container, 1a ... Cylinder part, 1b ... Dome part, 2 ... Liner, 3 ... Reinforcement layer, 4 ... Base, 5 ... Acoustic emission sensor, 10 ... Control part, 13 ... Signal acquisition part, 14 ... Measurement part, 15: determination unit, 16: processing unit, 100: inspection system.

Claims (6)

  1.  容器を形成するライナー、及び前記ライナーに繊維を巻き付けることで形成される強化層を備える複合容器の検査方法であって、
     前記複合容器に取り付けられたアコースティックエミッションセンサからアコースティックエミッション信号を取得する信号取得工程と、
     前記信号取得工程によって取得された前記アコースティックエミッション信号に基づいて、前記ライナーの疲労破壊の兆候を示す第1の条件を満たすか否かを判定する第1の判定工程と、を備え、
     前記第1の条件は、アコースティックエミッションのエネルギーに基づいて定められる条件である、複合容器の検査方法。
    A method for inspecting a composite container comprising a liner forming a container, and a reinforcing layer formed by winding fibers around the liner,
    A signal acquisition step of acquiring an acoustic emission signal from an acoustic emission sensor attached to the composite container;
    A first determination step of determining whether or not a first condition indicating a sign of fatigue fracture of the liner is satisfied based on the acoustic emission signal acquired by the signal acquisition step;
    The method for inspecting a composite container, wherein the first condition is a condition determined based on an energy of acoustic emission.
  2.  前記信号取得工程によって取得された前記アコースティックエミッション信号に基づいて、前記強化層の損傷を示す第2の条件を満たすか否かを判定する第2の判定工程を更に備える、請求項1に記載の複合容器の検査方法。 2. The method according to claim 1, further comprising a second determination step of determining whether or not a second condition indicating damage of the reinforcing layer is satisfied based on the acoustic emission signal acquired by the signal acquisition step. Inspection method for composite containers.
  3.  前記アコースティックエミッションセンサは、前記ライナー及び前記強化層の表面に取り付けられる、請求項1又は2に記載の複合容器の検査方法。 The method for inspecting a composite container according to claim 1 or 2, wherein the acoustic emission sensor is attached to surfaces of the liner and the reinforcing layer.
  4.  前記強化層の表面に取り付けられる前記アコースティックエミッションセンサは、前記複合容器のシリンダ部に配置される、請求項3に記載の複合容器の検査方法。 The method for inspecting a composite container according to claim 3, wherein the acoustic emission sensor attached to the surface of the reinforcing layer is disposed in a cylinder portion of the composite container.
  5.  前記強化層の表面に取り付けられる前記アコースティックエミッションセンサは、前記複合容器のドーム部に配置される、請求項3に記載の複合容器の検査方法。 The method for inspecting a composite container according to claim 3, wherein the acoustic emission sensor attached to the surface of the reinforcing layer is disposed in a dome portion of the composite container.
  6.  容器を形成するライナー、及び前記ライナーに繊維を巻き付けることで形成される強化層を備える複合容器の検査システムであって、
     前記複合容器に取り付けられるアコースティックエミッションセンサと、
     前記アコースティックエミッションセンサからアコースティックエミッション信号を取得する信号取得部と、
     前記信号取得部によって取得された前記アコースティックエミッション信号に基づいて、前記ライナーの疲労破壊の兆候を示す第1の条件を満たすか否かを判定する判定部と、を備え、
     前記第1の条件は、アコースティックエミッションのエネルギーに基づいて定められる条件である、複合容器の検査システム。
    A composite container inspection system comprising a liner forming a container, and a reinforcing layer formed by winding fibers around the liner,
    An acoustic emission sensor attached to the composite container;
    A signal acquisition unit for acquiring an acoustic emission signal from the acoustic emission sensor;
    A determination unit that determines whether or not a first condition indicating a sign of fatigue fracture of the liner is satisfied based on the acoustic emission signal acquired by the signal acquisition unit;
    The said 1st condition is a test | inspection system of a composite container which is a condition defined based on the energy of acoustic emission.
PCT/JP2013/077511 2012-10-11 2013-10-09 Inspection method and inspection system for composite container WO2014057987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540873A JP6238901B2 (en) 2012-10-11 2013-10-09 Inspection method and inspection system for composite container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226201 2012-10-11
JP2012226201 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057987A1 true WO2014057987A1 (en) 2014-04-17

Family

ID=50477454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077511 WO2014057987A1 (en) 2012-10-11 2013-10-09 Inspection method and inspection system for composite container

Country Status (2)

Country Link
JP (1) JP6238901B2 (en)
WO (1) WO2014057987A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031630A (en) * 2013-08-05 2015-02-16 株式会社Ihi検査計測 Ae test device and method of composite material tank
CN106481980A (en) * 2016-09-29 2017-03-08 北京宇航系统工程研究所 A kind of composites gas cylinder health monitoring systems based on sound emission and method
JP2017223564A (en) * 2016-06-16 2017-12-21 千代田化工建設株式会社 Pressure tank inspection method, inspection system and inspection program
JP2019148295A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 High pressure tank inspection method
WO2019245036A1 (en) * 2018-06-22 2019-12-26 Jfeスチール株式会社 Method for manufacturing pressure accumulator
CN111060603A (en) * 2019-12-19 2020-04-24 江苏理工学院 Sleeper beam damage monitoring method, system and device
JP2021162469A (en) * 2020-03-31 2021-10-11 トヨタ自動車株式会社 Pressurization inspection method and pressurization inspection device
JP2021162441A (en) * 2020-03-31 2021-10-11 トヨタ自動車株式会社 Pressurizing inspection method and pressurizing inspection device
CN114577619A (en) * 2022-03-08 2022-06-03 中国特种设备检测研究院 Defect safety evaluation method and system for large-volume wound gas cylinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476906B1 (en) * 2020-10-27 2022-12-13 주식회사 글로비즈 Method and system of diagnosing defect and calculating remaining life of composite material pressure vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337929A (en) * 2004-05-27 2005-12-08 Bridgestone Corp Damage state estimating method for rubber product, and damage state estimating method for tire and device therefor
JP2010014624A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Pressure tank and detection method of pressure tank internal abnormality
JP2011112484A (en) * 2009-11-26 2011-06-09 Kyushu Univ Device and method for determining quality of composite container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191918B2 (en) * 2001-09-26 2008-12-03 非破壊検査株式会社 Steam turbine damage assessment method
JP2004061202A (en) * 2002-07-26 2004-02-26 Kyushu Electric Power Co Inc Prediction method of prodromal stage of destruction of rock or the like
JP2007003299A (en) * 2005-06-22 2007-01-11 Kansai Electric Power Co Inc:The Abrasion detector
JP5028028B2 (en) * 2006-05-24 2012-09-19 株式会社ジェイテクト Acoustic emission detection device and control device
DE102006033905B4 (en) * 2006-07-19 2022-07-14 BAM Bundesanstalt für Materialforschung und -prüfung Procedure for assessing pressure vessels made of composite material using acoustic emission testing
JP2008106910A (en) * 2006-10-27 2008-05-08 Jtekt Corp Bearing device
US8240209B2 (en) * 2007-07-12 2012-08-14 National Institute Of Advanced Industrial Science And Technology Method and apparatus for detecting damage to high-pressure tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337929A (en) * 2004-05-27 2005-12-08 Bridgestone Corp Damage state estimating method for rubber product, and damage state estimating method for tire and device therefor
JP2010014624A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Pressure tank and detection method of pressure tank internal abnormality
JP2011112484A (en) * 2009-11-26 2011-06-09 Kyushu Univ Device and method for determining quality of composite container

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031630A (en) * 2013-08-05 2015-02-16 株式会社Ihi検査計測 Ae test device and method of composite material tank
JP2017223564A (en) * 2016-06-16 2017-12-21 千代田化工建設株式会社 Pressure tank inspection method, inspection system and inspection program
CN106481980A (en) * 2016-09-29 2017-03-08 北京宇航系统工程研究所 A kind of composites gas cylinder health monitoring systems based on sound emission and method
JP2019148295A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 High pressure tank inspection method
US20210270421A1 (en) * 2018-06-22 2021-09-02 Jfe Steel Corporation Method of manufacturing pressure accumulator
JP7023360B2 (en) 2018-06-22 2022-02-21 Jfeスチール株式会社 Manufacturing method of accumulator
JPWO2019245036A1 (en) * 2018-06-22 2020-12-17 Jfeスチール株式会社 Manufacturing method of accumulator
CN112334701A (en) * 2018-06-22 2021-02-05 杰富意钢铁株式会社 Method for manufacturing pressure accumulator
WO2019245036A1 (en) * 2018-06-22 2019-12-26 Jfeスチール株式会社 Method for manufacturing pressure accumulator
US11788687B2 (en) 2018-06-22 2023-10-17 Jfe Steel Corporation Method of manufacturing pressure accumulator
CN111060603A (en) * 2019-12-19 2020-04-24 江苏理工学院 Sleeper beam damage monitoring method, system and device
JP2021162441A (en) * 2020-03-31 2021-10-11 トヨタ自動車株式会社 Pressurizing inspection method and pressurizing inspection device
JP7238841B2 (en) 2020-03-31 2023-03-14 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
JP7259796B2 (en) 2020-03-31 2023-04-18 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
JP2021162469A (en) * 2020-03-31 2021-10-11 トヨタ自動車株式会社 Pressurization inspection method and pressurization inspection device
US11788688B2 (en) 2020-03-31 2023-10-17 Toyota Jidosha Kabushiki Kaisha Pressure testing method and pressure tester
US11879596B2 (en) 2020-03-31 2024-01-23 Toyota Jidosha Kabushiki Kaisha Pressure testing method and pressure tester
CN114577619A (en) * 2022-03-08 2022-06-03 中国特种设备检测研究院 Defect safety evaluation method and system for large-volume wound gas cylinder

Also Published As

Publication number Publication date
JP6238901B2 (en) 2017-11-29
JPWO2014057987A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6238901B2 (en) Inspection method and inspection system for composite container
JP5158723B2 (en) Damage detection method for high-pressure tank and apparatus therefor
Nsengiyumva et al. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review
JP6095518B2 (en) AE test equipment and method for composite tank
Zhou et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel
Majid et al. Ultimate elastic wall stress (UEWS) test of glass fibre reinforced epoxy (GRE) pipe
Uyaner et al. Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact
JP5409688B2 (en) Pressure vessel
Blanc-Vannet Burst pressure reduction of various thermoset composite pressure vessels after impact on the cylindrical part
JP7166426B2 (en) Apparatus and method for evaluating soundness of fiber-reinforced composite material
KR101987357B1 (en) Hydrogen Filling System having Hydrogen Storage Vessel and Method of Operating the same
Dahmene et al. Towards efficient acoustic emission testing of COPV, without Felicity ratio criterion, during hydrogen-filling
JP6798800B2 (en) Pressure tank inspection method, inspection system and inspection program
JP2011112484A (en) Device and method for determining quality of composite container
Alnaser et al. Comparison of the crack-growth rates for full-encirclement and patch composite repairs
CN107063357B (en) A kind of well for storage REASON ANALYSIS ON WELDING SEAM method
Horide et al. Characterization of fracture process during ring burst test of FW-FRP composites with damage
JP2006008385A (en) Deterioration diagnosing method for handrail of escalator
Anastasopoulos et al. Acoustic emission inspection of spherical metallic pressure vessels
Horide et al. Fracture Behavior during Ring Burst Test of FW-FRP Composites with Damage
Fotouhi et al. Achieving robust acoustic emission-based damage characterisation of scaled laminated composites under indentation
Jee et al. Acoustic emission of composite vessel
Chandarana et al. Damage detection and monitoring in composite pipes using piezoelectric sensors
Netto et al. Fatigue performance of reeled risers
Rheinfurth et al. Evaluation of fatigue damage in composites with various defects using air-coupled guided waves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846033

Country of ref document: EP

Kind code of ref document: A1