WO2014057699A1 - Pharmacokinetic evaluation method and kit for pharmacokinetic evaluation - Google Patents
Pharmacokinetic evaluation method and kit for pharmacokinetic evaluation Download PDFInfo
- Publication number
- WO2014057699A1 WO2014057699A1 PCT/JP2013/060904 JP2013060904W WO2014057699A1 WO 2014057699 A1 WO2014057699 A1 WO 2014057699A1 JP 2013060904 W JP2013060904 W JP 2013060904W WO 2014057699 A1 WO2014057699 A1 WO 2014057699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- stable isotope
- administered
- blood
- substitute
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
Definitions
- the present invention relates to a pharmacokinetic evaluation method and a pharmacokinetic evaluation kit.
- Bioavailability is known as a basic pharmacokinetic parameter serving as a pharmacokinetic index.
- the bioavailability is a constant that represents the rate at which an extravascularly administered drug reaches the systemic circulation, and is calculated with the bioavailability when the drug is administered intravenously as 100%. .
- the blood concentration of the drug when the drug is administered extravascularly by a method such as oral administration and the blood of the drug when the same drug is separately administered intravenously A method of calculating from the medium concentration is known.
- the microdose test in which a very small amount of drug candidates that do not require consideration of acute or chronic toxicity, is administered to a subject in an extremely small amount intravenously, is attracting attention as a method for evaluating pharmacokinetics safely and in a short period of time. Collecting.
- Non-patent Document 1 A method for obtaining a scientific availability has been proposed (Non-patent Document 1). This method is used overseas in human clinical trials for microdose clinical trials in which a small amount of [ 14 C] radiolabel is intravenously administered simultaneously with oral administration of a clinical dose of a test drug.
- Non-Patent Document 1 has a great resistance to radioactive substances in Japan, and it takes a lot of time and money to manufacture an intravenous preparation labeled with a radioactive substance and to ensure its safety. The use is not progressing because of this.
- “Ministry of Health, Labor and Welfare” provided “Guidance on Implementation of Microdose Clinical Trials” in June 2008, but it has not been conducted yet.
- an accelerator mass spectrometer (AMS: Accelerator-Mass-Spectrometry, hereinafter referred to as AMS in this specification) or a positron emission tomography apparatus (PET) is used.
- PET Positron Emission Tomography
- the present invention has been made to solve the above-described problems, and its purpose is to perform an accurate pharmacokinetic evaluation in one measurement by one test without using a radioactive substance.
- the object is to provide a pharmacokinetic evaluation method and a pharmacokinetic evaluation kit.
- the pharmacokinetic evaluation method according to the present invention is a test in which a stable isotope substitute in which the same compound as the above compound is labeled with a stable isotope is administered intravenously after the compound is administered extravascularly. From the step of measuring the concentration of the compound and the stable isotope substitute in a blood sample collected over time from the body, and the time course of the blood concentration measured in the step of measuring, the drug of the compound It is characterized by including a step of acquiring dynamic data.
- kits for evaluating pharmacokinetics includes (a) a compound to be evaluated, and (b) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope.
- (C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substitute in which the same compound as the compound is labeled with a stable isotope is administered intravenously after the compound is extravascularly administered, A third step of measuring the time course of blood concentration of the compound and the stable isotope substitute, and a fourth step of obtaining pharmacokinetic data of the compound from the time course of blood concentration measured in the third step And an instruction sheet for performing pharmacokinetic evaluation according to the process.
- the method for evaluating pharmacokinetics is a method in which a stable isotope substitution product obtained by intravenously administering a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound has been administered extravascularly.
- the pharmacokinetic evaluation kit includes, as described above, (a) a compound to be evaluated, and (b) a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope, (C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is administered extravascularly, The third step of measuring the time course of the blood concentration of the compound and the stable isotope substitute, and the fourth step of acquiring pharmacokinetic data of the compound from the time course of the blood concentration measured in the third step Thus, there is an instruction that the pharmacokinetic evaluation is performed, so that the pharmacokinetic evaluation can be performed without using a radioactive substance.
- Example 1 it is a figure which shows the result of having conducted the in vitro metabolic experiment of chlorpromazine and its deuterium substitution product.
- Reference Example 2 it is a figure which shows the result of having performed the in vivo disappearance clearance experiment of chlorpromazine and its deuterium substitution.
- Comparative Example 1 it is a diagram showing a blood concentration-time curve of chlorpromazine administered orally.
- Comparative Examples 1 and 2 it is a figure which shows the blood concentration-time curve of the chlorpromazine administered intravenously, or its deuterium substitution.
- a to B representing a numerical range means “A or more (including A and greater than A)” and “B or less (including B and less than B)”.
- the pharmacokinetic evaluation method according to the present invention is the intravenous administration of a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound has been administered extravascularly. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the obtained subject, and the change over time in the blood concentration measured in the step of measuring, Obtaining pharmacokinetic data of the compound.
- the step in which the compound is administered extravascularly is the first step
- the step in which the stable isotope substitute labeled with the stable isotope is compounded intravenously is the second step, and the compound is administered extravascularly.
- the step of measuring the concentration will be described as the third step, and the step of obtaining the pharmacokinetic data of the compound from the change over time in the blood concentration measured in the step of measuring will be described as the fourth step.
- a compound that is a target for pharmacokinetic evaluation is administered to a subject extravascularly.
- the compound which is the target of the pharmacokinetic evaluation method according to the present invention is usually a drug candidate compound or a compound used as a drug.
- a drug candidate compound or a compound used as a drug.
- Such a compound is not particularly limited as long as it is a compound containing an atom having a stable isotope. More specifically, the compound preferably contains at least one of a hydrogen atom, a carbon atom, a nitrogen atom, and an oxygen atom.
- the above compound has such a number that the molecular weight changes by 3 or more, more preferably the molecular weight increases by 3 or more when an atom having a stable isotope in the molecule is substituted with the stable isotope of the atom. It is more preferable that it contains. Thereby, the said compound and the compound substituted with the stable isotope can be distinguished and analyzed.
- the above compound is more preferably a low molecular compound. More specifically, the molecular weight of the above compound is more preferably 100 to 2000, and further preferably 100 to 1000.
- the molecular weight of a compound used as a drug is often 100 or more. Moreover, since the molecular weight is 2000 or less, such a compound is preferable because it is easily absorbed by extravascular administration.
- the above compound is not particularly limited, and examples thereof include chlorpromazine, phenytoin, nifedipine, diltiazem, nicardipine, erythromycin, simvastatin, atorvastatin and the like.
- the compound is administered extravascularly by the intended administration method for pharmacokinetic evaluation.
- the amount that reaches the systemic circulation is involved in drug treatment.
- the above-mentioned compounds administered extravascularly are incompletely absorbed or are metabolized and excreted before reaching the systemic circulating blood, so the amount reaching the systemic circulating blood decreases, and all the systemic circulating blood It is not always possible to reach
- the drug of a compound is used with the bioavailability (bioavailability), which is a pharmacokinetic parameter indicating the rate at which extra-vascularly administered drug reaches the systemic circulation blood as an index. Perform dynamic evaluation.
- extravascular administration is not particularly limited as long as it is an administration method other than intravascular administration, for example, oral administration, intraperitoneal administration, intramuscular administration, transdermal administration, respiratory administration, ophthalmic administration, It is intended to include nasal administration or subcutaneous administration.
- the amount of the compound to be administered extravascularly is not particularly limited, but it is preferably not less than the amount of drug effect from the viewpoint of performing pharmacokinetic evaluation.
- the amount of the compound administered extravascularly may be a clinical dose.
- (I-2) Second Step In the second step, after the compound is administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered.
- “administered intravenously” means that the stable isotope substitute is intravenously administered to a subject to which the compound has been administered extravascularly in the first step.
- “after the compound is administered extravascularly” may be after the extravascular administration, but the compound administered extravascularly is present in the blood, ie, administered extravascularly. More preferably, it is carried out before the compound has completely disappeared from the blood, and it is even more preferable that the blood concentration of the compound reaches the maximum blood concentration.
- the above-mentioned compound administered extravascularly increases in blood concentration depending on the degree of absorption in the subject.
- the administered compound disappears by metabolism or degradation, and its blood concentration decreases.
- the blood concentration becomes the maximum value. The concentration of the compound at this time is called the maximum blood concentration.
- the time at which the blood concentration of the above compound reaches the maximum blood concentration can be determined, for example, by the following method. That is, at a plurality of time points after the compound is administered extravascularly, the concentration of the compound is measured for blood collected from the subject, and the horizontal axis represents time and the vertical axis represents the compound blood concentration.
- the time when the blood concentration of the above compound reaches the maximum value is defined as the time for reaching the maximum blood concentration.
- the vicinity of the blood concentration of the above compound reaching the maximum blood concentration is more preferably 10 minutes before the maximum blood concentration arrival time to 60 minutes after the maximum blood concentration arrival time, and the maximum blood concentration reached. Particularly preferred is within 60 minutes after the time.
- “After the compound is administered extravascularly” usually means 30 minutes to 360 minutes after the time when the compound is administered extravascularly, more preferably 60 minutes to 240 minutes later.
- the compound in a blood sample collected over time from a subject to which the stable isotope substitute was administered intravenously while the compound administered extravascularly is present in the blood and By measuring the concentration of the stable isotope substitute, the change in the blood concentration of the compound and the stable isotope substitute with time can be measured in a single measurement.
- a stable isotope substitution product obtained by labeling the same compound as the above compound with a stable isotope is administered intravenously, so that Pharmacokinetic evaluation is performed under the same conditions as in the case of extravascular administration (the blood concentration of the compound, metabolism, respiration, and excretion). be able to. Therefore, a more accurate pharmacokinetic assessment can be performed in a single measurement by a single test.
- the present invention aims to provide a pharmacokinetic evaluation method capable of performing accurate pharmacokinetic evaluation in one measurement by one test without using a radioactive substance.
- the problem is solved by measuring the concentration of the stable isotope substitution product. That is, according to the above configuration, since the compound and its stable isotope substitute can be analyzed separately, the concentration of the compound and the stable isotope substitute in a blood sample simultaneously containing these compounds can be analyzed. Can be measured simultaneously.
- the present invention can also be used in an embodiment in which a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered.
- pharmacokinetic evaluation cannot be performed by a single measurement, but pharmacokinetic evaluation can be performed without using a radioactive substance. Therefore, this embodiment is also included in the present invention.
- a stable isotope substitute obtained by labeling the same compound as the above-mentioned compound administered extravascularly in the first step with a stable isotope is intravenously administered.
- the stable isotope is not particularly limited as long as it is a non-radioactive isotope. More preferably, 2 H (D), 13 C, 15 N, or 18 O can be suitably used as such a stable isotope. These elements are suitable for labeling because they are usually included in drugs or their candidate compounds.
- stable isotope substituted with the same compound as the above compound labeled with a stable isotope refers to a compound in which an atom contained in the same compound as the above compound is substituted with a stable isotope of the atom.
- the substituted atom may be one type or a combination of two or more types.
- the number of substitutions with a stable isotope in the “stable isotope substituted with the same compound as the above compound with a stable isotope” is the number of substitutions such that the molecular weight of the compound changes by 3 or more, more preferably the molecular weight of the compound
- the number of substitutions is preferably 3 or more. That is, the stable isotope substitute administered in the second step has a molecular weight more preferably 3 or more compared to the compound administered in the first step, more preferably the molecular weight changes compared to the compound. It is preferably substituted with a stable isotope so as to be 3 or more.
- the method for producing such a stable isotope substituent is not particularly limited, and can be suitably produced using a conventionally known method.
- a commercially available stable isotope substitute may be used as the stable isotope substitute.
- the dose of the stable isotope substitute administered intravenously in this step is greater than 0 and less than or equal to 1/10 by weight with respect to the dose of the compound administered in the first step. It is more preferable that the toxicity to the subject can be suppressed, so that it is preferably 1 / 100,000 to 1/100, more preferably 1/10000 to 1/100, and more preferably 1/1000 to 1/100 is particularly preferable.
- the dose of the stable isotope substitute administered intravenously is 1/10 or less by weight with respect to the dose of the compound administered in the first step, stable isotope substitution is achieved. Pharmacokinetic evaluation can be performed from the blood concentration of the body.
- the dose of the stable isotope substitute administered intravenously is a value greater than 0 in weight ratio to the dose of the compound administered in the first step
- the blood concentration of the administered stable isotope substitute can be determined, and pharmacokinetic evaluation can be performed.
- the dose of the above-mentioned stable isotope substitute administered intravenously in this step is more preferably 1 / 10,000 to 1/100 of the amount of drug effect in terms of weight ratio.
- pharmacokinetic evaluation can be performed from the blood concentration of a stable isotope substitute without expressing toxicity to a subject.
- pharmacokinetic evaluation can be performed safely and in a short period of time by using a microdose test in which a trace amount of compound that does not require consideration of acute or chronic toxicity is intravenously administered to a subject. It becomes.
- a clinical dose of a compound was administered extravascularly, and a stable isotope substitute labeled with the same compound as the above compound was administered intravenously while the extravasated compound was present in the blood.
- intravenous administration under conditions at the time of extravascular administration that is, under clinical dose loading conditions
- Administration allows pharmacokinetic evaluation under the same conditions as clinical dose loading conditions (compound blood concentration, metabolism, respiration and excretion) in the subject. Moreover, it can be performed by one test and one measurement. Conventionally, as a problem in a microdose test in which a very small amount of a compound is administered alone, there is no correlation with a clinical dose.
- the microdose test cannot be used because the condition in the subject is different between the dose used for the microdose test and the clinical dose. For example, since the proportional relationship between the dose of the compound and the blood concentration does not hold between the blood concentration obtained in the microdose test and the blood concentration obtained at the clinical dose (no linearity), the microdose test There was a problem that the data of the above could not be used for clinical dose reference. In this step, the above-mentioned problems in the microdose test are avoided by intravenously administering the stable isotope substitute to the subject to which a clinical dose is administered extravascularly while the compound is present in the blood. be able to.
- the second step in which the stable isotope substitute is administered intravenously is preferably performed after the compound is administered extravascularly.
- the present invention is not limited to this.
- the compound is administered extravascularly on different days.
- the step of intravenously administering the stable isotope substitute may be performed.
- (I-3) Third Step the time course of the blood concentration of the compound and the stable isotope-substituted product is measured. Specifically, in the third step, after the compound was administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope was collected over time from a subject who was intravenously administered. The concentration of the compound and the stable isotope substitute in the blood sample is measured. That is, from the subject, blood of the compound and the stable isotope substitute in blood collected at a plurality of time points after extravascular administration of the compound and at a plurality of time points after intravenous administration of the stable isotope substitute. Measure the concentration.
- a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered while the compound administered extravascularly is present in the blood, the compound is removed from the blood vessel. Since blood samples collected over time after administration and blood samples collected over time after intravenous administration of stable isotope substitutes can be performed simultaneously, pharmacokinetic evaluation is performed once per test. It can be done by measuring.
- the blood concentration may be a plasma concentration or a serum concentration.
- Pharmacokinetic evaluation can be performed from any concentration.
- the method for measuring the time-dependent change in the blood concentration of the compound and the stable isotope substitute is particularly limited as long as it is a method capable of separating and quantifying the compound and the stable isotope substitute. is not.
- Such a measurement is performed, for example, by liquid chromatography mass spectrometry (hereinafter sometimes referred to as “LC / MS” in the present specification), liquid chromatography tandem mass spectrometry (hereinafter referred to as “LC / MS”). / MS / MS ”) and the like.
- LC / MS liquid chromatography mass spectrometry
- LC / MS liquid chromatography tandem mass spectrometry
- / MS / MS liquid chromatography tandem mass spectrometry
- a stable isotope substitute and the above-mentioned compound in blood collected from a subject can be separated and quantified. Therefore, pharmacokinetic evaluation can be performed using these blood concentrations.
- the measurement in this step also has the advantage that pharmacokinetic evaluation can be performed relatively easily because it does not require special equipment such as AMS and PET unlike the conventional microdose clinical trial using radioactive materials. Have.
- the method for preparing the collected blood sample the method for measuring the blood concentration, the interval and the number of times of blood collection for measuring changes over time are not particularly limited, and a conventionally known method can be appropriately selected and used. That's fine.
- (I-4) Fourth Step pharmacokinetic data of the compound is obtained from the change over time in the blood concentration measured in the third step.
- the method for obtaining pharmacokinetic data is not particularly limited as long as it can be performed using the time-dependent change in blood concentration measured in the third step.
- Examples of the method for obtaining pharmacokinetic data include a method for calculating bioavailability (bioavailability) which is a pharmacokinetic parameter.
- Bioavailability is a constant representing the rate at which an administered drug reaches the systemic circulation, and is calculated assuming that the bioavailability when the drug is administered intravenously is 100%. Is done. On the other hand, when the drug is administered by a route other than intravenous administration, the bioavailability decreases because it is affected by absorption, metabolism, excretion and the like before reaching the systemic circulating blood. The bioavailability is calculated using the area surrounded by the blood concentration and the horizontal axis (time axis) (the area under the blood concentration-time curve: AUC), and is calculated by the following equation.
- F ([AUC] po / [AUC] iv) / (DOSEpo / DOSEiv) (1)
- [AUC] po is the area under the blood concentration-time curve of the compound administered extravascularly
- [AUC] iv is the blood of the stable isotope substitute administered intravenously.
- the area under the medium concentration-time curve, DOSEpo represents the dose of compound administered extravascularly.
- DOSEiv represents the dose of a stable isotope substitute administered intravenously.
- the pharmacokinetic evaluation method according to the present invention can be suitably used in a microdose clinical trial.
- the information regarding the pharmacokinetics of the drug candidate compound can be obtained at the initial stage of clinical development of the drug.
- two doses of clinical and microdose can be performed in one test, and pharmacokinetic data can be acquired.
- the present invention also includes a pharmacokinetic evaluation kit, (A) a compound to be evaluated; (B) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope, (C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is administered extravascularly, A third step of measuring the time course of the blood concentration of the compound and the stable isotope substitute, and a fourth step of acquiring pharmacokinetic data of the compound from the time course of the blood concentration measured in the third step
- a kit including an instruction to perform pharmacokinetic evaluation according to the process is also included.
- the compound to be evaluated and the stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope are as described in (I) above.
- the kit according to the present invention is the same as the above compound after the compound to be evaluated and the stable isotope substituted with the same compound as the above compound labeled with a stable isotope, and further after the compound is administered extravascularly.
- the pharmacokinetic evaluation method according to the present invention is characterized in that a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope after intravenous administration of the compound is intravenously administered. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the administered subject, and the time course of the blood concentration measured in the step of measuring, It includes a step of obtaining pharmacokinetic data of a compound.
- the dose of the stable isotope substituent administered intravenously is greater than 0 by weight ratio with respect to the dose of the compound administered extravascularly. It is preferable that it is 10 or less.
- the stable isotope is preferably 2 H (D), 13 C, 15 N or 18 O.
- the stable isotope substitute administered intravenously is more preferably administered extravascularly such that the molecular weight changes by 3 or more compared to the compound administered extravascularly. It is preferably substituted with a stable isotope so that the molecular weight is 3 or more larger than that of the above compound.
- the pharmacokinetic evaluation method in a blood sample collected over time from a subject to which the stable isotope substitute was administered intravenously while the compound administered extravascularly is present in the blood. It is preferable to measure the change in blood concentration of the compound and the stable isotope substitute with time by measuring the concentration of the compound and the stable isotope substitute in a single measurement.
- the amount of the compound administered extravascularly is preferably a clinical dose.
- a kit for evaluating pharmacokinetics includes (a) a compound to be evaluated, and (b) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope. (C) a first step in which the compound is administered extravascularly, and a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is extravascularly administered.
- the stable isotope substitute is greater than 0 and 1/10 or less by weight with respect to the compound to be evaluated.
- the stable isotope is preferably 2 H (D), 13 C, 15 N or 18 O.
- the stable isotope substitute preferably has a molecular weight of 3 compared to the compound to be evaluated so that the molecular weight changes by 3 or more compared to the compound to be evaluated. It is preferable to be substituted with a stable isotope so as to be larger.
- a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope while the compound administered extravascularly is present in the blood is preferably administered intravenously
- measurement of the time course of blood concentration of the compound and the stable isotope substitute is preferably performed in a single measurement.
- the amount of the compound to be administered is preferably a clinical dose.
- chlorpromazine represented by the following formula (1) (hereinafter, sometimes referred to as “CPZ” in the present specification, molecular weight: 319), and heavy hydrogen in which 6 hydrogen atoms are substituted by deuterium.
- Chlorpromazine-d 6 (molecular weight: 325) represented by the following formula (2), which is a hydrogen substitution product, was used.
- CPZ was purchased from SIGMA-ALDRICH, and CPZ-d 6 was purchased from LKT Laboratories.
- a final concentration of CPZ of 10 ng / mL, a final concentration of SD rat liver microsomes of 0.2 mg / mL, a final concentration of phosphate buffer (pH 7.4) of 0.1 M, and MgCl 2 were mixed so that the final concentration was 3.3 mM to prepare a reaction solution for measuring the metabolic activity of CPZ.
- a NADPH solution was prepared by mixing so that the final concentration of NADHP was 1.3 mM and the final concentration of MgCl 2 was 3.3 mM.
- the prepared metabolic activity measurement reaction solution was preincubated at 37 ° C. for 5 minutes, and then the NADPH solution was added to the preincubated metabolic activity measurement reaction solution to start the reaction. After incubating at 37 ° C.
- a certain amount (0.05 mL) of the incubated reaction solution was taken out at a plurality of time points and added to ice-cooled acetonitrile (0.45 mL) to stop the reaction.
- the reaction solution after stopping the reaction was centrifuged, and the concentration of CPZ in the supernatant was measured using LC / MS / MS.
- final concentration refers to the concentration in the reaction solution after the NADPH solution is added to the pre-incubated metabolic activity measurement reaction solution.
- the vertical axis indicates the concentration of CPZ or CPZ-d 6 in the reaction solution
- the horizontal axis indicates the time from the start of the reaction.
- dC / dt is the metabolic rate
- k is the disappearance rate constant ( ⁇ ln (drug unchanged concentration in the reaction solution)) and the slope of the straight line obtained from the time
- C (0) is the initial drug concentration in the reaction solution.
- n 4 indicates that the same experiment was performed four times and an average was obtained.
- Table 3 since no significant difference was observed in the metabolic rate and metabolic rate of CPZ-d 6 of CPZ, due to the fact that the subject compounds have been substituted by deuterium, effects on liver metabolism It turned out that it was not admitted.
- FIG. 2 is a graph showing a blood concentration-time curve, in which the vertical axis represents plasma concentration and the horizontal axis represents time since intravenous administration.
- t 1/2 represents a half-life
- k el represents a drug elimination rate constant
- CL tot represents systemic clearance
- AUC 0- ⁇ represents the area under the blood concentration-time curve.
- N represents the number of samples.
- Systemic clearance refers to the amount of drug metabolized and excreted in a certain time converted to volume. As shown in Table 4, since there was no significant difference between CPZ and CPZ-d 6 , the disappearance clearance of CPZ-d 6 substituted by deuterium is equivalent to CPZ. It was confirmed.
- CPZ 0.2 mg was orally administered to SD male rats.
- the amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats. 1.5 hours after oral administration, were administered CPZ-d 6 of 0.002mg is one-hundredth of the oral dose intravenously to the same SD rats. Blood was collected at multiple time points and the blood levels of CPZ and CPZ-d 6 were measured.
- the vertical axis represents plasma concentration (unit: ng / mL), and the horizontal axis represents time after oral administration of CPZ.
- AUC 0- ⁇ represents the area under the blood concentration-time curve
- BA represents bioavailability
- n represents the number of samples collected at one time point.
- PO represents oral administration
- IV represents intravenous administration.
- CPZ 0.2 mg was orally administered to SD male rats.
- the amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats.
- Blood was collected at multiple time points, and the blood concentrations of CPZ and CPZ-d 6 were measured in the same manner as in Example 1. The obtained results are shown in FIG.
- the vertical axis represents the plasma concentration of CPZ (unit: ng / mL), and the horizontal axis represents the time after oral administration of CPZ.
- the plasma concentration of CPZ-d 6 the vertical axis represents the plasma concentration / 10 of CPZ-d 6.
- Table 5 shows the bioavailability calculated by the above equation (1) from the relationship between the area under the blood concentration-time curve (AUC 0- ⁇ ) obtained from FIG. 4 and the dose.
- CPZ 0.2 mg was orally administered to SD male rats.
- 0.02 mg of CPZ was intravenously administered to separate SD male rats.
- Blood was collected at multiple time points, and the blood concentration of CPZ was measured. Specifically, extracted CPZ, the CPZ-d 6 and the internal standard from the plasma separated from blood were bled with diethyl ether under alkaline conditions by the addition of ammonium bicarbonate buffer. After evaporation to dryness, the sample was redissolved in a methanol / 1% formic acid solution (1: 1, v / v), the amount of CPZ was measured using LC / MS / MS, and the blood concentration was calculated. The obtained results are shown in FIGS. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0- ⁇ ) obtained from FIG. 6 and the dose of CPZ administered orally.
- AUC 0- ⁇ area under the blood concentration-time curve
- the vertical axis indicates plasma concentration
- the horizontal axis indicates time after drug administration.
- AUC 0- ⁇ represents the area under the blood concentration curve
- BA represents bioavailability
- n represents the number of samples collected at one time point.
- PO represents oral administration
- IV represents intravenous administration.
- Comparative Example 2 In Comparative Example 1, 0.02 mg of CPZ-d 6 was intravenously administered to separate SD male rats. Blood was collected at each elapsed time, and the blood concentration of CPZ-d 6 was measured in the same manner as in Comparative Example 1. The obtained result is shown in FIG. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0- ⁇ ) obtained from FIG. 6 and the dose of CPZ administered orally.
- an accurate pharmacokinetic evaluation can be performed by one measurement by one test without using a radioactive substance. Therefore, it becomes easy to obtain information on the pharmacokinetics of the drug candidate compound before the clinical trial of the pharmaceutical or at the initial stage of the clinical trial, and improvement in the development efficiency of the pharmaceutical can be expected.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biotechnology (AREA)
- Ecology (AREA)
- Biophysics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The problem of the present invention is to provide a pharmacokinetic evaluation method and kit for pharmacokinetic evaluation with which accurate pharmacokinetic evaluation can be performed in one measurement without using a radioactive substance. The problem is solved by a pharmacokinetic evaluation method and kit for pharmacokinetic evaluation with which pharmacokinetic data is obtained from changes over time in the blood concentration in a blood sample collected from a subject following extravascular administration of a compound followed by intravenous administration of the stable isotope substitute of the compound.
Description
本発明は、薬物動態評価方法および薬物動態評価用キットに関する。
The present invention relates to a pharmacokinetic evaluation method and a pharmacokinetic evaluation kit.
医薬品の開発においては、数十万個の医薬品候補の化合物は、非臨床試験の段階で数個程度にまで絞り込まれて臨床試験に移行する。しかし、そうして臨床試験に移行した化合物であっても、薬物動態、すなわち薬物の吸収、分布、代謝および排泄と関連する問題が原因で開発が断念される場合がある。多くの必要データを集めた後に、臨床試験において、薬物動態による問題のために開発が断念されると、それまでの開発時間および開発費用が無駄となる。
In drug development, hundreds of thousands of candidate drug compounds are narrowed down to about several at the stage of non-clinical trials and transferred to clinical trials. However, even those compounds that have entered clinical trials may be abandoned due to problems associated with pharmacokinetics, ie drug absorption, distribution, metabolism, and excretion. If development is abandoned in clinical trials due to pharmacokinetic problems after gathering a lot of necessary data, the development time and development costs up to that time are wasted.
したがって、非臨床試験の段階または臨床試験の初期段階で、薬物動態評価を行うことは極めて重要である。薬物動態の指標となる基本的な薬物動態パラメータとして生物学的利用能(バイオアベイラビリティ)が知られている。生物学的利用能は、血管外投与された薬物が全身循環血中に到達する割合を表す定数であり、薬物が静脈内に投与される場合の生物学的利用能を100%として算出される。
Therefore, it is extremely important to perform pharmacokinetic evaluation at the stage of non-clinical trials or at the initial stage of clinical trials. Bioavailability (bioavailability) is known as a basic pharmacokinetic parameter serving as a pharmacokinetic index. The bioavailability is a constant that represents the rate at which an extravascularly administered drug reaches the systemic circulation, and is calculated with the bioavailability when the drug is administered intravenously as 100%. .
従来、生物学的利用能を算出する方法として、薬剤を経口投与などの方法で血管外投与したときの当該薬剤の血中濃度と、同一の薬剤を、別途静脈投与したときの当該薬剤の血中濃度とから算出する方法が知られている。
Conventionally, as a method for calculating bioavailability, the blood concentration of the drug when the drug is administered extravascularly by a method such as oral administration and the blood of the drug when the same drug is separately administered intravenously A method of calculating from the medium concentration is known.
一方、急性・慢性毒性を考慮する必要のない極微量の薬物候補物質を被験体に極めて微量で静脈内投与するマイクロドーズ試験は、安全にかつ短期間に薬物動態の評価を行う方法として注目を集めている。
On the other hand, the microdose test, in which a very small amount of drug candidates that do not require consideration of acute or chronic toxicity, is administered to a subject in an extremely small amount intravenously, is attracting attention as a method for evaluating pharmacokinetics safely and in a short period of time. Collecting.
上記マイクロドーズ試験を応用して、より正確な生物学的利用能を求める方法として、薬物の経口投与と同時に[14C]放射標識体の微量静注を行うことによって、1回の試験で生物学的利用能を求める方法が提唱されている(非特許文献1)。当該方法は、海外では、ヒト臨床試験において、臨床用量の被験薬物の経口投与と同時に[14C]放射標識体の微量静注を行うマイクロドーズ臨床試験に利用されている。
As a method for obtaining a more accurate bioavailability by applying the above microdose test, a small amount of [ 14 C] radiolabel is injected at the same time as the oral administration of the drug, and a biological test is performed in one test. A method for obtaining a scientific availability has been proposed (Non-patent Document 1). This method is used overseas in human clinical trials for microdose clinical trials in which a small amount of [ 14 C] radiolabel is intravenously administered simultaneously with oral administration of a clinical dose of a test drug.
しかしながら、非特許文献1に記載の方法は、日本では、放射性物質に対する抵抗感が大きいこと、および、放射線物質により標識された静注製剤の製造やその安全性担保に多大な時間と費用がかかること等が原因で利用が進んでいない。マイクロドーズ臨床試験についても、2008年6月に「マイクロドーズ臨床試験の実施に関するガイダンス」が厚生労働省から示されたものの、未だ行われていないのが現状である。
However, the method described in Non-Patent Document 1 has a great resistance to radioactive substances in Japan, and it takes a lot of time and money to manufacture an intravenous preparation labeled with a radioactive substance and to ensure its safety. The use is not progressing because of this. As for microdose clinical trials, “Ministry of Health, Labor and Welfare” provided “Guidance on Implementation of Microdose Clinical Trials” in June 2008, but it has not been conducted yet.
また、放射線物質により標識された薬物を測定するためには、加速器質量分析計(AMS:Accelerator Mass Spectrometry、以下、本明細書において、AMSと称することがある。)または陽電子放射断層撮像装置(PET:Positron Emission Tomography、以下、本明細書において、PETと称することがある。)を用いる必要があるが、これらは、規模の大きい施設および放射性物質を用いるための特殊な設備を必要とし、測定できる施設が限られるという問題もある。
In order to measure a drug labeled with a radioactive substance, an accelerator mass spectrometer (AMS: Accelerator-Mass-Spectrometry, hereinafter referred to as AMS in this specification) or a positron emission tomography apparatus (PET) is used. : Positron Emission Tomography (hereinafter sometimes referred to as PET in this specification)), but these require large-scale facilities and special equipment for using radioactive materials, and can be measured. There is also a problem that facilities are limited.
本発明は、上記の問題点を解決するためになされたもので、その目的は、放射性物質を用いず、正確な薬物動態評価を、1回の試験によって1回の測定で行うことが可能な薬物動態評価方法および薬物動態評価用キットを提供することにある。
The present invention has been made to solve the above-described problems, and its purpose is to perform an accurate pharmacokinetic evaluation in one measurement by one test without using a radioactive substance. The object is to provide a pharmacokinetic evaluation method and a pharmacokinetic evaluation kit.
本発明に係る薬物動態評価方法は、上記課題を解決するために、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含むことを特徴としている。
In order to solve the above problems, the pharmacokinetic evaluation method according to the present invention is a test in which a stable isotope substitute in which the same compound as the above compound is labeled with a stable isotope is administered intravenously after the compound is administered extravascularly. From the step of measuring the concentration of the compound and the stable isotope substitute in a blood sample collected over time from the body, and the time course of the blood concentration measured in the step of measuring, the drug of the compound It is characterized by including a step of acquiring dynamic data.
本発明に係る薬物動態評価用キットは、上記課題を解決するために、(a)評価対象である化合物と、(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、(c)上記化合物を血管外投与する第1工程、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、を含むことを特徴としている。
In order to solve the above problems, a kit for evaluating pharmacokinetics according to the present invention includes (a) a compound to be evaluated, and (b) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope. (C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substitute in which the same compound as the compound is labeled with a stable isotope is administered intravenously after the compound is extravascularly administered, A third step of measuring the time course of blood concentration of the compound and the stable isotope substitute, and a fourth step of obtaining pharmacokinetic data of the compound from the time course of blood concentration measured in the third step And an instruction sheet for performing pharmacokinetic evaluation according to the process.
本発明に係る薬物動態評価方法は、以上のように、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含んでいるので、放射性物質を用いず、薬物動態評価を行うことが可能となるという効果を奏する。そして、血管外投与された上記化合物が血中に存在する間に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する場合には、正確な薬物動態評価を、1回の試験によって1回の測定で行うことが可能となるという効果を奏する。
As described above, the method for evaluating pharmacokinetics according to the present invention is a method in which a stable isotope substitution product obtained by intravenously administering a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound has been administered extravascularly. Pharmacokinetic data of the compound from the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected and the time course of the blood concentration measured in the step of measuring Since the acquisition step is included, the pharmacokinetic evaluation can be performed without using a radioactive substance. Then, blood collected over time from a subject to whom a stable isotope substitute labeled with a stable isotope is labeled with a stable isotope while the compound administered extravascularly is present in the blood. When measuring the concentration of the compound and the stable isotope substituent in the sample, there is an effect that accurate pharmacokinetic evaluation can be performed by one measurement by one test. .
また、本発明に係る薬物動態評価用キットは、以上のように、(a)評価対象である化合物と、(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、(c)上記化合物を血管外投与する第1工程、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、を含んでいるので、放射性物質を用いず、薬物動態評価を行うことが可能となるという効果を奏する。そして、血管外投与された上記化合物が血中に存在する間に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する場合には、正確な薬物動態評価を、1回の試験によって1回の測定で行うことが可能となるという効果を奏する。
The pharmacokinetic evaluation kit according to the present invention includes, as described above, (a) a compound to be evaluated, and (b) a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope, (C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is administered extravascularly, The third step of measuring the time course of the blood concentration of the compound and the stable isotope substitute, and the fourth step of acquiring pharmacokinetic data of the compound from the time course of the blood concentration measured in the third step Thus, there is an instruction that the pharmacokinetic evaluation is performed, so that the pharmacokinetic evaluation can be performed without using a radioactive substance. Then, blood collected over time from a subject to whom a stable isotope substitute labeled with a stable isotope is labeled with a stable isotope while the compound administered extravascularly is present in the blood. When measuring the concentration of the compound and the stable isotope substituent in the sample, there is an effect that accurate pharmacokinetic evaluation can be performed by one measurement by one test. .
以下、本発明の実施の形態について、詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)、B以下(Bを含みかつBより小さい)」を意味する。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this, and can be implemented in a mode in which various modifications are made within the described range. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more (including A and greater than A)” and “B or less (including B and less than B)”.
(I)本発明に係る薬物動態評価方法
本発明に係る薬物動態評価方法は、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含む。以下、化合物が血管外投与された工程を第1工程、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された工程を第2工程、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程を第3工程、上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を第4工程として本発明を説明する。 (I) Pharmacokinetic evaluation method according to the present invention The pharmacokinetic evaluation method according to the present invention is the intravenous administration of a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound has been administered extravascularly. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the obtained subject, and the change over time in the blood concentration measured in the step of measuring, Obtaining pharmacokinetic data of the compound. Hereinafter, the step in which the compound is administered extravascularly is the first step, the step in which the stable isotope substitute labeled with the stable isotope is compounded intravenously is the second step, and the compound is administered extravascularly. Of the compound and the stable isotope substitute in a blood sample collected over time from a subject to which a stable isotope substitute labeled with the same compound as the above compound was intravenously administered. The step of measuring the concentration will be described as the third step, and the step of obtaining the pharmacokinetic data of the compound from the change over time in the blood concentration measured in the step of measuring will be described as the fourth step.
本発明に係る薬物動態評価方法は、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含む。以下、化合物が血管外投与された工程を第1工程、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された工程を第2工程、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する工程を第3工程、上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を第4工程として本発明を説明する。 (I) Pharmacokinetic evaluation method according to the present invention The pharmacokinetic evaluation method according to the present invention is the intravenous administration of a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound has been administered extravascularly. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the obtained subject, and the change over time in the blood concentration measured in the step of measuring, Obtaining pharmacokinetic data of the compound. Hereinafter, the step in which the compound is administered extravascularly is the first step, the step in which the stable isotope substitute labeled with the stable isotope is compounded intravenously is the second step, and the compound is administered extravascularly. Of the compound and the stable isotope substitute in a blood sample collected over time from a subject to which a stable isotope substitute labeled with the same compound as the above compound was intravenously administered. The step of measuring the concentration will be described as the third step, and the step of obtaining the pharmacokinetic data of the compound from the change over time in the blood concentration measured in the step of measuring will be described as the fourth step.
(I-1)第1工程
第1工程では、薬物動態評価の対象である化合物が被験体に血管外投与される。ここで、本発明に係る薬物動態評価方法の対象となる化合物は、通常は、薬剤の候補化合物または薬剤として用いられている化合物である。かかる化合物は、安定同位体を有する原子を含む化合物であれば特に限定されるものではない。より具体的には、上記化合物は、水素原子、炭素原子、窒素原子および酸素原子の少なくとも1種類を含んでいることが好ましい。 (I-1) First Step In the first step, a compound that is a target for pharmacokinetic evaluation is administered to a subject extravascularly. Here, the compound which is the target of the pharmacokinetic evaluation method according to the present invention is usually a drug candidate compound or a compound used as a drug. Such a compound is not particularly limited as long as it is a compound containing an atom having a stable isotope. More specifically, the compound preferably contains at least one of a hydrogen atom, a carbon atom, a nitrogen atom, and an oxygen atom.
第1工程では、薬物動態評価の対象である化合物が被験体に血管外投与される。ここで、本発明に係る薬物動態評価方法の対象となる化合物は、通常は、薬剤の候補化合物または薬剤として用いられている化合物である。かかる化合物は、安定同位体を有する原子を含む化合物であれば特に限定されるものではない。より具体的には、上記化合物は、水素原子、炭素原子、窒素原子および酸素原子の少なくとも1種類を含んでいることが好ましい。 (I-1) First Step In the first step, a compound that is a target for pharmacokinetic evaluation is administered to a subject extravascularly. Here, the compound which is the target of the pharmacokinetic evaluation method according to the present invention is usually a drug candidate compound or a compound used as a drug. Such a compound is not particularly limited as long as it is a compound containing an atom having a stable isotope. More specifically, the compound preferably contains at least one of a hydrogen atom, a carbon atom, a nitrogen atom, and an oxygen atom.
上記化合物は、分子中の安定同位体を有する原子を、その原子の安定同位体で置換したときに、分子量が3以上変化するような数、より好ましくは分子量が3以上大きくなるような数で含んでいることがより好ましい。これにより、上記化合物と、安定同位体で置換した化合物とを、区別して分析することができる。
The above compound has such a number that the molecular weight changes by 3 or more, more preferably the molecular weight increases by 3 or more when an atom having a stable isotope in the molecule is substituted with the stable isotope of the atom. It is more preferable that it contains. Thereby, the said compound and the compound substituted with the stable isotope can be distinguished and analyzed.
上記化合物は、低分子化合物であることがより好ましい。より具体的には、上記化合物の分子量は、100~2000であることがより好ましく、100~1000であることがさらに好ましい。薬剤として用いられている化合物の分子量は100以上であることが多い。また、分子量が2000以下であることにより、かかる化合物は血管外投与において吸収され易いため好ましい。
The above compound is more preferably a low molecular compound. More specifically, the molecular weight of the above compound is more preferably 100 to 2000, and further preferably 100 to 1000. The molecular weight of a compound used as a drug is often 100 or more. Moreover, since the molecular weight is 2000 or less, such a compound is preferable because it is easily absorbed by extravascular administration.
上記化合物は、特に限定されるものではないが、例えば、一例として、クロルプロマジン、フェニトイン、ニフェジピン、ジルチアゼム、ニカルジピン、エリスロマイシン、シンバスタチン、アトルバスタチン等を挙げることができる。
The above compound is not particularly limited, and examples thereof include chlorpromazine, phenytoin, nifedipine, diltiazem, nicardipine, erythromycin, simvastatin, atorvastatin and the like.
本工程では、上記化合物を、薬物動態評価を行う目的の投与方法で血管外投与する。全身作用を期待する薬物では全身循環血中に到達した量が薬物治療に関与する。血管外投与された上記化合物は、吸収が不完全であったり、全身循環血に達するまでに代謝・排泄されたりするため、全身循環血中に到達する量が減少し、全てが全身循環血中に到達するとは限らない。本発明に係る薬物動態評価方法では、例えば、血管外投与された薬物が全身循環血中に到達する割合を表す薬物動態パラメータである生物学的利用能(バイオアベイラビリティ)を指標として、化合物の薬物動態評価を行う。
In this step, the compound is administered extravascularly by the intended administration method for pharmacokinetic evaluation. For drugs that are expected to have systemic effects, the amount that reaches the systemic circulation is involved in drug treatment. The above-mentioned compounds administered extravascularly are incompletely absorbed or are metabolized and excreted before reaching the systemic circulating blood, so the amount reaching the systemic circulating blood decreases, and all the systemic circulating blood It is not always possible to reach In the pharmacokinetic evaluation method according to the present invention, for example, the drug of a compound is used with the bioavailability (bioavailability), which is a pharmacokinetic parameter indicating the rate at which extra-vascularly administered drug reaches the systemic circulation blood as an index. Perform dynamic evaluation.
ここで、血管外投与とは、血管内投与以外の投与方法であれば特に限定されるものではなく、例えば、経口投与、腹腔内投与、筋肉内投与、経皮投与、呼吸投与、点眼投与、経鼻投与または皮下投与等を含む趣旨である。
Here, extravascular administration is not particularly limited as long as it is an administration method other than intravascular administration, for example, oral administration, intraperitoneal administration, intramuscular administration, transdermal administration, respiratory administration, ophthalmic administration, It is intended to include nasal administration or subcutaneous administration.
また、血管外投与する化合物の量も特に限定されるものではないが、薬物動態評価を行うことを目的とするという観点から、薬効発現量以上であることが好ましい。また、臨床試験において、本発明に係る薬物動態評価を同時に行う場合には、血管外投与する化合物の量は臨床用量とすればよい。
Further, the amount of the compound to be administered extravascularly is not particularly limited, but it is preferably not less than the amount of drug effect from the viewpoint of performing pharmacokinetic evaluation. In a clinical trial, when the pharmacokinetic evaluation according to the present invention is simultaneously performed, the amount of the compound administered extravascularly may be a clinical dose.
(I-2)第2工程
第2工程では、上記化合物が血管外投与された後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与される。なお、本工程において、「静脈内投与される」とは、第1工程で上記化合物が血管外投与された被験体に、上記安定同位体置換体が静脈内投与されることをいう。 (I-2) Second Step In the second step, after the compound is administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered. In this step, “administered intravenously” means that the stable isotope substitute is intravenously administered to a subject to which the compound has been administered extravascularly in the first step.
第2工程では、上記化合物が血管外投与された後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与される。なお、本工程において、「静脈内投与される」とは、第1工程で上記化合物が血管外投与された被験体に、上記安定同位体置換体が静脈内投与されることをいう。 (I-2) Second Step In the second step, after the compound is administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered. In this step, “administered intravenously” means that the stable isotope substitute is intravenously administered to a subject to which the compound has been administered extravascularly in the first step.
ここで、「上記化合物が血管外投与された後」とは、血管外投与された後であればよいが、血管外投与された上記化合物が血中に存在する間、即ち血管外投与された上記化合物が血中から完全に消失する前に行われることがより好ましく、上記化合物の血中濃度が最大血中濃度に達する付近であることがさらに好ましい。血管外投与された上記化合物は、被験体内の吸収の程度に応じて、血中濃度が上昇する。その一方で、投与された上記化合物は、代謝または分解されることによって消失し、その血中濃度が減少する。上述した上記化合物の吸収される速度と消失する速度とが等しくなったとき、血中濃度が最大値となる。このときの上記化合物の濃度を最大血中濃度という。
Here, “after the compound is administered extravascularly” may be after the extravascular administration, but the compound administered extravascularly is present in the blood, ie, administered extravascularly. More preferably, it is carried out before the compound has completely disappeared from the blood, and it is even more preferable that the blood concentration of the compound reaches the maximum blood concentration. The above-mentioned compound administered extravascularly increases in blood concentration depending on the degree of absorption in the subject. On the other hand, the administered compound disappears by metabolism or degradation, and its blood concentration decreases. When the absorption rate and disappearance rate of the above-mentioned compound are equal, the blood concentration becomes the maximum value. The concentration of the compound at this time is called the maximum blood concentration.
上記化合物の血中濃度が最大血中濃度に達する時間、すなわち、最高血中濃度到達時間は、例えば以下の方法で決定することができる。すなわち、上記化合物が血管外投与された後の複数時点で、被験体から、採取された血液について、化合物の濃度を測定し、横軸に時間、縦軸に化合物の血中濃度をプロットする。上記化合物の血中濃度が最大値となる時間を最高血中濃度到達時間とする。
The time at which the blood concentration of the above compound reaches the maximum blood concentration, that is, the time to reach the maximum blood concentration can be determined, for example, by the following method. That is, at a plurality of time points after the compound is administered extravascularly, the concentration of the compound is measured for blood collected from the subject, and the horizontal axis represents time and the vertical axis represents the compound blood concentration. The time when the blood concentration of the above compound reaches the maximum value is defined as the time for reaching the maximum blood concentration.
上記化合物の血中濃度が最大血中濃度に達する付近とは、最高血中濃度到達時間の前10分~最高血中濃度到達時間の後60分であることがさらに好ましく、最高血中濃度到達時間後60分以内であることが特に好ましい。
The vicinity of the blood concentration of the above compound reaching the maximum blood concentration is more preferably 10 minutes before the maximum blood concentration arrival time to 60 minutes after the maximum blood concentration arrival time, and the maximum blood concentration reached. Particularly preferred is within 60 minutes after the time.
「上記化合物が血管外投与された後」とは、通常上記化合物が血管外投与された時点の30分後~360分後であり、より好ましくは、60分後~240分後である。
“After the compound is administered extravascularly” usually means 30 minutes to 360 minutes after the time when the compound is administered extravascularly, more preferably 60 minutes to 240 minutes later.
このように、血管外投与された上記化合物が血中に存在する間に上記安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定することにより、上記化合物および上記安定同位体置換体の血中濃度の経時変化の測定を1回の測定で行うことができる。
Thus, the compound in a blood sample collected over time from a subject to which the stable isotope substitute was administered intravenously while the compound administered extravascularly is present in the blood, and By measuring the concentration of the stable isotope substitute, the change in the blood concentration of the compound and the stable isotope substitute with time can be measured in a single measurement.
また、血管外投与された上記化合物が血中に存在する間に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与することにより、血管外投与時の条件下と同じ条件下で静脈内投与することとなるため、被験体内の状態(化合物の血中濃度、代謝、呼吸および排泄)が血管外投与時の条件下と同じ条件下で、薬物動態評価を行うことができる。それゆえ、より正確な薬物動態評価を、しかも1回の試験によって1回の測定で行うことができる。
In addition, while the compound administered extravascularly is present in the blood, a stable isotope substitution product obtained by labeling the same compound as the above compound with a stable isotope is administered intravenously, so that Pharmacokinetic evaluation is performed under the same conditions as in the case of extravascular administration (the blood concentration of the compound, metabolism, respiration, and excretion). be able to. Therefore, a more accurate pharmacokinetic assessment can be performed in a single measurement by a single test.
なお、本発明は、放射性物質を用いず、正確な薬物動態評価を、1回の試験によって1回の測定で行うことが可能な薬物動態評価方法を提供することを目的とし、かかる目的を、上記化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定することにより解決するものである。すなわち、上記構成によれば、上記化合物と、その安定同位体置換体とを、区別して分析することができるため、これらを同時に含む血液サンプル中の、上記化合物の濃度と、安定同位体置換体の濃度とを、同時に測定することができる。上記化合物が血管外投与された後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与されるという本発明の構成は勿論、血管外投与された上記化合物が血中から完全に消失した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与される実施の形態にも用いることができる。かかる実施の形態では、1回の測定で薬物動態評価を行うことはできないが、放射性物質を用いずに薬物動態評価を行うことができる。それゆえ、本発明には、かかる実施の形態も含まれる。
The present invention aims to provide a pharmacokinetic evaluation method capable of performing accurate pharmacokinetic evaluation in one measurement by one test without using a radioactive substance. The compound in a blood sample collected over time from a subject to whom a stable isotope substitute labeled with a stable isotope is labeled with a stable isotope after the compound is administered extravascularly; and The problem is solved by measuring the concentration of the stable isotope substitution product. That is, according to the above configuration, since the compound and its stable isotope substitute can be analyzed separately, the concentration of the compound and the stable isotope substitute in a blood sample simultaneously containing these compounds can be analyzed. Can be measured simultaneously. In addition to the configuration of the present invention in which a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope is administered intravenously after the compound is administered extravascularly, the compound administered extravascularly is treated with blood. After completely disappearing from the inside, the present invention can also be used in an embodiment in which a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered. In such an embodiment, pharmacokinetic evaluation cannot be performed by a single measurement, but pharmacokinetic evaluation can be performed without using a radioactive substance. Therefore, this embodiment is also included in the present invention.
本工程においては、第1工程で血管外投与された上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与される。ここで、本発明において安定同位体とは非放射性の同位体であれば特に限定されるものではない。かかる安定同位体としては、より好ましくは、2H(D)、13C、15Nまたは18Oを好適に用いることができる。これらの元素は薬物またはその候補化合物中に通常よく含まれる元素であることから標識に適する。また、「上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体」とは、上記化合物と同じ化合物中に含まれる原子が、その原子の安定同位体で置換された化合物をいう。より具体的には、水素原子を含む上記化合物と同じ化合物の水素原子の少なくとも1部が2H(D)で置換された置換体、炭素原子を含む上記化合物と同じ化合物の炭素原子の少なくとも1部が13Cで置換された置換体、窒素原子を含む上記化合物と同じ化合物の窒素原子の少なくとも1部が15Nで置換された置換体、酸素原子を含む上記化合物と同じ化合物の酸素原子の少なくとも1部が18Oで置換された置換体等である。なお、置換されている原子は、一種類であってもよいし、2種類以上の原子の組み合わせであってもよい。
In this step, a stable isotope substitute obtained by labeling the same compound as the above-mentioned compound administered extravascularly in the first step with a stable isotope is intravenously administered. Here, in the present invention, the stable isotope is not particularly limited as long as it is a non-radioactive isotope. More preferably, 2 H (D), 13 C, 15 N, or 18 O can be suitably used as such a stable isotope. These elements are suitable for labeling because they are usually included in drugs or their candidate compounds. The “stable isotope substituted with the same compound as the above compound labeled with a stable isotope” refers to a compound in which an atom contained in the same compound as the above compound is substituted with a stable isotope of the atom. More specifically, a substituted product in which at least one hydrogen atom of the same compound as the above compound containing a hydrogen atom is substituted with 2 H (D), at least one carbon atom of the same compound as the above compound containing a carbon atom A substituent in which part is substituted with 13 C, a substituent in which at least one nitrogen atom of the same compound as the above compound containing a nitrogen atom is substituted with 15 N, an oxygen atom of the same compound as in the above compound containing an oxygen atom A substituted product in which at least one part is substituted with 18 O. The substituted atom may be one type or a combination of two or more types.
また、「上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体」における安定同位体による置換数は、化合物の分子量が3以上変化するような置換数、より好ましくは化合物の分子量が3以上大きくなるような置換数であることが好ましい。すなわち、上記第2工程において投与される上記安定同位体置換体は、上記第1工程において投与された上記化合物と比べて分子量が3以上変化するように、より好ましくは上記化合物と比べて分子量が3以上大きくなるように、安定同位体で置換されていることが好ましい。自然界には、分子量が2以下異なる化合物が存在し得るので、分子量が3以上変化していること、あるいは、分子量が3以上大きくなることにより、自然界に存在する化合物と区別して、その濃度を分析することができるためである。
In addition, the number of substitutions with a stable isotope in the “stable isotope substituted with the same compound as the above compound with a stable isotope” is the number of substitutions such that the molecular weight of the compound changes by 3 or more, more preferably the molecular weight of the compound The number of substitutions is preferably 3 or more. That is, the stable isotope substitute administered in the second step has a molecular weight more preferably 3 or more compared to the compound administered in the first step, more preferably the molecular weight changes compared to the compound. It is preferably substituted with a stable isotope so as to be 3 or more. In the natural world, there can be compounds with molecular weights of 2 or less, so if the molecular weight has changed by 3 or more, or the molecular weight has increased by 3 or more, the concentration is analyzed by distinguishing it from compounds existing in nature. This is because it can be done.
かかる安定同位体置換体の製造方法は特に限定されるものではなく、従来公知の方法を用いて適宜製造することができる。あるいは、安定同位体置換体として、市販されている安定同位体置換体を用いてもよい。
The method for producing such a stable isotope substituent is not particularly limited, and can be suitably produced using a conventionally known method. Alternatively, a commercially available stable isotope substitute may be used as the stable isotope substitute.
また、本工程において静脈内投与された上記安定同位体置換体の投与量は、上記第1工程において投与された上記化合物の投与量に対して、重量比で、0よりも大きく1/10以下であることがより好ましく、被験体に対する毒性が発現を抑えられるため、1/100000~1/100であることがさらに好ましく、1/10000~1/100であることがさらに好ましく、1/1000~1/100であることが特に好ましい。静脈内投与された上記安定同位体置換体の投与量が、上記第1工程において投与された上記化合物の投与量に対して、重量比で、1/10以下であることにより、安定同位体置換体の血中濃度から薬物動態評価を行うことができる。また、静脈内投与された上記安定同位体置換体の投与量が、上記第1工程において投与された上記化合物の投与量に対して、重量比で、0より大きい値であることにより、静脈内投与された上記安定同位体置換体の血中濃度を決定することができ、薬物動態評価を行うことができる。
Further, the dose of the stable isotope substitute administered intravenously in this step is greater than 0 and less than or equal to 1/10 by weight with respect to the dose of the compound administered in the first step. It is more preferable that the toxicity to the subject can be suppressed, so that it is preferably 1 / 100,000 to 1/100, more preferably 1/10000 to 1/100, and more preferably 1/1000 to 1/100 is particularly preferable. When the dose of the stable isotope substitute administered intravenously is 1/10 or less by weight with respect to the dose of the compound administered in the first step, stable isotope substitution is achieved. Pharmacokinetic evaluation can be performed from the blood concentration of the body. In addition, since the dose of the stable isotope substitute administered intravenously is a value greater than 0 in weight ratio to the dose of the compound administered in the first step, The blood concentration of the administered stable isotope substitute can be determined, and pharmacokinetic evaluation can be performed.
また、本工程において静脈内投与された上記安定同位体置換体の投与量は、重量比で、薬効発現量の1/10000~1/100であることがより好ましい。これにより、被験体に対する毒性を発現させることなく、安定同位体置換体の血中濃度から薬物動態評価を行うことができる。
In addition, the dose of the above-mentioned stable isotope substitute administered intravenously in this step is more preferably 1 / 10,000 to 1/100 of the amount of drug effect in terms of weight ratio. Thereby, pharmacokinetic evaluation can be performed from the blood concentration of a stable isotope substitute without expressing toxicity to a subject.
このように、急性・慢性毒性を考慮する必要のない極微量の化合物を被験体に静脈内投与するマイクロドーズ試験を利用することにより、安全にかつ短期間に薬物動態の評価を行うことが可能となる。
In this way, pharmacokinetic evaluation can be performed safely and in a short period of time by using a microdose test in which a trace amount of compound that does not require consideration of acute or chronic toxicity is intravenously administered to a subject. It becomes.
また、臨床用量の化合物が血管外投与され、血管外投与された上記化合物が血中に存在する間に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定することにより、血管外投与時の条件下、すなわち臨床用量負荷条件下で、静脈内投与することで被験体内の状態(化合物の血中濃度、代謝、呼吸および排泄)が臨床用量負荷条件と同じ条件下で、薬物動態評価を行うことができるので、より正確な薬物動態評価を、しかも1回の試験および一回の測定によって行うことができる。従来、極微量の化合物を単独投与により行うマイクロドーズ試験における問題点として、臨床用量との相関性がないことが挙げられる。これは、マイクロドーズ試験に用いる投与量と臨床用量において、被験体内の状態が異なるため、マイクロドーズ試験から得られた結果が利用できないとするものである。例えば、マイクロドーズ試験で得られた血中濃度と臨床用量で得られた血中濃度とに、化合物の投与量と血中濃度の比例関係が成り立たない(線形性がない)ため、マイクロドーズ試験のデータを臨床用量の参考に用いることができないという問題があった。本工程において、臨床用量が血管外投与された被験体に、上記化合物が血中に存在する間に上記安定同位体置換体が静脈投与されることにより、マイクロドーズ試験における上記問題点を回避することができる。
In addition, a clinical dose of a compound was administered extravascularly, and a stable isotope substitute labeled with the same compound as the above compound was administered intravenously while the extravasated compound was present in the blood. By measuring the concentration of the compound and the stable isotope substitute in a blood sample collected over time from a subject, intravenous administration under conditions at the time of extravascular administration, that is, under clinical dose loading conditions Administration allows pharmacokinetic evaluation under the same conditions as clinical dose loading conditions (compound blood concentration, metabolism, respiration and excretion) in the subject. Moreover, it can be performed by one test and one measurement. Conventionally, as a problem in a microdose test in which a very small amount of a compound is administered alone, there is no correlation with a clinical dose. This is because the results obtained from the microdose test cannot be used because the condition in the subject is different between the dose used for the microdose test and the clinical dose. For example, since the proportional relationship between the dose of the compound and the blood concentration does not hold between the blood concentration obtained in the microdose test and the blood concentration obtained at the clinical dose (no linearity), the microdose test There was a problem that the data of the above could not be used for clinical dose reference. In this step, the above-mentioned problems in the microdose test are avoided by intravenously administering the stable isotope substitute to the subject to which a clinical dose is administered extravascularly while the compound is present in the blood. be able to.
上記安定同位体置換体が静脈内投与される第2工程は、上記化合物が血管外投与された後に行われることが好ましいが、これに限らず、例えば、異なる日にそれぞれ上記化合物が血管外投与される工程および上記安定同位体置換体が静脈内投与される工程を行ってもよい。
The second step in which the stable isotope substitute is administered intravenously is preferably performed after the compound is administered extravascularly. However, the present invention is not limited to this. For example, the compound is administered extravascularly on different days. And the step of intravenously administering the stable isotope substitute may be performed.
(I-3)第3工程
第3工程では、上記化合物および上記安定同位体置換体の血中濃度の経時変化を測定する。具体的には、第3工程では、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する。すなわち、上記被験体から、化合物を血管外投与後の複数時点および安定同位体置換体を静脈内投与後の複数時点で採取された血液中の、上記化合物および上記安定同位体置換体の血中濃度を測定する。 (I-3) Third Step In the third step, the time course of the blood concentration of the compound and the stable isotope-substituted product is measured. Specifically, in the third step, after the compound was administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope was collected over time from a subject who was intravenously administered. The concentration of the compound and the stable isotope substitute in the blood sample is measured. That is, from the subject, blood of the compound and the stable isotope substitute in blood collected at a plurality of time points after extravascular administration of the compound and at a plurality of time points after intravenous administration of the stable isotope substitute. Measure the concentration.
第3工程では、上記化合物および上記安定同位体置換体の血中濃度の経時変化を測定する。具体的には、第3工程では、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定する。すなわち、上記被験体から、化合物を血管外投与後の複数時点および安定同位体置換体を静脈内投与後の複数時点で採取された血液中の、上記化合物および上記安定同位体置換体の血中濃度を測定する。 (I-3) Third Step In the third step, the time course of the blood concentration of the compound and the stable isotope-substituted product is measured. Specifically, in the third step, after the compound was administered extravascularly, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope was collected over time from a subject who was intravenously administered. The concentration of the compound and the stable isotope substitute in the blood sample is measured. That is, from the subject, blood of the compound and the stable isotope substitute in blood collected at a plurality of time points after extravascular administration of the compound and at a plurality of time points after intravenous administration of the stable isotope substitute. Measure the concentration.
このとき、血管外投与された上記化合物が血中に存在する間に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与される場合には、化合物を血管外投与後に経時的に行う血液サンプルの採取と、安定同位体置換体を静脈内投与後に経時的に行う血液サンプルの採取とを同時に行うことができるため、薬物動態評価を1回の試験によって1回の測定で行うことができる。
At this time, when a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope is intravenously administered while the compound administered extravascularly is present in the blood, the compound is removed from the blood vessel. Since blood samples collected over time after administration and blood samples collected over time after intravenous administration of stable isotope substitutes can be performed simultaneously, pharmacokinetic evaluation is performed once per test. It can be done by measuring.
ここで、本明細書において、血中濃度とは、血漿中濃度であってもよいし、血清中濃度であってもよい。いずれの濃度からでも、薬物動態評価を行うことができる。
Here, in the present specification, the blood concentration may be a plasma concentration or a serum concentration. Pharmacokinetic evaluation can be performed from any concentration.
本工程において、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する方法は、上記化合物と上記安定同位体置換体とを分離定量できる方法であれば特に限定されるものではない。
In this step, the method for measuring the time-dependent change in the blood concentration of the compound and the stable isotope substitute is particularly limited as long as it is a method capable of separating and quantifying the compound and the stable isotope substitute. is not.
かかる測定は、例えば、液体クロマトグラフィー質量分析法(以下、本明細書において、「LC/MS」と称することがある。)、液体クロマトグラフィータンデム質量分析法(以下、本明細書において、「LC/MS/MS」と称することがある。)等を用いて行うことができる。これらの分析方法によれば、被験体から採取された血液中の、安定同位体置換体と、上記化合物とを分離定量することができる。それゆえ、これらの血中濃度を用いて薬物動態評価を行うことができる。本工程における測定はまた、従来の放射性物質を用いたマイクロドーズ臨床試験のように、AMSおよびPETといった特殊な設備を必要としないため、比較的簡単に薬物動態評価を行うことができるという利点を有する。
Such a measurement is performed, for example, by liquid chromatography mass spectrometry (hereinafter sometimes referred to as “LC / MS” in the present specification), liquid chromatography tandem mass spectrometry (hereinafter referred to as “LC / MS”). / MS / MS ”) and the like. According to these analysis methods, a stable isotope substitute and the above-mentioned compound in blood collected from a subject can be separated and quantified. Therefore, pharmacokinetic evaluation can be performed using these blood concentrations. The measurement in this step also has the advantage that pharmacokinetic evaluation can be performed relatively easily because it does not require special equipment such as AMS and PET unlike the conventional microdose clinical trial using radioactive materials. Have.
また、採取した血液サンプルの調製方法、血中濃度の測定方法、経時変化を測定するための血液採取の間隔および回数等は特に限定されるものではなく、従来公知の方法を適宜選択して用いればよい。
In addition, the method for preparing the collected blood sample, the method for measuring the blood concentration, the interval and the number of times of blood collection for measuring changes over time are not particularly limited, and a conventionally known method can be appropriately selected and used. That's fine.
(I-4)第4工程
第4工程では、第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する。本発明において、薬物動態データの取得する方法は、第3工程で測定された血中濃度の経時変化を用いて行いうるものであれば特に限定されない。薬物動態データを取得する方法としては、例えば、薬物動態パラメータである生物学的利用能(バイオアベイラビリティ)を算出する方法が挙げられる。 (I-4) Fourth Step In the fourth step, pharmacokinetic data of the compound is obtained from the change over time in the blood concentration measured in the third step. In the present invention, the method for obtaining pharmacokinetic data is not particularly limited as long as it can be performed using the time-dependent change in blood concentration measured in the third step. Examples of the method for obtaining pharmacokinetic data include a method for calculating bioavailability (bioavailability) which is a pharmacokinetic parameter.
第4工程では、第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する。本発明において、薬物動態データの取得する方法は、第3工程で測定された血中濃度の経時変化を用いて行いうるものであれば特に限定されない。薬物動態データを取得する方法としては、例えば、薬物動態パラメータである生物学的利用能(バイオアベイラビリティ)を算出する方法が挙げられる。 (I-4) Fourth Step In the fourth step, pharmacokinetic data of the compound is obtained from the change over time in the blood concentration measured in the third step. In the present invention, the method for obtaining pharmacokinetic data is not particularly limited as long as it can be performed using the time-dependent change in blood concentration measured in the third step. Examples of the method for obtaining pharmacokinetic data include a method for calculating bioavailability (bioavailability) which is a pharmacokinetic parameter.
「生物学的利用能」とは、投与された薬物が、全身循環血中に到達する割合を表す定数であり、薬物が静脈内に投与される場合の生物学的利用能を100%として算出される。一方、薬物が静脈内投与以外の経路により投与される場合は、全身循環血中に到達するまでに、吸収、代謝、排泄等の影響を受けるため、生物学的利用能は低下する。生物学的利用能は血中濃度と横軸(時間軸)によって囲まれた部分の面積(血中濃度-時間曲線下面積:AUC)を用いて計算し、以下の式によって算出される。
F=([AUC]po/[AUC]iv)/(DOSEpo/DOSEiv)・・・式(1)
ここでFは絶対的生物学的利用能、[AUC]poは血管外投与された化合物の血中濃度-時間曲線下面積、[AUC]ivは静脈内投与された安定同位体置換体の血中濃度-時間曲線下面積、DOSEpoは血管外投与された化合物の投与量を表す。また、DOSEivは静脈内投与された安定同位体置換体の投与量を表す。 “Bioavailability” is a constant representing the rate at which an administered drug reaches the systemic circulation, and is calculated assuming that the bioavailability when the drug is administered intravenously is 100%. Is done. On the other hand, when the drug is administered by a route other than intravenous administration, the bioavailability decreases because it is affected by absorption, metabolism, excretion and the like before reaching the systemic circulating blood. The bioavailability is calculated using the area surrounded by the blood concentration and the horizontal axis (time axis) (the area under the blood concentration-time curve: AUC), and is calculated by the following equation.
F = ([AUC] po / [AUC] iv) / (DOSEpo / DOSEiv) (1)
Where F is the absolute bioavailability, [AUC] po is the area under the blood concentration-time curve of the compound administered extravascularly, and [AUC] iv is the blood of the stable isotope substitute administered intravenously. The area under the medium concentration-time curve, DOSEpo, represents the dose of compound administered extravascularly. DOSEiv represents the dose of a stable isotope substitute administered intravenously.
F=([AUC]po/[AUC]iv)/(DOSEpo/DOSEiv)・・・式(1)
ここでFは絶対的生物学的利用能、[AUC]poは血管外投与された化合物の血中濃度-時間曲線下面積、[AUC]ivは静脈内投与された安定同位体置換体の血中濃度-時間曲線下面積、DOSEpoは血管外投与された化合物の投与量を表す。また、DOSEivは静脈内投与された安定同位体置換体の投与量を表す。 “Bioavailability” is a constant representing the rate at which an administered drug reaches the systemic circulation, and is calculated assuming that the bioavailability when the drug is administered intravenously is 100%. Is done. On the other hand, when the drug is administered by a route other than intravenous administration, the bioavailability decreases because it is affected by absorption, metabolism, excretion and the like before reaching the systemic circulating blood. The bioavailability is calculated using the area surrounded by the blood concentration and the horizontal axis (time axis) (the area under the blood concentration-time curve: AUC), and is calculated by the following equation.
F = ([AUC] po / [AUC] iv) / (DOSEpo / DOSEiv) (1)
Where F is the absolute bioavailability, [AUC] po is the area under the blood concentration-time curve of the compound administered extravascularly, and [AUC] iv is the blood of the stable isotope substitute administered intravenously. The area under the medium concentration-time curve, DOSEpo, represents the dose of compound administered extravascularly. DOSEiv represents the dose of a stable isotope substitute administered intravenously.
また、本発明に係る薬物動態評価方法は、マイクロドーズ臨床試験において、好適に用いることができる。これにより、医薬品候補化合物の薬物動態に関する情報を医薬品の臨床開発の初期段階に得ることができる。また、1試験で臨床とマイクロドーズの2用量を行うことができ、薬物動態データを取得することができる。
Moreover, the pharmacokinetic evaluation method according to the present invention can be suitably used in a microdose clinical trial. Thereby, the information regarding the pharmacokinetics of the drug candidate compound can be obtained at the initial stage of clinical development of the drug. In addition, two doses of clinical and microdose can be performed in one test, and pharmacokinetic data can be acquired.
(II)本発明に係る薬物動態評価用キット
また、本発明には、薬物動態評価用キットであって、
(a)評価対象である化合物と、
(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、
(c)上記化合物を血管外投与する第1工程、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに、第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、を含むキットも含まれる。 (II) Pharmacokinetic evaluation kit according to the present invention The present invention also includes a pharmacokinetic evaluation kit,
(A) a compound to be evaluated;
(B) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope,
(C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is administered extravascularly, A third step of measuring the time course of the blood concentration of the compound and the stable isotope substitute, and a fourth step of acquiring pharmacokinetic data of the compound from the time course of the blood concentration measured in the third step A kit including an instruction to perform pharmacokinetic evaluation according to the process is also included.
また、本発明には、薬物動態評価用キットであって、
(a)評価対象である化合物と、
(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、
(c)上記化合物を血管外投与する第1工程、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに、第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、を含むキットも含まれる。 (II) Pharmacokinetic evaluation kit according to the present invention The present invention also includes a pharmacokinetic evaluation kit,
(A) a compound to be evaluated;
(B) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope,
(C) a first step in which the compound is administered extravascularly, a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is administered extravascularly, A third step of measuring the time course of the blood concentration of the compound and the stable isotope substitute, and a fourth step of acquiring pharmacokinetic data of the compound from the time course of the blood concentration measured in the third step A kit including an instruction to perform pharmacokinetic evaluation according to the process is also included.
上記評価対象である化合物および上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体については上記(I)で説明したとおりである。
The compound to be evaluated and the stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope are as described in (I) above.
本発明に係るキットは、上記評価対象である化合物および上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体に加えて、さらに、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに、第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書を含んでいればよい。
The kit according to the present invention is the same as the above compound after the compound to be evaluated and the stable isotope substituted with the same compound as the above compound labeled with a stable isotope, and further after the compound is administered extravascularly. A second step of intravenously administering a stable isotope substituent labeled with a stable isotope, a third step of measuring the time course of blood concentration of the compound and the stable isotope substitute, and a third step. It is only necessary to include an instruction to perform pharmacokinetic evaluation in the fourth step of acquiring pharmacokinetic data of the compound from the change in blood concentration measured in the step.
上記指示書における第1工程~第4工程についても、上記(I)にて説明したとおりであるので、ここでは説明を省略する。
The first to fourth steps in the above instruction are also as described in the above (I), so the description is omitted here.
(III)まとめ
本発明に係る薬物動態評価方法は、上記課題を解決するために、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含むことを特徴としている。 (III) Summary In order to solve the above problems, the pharmacokinetic evaluation method according to the present invention is characterized in that a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope after intravenous administration of the compound is intravenously administered. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the administered subject, and the time course of the blood concentration measured in the step of measuring, It includes a step of obtaining pharmacokinetic data of a compound.
本発明に係る薬物動態評価方法は、上記課題を解決するために、化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物および上記安定同位体置換体の濃度を測定する工程、ならびに上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含むことを特徴としている。 (III) Summary In order to solve the above problems, the pharmacokinetic evaluation method according to the present invention is characterized in that a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope after intravenous administration of the compound is intravenously administered. From the step of measuring the concentration of the compound and the stable isotope substitute in the blood sample collected over time from the administered subject, and the time course of the blood concentration measured in the step of measuring, It includes a step of obtaining pharmacokinetic data of a compound.
上記の構成によれば、放射性物質を用いず、薬物動態評価を行うことが可能となるという効果を奏する。そして、血管外投与された上記化合物が血中に存在する間に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物および上記安定同位体置換体の濃度を測定する場合には、正確な薬物動態評価を、1回の試験によって1回の測定で行うことが可能となるという効果を奏する。
According to the above configuration, there is an effect that pharmacokinetic evaluation can be performed without using a radioactive substance. Then, blood collected over time from a subject to whom a stable isotope substitute labeled with a stable isotope is labeled with a stable isotope while the compound administered extravascularly is present in the blood. When measuring the concentration of the compound and the stable isotope substitute in the sample, there is an effect that accurate pharmacokinetic evaluation can be performed by one measurement by one test.
本発明に係る薬物動態評価方法では、静脈内投与された上記安定同位体置換体の投与量が、血管外投与された上記化合物の投与量に対して、重量比で、0よりも大きく1/10以下であることが好ましい。
In the pharmacokinetic evaluation method according to the present invention, the dose of the stable isotope substituent administered intravenously is greater than 0 by weight ratio with respect to the dose of the compound administered extravascularly. It is preferable that it is 10 or less.
本発明に係る薬物動態評価方法では、上記安定同位体は、2H(D)、13C、15Nまたは18Oであることが好ましい。
In the pharmacokinetic evaluation method according to the present invention, the stable isotope is preferably 2 H (D), 13 C, 15 N or 18 O.
本発明に係る薬物動態評価方法では、静脈内投与された上記安定同位体置換体は、血管外投与された上記化合物と比べて分子量が3以上変化するように、より好ましくは血管外投与された上記化合物と比べて分子量が3以上大きくなるように、安定同位体で置換されていることが好ましい。
In the pharmacokinetic evaluation method according to the present invention, the stable isotope substitute administered intravenously is more preferably administered extravascularly such that the molecular weight changes by 3 or more compared to the compound administered extravascularly. It is preferably substituted with a stable isotope so that the molecular weight is 3 or more larger than that of the above compound.
本発明に係る薬物動態評価方法では、血管外投与された上記化合物が血中に存在する間に上記安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、上記化合物、および上記安定同位体置換体の濃度を測定することにより、上記化合物および上記安定同位体置換体の血中濃度の経時変化の測定を1回の測定で行うことが好ましい。
In the pharmacokinetic evaluation method according to the present invention, in a blood sample collected over time from a subject to which the stable isotope substitute was administered intravenously while the compound administered extravascularly is present in the blood. It is preferable to measure the change in blood concentration of the compound and the stable isotope substitute with time by measuring the concentration of the compound and the stable isotope substitute in a single measurement.
本発明に係る薬物動態評価方法では、血管外投与された化合物の量が、臨床用量であることが好ましい。
In the pharmacokinetic evaluation method according to the present invention, the amount of the compound administered extravascularly is preferably a clinical dose.
本発明に係る薬物動態評価方法では、上記化合物の生物学的利用能を算出することが好ましい。
In the pharmacokinetic evaluation method according to the present invention, it is preferable to calculate the bioavailability of the compound.
本発明に係る医薬品候補化合物の選別方法では、上記薬物動態評価方法にて得られた結果を用いることが好ましい。
In the method for selecting drug candidate compounds according to the present invention, it is preferable to use the results obtained by the pharmacokinetic evaluation method.
本発明に係る薬物動態評価用キットは、上記課題を解決するために、(a)評価対象である化合物と、(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、(c)上記化合物を血管外投与する第1工程、上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、を含むことを特徴としている。
In order to solve the above problems, a kit for evaluating pharmacokinetics according to the present invention includes (a) a compound to be evaluated, and (b) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope. (C) a first step in which the compound is administered extravascularly, and a second step in which a stable isotope substituent in which the same compound as the compound is labeled with a stable isotope is intravenously administered after the compound is extravascularly administered. A third step of measuring the time course of blood concentration of the compound and the stable isotope substitute, and a fourth step of obtaining pharmacokinetic data of the compound from the time course of blood concentration measured in the third step And an instruction sheet for performing pharmacokinetic evaluation according to the process.
本発明に係る薬物動態評価用キットでは、上記安定同位体置換体が、評価対象である化合物に対して、重量比で、0よりも大きく1/10以下であることが好ましい。
In the pharmacokinetic evaluation kit according to the present invention, it is preferable that the stable isotope substitute is greater than 0 and 1/10 or less by weight with respect to the compound to be evaluated.
本発明に係る薬物動態評価用キットでは、上記安定同位体は、2H(D)、13C、15Nまたは18Oであることが好ましい。
In the pharmacokinetic evaluation kit according to the present invention, the stable isotope is preferably 2 H (D), 13 C, 15 N or 18 O.
本発明に係る薬物動態評価用キットでは、上記安定同位体置換体は、評価対象である化合物と比べて分子量が3以上変化するように、より好ましくは評価対象である化合物と比べて分子量が3以上大きくなるように、安定同位体で置換されていることが好ましい。
In the pharmacokinetic evaluation kit according to the present invention, the stable isotope substitute preferably has a molecular weight of 3 compared to the compound to be evaluated so that the molecular weight changes by 3 or more compared to the compound to be evaluated. It is preferable to be substituted with a stable isotope so as to be larger.
本発明に係る薬物動態評価用キットでは、第2工程は、血管外投与された上記化合物が血中に存在する間に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与し、第3工程は、上記化合物、および上記安定同位体置換体の血中濃度の経時変化の測定を1回の測定で行うことが好ましい。
In the pharmacokinetic evaluation kit according to the present invention, in the second step, a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope while the compound administered extravascularly is present in the blood. It is preferably administered intravenously, and in the third step, measurement of the time course of blood concentration of the compound and the stable isotope substitute is preferably performed in a single measurement.
本発明に係る薬物動態評価用キットでは、上記第1工程において、投与される化合物の量が、臨床用量であることが好ましい。
In the pharmacokinetic evaluation kit according to the present invention, in the first step, the amount of the compound to be administered is preferably a clinical dose.
本発明について、実施例および図1~6に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。
The present invention will be described more specifically based on examples and FIGS. 1 to 6, but the present invention is not limited to this.
まず、本実施例において使用した試薬、使用材料、および測定条件について説明する。
First, the reagents, materials used, and measurement conditions used in this example will be described.
(使用した試薬)
モデル薬物として、下記式(1)で表されるクロルプロマジン(以下、本明細書において、「CPZ」と称することがある。分子量:319)、およびその水素原子6個が重水素によって置換された重水素置換体である下記式(2)で表されるクロルプロマジン-d6(以下、本明細書において、「CPZ-d6」と称することがある。)(分子量:325)を用いた。 (Reagent used)
As a model drug, chlorpromazine represented by the following formula (1) (hereinafter, sometimes referred to as “CPZ” in the present specification, molecular weight: 319), and heavy hydrogen in which 6 hydrogen atoms are substituted by deuterium. Chlorpromazine-d 6 (hereinafter, sometimes referred to as “CPZ-d 6 ” in the present specification) (molecular weight: 325) represented by the following formula (2), which is a hydrogen substitution product, was used.
モデル薬物として、下記式(1)で表されるクロルプロマジン(以下、本明細書において、「CPZ」と称することがある。分子量:319)、およびその水素原子6個が重水素によって置換された重水素置換体である下記式(2)で表されるクロルプロマジン-d6(以下、本明細書において、「CPZ-d6」と称することがある。)(分子量:325)を用いた。 (Reagent used)
As a model drug, chlorpromazine represented by the following formula (1) (hereinafter, sometimes referred to as “CPZ” in the present specification, molecular weight: 319), and heavy hydrogen in which 6 hydrogen atoms are substituted by deuterium. Chlorpromazine-d 6 (hereinafter, sometimes referred to as “CPZ-d 6 ” in the present specification) (molecular weight: 325) represented by the following formula (2), which is a hydrogen substitution product, was used.
CPZはSIGMA-ALDRICH社から、CPZ-d6はLKT Laboratories社から購入したものを用いた。
CPZ was purchased from SIGMA-ALDRICH, and CPZ-d 6 was purchased from LKT Laboratories.
本実施例において使用された他の試薬に関しては、市販の特級品を用いた。
For other reagents used in this example, commercially available special grade products were used.
(使用材料)
SD系雄性ラットは清水実験材料株式会社より購入した。また、SDラット肝ミクロソームはXenoTech社より購入した。 (Materials used)
SD male rats were purchased from Shimizu Experimental Materials Co., Ltd. SD rat liver microsomes were purchased from XenoTech.
SD系雄性ラットは清水実験材料株式会社より購入した。また、SDラット肝ミクロソームはXenoTech社より購入した。 (Materials used)
SD male rats were purchased from Shimizu Experimental Materials Co., Ltd. SD rat liver microsomes were purchased from XenoTech.
(測定条件)
参考例1および参考例2、並びに、比較例1および2における対象化合物の血中濃度の測定は、LC/MS/MS(LC:Acquity UPLC(Waters)、MS:Acquity TQD(Waters))を用いて下表1に示す測定条件で行った。 (Measurement condition)
The measurement of the blood concentration of the target compound in Reference Example 1 and Reference Example 2 and Comparative Examples 1 and 2 was performed using LC / MS / MS (LC: Acquity UPLC (Waters), MS: Acquity TQD (Waters)). The measurement conditions shown in Table 1 below were performed.
参考例1および参考例2、並びに、比較例1および2における対象化合物の血中濃度の測定は、LC/MS/MS(LC:Acquity UPLC(Waters)、MS:Acquity TQD(Waters))を用いて下表1に示す測定条件で行った。 (Measurement condition)
The measurement of the blood concentration of the target compound in Reference Example 1 and Reference Example 2 and Comparative Examples 1 and 2 was performed using LC / MS / MS (LC: Acquity UPLC (Waters), MS: Acquity TQD (Waters)). The measurement conditions shown in Table 1 below were performed.
また、実施例1および2における対象化合物の血中濃度の測定は、LC/MS/MS(LC:LC-20Aシステム(島津製作所)、MS:AP15000(AB Sciex))を用いて下表2に示す測定条件で行った。
The measurement of the blood concentration of the target compound in Examples 1 and 2 is shown in Table 2 below using LC / MS / MS (LC: LC-20A system (Shimadzu Corporation), MS: AP15000 (AB Sciex)). The measurement was performed under the conditions shown.
〔参考例1:CPZおよびその重水素置換体のin vitro代謝実験〕
対象化合物が重水素によって置換されたことが、肝代謝に影響を及ぼすかを検討するために、CPZおよびその重水素置換体のin vitro代謝実験を行った。具体的には、SDラット肝ミクロソームインキュベーション液中で、CPZおよびその重水素置換体を、SDラット肝ミクロソームに暴露し、CPZおよびその重水素置換体の肝代謝による消失をLC/MS/MSを用いて測定した。 [Reference Example 1: In vitro metabolism experiment of CPZ and its deuterium substitutes]
In order to examine whether the substitution of the target compound with deuterium affects liver metabolism, in vitro metabolism experiments of CPZ and its deuterium substitute were performed. Specifically, CPZ and its deuterium substitute were exposed to SD rat liver microsome in an SD rat liver microsome incubation solution, and the disappearance of CPZ and its deuterium substitute due to liver metabolism was measured by LC / MS / MS. And measured.
対象化合物が重水素によって置換されたことが、肝代謝に影響を及ぼすかを検討するために、CPZおよびその重水素置換体のin vitro代謝実験を行った。具体的には、SDラット肝ミクロソームインキュベーション液中で、CPZおよびその重水素置換体を、SDラット肝ミクロソームに暴露し、CPZおよびその重水素置換体の肝代謝による消失をLC/MS/MSを用いて測定した。 [Reference Example 1: In vitro metabolism experiment of CPZ and its deuterium substitutes]
In order to examine whether the substitution of the target compound with deuterium affects liver metabolism, in vitro metabolism experiments of CPZ and its deuterium substitute were performed. Specifically, CPZ and its deuterium substitute were exposed to SD rat liver microsome in an SD rat liver microsome incubation solution, and the disappearance of CPZ and its deuterium substitute due to liver metabolism was measured by LC / MS / MS. And measured.
CPZの最終的な濃度が10ng/mL、SDラット肝ミクロソームの最終的な濃度が0.2mg/mL、リン酸緩衝液(pH7.4)の最終的な濃度が0.1M、およびMgCl2の最終的な濃度が3.3mMとなるように、これらを混合し、CPZの代謝活性測定用反応液を調製した。NADHPの最終的な濃度が1.3mMおよびMgCl2の最終的な濃度が3.3mMとなるように混合し、NADPH溶液を調製した。調製した代謝活性測定用反応液を37℃にて5分間プレインキュベートした後、プレインキュベートした代謝活性測定用反応液にNADPH溶液を加え、反応を開始させた。37℃にて一定時間インキュベートした後に、インキュベートした反応液の一定量(0.05mL)を複数時点で取り出し、氷冷したアセトニトリル(0.45mL)に添加し、反応を停止させた。反応を停止させた後の反応液を遠心分離し、上清中のCPZの濃度をLC/MS/MSを用いて測定した。
A final concentration of CPZ of 10 ng / mL, a final concentration of SD rat liver microsomes of 0.2 mg / mL, a final concentration of phosphate buffer (pH 7.4) of 0.1 M, and MgCl 2 These were mixed so that the final concentration was 3.3 mM to prepare a reaction solution for measuring the metabolic activity of CPZ. A NADPH solution was prepared by mixing so that the final concentration of NADHP was 1.3 mM and the final concentration of MgCl 2 was 3.3 mM. The prepared metabolic activity measurement reaction solution was preincubated at 37 ° C. for 5 minutes, and then the NADPH solution was added to the preincubated metabolic activity measurement reaction solution to start the reaction. After incubating at 37 ° C. for a fixed time, a certain amount (0.05 mL) of the incubated reaction solution was taken out at a plurality of time points and added to ice-cooled acetonitrile (0.45 mL) to stop the reaction. The reaction solution after stopping the reaction was centrifuged, and the concentration of CPZ in the supernatant was measured using LC / MS / MS.
次に、CPZをCPZ-d6とした以外は同様にして、CPZ-d6のin vitro代謝実験を行った。
Then, except that the CPZ and CPZ-d 6 in the same manner, was carried out in vitro metabolism experiments of CPZ-d 6.
なお、ここで、上記「最終的な濃度」とは、NADPH溶液をプレインキュベートした代謝活性測定用反応液に加えた後の反応液における濃度をいう。
Here, the above-mentioned “final concentration” refers to the concentration in the reaction solution after the NADPH solution is added to the pre-incubated metabolic activity measurement reaction solution.
結果を図1および表3に示す。
The results are shown in FIG.
図1中、縦軸はCPZまたはCPZ-d6の反応液中の濃度を示し、横軸は反応開始からの時間を示す。また、表3において、代謝速度とは、dC/dt=k*C(0)により求めた値である。ここで、dC/dtは代謝速度、kは消失速度定数(-ln(反応液中薬物未変化体濃度))および時間から得られる直線の傾き、C(0)は反応液中薬物初濃度を表す。また、n=4とは、同じ実験を4回行い、平均を求めたことを示す。表3に示すように、CPZの代謝速度とCPZ-d6の代謝速度とに有意な差が認められなかったことから、対象化合物が重水素によって置換されたことによる、肝代謝への影響は認められないことが判った。
In FIG. 1, the vertical axis indicates the concentration of CPZ or CPZ-d 6 in the reaction solution, and the horizontal axis indicates the time from the start of the reaction. In Table 3, the metabolic rate is a value obtained by dC / dt = k * C (0). Where dC / dt is the metabolic rate, k is the disappearance rate constant (−ln (drug unchanged concentration in the reaction solution)) and the slope of the straight line obtained from the time, and C (0) is the initial drug concentration in the reaction solution. To express. In addition, n = 4 indicates that the same experiment was performed four times and an average was obtained. As shown in Table 3, since no significant difference was observed in the metabolic rate and metabolic rate of CPZ-d 6 of CPZ, due to the fact that the subject compounds have been substituted by deuterium, effects on liver metabolism It turned out that it was not admitted.
〔参考例2:CPZおよびその重水素置換体のin vivo消失クリアランス実験〕
対象化合物が重水素によって置換されたことが、消失クリアランスに影響を及ぼすかを検討するために、CPZおよびその重水素置換体のin vivo消失クリアランス実験を行った。 [Reference Example 2: In vivo disappearance clearance experiment of CPZ and its deuterium substitutes]
In order to examine whether the substitution of the target compound with deuterium affects the elimination clearance, an in vivo elimination clearance experiment of CPZ and its deuterium substitution was performed.
対象化合物が重水素によって置換されたことが、消失クリアランスに影響を及ぼすかを検討するために、CPZおよびその重水素置換体のin vivo消失クリアランス実験を行った。 [Reference Example 2: In vivo disappearance clearance experiment of CPZ and its deuterium substitutes]
In order to examine whether the substitution of the target compound with deuterium affects the elimination clearance, an in vivo elimination clearance experiment of CPZ and its deuterium substitution was performed.
具体的には、0.02mgのCPZをSD系雄性ラットに静脈内投与した。その後、複数時点で採血し、CPZの血漿中濃度をLC/MS/MSを用いて測定した。次に、CPZをCPZ-d6とした以外は同様にして、CPZ-d6のin vivo消失クリアランス実験を行った。結果を図2および表4に示す。
Specifically, 0.02 mg of CPZ was intravenously administered to SD male rats. Thereafter, blood was collected at multiple time points, and the plasma concentration of CPZ was measured using LC / MS / MS. Then, except that the CPZ and CPZ-d 6 in the same manner, was carried out in vivo loss clearance experiment of CPZ-d 6. The results are shown in FIG.
図2は血中濃度-時間曲線を示す図であり、縦軸は血漿中濃度を示し、横軸は静脈内投与からの時間を示す。また、表4において、t1/2は、半減期を表し、kelは、薬物消失速度定数を表し、CLtotは、全身クリアランスを表し、AUC0-∞は血中濃度-時間曲線下面積を表し、nは試料数を表す。全身クリアランスとは、ある一定時間に薬物が代謝および排泄される量を体積に換算したものをいう。表4に示すように、CPZとCPZ-d6との間には有意な差が認められなかったことから、重水素によって置換されているCPZ-d6の消失クリアランスは、CPZと同等であることが確認された。
FIG. 2 is a graph showing a blood concentration-time curve, in which the vertical axis represents plasma concentration and the horizontal axis represents time since intravenous administration. In Table 4, t 1/2 represents a half-life, k el represents a drug elimination rate constant, CL tot represents systemic clearance, and AUC 0-∞ represents the area under the blood concentration-time curve. N represents the number of samples. Systemic clearance refers to the amount of drug metabolized and excreted in a certain time converted to volume. As shown in Table 4, since there was no significant difference between CPZ and CPZ-d 6 , the disappearance clearance of CPZ-d 6 substituted by deuterium is equivalent to CPZ. It was confirmed.
参考例1、2の結果から、体内動態に同位体効果は認められないことが確認された。
From the results of Reference Examples 1 and 2, it was confirmed that no isotope effect was observed in the pharmacokinetics.
〔実施例1:[経口投与量:静脈内投与量]=[100:1]でのマイクロドーズ試験による生物学的利用能の評価〕
CPZ0.2mgをSD系雄性ラットに経口投与した。この経口投与されたCPZの量は、ヒトに投与する用量をSDラットの体重より換算して求めた。経口投与から1.5時間後、経口投与量の100分の1である0.002mgのCPZ-d6を同じSDラットの静脈内に投与した。複数時点で採血し、CPZおよびCPZ-d6の血中濃度を測定した。具体的には、炭酸水素アンモニウム緩衝液の添加によるアルカリ条件下でジエチルエーテルを用いて採血した血液から分離した血漿中からCPZ、CPZ-d6および内標準物質を抽出した。蒸発乾固後、メタノール/1%ギ酸溶液(1:1、v/v)に再溶解し、LC/MS/MSを用いてCPZおよびCPZ-d6の量を測定し、血中濃度を算出した。得られた結果を図3に示す。さらに図3より得られる血中濃度-時間曲線下面積(AUC0-∞)と投与量の関係から上記式(1)により算出される生物学的利用能を表5に示す。 [Example 1: Evaluation of bioavailability by microdose test with [oral dose: intravenous dose] = [100: 1]]
CPZ 0.2 mg was orally administered to SD male rats. The amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats. 1.5 hours after oral administration, were administered CPZ-d 6 of 0.002mg is one-hundredth of the oral dose intravenously to the same SD rats. Blood was collected at multiple time points and the blood levels of CPZ and CPZ-d 6 were measured. Specifically, extracted CPZ, the CPZ-d 6 and the internal standard from the plasma separated from blood were bled with diethyl ether under alkaline conditions by the addition of ammonium bicarbonate buffer. After evaporation to dryness, redissolve in methanol / 1% formic acid solution (1: 1, v / v), measure the amount of CPZ and CPZ-d 6 using LC / MS / MS, and calculate blood concentration did. The obtained results are shown in FIG. Further, Table 5 shows the bioavailability calculated by the above formula (1) from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 3 and the dose.
CPZ0.2mgをSD系雄性ラットに経口投与した。この経口投与されたCPZの量は、ヒトに投与する用量をSDラットの体重より換算して求めた。経口投与から1.5時間後、経口投与量の100分の1である0.002mgのCPZ-d6を同じSDラットの静脈内に投与した。複数時点で採血し、CPZおよびCPZ-d6の血中濃度を測定した。具体的には、炭酸水素アンモニウム緩衝液の添加によるアルカリ条件下でジエチルエーテルを用いて採血した血液から分離した血漿中からCPZ、CPZ-d6および内標準物質を抽出した。蒸発乾固後、メタノール/1%ギ酸溶液(1:1、v/v)に再溶解し、LC/MS/MSを用いてCPZおよびCPZ-d6の量を測定し、血中濃度を算出した。得られた結果を図3に示す。さらに図3より得られる血中濃度-時間曲線下面積(AUC0-∞)と投与量の関係から上記式(1)により算出される生物学的利用能を表5に示す。 [Example 1: Evaluation of bioavailability by microdose test with [oral dose: intravenous dose] = [100: 1]]
CPZ 0.2 mg was orally administered to SD male rats. The amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats. 1.5 hours after oral administration, were administered CPZ-d 6 of 0.002mg is one-hundredth of the oral dose intravenously to the same SD rats. Blood was collected at multiple time points and the blood levels of CPZ and CPZ-d 6 were measured. Specifically, extracted CPZ, the CPZ-d 6 and the internal standard from the plasma separated from blood were bled with diethyl ether under alkaline conditions by the addition of ammonium bicarbonate buffer. After evaporation to dryness, redissolve in methanol / 1% formic acid solution (1: 1, v / v), measure the amount of CPZ and CPZ-d 6 using LC / MS / MS, and calculate blood concentration did. The obtained results are shown in FIG. Further, Table 5 shows the bioavailability calculated by the above formula (1) from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 3 and the dose.
図3において、縦軸は血漿中濃度(単位:ng/mL)を示し、横軸はCPZの経口投与後の時間を示す。また、表5において、AUC0-∞は血中濃度-時間曲線下面積を表し、BAは生物学的利用能を表し、nは1時点で採血した試料数を表す。また、POは経口投与、IVは静脈内投与を示す。
In FIG. 3, the vertical axis represents plasma concentration (unit: ng / mL), and the horizontal axis represents time after oral administration of CPZ. In Table 5, AUC 0-∞ represents the area under the blood concentration-time curve, BA represents bioavailability, and n represents the number of samples collected at one time point. PO represents oral administration, and IV represents intravenous administration.
〔実施例2:[経口投与量:静脈内投与量]=[10:1]での試験による生物学的利用能の評価〕
CPZ0.2mgをSD系雄性ラットに経口投与した。この経口投与されたCPZの量は、ヒトに投与する用量をSDラットの体重より換算して求めた。経口投与から1.5時間後、経口投与量の10分の1である0.02mgのCPZ-d6を静脈内に投与した。複数時点で採血し、実施例1と同様にして、CPZおよびCPZ-d6の血中濃度を測定した。得られた結果を図4に示す。図4において、縦軸はCPZの血漿中濃度(単位:ng/mL)を示し、横軸はCPZの経口投与後の時間を示す。ただし、CPZ-d6の血漿中濃度については、縦軸はCPZ-d6の血漿中濃度/10を示す。さらに図4より得られる血中濃度-時間曲線下面積(AUC0-∞)と投与量の関係から上記式(1)により算出される生物学的利用能を表5に示す。 [Example 2: Evaluation of bioavailability by test with [oral dose: intravenous dose] = [10: 1]]
CPZ 0.2 mg was orally administered to SD male rats. The amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats. 1.5 hours after oral administration, were administered CPZ-d 6 of 0.02mg is one tenth of an oral dosage intravenously. Blood was collected at multiple time points, and the blood concentrations of CPZ and CPZ-d 6 were measured in the same manner as in Example 1. The obtained results are shown in FIG. In FIG. 4, the vertical axis represents the plasma concentration of CPZ (unit: ng / mL), and the horizontal axis represents the time after oral administration of CPZ. However, the plasma concentration of CPZ-d 6, the vertical axis represents the plasma concentration / 10 of CPZ-d 6. Further, Table 5 shows the bioavailability calculated by the above equation (1) from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 4 and the dose.
CPZ0.2mgをSD系雄性ラットに経口投与した。この経口投与されたCPZの量は、ヒトに投与する用量をSDラットの体重より換算して求めた。経口投与から1.5時間後、経口投与量の10分の1である0.02mgのCPZ-d6を静脈内に投与した。複数時点で採血し、実施例1と同様にして、CPZおよびCPZ-d6の血中濃度を測定した。得られた結果を図4に示す。図4において、縦軸はCPZの血漿中濃度(単位:ng/mL)を示し、横軸はCPZの経口投与後の時間を示す。ただし、CPZ-d6の血漿中濃度については、縦軸はCPZ-d6の血漿中濃度/10を示す。さらに図4より得られる血中濃度-時間曲線下面積(AUC0-∞)と投与量の関係から上記式(1)により算出される生物学的利用能を表5に示す。 [Example 2: Evaluation of bioavailability by test with [oral dose: intravenous dose] = [10: 1]]
CPZ 0.2 mg was orally administered to SD male rats. The amount of CPZ administered orally was determined by converting the dose administered to humans from the body weight of SD rats. 1.5 hours after oral administration, were administered CPZ-d 6 of 0.02mg is one tenth of an oral dosage intravenously. Blood was collected at multiple time points, and the blood concentrations of CPZ and CPZ-d 6 were measured in the same manner as in Example 1. The obtained results are shown in FIG. In FIG. 4, the vertical axis represents the plasma concentration of CPZ (unit: ng / mL), and the horizontal axis represents the time after oral administration of CPZ. However, the plasma concentration of CPZ-d 6, the vertical axis represents the plasma concentration / 10 of CPZ-d 6. Further, Table 5 shows the bioavailability calculated by the above equation (1) from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 4 and the dose.
〔比較例1〕
CPZ0.2mgをSD系雄性ラットに経口投与した。また、別個体のSD系雄性ラットに0.02mgのCPZを静脈内に投与した。複数時点で採血し、CPZの血中濃度を測定した。具体的には、炭酸水素アンモニウム緩衝液の添加によるアルカリ条件下でジエチルエーテルを用いて採血した血液から分離した血漿中からCPZ、CPZ-d6および内標準物質を抽出した。蒸発乾固後、メタノール/1%ギ酸溶液(1:1、v/v)に再溶解し、LC/MS/MSを用いてCPZの量を測定し、血中濃度を算出した。得られた結果を図5および図6に示す。さらに図6より得られる血中濃度-時間曲線下面積(AUC0-∞)と経口投与されたCPZの投与量の関係から算出される生物学的利用能を表6に示す。 [Comparative Example 1]
CPZ 0.2 mg was orally administered to SD male rats. In addition, 0.02 mg of CPZ was intravenously administered to separate SD male rats. Blood was collected at multiple time points, and the blood concentration of CPZ was measured. Specifically, extracted CPZ, the CPZ-d 6 and the internal standard from the plasma separated from blood were bled with diethyl ether under alkaline conditions by the addition of ammonium bicarbonate buffer. After evaporation to dryness, the sample was redissolved in a methanol / 1% formic acid solution (1: 1, v / v), the amount of CPZ was measured using LC / MS / MS, and the blood concentration was calculated. The obtained results are shown in FIGS. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 6 and the dose of CPZ administered orally.
CPZ0.2mgをSD系雄性ラットに経口投与した。また、別個体のSD系雄性ラットに0.02mgのCPZを静脈内に投与した。複数時点で採血し、CPZの血中濃度を測定した。具体的には、炭酸水素アンモニウム緩衝液の添加によるアルカリ条件下でジエチルエーテルを用いて採血した血液から分離した血漿中からCPZ、CPZ-d6および内標準物質を抽出した。蒸発乾固後、メタノール/1%ギ酸溶液(1:1、v/v)に再溶解し、LC/MS/MSを用いてCPZの量を測定し、血中濃度を算出した。得られた結果を図5および図6に示す。さらに図6より得られる血中濃度-時間曲線下面積(AUC0-∞)と経口投与されたCPZの投与量の関係から算出される生物学的利用能を表6に示す。 [Comparative Example 1]
CPZ 0.2 mg was orally administered to SD male rats. In addition, 0.02 mg of CPZ was intravenously administered to separate SD male rats. Blood was collected at multiple time points, and the blood concentration of CPZ was measured. Specifically, extracted CPZ, the CPZ-d 6 and the internal standard from the plasma separated from blood were bled with diethyl ether under alkaline conditions by the addition of ammonium bicarbonate buffer. After evaporation to dryness, the sample was redissolved in a methanol / 1% formic acid solution (1: 1, v / v), the amount of CPZ was measured using LC / MS / MS, and the blood concentration was calculated. The obtained results are shown in FIGS. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 6 and the dose of CPZ administered orally.
図5および図6において、縦軸は血漿中濃度を示し、横軸は薬物投与後の時間を示す。また、表6において、AUC0-∞は血中濃度曲線下面積を表し、BAは生物学的利用能を表し、nは1時点で採血した試料数を表す。また、POは経口投与、IVは静脈内投与を示す。
5 and 6, the vertical axis indicates plasma concentration, and the horizontal axis indicates time after drug administration. In Table 6, AUC 0-∞ represents the area under the blood concentration curve, BA represents bioavailability, and n represents the number of samples collected at one time point. PO represents oral administration, and IV represents intravenous administration.
〔比較例2〕
比較例1において、さらに別個体のSD系雄性ラットに0.02mgのCPZ-d6を静脈内に投与した。経過時間ごとに採血し、比較例1と同様にして、CPZ-d6の血中濃度を測定した。得られた結果を図6に示す。さらに図6より得られる血中濃度-時間曲線下面積(AUC0-∞)と経口投与されたCPZの投与量の関係から算出される生物学的利用能を表6に示す。 [Comparative Example 2]
In Comparative Example 1, 0.02 mg of CPZ-d 6 was intravenously administered to separate SD male rats. Blood was collected at each elapsed time, and the blood concentration of CPZ-d 6 was measured in the same manner as in Comparative Example 1. The obtained result is shown in FIG. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 6 and the dose of CPZ administered orally.
比較例1において、さらに別個体のSD系雄性ラットに0.02mgのCPZ-d6を静脈内に投与した。経過時間ごとに採血し、比較例1と同様にして、CPZ-d6の血中濃度を測定した。得られた結果を図6に示す。さらに図6より得られる血中濃度-時間曲線下面積(AUC0-∞)と経口投与されたCPZの投与量の関係から算出される生物学的利用能を表6に示す。 [Comparative Example 2]
In Comparative Example 1, 0.02 mg of CPZ-d 6 was intravenously administered to separate SD male rats. Blood was collected at each elapsed time, and the blood concentration of CPZ-d 6 was measured in the same manner as in Comparative Example 1. The obtained result is shown in FIG. Further, Table 6 shows bioavailability calculated from the relationship between the area under the blood concentration-time curve (AUC 0-∞ ) obtained from FIG. 6 and the dose of CPZ administered orally.
本発明によれば、放射性物質を用いず、正確な薬物動態評価を1回の試験によって1回の測定で行うことが可能となるという効果を奏する。それゆえ、医薬品候補化合物の薬物動態に関する情報を医薬品の臨床試験前または臨床試験の初期段階に得ることが容易となり、医薬品の開発効率の改善が期待できる。
According to the present invention, there is an effect that an accurate pharmacokinetic evaluation can be performed by one measurement by one test without using a radioactive substance. Therefore, it becomes easy to obtain information on the pharmacokinetics of the drug candidate compound before the clinical trial of the pharmaceutical or at the initial stage of the clinical trial, and improvement in the development efficiency of the pharmaceutical can be expected.
Claims (14)
- 化合物が血管外投与された後に上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、
上記化合物、および上記安定同位体置換体の濃度を測定する工程、ならびに
上記測定する工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する工程を含むことを特徴とする、薬物動態評価方法。 In a blood sample collected over time from a subject to whom a stable isotope substitute, which is labeled with a stable isotope after the compound has been administered extravascularly, is intravenously administered,
A step of measuring the concentration of the compound and the stable isotope substitute, and a step of obtaining pharmacokinetic data of the compound from a change over time in blood concentration measured in the step of measuring. Pharmacokinetic evaluation method. - 静脈内投与された上記安定同位体置換体の投与量が、血管外投与された上記化合物の投与量に対して、重量比で、0よりも大きく1/10以下であることを特徴とする請求項1に記載の薬物動態評価方法。 The dose of the stable isotope substitute administered intravenously is greater than 0 and less than or equal to 1/10 by weight with respect to the dose of the compound administered extravascularly. Item 4. The pharmacokinetic evaluation method according to Item 1.
- 上記安定同位体は、2H(D)、13C、15Nまたは18Oであることを特徴とする請求項1または2に記載の薬物動態評価方法。 The stable isotope, 2 H (D), 13 C, 15 N or 18 Pharmacokinetic evaluation method according to claim 1 or 2, characterized in that it is O.
- 静脈内投与された上記安定同位体置換体は、血管外投与された上記化合物と比べて分子量が3以上大きくなるように、安定同位体で置換されていることを特徴とする請求項1~3のいずれか1項に記載の薬物動態評価方法。 The stable isotope substitute administered intravenously is substituted with a stable isotope so as to have a molecular weight of 3 or more as compared with the compound administered extravascularly. The pharmacokinetic evaluation method according to any one of the above.
- 血管外投与された上記化合物が血中に存在する間に上記安定同位体置換体が静脈内投与された被験体から経時的に採取された血液サンプル中の、
上記化合物、および上記安定同位体置換体の濃度を測定することにより、上記化合物および上記安定同位体置換体の血中濃度の経時変化の測定を1回の測定で行うことを特徴とする、請求項1~4のいずれか1項に記載の薬物動態評価方法。 In a blood sample collected over time from a subject to which the stable isotope substitute was administered intravenously while the compound administered extravascularly is present in the blood,
The measurement of the time-dependent change in the blood concentration of the compound and the stable isotope substitute is performed in a single measurement by measuring the concentration of the compound and the stable isotope substitute. Item 5. The method for evaluating pharmacokinetics according to any one of Items 1 to 4. - 血管外投与された化合物の量が、臨床用量であることを特徴とする、請求項1~5のいずれか1項に記載の薬物動態評価方法。 The pharmacokinetic evaluation method according to any one of claims 1 to 5, wherein the amount of the compound administered extravascularly is a clinical dose.
- 上記化合物の生物学的利用能を算出することを特徴とする、請求項1~6のいずれか1項に記載の薬物動態評価方法。 The method for evaluating pharmacokinetics according to any one of claims 1 to 6, wherein the bioavailability of the compound is calculated.
- 請求項1~7のいずれか1項に記載の薬物動態評価方法にて得られた結果を用いることを特徴とする、医薬品候補化合物の選別方法。 A method for selecting drug candidate compounds, comprising using the result obtained by the pharmacokinetic evaluation method according to any one of claims 1 to 7.
- 薬物動態評価用キットであって、
(a)評価対象である化合物と、
(b)上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体と、
(c)上記化合物を血管外投与する第1工程、
上記化合物を血管外投与した後に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与する第2工程、
上記化合物、および上記安定同位体置換体の血中濃度の経時変化を測定する第3工程、ならびに
第3工程で測定された血中濃度の経時変化から、化合物の薬物動態データを取得する第4工程により、薬物動態評価を行う旨の指示書と、
を含むことを特徴とするキット。 A pharmacokinetic evaluation kit comprising:
(A) a compound to be evaluated;
(B) a stable isotope substituent obtained by labeling the same compound as the above compound with a stable isotope,
(C) a first step in which the compound is administered extravascularly;
A second step of intravenously administering a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope after the compound is administered extravascularly;
The third step of measuring the time course of blood concentration of the compound and the stable isotope substitute, and the fourth step of acquiring pharmacokinetic data of the compound from the time course of blood concentration measured in the third step Instructions to perform pharmacokinetic evaluation according to the process,
A kit comprising: - 上記安定同位体置換体が、評価対象である化合物に対して、重量比で、0よりも大きく1/10以下であることを特徴とする請求項9に記載のキット。 The kit according to claim 9, wherein the stable isotope substitution product is greater than 0 and 1/10 or less by weight with respect to the compound to be evaluated.
- 上記安定同位体は、2H(D)、13C、15Nまたは18Oであることを特徴とする請求項9または10に記載のキット。 The stable isotope, 2 H (D), 13 C, 15 N or 18 kit according to claim 9 or 10, characterized in that it is O.
- 上記安定同位体置換体は、評価対象である化合物と比べて分子量が3以上大きくなるように、安定同位体で置換されていることを特徴とする請求項9~11のいずれか1項に記載のキット。 The stable isotope substitution product according to any one of claims 9 to 11, wherein the stable isotope substitution product is substituted with a stable isotope so as to have a molecular weight of 3 or more as compared with a compound to be evaluated. Kit.
- 第2工程は、血管外投与された上記化合物が血中に存在する間に、上記化合物と同じ化合物を安定同位体で標識した安定同位体置換体を静脈内投与し、
第3工程は、上記化合物、および上記安定同位体置換体の血中濃度の経時変化の測定を1回の測定で行うことを特徴とする、請求項9~12のいずれか1項に記載のキット。 The second step involves intravenous administration of a stable isotope substitute obtained by labeling the same compound as the above compound with a stable isotope while the compound administered extravascularly is present in the blood,
The third step according to any one of claims 9 to 12, wherein the measurement of the time course of the blood concentration of the compound and the stable isotope-substituted product is performed in a single measurement. kit. - 上記第1工程において、投与される化合物の量が、臨床用量であることを特徴とする、請求項9~13のいずれか1項に記載のキット。 The kit according to any one of claims 9 to 13, wherein the compound to be administered in the first step is a clinical dose.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014540762A JPWO2014057699A1 (en) | 2012-10-09 | 2013-04-11 | Pharmacokinetic evaluation method and pharmacokinetic evaluation kit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-224379 | 2012-10-09 | ||
JP2012224379 | 2012-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057699A1 true WO2014057699A1 (en) | 2014-04-17 |
Family
ID=50477177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060904 WO2014057699A1 (en) | 2012-10-09 | 2013-04-11 | Pharmacokinetic evaluation method and kit for pharmacokinetic evaluation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014057699A1 (en) |
WO (1) | WO2014057699A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541220A (en) * | 1999-04-09 | 2002-12-03 | フィナメ サイエンシーズ インコーポレイテッド | Evaluation of gastric emptying disorder |
-
2013
- 2013-04-11 WO PCT/JP2013/060904 patent/WO2014057699A1/en active Application Filing
- 2013-04-11 JP JP2014540762A patent/JPWO2014057699A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541220A (en) * | 1999-04-09 | 2002-12-03 | フィナメ サイエンシーズ インコーポレイテッド | Evaluation of gastric emptying disorder |
Non-Patent Citations (2)
Title |
---|
A. BARRISH: "The Use of Stable Isotope Labeling and Liquid Chromatography/Tandem Mass Spectrometry Techniques to Study the Pharmacokinetics and Bioavailability of the Antimigraine Drug", MK-0462 (RIZATRIPTAN) IN DOGS, RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 10, no. ISS.9, 1996, pages 1033 - 1037 * |
JORN M. STRONG: "Absolute bioavailability in man of N-acetylprocainamide determined by a novel stable isotope method", CLINICAL PHARMACOLOGY AND THERAPEUTICS, vol. 18, 8 November 1975 (1975-11-08), pages 613 - 622 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014057699A1 (en) | 2016-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schellekens et al. | Applications of stable isotopes in clinical pharmacology | |
Lappin et al. | Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability | |
Lappin et al. | Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs | |
Stimpson et al. | Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats | |
JP2020073890A (en) | Method for measuring total body skeletal muscle mass | |
Mutlib et al. | Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies | |
Rabin et al. | Meldonium long‐term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers | |
EP1370875A2 (en) | Liver function test | |
Gustafsson et al. | Combined PET and microdialysis for in vivo estimation of drug blood-brain barrier transport and brain unbound concentrations | |
Maxwell et al. | Pharmacokinetics and safety of mitragynine in beagle dogs | |
Hambuchen et al. | The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats | |
Scheidweiler et al. | Pharmacokinetics and pharmacodynamics of methylecgonidine, a crack cocaine pyrolyzate | |
Morris et al. | Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers | |
Harrell et al. | An innovative approach to characterize clinical ADME and pharmacokinetics of the inhaled drug nemiralisib using an intravenous microtracer combined with an inhaled dose and an oral radiolabel dose in healthy male subjects | |
Hu et al. | Comparison between radioanalysis and 19F nuclear magnetic resonance spectroscopy in the determination of mass balance, metabolism, and distribution of pefloxacin | |
Eckernäs et al. | Development and application of a highly sensitive LC-MS/MS method for simultaneous quantification of N, N-dimethyltryptamine and two of its metabolites in human plasma | |
He et al. | NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes | |
Li et al. | Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function | |
WO2014057699A1 (en) | Pharmacokinetic evaluation method and kit for pharmacokinetic evaluation | |
Gu et al. | Pharmacokinetics of free mycophenolic acid and limited sampling strategy for the estimation of area under the curve in liver transplant patients | |
JP6412869B2 (en) | System and method for quantitative mapping of mitochondrial complex I | |
Wong et al. | Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat | |
JP6937512B2 (en) | Evaluation method of CYP3A enzyme activity in humans (phenotype test method) | |
Gawade | Overview on monitoring of therapeutic drugs | |
EP3540439B1 (en) | Method for assessing sugar uptake ability of liver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13845293 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014540762 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13845293 Country of ref document: EP Kind code of ref document: A1 |