WO2014057652A1 - 圧縮機不純物除去システム - Google Patents

圧縮機不純物除去システム Download PDF

Info

Publication number
WO2014057652A1
WO2014057652A1 PCT/JP2013/005971 JP2013005971W WO2014057652A1 WO 2014057652 A1 WO2014057652 A1 WO 2014057652A1 JP 2013005971 W JP2013005971 W JP 2013005971W WO 2014057652 A1 WO2014057652 A1 WO 2014057652A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurity
compressor
alkaline agent
exhaust gas
stage
Prior art date
Application number
PCT/JP2013/005971
Other languages
English (en)
French (fr)
Inventor
俊之 内藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CA2886134A priority Critical patent/CA2886134C/en
Priority to CN201380052722.5A priority patent/CN104684628B/zh
Priority to AU2013328171A priority patent/AU2013328171B2/en
Publication of WO2014057652A1 publication Critical patent/WO2014057652A1/ja
Priority to US14/663,520 priority patent/US9149766B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a compressor impurity removal system, and more particularly, to a compressor impurity removal system in which impurities contained in exhaust gas from an oxyfuel combustion apparatus can be removed by a simple device.
  • Patent Document 1 in the exhaust gas when coal is oxygen-burned by a coal fired boiler, in addition to carbon dioxide (CO 2 ), nitrogen oxides (NO x ) derived from coal raw materials, sulfur oxides ( Impurities such as SO x ), mercury (Hg), hydrogen chloride (HCl), and dust are included.
  • CO 2 carbon dioxide
  • NO x nitrogen oxides
  • SO x sulfur oxides
  • Hg mercury
  • HCl hydrogen chloride
  • sulfur oxide (SO x ) is dissolved in water by contact with water to become sulfuric acid (H 2 SO 4 ), and hydrogen chloride (HCl) is dissolved in water to become hydrochloric acid.
  • sulfur oxide and hydrogen chloride which show such water solubility, it can isolate
  • Patent Document 1 a desulfurization apparatus called a wet type consisting of a spray tower system or a packed tower system used in a conventional air fired boiler or the like is used.
  • a desulfurization apparatus called a wet type consisting of a spray tower system or a packed tower system used in a conventional air fired boiler or the like is used.
  • removal of sulfur oxide is performed.
  • nitrogen and nitrogen oxides derived from coal raw materials are generated in exhaust gas from a coal fired boiler or the like that performs oxyfuel combustion.
  • a denitration apparatus using a catalyst system or the like is provided upstream of the desulfurization apparatus to remove nitrogen and nitrogen oxides.
  • Patent Document 1 both a wet desulfurization apparatus having a spray tower system or a packed tower system and a denitration apparatus using a catalyst system are provided in a normal exhaust gas line. Impurities in the exhaust gas are removed. However, since the amount (volume) of the exhaust gas to be treated is large, the apparatus for removing impurities becomes very large, and there is a problem that the equipment cost increases because a complicated configuration is required.
  • the present invention effectively removes particularly water-soluble impurities contained in the exhaust gas from the oxyfuel combustion apparatus with a simple device, and can reduce the equipment cost.
  • An object is to provide an impurity removal system.
  • the present invention is a compressor impurity removal system for removing impurities in the exhaust gas before supplying the carbon dioxide-based exhaust gas from the oxyfuel combustion device to the carbon dioxide liquefaction device,
  • a multi-stage compressor that compresses the exhaust gas from the oxy-combustion equipment in stages to the target pressure for liquefying carbon dioxide, and the exhaust gas compressed by each compressor is cooled, and the water condensed by cooling is taken out as drain
  • a multi-stage impurity separation device having an aftercooler
  • An alkaline agent supply device for supplying an alkaline agent to the upstream side of the aftercooler in the impurity separation device at the foremost stage, and
  • the present invention relates to a compressor impurity removal system configured to take out impurities in exhaust gas with a drain containing an alkaline agent separated by an impurity separation device.
  • a drain tank for storing drain from the aftercooler in the foremost impurity separation device;
  • a pH detector for measuring the pH of the drain stored in the drain tank; It is preferable to include a controller that adjusts the supply amount of the alkaline agent by the alkaline agent supply device based on the pH detection value detected by the pH detector.
  • an impurity detector provided on the downstream side of the aftercooler in the final-stage impurity separation device;
  • the controller to which the impurity detection value of the impurity detector is input, and
  • the controller is preferably configured to increase the supply of the alkaline agent by the alkaline agent supply device when the impurity detection value of the impurity detector exceeds a predetermined value.
  • the compressor impurity removal system may further include an alkali agent supply device that supplies an alkali agent upstream of the aftercooler in the impurity separation device at the subsequent stage relative to the impurity separation device at the front stage.
  • the apparatus includes an alkaline agent supply device that supplies an alkaline agent to the upstream side of the aftercooler in the front-stage impurity separation device having the compressor and the aftercooler, and includes impurities in the exhaust gas.
  • an alkaline agent supply device that supplies an alkaline agent to the upstream side of the aftercooler in the front-stage impurity separation device having the compressor and the aftercooler, and includes impurities in the exhaust gas.
  • the apparatus includes an alkaline agent supply device that supplies an alkaline agent to the upstream side of the aftercooler in the front-stage impurity separation device having the compressor and the aftercooler, and includes impurities in the exhaust gas.
  • This makes it possible to effectively remove particularly water-soluble impurities in the exhaust gas by using a compressor and an aftercooler necessary for liquefying carbon dioxide, thereby preventing the apparatus from becoming large and complicated. It is possible to achieve an excellent effect that the equipment cost can be greatly reduced.
  • FIG. 1 is a system diagram showing an embodiment of a compressor impurity removal system 100 of the present invention provided in an oxyfuel combustion apparatus 1.
  • a combustion apparatus 1 From the oxyfuel combustion apparatus 1, exhaust gas 2 mainly composed of carbon dioxide (CO 2 ) is discharged.
  • CO 2 carbon dioxide
  • the exhaust gas 2 is compressed to a predetermined target pressure before the carbon dioxide liquefaction apparatus 3.
  • a compressor impurity removal system 100 for removing impurities in the exhaust gas 2 is provided.
  • a compressor impurity removal system 100 shown in FIG. 1 includes a plurality of compressors 4a, 4b, and 4c that compress the exhaust gas 2 from the oxyfuel combustion apparatus 1 stepwise to a target pressure, and the compressors 4a, 4b, and 4c.
  • the aftercoolers 5a, 5b, 5c coolers
  • the impurity separation devices 6a, 6b, 6c are provided in a plurality of stages (three stages in the illustrated example) of the impurity separation devices 6a, 6b, 6c.
  • a cooler provided between multistage compressors is called an intercooler, but in the present invention, all the coolers are described as aftercoolers 5a, 5b, and 5c in order to simplify the description.
  • the cooling temperature by the aftercooler 5 is preferably about ⁇ 30 ° C.
  • the impurity separators 6a, 6b in which three compressors 4a, 4b, 4c are installed and compressed in three stages such as 0.75 MPa, 1.5 MPa, and 2.5 MPa. , 6c.
  • the number of compressors 4a, 4b, 4c installed may be four or more, and any number can be installed.
  • the first-stage impurity separation device 6a set to the above pressure, most of the water in the exhaust gas 2 is taken out as drain, and in the middle-stage impurity separation device 6b, a small amount of drain is taken out, and the last-stage impurity is removed. A smaller amount of drain is taken out by the separation device 6c.
  • a mercury removal tower 7 is installed to remove mercury with an adsorbent or the like. (The mercury removal tower 7 is indicated by a broken line in the drawing).
  • a dryer 8 for removing water contained in the carbon dioxide supplied to the carbon dioxide liquefying device 3 is provided in the previous stage of the carbon dioxide liquefying device 3.
  • the alkaline agent 10 in the alkaline agent tank 9 is supplied by the pump 11 to the inlet (upstream side) of the exhaust gas 2 of the aftercooler 5a in the impurity separation device 6a in the foremost stage.
  • the alkaline agent supply device 12 is provided.
  • the alkali agent 10 caustic soda (NaOH), magnesium hydroxide or the like which has good dispersibility and does not cause sticking or the like can be used. However, when the dispersibility is maintained and problems such as sticking can be solved, limestone ( CaCO 3 ), quicklime (CaO), slaked lime (Ca (OH) 2 ) and the like can be used.
  • the position where the alkaline agent 10 is supplied by the alkaline agent supply device 12 can be an inlet close to the aftercooler 5a, but any position between the aftercooler 5a and the compressor 4a upstream of the aftercooler 5a. Position.
  • a drain tank 13 in which a certain amount of drain taken out from the aftercooler 5a is stored in the foremost impurity separation device 6a is provided.
  • the drain tank 13 is provided with a level controller 14. This level controller 14 adjusts the opening degree of the extraction valve 15 provided at the drain outlet (downstream side) of the drain tank 13 so that the detected value always maintains a constant value.
  • the drain tank 13 is provided with a pH detector 16 for measuring the pH of the stored drain, and a pH detection value 16 a detected by the pH detector 16 is input to the controller 17. Then, the controller 17 controls the pump 11 so that the pH detection value 16a detected by the pH detector 16 is maintained at a predetermined value, and the supply amount of the alkaline agent 10 by the alkaline agent supply device 12 is controlled. Is adjusted.
  • An impurity detector 18 for detecting impurities (for example, sulfur oxide, hydrogen chloride) in the exhaust gas 2 is provided at the outlet (downstream side) from which the exhaust gas 2 is led out from the aftercooler 5c in the impurity separator 6c at the last stage. And the detected impurity value 18 a is input to the controller 17.
  • the controller 17 controls to increase the supply of the alkaline agent 10 by the alkaline agent supply device 12 as an emergency when the sulfur oxide or hydrogen chloride impurity detection value 18a by the impurity detector 18 exceeds a predetermined value. Like to do.
  • the location of the impurity detector 18 is preferably the outlet of the aftercooler 5c so that impurities in the exhaust gas 2 can be detected quickly, but the dryer 8 (or mercury) from the aftercooler 5c on the downstream side of the aftercooler 5c. It is also possible to install it at a position up to the removal tower 7).
  • the compressor 4a in the impurity separation device 6a in the foremost stage is corroded because the exhaust gas 2 containing impurities from the oxyfuel combustion device 1 is supplied.
  • the compressor 4a of the impurity separation apparatus 6a in the foremost stage is made of a corrosion prevention material such as Hastelloy (registered trademark) which is a heat-resistant nickel alloy.
  • the corrosion preventing material is not limited to a heat-resistant nickel alloy.
  • the corrosion preventing material may be other metals, alloys, inorganic substances, etc. as long as it has corrosion resistance and heat resistance.
  • the compressor 4a may be a gear turbocharger type compressor having no blades in addition to the compressor having blades (blades).
  • the exhaust gas 2 compressed to 0.7 MPa by the compressor 4a is supplied to the adjacent after cooler 5c and cooled together with the alkaline agent 10 supplied from the alkaline agent supply device 12, and the drain produced in large quantities by the cooling is alkali. It is taken out together with the agent 10 into the drain tank 13.
  • the front-stage impurity separation device 6a is the part where the drain is generated most by performing compression by the compressor 4a and cooling by the after-cooler 5a, and the upstream side of the after-cooler 5c in the front-stage impurity separation device 6a.
  • the pH of the drain in the drain tank 13 can be set in a range of about 4-6. Further, part of the nitrogen is also converted into nitrogen oxides by the compression by the compressor 4a and becomes water-soluble, so that it is dissolved in the drain and removed.
  • the exhaust gas 2 exiting from the front-stage impurity separation device 6a is guided to the rear-stage impurity separation device 6b.
  • the alkali gas 10 that could not be subjected to the reaction is partially present in the exhaust gas 2.
  • impurities are removed together with a small amount of drain in the latter-stage impurity separation device 6b.
  • the exhaust gas 2 is guided to the last-stage impurity separation device 6c, and the impurities are removed together with a further smaller amount of drain.
  • the drain containing impurities is supplied to the waste water treatment apparatus and processed.
  • the alkali agent 10 when supplied to the upstream side of the aftercooler 5a in the front-stage impurity separation device 6a, the pH of the exhaust gas 2 is increased, so that the compressors 4b and 4c in the rear-stage impurity separation devices 6b and 6c.
  • the material can be protected from corrosive environment.
  • the present inventors conducted a simulation test for determining the relationship between the addition amount (kg / hr) of the alkaline agent (NaOH) and the sulfur oxide (SO 2 ) removal rate in the impurity separation device 6a in the forefront stage. The results are shown in FIG.
  • the sulfur oxide removal rate was around 2% when the addition amount of the alkaline agent was small.
  • the sulfur oxide removal rate rapidly increases, and when the addition amount is about 2.7 (kg / hr), 98%. It turned out to rise to about%.
  • the tendency of the removal rate of this sulfur oxide becomes the same also in hydrogen chloride.
  • the addition amount of the alkaline agent 10 when the sulfur oxide removal rate rapidly increases and shows a high value and the pH of the drain tank 13 at that time are measured in advance, and during actual operation
  • water-soluble impurities including sulfur oxides and hydrogen chloride, which are considered to be particularly corrosive are effectively removed at a very high removal rate.
  • the remaining sulfur oxide and hydrogen chloride are removed together with the drain, so that the removal rate of sulfur oxide and hydrogen chloride is further increased.
  • the nitrogen in the exhaust gas 2 is also oxidized by the increase in pressure to become water-soluble nitrogen oxides.
  • more nitrogen oxides are extracted together with the drain toward the subsequent impurity separation devices 6b and 6c, so that nitrogen oxides are also removed.
  • the carbon dioxide from which impurities in the exhaust gas 2 have been removed by the compressor impurity removal system 100 is removed from the mercury by the mercury removal tower 7 as necessary, and sent to the dryer 8 to remove moisture. Then, it is supplied to the carbon dioxide liquefier 3 and liquefied by cooling.
  • FIG. 2 is a system diagram showing another embodiment of the compressor impurity removal system according to the present invention.
  • the impurity separation device 6b provided at the rear stage of the impurity separation device 6a at the front stage is connected with the impurities at the front stage.
  • the same alkali agent supply device 12, drain tank 13 and controller 17 as those provided in the separation device 6a are provided.
  • the impurity removal rate in the subsequent impurity separation apparatus 6b is increased, the impurity removal rate can be further increased as compared with the embodiment of FIG.
  • the configurations of the alkaline agent supply device 12, the drain tank 13, and the controller 17 can be provided in the impurity separation device 6c at the subsequent stage (the last stage) further than the impurity separation apparatus 6b at the subsequent stage.
  • FIG. 3 is a system diagram showing a modification of the compressor impurity removal system according to the present invention.
  • a bypass duct is provided at the outlet of the last-stage impurity separation device 6 c downstream of the compressor impurity removal system 100.
  • a wet-type desulfurization / denitration device 21 is provided in the bypass duct 20
  • a switching valve 22, 23, 24 is provided so that the flow of exhaust gas 2 can be passed through the desulfurization / denitration device 21. It can be switched.
  • the impurities in the exhaust gas 2 can be further reduced by guiding the exhaust gas 2 to the desulfurization / denitration device 21 as necessary.
  • the desulfurization / denitration device 21 In this case, an extremely small one (tens of conventional ones) can be used.
  • the alkaline agent 10 is supplied to the upstream side of the aftercooler 5a in the foremost impurity separation device 6a having the compressor 4a and the aftercooler 5a.
  • impurities in the exhaust gas 2 can be effectively removed using the compressor 4 and the aftercooler 5 necessary for liquefying carbon dioxide, resulting in a large-sized device.
  • Equipment cost can be prevented and the equipment cost can be greatly reduced.
  • the detector 16 and the controller 17 that adjusts the supply amount of the alkaline agent 10 by the alkaline agent supply device 12 based on the pH detection value 16a detected by the pH detector 16 are provided, the alkaline agent 10 is appropriately used. By supplying the impurities in the exhaust gas 2 more effectively, the cost can be suppressed by appropriately controlling the amount of the alkaline agent 10 used.
  • the impurity detector 18 provided on the downstream side of the aftercooler 5c in the impurity separation device 6c at the last stage, and the impurity detection value 18a of the impurity detector 18 are input.
  • the controller 17 controls to increase the supply of the alkaline agent 10 by the alkaline agent supply device 12 when the impurity detection value 18a of the impurity detector 18 exceeds a predetermined value. The problem that the impurities in the exhaust gas 2 that have passed through the compressor impurity removal system 100 increase rapidly can be prevented.
  • the alkaline agent supply for supplying the alkaline agent 10 to the upstream side of the aftercoolers 5b and 5c in the impurity separation devices 6b and 6c at the rear stage from the impurity separation device 6a at the front stage.
  • nitrogen which is a water-insoluble impurity, can be changed to nitrogen oxide and removed at a high removal rate.
  • the alkaline agent 10 is added to the exhaust gas 2 at the site where the most drain is generated by the compression by the compressor 4a and the cooling by the aftercooler 5a of the impurity separation device 6a in the foremost stage.
  • sulfur oxides and hydrogen chloride which are water-soluble impurities, can be effectively removed with a very high removal rate by a simple apparatus.
  • the alkaline agent 10 is supplied to the upstream side of the aftercooler 5a in the impurity separation device 6a in the foremost stage.
  • the materials of the compressors 4b and 4c in the impurity separation devices 6b and 6c can be protected from the corrosive environment.
  • the compressor impurity removal system of this invention of this invention is not limited only to the above-mentioned Example. Various modifications can be made without departing from the scope of the present invention.
  • the compressor impurity removal system of the present invention can be applied to an oxygen combustion apparatus that exhausts exhaust gas containing water-soluble impurities.
  • Oxygen combustion equipment 1a Coal fired boiler (oxygen combustion equipment) 2 Exhaust gas 3 Carbon dioxide liquefier 4 Compressor 4a, 4b, 4c Compressor 5 After cooler 5a, 5b, 5c After cooler 6a, 6b, 6c
  • Impurity separator 10 Alkaline agent 12 Alkaline agent supply device 13 Drain tank 16 pH detector 16a pH detection value 17 Controller 18 Impurity detector 18a Impurity detection value 100 Compressor impurity removal system

Abstract

 酸素燃焼装置からの排ガス中に含まれる不純物を簡単な装置によって除去し、設備コストを低減させる。酸素燃焼装置1からの二酸化炭素主体の排ガス2を二酸化炭素液化装置3に供給する前に圧縮して排ガス2中の不純物を除去する圧縮機不純物除去システムであって、酸素燃焼装置1からの排ガス2を二酸化炭素を液化するための目的圧力まで段階的に圧縮する複数段の圧縮機4a,4b,4cと、各圧縮機4a,4b,4cで圧縮した排ガス2を冷却し、冷却によって凝縮した水分をドレンとして取り出すようにしたアフタークーラ5a,5b,5cとを有する複数段の不純物分離装置6a,6b,6cと、少なくとも最前段の不純物分離装置6aにおけるアフタークーラ5aの上流側にアルカリ剤10を供給するアルカリ剤供給装置12と、を備え、排ガス2中の不純物をアルカリ剤10を含むドレンにより取り出すよう構成した。

Description

圧縮機不純物除去システム
 本発明は、圧縮機不純物除去システムに関し、特に酸素燃焼装置からの排ガス中に含まれる不純物を簡単な装置によって除去できるようにした圧縮機不純物除去システムに関する。
 近年、地球温暖化の原因の一つと言われている二酸化炭素(CO2)の排出量を低減する技術の一つとして、酸素燃焼装置が検討されており、例えば微粉炭を酸素燃焼する石炭焚ボイラが注目されている。この石炭焚ボイラは、酸化剤として空気の代わりに酸素を使用することで、二酸化炭素(CO2)を主体とする燃焼排ガスが発生し、この高二酸化炭素濃度の排ガスを圧縮・冷却することで液化二酸化炭素として回収し処分することが考えられている。又、処分の1つとして液化二酸化炭素を地中に貯蔵することも考えられている。このような酸素燃焼用石炭焚ボイラの排ガス処理装置としては特許文献1がある。
 上記特許文献1に示すように、石炭焚ボイラによって石炭を酸素燃焼した場合の排ガス中には、二酸化炭素(CO2)以外に、石炭原料由来の窒素酸化物(NO)、硫黄酸化物(SO)、水銀(Hg)、塩化水素(HCl)、煤塵等の不純物が含まれる。
 上記不純物のうち、硫黄酸化物(SO)は水と接触することにより水に溶解して硫酸(HSO)となり、塩化水素(HCl)は水に溶解して塩酸となる。このため、このような水溶性を示す硫黄酸化物及び塩化水素については水と接触させることで分離できる。
 一方、前記不純物である窒素酸化物(NO)のうち、二酸化窒素(NO2)は水と接触することにより水に溶解して硝酸(HNO)となる。しかし、石炭焚ボイラからの排ガス中には酸素(O2)が少ないために、窒素の殆どが一酸化窒素(NO)として存在しており、この一酸化窒素は水に不溶であるためにスプレー等を行っても除去することはできない。
 前記、硫酸、塩酸及び硝酸は排ガス処理装置の機器を腐食させる問題を有しており、又、前記微量金属である水銀は熱交換器の低温のアルミニウム部材を損傷させることが分かっている。従って、これらの不純物は早い段階において除去することが好ましい。又、前記不純物が排ガスに混入すると、二酸化炭素の純度が低下するために、圧縮・冷却による液化が大変であり装置機器が大型化するという問題がある。更に、二酸化炭素を液化して地中に所蔵する際に硫黄酸化物が混入していると、硫黄酸化物が地中のカルシウムと反応して貯蔵の密閉性に問題を生じる可能性があることが懸念されている。従って、酸素燃焼を行う石炭焚ボイラ等のように、二酸化炭素主体の排ガスを生じさせてその二酸化炭素を処分するシステムにおいては、排ガス中の不純物を除去することが非常に重要となる。
 このため、酸素燃焼を行う石炭焚ボイラ等においては、特許文献1に示すように、従来の空気焚ボイラ等で用いられているスプレー塔方式或いは充填塔方式等からなる湿式と言われる脱硫装置を備えることにより硫黄酸化物を除去することが行われている。又、酸素燃焼を行う石炭焚ボイラ等からの排ガス中には石炭原料由来の窒素及び窒素酸化物が発生する。このため、前記脱硫装置の上流に、触媒方式等による脱硝装置を備えて、窒素及び窒素酸化物を除去することが行われている。
 又、上記した湿式の脱硫装置では、水溶性の硫黄酸化物及び塩化水素が除去されると共に、煤塵が除去され、更に、窒素酸化物も一部が除去されると共に、元々含有量が少ない水銀も僅かに除去されることが知られている。又、上記排ガス処理を行っても排ガス中の水銀の濃度が高い場合には、水銀除去塔を設置して水銀を吸着剤等により除去することが考えられている。
特開2010-172878号公報
 しかし、従来の排ガス処理システムにおいては、特許文献1に示すように、スプレー塔方式或いは充填塔方式等からなる湿式の脱硫装置と、触媒方式等による脱硝装置の両方を通常の排ガスラインに備えて排ガス中の不純物を除去している。しかし、処理する排ガスの量(容積)が大きいことから不純物除去のための前記装置が非常に大型となり、しかも複雑な構成が必要となって設備コストが増加するという問題を有していた。
 本発明は、上記従来の問題点に鑑み、酸素燃焼装置からの排ガス中に含まれる特に水溶性の不純物を簡単な装置により効果的に除去して、設備コストの低減を図れるようにした圧縮機不純物除去システムを提供することを目的とする。
 本発明は、酸素燃焼装置からの二酸化炭素主体の排ガスを二酸化炭素液化装置に供給する前の排ガス中の不純物を除去する圧縮機不純物除去システムであって、
 酸素燃焼装置からの排ガスを二酸化炭素を液化するための目的圧力まで段階的に圧縮する複数段の圧縮機と、各圧縮機で圧縮した排ガスを冷却し、冷却によって凝縮した水分をドレンとして取り出すようにしたアフタークーラとを有する複数段の不純物分離装置と、
 少なくとも最前段の不純物分離装置におけるアフタークーラの上流側にアルカリ剤を供給するアルカリ剤供給装置と、を備え、
 排ガス中の不純物を、不純物分離装置によって分離されるアルカリ剤を含むドレンにより取り出すよう構成した圧縮機不純物除去システム、に関する。
 上記圧縮機不純物除去システムにおいて、最前段の不純物分離装置におけるアフタークーラからのドレンを貯留するドレンタンクと、
 該ドレンタンクに貯留されたドレンのpHを計測するpH検出器と、
 該pH検出器により検出されるpH検出値に基づいて前記アルカリ剤供給装置によるアルカリ剤の供給量を調節する制御器と、を備えることは好ましい。
 又、上記圧縮機不純物除去システムにおいて、最後段の不純物分離装置におけるアフタークーラの下流側に備えた不純物検出器と、
 該不純物検出器の不純物検出値が入力される前記制御器と、を備え、
 該制御器は、不純物検出器の不純物検出値が所定値を超えたときに前記アルカリ剤供給装置によるアルカリ剤の供給を増加するように構成することが好ましい。
 又、上記圧縮機不純物除去システムにおいて、最前段の不純物分離装置よりも後段の不純物分離装置におけるアフタークーラの上流側に、アルカリ剤を供給するアルカリ剤供給装置を備えることができる。
 本発明の圧縮機不純物除去システムによれば、圧縮機とアフタークーラを有した最前段の不純物分離装置におけるアフタークーラの上流側にアルカリ剤を供給するアルカリ剤供給装置を備えて、排ガス中の不純物をドレンに溶解させて除去するようにした。これによって、二酸化炭素の液化に必要な圧縮機とアフタークーラを用いて排ガス中の特に水溶性の不純物を効果的に除去することができ、結果的に装置の大型化及び複雑化を防止して設備コストの大幅な低減が図れるという優れた効果を奏し得る。
酸素燃焼装置に備えた本発明の圧縮機不純物除去システムの一実施例を示す系統図である。 本発明における圧縮機不純物除去システムの他の実施例を示す系統図である。 本発明における圧縮機不純物除去システムの変形例を示す系統図である。 最前段の不純物分離装置におけるアフタークーラの上流側に供給するアルカリ剤の添加量と硫黄酸化物除去率との関係を示した線図である。
 以下、本発明の実施例を、添付図面を参照して説明する。
 図1は酸素燃焼装置1に備えた本発明の圧縮機不純物除去システム100の一実施例を示す系統図であり、図1中、1は微粉炭を酸素燃焼する石炭焚ボイラ1a等からなる酸素燃焼装置1である。該酸素燃焼装置1からは二酸化炭素(CO)を主体とする排ガス2が排出される。このような酸素燃焼装置1からの二酸化炭素主体の排ガス2を二酸化炭素液化装置3に供給して液化するために、二酸化炭素液化装置3の前段において、所定の目的圧力まで排ガス2を圧縮すると共に排ガス2中の不純物を除去する圧縮機不純物除去システム100を設ける。
 図1に示す圧縮機不純物除去システム100は、前記酸素燃焼装置1からの排ガス2を段階的に目的圧力まで圧縮する複数段の圧縮機4a,4b,4cと、各圧縮機4a,4b,4cで圧縮した排ガス2を冷却し、冷却によって凝縮した水分をドレンとして取り出すようにしたアフタークーラ5a,5b,5c(冷却機)とを有する複数段(図示例では3段)の不純物分離装置6a,6b,6cを有している。一般に、多段の圧縮機間に備えられるクーラはインタークーラと称されるが、本発明では説明を簡略化するため全てのクーラをアフタークーラ5a,5b,5cとして説明する。
 二酸化炭素を液化するために前記不純物分離装置6a,6b,6cを色々な温度・圧力条件で運転した場合について検討した結果、二酸化炭素液化装置3に供給する前に、二酸化炭素を2.5MPaまで昇圧し、-30℃まで温度を下げた場合に圧縮機4とアフタークーラ5の合計の作動エネルギーが最も小さくなるという知見を得た。このため、2.5MPaを目的圧力とした。ここで、不純物分離装置6a,6b,6cに設定する温度・圧力は、排ガス2の組成、水分量、運搬手段(運搬船等)の条件によって変化するため、前記目的圧力2.5MPaは目安として設定した。又、ここで、-40℃以下に冷却する必要がある場合には、一般的な代替フロン冷媒が使えなくなり、アンモニア冷凍機を用いる必要があるため設備が高価になる問題がある。従って、アフタークーラ5による冷却温度は-30℃程度とすることが好ましい。
 1台の圧縮機4では排ガス2を目的圧力である2.5MPaまで一気に昇圧することはできない。このため、本実施例では、3台の圧縮機4a,4b,4cを設置して0.75MPa、1.5MPa、2.5MPaのように三段階に圧縮するようにした不純物分離装置6a,6b,6cを構成している。尚、前記圧縮機4a,4b,4cの設置台数(不純物分離装置6a,6b,6cの設置数)は4台以上でもよく任意の台数を設置することができる。
 上記圧力に設定した最前段の不純物分離装置6aにおいては、排ガス2中の殆どの水分がドレンとして取り出されるようになり、中段の不純物分離装置6bにおいては少量のドレンが取り出され、最後段の不純物分離装置6cでは更に少量のドレンが取り出される。
 圧縮機不純物除去システム100を経た二酸化炭素中における水銀(Hg)の濃度が、設定した目標値よりも高い場合には、水銀除去塔7を設置して吸着剤等により水銀を除去するようにしている(図面では水銀除去塔7を破線で示している)。又、前記二酸化炭素液化装置3の前段には、二酸化炭素液化装置3に供給される二酸化炭素に含まれる水分を除去するための乾燥機8を設けている。
 図1に示す圧縮機不純物除去システム100では、最前段の不純物分離装置6aにおけるアフタークーラ5aの排気ガス2の入口(上流側)に、アルカリ剤タンク9のアルカリ剤10をポンプ11により供給するようにしたアルカリ剤供給装置12を設けている。アルカリ剤10としては分散性がよく且つ固着等が生じない苛性ソーダ(NaOH)、水酸化マグネシウム等を用いることができるが、分散性が維持され且つ固着等の問題を解消できる場合には、石灰石(CaCO)、生石灰(CaO)、消石灰(Ca(OH))等を用いることができる。ここでアルカリ剤供給装置12によりアルカリ剤10を供給する位置は、アフタークーラ5aに近い入口とすることができるが、アフタークーラ5aと該アフタークーラ5aの上流側における圧縮機4aとの間の任意の位置とすることができる。
 更に、最前段の不純物分離装置6aには、アフタークーラ5aから取り出されるドレンを一定量貯留するようにしたドレンタンク13を設けている。ドレンタンク13にはレベル調節計14が設けてある。このレベル調節計14は検出値が常に一定値を保持するようにドレンタンク13のドレン出口(下流側)に設けた取出弁15の開度を調節する。
 更に、前記ドレンタンク13には、貯留されたドレンのpHを計測するpH検出器16が設けてあり、該pH検出器16により検出したpH検出値16aは制御器17に入力されている。そして、制御器17は、前記pH検出器16により検出されるpH検出値16aが所定の値に保持されるようにポンプ11を制御して、前記アルカリ剤供給装置12によるアルカリ剤10の供給量を調節している。
 又、最後段の不純物分離装置6cにおけるアフタークーラ5cから排ガス2が導出される出口(下流側)には、排ガス2中の不純物(例えば、硫黄酸化物、塩化水素)を検出する不純物検出器18を設置して、その不純物検出値18aを前記制御器17に入力する。該制御器17は、前記不純物検出器18による硫黄酸化物或いは塩化水素の不純物検出値18aが所定値を超えたとき、緊急時として前記アルカリ剤供給装置12によるアルカリ剤10の供給を増加する制御を行うようにしている。ここで不純物検出器18の設置場所は、排ガス2中の不純物を速やかに検出し得るようにアフタークーラ5cの出口が好ましいが、アフタークーラ5cの下流側でアフタークーラ5cから乾燥機8(または水銀除去塔7)までの位置に設置することも可能である。
 又、最前段の不純物分離装置6aにおける圧縮機4aには、酸素燃焼装置1からの不純物を含んだ排ガス2が供給されることから腐食を生じることが懸念される。このため、最前段の不純物分離装置6aの圧縮機4aは、耐熱性のニッケル合金であるハステロイ(登録商標)等の腐食防止材料によって構成することが好ましい。ここで腐食防止材料は、耐熱性のニッケル合金に限定されない。腐食防止材料は、耐腐食性及び耐熱性を有するならば、他の金属、合金、無機物等であってもよい。又、前記圧縮機4aは、ブレード(羽根)を有する圧縮機以外に、ブレードを有しないギヤターボチャージャ方式の圧縮機であってもよい。
 次に上記実施例の作動を説明する。
 酸素燃焼装置1で酸素燃焼した二酸化炭素主体の排ガス2は、例えば0.1MPa(1気圧)で圧縮機不純物除去システム100の最前段の不純物分離装置6aにおける圧縮機4aに導かれ、該圧縮機4aにより0.7MPaに圧縮される。圧縮機4aで0.7MPaに圧縮された排ガス2は、アルカリ剤供給装置12から供給されるアルカリ剤10と共に、隣接するアフタークーラ5cに供給されて冷却され、冷却によって多量に生成したドレンはアルカリ剤10と共にドレンタンク13に取り出される。
 最前段の不純物分離装置6aは、圧縮機4aによる圧縮とアフタークーラ5aによる冷却とを行うことでドレンの発生が最も多い部位であり、この最前段の不純物分離装置6aにおけるアフタークーラ5cの上流側にアルカリ剤10を供給することでpHが高くなる。これによって、特に排ガス2中の水溶性の不純物である硫黄酸化物及び塩化水素は、ドレンへの溶け込み性が高められて、効果的に除去される。ここで、ドレンタンク13内のドレンのpHはおよそ4~6の範囲に設定することができる。又、前記圧縮機4aでの圧縮により窒素の一部も窒素酸化物となり水溶性となることによりドレンに溶け込んで除去される。
 最前段の不純物分離装置6aを出た排ガス2は、後段の不純物分離装置6bに導かれる。しかし、前記排ガス2には反応に供し得なかったアルカリ剤10が一部存在している。このため、後段の不純物分離装置6bにおいても、少ないドレンと共に不純物の除去が行われ、更に、排ガス2は、最後段の不純物分離装置6cに導かれて、更に少ないドレンと共に不純物が除去される。不純物を含むドレンは排水処理装置に供給されて処理される。
 ここで、最前段の不純物分離装置6aにおけるアフタークーラ5aの上流側にアルカリ剤10を供給すると、排ガス2のpHが高められることにより、後段の不純物分離装置6b,6cにおける圧縮機4b,4cの材料を腐食環境から守ることができる。
 ここで、本発明者らは、最前段の不純物分離装置6aにおけるアルカリ剤(NaOH)の添加量(kg/hr)と、硫黄酸化物(SO)除去率との関係を求めるシミュレーション試験を実施し、その結果を図4に示した。
 図4に示すように、上記試験では、アルカリ剤の添加量が小さいとき硫黄酸化物除去率は2%前後であった。しかし、アルカリ剤の添加量が増加して2.4(kg/hr)付近となったときに硫黄酸化物除去率は急激に上昇し、添加量が2.7(kg/hr)付近では98%程度まで上昇することが判明した。尚、この硫黄酸化物の除去率の傾向は塩化水素においても同様となることが推測される。
 従って、上記したように、硫黄酸化物除去率が急激に上昇して高い値を示すときのアルカリ剤10の添加量と、その時のドレンタンク13のpHを予め測定しておき、実際の運転時には、予め測定しておいたpHが維持されるようにアルカリ剤供給装置12によるアルカリ剤10の供給量を制御すると、特に腐食性が高いとされる硫黄酸化物及び塩化水素を含む水溶性の不純物は、極めて高い除去率で効果的に除去されるようになる。
 更に、後段の不純物分離装置6b,6cにおいては、ドレンと共に残りの硫黄酸化物及び塩化水素が除去されるため、硫黄酸化物及び塩化水素の除去率は更に高められる。
 又、不純物分離装置6a,6b,6cによって排ガス2の圧力が段階的に高められるため、排ガス2中の窒素も圧力の増加により酸化が促進されて水溶性の窒素酸化物となる。これによって、後段の不純物分離装置6b,6cに向かうほど、ドレンと共に多くの窒素酸化物が取り出されるようになるので、窒素酸化物も除去される。
 前記したように圧縮機不純物除去システム100によって排ガス2中の不純物が除去された二酸化炭素は、必要に応じて水銀除去塔7により水銀を除去し、乾燥機8に送られて水分が除去された後、二酸化炭素液化装置3に供給され、冷却により液化される。
 図2は本発明における圧縮機不純物除去システムの他の実施例を示す系統図であり、この実施例では、最前段の不純物分離装置6aの後段に設けられる不純物分離装置6bに、最前段の不純物分離装置6aに備えたものと同一のアルカリ剤供給装置12、ドレンタンク13及び制御器17を備えたものである。
 図2の実施例によれば、後段の不純物分離装置6bでの不純物の除去率が高まるため、図1の実施例に対して不純物の除去率を更に高めることができる。尚、上記アルカリ剤供給装置12、ドレンタンク13及び制御器17の構成は、前記後段の不純物分離装置6bよりも更に後段の(最後段の)不純物分離装置6cに設けることもできる。
 図3は本発明における圧縮機不純物除去システムの変形例を示す系統図であり、この変形例では、前記圧縮機不純物除去システム100の下流である最後段の不純物分離装置6cの出口に、バイパスダクト20を設けると共に、該バイパスダクト20に湿式の脱硫・脱硝装置21を設け、更に、切替弁22,23,24を備えて前記脱硫・脱硝装置21に排ガス2を通す流れと通さない流れとに切り替えられるようにしている。
 前記バイパスダクト20に脱硫・脱硝装置21を備えた構成では、排ガス2を必要に応じて脱硫・脱硝装置21に導くことにより、排ガス2中の不純物を更に低減することができる。このとき、前記圧縮機不純物除去システム100の各圧縮機4a,4b,4cによる圧縮によって圧縮機不純物除去システム100から導出される排ガス2の流量は著しく小さくなっているため、前記脱硫・脱硝装置21には著しく小型(従来の数十分の1)のものを用いることができる。
 上記したように、本発明の圧縮機不純物除去システム100によれば、圧縮機4aとアフタークーラ5aを有した最前段の不純物分離装置6aにおけるアフタークーラ5aの上流側に、アルカリ剤10を供給するアルカリ剤供給装置12を備えたことにより、二酸化炭素の液化に必要な圧縮機4とアフタークーラ5を用いて、排ガス2中の不純物を効果的に除去することができ、結果的に装置の大型化及び複雑化を防止して設備コストの大幅な低減を図ることができる。
 又、本発明の圧縮機不純物除去システム100において、最前段の不純物分離装置6aにおけるアフタークーラ5aからのドレンを貯留するドレンタンク13と、該ドレンタンク13に貯留されたドレンのpHを計測するpH検出器16と、該pH検出器16により検出されるpH検出値16aに基づいて前記アルカリ剤供給装置12によるアルカリ剤10の供給量を調節する制御器17を備えると、アルカリ剤10を適切に供給して排ガス2中の不純物をより効果的に除去でき、更に、アルカリ剤10の使用量を適切に制御することによりコストを抑制することができる。
 又、本発明の圧縮機不純物除去システム100において、最後段の不純物分離装置6cにおけるアフタークーラ5cの下流側に備えた不純物検出器18と、該不純物検出器18の不純物検出値18aが入力される前記制御器17を備えると、該制御器17は、不純物検出器18の不純物検出値18aが所定値を超えたときには前記アルカリ剤供給装置12によるアルカリ剤10の供給を増加するように制御して、圧縮機不純物除去システム100を経た排ガス2中の不純物が急激に増加するような問題を防止することができる。
 又、本発明の圧縮機不純物除去システム100において、最前段の不純物分離装置6aよりも後段の不純物分離装置6b,6cにおけるアフタークーラ5b,5cの上流側に、アルカリ剤10を供給するアルカリ剤供給装置12を備えると、水溶性の不純物の殆どを除去できることに加えて、非水溶性の不純物である窒素を窒素酸化物に変化させて高い除去率で除去することができる。
 又、本発明の圧縮機不純物除去システム100においては、最前段の不純物分離装置6aの圧縮機4aによる圧縮とアフタークーラ5aによる冷却とにより最も多くのドレンが発生する部位の排ガス2にアルカリ剤10を供給したので、簡単な装置により、水溶性の不純物である硫黄酸化物及び塩化水素を極めて高い除去率で効果的に除去することができる。
 又、本発明の圧縮機不純物除去システム100においては、最前段の不純物分離装置6aにおけるアフタークーラ5aの上流側にアルカリ剤10を供給したことにより、排ガス2のpHが高められることにより、後段の不純物分離装置6b,6cにおける圧縮機4b,4cの材料を腐食環境から守ることができる。
 尚、本発明の本発明の圧縮機不純物除去システムは、上述の実施例にのみ限定されない。本発明の要旨を逸脱しない範囲内において種々変更できる。
 本発明の圧縮機不純物除去システムは、水溶性の不純物を含む排ガスを排出する酸素燃焼装置に適用することができる。
 1 酸素燃焼装置
 1a 石炭焚ボイラ(酸素燃焼装置)
 2 排ガス
 3 二酸化炭素液化装置
 4 圧縮機
 4a,4b,4c 圧縮機
 5 アフタークーラ
 5a,5b,5c アフタークーラ
 6a,6b,6c 不純物分離装置
 10 アルカリ剤
 12 アルカリ剤供給装置
 13 ドレンタンク
 16 pH検出器
 16a pH検出値
 17 制御器
 18 不純物検出器
 18a 不純物検出値
100 圧縮機不純物除去システム

Claims (4)

  1.  酸素燃焼装置からの二酸化炭素主体の排ガスを二酸化炭素液化装置に供給する前の排ガス中の不純物を除去する圧縮機不純物除去システムであって、
     酸素燃焼装置からの排ガスを二酸化炭素を液化するための目的圧力まで段階的に圧縮する複数段の圧縮機と、各圧縮機で圧縮した排ガスを冷却し、冷却によって凝縮した水分をドレンとして取り出すようにしたアフタークーラとを有する複数段の不純物分離装置と、
     少なくとも最前段の不純物分離装置におけるアフタークーラの上流側にアルカリ剤を供給するアルカリ剤供給装置と、を備え、
     排ガス中の不純物を、不純物分離装置によって分離されるアルカリ剤を含むドレンにより取り出すよう構成した圧縮機不純物除去システム。
  2.  最前段の不純物分離装置におけるアフタークーラからのドレンを貯留するドレンタンクと、
     該ドレンタンクに貯留されたドレンのpHを計測するpH検出器と、
     該pH検出器により検出されるpH検出値に基づいて前記アルカリ剤供給装置によるアルカリ剤の供給量を調節する制御器と、を備えた請求項1に記載の圧縮機不純物除去システム。
  3.  最後段の不純物分離装置におけるアフタークーラの下流側に備えた不純物検出器と、
     該不純物検出器の不純物検出値が入力される前記制御器と、を備え、
     該制御器は、不純物検出器の不純物検出値が所定値を超えたときに前記アルカリ剤供給装置によるアルカリ剤の供給を増加するように構成した請求項2に記載の圧縮機不純物除去システム。
  4.  最前段の不純物分離装置よりも後段の不純物分離装置におけるアフタークーラの上流側に、アルカリ剤を供給するアルカリ剤供給装置を備えた請求項1~3のいずれか1つに記載の圧縮機不純物除去システム。
PCT/JP2013/005971 2012-10-09 2013-10-08 圧縮機不純物除去システム WO2014057652A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2886134A CA2886134C (en) 2012-10-09 2013-10-08 Compressor impurity-removal system
CN201380052722.5A CN104684628B (zh) 2012-10-09 2013-10-08 压缩机杂质除去系统
AU2013328171A AU2013328171B2 (en) 2012-10-09 2013-10-08 Compressor impurity-removal system
US14/663,520 US9149766B2 (en) 2012-10-09 2015-03-20 Compressor impurity-removal system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223819A JP6015324B2 (ja) 2012-10-09 2012-10-09 圧縮機不純物除去システム
JP2012-223819 2012-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,520 Continuation US9149766B2 (en) 2012-10-09 2015-03-20 Compressor impurity-removal system

Publications (1)

Publication Number Publication Date
WO2014057652A1 true WO2014057652A1 (ja) 2014-04-17

Family

ID=50477134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005971 WO2014057652A1 (ja) 2012-10-09 2013-10-08 圧縮機不純物除去システム

Country Status (6)

Country Link
US (1) US9149766B2 (ja)
JP (1) JP6015324B2 (ja)
CN (1) CN104684628B (ja)
AU (1) AU2013328171B2 (ja)
CA (1) CA2886134C (ja)
WO (1) WO2014057652A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178319A1 (ja) * 2013-04-30 2014-11-06 株式会社Ihi 圧縮機不純物分離機構の腐食防止方法及び装置
WO2014178320A1 (ja) * 2013-04-30 2014-11-06 株式会社Ihi 圧縮機不純物分離機構のアルカリ調整剤供給方法及び装置
US20210220772A1 (en) * 2019-10-29 2021-07-22 Huaneng Clean Energy Research Institute Flue gas low-temperature adsorption denitrification method
US20220134279A1 (en) * 2017-08-11 2022-05-05 Saipem S.P.A. SOx CAPTURE USING CARBONATE ABSORBENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507773A (ja) * 2006-10-26 2010-03-11 フォスター・ホイーラー・エナージイ・コーポレイション 酸素燃焼におけるco2回収の方法及び装置
JP2012143699A (ja) * 2011-01-11 2012-08-02 Babcock Hitachi Kk 排ガス処理システム
WO2012107953A1 (ja) * 2011-02-08 2012-08-16 株式会社Ihi 酸素燃焼装置の排ガス処理システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068610A (zh) * 2004-09-23 2007-11-07 乔·大卫·琼斯 通过碳酸盐和/或碳酸氢盐无机物的共同产生从废弃流中除去二氧化碳
DE102008062496A1 (de) * 2008-12-16 2010-06-17 Linde-Kca-Dresden Gmbh Verfahren zur Entfernung von Verunreinigungen aus sauerstoffhaltigen Gasströmen
JP5275064B2 (ja) 2009-02-02 2013-08-28 バブコック日立株式会社 酸素燃焼用石炭焚ボイラの排ガス処理装置と方法
US8173090B2 (en) * 2010-07-08 2012-05-08 Air Products And Chemicals, Inc. Sorbent use with oxyfuel sour compression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507773A (ja) * 2006-10-26 2010-03-11 フォスター・ホイーラー・エナージイ・コーポレイション 酸素燃焼におけるco2回収の方法及び装置
JP2012143699A (ja) * 2011-01-11 2012-08-02 Babcock Hitachi Kk 排ガス処理システム
WO2012107953A1 (ja) * 2011-02-08 2012-08-16 株式会社Ihi 酸素燃焼装置の排ガス処理システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178319A1 (ja) * 2013-04-30 2014-11-06 株式会社Ihi 圧縮機不純物分離機構の腐食防止方法及び装置
WO2014178320A1 (ja) * 2013-04-30 2014-11-06 株式会社Ihi 圧縮機不純物分離機構のアルカリ調整剤供給方法及び装置
US9669353B2 (en) 2013-04-30 2017-06-06 Ihi Corporation Method and apparatus for preventing corrosion of compressor impurity separation mechanism
US9945609B2 (en) 2013-04-30 2018-04-17 Ihi Corporation Alkalinity control agent supply method and apparatus for compressor impurity separation mechanism
US20220134279A1 (en) * 2017-08-11 2022-05-05 Saipem S.P.A. SOx CAPTURE USING CARBONATE ABSORBENT
US11731078B2 (en) * 2017-08-11 2023-08-22 Saipem S.P.A. SOx capture using carbonate absorbent
US20210220772A1 (en) * 2019-10-29 2021-07-22 Huaneng Clean Energy Research Institute Flue gas low-temperature adsorption denitrification method
US11925898B2 (en) * 2019-10-29 2024-03-12 Huaneng Clean Energy Research Institute Flue gas low-temperature adsorption denitrification method

Also Published As

Publication number Publication date
CN104684628B (zh) 2016-10-12
CA2886134A1 (en) 2014-04-17
AU2013328171B2 (en) 2016-04-21
CN104684628A (zh) 2015-06-03
CA2886134C (en) 2016-08-02
JP6015324B2 (ja) 2016-10-26
US20150190752A1 (en) 2015-07-09
US9149766B2 (en) 2015-10-06
JP2014076405A (ja) 2014-05-01
AU2013328171A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6015339B2 (ja) 圧縮機不純物除去システム
JP6056638B2 (ja) 圧縮機不純物分離機構のアルカリ調整剤供給方法及び装置
US9273900B2 (en) Exhaust gas treatment system for oxyfuel combustion device
JP6107444B2 (ja) 水分含有ガスの不純物除去システム
WO2014057652A1 (ja) 圧縮機不純物除去システム
JP6107443B2 (ja) 不純物除去システム
JP6056637B2 (ja) 圧縮機不純物分離機構の腐食防止方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2886134

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013328171

Country of ref document: AU

Date of ref document: 20131008

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844723

Country of ref document: EP

Kind code of ref document: A1