WO2014054807A1 - Ultrasound medical device and ultrasound image diagnostic device - Google Patents

Ultrasound medical device and ultrasound image diagnostic device Download PDF

Info

Publication number
WO2014054807A1
WO2014054807A1 PCT/JP2013/077176 JP2013077176W WO2014054807A1 WO 2014054807 A1 WO2014054807 A1 WO 2014054807A1 JP 2013077176 W JP2013077176 W JP 2013077176W WO 2014054807 A1 WO2014054807 A1 WO 2014054807A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
main body
ultrasonic
type main
medical device
Prior art date
Application number
PCT/JP2013/077176
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 小作
平間 信
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2014054807A1 publication Critical patent/WO2014054807A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart

Definitions

  • FIG. 1 is a schematic diagram of an ultrasonic diagnostic imaging apparatus according to a first embodiment.
  • the perspective view of an ultrasonic medical device The front view which shows the inside of a capsule type main-body part.
  • the figure which shows a drive means typically.
  • the figure of an electromagnetic coil when a piston is in the middle of descent.
  • the figure of an electromagnetic coil when a piston exists in the lowest position.
  • the figure of an electromagnetic coil when a piston is in the middle of ascent.
  • an ultrasonic diagnostic imaging apparatus 1 places a capsule-type main body 10 at a desired position in the esophagus E, and in the placed state, a desired organ (heart H) in a subject P. 1 shows an example in which an ultrasonic wave is transmitted, a reflected wave from the heart H is received as an echo signal, and the heart H is observed.
  • transmission of ultrasonic waves and reception of reflected waves may be collectively referred to as “transmission and reception of ultrasonic waves”.
  • the capsule main body 10 transmits an echo signal to the external device 60, and the external device 60 processes the signal received from the capsule main body 10 to create and display an ultrasonic image.
  • the heart H shown in each drawing is schematically shown in order to make it easy to understand that the observation target in this embodiment is the heart H.
  • the throat is indicated by “T” in FIG.
  • the ultrasound diagnostic imaging apparatus 1 refers to a configuration including the ultrasound medical apparatus 2 and the external apparatus 60.
  • the ultrasonic medical device 2 refers to a configuration including the capsule main body 10 and the guiding tube 20.
  • these devices 1 and 2 are separated for convenience of explanation, and the ultrasonic medical device 2 may include the ultrasonic image diagnostic device 1.
  • FIG. 2 is a perspective view of the ultrasonic medical device.
  • the ultrasonic medical apparatus has a capsule-type main body 10 and a guiding tube 20.
  • FIG. 1 shows the guiding pipe 20 with a broken line
  • FIG. 2 shows the tip of the guiding pipe 20.
  • the capsule body 10 is connected to the leading end of the guiding pipe 20.
  • An external device 60 is connected to the proximal end portion of the guiding pipe 20.
  • FIG. 3 is a front view showing the inside of the capsule-type main body 10.
  • the capsule body 10 has a hemispherical outer surface at one end in the long axis direction so that it can be easily inserted into the esophagus E, and at the other end in the long axis direction. It has a hemispherical outer surface so that it can be easily pulled out from the esophagus E.
  • the capsule body 10 has spherical inner surface portions 11 at both ends in the major axis direction.
  • the position of the center of the sphere is indicated by “O1” in FIG.
  • the ultrasonic transducer 30, the changing unit 40, and the driving unit 50 are disposed between the both inner surface portions 11.
  • An acoustic medium (for example, water) 13 is filled between the circumferential surface 12 of the capsule body 10 and the ultrasonic transducer 30.
  • a power line EL and a signal line SL are arranged at most.
  • the power line EL is for sending electric power from the external device 60 to the capsule main body 10.
  • the signal line SL is for transmitting and receiving a signal (control signal) between the external device 60 and the capsule main body 10.
  • the material that can be used in the body cavity is selected for the covering of the power line EL and the like, and the softness that does not burden the subject P even if it is placed on the pharynx.
  • the ultrasonic transducer 30 is composed of an acoustic lens, a matching layer, a piezoelectric element, and a backing material. In FIG. 3, the ultrasonic transducer
  • a holding body 16 is provided at one end of the support 15 (the lower end in FIGS. 4 and 5).
  • the holding body 16 is formed integrally with the support body 15.
  • the ball body 43 is supported by the holding body 16 so as to roll along the inner surface portion 11 on one end side. According to this configuration, when the ball body 43 rolls along the inner surface portion 11, one end portion of the rotation shaft 31 of the ultrasonic transducer 30 is also moved along the inner surface portion 11.
  • the first ultrasonic motor 41 is disposed on either the other end (the upper end in FIGS. 4 and 5) of the rotating shaft 31 of the ultrasonic transducer 30 or the inner surface 11 on the other end side.
  • the inner surface portion on one end side may be referred to as “first inner surface portion”, and the inner surface portion on the other end side may be referred to as “second inner surface portion”.
  • the piezoelectric ceramic 411 and the stator 412 are provided at the other end of the rotating shaft 31 of the ultrasonic transducer 30.
  • the rotor 413 constitutes the second inner surface portion 11.
  • the stator 412 and the rotor 413 have an arc shape along the second inner surface portion 11. Since the capsule-type main body 10 is pulled by the guiding pipe 20, the rotor 413 is fixed.
  • the rotor 413 may be provided on the second inner surface portion 11.
  • the piezoelectric ceramic 411 and the stator 412 are provided on the second inner surface portion 11, and the rotor 413 is the other end of the rotating shaft 31 of the ultrasonic transducer 30. What is necessary is just to comprise a part.
  • the stator 412 tries to move the second inner surface portion 11 in the opposite direction D2, but since the rotor 413 is fixed, other than the rotating shaft 31 of the ultrasonic transducer 30 The end is moved in the traveling wave direction D1.
  • the rotating shaft 31 of the ultrasonic transducer 30 is tilted clockwise or counterclockwise about the position O1.
  • FIG. 3 shows the rotating shaft 31 of the ultrasonic transducer 30 in an initial state that is not tilted in any direction.
  • the inclination angle of the rotation shaft 31 of the ultrasonic transducer 30 tilted in the clockwise direction is indicated by “ ⁇ ”.
  • the capsule body 10 includes a capsule controller 33 (see FIG. 10) for controlling the first ultrasonic motor 41 and a capsule power supply 34 (see FIG. 10) for supplying power to the first ultrasonic motor 41. Is provided.
  • the capsule control unit 33 outputs the “angle change” instruction from the control unit 65 and the end of the instruction to the changing unit 40.
  • the changing unit 40 applies the generated high-frequency voltage to the piezoelectric ceramic 411 and vibrates (stretches) the piezoelectric ceramic 411. Thereby, the angle of the ultrasonic transducer 30 is changed.
  • the changing means 40 stops the supply of the high-frequency voltage to the piezoelectric ceramic 411 in response to the end of the “angle change” instruction. Thereby, the vibration of the piezoelectric ceramic 411 is stopped and the angle of the ultrasonic transducer 30 is maintained.
  • the first ultrasonic motor 41 changes and holds the angle of the ultrasonic transducer 30 (the tilt angle of the rotation shaft 31 of the ultrasonic transducer 30).
  • the second ultrasonic motor 42 will be described with reference to FIG. Since the basic configuration of the second ultrasonic motor 42 is the same as that of the first ultrasonic motor 41, the configuration different from the first ultrasonic motor 41 will be mainly described, and the redundant description will be omitted.
  • the second ultrasonic motor 42 changes the angle in the circumferential direction of the ultrasonic transducer 30 and holds it at that angle.
  • the second ultrasonic motor 42 also has a piezoelectric ceramic, a stator, and a rotor (each not shown). These are arranged on one end (lower end in FIG. 4) side of the support 15.
  • a piezoelectric ceramic and a stator are provided on the support 15, and a rotor is provided on the ultrasonic transducer 30.
  • the stator and the rotor have an annular shape along the circumference of the ultrasonic transducer 30.
  • the rotor may be provided on the support 15, and the piezoelectric ceramic and the stator may be provided on the ultrasonic transducer 30.
  • the driving method of the piezoelectric ceramic is the same as that of the first ultrasonic motor 41. That is, when a high frequency voltage is applied to the piezoelectric ceramic 411, the piezoelectric ceramic 411 vibrates (expands and contracts). As a result, a traveling wave is generated on the surface of the stator and tries to move the rotor in a direction opposite to the direction of the traveling wave. However, since the rotor is fixed, the ultrasonic vibrator 30 is moved relative to the support 15. , Relative rotation about the rotation axis 31 (circumferential direction).
  • the capsule control unit 33 outputs the “rotation angle change” and “change end” instructions from the control unit 65 to the change means 40.
  • the changing unit 40 applies the generated high-frequency voltage to the piezoelectric ceramic, and vibrates (stretches) the piezoelectric ceramic. Thereby, the rotation angle of the ultrasonic transducer 30 is changed.
  • the changing means 40 stops the supply of the high frequency voltage to the piezoelectric ceramic in response to the instruction of “end of change”. Thereby, the vibration of the piezoelectric ceramic is stopped, and the rotation angle of the ultrasonic transducer 30 is maintained.
  • the changing means 40 is provided inside the capsule-type main body 10, a wire for changing the corner of the ultrasonic transducer 30 becomes unnecessary, and the wire is not arranged in the string-like body 21.
  • the string-like body 21 can be made thinner by that amount. By narrowing the string-like body 21, when observing the inside of the subject P, the burden on the subject P is reduced.
  • FIG. 7A is a diagram schematically showing the driving means 50
  • FIG. 8 is a diagram schematically showing the inside of the capsule-type main body 10.
  • FIG. 7A shows the piston 51, and only the polarity ("N", "S") of the electromagnetic coil 53 is shown above and below it.
  • the lower direction shown in FIG. 3 is the traveling direction of the capsule-type main body 10 and is represented by “S1” in FIG. 7A
  • the upper direction shown in FIG. 3 is the direction opposite to the traveling direction and is represented by “S2” in FIG.
  • the traveling direction is referred to as the downward direction
  • the opposite direction is referred to as the upward direction.
  • positioned is shown with a dashed-dotted line.
  • the driving means 50 includes a piston 51, a permanent magnet 52, and an electromagnetic coil 53.
  • the piston 51 is disposed so as to be able to reciprocate in the direction of the cylinder axis (moving up and down in FIG. 3) through the hollow portion 151 of the cylindrical support 15.
  • the hollow portion 151 corresponds to the inside of the capsule body 10 in the cylindrical shape.
  • the permanent magnet 52 is provided, for example, such that one end (upper end in FIG. 3) of the piston 51 is an N pole and the other end (lower end in FIG. 3) is an S pole.
  • the electromagnetic coil 53 is disposed on the upper end side and the lower end side of the hollow portion 151. Therefore, the piston 51 is configured to be capable of reciprocating between the upper end side electromagnetic coil 53 and the lower end side electromagnetic coil 53.
  • the acceleration when the piston 51 is lowered is configured to be larger than the acceleration when the piston 51 is raised. Since the magnetic flux density is proportional to the current, by increasing the current flowing through the electromagnetic coil 53 at the time of lowering than at the time of rising, the acceleration at the time of rising becomes larger than that at the time of lowering. With this configuration, the impact force when the piston 51 collides with the bottom portion 152 becomes larger than the impact force when the piston 51 collides with the ceiling portion 153. Thereby, the downward movement of the capsule-type main body 10 is continued. In order to reduce the impact force when the piston 51 collides with the ceiling portion 153, an impact relaxation member may be disposed on the ceiling portion 153.
  • the capsule control unit 33 outputs “Progress” and “Progress end” instructions from the control unit 65 to the driving unit 50.
  • the driving unit 50 sends an alternating current to the electromagnetic coil 53 at a predetermined cycle. Thereby, the magnetic poles generated at both end portions (the upper end portion and the lower end portion in FIG. 3) of the electromagnetic coil 53 are changed.
  • the drive unit 50 stops the alternating current sent to the electromagnetic coil 53 in response to the instruction “end of progress”.
  • FIG. 7A is a diagram of the electromagnetic coil 53 when the piston 51 moves to the uppermost position.
  • an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the upper end side.
  • the N pole on the upper end side of the piston 51 receives a repulsive force and lowers the piston 51.
  • FIG. 7B is a diagram of the electromagnetic coil 53 when the piston 51 is in the middle of lowering.
  • an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the lower end side.
  • the S pole on the lower end side of the piston 51 receives an attractive force, and the piston 51 is accelerated.
  • the piston 51 is moved to the lowest position, it is caused to collide with the bottom 152 of the support 15.
  • the impact force at that time is transmitted from the support 15 to the capsule-type main body 10 and advances the capsule-type main body 10 downward.
  • FIG. 7C is a diagram of the electromagnetic coil 53 when the piston 51 moves to the lowest position. As shown in FIG. 7C, the polarity of the electromagnetic coil 53 is not changed until the piston 51 collides with the bottom. That is, an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the lower end side.
  • FIG. 7D is a diagram of the electromagnetic coil 53 when the piston 51 is in the lowest position. After the piston 51 collides with the bottom, when the piston 51 is at the lowest position, as shown in FIG. 7D, an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the lower end side. Due to this S pole, the S pole on the lower end side of the piston 51 receives a repulsive force and raises the piston 51.
  • FIG. 7E is a diagram of the electromagnetic coil 53 when the piston 51 is in the middle of ascent.
  • an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the upper end side.
  • S pole the N pole on the upper end side of the piston 51 receives an attractive force, and the piston 51 can be moved to the uppermost position.
  • FIG. 7F is a diagram of the electromagnetic coil 53 when the piston 51 moves to the uppermost position. As shown in FIG. 7F, the polarity of the electromagnetic coil 53 is not changed until the piston 51 is moved to the uppermost position. That is, an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the upper end side.
  • the capsule controller 33 repeats the movement of the piston 51 shown in FIGS. 7A to 7F while receiving the “Progress” instruction, and causes the piston 51 to repeatedly collide with the bottom 152 of the support 15. Since the impact force when the piston 51 collides with the bottom portion 152 is larger than the impact force when the piston 51 collides with the ceiling portion 153, the capsule-type main body portion 10 continues to proceed downward.
  • the capsule controller 33 When the capsule controller 33 receives an instruction of “end of progress”, the capsule controller 33 stops the alternating current to the electromagnetic coil 53 and ends the reciprocating movement of the piston 51.
  • the driving means 50 is configured to advance the capsule body 10 in the direction (downward in FIG. 3) opposite to the side (upward in FIG. 3) to which the string-like body 21 is connected. ing.
  • the “progress” of the capsule-type main body 10 does not include the progression of the esophagus E due to peristalsis or body movement.
  • FIG. 9 is a flowchart showing a series of operations when the inside of the subject is observed using the ultrasonic medical apparatus.
  • the ultrasonic transducer 30 is orally inserted into the esophagus E (S101).
  • the ultrasonic transducer 30 is positioned (S103). As described above, the positioning of the ultrasonic transducer 30 is performed by “advance” by the driving means 50 and “retraction” by the guiding pipe 20. In positioning, since the capsule body 10 is advanced by the driving means 50 in the direction opposite to the side to which the string-like body 21 is connected, the string-like body 21 is pulled, and the pulling force and driving force are When is balanced, the position of the capsule-type main body 10 stops.
  • the image is viewed, and the rotation angle of the ultrasonic transducer 30 is changed by the changing means 40 (S104).
  • the changing means 40 S104.
  • an image of the heart to be observed is included in the image.
  • the angle (inclination angle) of the ultrasonic transducer 30 is changed by the changing means 40 (S105).
  • an image of the heart is included in a predetermined range of the image.
  • the capsule body 10 After determining the positioning, rotation angle, and angle (tilt angle) of the ultrasonic transducer 30 as described above, the capsule body 10 is placed at a predetermined position in the esophagus E and scanning for diagnosis is started. (S106).
  • the Doppler effect may be used to automate the positioning, rotation angle, and angle (tilt angle) (S103-S105) of the ultrasonic transducer 30 so that the heart image is included within a predetermined range of the image. .
  • FIG. 10 is a block diagram showing the configuration of the ultrasonic diagnostic imaging apparatus.
  • a capsule transceiver 32, a capsule controller 33, and a capsule power supply 34 are arranged inside the capsule-type main body 10.
  • the capsule transmission / reception unit 32 transmits a control signal from the external device 60 (a control unit 65 described later) to the capsule control unit 33.
  • the capsule control unit 33 transmits a drive signal to the ultrasonic transducer 30 based on the control signal.
  • the capsule transmission / reception unit 32 receives the echo signal received by the ultrasonic transducer 30.
  • transmission / reception of control signals and the like between the capsule main body 10 and the external device 60 is performed via the signal line SL disposed in the string-like body 21.
  • the capsule controller 33 supplies a drive signal to the ultrasonic transducer 30 to perform scanning, and transmits an ultrasonic wave to the heart H.
  • the capsule controller 33 includes, for example, a clock generator (not shown), a transmission delay circuit, and a pulsar circuit.
  • the clock generator generates a clock signal that determines the transmission timing and transmission frequency of the ultrasonic signal.
  • the transmission delay circuit transmits a delay when transmitting an ultrasonic wave according to a focusing delay time for focusing the ultrasonic wave to a predetermined depth and a deflection delay time for transmitting the ultrasonic wave in a predetermined direction. Implement focus.
  • the pulsar circuit has pulsars corresponding to the number of individual channels corresponding to the piezoelectric elements.
  • the pulsar circuit generates a driving pulse (driving signal) at a transmission timing subjected to a delay, and supplies the driving pulse (driving signal) to the piezoelectric element constituting the ultrasonic transducer 30.
  • the capsule transmission / reception unit 32 performs delay processing on the received echo signal, thereby converting the analog echo signal into digital data subjected to phasing addition.
  • the capsule transmission / reception unit 32 includes, for example, a gain circuit (not shown), an A / D converter, a reception delay circuit, and an adder.
  • the gain circuit amplifies (applies gain) the echo signal output from the piezoelectric element of the ultrasonic transducer 30 for each reception channel.
  • the A / D converter converts the amplified echo signal into a digital signal.
  • the reception delay circuit gives a delay time necessary for determining the reception directivity to the echo signal converted into the digital signal.
  • the reception delay circuit digitally combines a focusing delay time for focusing ultrasonic waves from a predetermined depth and a deflection delay time for setting reception directivity with respect to a predetermined direction. Is given to the echo signal.
  • the adder adds echo signals given delay times. By the addition, the reflection component from the direction corresponding to the reception directivity is emphasized. In other words, the echo signal obtained from the predetermined direction is phased and added by the reception delay circuit and the adder.
  • the capsule transmission / reception unit 32 outputs the echo signal subjected to the delay process to the external device 60.
  • the capsule power supply unit 34 receives power supply from the external device 60.
  • the capsule power supply unit 34 distributes the supplied power to the ultrasonic transducer 30, the capsule transmission / reception unit 32, and the capsule control unit 33.
  • power supply from the external device 60 is performed via the power supply line EL arranged in the string-like body 21.
  • the string-like body 21 can be made thin. Thereby, when the inside of the subject P is observed, the burden on the subject P is reduced.
  • the capsule transmission / reception unit 32, the capsule control unit 33, and the capsule power supply unit 34 are provided in the capsule body 10.
  • the configuration may be as follows.
  • a configuration in which only the ultrasonic transducer 30, the capsule transmitting / receiving unit 32, the changing unit 40, and the driving unit 50 are arranged in the capsule body 10 is also possible.
  • the control unit 65 of the external device 60 controls each component in the capsule main body 10 such as driving of the ultrasonic transducer 30 via the transmission / reception unit 61.
  • the power supply unit 67 transmits power for driving each component in the capsule-type main body unit 10 through the power supply line EL.
  • a battery or the like may be provided in the capsule-type main body 10 as a power source for the capsule-type main body 10.
  • the power supply line EL becomes unnecessary. Therefore, it is possible to reduce the diameter of the string-like body cable portion 30. Therefore, the burden on the subject P is further reduced.
  • the external device 60 includes a transmission / reception unit 61, a reception data processing unit 62, an image creation unit 63, a display unit (monitor) 64, a control unit 65, an operation unit 66, and a power supply unit. 67.
  • the transmission / reception unit 61 receives the echo signal from the capsule transmission / reception unit 32 and outputs it to the reception data processing unit 62. In addition, the transmission / reception unit 61 transmits a control signal from the control unit 65 to the capsule transmission / reception unit 32.
  • the reception data processing unit 62 performs various signal processes on the echo signal output from the transmission / reception unit 61.
  • the reception data processing unit 62 has a B mode processing unit.
  • the B-mode processing unit receives the echo signal from the transmission / reception unit 61 and visualizes the amplitude information of the echo signal.
  • the reception data processing unit 62 may include a CDI (Color Doppler Imaging) processing unit.
  • the CFM processing unit visualizes blood flow information.
  • the reception data processing unit 62 may include a Doppler processing unit.
  • the Doppler processing unit extracts the Doppler shift frequency component by phase detection of the echo signal, and generates a Doppler frequency distribution representing the blood flow velocity by performing FFT processing.
  • the reception data processing unit 62 outputs the echo signal subjected to the signal processing to the image creation unit 63.
  • the control unit 65 controls the operation of each unit of the ultrasonic image diagnostic apparatus 1. For example, the control unit 65 transmits a drive signal for driving the ultrasonic transducer 30 to the capsule transmission / reception unit 32 via the transmission / reception unit 61 to control transmission / reception of ultrasonic waves. Alternatively, the control unit 65 causes the display unit 64 to display an image (ultrasonic image) based on the image data (ultrasound image data) created by the image creation unit 63.
  • the display unit 64 includes a monitor such as a CRT or a liquid crystal display.
  • the operation unit 66 includes an input device such as a keyboard and a mouse. The surgeon performs transmission / reception of ultrasonic waves by the capsule main body 10 via the operation unit 66.
  • FIG. 11 is a diagram schematically showing the driving means.
  • the driving unit 50 includes an arm unit 501, a cam unit 502, and an urging unit 503.
  • This driving means 50 is arranged in an empty space inside the capsule-type main body 10. Here, it is arranged inside the distal end portion (lower end portion in FIG. 11) of the capsule-type main body portion 10, but it may be arranged inside the proximal end portion (upper end portion in FIG. 11) of the capsule-type main body portion 10. Good. Further, similarly to the first embodiment, it may be disposed in the hollow portion 151 of the cylindrical support 15.
  • One end of the arm portion 501 is pivotally supported by the capsule-type main body portion 10. Thereby, the other end portion of the arm portion 501 is configured to swing around the one end portion.
  • a weight 504 is provided at the other end of the arm portion 501.
  • the cam portion 502 is rotatably disposed inside the capsule-type main body portion 10.
  • a motor (not shown) applies a rotational force to the cam portion 502.
  • the cam portion 502 abuts against an intermediate portion between one end portion and the other end portion of the arm portion 501, and when the cam portion 502 is rotated, the intermediate portion of the arm portion 501 is pushed up and down,
  • the arm portion 501 has a cam surface that swings around one end.
  • the cam surface of the cam portion 502 has a long diameter portion 505 whose distance (diameter) from the rotation center gradually increases counterclockwise in FIG. 11 and a short diameter portion 506 whose distance from the rotation center is short and constant. is doing.
  • the starting end of the long diameter portion 505 (the end having the same length as the short diameter portion) and the end of the short diameter portion 506 are continuous. Further, the end of the long diameter portion 505 (the end having the longest diameter) and the start end of the short diameter portion 506 are continuous.
  • the urging means 503 urges the intermediate part of the arm part 501 in a direction in which the intermediate part is brought into contact with the cam part 502.
  • An example of the biasing means 503 is a tension spring. Therefore, when the cam portion 502 is rotated clockwise in FIG. 11, the intermediate portion of the arm portion 501 moves along the cam surface of the cam portion 502, for example, from the start end of the short diameter portion 506 to the end of the short diameter portion 506. It moves relatively from the end to the start of the long diameter portion 505, from the start of the long diameter portion 505 to the end, and from the end of the long diameter portion 505 to the start of the short diameter portion 506.
  • the arm portion 501 When the cam portion 502 is rotating clockwise, the arm portion 501 does not swing while the arm portion 501 is in contact with the short diameter portion 506. Since the arm portion 501 is in contact with the long diameter portion 505, the arm portion 501 gradually swings clockwise in FIG. 11 against the urging force. At the end of the long diameter portion 505, the arm portion 501 swings greatly. Then, by moving from the end of the long diameter portion 505 to the start end of the short diameter portion 506, the arm portion 501 is rapidly swung counterclockwise by the biasing force. Thereby, the rotating shaft of the cam portion 502 receives an impact of the arm portion 501 (including the weight 504), and the capsule main body portion 10 moves forward by the impact force. Each time the cam portion 502 makes one rotation, the capsule main body portion 10 moves forward in response to an impact from the arm portion 501.
  • the capsule main body 10 includes a capsule control unit 33 (see FIG. 10) that controls the rotation of the cam unit 502, and a capsule power supply unit 34 (see FIG. 10) that supplies power to a motor (not shown) that rotates the cam unit 502. 10).
  • the capsule controller outputs instructions of “progress” and “progress end” to the driving unit 50.
  • the driving unit 50 receives the “progress” instruction and supplies power to the motor. In response to the “progress end” instruction, the driving unit 50 stops the power supplied to the motor.
  • FIG. 12 is a diagram of an ultrasonic transducer.
  • the changing means 40 and the driving means 50 are the same as those in the first embodiment.
  • the same number is attached
  • the ultrasonic transducers 30 are of a radial array type arranged in a cylindrical shape (see FIG. 3), but the ultrasonic transducers 30 in the third embodiment are arranged in a flat plate shape. (One-dimensional array type).
  • the cylindrical support 15 is provided with a substantially circular window, and the ultrasonic transducer 30 is arranged so as to correspond to the window.
  • the ultrasonic transducer 30 is configured to be rotatable about an axis orthogonal to the flat plate. The direction of rotation is indicated by arrows in the figure.
  • FIG. 13 is a diagram of an ultrasonic transducer.
  • the ultrasonic transducers 30 are of a radial array type (see FIG. 3). However, the ultrasonic transducers 30 of the fourth embodiment are arranged in a cylindrical shape and have a cylindrical axis. (Two-dimensional array type).
  • the two-dimensional array type By adopting the two-dimensional array type, it is possible to drive the ultrasonic transducers 30 in a predetermined region in a predetermined order and scan an observation target such as the heart, and physically change the direction of the ultrasonic transducer 30 to the heart or the like. It is not necessary to turn to the observation object. Thereby, the changing means 40 used in the first embodiment is not necessary. In addition, an acoustic lens for narrowing the ultrasonic beam is not necessary.
  • FIG. 14 is a schematic diagram of the changing means.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different components are mainly described.
  • the changing unit 40 includes the first ultrasonic motor 41, the second ultrasonic motor 42, and the ball body 43.
  • the changing unit 40 has a triangular cross-sectional bag shape.
  • the ultrasonic transducer 30 may be provided with an angle (elevation angle) by arranging 40 under the flat-plate ultrasonic transducer 30.
  • the direction of this “angle” corresponds to the direction of the elevation angle (the direction of the heart) on the side (throat side) looking up from the capsule-type main body 10 placed in the esophagus.
  • FIG. 14 shows the direction of the elevation angle as “ ⁇ 1”.
  • the present invention is not limited to the triangular cross-sectional shape, and may be cylindrical balloons arranged at two corners or four corners of the mechanism for attaching the ultrasonic transducer 30.
  • the present invention By sending air from outside the body into each balloon and inflating it, it can be adjusted to any elevation angle.
  • air is not sent into the balloon, but it is stably held at an adjusted elevation angle by feeding water or a harmless liquid into a viscous living body.
  • the capsule-type main body 10 is caused to collide with the capsule-type main body 10 in the direction in which the piston 51, the weight 504, and the like move forward, and by the impact force.
  • the drive means 50 which advances this is shown, it is not restricted to this.
  • the capsule-type main body 10 may be moved forward by rotating a screw provided at the rear end of the capsule-type main body 10 and reversely moved by reversing the screw.
  • the power line EL is arranged in the string-like body 21 and power is supplied from the external device 60 to the capsule main body 10 (capsule power supply section 34) via the power line EL. If the power feeding method is used, the power line EL becomes unnecessary, and the string-like body 21 can be further thinned.
  • a power feeding coil provided on the transmission side (external device 60), a resonance coil provided on the reception side (capsule body 10) and coupled to the power feeding coil by mutual induction, and And a resonance frequency adjusting circuit connected to the resonance coil, and for supplying power wirelessly from the transmission side to the reception side (for example, JP-A-2001-185939).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)

Abstract

Provided are an ultrasound medical device and an ultrasound image diagnostic device whereby a burden on a patient is reduced, and it is possible to change an angle of an ultrasound oscillator. An ultrasound medical device of an embodiment comprises a capsule-shaped main body part which contains an ultrasound oscillator. The ultrasound medical device transmits ultrasound to the inner part of a subject from the ultrasound oscillator within the capsule-shaped main body part which is inserted into a tube-shaped part of the subject, and receives reflected waves of the transmitted ultrasound. A change means which is disposed within the capsule-shaped main body part changes the angle of the ultrasound oscillator.

Description

超音波医療装置及び超音波画像診断装置Ultrasonic medical apparatus and ultrasonic diagnostic imaging apparatus
 本発明の実施形態は、超音波医療装置及び超音波画像診断装置に関する。 Embodiments described herein relate generally to an ultrasonic medical apparatus and an ultrasonic diagnostic imaging apparatus.
 超音波画像診断装置は、超音波プローブを用いて被検体内を超音波で走査し、その反射波から生成したデータを基に被検体内部を画像化する。 The ultrasonic diagnostic imaging apparatus scans the inside of a subject with ultrasonic waves using an ultrasonic probe, and images the inside of the subject based on data generated from the reflected waves.
 超音波画像診断装置に用いられる超音波プローブの一例として、TEE(trans-esophageal echocardiograhy)プローブがある(例えば、特許文献1)。 An example of an ultrasonic probe used in an ultrasonic diagnostic imaging apparatus is a TEE (trans-esophageal echocardiography) probe (for example, Patent Document 1).
 TEEプローブは、例えば、食道に経口的に挿入され、心臓等を撮影するために用いられる。TEEプローブは、食道に挿入される導中管、導中管の先端部に設けられた挿入部、挿入部の先端部に配置された超音波振動子、及び、超音波振動子の角度を変更させたり、挿入部を食道壁に密着させるための変更手段を有する。 The TEE probe is inserted orally into the esophagus, for example, and is used for photographing the heart and the like. The TEE probe changes the angle of the guiding tube inserted into the esophagus, the insertion portion provided at the distal end of the guiding tube, the ultrasonic transducer disposed at the distal end of the insertion portion, and the ultrasonic transducer Or changing means for bringing the insertion portion into close contact with the esophageal wall.
 導中管には、超音波振動子への電力が送られる電源線、超音波振動子への制御信号が送られる制御線、超音波振動子からのデータが送られるデータ線、変更手段を操作するワイヤが配置される。 The lead tube is operated with a power line for sending power to the ultrasonic transducer, a control line for sending control signals to the ultrasonic transducer, a data line for sending data from the ultrasonic transducer, and a changing means. The wire to be placed is placed.
 導中管がある程度の剛性を有していため、導中管により挿入部を食道内に送ることが可能となる。しかし、導中管はφ10-12mm程度の太さを有するため、導中管が食道内に挿入される際、及び、挿入された後に、患者に負担がかかる。 Since the guiding pipe has a certain degree of rigidity, the inserting section can be sent into the esophagus by the guiding pipe. However, since the guide tube has a thickness of about φ10-12 mm, the patient is burdened when and after the guide tube is inserted into the esophagus.
 患者の負担を軽減するためには、導中管をできるだけ細くすることが望ましい。導中管を細くすれば、食道内に挿入部を長く留置しておいても、患者に大きな負担がかからないため、例えば、術後の患者の体内を長期にわたり観察することが可能となる。なお、患者を「被検体」という場合がある。 In order to reduce the burden on the patient, it is desirable to make the guiding tube as thin as possible. If the guide tube is made thin, even if the insertion portion is left in the esophagus for a long time, the patient is not burdened greatly. For example, the patient's body after the operation can be observed over a long period of time. The patient may be referred to as “subject”.
特開2002-159495号公報JP 2002-159495 A
 仮に、導中管にワイヤを配置しなければ、ワイヤの太さの分だけ、導中管を細くすることが可能となる。しかしその場合に、どのようにして、超音波振動子の向きを変えるかが問題点となる。 If a wire is not arranged in the guiding pipe, the guiding pipe can be made thinner by the thickness of the wire. However, in that case, the problem is how to change the direction of the ultrasonic transducer.
 また、導中管を細くすると、剛性が低くなり、導中管により挿入部を食道内に送ることが困難になるという問題点があった。 Also, when the guide tube is made thin, the rigidity is lowered, and it is difficult to send the insertion portion into the esophagus by the guide tube.
 この実施形態は、上記の問題を解決するものであり、患者の負担を軽減するとともに、超音波振動子の角度を変更することが可能な超音波医療装置及び超音波画像診断装置を提供することを目的とする。 This embodiment solves the above-described problem, and provides an ultrasonic medical apparatus and an ultrasonic diagnostic imaging apparatus capable of reducing the burden on the patient and changing the angle of the ultrasonic transducer. With the goal.
 また、患者の負担を軽減するとともに、挿入部を食道に容易に送ることが可能な超音波医療装置及び超音波画像診断装置を提供することを目的とする。 It is another object of the present invention to provide an ultrasonic medical apparatus and an ultrasonic diagnostic imaging apparatus that can reduce the burden on the patient and can easily send the insertion portion to the esophagus.
 上記課題を解決するために、実施形態の超音波医療装置は、超音波振動子を内装するカプセル型本体部を有し、被検体の管状部に挿入されたカプセル型本体部内の超音波振動子から被検体内部に対して超音波を送信し、その反射波を受信する。変更手段は、カプセル型本体部内に設けられ、超音波振動子の角度を変化させる。 In order to solve the above-described problem, an ultrasonic medical apparatus according to an embodiment includes a capsule-type main body that houses an ultrasonic vibrator, and the ultrasonic vibrator in the capsule-type main body inserted into a tubular portion of a subject. Transmits ultrasonic waves to the inside of the subject and receives the reflected waves. The changing means is provided in the capsule-type main body and changes the angle of the ultrasonic transducer.
第1実施形態に係る超音波画像診断装置の模式図。1 is a schematic diagram of an ultrasonic diagnostic imaging apparatus according to a first embodiment. 超音波医療装置の斜視図。The perspective view of an ultrasonic medical device. カプセル型本体部の内部を示す正面図。The front view which shows the inside of a capsule type main-body part. カプセル型本体部の内部を示す斜視図。The perspective view which shows the inside of a capsule type main-body part. 超音波振動子の角度を変更したときの図。The figure when changing the angle of an ultrasonic transducer | vibrator. 第1超音波モータの模式図。The schematic diagram of a 1st ultrasonic motor. 駆動手段を模式的に示す図。The figure which shows a drive means typically. ピストンが下降途中にあるときの電磁コイルの図。The figure of an electromagnetic coil when a piston is in the middle of descent. ピストンが最下位置に移動したときの電磁コイルの図。The figure of an electromagnetic coil when a piston moves to the lowest position. ピストンが最下位置にあるときの電磁コイルの図。The figure of an electromagnetic coil when a piston exists in the lowest position. ピストンが上昇途中にあるときの電磁コイルの図。The figure of an electromagnetic coil when a piston is in the middle of ascent. ピストンが最上位置に移動したときの電磁コイルの図。The figure of an electromagnetic coil when a piston moves to the uppermost position. カプセル型本体部の内部を模式的に示す図。The figure which shows the inside of a capsule type main-body part typically. 超音波医療装置を用いて、被検体の体内を観察するときの一連の動作を示すフローチャート。The flowchart which shows a series of operation | movement when observing the inside of a subject using an ultrasonic medical device. 超音波画像診断装置の構成ブロック図。1 is a configuration block diagram of an ultrasonic image diagnostic apparatus. 第2実施形態に係る駆動手段を模式的に示す図。The figure which shows typically the drive means which concerns on 2nd Embodiment. 第3実施形態に係る超音波振動子の図。The figure of the ultrasonic vibrator concerning a 3rd embodiment. 第4実施形態に係る超音波振動子の図。The figure of the ultrasonic vibrator concerning a 4th embodiment. 第5実施形態に係る変更手段の摸式図。The schematic diagram of the change means which concerns on 5th Embodiment.
[第1実施形態]
 超音波画像診断装置の第1実施形態について各図を参照して説明する。
[First Embodiment]
A first embodiment of an ultrasonic diagnostic imaging apparatus will be described with reference to the drawings.
 図1に、本実施形態に係る超音波画像診断装置1は、カプセル型本体部10を食道E内の所望の位置に留置し、留置された状態で被検体Pにおける所望の臓器(心臓H)に対して超音波を送信し、心臓Hからの反射波をエコー信号として受信し、心臓Hの観察を行う一例を示している。以下、超音波の送信及び反射波の受信を併せて「超音波の送受信」という場合がある。カプセル型本体部10は、エコー信号を外部装置60に送信し、外部装置60は、カプセル型本体部10から受信した信号を処理し、超音波画像を作成・表示させる。なお、各図面に示された心臓Hは、本実施形態における観察対象が心臓Hであることを理解し易くするために模式的に示したものである。なお、咽喉を図1に“T”で示す。 In FIG. 1, an ultrasonic diagnostic imaging apparatus 1 according to the present embodiment places a capsule-type main body 10 at a desired position in the esophagus E, and in the placed state, a desired organ (heart H) in a subject P. 1 shows an example in which an ultrasonic wave is transmitted, a reflected wave from the heart H is received as an echo signal, and the heart H is observed. Hereinafter, transmission of ultrasonic waves and reception of reflected waves may be collectively referred to as “transmission and reception of ultrasonic waves”. The capsule main body 10 transmits an echo signal to the external device 60, and the external device 60 processes the signal received from the capsule main body 10 to create and display an ultrasonic image. The heart H shown in each drawing is schematically shown in order to make it easy to understand that the observation target in this embodiment is the heart H. The throat is indicated by “T” in FIG.
 以下の説明で、超音波画像診断装置1というときは、超音波医療装置2及び外部装置60を含む構成をいうものとする。また、超音波医療装置2というときは、カプセル型本体部10及び導中管20を含む構成をいうものとする。しかし、これらの装置1、2は、説明の都合上に分けられたもので、超音波医療装置2が超音波画像診断装置1を含む構成であってもよい。 In the following description, the ultrasound diagnostic imaging apparatus 1 refers to a configuration including the ultrasound medical apparatus 2 and the external apparatus 60. In addition, the ultrasonic medical device 2 refers to a configuration including the capsule main body 10 and the guiding tube 20. However, these devices 1 and 2 are separated for convenience of explanation, and the ultrasonic medical device 2 may include the ultrasonic image diagnostic device 1.
 図2は超音波医療装置の斜視図である。
 図1及び図2に示すように、超音波医療装置は、カプセル型本体部10及び導中管20を有している。図1に導中管20を破線で示し、図2に導中管20の先端部を示す。
FIG. 2 is a perspective view of the ultrasonic medical device.
As shown in FIGS. 1 and 2, the ultrasonic medical apparatus has a capsule-type main body 10 and a guiding tube 20. FIG. 1 shows the guiding pipe 20 with a broken line, and FIG. 2 shows the tip of the guiding pipe 20.
 導中管20の先端部はカプセル型本体部10が連結されている。導中管20の基端部は外部装置60が連結されている。 The capsule body 10 is connected to the leading end of the guiding pipe 20. An external device 60 is connected to the proximal end portion of the guiding pipe 20.
 カプセル型本体部10及び導中管20は被検体の食道Eに挿入される。カプセル型本体部10は食道E内の所望の位置に留置され、食道Eの壁に密着された状態で使用される。 The capsule body 10 and the guide tube 20 are inserted into the esophagus E of the subject. The capsule-type main body 10 is placed in a desired position in the esophagus E and used in a state of being in close contact with the wall of the esophagus E.
(カプセル型本体部10)
 図3は、カプセル型本体部10の内部を示す正面図である。図3に示すように、カプセル型本体部10は、その長軸方向の一端部に、食道Eに挿入し易いように半球状の外面部を有し、その長軸方向の他端部に、食道Eから引き出し易いように半球状の外面部を有する。
(Capsule body 10)
FIG. 3 is a front view showing the inside of the capsule-type main body 10. As shown in FIG. 3, the capsule body 10 has a hemispherical outer surface at one end in the long axis direction so that it can be easily inserted into the esophagus E, and at the other end in the long axis direction. It has a hemispherical outer surface so that it can be easily pulled out from the esophagus E.
 また、カプセル型本体部10は、その長軸方向の両端部に球状の内面部11を有している。球の中心の位置を図3に“O1”で示す。 The capsule body 10 has spherical inner surface portions 11 at both ends in the major axis direction. The position of the center of the sphere is indicated by “O1” in FIG.
 両方の内面部11の間には、超音波振動子30、変更手段40及び駆動手段50が配置されている。カプセル型本体部10の円周面12と超音波振動子30との間には、音響媒体(例えば、水)13が充填されている。 The ultrasonic transducer 30, the changing unit 40, and the driving unit 50 are disposed between the both inner surface portions 11. An acoustic medium (for example, water) 13 is filled between the circumferential surface 12 of the capsule body 10 and the ultrasonic transducer 30.
(導中管20)
 図1及び図2に示すように、導中管20は、紐状体21を有している。
(Guide pipe 20)
As shown in FIGS. 1 and 2, the guiding pipe 20 has a string-like body 21.
 紐状体21の内部には、多くても電源線EL及び信号線SL(図10参照)が配置されている。電源線ELは、外部装置60からカプセル型本体部10に電力を送るためのものである。信号線SLは、外部装置60とカプセル型本体部10との間で信号(制御信号)を送受信するためのものである。 Inside the string-like body 21, a power line EL and a signal line SL (see FIG. 10) are arranged at most. The power line EL is for sending electric power from the external device 60 to the capsule main body 10. The signal line SL is for transmitting and receiving a signal (control signal) between the external device 60 and the capsule main body 10.
 この実施形態では、紐状体21をできるだけ細くするために、電源線EL及び信号線SL以外の線である、ワイヤ及びデータ線が配置されていない。ワイヤが配置されていないため、超音波振動子30の角度を変更するため変更手段40(後述する)が、カプセル型本体部10の内部に設けられている。 In this embodiment, in order to make the string-like body 21 as thin as possible, wires and data lines other than the power supply line EL and the signal line SL are not arranged. Since no wire is arranged, a changing means 40 (described later) for changing the angle of the ultrasonic transducer 30 is provided inside the capsule-type main body 10.
 データ線が配置されていないため、超音波振動子30により受信された被検体Pからの反射波(エコー信号)は、無線により、カプセル型本体部10から外部装置60に送信される。エコー信号を無線によりカプセル型本体部10から外部装置60へ送信する手段としては、カプセル送受信部32(後述する)がカプセル型本体部10に設けられ、送受信部61(後述する)が外部装置60に設けられている。 Since no data line is disposed, the reflected wave (echo signal) from the subject P received by the ultrasonic transducer 30 is transmitted from the capsule main body 10 to the external device 60 by radio. As means for transmitting an echo signal from the capsule main body 10 to the external device 60 wirelessly, a capsule transmission / reception unit 32 (described later) is provided in the capsule main body 10, and a transmission / reception unit 61 (described later) is provided by the external device 60. Is provided.
 電源線ELなどの被覆には体腔内で使用できる素材を選定し、咽頭部に留置しても被検体Pに負担にならないような柔らかさをもたせる。 The material that can be used in the body cavity is selected for the covering of the power line EL and the like, and the softness that does not burden the subject P even if it is placed on the pharynx.
 紐状体21には、カプセル型本体部10からの特定の距離(長さ)を識別可能なマーカ22が設けられている。マーカ22は、形状や色彩で視覚的に認識できるように構成されている。マーカ22の一例として、目盛りであってもよい。具体例として、食道Eにカプセル型本体部10を配置して心臓Hを観察する場合、口腔から食道Eの心臓Hを観察しうる概略位置(以下、所定位置と記す)までの一般的な長さに基づいて、紐状体21にマーカ22を設ける。術者は、紐状体21を押し込んでカプセル型本体部10を食道E内に挿入しつつ、マーカ22の位置を確認する。よって、マーカ22が口腔近傍に到達した場合には、術者はカプセル型本体部10が食道E内の所定位置に位置したことを容易に把握することができる。なお、挿入されたカプセル型本体部10が食道Eの蠕動運動により進行することを防止するため、たとえば、被検体Pの口腔内に配置されるマウスピースM等に紐状体21の一端を固定することが可能である。 The string-like body 21 is provided with a marker 22 that can identify a specific distance (length) from the capsule-type main body 10. The marker 22 is configured so that it can be visually recognized by its shape and color. An example of the marker 22 may be a scale. As a specific example, when the capsule body 10 is placed in the esophagus E and the heart H is observed, the general length from the oral cavity to the approximate position where the heart H of the esophagus E can be observed (hereinafter referred to as a predetermined position). Based on this, a marker 22 is provided on the string-like body 21. The operator confirms the position of the marker 22 while pushing the string-like body 21 and inserting the capsule-type main body 10 into the esophagus E. Therefore, when the marker 22 reaches the vicinity of the oral cavity, the operator can easily grasp that the capsule-type main body 10 is located at a predetermined position in the esophagus E. In order to prevent the inserted capsule-type main body 10 from proceeding due to the peristaltic movement of the esophagus E, for example, one end of the string-like body 21 is fixed to the mouthpiece M or the like placed in the oral cavity of the subject P. Is possible.
(超音波振動子30)
 超音波振動子30は、カプセル型本体部10に格納されている。超音波振動子30は、カプセル制御部33(図10参照)からの駆動信号に基づいて、放射面から超音波を送信する。また、超音波振動子30は、被検体Pから反射波(エコー信号)を受信し、カプセル送受信部32(図10参照)に送る。
(Ultrasonic transducer 30)
The ultrasonic transducer 30 is stored in the capsule body 10. The ultrasonic transducer 30 transmits ultrasonic waves from the radiation surface based on a drive signal from the capsule control unit 33 (see FIG. 10). Further, the ultrasonic transducer 30 receives a reflected wave (echo signal) from the subject P and sends it to the capsule transceiver 32 (see FIG. 10).
 超音波振動子30は、音響レンズ、整合層、圧電素子、バッキング材から構成されている。図3では、これらの集合体としての超音波振動子30を示す。 The ultrasonic transducer 30 is composed of an acoustic lens, a matching layer, a piezoelectric element, and a backing material. In FIG. 3, the ultrasonic transducer | vibrator 30 as these aggregate | assembly is shown.
 音響レンズは、超音波振動子30の先端側に配置され、超音波ビームをスライス方向に集束させるものである。整合層は、圧電素子と生体組織との間に配置され、両者の中間的な音響インピーダンスを有する。圧電素子は、電気新語を超音波信号に変換し、その逆に超音波信号を電気信号に変換する。バッキング材は、圧電素子の背面に配置され、背面に放射された音響エネルギーを吸収する。 The acoustic lens is arranged on the tip side of the ultrasonic transducer 30 and focuses the ultrasonic beam in the slice direction. The matching layer is disposed between the piezoelectric element and the living tissue and has an acoustic impedance intermediate between the two. The piezoelectric element converts a new electric word into an ultrasonic signal, and vice versa. The backing material is disposed on the back surface of the piezoelectric element and absorbs acoustic energy radiated to the back surface.
 複数の超音波振動子30は、円筒状、略部分円筒状、または、平板状に配列されている。ここでは、複数の超音波振動子30を円筒状に配列したラジアルアレイ型を図3に示す。円筒状に成形された支持体15に超音波振動子30が配列されているが、円筒状に成形されたバッキング材に圧電素子等が配列されてもよい。このときには、支持体15はバッキング材により構成される。なお、円筒状における筒軸を、単に「回転軸」、「超音波振動子の回転軸」、また、「支持体の回転軸」という場合がある。 The plurality of ultrasonic transducers 30 are arranged in a cylindrical shape, a substantially partial cylindrical shape, or a flat plate shape. Here, a radial array type in which a plurality of ultrasonic transducers 30 are arranged in a cylindrical shape is shown in FIG. Although the ultrasonic transducers 30 are arranged on the support 15 formed in a cylindrical shape, piezoelectric elements and the like may be arranged on a backing material formed in a cylindrical shape. At this time, the support 15 is made of a backing material. In addition, the cylinder axis in the cylindrical shape may be simply referred to as “rotation axis”, “rotation axis of ultrasonic transducer”, or “rotation axis of support”.
(変更手段40)
 図4はカプセル型本体部10の内部を示す斜視図、図5は、超音波振動子30の角度を変更したときの図である。
(Change means 40)
4 is a perspective view showing the inside of the capsule-type main body 10, and FIG. 5 is a view when the angle of the ultrasonic transducer 30 is changed.
 図4及び図5に示すように、変更手段40は、第1超音波モータ41と、第2超音波モータ42と、ボール体43と、有している。 4 and 5, the changing means 40 has a first ultrasonic motor 41, a second ultrasonic motor 42, and a ball body 43.
 支持体15の一端部(図4及び図5において下端部)には保持体16が設けられている。保持体16は支持体15と一体的に形成されている。 A holding body 16 is provided at one end of the support 15 (the lower end in FIGS. 4 and 5). The holding body 16 is formed integrally with the support body 15.
 ボール体43は、一端側の内面部11に沿って転動可能に保持体16に支持されている。この構成によれば、ボール体43が内面部11に沿って転動されるとき、超音波振動子30の回転軸31の一端部も内面部11に沿って移動される。 The ball body 43 is supported by the holding body 16 so as to roll along the inner surface portion 11 on one end side. According to this configuration, when the ball body 43 rolls along the inner surface portion 11, one end portion of the rotation shaft 31 of the ultrasonic transducer 30 is also moved along the inner surface portion 11.
 第1超音波モータ41は、超音波振動子30の回転軸31の他端部(図4及び図5において上端部)または他端側の内面部11のいずれか一方に配置されている。一端側の内面部を「第1内面部」、及び、他端側の内面部を「第2内面部」という場合がある。 The first ultrasonic motor 41 is disposed on either the other end (the upper end in FIGS. 4 and 5) of the rotating shaft 31 of the ultrasonic transducer 30 or the inner surface 11 on the other end side. The inner surface portion on one end side may be referred to as “first inner surface portion”, and the inner surface portion on the other end side may be referred to as “second inner surface portion”.
 以下、第1超音波モータ41が超音波振動子30の回転軸31の他端部に配置されているものとして説明する。 Hereinafter, description will be made assuming that the first ultrasonic motor 41 is disposed at the other end of the rotating shaft 31 of the ultrasonic transducer 30.
 図6は、第1超音波モータ41の模式図である。図6に示すように、第1超音波モータ41は、圧電セラミックス411、ステータ412、及び、ロータ413を有している。圧電セラミックス411は、ステータ412を間にしてロータ413と反対側に配置され、ステータ412に貼られている。ステータ412が貼られていない側の面414は、凹凸形状を有していて、ロータ413と密着している。 FIG. 6 is a schematic diagram of the first ultrasonic motor 41. As shown in FIG. 6, the first ultrasonic motor 41 includes a piezoelectric ceramic 411, a stator 412, and a rotor 413. The piezoelectric ceramic 411 is disposed on the opposite side of the rotor 413 with the stator 412 therebetween, and is attached to the stator 412. The surface 414 on the side where the stator 412 is not attached has an uneven shape and is in close contact with the rotor 413.
 圧電セラミックス411に高周波電圧を付与すると、振動(伸縮)する。それにより、ステータ412の面414に進行波が生じ、進行波の方向と反対の方向にロータ413を移動させる。図6に、進行波の方向及びその反対の方向を“D1”及び“D2”で示す。 When a high frequency voltage is applied to the piezoelectric ceramic 411, it vibrates (expands and contracts). Thereby, a traveling wave is generated on the surface 414 of the stator 412, and the rotor 413 is moved in a direction opposite to the traveling wave direction. In FIG. 6, the direction of the traveling wave and the opposite direction are indicated by “D1” and “D2”.
 この実施形態では、圧電セラミックス411及びステータ412が、超音波振動子30の回転軸31の他端部に設けられている。ロータ413が第2内面部11を構成している。ステータ412及びロータ413は、第2内面部11に沿う円弧形状を有している。カプセル型本体部10が導中管20に引っ張られているため、ロータ413が固定されている。 In this embodiment, the piezoelectric ceramic 411 and the stator 412 are provided at the other end of the rotating shaft 31 of the ultrasonic transducer 30. The rotor 413 constitutes the second inner surface portion 11. The stator 412 and the rotor 413 have an arc shape along the second inner surface portion 11. Since the capsule-type main body 10 is pulled by the guiding pipe 20, the rotor 413 is fixed.
 なお、ロータ413が第2内面部11に設けられていてもよい。第1超音波モータ41が第2内面部11に配置される構成では、圧電セラミックス411及びステータ412が第2内面部11に設けられ、ロータ413が超音波振動子30の回転軸31の他端部を構成すればよい。 Note that the rotor 413 may be provided on the second inner surface portion 11. In the configuration in which the first ultrasonic motor 41 is disposed on the second inner surface portion 11, the piezoelectric ceramic 411 and the stator 412 are provided on the second inner surface portion 11, and the rotor 413 is the other end of the rotating shaft 31 of the ultrasonic transducer 30. What is necessary is just to comprise a part.
 圧電セラミックス411を駆動させたとき、ステータ412が第2内面部11を反対の方向D2に移動させようとするが、ロータ413が固定されているため、超音波振動子30の回転軸31の他端部が進行波の方向D1に移動される。 When the piezoelectric ceramic 411 is driven, the stator 412 tries to move the second inner surface portion 11 in the opposite direction D2, but since the rotor 413 is fixed, other than the rotating shaft 31 of the ultrasonic transducer 30 The end is moved in the traveling wave direction D1.
 圧電セラミックス411の駆動により、例えば、超音波振動子30の回転軸31の他端部が、時計回りの方向に第2内面部11に対して相対移動されるとき、ボール体43が設けられた、超音波振動子30の回転軸31の一端部が、第1内面部11に沿って時計回りの方向に移動される。一方、圧電セラミックス411の駆動により、例えば、超音波振動子30の回転軸31の他端部が、反時計回りの方向に第2内面部11に対して相対移動されるとき、超音波振動子30の回転軸31の一端部が、第1内面部11に沿って反時計回りの方向に移動される。 When the piezoelectric ceramic 411 is driven, for example, when the other end portion of the rotation shaft 31 of the ultrasonic transducer 30 is moved relative to the second inner surface portion 11 in the clockwise direction, the ball body 43 is provided. One end portion of the rotation shaft 31 of the ultrasonic transducer 30 is moved in the clockwise direction along the first inner surface portion 11. On the other hand, when the piezoelectric ceramic 411 is driven, for example, when the other end of the rotating shaft 31 of the ultrasonic transducer 30 is moved relative to the second inner surface portion 11 in the counterclockwise direction, the ultrasonic transducer One end portion of the 30 rotation shafts 31 is moved in the counterclockwise direction along the first inner surface portion 11.
 以上の構成により、超音波振動子30の回転軸31が位置O1を中心に時計回りの方向または反時計回りの方向に傾けられる。 With the above configuration, the rotating shaft 31 of the ultrasonic transducer 30 is tilted clockwise or counterclockwise about the position O1.
 図3に、いずれの方向にも傾けられていない初期状態の超音波振動子30の回転軸31を示す。図5に、時計回りの方向に傾けられた超音波振動子30の回転軸31の傾き角(超音波振動子30の角度)を“θ”で示す。 FIG. 3 shows the rotating shaft 31 of the ultrasonic transducer 30 in an initial state that is not tilted in any direction. In FIG. 5, the inclination angle of the rotation shaft 31 of the ultrasonic transducer 30 tilted in the clockwise direction (the angle of the ultrasonic transducer 30) is indicated by “θ”.
 カプセル型本体部10には、第1超音波モータ41を制御するカプセル制御部33(図10参照)、及び、第1超音波モータ41に、電力を供給するカプセル電源部34(図10参照)が設けられている。 The capsule body 10 includes a capsule controller 33 (see FIG. 10) for controlling the first ultrasonic motor 41 and a capsule power supply 34 (see FIG. 10) for supplying power to the first ultrasonic motor 41. Is provided.
 カプセル制御部33は、制御部65からの「角度変更」の指示、及び、その指示の終了を変更手段40に出力する。変更手段40は、「角度変更」の指示を受けて、生成した高周波電圧を圧電セラミックス411に与え、圧電セラミックス411を振動(伸縮)させる。それにより、超音波振動子30の角度を変更させる。 The capsule control unit 33 outputs the “angle change” instruction from the control unit 65 and the end of the instruction to the changing unit 40. In response to the instruction “change angle”, the changing unit 40 applies the generated high-frequency voltage to the piezoelectric ceramic 411 and vibrates (stretches) the piezoelectric ceramic 411. Thereby, the angle of the ultrasonic transducer 30 is changed.
 変更手段40は、「角度変更」の指示の終了を受けて、圧電セラミックス411への高周波電圧の供給を停止する。それにより、圧電セラミックス411の振動を停止させ、超音波振動子30の角度を保持する。 The changing means 40 stops the supply of the high-frequency voltage to the piezoelectric ceramic 411 in response to the end of the “angle change” instruction. Thereby, the vibration of the piezoelectric ceramic 411 is stopped and the angle of the ultrasonic transducer 30 is maintained.
 以上のように、第1超音波モータ41は、超音波振動子30の角度(超音波振動子30の回転軸31の傾き角度)を変更し、かつ、その角度に保持するものである。 As described above, the first ultrasonic motor 41 changes and holds the angle of the ultrasonic transducer 30 (the tilt angle of the rotation shaft 31 of the ultrasonic transducer 30).
 次に、第2超音波モータ42について図4を参照して説明する。なお、第2超音波モータ42の基本的な構成は、第1超音波モータ41と同じであるため、第1超音波モータ41と異なる構成について主に説明し、重複する説明を省略する。 Next, the second ultrasonic motor 42 will be described with reference to FIG. Since the basic configuration of the second ultrasonic motor 42 is the same as that of the first ultrasonic motor 41, the configuration different from the first ultrasonic motor 41 will be mainly described, and the redundant description will be omitted.
 第2超音波モータ42は、超音波振動子30の周方向の角度を変更し、かつ、その角度に保持するものである。 The second ultrasonic motor 42 changes the angle in the circumferential direction of the ultrasonic transducer 30 and holds it at that angle.
 第2超音波モータ42も、圧電セラミック、ステータ及びロータ(それぞれ図示省略)を有している。これらは、支持体15の一端部(図4において下端部)側に配置されている。例えば、圧電セラミック及びステータが支持体15に設けられ、ロータが超音波振動子30に設けられている。ステータ及びロータは、超音波振動子30の円周に沿う環形状を有している。 The second ultrasonic motor 42 also has a piezoelectric ceramic, a stator, and a rotor (each not shown). These are arranged on one end (lower end in FIG. 4) side of the support 15. For example, a piezoelectric ceramic and a stator are provided on the support 15, and a rotor is provided on the ultrasonic transducer 30. The stator and the rotor have an annular shape along the circumference of the ultrasonic transducer 30.
 なお、第1超音波モータ41と同様に、ロータが支持体15に設けられ、圧電セラミック及びステータが超音波振動子30に設けられてもよい。 Note that, similarly to the first ultrasonic motor 41, the rotor may be provided on the support 15, and the piezoelectric ceramic and the stator may be provided on the ultrasonic transducer 30.
 圧電セラミックの駆動方法は、第1超音波モータ41と同様である。すなわち、圧電セラミックス411に高周波電圧を付与すると、振動(伸縮)する。それにより、ステータの面に進行波が生じ、進行波の方向と反対の方向にロータを移動させようとするが、ロータが固定されているため、超音波振動子30が支持体15に対して、回転軸31回り(周方向)に相対回転される。 The driving method of the piezoelectric ceramic is the same as that of the first ultrasonic motor 41. That is, when a high frequency voltage is applied to the piezoelectric ceramic 411, the piezoelectric ceramic 411 vibrates (expands and contracts). As a result, a traveling wave is generated on the surface of the stator and tries to move the rotor in a direction opposite to the direction of the traveling wave. However, since the rotor is fixed, the ultrasonic vibrator 30 is moved relative to the support 15. , Relative rotation about the rotation axis 31 (circumferential direction).
 カプセル型本体部10には、第2超音波モータ42を制御するカプセル制御部33(図10参照)、及び、第2超音波モータ42に電力を供給するカプセル電源部34(図10参照)が設けられている。 The capsule main body 10 includes a capsule control unit 33 (see FIG. 10) for controlling the second ultrasonic motor 42 and a capsule power supply unit 34 (see FIG. 10) for supplying power to the second ultrasonic motor 42. Is provided.
 カプセル制御部33は、制御部65からの「回転角変更」及び「変更終了」の指示を変更手段40に出力する。変更手段40は、「回転角変更」の指示を受けて、生成した高周波電圧を圧電セラミックに与え、圧電セラミックを振動(伸縮)させる。それにより、超音波振動子30の回転角度を変更させる。 The capsule control unit 33 outputs the “rotation angle change” and “change end” instructions from the control unit 65 to the change means 40. In response to the instruction “change rotation angle”, the changing unit 40 applies the generated high-frequency voltage to the piezoelectric ceramic, and vibrates (stretches) the piezoelectric ceramic. Thereby, the rotation angle of the ultrasonic transducer 30 is changed.
 変更手段40は、「変更終了」の指示を受けて、圧電セラミックへの高周波電圧の供給を停止する。それにより、圧電セラミックの振動を停止させ、超音波振動子30の回転角度を保持する。 The changing means 40 stops the supply of the high frequency voltage to the piezoelectric ceramic in response to the instruction of “end of change”. Thereby, the vibration of the piezoelectric ceramic is stopped, and the rotation angle of the ultrasonic transducer 30 is maintained.
 以上のように、カプセル型本体部10の内部に変更手段40が設けられているので、超音波振動子30の角を変更するためのワイヤが不要となり、ワイヤを紐状体21内に配置しないでもよく、その分だけ、紐状体21を細くすることが可能となる。紐状体21を細くことで、被検体Pの体内を観察するとき、被検体Pの負担が軽減される。 As described above, since the changing means 40 is provided inside the capsule-type main body 10, a wire for changing the corner of the ultrasonic transducer 30 becomes unnecessary, and the wire is not arranged in the string-like body 21. However, the string-like body 21 can be made thinner by that amount. By narrowing the string-like body 21, when observing the inside of the subject P, the burden on the subject P is reduced.
(駆動手段50)
 次に、カプセル型本体部10を食道E内で進行させるための駆動手段50について図3、図7A及び図8を参照して説明する。
(Drive means 50)
Next, the drive means 50 for advancing the capsule type main body 10 in the esophagus E will be described with reference to FIGS. 3, 7A and 8. FIG.
 図7Aは駆動手段50を模式的に示す図、図8はカプセル型本体部10の内部を模式的に示す図である。図7Aに、ピストン51を示すと共に、その上方及び下方に電磁コイル53の極性のみ(“N”、“S”)を示す。図3に示す下方がカプセル型本体部10の進行方向であって図7Aに“S1”で表わし、図3に示す上方が進行方向と反対の方向であって図7Aに“S2”で表わす。図7B-図7Fも同様である。なお、進行方向を下方、反対方向を上方という場合がある。図8に、超音波振動子30が配置される領域の一例を一点鎖線で示す。 7A is a diagram schematically showing the driving means 50, and FIG. 8 is a diagram schematically showing the inside of the capsule-type main body 10. As shown in FIG. FIG. 7A shows the piston 51, and only the polarity ("N", "S") of the electromagnetic coil 53 is shown above and below it. The lower direction shown in FIG. 3 is the traveling direction of the capsule-type main body 10 and is represented by “S1” in FIG. 7A, and the upper direction shown in FIG. 3 is the direction opposite to the traveling direction and is represented by “S2” in FIG. The same applies to FIGS. 7B to 7F. In some cases, the traveling direction is referred to as the downward direction, and the opposite direction is referred to as the upward direction. In FIG. 8, an example of the area | region where the ultrasonic transducer | vibrator 30 is arrange | positioned is shown with a dashed-dotted line.
 図3、図7A及び図8に示すように、駆動手段50は、支持体15の中空部151に配置されている。 As shown in FIG. 3, FIG. 7A and FIG. 8, the driving means 50 is disposed in the hollow portion 151 of the support 15.
 駆動手段50は、ピストン51と、永久磁石52と、電磁コイル53とを有している。 The driving means 50 includes a piston 51, a permanent magnet 52, and an electromagnetic coil 53.
 ピストン51は、円筒状の支持体15の中空部151を筒軸の方向へ往復移動(図3において上下方向の移動)可能に配置されている。この中空部151が、カプセル型本体部10の円筒状における内部に相当する。 The piston 51 is disposed so as to be able to reciprocate in the direction of the cylinder axis (moving up and down in FIG. 3) through the hollow portion 151 of the cylindrical support 15. The hollow portion 151 corresponds to the inside of the capsule body 10 in the cylindrical shape.
 永久磁石52は、例えば、ピストン51の一端部(図3で上端部)がN極、他端部(図3で下端部)がS極となるように設けられている。 The permanent magnet 52 is provided, for example, such that one end (upper end in FIG. 3) of the piston 51 is an N pole and the other end (lower end in FIG. 3) is an S pole.
 電磁コイル53は、中空部151の上端側と下端側とに配置されている。したがって、上端側の電磁コイル53と下端側の電磁コイル53との間に、ピストン51が往復移動可能に構成される。なお、ピストン51を下降させるときの加速度をピストン51を上昇させるときの加速度より大きくさせるように構成される。磁束密度は電流に比例するから、電磁コイル53に流す電流を、上昇時より下降時を大きくすることで、上昇時の加速度が下降時より大きくなる。この構成により、ピストン51を底部152に衝突させたときの衝撃力が、ピストン51を天井部153に衝突させたときの衝撃力より大きくなる。それにより、カプセル型本体部10の下方の進行を続けさせる。なお、ピストン51を天井部153に衝突させたときの衝撃力を小さくするために、天井部153に衝撃緩和部材を配置してもよい。 The electromagnetic coil 53 is disposed on the upper end side and the lower end side of the hollow portion 151. Therefore, the piston 51 is configured to be capable of reciprocating between the upper end side electromagnetic coil 53 and the lower end side electromagnetic coil 53. The acceleration when the piston 51 is lowered is configured to be larger than the acceleration when the piston 51 is raised. Since the magnetic flux density is proportional to the current, by increasing the current flowing through the electromagnetic coil 53 at the time of lowering than at the time of rising, the acceleration at the time of rising becomes larger than that at the time of lowering. With this configuration, the impact force when the piston 51 collides with the bottom portion 152 becomes larger than the impact force when the piston 51 collides with the ceiling portion 153. Thereby, the downward movement of the capsule-type main body 10 is continued. In order to reduce the impact force when the piston 51 collides with the ceiling portion 153, an impact relaxation member may be disposed on the ceiling portion 153.
 カプセル型本体部10には、電磁コイル53を制御するカプセル制御部33(図10参照)、及び、電磁コイル53に電力を供給するカプセル電源部34(図10参照)が設けられている。 The capsule main body 10 is provided with a capsule controller 33 (see FIG. 10) for controlling the electromagnetic coil 53 and a capsule power supply unit 34 (see FIG. 10) for supplying electric power to the electromagnetic coil 53.
 カプセル制御部33は、制御部65からの「進行」及び「進行終了」の指示を駆動手段50に出力する。駆動手段50は、「進行」の指示を受けて、電磁コイル53に予め定められた周期で交番電流を送る。そにより、電磁コイル53の両端部(図3において、上端部及び下端部)に生じる磁極を変化させる。駆動手段50は、「進行終了」の指示を受けて、電磁コイル53に送られる交番電流を止める。 The capsule control unit 33 outputs “Progress” and “Progress end” instructions from the control unit 65 to the driving unit 50. In response to the “Progress” instruction, the driving unit 50 sends an alternating current to the electromagnetic coil 53 at a predetermined cycle. Thereby, the magnetic poles generated at both end portions (the upper end portion and the lower end portion in FIG. 3) of the electromagnetic coil 53 are changed. The drive unit 50 stops the alternating current sent to the electromagnetic coil 53 in response to the instruction “end of progress”.
 以上のカプセル制御部33による電磁コイル53の制御の一例について図7Aから図7Fを参照して説明する。 An example of the control of the electromagnetic coil 53 by the capsule controller 33 will be described with reference to FIGS. 7A to 7F.
 図7Aは、ピストン51が最上位置に移動したときの電磁コイル53の図である。図7Aに示すように、ピストン51を最上位置に移動させたとき、上端側の電磁コイル53にN極を生じさせるように交番電流を送る。それにより、ピストン51の上端部側のN極が斥力を受け、ピストン51を下降させる。 FIG. 7A is a diagram of the electromagnetic coil 53 when the piston 51 moves to the uppermost position. As shown in FIG. 7A, when the piston 51 is moved to the uppermost position, an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the upper end side. Thereby, the N pole on the upper end side of the piston 51 receives a repulsive force and lowers the piston 51.
 図7Bはピストン51が下降途中にあるときの電磁コイル53の図である。図7Bに示すように、ピストン51の下降の途中では、下端側の電磁コイル53にN極を生じさせるように交番電流を送る。このN極により、ピストン51の下端部側のS極が引力を受け、ピストン51を加速させる。ピストン51を最下位置に移動させたとき、支持体15の底部152に衝突させる。そのときの衝撃力が支持体15からカプセル型本体部10に伝わり、カプセル型本体部10を下方に進行させる。 FIG. 7B is a diagram of the electromagnetic coil 53 when the piston 51 is in the middle of lowering. As shown in FIG. 7B, during the downward movement of the piston 51, an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the lower end side. By this N pole, the S pole on the lower end side of the piston 51 receives an attractive force, and the piston 51 is accelerated. When the piston 51 is moved to the lowest position, it is caused to collide with the bottom 152 of the support 15. The impact force at that time is transmitted from the support 15 to the capsule-type main body 10 and advances the capsule-type main body 10 downward.
 図7Cはピストン51が最下位置に移動したとき電磁コイル53の図である。図7Cに示すように、ピストン51を底部に衝突させるまで、電磁コイル53の極性を変えない。すなわち、下端側の電磁コイル53にN極を生じさせるように交番電流を送る。 FIG. 7C is a diagram of the electromagnetic coil 53 when the piston 51 moves to the lowest position. As shown in FIG. 7C, the polarity of the electromagnetic coil 53 is not changed until the piston 51 collides with the bottom. That is, an alternating current is sent so as to generate an N pole in the electromagnetic coil 53 on the lower end side.
 図7Dは、ピストン51が最下位置にあるときの電磁コイル53の図である。ピストン51を底部に衝突させた後、ピストン51が最下位置にあるとき、図7Dに示すように、下端側の電磁コイル53にS極を生じさせるように交番電流を送る。このS極により、ピストン51の下端部側のS極が斥力を受け、ピストン51を上昇させる。 FIG. 7D is a diagram of the electromagnetic coil 53 when the piston 51 is in the lowest position. After the piston 51 collides with the bottom, when the piston 51 is at the lowest position, as shown in FIG. 7D, an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the lower end side. Due to this S pole, the S pole on the lower end side of the piston 51 receives a repulsive force and raises the piston 51.
 図7Eは、ピストン51が上昇途中にあるときの電磁コイル53の図である。図7Eに示すように、ピストン51の上昇の途中では、上端側の電磁コイル53にS極を生じさせるように交番電流を送る。このS極により、ピストン51の上端部側のN極が引力を受け、ピストン51を最上位置に移動させることができる。 FIG. 7E is a diagram of the electromagnetic coil 53 when the piston 51 is in the middle of ascent. As shown in FIG. 7E, during the upward movement of the piston 51, an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the upper end side. By this S pole, the N pole on the upper end side of the piston 51 receives an attractive force, and the piston 51 can be moved to the uppermost position.
 図7Fは、ピストン51が最上位置に移動したときの電磁コイル53の図である。図7Fに示すように、ピストン51を最上位置に移動させるまで、電磁コイル53の極性を変えない。すなわち、上端側の電磁コイル53にS極を生じさせるように交番電流を送る。 FIG. 7F is a diagram of the electromagnetic coil 53 when the piston 51 moves to the uppermost position. As shown in FIG. 7F, the polarity of the electromagnetic coil 53 is not changed until the piston 51 is moved to the uppermost position. That is, an alternating current is sent so as to generate an S pole in the electromagnetic coil 53 on the upper end side.
 カプセル制御部33は、「進行」の指示を受けている間、図7A-図7Fに示すピストン51の移動を繰り返し、ピストン51を支持体15の底部152に繰り返し衝突させる。ピストン51を底部152に衝突させたときの衝撃力が、ピストン51を天井部153に衝突させたときの衝撃力より大きくなっているので、カプセル型本体部10の下方の進行を続けさせる。 The capsule controller 33 repeats the movement of the piston 51 shown in FIGS. 7A to 7F while receiving the “Progress” instruction, and causes the piston 51 to repeatedly collide with the bottom 152 of the support 15. Since the impact force when the piston 51 collides with the bottom portion 152 is larger than the impact force when the piston 51 collides with the ceiling portion 153, the capsule-type main body portion 10 continues to proceed downward.
 カプセル制御部33は、「進行終了」の指示を受けると、電磁コイル53への交番電流を止め、ピストン51の往復移動を終了させる。 When the capsule controller 33 receives an instruction of “end of progress”, the capsule controller 33 stops the alternating current to the electromagnetic coil 53 and ends the reciprocating movement of the piston 51.
 以上のように、駆動手段50は、紐状体21が連結されている側(図3で上方)とは反対の方向(図3で下方)にカプセル型本体部10を進行させるように構成されている。 As described above, the driving means 50 is configured to advance the capsule body 10 in the direction (downward in FIG. 3) opposite to the side (upward in FIG. 3) to which the string-like body 21 is connected. ing.
 なお、以上の説明では、カプセル型本体部10の「進行」に、食道Eの蠕動運動や体動などによる進行を含まないものとする。 In the above description, it is assumed that the “progress” of the capsule-type main body 10 does not include the progression of the esophagus E due to peristalsis or body movement.
 食道E内でカプセル型本体部10を位置決めするとき、駆動手段50による「進行」のみでは不十分である。たとえば、蠕動運動などにより進行し過ぎたりしたとき、導中管20によりカプセル型本体部10を後退させる「引き戻し」が必要となる。 When positioning the capsule-type main body 10 in the esophagus E, only “advance” by the driving means 50 is insufficient. For example, when the movement progresses too much due to a peristaltic movement or the like, “retraction” is required to retract the capsule-type main body 10 by the guiding pipe 20.
 同様に、長期間の観察で、食道E内でカプセル型本体部10を所定位置に留置させるとき、駆動手段50による「進行」と、導中管20による「引き戻し」とが必要となる。なお、挿入されたカプセル型本体部10が食道Eの蠕動運動により進行することを防止するため、被検体Pの口腔内に配置されるマウスピースM等に紐状体21の一端を固定したときは、「引き戻し」は不要となる。ただし、観察を終了するとき、この「引き戻し」により、カプセル型本体部10が体外に取り出される。 Similarly, when the capsule main body 10 is placed in a predetermined position in the esophagus E through long-term observation, “progress” by the driving means 50 and “retraction” by the guiding pipe 20 are required. When one end of the string-like body 21 is fixed to the mouthpiece M or the like placed in the oral cavity of the subject P in order to prevent the inserted capsule-type main body 10 from proceeding due to the peristaltic movement of the esophagus E. Does not require “retraction”. However, when the observation is finished, the capsule-type main body 10 is taken out of the body by this “retraction”.
(超音波医療装置の動作)
 以上に、超音波医療装置の構成について説明した。
 次に、超音波医療装置の動作について図9を参照して説明する。図9は、超音波医療装置を用いて、被検体の体内を観察するときの一連の動作を示すフローチャートである。
(Operation of ultrasonic medical device)
The configuration of the ultrasonic medical device has been described above.
Next, the operation of the ultrasonic medical apparatus will be described with reference to FIG. FIG. 9 is a flowchart showing a series of operations when the inside of the subject is observed using the ultrasonic medical apparatus.
 先ず、超音波振動子30を経口的に食道Eに挿入させる(S101)。 First, the ultrasonic transducer 30 is orally inserted into the esophagus E (S101).
 次に、超音波振動子30がある程度挿入されたら、位置決めのための走査を開始する(S102)。それにより、ユーザは、画像を見ながら、カプセル型本体部10を食道E内の所定位置に挿入させることが可能となる。このとき。紐状体21も食道Eに挿入されていく。 Next, when the ultrasonic transducer 30 is inserted to some extent, scanning for positioning is started (S102). Thereby, the user can insert the capsule main body 10 into a predetermined position in the esophagus E while viewing the image. At this time. The string 21 is also inserted into the esophagus E.
 次に、超音波振動子30の位置決めを行う(S103)。超音波振動子30の位置決めは、前述したように、駆動手段50による「進行」と、導中管20による「引き戻し」で行う。位置決めにおいては、駆動手段50により、紐状体21が連結されている側とは反対の方向にカプセル型本体部10を進行させるので、紐状体21が引っ張られ、その引っ張り力と駆動力とが釣り合ったとき、カプセル型本体部10の位置が停止する。 Next, the ultrasonic transducer 30 is positioned (S103). As described above, the positioning of the ultrasonic transducer 30 is performed by “advance” by the driving means 50 and “retraction” by the guiding pipe 20. In positioning, since the capsule body 10 is advanced by the driving means 50 in the direction opposite to the side to which the string-like body 21 is connected, the string-like body 21 is pulled, and the pulling force and driving force are When is balanced, the position of the capsule-type main body 10 stops.
 次に、画像を見て、変更手段40により、超音波振動子30の回転角を変更する(S104)。例えば、画像の中に観察対象である心臓の画像が含まれるようにする。 Next, the image is viewed, and the rotation angle of the ultrasonic transducer 30 is changed by the changing means 40 (S104). For example, an image of the heart to be observed is included in the image.
 次に、画像を見て、変更手段40により、超音波振動子30の角度(傾き角)を変更する(S105)。例えば、画像の所定範囲内に心臓の画像が含まれるようにする。 Next, looking at the image, the angle (inclination angle) of the ultrasonic transducer 30 is changed by the changing means 40 (S105). For example, an image of the heart is included in a predetermined range of the image.
 以上のようにして、超音波振動子30の位置決め、回転角、角度(傾き角)を決定後に、食道E内の所定位置にカプセル型本体部10を留置して、診断のための走査を開始する(S106)。
 なお、ドップラー効果を使って、画像の所定範囲内に心臓の画像が含まれるように、超音波振動子30の位置決め、回転角、角度(傾き角)(S103-S105)を自動化してもよい。
After determining the positioning, rotation angle, and angle (tilt angle) of the ultrasonic transducer 30 as described above, the capsule body 10 is placed at a predetermined position in the esophagus E and scanning for diagnosis is started. (S106).
The Doppler effect may be used to automate the positioning, rotation angle, and angle (tilt angle) (S103-S105) of the ultrasonic transducer 30 so that the heart image is included within a predetermined range of the image. .
(超音波画像診断装置の基本構成)
 次に、超音波医用画像装置の基本的な構成について図10を参照して簡単に説明する。図10は、超音波画像診断装置の構成ブロック図である。
(Basic configuration of ultrasonic diagnostic imaging equipment)
Next, a basic configuration of the ultrasonic medical imaging apparatus will be briefly described with reference to FIG. FIG. 10 is a block diagram showing the configuration of the ultrasonic diagnostic imaging apparatus.
(カプセル型本体部内のその他の構成)
 次に、カプセル型本体部10内の構成について説明する。
(Other components in the capsule body)
Next, the configuration within the capsule-type main body 10 will be described.
 カプセル型本体部10の内部には、超音波振動子30、変更手段40、及び、駆動手段50が配置されていることは前述した通りである。 As described above, the ultrasonic transducer 30, the changing unit 40, and the driving unit 50 are arranged inside the capsule body 10.
 これらの他に、カプセル型本体部10の内部には、カプセル送受信部32、カプセル制御部33及びカプセル電源部34が配置されている。 In addition to these, a capsule transceiver 32, a capsule controller 33, and a capsule power supply 34 are arranged inside the capsule-type main body 10.
 カプセル送受信部32は、外部装置60(後述する制御部65)からの制御信号をカプセル制御部33に送信する。カプセル制御部33は、当該制御信号に基づいて、超音波振動子30に駆動信号を送信する。そして、カプセル送受信部32は、超音波振動子30が受信したエコー信号を受ける。本実施形態において、カプセル型本体部10と外部装置60との間の制御信号等の送受信は、紐状体21内に配置された信号線SLを介して行われる。 The capsule transmission / reception unit 32 transmits a control signal from the external device 60 (a control unit 65 described later) to the capsule control unit 33. The capsule control unit 33 transmits a drive signal to the ultrasonic transducer 30 based on the control signal. The capsule transmission / reception unit 32 receives the echo signal received by the ultrasonic transducer 30. In the present embodiment, transmission / reception of control signals and the like between the capsule main body 10 and the external device 60 is performed via the signal line SL disposed in the string-like body 21.
 具体例として、カプセル制御部33は、超音波振動子30に駆動信号を供給してスキャンを行い、心臓Hに対して超音波を送信させる。カプセル制御部33は、たとえば図示しないクロック発生器と、送信遅延回路と、パルサ回路とを有する。クロック発生器は、超音波信号の送信タイミングや送信周波数を決めるクロック信号を発生する。送信遅延回路は、超音波を所定の深さに集束させるための集束用遅延時間と、超音波を所定方向に送信するための偏向用遅延時間とに従って、超音波の送信時に遅延をかけて送信フォーカスを実施する。パルサ回路は、圧電素子に対応する個別チャンネルの数分のパルサを有する。パルサ回路は、遅延がかけられた送信タイミングで駆動パルス(駆動信号)を生成し、超音波振動子30を構成する圧電素子に駆動パルス(駆動信号)を供給する。 As a specific example, the capsule controller 33 supplies a drive signal to the ultrasonic transducer 30 to perform scanning, and transmits an ultrasonic wave to the heart H. The capsule controller 33 includes, for example, a clock generator (not shown), a transmission delay circuit, and a pulsar circuit. The clock generator generates a clock signal that determines the transmission timing and transmission frequency of the ultrasonic signal. The transmission delay circuit transmits a delay when transmitting an ultrasonic wave according to a focusing delay time for focusing the ultrasonic wave to a predetermined depth and a deflection delay time for transmitting the ultrasonic wave in a predetermined direction. Implement focus. The pulsar circuit has pulsars corresponding to the number of individual channels corresponding to the piezoelectric elements. The pulsar circuit generates a driving pulse (driving signal) at a transmission timing subjected to a delay, and supplies the driving pulse (driving signal) to the piezoelectric element constituting the ultrasonic transducer 30.
 また、カプセル送受信部32は、受信したエコー信号に対して遅延処理を行うことにより、アナログのエコー信号を整相加算されたデジタルのデータに変換する。カプセル送受信部32は、たとえば図示しないゲイン回路と、A/D変換器と、受信遅延回路と、加算器を有する。ゲイン回路は、超音波振動子30の圧電素子から出力されるエコー信号を受信チャンネルごとに増幅する(ゲインをかける)。A/D変換器は、増幅されたエコー信号をデジタル信号に変換する。受信遅延回路は、デジタル信号に変換されたエコー信号に、受信指向性を決定するために必要な遅延時間を与える。具体的には、受信遅延回路は、所定の深さからの超音波を集束させるための集束用遅延時間と、所定方向に対して受信指向性を設定するための偏向用遅延時間とを、デジタルのエコー信号に与える。加算器は、遅延時間が与えられたエコー信号を加算する。その加算によって、受信指向性に応じた方向からの反射成分が強調される。すなわち、受信遅延回路と加算器とによって、所定方向から得られたエコー信号は整相加算される。カプセル送受信部32は、遅延処理が施されたエコー信号を外部装置60に出力する。 The capsule transmission / reception unit 32 performs delay processing on the received echo signal, thereby converting the analog echo signal into digital data subjected to phasing addition. The capsule transmission / reception unit 32 includes, for example, a gain circuit (not shown), an A / D converter, a reception delay circuit, and an adder. The gain circuit amplifies (applies gain) the echo signal output from the piezoelectric element of the ultrasonic transducer 30 for each reception channel. The A / D converter converts the amplified echo signal into a digital signal. The reception delay circuit gives a delay time necessary for determining the reception directivity to the echo signal converted into the digital signal. Specifically, the reception delay circuit digitally combines a focusing delay time for focusing ultrasonic waves from a predetermined depth and a deflection delay time for setting reception directivity with respect to a predetermined direction. Is given to the echo signal. The adder adds echo signals given delay times. By the addition, the reflection component from the direction corresponding to the reception directivity is emphasized. In other words, the echo signal obtained from the predetermined direction is phased and added by the reception delay circuit and the adder. The capsule transmission / reception unit 32 outputs the echo signal subjected to the delay process to the external device 60.
 カプセル送受信部32は、エコー信号を所定の周波数の搬送波(キャリア信号)により変調し、アンテナ(図示省略)から電波として、外部装置60(後述する送受信部61)に出力する。カプセル送受信部32のアンテナと送受信部61のアンテナ(図示省略)とで無線通信を行うように構成されている。本実施形態において、カプセル型本体部10と外部装置60との間のエコー信号の送受信は、無線で行われる。 The capsule transmission / reception unit 32 modulates the echo signal with a carrier wave (carrier signal) having a predetermined frequency, and outputs it as an electric wave from an antenna (not shown) to the external device 60 (transmission / reception unit 61 described later). The antenna of the capsule transceiver unit 32 and the antenna (not shown) of the transceiver unit 61 are configured to perform wireless communication. In the present embodiment, transmission / reception of echo signals between the capsule main body 10 and the external device 60 is performed wirelessly.
 カプセル電源部34は、外部装置60からの電力供給を受ける。カプセル電源部34は、供給された電力を超音波振動子30、カプセル送受信部32及びカプセル制御部33に分配する。本実施形態において、外部装置60からの電力供給は、紐状体21内に配置された電源線ELを介して行われる。 The capsule power supply unit 34 receives power supply from the external device 60. The capsule power supply unit 34 distributes the supplied power to the ultrasonic transducer 30, the capsule transmission / reception unit 32, and the capsule control unit 33. In the present embodiment, power supply from the external device 60 is performed via the power supply line EL arranged in the string-like body 21.
 すなわち、紐状体21内には信号線SL及び電源線ELが配置され、それ以外のワイヤやデータ線が配置されないため、紐状体21を細くすることが可能となる。それにより、被検体Pの体内を観察するとき、被検体Pの負担が軽減される。 That is, since the signal line SL and the power line EL are arranged in the string-like body 21 and no other wires or data lines are arranged, the string-like body 21 can be made thin. Thereby, when the inside of the subject P is observed, the burden on the subject P is reduced.
 上記の構成として、カプセル送受信部32、カプセル制御部33及びカプセル電源部34がカプセル型本体部10に設けられたものを示したが、次のように構成してもよい。 As the above configuration, the capsule transmission / reception unit 32, the capsule control unit 33, and the capsule power supply unit 34 are provided in the capsule body 10. However, the configuration may be as follows.
 カプセル型本体部10内に、超音波振動子30、カプセル送受信部32、変更手段40、駆動手段50のみ配置する構成も可能である。この場合、外部装置60の制御部65は、送受信部61を介し、超音波振動子30の駆動等、カプセル型本体部10内の各構成に対する制御を行う。また、電源部67は、電源線ELを介し、カプセル型本体部10内の各構成を駆動する電力を伝送する。このような構成を採用することにより、カプセル制御部33、カプセル電源部34の構成が不要となる。従って、カプセル型本体部10の小型化を図ることが可能となる。 A configuration in which only the ultrasonic transducer 30, the capsule transmitting / receiving unit 32, the changing unit 40, and the driving unit 50 are arranged in the capsule body 10 is also possible. In this case, the control unit 65 of the external device 60 controls each component in the capsule main body 10 such as driving of the ultrasonic transducer 30 via the transmission / reception unit 61. Further, the power supply unit 67 transmits power for driving each component in the capsule-type main body unit 10 through the power supply line EL. By adopting such a configuration, the configuration of the capsule control unit 33 and the capsule power supply unit 34 becomes unnecessary. Therefore, the capsule body 10 can be downsized.
 なお、カプセル型本体部10の電力源として、カプセル型本体部10内に電池等を設けることも可能である。この場合、外部装置60からカプセル型本体部10に対して電力を供給する必要がないため、電源線ELが不要となる。したがって、紐状体ケーブル部30を細径化することが可能となる。よって、被検体Pの負担がさらに軽減される。 Note that a battery or the like may be provided in the capsule-type main body 10 as a power source for the capsule-type main body 10. In this case, since it is not necessary to supply power from the external device 60 to the capsule-type main body 10, the power supply line EL becomes unnecessary. Therefore, it is possible to reduce the diameter of the string-like body cable portion 30. Therefore, the burden on the subject P is further reduced.
(外部装置60)
 次に、外部装置60の構成について説明する。
(External device 60)
Next, the configuration of the external device 60 will be described.
 図10に示すように、外部装置60は、送受信部61と、受信データ処理部62と、画像作成部63と、表示部(モニタ)64と、制御部65と、操作部66と、電源部67とを含んで構成されている。 As shown in FIG. 10, the external device 60 includes a transmission / reception unit 61, a reception data processing unit 62, an image creation unit 63, a display unit (monitor) 64, a control unit 65, an operation unit 66, and a power supply unit. 67.
 送受信部61は、カプセル送受信部32からのエコー信号を受信し、受信データ処理部62に出力する。また、送受信部61は、制御部65からの制御信号をカプセル送受信部32に送信する。 The transmission / reception unit 61 receives the echo signal from the capsule transmission / reception unit 32 and outputs it to the reception data processing unit 62. In addition, the transmission / reception unit 61 transmits a control signal from the control unit 65 to the capsule transmission / reception unit 32.
 受信データ処理部62は、送受信部61から出力されたエコー信号に対して各種の信号処理を行う。たとえば、受信データ処理部62はBモード処理部を有する。Bモード処理部はエコー信号を送受信部61から受けて、エコー信号の振幅情報の映像化を行う。また、受信データ処理部62はCDI(Color Doppler Imaging)処理部を有していてもよい。CFM処理部は血流情報の映像化を行う。また、受信データ処理部62はドプラ処理部を有していてもよい。ドプラ処理部はエコー信号を位相検波することによりドプラ偏移周波数成分を取り出し、FFT処理を施すことにより血流速度を表すドプラ周波数分布を生成する。受信データ処理部62は、信号処理が施されたエコー信号を画像作成部63に出力する。 The reception data processing unit 62 performs various signal processes on the echo signal output from the transmission / reception unit 61. For example, the reception data processing unit 62 has a B mode processing unit. The B-mode processing unit receives the echo signal from the transmission / reception unit 61 and visualizes the amplitude information of the echo signal. The reception data processing unit 62 may include a CDI (Color Doppler Imaging) processing unit. The CFM processing unit visualizes blood flow information. The reception data processing unit 62 may include a Doppler processing unit. The Doppler processing unit extracts the Doppler shift frequency component by phase detection of the echo signal, and generates a Doppler frequency distribution representing the blood flow velocity by performing FFT processing. The reception data processing unit 62 outputs the echo signal subjected to the signal processing to the image creation unit 63.
 画像作成部63は、超音波振動子30により受信された反射波に基づく信号(受信データ処理部62から出力された信号処理後のエコー信号)を処理し、画像データ(超音波画像データ)を作成する。 The image creating unit 63 processes a signal based on the reflected wave received by the ultrasonic transducer 30 (the echo signal after the signal processing output from the reception data processing unit 62), and converts the image data (ultrasound image data). create.
 制御部65は、超音波画像診断装置1の各部の動作を制御する。たとえば、制御部65は、送受信部61を介してカプセル送受信部32に対し超音波振動子30を駆動させる駆動信号を送信し、超音波の送受信を制御する。或いは、制御部65は、画像作成部63で作成された画像データ(超音波画像データ)に基づく画像(超音波画像)を表示部64に表示させる。 The control unit 65 controls the operation of each unit of the ultrasonic image diagnostic apparatus 1. For example, the control unit 65 transmits a drive signal for driving the ultrasonic transducer 30 to the capsule transmission / reception unit 32 via the transmission / reception unit 61 to control transmission / reception of ultrasonic waves. Alternatively, the control unit 65 causes the display unit 64 to display an image (ultrasonic image) based on the image data (ultrasound image data) created by the image creation unit 63.
 表示部64は、CRTや液晶ディスプレイなどのモニタで構成されている。操作部66は、キーボードやマウスなどの入力装置で構成されている。術者は操作部66を介してカプセル型本体部10による超音波の送受信等を行う。 The display unit 64 includes a monitor such as a CRT or a liquid crystal display. The operation unit 66 includes an input device such as a keyboard and a mouse. The surgeon performs transmission / reception of ultrasonic waves by the capsule main body 10 via the operation unit 66.
[第2実施形態]
 第1実施形態では、駆動手段50として、ピストン51を支持体15の底部152に衝突させ、その衝撃力により、超音波振動子30を前進させるものを示したが、これに限らず、駆動手段50としては、カプセル型本体部10の内部において、カプセル型本体部10に対して、前進する方向に衝撃力を与えて、カプセル型本体部10を前進させるように構成すればよい。
[Second Embodiment]
In the first embodiment, as the driving unit 50, the piston 51 is caused to collide with the bottom 152 of the support 15 and the ultrasonic vibrator 30 is advanced by the impact force. However, the driving unit 50 is not limited thereto. 50 may be configured such that, inside the capsule main body 10, an impact force is applied to the capsule main body 10 in the advancing direction to advance the capsule main body 10.
 次に、超音波医療装置の第2実施形態について図11を参照して説明する。図11は駆動手段を模式的に示す図である。 Next, a second embodiment of the ultrasonic medical apparatus will be described with reference to FIG. FIG. 11 is a diagram schematically showing the driving means.
 なお、第2実施形態において、第1実施形態と同じ構成については同一番号を付してその説明を省略し、異なる構成について主に説明する。 In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different components are mainly described.
 第2実施形態では、駆動手段50は、アーム部501、カム部502、及び、付勢手段503を有している。 In the second embodiment, the driving unit 50 includes an arm unit 501, a cam unit 502, and an urging unit 503.
 この駆動手段50は、カプセル型本体部10の内部の空きスペースに配置されている。ここでは、カプセル型本体部10の先端部(図11で下端部)の内部に配置されているが、カプセル型本体部10の基端部(図11で上端部)の内部に配置されてもよい。また、第1実施形態と同様に、円筒状の支持体15の中空部151に配置されてもよい。 This driving means 50 is arranged in an empty space inside the capsule-type main body 10. Here, it is arranged inside the distal end portion (lower end portion in FIG. 11) of the capsule-type main body portion 10, but it may be arranged inside the proximal end portion (upper end portion in FIG. 11) of the capsule-type main body portion 10. Good. Further, similarly to the first embodiment, it may be disposed in the hollow portion 151 of the cylindrical support 15.
 アーム部501の一端部は、カプセル型本体部10に軸支されている。それにより、アーム部501の他端部が一端部を中心に揺動するように構成されている。アーム部501の他端部には、おもり504が設けられている。 One end of the arm portion 501 is pivotally supported by the capsule-type main body portion 10. Thereby, the other end portion of the arm portion 501 is configured to swing around the one end portion. A weight 504 is provided at the other end of the arm portion 501.
 カム部502は、カプセル型本体部10の内部に回転可能に配置されている。図示省略したモータがカム部502に回転力を付与する。カム部502は、アーム部501の一端部と他端部との間の中間部に当接し、カム部502を回転させたとき、アーム部501の中間部を押し上げたり、引き下げたりすることにより、アーム部501を一端部を中心に揺動させるカム面を有する。 The cam portion 502 is rotatably disposed inside the capsule-type main body portion 10. A motor (not shown) applies a rotational force to the cam portion 502. The cam portion 502 abuts against an intermediate portion between one end portion and the other end portion of the arm portion 501, and when the cam portion 502 is rotated, the intermediate portion of the arm portion 501 is pushed up and down, The arm portion 501 has a cam surface that swings around one end.
 カム部502のカム面は、回転中心からの距離(径)が図11で反時計回りに徐々に長くなる長径部505と、回転中心からの距離が短く一定である短径部506とを有している。長径部505の始端(短径部とほぼ同じ長さ径である端)と短径部506の終端とが連続している。また、長径部505の終端(最長の径である端)と短径部506の始端とが連続している。 The cam surface of the cam portion 502 has a long diameter portion 505 whose distance (diameter) from the rotation center gradually increases counterclockwise in FIG. 11 and a short diameter portion 506 whose distance from the rotation center is short and constant. is doing. The starting end of the long diameter portion 505 (the end having the same length as the short diameter portion) and the end of the short diameter portion 506 are continuous. Further, the end of the long diameter portion 505 (the end having the longest diameter) and the start end of the short diameter portion 506 are continuous.
 付勢手段503は、アーム部501の中間部をカム部502に当接させる方向に付勢する。付勢手段503の一例としては引っ張りばねがある。したがって、カム部502を図11で時計回りに回転させると、アーム部501の中間部は、カム部502のカム面に沿って、例えば、短径部506の始端から終端、短径部506の終端から長径部505の始端、長径部505の始端から終端、長径部505の終端から短径部506の始端の順番に相対的に移動する。 The urging means 503 urges the intermediate part of the arm part 501 in a direction in which the intermediate part is brought into contact with the cam part 502. An example of the biasing means 503 is a tension spring. Therefore, when the cam portion 502 is rotated clockwise in FIG. 11, the intermediate portion of the arm portion 501 moves along the cam surface of the cam portion 502, for example, from the start end of the short diameter portion 506 to the end of the short diameter portion 506. It moves relatively from the end to the start of the long diameter portion 505, from the start of the long diameter portion 505 to the end, and from the end of the long diameter portion 505 to the start of the short diameter portion 506.
 次に、駆動手段50の動作を説明する。 Next, the operation of the driving means 50 will be described.
 カム部502を図11で時計回りの方向に回転させる。 Rotate the cam portion 502 in the clockwise direction in FIG.
 カム部502が時計回りに回転しているとき、アーム部501が短径部506に当接されている間、アーム部501は揺動しない。アーム部501が長径部505に当接されることで、付勢力に抗して、図11において時計回りに方向に徐々に揺動する。長径部505の終端では、アーム部501は、大きく揺動する。そして、長径部505の終端から短径部506の始端に移動することで、アーム部501が付勢力により急速に反時計回りに揺動する。それにより、カム部502の回転軸が、アーム部501(おもり504を含む)の衝撃を受け、その衝撃力により、カプセル型本体部10が前進する。カム部502が1回転するごとに、カプセル型本体部10は、アーム部501からの衝撃を受けて、前進する。 When the cam portion 502 is rotating clockwise, the arm portion 501 does not swing while the arm portion 501 is in contact with the short diameter portion 506. Since the arm portion 501 is in contact with the long diameter portion 505, the arm portion 501 gradually swings clockwise in FIG. 11 against the urging force. At the end of the long diameter portion 505, the arm portion 501 swings greatly. Then, by moving from the end of the long diameter portion 505 to the start end of the short diameter portion 506, the arm portion 501 is rapidly swung counterclockwise by the biasing force. Thereby, the rotating shaft of the cam portion 502 receives an impact of the arm portion 501 (including the weight 504), and the capsule main body portion 10 moves forward by the impact force. Each time the cam portion 502 makes one rotation, the capsule main body portion 10 moves forward in response to an impact from the arm portion 501.
 カプセル型本体部10には、カム部502の回転を制御するカプセル制御部33(図10参照)、及び、カム部502を回転させるモータ(図示省略)に電力を供給するカプセル電源部34(図10参照)が設けられている。カプセル制御部は、「進行」及び「進行終了」の指示を駆動手段50に出力する。駆動手段50は、「進行」の指示を受けて、モータに電力を供給する。駆動手段50は、「進行終了」の指示を受けて、モータに供給される電力を止める。 The capsule main body 10 includes a capsule control unit 33 (see FIG. 10) that controls the rotation of the cam unit 502, and a capsule power supply unit 34 (see FIG. 10) that supplies power to a motor (not shown) that rotates the cam unit 502. 10). The capsule controller outputs instructions of “progress” and “progress end” to the driving unit 50. The driving unit 50 receives the “progress” instruction and supplies power to the motor. In response to the “progress end” instruction, the driving unit 50 stops the power supplied to the motor.
[第3実施形態]
 次に、超音波医療装置の第3実施形態について図12を参照して説明する。図12は超音波振動子の図である。
[Third Embodiment]
Next, a third embodiment of the ultrasonic medical device will be described with reference to FIG. FIG. 12 is a diagram of an ultrasonic transducer.
 なお、第3実施形態において、変更手段40及び駆動手段50などは第1実施形態と同様である。第1実施形態と同じ構成については同一番号を付してその説明を省略し、異なる構成について主に説明する。 In the third embodiment, the changing means 40 and the driving means 50 are the same as those in the first embodiment. About the same structure as 1st Embodiment, the same number is attached | subjected and the description is abbreviate | omitted, and a different structure is mainly demonstrated.
 第1実施形態では、超音波振動子30は、円筒状に配列されたラジアルアレイ型のものであったが(図3参照)、第3実施形態の超音波振動子30は、平板状に配列されたものである(一次元アレイ型)。 In the first embodiment, the ultrasonic transducers 30 are of a radial array type arranged in a cylindrical shape (see FIG. 3), but the ultrasonic transducers 30 in the third embodiment are arranged in a flat plate shape. (One-dimensional array type).
 図12に示すように、円筒状の支持体15には略円形の窓が設けられ、その窓に対応するように、超音波振動子30が配置される。超音波振動子30は、平板と直交する軸を中心に回転可能に構成されている。回転方向を図に矢印で示す。 As shown in FIG. 12, the cylindrical support 15 is provided with a substantially circular window, and the ultrasonic transducer 30 is arranged so as to correspond to the window. The ultrasonic transducer 30 is configured to be rotatable about an axis orthogonal to the flat plate. The direction of rotation is indicated by arrows in the figure.
[第4実施形態]
 次に、超音波医療装置の第4実施形態について図13を参照して説明する。図13は超音波振動子の図である。
[Fourth Embodiment]
Next, a fourth embodiment of the ultrasonic medical apparatus will be described with reference to FIG. FIG. 13 is a diagram of an ultrasonic transducer.
 なお、第4実施形態において、第1実施形態と同じ構成については同一番号を付してその説明を省略し、異なる構成について主に説明する。 In addition, in 4th Embodiment, the same number is attached | subjected about the same structure as 1st Embodiment, the description is abbreviate | omitted, and a different structure is mainly demonstrated.
 第1実施形態では、超音波振動子30は、ラジアルアレイ型のものであったが(図3参照)、第4実施形態の超音波振動子30は、円筒状に配列されると共に、筒軸に沿って配列されたものである(二次元アレイ型)。 In the first embodiment, the ultrasonic transducers 30 are of a radial array type (see FIG. 3). However, the ultrasonic transducers 30 of the fourth embodiment are arranged in a cylindrical shape and have a cylindrical axis. (Two-dimensional array type).
 二次元アレイ型にしたことにより、そのうちの所定領域の超音波振動子30を所定順に駆動し、心臓などの観察対象を走査することができ、超音波振動子30の向きを物理的に心臓などの観察対象に向ける必要がない。それにより、第1実施形態で用いられた変更手段40が不要となる。また、超音波ビームを絞るための音響レンズも不要となる。 By adopting the two-dimensional array type, it is possible to drive the ultrasonic transducers 30 in a predetermined region in a predetermined order and scan an observation target such as the heart, and physically change the direction of the ultrasonic transducer 30 to the heart or the like. It is not necessary to turn to the observation object. Thereby, the changing means 40 used in the first embodiment is not necessary. In addition, an acoustic lens for narrowing the ultrasonic beam is not necessary.
 円筒状に配列された二次元アレイ型に限らず、視野の狭い二次元アレイを利用し、煽り機構で視野を調整することで、任意の位置に三次元画像を生成することが可能となる。 It is possible to generate a three-dimensional image at an arbitrary position by using a two-dimensional array with a narrow field of view and adjusting the field of view with a turning mechanism, not limited to the two-dimensional array type arranged in a cylindrical shape.
[第5実施形態]
 次に、超音波医療装置の第5実施形態について図14を参照して説明する。図14は変更手段の摸式図である。
[Fifth Embodiment]
Next, a fifth embodiment of an ultrasonic medical device will be described with reference to FIG. FIG. 14 is a schematic diagram of the changing means.
 なお、第5実施形態において、第1実施形態と同じ構成については同一番号を付してその説明を省略し、異なる構成について主に説明する。 In the fifth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different components are mainly described.
 第1実施形態では、変更手段40が第1超音波モータ41と、第2超音波モータ42と、ボール体43と、有しているものであったが、三角形断面形状の袋状の変更手段40を平板状の超音波振動子30の下に配置することで、超音波振動子30に角度(仰角)を付けるようにしてもよい。この「角度」の方向が、食道内に留置されるカプセル型本体部10から見上げる側(咽喉側)の仰角の方向(心臓の方向)に相当する。図14に仰角の方向を“θ1”で示す。 In the first embodiment, the changing unit 40 includes the first ultrasonic motor 41, the second ultrasonic motor 42, and the ball body 43. However, the changing unit 40 has a triangular cross-sectional bag shape. The ultrasonic transducer 30 may be provided with an angle (elevation angle) by arranging 40 under the flat-plate ultrasonic transducer 30. The direction of this “angle” corresponds to the direction of the elevation angle (the direction of the heart) on the side (throat side) looking up from the capsule-type main body 10 placed in the esophagus. FIG. 14 shows the direction of the elevation angle as “θ1”.
 例えば、体外にゴム製の空気たまりがあり、それを押すと空気を送入できる。押し圧を緩めると、空気が戻って仰角が減る。空気の送り込みと仰角との関係を予め測定しておくことで、送り込み量の見える化で仰角を示すことができる。送り込み部にコックを備え、所定の仰角が得られたときコックを閉じて保持する。 For example, there is a rubber air pocket outside the body, and air can be fed by pressing it. When the pressure is released, the air returns and the elevation angle decreases. By measuring the relationship between the air feeding and the elevation angle in advance, the elevation angle can be shown by visualizing the feeding amount. A cock is provided in the feeding section, and the cock is closed and held when a predetermined elevation angle is obtained.
 なお、三角形断面形状に限らず、超音波振動子30を取り付ける機構の二つの隅、または、四隅に配置された円柱状の風船であってもよい。個々の風船に体外から空気を送入して膨らませることで、任意の仰角に調整することができる。また、風船に空気を送入するのではなく、水または粘性のある生体に無害な液体を送入することで調整した仰角で安定して保持する。 It should be noted that the present invention is not limited to the triangular cross-sectional shape, and may be cylindrical balloons arranged at two corners or four corners of the mechanism for attaching the ultrasonic transducer 30. By sending air from outside the body into each balloon and inflating it, it can be adjusted to any elevation angle. In addition, air is not sent into the balloon, but it is stably held at an adjusted elevation angle by feeding water or a harmless liquid into a viscous living body.
 なお、前記実施形態では、カプセル型本体部10の内部において、カプセル型本体部10に対して、ピストン51やおもり504などを前進する方向に衝突させて、その衝撃力により、カプセル型本体部10を前進させる駆動手段50を示したが、これに限らない。たとえば、カプセル型本体部10の後端に設けたスクリューを回転させることで、カプセル型本体部10を前進させ、スクリューを逆転させることで、後退させるようにしてもよい。 In the above-described embodiment, the capsule-type main body 10 is caused to collide with the capsule-type main body 10 in the direction in which the piston 51, the weight 504, and the like move forward, and by the impact force. Although the drive means 50 which advances this is shown, it is not restricted to this. For example, the capsule-type main body 10 may be moved forward by rotating a screw provided at the rear end of the capsule-type main body 10 and reversely moved by reversing the screw.
 また、前記実施形態では、紐状体21内に電源線ELを配置し、電源線ELを介して、外部装置60からカプセル型本体部10(カプセル電源部34)に電力を供給したが、無線給電の方法を用いれば、電源線ELが不要となり、紐状体21をさらに細くすることが可能となる。無線給電の方法の一例としは、送信側(外部装置60)に設けられた給電コイルと、受信側(カプセル型本体部10)に設けられ、給電コイルと相互誘導により結合する共振コイル、及び、共振コイルに接続された共振周波数調節回路と、を備え、電力を送信側から受信側に無線で供給するものがある(例えば、特開2001-185939号公報)。 In the above embodiment, the power line EL is arranged in the string-like body 21 and power is supplied from the external device 60 to the capsule main body 10 (capsule power supply section 34) via the power line EL. If the power feeding method is used, the power line EL becomes unnecessary, and the string-like body 21 can be further thinned. As an example of a method of wireless power feeding, a power feeding coil provided on the transmission side (external device 60), a resonance coil provided on the reception side (capsule body 10) and coupled to the power feeding coil by mutual induction, and And a resonance frequency adjusting circuit connected to the resonance coil, and for supplying power wirelessly from the transmission side to the reception side (for example, JP-A-2001-185939).
 さらに、前記実施形態では、カプセル型本体部10と外部装置60との間の制御信号等の送受信は、紐状体21内に配置された信号線SLを介して行われるものを示したが、カプセル型本体部10と外部装置60との間の制御信号等を無線で送受信する方法を用いれば、信号線SLが不要となり、紐状体21をさらに細くすることが可能となる。それにより、被検体Pの体内を観察するとき、被検体Pの負担が軽減される。 Furthermore, in the said embodiment, although transmission / reception of the control signal etc. between the capsule type main-body part 10 and the external apparatus 60 showed what was performed via the signal wire | line SL arrange | positioned in the string-like body 21, If a method for wirelessly transmitting and receiving a control signal and the like between the capsule-type main body 10 and the external device 60 is used, the signal line SL becomes unnecessary, and the string-like body 21 can be further thinned. Thereby, when the inside of the subject P is observed, the burden on the subject P is reduced.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるととともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1 超音波画像診断装置
2 超音波医療装置
10 カプセル型本体部
 11 内面部
 12 円周面
 13 音響媒体
 15 支持体
  151 中空部
  152 底部
 16 保持体
20 導中管
 21 紐状体
 22 マーカ
30 超音波振動子
 31 回転軸(筒軸)
 32 カプセル送受信部
 33 カプセル制御部
 34 カプセル電源部
40 変更手段
 41 第1超音波モータ
 411 圧電セラミックス
 412 ステータ
 413 ロータ
 42 第2超音波モータ
 43 ボール体
50 駆動手段
 51 ピストン
 52 永久磁石
 53 電磁コイル
 501 アーム部
 502 カム部
 503 付勢手段
 504 おもり
 505 長径部
 506 短径部
60 外部装置
 61 送受信部
 62 受信データ処理部
 63 画像作成部
 64 モニタ
 65 制御部
 66 操作部
 67 電源部
DESCRIPTION OF SYMBOLS 1 Ultrasonic diagnostic imaging apparatus 2 Ultrasound medical device 10 Capsule type main body part 11 Inner surface part 12 Circumferential surface 13 Acoustic medium 15 Support body 151 Hollow part 152 Bottom part 16 Holding body 20 Guide pipe 21 String-like body 22 Marker 30 Ultrasonic wave Vibrator 31 Rotation axis (cylinder axis)
32 Capsule Transmission / Reception Unit 33 Capsule Control Unit 34 Capsule Power Supply Unit 40 Changing Means 41 First Ultrasonic Motor 411 Piezoelectric Ceramics 412 Stator 413 Rotor 42 Second Ultrasonic Motor 43 Ball Body 50 Driving Means 51 Piston 52 Permanent Magnet 53 Electromagnetic Coil 501 Arm Unit 502 cam unit 503 biasing means 504 weight 505 major axis unit 506 minor axis unit 60 external device 61 transmission / reception unit 62 received data processing unit 63 image creation unit 64 monitor 65 control unit 66 operation unit 67 power supply unit

Claims (13)

  1.  超音波振動子を内蔵するカプセル型本体部を有し、被検体の管状部に挿入された前記カプセル型本体部内の前記超音波振動子から被検体内部に対して超音波を送信し、その反射波を受信する超音波医療装置であって、
     前記カプセル型本体部内に設けられ、前記超音波振動子の角度を変化させる変更手段と、
     を有すること、
     を特徴とする超音波医療装置。
    An ultrasonic wave is transmitted to the inside of the subject from the ultrasonic vibrator in the capsule-type main body inserted into the tubular portion of the subject, and the reflection is reflected. An ultrasonic medical device for receiving waves,
    Change means provided in the capsule-type main body and changing the angle of the ultrasonic transducer;
    Having
    Ultrasonic medical device characterized by.
  2.  超音波振動子を内蔵するカプセル型本体部を有し、被検体の管状部に挿入された前記カプセル型本体部内の前記超音波振動子から被検体内部に対して超音波を送信し、その反射波を受信する超音波医療装置であって、
     前記カプセル型本体部が先端部に設けられ、前記管状部に挿入可能な導中管と、
     前記カプセル型本体部内に設けられ、カプセル型本体部を管状部内で進行させる駆動手段と、
     を有すること、
     を特徴とする超音波医療装置。
    An ultrasonic wave is transmitted to the inside of the subject from the ultrasonic vibrator in the capsule-type main body inserted into the tubular portion of the subject, and the reflection is reflected. An ultrasonic medical device for receiving waves,
    The capsule-type main body is provided at the tip, and a guide pipe that can be inserted into the tubular part;
    A driving means provided in the capsule-type main body, and causing the capsule-type main body to advance in the tubular portion;
    Having
    Ultrasonic medical device characterized by.
  3.  超音波振動子を内蔵するカプセル型本体部を有し、被検体の管状部に挿入された前記カプセル型本体部内の前記超音波振動子から被検体内部に対して超音波を送信し、その反射波を受信する超音波医療装置であって、
     前記カプセル型本体部が先端部に設けられ、前記管状部に挿入可能な導中管と、
     前記カプセル型本体部内に設けられ、カプセル型本体部を管状部内で進行させる駆動手段と、
     前記カプセル型本体部内に設けられ、前記超音波振動子の角度を変化させる変更手段と、
     を有すること、
     を特徴とする超音波医療装置。
    An ultrasonic wave is transmitted to the inside of the subject from the ultrasonic vibrator in the capsule-type main body inserted into the tubular portion of the subject, and the reflection is reflected. An ultrasonic medical device for receiving waves,
    The capsule-type main body is provided at the tip, and a guide pipe that can be inserted into the tubular part;
    A driving means provided in the capsule-type main body, and causing the capsule-type main body to advance in the tubular portion;
    Change means provided in the capsule-type main body and changing the angle of the ultrasonic transducer;
    Having
    Ultrasonic medical device characterized by.
  4.  複数の前記超音波振動子は円筒状に配列され、
     前記変更手段は、前記円筒状における筒軸を傾けるように構成されていること、
     を特徴とする請求項1または請求項3に記載の超音波医療装置。
    The plurality of ultrasonic transducers are arranged in a cylindrical shape,
    The changing means is configured to incline a cylindrical axis in the cylindrical shape;
    The ultrasonic medical device according to claim 1 or claim 3, wherein
  5.  前記カプセル型本体部は、前記筒軸の両端部にそれぞれ対向させて球状の内面部が配置され、
     前記変更手段は、
     前記筒軸の一端部に設けられ、前記筒軸の一端部を前記内面部に沿って転動可能に設けられたボ-ル体と、
     前記筒軸の他端部または前記筒軸の他端部が対向する前記内面部の一方に配置され、前記筒軸の他端部または前記内面部の他方に接し、前記筒軸の他端部を前記内面部に対して相対的に移動させる超音波モ-タと、
     を有すること、
     を特徴とする請求項4に記載の超音波医療装置。
    The capsule-type main body is arranged with a spherical inner surface facing the both ends of the cylindrical shaft,
    The changing means is
    A ball body provided at one end of the cylindrical shaft and provided so that the one end of the cylindrical shaft can roll along the inner surface;
    The other end portion of the cylindrical shaft or the other end portion of the cylindrical shaft is disposed at one of the inner surface portions facing the other end portion of the cylindrical shaft or the other end portion of the cylindrical shaft. An ultrasonic motor for moving the inner surface relative to the inner surface,
    Having
    The ultrasonic medical apparatus according to claim 4.
  6.  前記導中管は、紐状体を有し、
     紐状体には、多くても、前記カプセル型本体部へ電力を送る電源線、並びに、前記カプセル型本体部へ信号を送る信号線が配置されていること、
     を特徴とする請求項2または請求項3に記載の超音波医療装置。
    The guiding pipe has a string-like body,
    In the string-like body, at most, a power line for sending power to the capsule-type main body, and a signal line for sending a signal to the capsule-type main body,
    The ultrasonic medical device according to claim 2 or 3, wherein
  7.  前記紐状体は、前記カプセル型本体部が前記管状部へ挿入される長さを識別可能なマ-クを有すること、
     を特徴とする請求項6に記載の超音波医療装置。
    The string-like body has a mark capable of identifying the length of insertion of the capsule-type main body portion into the tubular portion;
    The ultrasonic medical device according to claim 6.
  8.  前記駆動手段は、前記紐状体が連結されている側とは反対の方向に前記カプセル型本体部を進行させるように構成されていること、
     を特徴とする請求項6または請求項7のいずれかに記載の超音波医療装置。
    The drive means is configured to advance the capsule main body in a direction opposite to the side to which the string-like body is connected;
    The ultrasonic medical device according to claim 6, wherein:
  9.  前記駆動手段は、前記カプセル型本体部の内部において、前記カプセル型本体部に対して前記進行する方向の衝撃を与えることにより、前記カプセル型本体部を進行させるように構成されていること、
     を特徴とする請求項8に記載の超音波医療装置。
    The driving means is configured to advance the capsule main body by applying an impact in the traveling direction to the capsule main body within the capsule main body.
    The ultrasonic medical device according to claim 8.
  10.  前記駆動手段は、
     前記カプセル型本体部の円筒状における前記内部に、筒軸の方向へ往復移動可能に設けられたピストンと、
     前記ピストンに設けられた永久磁石と、
     前記ピストンを前記往復移動させ、前記ピストンを前記円筒状における底部に衝突させることにより、前記カプセル型本体部を進行させる電磁コイルと、
     を有すること、
     を特徴とする請求項9に記載の超音波医療装置。
    The driving means includes
    A piston provided in the cylindrical shape of the capsule-type main body portion so as to be capable of reciprocating in the direction of the cylinder axis;
    A permanent magnet provided on the piston;
    An electromagnetic coil for advancing the capsule body by reciprocating the piston and causing the piston to collide with a bottom of the cylindrical shape;
    Having
    The ultrasonic medical device according to claim 9.
  11.  前記駆動手段は、
     前記カプセル型本体部内に設けられ、前記カプセル型本体部に一端部が軸支され、一端部を中心にして他端部が揺動するア-ム部と、
     前記カプセル型本体部に軸支され、前記ア-ム部を揺動させるカム部と、
     前記ア-ム部をカム部の方へ付勢する付勢手段を有すること、
     を有し、
     前記付勢する力により、前記ア-ム部を前記カム部に衝突させることにより、前記カプセル型本体部を進行させるように構成されていること、
     を特徴とする請求項9に記載の超音波医療装置。
    The driving means includes
    An arm portion provided in the capsule-type main body, one end of which is pivotally supported by the capsule-type main body, and the other end swings around the one end;
    A cam portion pivotally supported by the capsule-type main body portion and swinging the arm portion;
    Urging means for urging the arm portion toward the cam portion;
    Have
    The capsule-type main body is advanced by causing the arm to collide with the cam by the biasing force;
    The ultrasonic medical device according to claim 9.
  12.  前記駆動手段は、前記カプセル型本体部の先端部または後端部に配置されていること、
     を特徴とする請求項11に記載の超音波医療装置。
    The driving means is disposed at a front end or a rear end of the capsule-type main body;
    The ultrasonic medical device according to claim 11.
  13.  前記請求項1から請求項12のいずれかに記載の超音波医用装置を有し、
     前記反射波から生成した受信信号を基に被検体内部を画像化すること、
     を特徴とする超音波画像診断装置。
    The ultrasonic medical device according to any one of claims 1 to 12,
    Imaging the inside of the subject based on the received signal generated from the reflected wave;
    An ultrasonic diagnostic imaging apparatus.
PCT/JP2013/077176 2012-10-04 2013-10-04 Ultrasound medical device and ultrasound image diagnostic device WO2014054807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222589 2012-10-04
JP2012222589A JP6099926B2 (en) 2012-10-04 2012-10-04 Ultrasonic medical apparatus and ultrasonic diagnostic imaging apparatus

Publications (1)

Publication Number Publication Date
WO2014054807A1 true WO2014054807A1 (en) 2014-04-10

Family

ID=50435125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077176 WO2014054807A1 (en) 2012-10-04 2013-10-04 Ultrasound medical device and ultrasound image diagnostic device

Country Status (2)

Country Link
JP (1) JP6099926B2 (en)
WO (1) WO2014054807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058354A1 (en) * 2020-09-16 2022-03-24 Queen Mary University Of London Locomotion system for a medical device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3554370B1 (en) 2016-12-19 2022-09-28 Koninklijke Philips N.V. Control of anatomical image acquisition using physiological information
JPWO2021024709A1 (en) * 2019-08-02 2021-02-11
KR102267625B1 (en) * 2019-11-05 2021-06-21 주식회사 엔도핀 An apparatus of capsule endoscope
KR102623187B1 (en) * 2022-02-16 2024-01-12 재단법인대구경북과학기술원 Ultrasound endoscopic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556977A (en) * 1991-09-05 1993-03-09 Matsushita Electric Ind Co Ltd Ultrasonic probe
JP2004222998A (en) * 2003-01-23 2004-08-12 Olympus Corp Ultrasonic diagnostic capsule
JP2006130161A (en) * 2004-11-08 2006-05-25 Olympus Corp Medical ultrasonic diagnostic capsule
JP2006150053A (en) * 2004-11-08 2006-06-15 Olympus Corp Capsule type ultrasonic diagnostic apparatus
JP2006280638A (en) * 2005-03-31 2006-10-19 Toin Gakuen Travelling capsule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556977A (en) * 1991-09-05 1993-03-09 Matsushita Electric Ind Co Ltd Ultrasonic probe
JP2004222998A (en) * 2003-01-23 2004-08-12 Olympus Corp Ultrasonic diagnostic capsule
JP2006130161A (en) * 2004-11-08 2006-05-25 Olympus Corp Medical ultrasonic diagnostic capsule
JP2006150053A (en) * 2004-11-08 2006-06-15 Olympus Corp Capsule type ultrasonic diagnostic apparatus
JP2006280638A (en) * 2005-03-31 2006-10-19 Toin Gakuen Travelling capsule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058354A1 (en) * 2020-09-16 2022-03-24 Queen Mary University Of London Locomotion system for a medical device

Also Published As

Publication number Publication date
JP2014073271A (en) 2014-04-24
JP6099926B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6129509B2 (en) Ultrasonic medical apparatus and ultrasonic diagnostic imaging apparatus
JP5073276B2 (en) A rotatable transducer array for volumetric ultrasound
JP6099926B2 (en) Ultrasonic medical apparatus and ultrasonic diagnostic imaging apparatus
US10154830B2 (en) 3D catheter-based ultrasound assembly with gimbal-mount transducer and single coil drive
JP6661372B2 (en) Reciprocating internal ultrasonic transducer assembly
CN105025800B (en) Ultrasonic transducer direction controlling
WO2010117634A2 (en) Systems and methods for making and using a imaging core of an intravascular ultrasound imaging system
JP2013521866A (en) Ultrasonic imaging probe and method
JPH07114775B2 (en) Ultrasonic lumen diagnostic device
JP2010068923A (en) Ultrasonic diagnostic apparatus
JP2009297384A (en) Ultrasonic diagnostic apparatus and ultrasonic probe
US10159463B2 (en) Ultrasound probe
JP2004222998A (en) Ultrasonic diagnostic capsule
US10531861B2 (en) Ultrasonic diagnosis apparatus
KR101969982B1 (en) An apparatus of capsule endoscopy, magnetic controller, and capsule endoscopy system
JP6006074B2 (en) Ultrasonic medical equipment, ultrasonic diagnostic equipment
JP7262357B2 (en) Medical devices and medical device sets
JP2008278932A (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP6366123B2 (en) Insert system
JP4668592B2 (en) Body cavity probe device
JP7267808B2 (en) Diagnostic imaging device, diagnostic imaging system, catheter for diagnostic imaging, and priming method
KR101853853B1 (en) An apparatus of capsule endoscopy, magnetic controller, and capsule endoscopy system
JP2017225698A (en) Medical care system and ultrasonic diagnostic device
JP2003310620A (en) Ultrasonic endoscope
JPH11178826A (en) Ultrasonlc probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843193

Country of ref document: EP

Kind code of ref document: A1