WO2014054535A1 - Syringe - Google Patents

Syringe Download PDF

Info

Publication number
WO2014054535A1
WO2014054535A1 PCT/JP2013/076328 JP2013076328W WO2014054535A1 WO 2014054535 A1 WO2014054535 A1 WO 2014054535A1 JP 2013076328 W JP2013076328 W JP 2013076328W WO 2014054535 A1 WO2014054535 A1 WO 2014054535A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe
copolymer
fluororesin
gasket
fluororubber
Prior art date
Application number
PCT/JP2013/076328
Other languages
French (fr)
Japanese (ja)
Inventor
柳口 富彦
増田 晴久
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2014539706A priority Critical patent/JPWO2014054535A1/en
Publication of WO2014054535A1 publication Critical patent/WO2014054535A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M5/31513Piston constructions to improve sealing or sliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE

Definitions

  • the present invention relates to a syringe.
  • the syringe includes a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while closely contacting the inner wall surface of the syringe, and is held in the syringe by sliding the gasket. It extrudes a chemical.
  • the inner wall surface of the syringe and the surface of the gasket slide while being in close contact with each other, so that good sliding characteristics are required between them. Moreover, in order to hold
  • an elastic body such as rubber or elastomer is used in order to improve the airtightness and liquid tightness between the syringe and the gasket. It cannot be said that the dynamic characteristics are good.
  • a lubricant such as silicone oil has been applied to the syringe inner wall in order to reduce the frictional resistance between the gasket surface and the syringe inner wall and to improve the sliding characteristics.
  • a lubricant is mixed into a chemical solution during use, or chemically reacts with the components of the chemical solution to adversely affect the human body.
  • a syringe, a plunger, and a plunger are provided for the purpose of providing a syringe that reduces adverse effects on the human body and reduces sliding resistance while maintaining airtightness and watertightness between the syringe and the gasket.
  • a syringe having a gasket made of a short cylindrical elastic material that is attached to the distal end of the plunger and is slid while being in close contact with the inner wall surface of the syringe
  • the syringe is cylindrical in the longitudinal direction inside the gasket.
  • a hollow portion is provided, and a cylindrical tip portion of a plunger having a size smaller than that of the cylindrical hollow portion is inserted so as to leave a longitudinal gap and / or a circumferential gap in the cylindrical hollow portion. And holding the gasket at the cylindrical tip, and on the outer peripheral surface of the gasket main body corresponding to the portion closer to the midpoint side of the shaft than both ends of the cylindrical hollow. Syringe, wherein a-up is protruded in the circumferential direction is described.
  • Patent Document 2 discloses a column having a rotationally symmetrical shape with respect to the axis of the syringe outer cylinder, which is slidably inserted into the syringe outer cylinder for the purpose of obtaining a syringe stopper having excellent airtightness and slidability.
  • the columnar body has a maximum diameter portion at a distal end portion thereof, and R of a cross section around the distal end portion is 5/100 to 10/100 mm or less, and a rear end portion of the columnar body portion
  • a syringe plug is characterized in that the diameter is smaller than the inner diameter of the outer cylinder when inserted into the outer cylinder of the syringe and is non-contact with the outer cylinder.
  • JP 2000-107290 A Japanese Patent Laid-Open No. 10-236
  • An object of this invention is to provide the syringe which is excellent in the slidability of a syringe and a gasket, even if it does not use a lubrication agent.
  • the present invention is a syringe having a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while being in close contact with the inner wall surface of the syringe, wherein at least the surface of the gasket is A syringe comprising an elastic member obtained by crosslinking a crosslinkable composition containing a fluororubber (A) and a fluororesin (B).
  • a syringe comprising an elastic member obtained by crosslinking a crosslinkable composition containing a fluororubber (A) and a fluororesin (B).
  • the fluororesin (B) is tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene.
  • Copolymer polychlorotrifluoroethylene, chlorotrifluoroethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, vinylidene fluoride / Hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, and at least one selected from the group consisting of polyvinyl fluoride It is preferred.
  • the fluororesin (B) is preferably a perfluorofluororesin.
  • the fluororesin (B) is preferably a tetrafluoroethylene / hexafluoropropylene copolymer.
  • the volume ratio of the fluororesin (B) to the elastic member is preferably 0.05 to 0.45.
  • the fluororubber (A) is composed of vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene / propylene / vinylidene fluoride.
  • the syringe of this invention has the said structure, even if it does not use a lubricant, the slidability of a syringe and a gasket is excellent.
  • (A) is a perspective view showing the shape of the convex portion having the elastic member 30 of the gasket surface schematically
  • (b) is a plane including the straight line B 1 and the line B 2 perpendicular to the surface of (a)
  • a sectional view of the convex portion 31 is a sectional view taken on
  • (c) is a plane including a surface parallel to the straight line C 1 and the line C 2 of the (a).
  • the syringe of the present invention is a syringe having a syringe, a plunger, and a gasket that is attached to the distal end portion of the plunger and is slid while being in close contact with the inner wall surface of the syringe, at least the surface of the gasket Is made of an elastic member obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
  • at least the surface of the gasket is composed of an elastic member obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
  • the syringe of the present invention includes a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while being in close contact with the inner wall surface of the syringe.
  • the shape of the syringe is not particularly limited, and the shape of a syringe used for a general syringe can be employed.
  • the material of the syringe is not particularly limited, and a material for forming a syringe used for a general syringe can be employed.
  • Examples of the material of the syringe include glass and synthetic resin.
  • Examples of the synthetic resin include polypropylene, polyurethane, and fluororesin. Synthetic resin is preferably used as the syringe material because it can be incinerated, but generally syringes made of synthetic resin are not slidable. However, since the syringe of the present invention has the above-described configuration, the slidability between the syringe and the gasket is excellent even if the syringe is formed from a synthetic resin.
  • the shape of the plunger is not particularly limited, and the shape of a plunger used for a general syringe can be adopted.
  • the material of the plunger is not particularly limited, and a material for forming a plunger used for a general syringe can be employed.
  • the gasket is attached to the tip of the plunger and slides while being in close contact with the inner wall surface of the syringe.
  • the shape of the gasket is not particularly limited, and a general known shape used for a syringe can be employed.
  • it is cylindrical.
  • annular lip part which protrudes in the circumferential direction of a cylinder may be sufficient.
  • the gasket is made of an elastic member having at least a surface obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
  • a part of the surface of the gasket may be made of the elastic member, or the whole surface may be made of the elastic member, and at least the surface that is in close contact with the inner wall surface of the syringe is made of the elastic member. Anything is acceptable.
  • the gasket may be entirely made of the elastic member (for example, see FIG. 4).
  • a gasket consists of a base material and the said elastic member, and may have the said elastic member on the surface of a base material (for example, refer FIG. 2 and 3).
  • the elastic member When the gasket is entirely made of the elastic member, the elastic member has the same shape as the gasket.
  • the base material is preferably a rubber base material made of rubber such as butyl rubber, natural rubber, isoprene rubber or styrene-butadiene rubber from the viewpoint of the airtightness, liquid tightness, etc. of the syringe. It is not necessary to be made of rubber as long as a syringe having a property and liquid tightness is obtained, and even a hard resin or the like can be used and is not particularly limited.
  • FIG. 2 is a schematic cross-sectional view showing an example of the syringe of the present invention.
  • the syringe 10 a includes a syringe 11, a plunger 12, and a gasket 15 a that is attached to the distal end portion of the plunger 12 and is slid while being in close contact with the inner wall surface of the syringe 11.
  • the gasket 15a includes a base material 13a and a sheet-like elastic member 14a provided on the surface of the base material 13a. In use of the syringe, the inner wall surface of the syringe 11 and the surface of the gasket 15a are slid while being in close contact with each other.
  • the surface of the gasket 15a is made of fluororubber (A) and fluororesin (B).
  • the elastic member 14a obtained by crosslinking a crosslinkable composition containing, the slidability between the syringe 11 and the gasket 15a is excellent without using a lubricant.
  • FIG. 3 is a schematic cross-sectional view showing an example of the syringe of the present invention.
  • the syringe 10 b includes a syringe 11 made of a synthetic resin such as polypropylene, a plunger 12, and a gasket 15 b that is attached to the distal end portion of the plunger 12 and is slid while being in close contact with the inner wall surface of the syringe 11.
  • the gasket 15b includes a base material 13b and a sheet-like elastic member 14b provided on the surface of the base material 13b.
  • the gasket 15b has an annular lip portion 16b that protrudes in the circumferential direction of the gasket.
  • the syringe of the present invention is obtained by crosslinking the crosslinkable composition containing the fluororubber (A) and the fluororesin (B) on the surface (lip portion 16b) of the gasket 15b that is in close contact with the syringe 11 and slides.
  • the elastic member 14b By being made of the elastic member 14b, the slidability between the syringe 11 and the gasket 15b is excellent.
  • FIG. 4 is a schematic cross-sectional view showing an example of the syringe of the present invention.
  • the syringe 10 c includes a syringe 11, a plunger 12, and a gasket 15 c that is attached to the distal end portion of the plunger 12 and slides while closely contacting the inner wall surface of the syringe 11.
  • the gasket 15c is made of a cylindrical elastic member obtained by cross-linking a cross-linkable composition containing the fluoro rubber (A) and the fluoro resin (B) as a whole.
  • the gasket 15c has a lip portion 16c that protrudes in the circumferential direction of the elastic member.
  • the syringe of the present invention is made of an elastic member obtained by crosslinking a crosslinkable composition containing a fluororubber (A) and a fluororesin (B), with the lip portion 16c that is in close contact with the syringe 11 and slid. Therefore, the slidability between the syringe 11 and the gasket 15c is excellent.
  • Fluoro rubber (A) usually comprises an amorphous polymer having fluorine atoms bonded to carbon atoms constituting the main chain and having rubber elasticity.
  • the fluororubber (A) may be composed of one kind of polymer, or may be composed of two or more kinds of polymers.
  • the fluororubber (A) is composed of vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, VdF / HFP / tetrafluoroethylene (TFE) copolymer, TFE / propylene copolymer, TFE / propylene / VdF.
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • Copolymer ethylene / HFP copolymer, ethylene / HFP / VdF copolymer, ethylene / HFP / TFE copolymer, VdF / TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymer, and VdF / It is preferably at least one selected from the group consisting of chlorotrifluoroethylene (CTFE) copolymers.
  • CTFE chlorotrifluoroethylene
  • fluororubber made of a copolymer containing VdF units is more preferable.
  • VdF-based fluororubber made of a copolymer containing the vinylidene fluoride (VdF) unit will be described.
  • VdF-based fluororubber is a fluororubber containing at least polymerized units derived from vinylidene fluoride.
  • the copolymer containing a VdF unit is preferably a copolymer containing a VdF unit and a copolymer unit derived from a fluorine-containing ethylenic monomer (excluding the VdF unit).
  • the copolymer containing a VdF unit preferably further contains a copolymer unit derived from a monomer copolymerizable with VdF and a fluorine-containing ethylenic monomer.
  • the copolymer containing VdF units preferably contains 30 to 90 mol% of VdF units and 70 to 10 mol% of copolymerized units derived from a fluorine-containing ethylenic monomer, and 30 to 85 mol% of VdF units. More preferably, it contains 30 to 15 mol% of a copolymerized unit derived from a fluorine-containing ethylenic monomer, and 30 to 80 mol% of a VdF unit and 70 to 20 mol% of a fluorine-containing ethylenic monomer.
  • the copolymerized unit derived from the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer is 0 to 10 mol based on the total amount of the VdF unit and the copolymerized unit derived from the fluorine-containing ethylenic monomer. % Is preferred.
  • a fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I
  • a fluorine-containing monomer such as a fluorovinyl ether represented by (C) represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms.
  • at least one selected from the group consisting of fluorovinyl ether represented by formula (1), TFE, HFP and PAVE is preferable, and at least selected from the group consisting of TFE, HFP and PAVE One type is more preferable.
  • CF 2 CFO (CF 2 CFY 1 O) p - (CF 2 CF 2 CF 2 O) q -Rf (2) (Wherein Y 1 represents F or CF 3 , Rf represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5, and q represents an integer of 0 to 5) It is preferable that
  • the PAVE is preferably perfluoro (methyl vinyl ether) or perfluoro (propyl vinyl ether), and more preferably perfluoro (methyl vinyl ether). These can be used alone or in any combination.
  • Examples of the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer include ethylene, propylene, alkyl vinyl ether and the like.
  • Such a copolymer containing VdF units include a VdF / HFP copolymer, a VdF / HFP / TFE copolymer, a VdF / CTFE copolymer, a VdF / CTFE / TFE copolymer, and a VdF.
  • copolymers containing VdF units at least one selected from the group consisting of VdF / HFP copolymers and VdF / HFP / TFE copolymers from the viewpoint of heat resistance and chemical resistance.
  • the copolymer is particularly preferred. It is preferable that the copolymer containing these VdF units satisfies the composition ratio of the above-described VdF units and copolymer units derived from a fluorine-containing ethylenic monomer.
  • the VdF / HFP copolymer preferably has a VdF / HFP molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, and still more preferably 60 to 80/40. ⁇ 20.
  • the VdF / HFP / TFE copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 35.
  • the VdF / PAVE copolymer preferably has a VdF / PAVE molar ratio of 65 to 90/10 to 35.
  • the VdF / TFE / PAVE copolymer preferably has a VdF / TFE / PAVE molar ratio of 40 to 80/3 to 40/15 to 35.
  • the VdF / HFP / PAVE copolymer preferably has a VdF / HFP / PAVE molar ratio of 65 to 90/3 to 25/3 to 25.
  • the VdF / HFP / TFE / PAVE copolymer preferably has a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35, more preferably 40 to 80. / 3 to 25/3 to 40/3 to 25.
  • the fluororubber (A) is also preferably made of a copolymer containing a copolymer unit derived from a monomer that provides a crosslinking site.
  • Examples of the monomer that gives a crosslinking site include perfluoro (6,6-dihydro-6-iodo-3-oxa-1-) described in JP-B-5-63482 and JP-A-7-316234.
  • Hexene) and perfluoro (5-iodo-3-oxa-1-pentene) -containing monomers bromine-containing monomers described in JP-A-4-505341, JP-A-4-505345, Examples include cyano group-containing monomers, carboxyl group-containing monomers, and alkoxycarbonyl group-containing monomers as described in JP-T-5-500070.
  • the fluorororubber (A) is also preferably a fluororubber having an iodine atom or a bromine atom at the end of the main chain.
  • Fluororubber having iodine atom or bromine atom at the main chain end is produced by adding a radical initiator in the presence of a halogen compound in an aqueous medium in the absence of oxygen and performing emulsion polymerization of the monomer. it can.
  • halogen compound used include, for example, the general formula: R 2 I x Br y (Wherein x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x + y ⁇ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms, carbon A saturated or unsaturated chlorofluorohydrocarbon group having 1 to 16 carbon atoms, or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
  • halogen compound examples include 1,3-diiodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4- Dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodoperfluorohexadecane, diiodomethane, 1,2 - diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFClBr, CFBrClCFClBr, BrCF 2 CF 2 CF
  • 1,4-diiodoperfluorobutane or diiodomethane from the viewpoints of polymerization reactivity, crosslinking reactivity, availability, and the like.
  • the fluororubber (A) has a Mooney viscosity (ML 1 + 10 (100 ° C.)) of preferably 5 to 140, more preferably 10 to 120, and more preferably 20 to 100 from the viewpoint of good processability. More preferably. Mooney viscosity can be measured according to ASTM-D1646. Measuring equipment: ALPHA2000 TECHNOLOGIES MV2000E rotor speed: 2 rpm Measurement temperature: 100 ° C
  • the crosslinking system of the fluororubber (A) for example, at least one selected from the group consisting of a peroxide crosslinking system and a polyol crosslinking system is preferable. From the viewpoint of chemical resistance, a peroxide crosslinking system is preferred, and from the viewpoint of heat resistance, a polyol crosslinking system is preferred.
  • the crosslinkable composition may contain a crosslinking agent used in each crosslinking system.
  • the amount of the crosslinking agent may be appropriately selected depending on the type of the crosslinking agent and the like, but is preferably 0.2 to 5.0 parts by mass, more preferably 0 to 100 parts by mass of the fluororubber (A). .3 to 3.0 parts by mass.
  • Peroxide crosslinking can be performed by using a peroxide-crosslinkable fluororubber and an organic peroxide as a crosslinking agent.
  • the fluorororubber capable of peroxide crosslinking is not particularly limited as long as it is a fluororubber having a site capable of peroxide crosslinking.
  • the peroxide-crosslinkable site is not particularly limited, and examples thereof include an iodine atom and a bromine atom.
  • the organic peroxide may be an organic peroxide that can easily generate a peroxy radical in the presence of heat or a redox system.
  • 1,1-bis (t-butylperoxy) -3 5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t- Butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne -3, benzoyl peroxide, t-butyl peroxybenzene, t-butyl peroxymaleic acid, t-butyl peroxyisopropyl carbonate
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 are preferable.
  • the compounding amount of the organic peroxide is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking composition preferably contains a crosslinking aid.
  • the crosslinking aid include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, Tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro-2-propenyl) -1,3,5-triazine-2 , 4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane, hexaallylphosphoramide, N, N, N ′ , N′
  • the amount of the crosslinking aid is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 7.0 parts by mass, and still more preferably 100 parts by mass of the fluororubber (A). Is 0.1 to 5.0 parts by mass.
  • the crosslinking aid is less than 0.01 parts by mass, the mechanical properties are deteriorated, and the airtightness and liquid tightness are inferior.
  • it exceeds 10 parts by mass the heat resistance is inferior and the chemical resistance tends to be reduced. .
  • Polyol crosslinking can be performed by using a polyol-crosslinkable fluororubber and a polyhydroxy compound as a crosslinking agent.
  • the polyol-crosslinkable fluorororubber is not particularly limited as long as it is a fluororubber having a polyol-crosslinkable site.
  • the polyol-crosslinkable site is not particularly limited, and examples thereof include a site having a vinylidene fluoride (VdF) unit.
  • Examples of the method for introducing the crosslinking site include a method of copolymerizing a monomer that gives a crosslinking site during the polymerization of the fluororubber.
  • polyhydroxy compound a polyhydroxy aromatic compound is preferably used from the viewpoint of excellent heat resistance.
  • the polyhydroxy aromatic compound is not particularly limited.
  • 2,2-bis (4-hydroxyphenyl) propane hereinafter referred to as bisphenol A
  • 2,2-bis (4-hydroxyphenyl) perfluoropropane (Hereinafter referred to as bisphenol AF)
  • resorcin 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, , 2-Bis (4-hydroxyphenyl) Tetrafluorodichloropropane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphen
  • polyhydroxy aromatic compounds may be an alkali metal salt, an alkaline earth metal salt or the like, but when the copolymer is coagulated using an acid, it is preferable not to use the metal salt.
  • the compounding amount of the polyhydroxy aromatic compound is 0.1 to 15 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinkable composition preferably contains a crosslinking accelerator.
  • a crosslinking accelerator accelerates
  • crosslinking accelerator examples include onium compounds.
  • onium compounds ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and 1 It is preferably at least one selected from the group consisting of functional amine compounds, and more preferably at least one selected from the group consisting of quaternary ammonium salts and quaternary phosphonium salts.
  • the quaternary ammonium salt is not particularly limited.
  • the quaternary phosphonium salt is not particularly limited.
  • tetrabutylphosphonium chloride benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltributylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl.
  • BTPPC benzyltriphenylphosphonium chloride
  • benzyltributylphosphonium chloride benzyltributylphosphonium chloride
  • tributylallylphosphonium chloride tributyl.
  • -2-Methoxypropylphosphonium chloride benzylphenyl (dimethylamino) phosphonium chloride, and the like.
  • benzyltriphenylphosphonium chloride is used in terms of crosslinkability, mechanical properties, airtightness, and liquid tightness. (BTPPC) is preferred.
  • crosslinking accelerator a quaternary ammonium salt or a quaternary phosphonium salt and a bisphenol AF solid solution, or a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can be used.
  • the blending amount of the crosslinking accelerator is preferably 0.01 to 8 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking of the fluororubber does not proceed sufficiently, and the heat resistance of the resulting syringe may be lowered. If the amount exceeds 8 parts by mass, the moldability of the crosslinkable composition may decrease, the elongation in mechanical properties may decrease, and the airtightness and liquid tightness tend to decrease.
  • the fluororesin (B) is preferably a melt processable fluororesin.
  • the syringe of the present invention has excellent sliding characteristics between the syringe and the gasket.
  • the gasket which consists of an elastic member which has a convex part on the surface which is mentioned later can be obtained, and the syringe comprised from such a gasket is provided with the more excellent slidability.
  • melt processable fluororesin examples include TFE / HFP copolymer, TFE / PAVE copolymer [PFA], Et / TFE copolymer, Et / TFE / HFP copolymer, polychlorotrifluoroethylene [ PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, polyvinylidene fluoride [PVdF], TFE / VdF copolymer, VdF / HFP / TFE copolymer, VdF / HFP copolymer, and polyfluoride. It is preferably at least one selected from the group consisting of vinyl fluoride [PVF]. Also, low molecular weight PTFE can be used as long as it is melt processable.
  • the fluororesin (B) is preferably a perfluorofluororesin from the viewpoint of excellent slidability between the syringe and the gasket, heat resistance, and chemical resistance.
  • the fluororesin (B) is a TFE / HFP copolymer, that is, a copolymer composed of TFE units and HFP units (hereinafter also referred to as “FEP”) from the viewpoint of excellent slidability between the syringe and the gasket. More preferably. FEP is also preferable in that it has excellent heat resistance.
  • the FEP is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of HFP units, and a copolymer comprising 80 to 97 mol% of TFE units and 3 to 20 mol% of HFP units. It is more preferable that If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
  • FEP may be a copolymer comprising TFE, HFP, and a monomer copolymerizable with TFE and HFP.
  • CF 2 CF-ORf 6 (wherein Rf 6 represents a perfluoroalkyl group having 1 to 5 carbon atoms.) Perfluoro (alkyl vinyl ether) [PAVE]
  • the PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, and more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE.
  • alkyl perfluorovinyl ether derivative those in which Rf 7 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
  • the monomer units derived from monomers copolymerizable with TFE and HFP are 0.1 to 10 mol%, and the total of TFE units and HFP units is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be inferior, and if it exceeds 10 mol%, heat resistance, mechanical properties, and productivity are obtained. Tend to be inferior.
  • the melting point of the fluororesin (B) is preferably equal to or higher than the primary crosslinking temperature of the fluororubber (A).
  • fusing point of a fluororesin (B) is suitably determined by the kind of fluororubber (A), it is more preferable that it is 150 degreeC or more, and it is still more preferable that it is 180 degreeC or more.
  • an upper limit is not specifically limited, For example, it may be 300 degreeC. If the melting point is too low, the fluororesin melts at the time of cross-linking molding described later, and a cross-linked molded product having a desired shape may not be obtained.
  • the elastic member which has a sufficient number of convex parts may not be obtained.
  • the fluororesin (B) preferably has a melt flow rate [MFR] at 372 ° C. of 0.3 to 100 g / 10 min. If the MFR is too small, good slidability may not be obtained, and if the MFR is too large, molding may be difficult.
  • MFR is a value obtained by measuring at a temperature of 372 ° C. and a load of 5 kg in accordance with ASTM-D1238.
  • the crosslinkable composition may contain at least one polyfunctional compound.
  • the polyfunctional compound is a compound having two or more functional groups having the same or different structures in one molecule.
  • the functional groups possessed by the polyfunctional compound include carbonyl groups, carboxyl groups, haloformyl groups, amide groups, olefin groups, amino groups, isocyanate groups, hydroxy groups, epoxy groups, etc., which are generally known to have reactivity. Any group can be used.
  • the compounds having these functional groups not only have high affinity with the fluororubber (A), but also react with functional groups known to have the reactivity possessed by the fluororesin (B), and are further compatible with each other. Is expected to improve.
  • the crosslinkable composition containing the fluororubber (A) and the fluororesin (B) has a volume ratio of the fluororubber (A) to the fluororesin (B) (fluororubber (A)) / (fluororesin (B)). Is preferably 60/40 to 95/5. If the amount of the fluororesin (B) is too small, the slidability between the syringe and the gasket may be insufficient. On the other hand, if the amount of the fluororesin (B) is too large, the rubber elasticity of the gasket surface may be impaired.
  • the fluorororubber (A )) / (Fluororesin (B)) is more preferably 65/35 to 95/5, and still more preferably 70/30 to 90/10.
  • the above-mentioned crosslinkable composition is a usual additive blended in the fluororubber as necessary, for example, a filler, a processing aid, a plasticizer, a colorant, a stabilizer, an adhesion aid, a mold release agent, a conductivity.
  • Various additives such as an imparting agent, a thermal conductivity imparting agent, a surface non-adhesive agent, a flexibility imparting agent, a heat resistance improving agent, and a flame retardant can be blended, and these additives impair the effects of the present invention. It may be used within the range.
  • the elastic member is obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
  • the elastic member is not limited as long as it is obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B), but is preferably obtained by a production method described later. .
  • the elastic member preferably has a convex portion on the surface. Since the convex portion exists on the surface of the elastic member, the syringe of the present invention is excellent in the sliding property between the syringe and the gasket.
  • a convex part consists of a fluororesin (B) substantially contained in a crosslinkable composition.
  • a convex part can be formed by depositing the fluororesin (B) contained in the said crosslinkable composition on the surface by the method mentioned later, for example.
  • the convex part does not have a clear interface or the like between the elastic member, and the convex part and the elastic member are integrally formed, and the convex part is unlikely to drop off or be lost.
  • FIG. 1A is a perspective view schematically showing the shape of the convex portion of the elastic member 30 on the gasket surface
  • FIG. 1B includes straight lines B 1 and B 2 perpendicular to the surface of FIG.
  • a sectional view of the convex portion 31 in plan is a cross-sectional view taken along (c) is a plane including a surface parallel to the straight line C 1 and the line C 2 of the (a).
  • 1 (a) to 1 (c) schematically depict a minute region on the surface of the syringe.
  • a substantially conical (cone-shaped) convex portion 31 is formed on the surface of the syringe.
  • the height of the convex portion 31 refers to the height of the portion protruding from the surface of the elastic member (see H in FIG. 1B). Further, the bottom cross-sectional area of the projecting portion 31, the convex portion 31 convex portion 31 is observed in the cut surface of an elastic member parallel to the surface plane (a plane including the straight line C 1 and the line C 2) ( Figure 1 (C) refers to the value of the area in the cross section.
  • the area ratio of the region having the convex portion (occupation ratio of the convex portion) is 0.06 (6%) or more with respect to the surface area of the elastic member.
  • a more preferable area ratio is 0.15 (15%) or more, and further preferably 0.30 (30%) or more.
  • the area ratio of the region having the convex portion on the surface of the elastic member refers to the ratio of the area occupied by the convex portion in the cut surface for evaluating the bottom cross-sectional area of the convex portion.
  • the volume ratio of the fluororesin (B) is preferably 0.05 to 0.45 (5 to 45% by volume) with respect to the elastic member.
  • the lower limit of the volume ratio is more preferably 0.10 (10% by volume).
  • the upper limit of the volume ratio is more preferably 0.40 (40% by volume), still more preferably 0.35 (35% by volume), and particularly preferably 0.30 (30% by volume). . Since the fluororesin has excellent heat resistance, it is not decomposed by the molding cross-linking step or the heat treatment step, so it can be assumed that the volume ratio is the same as the volume ratio of the fluororesin in the cross-linkable composition.
  • the area ratio of the region having the convex portions is preferably 1.2 times or more, more preferably 1.3 times or more of the volume ratio of the fluororesin (B).
  • region which has a convex part in the surface of an elastic member is higher than the volume ratio of the fluororesin (B) of an elastic member, and the said elastic member becomes higher than the volume ratio of the fluororesin in a crosslinkable composition. Due to this feature, even if the mixing ratio of the fluororesin is small, the elastic member improves the slidability, which was a drawback of the fluororubber, and does not impair the advantages of the fluororubber. In addition, if the area ratio of the area
  • the convex portion preferably has a height of 0.1 to 30.0 ⁇ m. When the height of the convex portion is within this range, the slidability between the syringe and the gasket is more excellent.
  • the height is more preferably 0.3 to 20.0 ⁇ m, still more preferably 0.5 to 10.0 ⁇ m.
  • the convex part preferably has a bottom sectional area of 0.1 to 2000 ⁇ m 2 .
  • the bottom cross-sectional area of the convex portion is within this range, the slidability between the syringe and the gasket is more excellent.
  • a more preferable bottom cross-sectional area is 0.3 to 1500 ⁇ m 2
  • a still more preferable bottom cross-sectional area is 0.5 to 1000 ⁇ m 2 .
  • the elastic member preferably has a standard deviation of the height of the convex portion of 0.300 or less. Within this range, the slidability between the syringe and the gasket is more excellent.
  • the elastic member preferably has 500 to 60000 convex portions / mm 2 . Within this range, the slidability between the syringe and the gasket is more excellent.
  • the area ratio, the height of the convex portion, the sectional area of the bottom portion of the convex portion, the number of convex portions, etc. for example, manufactured by Keyence Corporation, using a color 3D laser microscope (VK-9700) as analysis software WinRooF Ver. It can be calculated using 6.4.0.
  • the area ratio of the region having the convex part is obtained as the ratio of the total cross-sectional area to the total cross-sectional area value obtained by calculating the bottom cross-sectional area of the convex part.
  • the number of convex portions is obtained by converting the number of convex portions in the measurement region into a number per 1 mm 2 .
  • the convex portion may be formed on a part of the surface of the elastic member, and the elastic member may have a region where the convex portion is not formed.
  • the convex portion need not be formed in a portion that is not in close contact with the syringe.
  • the syringe of the present invention is preferably obtained by the following production method.
  • the syringe of the present invention is A mixing step of mixing the fluororubber (A) and the fluororesin (B) to obtain a crosslinkable composition; A molding and crosslinking step for obtaining a crosslinked molded article having a desired shape by molding and crosslinking the crosslinkable composition; A heat treatment step for obtaining an elastic member by heating the cross-linked molded article obtained in the molding cross-linking step to a temperature equal to or higher than the melting point of the fluororesin (B) Providing an elastic member on the surface of the substrate to obtain a gasket having at least a surface made of the elastic member; and Attaching the obtained gasket to the tip of the plunger and inserting the plunger with the gasket into the syringe; It is preferable to be obtained by a production method comprising (hereinafter referred to as “first production method”). Each step will be described below.
  • the method for obtaining the crosslinkable composition is not particularly limited as long as a method capable of uniformly mixing the fluororubber (A) and the fluororesin (B) is used.
  • the fluororubber (A) and the fluororesin (B) and a method of co-coagulating the fluororubber (A) and the fluororesin (B) are preferable.
  • melt-kneading and co-coagulation will be described.
  • melt-kneading The melt-kneading is performed with the fluororubber (A) and the fluororesin (B) at a temperature that is at least 5 ° C. lower than the melting point of the fluororesin (B), preferably at a temperature that is higher than the melting point of the fluororesin (B).
  • the upper limit of the heating temperature is lower than the lower thermal decomposition temperature of the fluororubber (A) or the fluororesin (B).
  • melt-kneading is not performed under conditions that cause crosslinking at that temperature (in the presence of a crosslinking agent, crosslinking accelerator, and acid acceptor, etc.), but crosslinking is caused at a melt-kneading temperature that is 5 ° C lower than the melting point of the fluororesin. If there are no components (for example, only a specific cross-linking agent, only a combination of a cross-linking agent and a cross-linking accelerator, etc.), they may be added and mixed during melt kneading. Examples of conditions that cause crosslinking include a combination of a polyol crosslinking agent, a crosslinking accelerator, and an acid acceptor.
  • the fluorororubber (A) and the fluororesin (B) are melt kneaded to prepare a pre-compound (preliminary mixture), and then other additives and compounding agents are added at a temperature lower than the crosslinking temperature.
  • a two-stage kneading method in which a full compound (crosslinkable composition) is obtained by kneading is preferred.
  • a method of kneading all the components at a temperature lower than the crosslinking temperature of the crosslinking agent may be used.
  • crosslinking agent well-known crosslinking agents, such as an amine crosslinking agent, a polyol crosslinking agent, and a peroxide crosslinking agent, can be used.
  • Melt kneading is performed by kneading with fluororubber using a Banbury mixer, a pressure kneader, an extruder, etc. at a temperature of 5 ° C. lower than the melting point of the fluororesin, for example, 180 ° C. or more, usually 200 to 290 ° C. It can be carried out. Among these, it is preferable to use an extruder such as a pressure kneader or a twin screw extruder because a high shear force can be applied.
  • full compounding in the two-stage kneading method can be performed using an open roll, a Banbury mixer, a pressure kneader, or the like at a temperature lower than the crosslinking temperature, for example, 100 ° C. or lower.
  • Dynamic crosslinking is a method in which uncrosslinked rubber is blended in a matrix of a thermoplastic resin, uncrosslinked rubber is crosslinked while kneading, and the crosslinked rubber is dispersed microscopically in the matrix.
  • the crosslinkable composition is preferably obtained by co-coagulation. That is, the crosslinkable composition preferably contains a fluororubber (A) and a fluororesin (B) obtained by co-coagulation.
  • co-coagulation it is possible to manufacture a syringe that is more slidable between the syringe and the gasket.
  • the convex part formed in the surface of an elastic member can be formed uniformly, and the area ratio (occupancy) of the area
  • the crosslinkable composition contains co-coagulated fluororubber (A) and fluororesin (B), the fluororubber (A) and fluororesin (B) are uniformly dispersed in the crosslinkable composition. It is expected that
  • Examples of the co-coagulation method include: (i) a method in which an aqueous dispersion of fluororubber (A) and an aqueous dispersion of fluororesin (B) are mixed and then coagulated; (ii) fluororubber ( A method in which the powder of A) is coagulated after being added to the aqueous dispersion of fluororesin (B), and (iii) the powder of fluororesin (B) is coagulated after being added to the aqueous dispersion of fluororubber (A).
  • the method of analyzing is mentioned.
  • the above method (i) is particularly preferable in that each resin is easily dispersed uniformly.
  • the coagulation in the coagulation methods (i) to (iii) can be performed using, for example, a flocculant.
  • a flocculant is not particularly limited, but examples thereof include aluminum salts such as aluminum sulfate and alum, calcium salts such as calcium sulfate, magnesium salts such as magnesium sulfate and magnesium chloride, sodium chloride and potassium chloride.
  • known aggregating agents such as monovalent cation salts.
  • the pH may be adjusted by adding an acid or an alkali in order to promote aggregation.
  • the crosslinkable composition preferably contains a co-coagulated powder obtained by co-coagulating the fluororubber (A) and the fluororesin (B).
  • the co-coagulated powder is coagulated after mixing the aqueous dispersion of fluororubber (A) and the aqueous dispersion of fluororesin (B), and then the coagulated product is recovered and dried as desired. Can be obtained.
  • the said crosslinkable composition contains the said co-coagulated powder and a crosslinking agent, and may further contain the various additives etc. which are mentioned later.
  • the crosslinkable composition is obtained by co-coagulating fluororubber (A) and fluororesin (B) to obtain a co-coagulated powder, and adding a cross-linking agent to the co-coagulated powder. It is preferable.
  • a cross-linking agent may be necessary. Therefore, after co-coagulating the fluororubber (A) and the fluororesin (B) to obtain a co-coagulated powder, A crosslinkable composition may be obtained by adding a crosslinking agent.
  • the co-coagulated powder and the cross-linking agent are mixed.
  • the said mixing can be mixed by the normal mixing method using a kneader etc. at the temperature below melting
  • a cross-linked molded body having a desired shape is produced by molding and cross-linking the cross-linkable composition.
  • the order of molding and crosslinking is not limited, and may be crosslinked after molding, may be molded after crosslinking, or may be molded and crosslinked simultaneously.
  • the molding and crosslinking methods of the crosslinkable composition may be known methods for the molding and crosslinking employed.
  • Examples of the molding method include extrusion molding, compression molding, injection molding, transfer molding, and the like.
  • cross-linking method a steam cross-linking method, a pressure molding method, a radiation cross-linking method, or a normal method in which a cross-linking reaction is started by heating can be employed.
  • a crosslinking reaction by heating is preferable because the sliding property between the syringe and the gasket is more excellent.
  • the temperature at which crosslinking is performed is not less than the crosslinking temperature of the fluororubber (A) and is preferably less than the melting point of the fluororesin (B). If the crosslinking is performed at a melting point or higher of the fluororesin (B), the fluororesin (B) melts at the time of cross-linking molding, and an elastic member having a sufficient number of convex portions cannot be obtained, and sufficient slidability is obtained. There is a risk of not being able to. More preferably, the crosslinking temperature is less than 5 ° C. lower than the melting point of the fluororesin (B) and not less than the crosslinking temperature of the fluororubber (A).
  • the crosslinking time is, for example, 1 minute to 24 hours, and may be appropriately determined depending on the type of crosslinking agent used.
  • a post-processing step called secondary cross-linking may be performed, but as described in the heat treatment step below,
  • the secondary crosslinking step and the heat treatment step of this specification are different treatment steps.
  • the elastic molded member is obtained by heating the crosslinked molded body obtained in the molding crosslinking step to a temperature equal to or higher than the melting point of the fluororesin (B).
  • the heat treatment step is a treatment step performed to increase the ratio of the fluororesin on the surface of the elastic member.
  • the melting point of the fluororesin (B) and the fluororubber (A) and the fluororesin (B) A temperature lower than the thermal decomposition temperature is adopted as the heating temperature.
  • heating temperature When heating temperature is lower than melting
  • a preferable heating temperature is a temperature that is 5 ° C. or more higher than the melting point of the fluororesin because the slidability can be improved in a short time.
  • the above upper limit temperature is the case of ordinary fluoro rubber, and in the case of fluoro rubber having super heat resistance, since the upper limit temperature is the decomposition temperature of fluoro rubber having super heat resistance, the above upper limit temperature is not limited to this. .
  • the heating temperature is closely related to the heating time.
  • the heating time may be appropriately set in relation to the heating temperature.
  • the fluororubber may be thermally deteriorated. It is practically up to 96 hours excluding the case where is used.
  • the heat treatment time is preferably 1 minute to 72 hours. From the viewpoint of good productivity, 1 minute to 24 hours is more preferable, but from the viewpoint of improving slidability, 8 to 72 hours is more preferable.
  • the conventional secondary cross-linking completely decomposes the cross-linking agent remaining at the end of the primary cross-linking to complete the cross-linking of the fluororubber, thereby improving the mechanical properties and compression set properties of the cross-linked molded product.
  • This is a process to be performed. Therefore, the conventional secondary crosslinking conditions that do not assume the coexistence of the fluororesin (B) are present in the secondary crosslinking even if the crosslinking conditions accidentally overlap with the heating conditions of the heat treatment step in the present invention.
  • the remaining crosslinking agent may be decomposed to complete the cross-linking of the fluororubber (A).
  • the cross-linking of the fluororubber (A) in the heat treatment step is only a secondary effect. Absent.
  • the heat treatment step By performing the heat treatment step, it is possible to obtain a syringe in which the characteristics of the fluororesin (B) are sufficiently exhibited on the surface of the elastic member and the slidability is remarkably improved as compared with those without heat treatment.
  • the characteristics of the fluororubber (A) can be exhibited in areas other than the surface area of the elastic member, and as a whole, an excellent syringe can be obtained with a good balance in terms of slidability, airtightness, and liquidtightness between the syringe and the gasket. .
  • the step of providing the elastic member on the surface of the base material to obtain a gasket having at least the surface made of the elastic member is not particularly limited as long as the elastic member is provided on at least a portion of the gasket that is in close contact with the inner wall of the syringe.
  • a method of winding a sheet-like elastic member around the surface of a columnar base material and bonding the base material and the elastic member can be used.
  • the method for bonding the base material and the elastic member include a method of bonding by co-crosslinking the base material and the elastic member, a method using an adhesive, and the like.
  • Step of obtaining a syringe The process generally performed in manufacture of a syringe can be employ
  • the first manufacturing method it is possible to manufacture a syringe including a base material and the elastic member, and having a gasket in which the elastic member is provided on the surface of the base material.
  • the entire gasket may be made of an elastic member.
  • the syringe of the present invention is preferably obtained by the following production method.
  • the syringe of the present invention is A mixing step in which the fluororubber (A) and the fluororesin (B) are melt-kneaded or co-coagulated to obtain a crosslinkable composition;
  • the molding and crosslinking step is to obtain a crosslinked molded body having substantially the same shape as the gasket, and does not require a step of providing an elastic member on the surface of the base material.
  • the same method as the first manufacturing method can be adopted except that a gasket made of members is obtained.
  • Example 1 Thereafter, the resulting crosslinkable composition 1 was molded into a gasket shape using a molding die, and crosslinked at 180 ° C. for 5 minutes at 40 kg / cm 2 to obtain a crosslinked molded product. Thereafter, the crosslinked molded product was placed in a heating furnace maintained at 230 ° C. for 24 hours and subjected to heat treatment to produce a gasket 1.
  • the manufactured gasket of the present invention shown in FIG. 4 can be obtained by attaching the manufactured gasket to the plunger and inserting it into the syringe.
  • Example 2 A gasket 2 was obtained in the same manner as in Example 1 except that the crosslinkable composition 2 was used instead of the crosslinkable composition 1.
  • Example 3 A gasket 3 was obtained in the same manner as in Example 1 except that the crosslinkable composition 3 was used instead of the crosslinkable composition 1.
  • Example 4 A gasket 4 was obtained in the same manner as in Example 1 except that the crosslinkable composition 4 was used instead of the crosslinkable composition 1.
  • Cross-linking agent Bisphenol AF Special grade reagent Wako Pure Chemical Industries, Ltd.
  • Cross-linking accelerator BTPPC Special grade reagent Wako Pure Chemical Industries, Ltd.
  • Cross-linking aid Magnesium oxide MA 150, manufactured by Kyowa Chemical Industry Co., Ltd. CALDIC2000 manufactured by Omi Chemical Co., Ltd.
  • the dynamic friction coefficient was measured according to JIS K7125.
  • the crosslinkable compositions 1 to 5 obtained in Synthesis Examples 1 to 5 were press-molded to obtain 120 mm ⁇ 160 mm ⁇ 2 mm samples (test sheets). A 94 g weight was placed on the obtained sample in a state where a molded product (65 mm ⁇ 65 mm ⁇ 3 mm, 6 g) of a cycloolefin polymer (COP, manufactured by Nippon Zeon Co., Ltd.) was brought into contact with the obtained sample.
  • COP cycloolefin polymer

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Sealing Material Composition (AREA)

Abstract

Provided is a syringe that exhibits outstanding sliding properties between the syringe and gasket, even if a lubricant is not used. This invention is a syringe comprising a syringe barrel, a plunger, and a gasket which is fitted to the tip of the plunger, and which is made to slide in close contact with the inner wall surface of the syringe barrel. At least the surface of the gasket is made from an elastic member obtained by crosslinking a crosslinkable composition containing a fluorinated elastomer (A) and fluorinated resin (B).

Description

注射器Syringe
本発明は、注射器に関するものである。 The present invention relates to a syringe.
注射器は、シリンジと、プランジャーと、プランジャーの先端部に装着してシリンジの内壁面に密着させつつ摺動させるガスケットとを基本構成要素とし、ガスケットを摺動させることでシリンジ内に保持した薬液を押出すものである。 The syringe includes a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while closely contacting the inner wall surface of the syringe, and is held in the syringe by sliding the gasket. It extrudes a chemical.
注射器において、シリンジの内壁面とガスケットの表面とは密着しながら摺動するものであるので、両者の間で良好な摺動特性が要求される。また、薬液をシリンジ内に保持するために、良好な気密性、液密性も要求される。
上記ガスケットとしては、シリンジとガスケットとの間の気密性、液密性を良好なものとするため、ゴム、エラストマー等の弾性体が用いられているが、通常、このような弾性体は、摺動特性が良好なものとはいえない。
そのため、ガスケット表面とシリンジ内壁との摩擦抵抗を小さくして摺動特性を良好なものとするために、シリコンオイル等の潤滑剤がシリンジ内壁に塗られていた。
しかしながら、近年、このような潤滑剤が使用中に薬液に混入したり、薬液の成分と化学反応して人体に悪影響を及ぼすことが指摘されており、潤滑剤を使用しなくても、シリンジの内壁面とガスケットの表面との摺動特性が優れる注射器が求められている。
In the syringe, the inner wall surface of the syringe and the surface of the gasket slide while being in close contact with each other, so that good sliding characteristics are required between them. Moreover, in order to hold | maintain a chemical | medical solution in a syringe, favorable airtightness and liquid tightness are also requested | required.
As the gasket, an elastic body such as rubber or elastomer is used in order to improve the airtightness and liquid tightness between the syringe and the gasket. It cannot be said that the dynamic characteristics are good.
Therefore, a lubricant such as silicone oil has been applied to the syringe inner wall in order to reduce the frictional resistance between the gasket surface and the syringe inner wall and to improve the sliding characteristics.
However, in recent years, it has been pointed out that such a lubricant is mixed into a chemical solution during use, or chemically reacts with the components of the chemical solution to adversely affect the human body. There is a need for a syringe with excellent sliding properties between the inner wall surface and the surface of the gasket.
特許文献1には、人体に対する悪影響を少なくすると共にシリンジとガスケットとの間の気密・水密性を維持しつつ摺動抵抗をより小さくした注射器を提供することを目的として、シリンジと、プランジャーと、該プランジャーの先端部に装着して該シリンジの内壁面に密着させつつ摺動させる短円柱状の弾性材料よりなるガスケットとを有する注射器において、該ガスケットの内部にその長手方向に円柱状の中空部を設け、この円柱状の中空部に長手方向の間隙及び/又は円周方向の間隙を残すように該円柱状の中空部より小さい大きさとしたプランジャーの円柱状の先端部を挿入して該円柱状の先端部で該ガスケットを保持すると共に、該円柱状の中空部の両端より軸の中点側寄りとなる部分に対応する該ガスケットの本体部の外周面にリップを円周方向に突出させたことを特徴とする注射器が記載されている。 In Patent Document 1, a syringe, a plunger, and a plunger are provided for the purpose of providing a syringe that reduces adverse effects on the human body and reduces sliding resistance while maintaining airtightness and watertightness between the syringe and the gasket. In a syringe having a gasket made of a short cylindrical elastic material that is attached to the distal end of the plunger and is slid while being in close contact with the inner wall surface of the syringe, the syringe is cylindrical in the longitudinal direction inside the gasket. A hollow portion is provided, and a cylindrical tip portion of a plunger having a size smaller than that of the cylindrical hollow portion is inserted so as to leave a longitudinal gap and / or a circumferential gap in the cylindrical hollow portion. And holding the gasket at the cylindrical tip, and on the outer peripheral surface of the gasket main body corresponding to the portion closer to the midpoint side of the shaft than both ends of the cylindrical hollow. Syringe, wherein a-up is protruded in the circumferential direction is described.
特許文献2には、気密性、摺動性に優れた注射器滑栓を得ることを目的として、注射器外筒内に摺動自在に挿入される、注射器外筒の軸線に関して回転対称形状をなす柱体からなる注射器用滑栓において、上記柱体は、先端部に最大径部を有し、先端部周囲断面のRは、5/100~10/100mm以下であり、上記柱体の後端部径は、注射器外筒への挿入状態で該外筒の内径より小さく、該外筒に対して非接触であることを特徴とする注射器用滑栓が記載されている。 Patent Document 2 discloses a column having a rotationally symmetrical shape with respect to the axis of the syringe outer cylinder, which is slidably inserted into the syringe outer cylinder for the purpose of obtaining a syringe stopper having excellent airtightness and slidability. In a syringe stopper comprising a body, the columnar body has a maximum diameter portion at a distal end portion thereof, and R of a cross section around the distal end portion is 5/100 to 10/100 mm or less, and a rear end portion of the columnar body portion A syringe plug is characterized in that the diameter is smaller than the inner diameter of the outer cylinder when inserted into the outer cylinder of the syringe and is non-contact with the outer cylinder.
特開2000-107290号公報JP 2000-107290 A 特開平10-236号公報Japanese Patent Laid-Open No. 10-236
本発明は、潤滑剤を使用しなくても、シリンジとガスケットとの摺動性が優れる注射器を提供することを目的とする。 An object of this invention is to provide the syringe which is excellent in the slidability of a syringe and a gasket, even if it does not use a lubrication agent.
本発明は、シリンジと、プランジャーと、上記プランジャーの先端部に装着して上記シリンジの内壁面に密着させつつ摺動させるガスケットと、を有する注射器であって、上記ガスケットの少なくとも表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなることを特徴とする注射器である。 The present invention is a syringe having a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while being in close contact with the inner wall surface of the syringe, wherein at least the surface of the gasket is A syringe comprising an elastic member obtained by crosslinking a crosslinkable composition containing a fluororubber (A) and a fluororesin (B).
フッ素樹脂(B)は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン/フッ化ビニリデン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、及び、ポリフッ化ビニルからなる群より選択される少なくとも1種であることが好ましい。 The fluororesin (B) is tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene. Copolymer, polychlorotrifluoroethylene, chlorotrifluoroethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, vinylidene fluoride / Hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, and at least one selected from the group consisting of polyvinyl fluoride It is preferred.
フッ素樹脂(B)は、パーフルオロフッ素樹脂であることが好ましい。 The fluororesin (B) is preferably a perfluorofluororesin.
フッ素樹脂(B)は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体であることが好ましい。 The fluororesin (B) is preferably a tetrafluoroethylene / hexafluoropropylene copolymer.
本発明の注射器は、弾性部材に対するフッ素樹脂(B)の体積比が0.05~0.45であることが好ましい。 In the syringe of the present invention, the volume ratio of the fluororesin (B) to the elastic member is preferably 0.05 to 0.45.
フッ素ゴム(A)は、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン共重合体、エチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、ビニリデンフルオライド/テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、及び、ビニリデンフルオライド/クロロトリフルオロエチレン共重合体からなる群より選択される少なくとも1種であることが好ましい。 The fluororubber (A) is composed of vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene / propylene / vinylidene fluoride. Ride copolymer, ethylene / hexafluoropropylene copolymer, ethylene / hexafluoropropylene / vinylidene fluoride copolymer, ethylene / hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene / perfluoro Preferably, it is at least one selected from the group consisting of (alkyl vinyl ether) copolymers and vinylidene fluoride / chlorotrifluoroethylene copolymers. There.
本発明の注射器は、上記構成を有することから、潤滑剤を使用しなくても、シリンジとガスケットとの摺動性が優れる。 Since the syringe of this invention has the said structure, even if it does not use a lubricant, the slidability of a syringe and a gasket is excellent.
(a)は、ガスケット表面の弾性部材30が有する凸部の形状を模式的に示す斜視図であり、(b)は(a)の表面に垂直な直線Bと直線Bを含む平面で凸部31を切断した断面図であり、(c)は(a)の表面と平行な直線Cと直線Cを含む平面で切断した断面図である。(A) is a perspective view showing the shape of the convex portion having the elastic member 30 of the gasket surface schematically, (b) is a plane including the straight line B 1 and the line B 2 perpendicular to the surface of (a) a sectional view of the convex portion 31 is a sectional view taken on (c) is a plane including a surface parallel to the straight line C 1 and the line C 2 of the (a). 本発明の注射器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the syringe of this invention. 本発明の注射器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the syringe of this invention. 本発明の注射器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the syringe of this invention.
本発明の注射器は、シリンジと、プランジャーと、上記プランジャーの先端部に装着して上記シリンジの内壁面に密着させつつ摺動させるガスケットと、を有する注射器であって、上記ガスケットの少なくとも表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなるものである。
本発明の注射器は、上記ガスケットの少なくとも表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなるものであるため、ガスケット表面ではフッ素樹脂(B)に起因する優れた低摩擦性が発揮され、潤滑剤を使用しなくても、シリンジとガスケットとの摺動性が優れる。また、ガスケットの少なくとも表面が上記弾性部材からなるものであるため、フッ素ゴム本来の柔軟性も損なわれず、気密性及び液密性にも優れる。
以下に、各要素について説明する。
The syringe of the present invention is a syringe having a syringe, a plunger, and a gasket that is attached to the distal end portion of the plunger and is slid while being in close contact with the inner wall surface of the syringe, at least the surface of the gasket Is made of an elastic member obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
In the syringe of the present invention, at least the surface of the gasket is composed of an elastic member obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B). Excellent low friction due to the fluororesin (B) is exhibited, and the slidability between the syringe and the gasket is excellent without using a lubricant. Moreover, since at least the surface of the gasket is made of the elastic member, the original flexibility of the fluororubber is not impaired, and the airtightness and liquid tightness are excellent.
Each element will be described below.
本発明の注射器は、シリンジと、プランジャーと、上記プランジャーの先端部に装着して上記シリンジの内壁面に密着させつつ摺動させるガスケットとを有する。 The syringe of the present invention includes a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while being in close contact with the inner wall surface of the syringe.
上記シリンジの形状は特に限定されず、一般的な注射器に用いられるシリンジの形状を採用できる。
シリンジの材質は特に限定されず、一般的な注射器に用いられるシリンジを形成するための材料を採用できる。
シリンジの材質としては、例えば、ガラス、合成樹脂等が挙げられる。合成樹脂としては、ポリプロピレン、ポリウレタン、フッ素樹脂等が挙げられる。
焼却処理が可能である点等から、シリンジの材質としては、合成樹脂を用いることが好ましいが、一般的に合成樹脂で作成したシリンジは摺動性が良好でない。
しかしながら、本発明の注射器は、上記構成を有することによって、シリンジが合成樹脂から形成されたものであっても、シリンジとガスケットとの摺動性が優れる。
The shape of the syringe is not particularly limited, and the shape of a syringe used for a general syringe can be employed.
The material of the syringe is not particularly limited, and a material for forming a syringe used for a general syringe can be employed.
Examples of the material of the syringe include glass and synthetic resin. Examples of the synthetic resin include polypropylene, polyurethane, and fluororesin.
Synthetic resin is preferably used as the syringe material because it can be incinerated, but generally syringes made of synthetic resin are not slidable.
However, since the syringe of the present invention has the above-described configuration, the slidability between the syringe and the gasket is excellent even if the syringe is formed from a synthetic resin.
上記プランジャーの形状は特に限定されず、一般的な注射器に用いられるプランジャーの形状を採用できる。
プランジャーの材質は特に限定されず、一般的な注射器に用いられるプランジャーを形成するための材料を採用できる。
The shape of the plunger is not particularly limited, and the shape of a plunger used for a general syringe can be adopted.
The material of the plunger is not particularly limited, and a material for forming a plunger used for a general syringe can be employed.
上記ガスケットは、上記プランジャーの先端部に装着されて上記シリンジの内壁面に密着させつつ摺動するものである。 The gasket is attached to the tip of the plunger and slides while being in close contact with the inner wall surface of the syringe.
上記ガスケットの形状としては、特に限定されるものではなく、注射器に用いられる一般的な公知の形状を採用することができる。例えば、円柱状である。また、円柱の円周方向に突出する環状のリップ部を有する円柱状であってもよい。 The shape of the gasket is not particularly limited, and a general known shape used for a syringe can be employed. For example, it is cylindrical. Moreover, the column shape which has the cyclic | annular lip part which protrudes in the circumferential direction of a cylinder may be sufficient.
上記ガスケットは、少なくとも表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなる。
上記ガスケットは、表面の一部が上記弾性部材からなるものであってもよいし、全面が上記弾性部材からなるものであってもよく、少なくともシリンジ内壁面と密着する表面が上記弾性部材からなるものであればよい。
The gasket is made of an elastic member having at least a surface obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B).
A part of the surface of the gasket may be made of the elastic member, or the whole surface may be made of the elastic member, and at least the surface that is in close contact with the inner wall surface of the syringe is made of the elastic member. Anything is acceptable.
上記ガスケットは、全体が上記弾性部材からなるものであってもよい(例えば、図4参照)。また、ガスケットは、基材及び上記弾性部材からなり、基材の表面に上記弾性部材を有するものであってもよい(例えば、図2及び3参照)。 The gasket may be entirely made of the elastic member (for example, see FIG. 4). Moreover, a gasket consists of a base material and the said elastic member, and may have the said elastic member on the surface of a base material (for example, refer FIG. 2 and 3).
上記ガスケットが、全体が上記弾性部材からなるものである場合、上記弾性部材はガスケットと同じ形状である。 When the gasket is entirely made of the elastic member, the elastic member has the same shape as the gasket.
上記基材としては、注射器の気密性、液密性等の観点から、ブチルゴム、天然ゴム、イソプレンゴム、スチレン-ブタジエンゴム等のゴムからなるゴム基材が好ましいが、使用に則した充分な気密性、液密性を有する注射器が得られればゴムからなる必要はなく、硬質の樹脂等であっても使用可能であり、特に限定されるものではない。 The base material is preferably a rubber base material made of rubber such as butyl rubber, natural rubber, isoprene rubber or styrene-butadiene rubber from the viewpoint of the airtightness, liquid tightness, etc. of the syringe. It is not necessary to be made of rubber as long as a syringe having a property and liquid tightness is obtained, and even a hard resin or the like can be used and is not particularly limited.
図2は、本発明の注射器の一例を示す断面模式図である。注射器10aは、シリンジ11と、プランジャー12と、プランジャー12の先端部に装着してシリンジ11の内壁面に密着させつつ摺動させるガスケット15aとを有する。ガスケット15aは、基材13aと基材13aの表面に設けられたシート状の弾性部材14aとからなる。
注射器の使用においては、シリンジ11の内壁面とガスケット15aの表面とを密着させつつ摺動させるが、本発明の注射器は、ガスケット15aの表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材14aからなることによって、潤滑剤を使用しなくても、シリンジ11とガスケット15aとの摺動性が優れる。
FIG. 2 is a schematic cross-sectional view showing an example of the syringe of the present invention. The syringe 10 a includes a syringe 11, a plunger 12, and a gasket 15 a that is attached to the distal end portion of the plunger 12 and is slid while being in close contact with the inner wall surface of the syringe 11. The gasket 15a includes a base material 13a and a sheet-like elastic member 14a provided on the surface of the base material 13a.
In use of the syringe, the inner wall surface of the syringe 11 and the surface of the gasket 15a are slid while being in close contact with each other. However, in the syringe of the present invention, the surface of the gasket 15a is made of fluororubber (A) and fluororesin (B). By being made of the elastic member 14a obtained by crosslinking a crosslinkable composition containing, the slidability between the syringe 11 and the gasket 15a is excellent without using a lubricant.
図3は、本発明の注射器の一例を示す断面模式図である。注射器10bは、ポリプロピレン等の合成樹脂からなるシリンジ11と、プランジャー12と、プランジャー12の先端部に装着してシリンジ11の内壁面に密着させつつ摺動させるガスケット15bとを有する。ガスケット15bは、基材13bと基材13bの表面に設けられたシート状の弾性部材14bとからなる。また、ガスケット15bは、ガスケットの円周方向に突出する環状のリップ部16bを有する。
本発明の注射器は、シリンジ11と密着して摺動させるガスケット15bの表面(リップ部16b)が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材14bからなることによって、シリンジ11とガスケット15bとの摺動性が優れる。
FIG. 3 is a schematic cross-sectional view showing an example of the syringe of the present invention. The syringe 10 b includes a syringe 11 made of a synthetic resin such as polypropylene, a plunger 12, and a gasket 15 b that is attached to the distal end portion of the plunger 12 and is slid while being in close contact with the inner wall surface of the syringe 11. The gasket 15b includes a base material 13b and a sheet-like elastic member 14b provided on the surface of the base material 13b. The gasket 15b has an annular lip portion 16b that protrudes in the circumferential direction of the gasket.
The syringe of the present invention is obtained by crosslinking the crosslinkable composition containing the fluororubber (A) and the fluororesin (B) on the surface (lip portion 16b) of the gasket 15b that is in close contact with the syringe 11 and slides. By being made of the elastic member 14b, the slidability between the syringe 11 and the gasket 15b is excellent.
図4は、本発明の注射器の一例を示す断面模式図である。注射器10cは、シリンジ11と、プランジャー12と、プランジャー12の先端部に装着してシリンジ11の内壁面に密着させつつ摺動させるガスケット15cとを有する。ガスケット15cは、全体がフッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる円柱状の弾性部材からなる。また、ガスケット15cは弾性部材の円周方向に突出するリップ部16cを有する。
本発明の注射器は、シリンジ11と密着して摺動させるリップ部16cが、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなることによって、シリンジ11とガスケット15cとの摺動性が優れる。
FIG. 4 is a schematic cross-sectional view showing an example of the syringe of the present invention. The syringe 10 c includes a syringe 11, a plunger 12, and a gasket 15 c that is attached to the distal end portion of the plunger 12 and slides while closely contacting the inner wall surface of the syringe 11. The gasket 15c is made of a cylindrical elastic member obtained by cross-linking a cross-linkable composition containing the fluoro rubber (A) and the fluoro resin (B) as a whole. The gasket 15c has a lip portion 16c that protrudes in the circumferential direction of the elastic member.
The syringe of the present invention is made of an elastic member obtained by crosslinking a crosslinkable composition containing a fluororubber (A) and a fluororesin (B), with the lip portion 16c that is in close contact with the syringe 11 and slid. Therefore, the slidability between the syringe 11 and the gasket 15c is excellent.
(A)フッ素ゴム
フッ素ゴム(A)は、通常、主鎖を構成する炭素原子に結合しているフッ素原子を有し、且つゴム弾性を有する非晶質の重合体からなる。上記フッ素ゴム(A)は、1種の重合体からなるものであってもよいし、2種以上の重合体からなるものであってもよい。
(A) Fluoro rubber Fluoro rubber (A) usually comprises an amorphous polymer having fluorine atoms bonded to carbon atoms constituting the main chain and having rubber elasticity. The fluororubber (A) may be composed of one kind of polymer, or may be composed of two or more kinds of polymers.
フッ素ゴム(A)は、ビニリデンフルオライド(VdF)/ヘキサフルオロプロピレン(HFP)共重合体、VdF/HFP/テトラフルオロエチレン(TFE)共重合体、TFE/プロピレン共重合体、TFE/プロピレン/VdF共重合体、エチレン/HFP共重合体、エチレン/HFP/VdF共重合体、エチレン/HFP/TFE共重合体、VdF/TFE/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体、及び、VdF/クロロトリフルオロエチレン(CTFE)共重合体からなる群より選択される少なくとも1種であることが好ましい。中でも、VdF単位を含む共重合体からなるフッ素ゴムがより好ましい。 The fluororubber (A) is composed of vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, VdF / HFP / tetrafluoroethylene (TFE) copolymer, TFE / propylene copolymer, TFE / propylene / VdF. Copolymer, ethylene / HFP copolymer, ethylene / HFP / VdF copolymer, ethylene / HFP / TFE copolymer, VdF / TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymer, and VdF / It is preferably at least one selected from the group consisting of chlorotrifluoroethylene (CTFE) copolymers. Among these, fluororubber made of a copolymer containing VdF units is more preferable.
上記ビニリデンフルオライド(VdF)単位を含む共重合体からなるフッ素ゴム(以下、「VdF系フッ素ゴム」ともいう。)について説明する。VdF系フッ素ゴムは、少なくともビニリデンフルオライドに由来する重合単位を含むフッ素ゴムである。 The fluororubber (hereinafter also referred to as “VdF-based fluororubber”) made of a copolymer containing the vinylidene fluoride (VdF) unit will be described. The VdF-based fluororubber is a fluororubber containing at least polymerized units derived from vinylidene fluoride.
VdF単位を含む共重合体としては、VdF単位及び含フッ素エチレン性単量体由来の共重合単位(但し、VdF単位は除く。)を含む共重合体であることが好ましい。VdF単位を含む共重合体は、更に、VdF及び含フッ素エチレン性単量体と共重合可能な単量体由来の共重合単位を含むことも好ましい。 The copolymer containing a VdF unit is preferably a copolymer containing a VdF unit and a copolymer unit derived from a fluorine-containing ethylenic monomer (excluding the VdF unit). The copolymer containing a VdF unit preferably further contains a copolymer unit derived from a monomer copolymerizable with VdF and a fluorine-containing ethylenic monomer.
VdF単位を含む共重合体としては、30~90モル%のVdF単位及び70~10モル%の含フッ素エチレン性単量体由来の共重合単位を含むことが好ましく、30~85モル%のVdF単位及び70~15モル%の含フッ素エチレン性単量体由来の共重合単位を含むことがより好ましく、30~80モル%のVdF単位及び70~20モル%の含フッ素エチレン性単量体由来の共重合単位を含むことが更に好ましい。VdF及び含フッ素エチレン性単量体と共重合可能な単量体由来の共重合単位は、VdF単位と含フッ素エチレン性単量体由来の共重合単位の合計量に対して、0~10モル%であることが好ましい。 The copolymer containing VdF units preferably contains 30 to 90 mol% of VdF units and 70 to 10 mol% of copolymerized units derived from a fluorine-containing ethylenic monomer, and 30 to 85 mol% of VdF units. More preferably, it contains 30 to 15 mol% of a copolymerized unit derived from a fluorine-containing ethylenic monomer, and 30 to 80 mol% of a VdF unit and 70 to 20 mol% of a fluorine-containing ethylenic monomer. More preferably, it contains a copolymer unit of The copolymerized unit derived from the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer is 0 to 10 mol based on the total amount of the VdF unit and the copolymerized unit derived from the fluorine-containing ethylenic monomer. % Is preferred.
含フッ素エチレン性単量体としては、たとえばTFE、CTFE、トリフルオロエチレン、HFP、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)(以下、PAVEともいう)、フッ化ビニル、下記一般式(1):
CFX=CXOCFOR   (1)
(式中、Xは、同一又は異なり、H、F又はCFを表し、Rは、直鎖又は分岐した、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5又は6の環状フルオロアルキル基を表す。)で表されるフルオロビニルエーテルなどの含フッ素単量体があげられる。これらのなかでも、式(1)で表されるフルオロビニルエーテル、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることが好ましく、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることがより好ましい。
Examples of the fluorine-containing ethylenic monomer include TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, perfluoro (alkyl vinyl ether) (hereinafter, PAVE), vinyl fluoride, the following general formula (1):
CFX = CXOCF 2 OR 1 (1)
Wherein X is the same or different and represents H, F or CF 3 , and R 1 represents at least one atom selected from the group consisting of H, Cl, Br and I, which is linear or branched. A fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I And a fluorine-containing monomer such as a fluorovinyl ether represented by (C) represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms. Among these, at least one selected from the group consisting of fluorovinyl ether represented by formula (1), TFE, HFP and PAVE is preferable, and at least selected from the group consisting of TFE, HFP and PAVE One type is more preferable.
上記PAVEとしては、一般式(2):
CF=CFO(CFCFYO)-(CFCFCFO)-Rf  (2)
(式中、YはF又はCFを表し、Rfは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)であることが好ましい。
As the PAVE, the general formula (2):
CF 2 = CFO (CF 2 CFY 1 O) p - (CF 2 CF 2 CF 2 O) q -Rf (2)
(Wherein Y 1 represents F or CF 3 , Rf represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5, and q represents an integer of 0 to 5) It is preferable that
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)又はパーフルオロ(プロピルビニルエーテル)であることがより好ましく、パーフルオロ(メチルビニルエーテル)であることが更に好ましい。これらをそれぞれ単独で、または任意に組み合わせて用いることができる。 The PAVE is preferably perfluoro (methyl vinyl ether) or perfluoro (propyl vinyl ether), and more preferably perfluoro (methyl vinyl ether). These can be used alone or in any combination.
VdF及び含フッ素エチレン性単量体と共重合可能な単量体としては、たとえばエチレン、プロピレン、アルキルビニルエーテルなどがあげられる。 Examples of the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer include ethylene, propylene, alkyl vinyl ether and the like.
このようなVdF単位を含む共重合体として、具体的には、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/CTFE共重合体、VdF/CTFE/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、及び、VdF/HFP/TFE/PAVE共重合体からなる群より選択される少なくとも1種の共重合体が好ましい。これらのVdF単位を含む共重合体のなかでも、耐熱性、耐薬品性の点から、VdF/HFP共重合体、及び、VdF/HFP/TFE共重合体からなる群より選択される少なくとも1種の共重合体が特に好ましい。これらのVdF単位を含む共重合体は、上述したVdF単位と含フッ素エチレン性単量体由来の共重合単位との組成割合を満足することが好ましい。 Specific examples of such a copolymer containing VdF units include a VdF / HFP copolymer, a VdF / HFP / TFE copolymer, a VdF / CTFE copolymer, a VdF / CTFE / TFE copolymer, and a VdF. / PAVE copolymer, VdF / TFE / PAVE copolymer, VdF / HFP / PAVE copolymer, and at least one copolymer selected from the group consisting of VdF / HFP / TFE / PAVE copolymer Is preferred. Among these copolymers containing VdF units, at least one selected from the group consisting of VdF / HFP copolymers and VdF / HFP / TFE copolymers from the viewpoint of heat resistance and chemical resistance. The copolymer is particularly preferred. It is preferable that the copolymer containing these VdF units satisfies the composition ratio of the above-described VdF units and copolymer units derived from a fluorine-containing ethylenic monomer.
VdF/HFP共重合体としては、VdF/HFPのモル比が45~85/55~15であるものが好ましく、より好ましくは50~80/50~20であり、さらに好ましくは60~80/40~20である。 The VdF / HFP copolymer preferably has a VdF / HFP molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, and still more preferably 60 to 80/40. ~ 20.
VdF/HFP/TFE共重合体としては、VdF/HFP/TFEのモル比が40~80/10~35/10~35のものが好ましい。 The VdF / HFP / TFE copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 35.
VdF/PAVE共重合体としては、VdF/PAVEのモル比が65~90/10~35のものが好ましい。 The VdF / PAVE copolymer preferably has a VdF / PAVE molar ratio of 65 to 90/10 to 35.
VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEのモル比が40~80/3~40/15~35のものが好ましい。 The VdF / TFE / PAVE copolymer preferably has a VdF / TFE / PAVE molar ratio of 40 to 80/3 to 40/15 to 35.
VdF/HFP/PAVE共重合体としては、VdF/HFP/PAVEのモル比が65~90/3~25/3~25のものが好ましい。 The VdF / HFP / PAVE copolymer preferably has a VdF / HFP / PAVE molar ratio of 65 to 90/3 to 25/3 to 25.
VdF/HFP/TFE/PAVE共重合体としては、VdF/HFP/TFE/PAVEのモル比が40~90/0~25/0~40/3~35のものが好ましく、より好ましくは40~80/3~25/3~40/3~25である。 The VdF / HFP / TFE / PAVE copolymer preferably has a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35, more preferably 40 to 80. / 3 to 25/3 to 40/3 to 25.
上記フッ素ゴム(A)は、架橋部位を与えるモノマー由来の共重合単位を含む共重合体からなることも好ましい。架橋部位を与えるモノマーとしては、たとえば特公平5-63482号公報、特開平7-316234号公報に記載されているようなパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)やパーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのヨウ素含有モノマー、特表平4-505341号公報に記載されている臭素含有モノマー、特表平4-505345号公報、特表平5-500070号公報に記載されているようなシアノ基含有モノマー、カルボキシル基含有モノマー、アルコキシカルボニル基含有モノマーなどがあげられる。 The fluororubber (A) is also preferably made of a copolymer containing a copolymer unit derived from a monomer that provides a crosslinking site. Examples of the monomer that gives a crosslinking site include perfluoro (6,6-dihydro-6-iodo-3-oxa-1-) described in JP-B-5-63482 and JP-A-7-316234. Hexene) and perfluoro (5-iodo-3-oxa-1-pentene) -containing monomers, bromine-containing monomers described in JP-A-4-505341, JP-A-4-505345, Examples include cyano group-containing monomers, carboxyl group-containing monomers, and alkoxycarbonyl group-containing monomers as described in JP-T-5-500070.
フッ素ゴム(A)は、主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムであることも好ましい。主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムは、実質的に無酸素下で、水媒体中でハロゲン化合物の存在下に、ラジカル開始剤を添加してモノマーの乳化重合を行うことにより製造できる。使用するハロゲン化合物の代表例としては、たとえば、一般式:
Br
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは、炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基、炭素数1~16の飽和もしくは不飽和のクロロフルオロ炭化水素基、又は、炭素数1~3の炭化水素基であり、これらは酸素原子を含んでいてもよい)で表される化合物があげられる。
The fluororubber (A) is also preferably a fluororubber having an iodine atom or a bromine atom at the end of the main chain. Fluororubber having iodine atom or bromine atom at the main chain end is produced by adding a radical initiator in the presence of a halogen compound in an aqueous medium in the absence of oxygen and performing emulsion polymerization of the monomer. it can. Representative examples of the halogen compound used include, for example, the general formula:
R 2 I x Br y
(Wherein x and y are each an integer of 0 to 2 and satisfy 1 ≦ x + y ≦ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms, carbon A saturated or unsaturated chlorofluorohydrocarbon group having 1 to 16 carbon atoms, or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
ハロゲン化合物としては、例えば、1,3-ジヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに、(2-ヨードエチル)および(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。 Examples of the halogen compound include 1,3-diiodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4- Dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodoperfluorohexadecane, diiodomethane, 1,2 - diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFClBr, CFBrClCFClBr, BrCF 2 CF 2 CF 2 Br, BrCF 2 CFBrOCF 3, 1-bromo-2-yaw Perfluoroethane, 1-bromo-3-iodoperfluoropropane, 1-bromo-4-iodoperfluorobutane, 2-bromo-3-iodoperfluorobutane, 3-bromo-4-iodoperfluorobutene-1, 2-bromo-4-iodoperfluorobutene-1, benzene monoiodomonobromo-substituted, diiodomonobromo-substituted, (2-iodoethyl) and (2-bromoethyl) -substituted, etc. These compounds may be used alone or in combination with each other.
これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタンまたはジヨードメタンを用いるのが好ましい。 Among these, it is preferable to use 1,4-diiodoperfluorobutane or diiodomethane from the viewpoints of polymerization reactivity, crosslinking reactivity, availability, and the like.
フッ素ゴム(A)は、加工性が良好な点から、ムーニー粘度(ML1+10(100℃))が5~140であることが好ましく、10~120であることがより好ましく、20~100であることが更に好ましい。
ムーニー粘度は、ASTM-D1646に準拠して測定することができる。
測定機器:ALPHA TECHNOLOGIES社製のMV2000E型ローター回転数:2rpm
測定温度:100℃
The fluororubber (A) has a Mooney viscosity (ML 1 + 10 (100 ° C.)) of preferably 5 to 140, more preferably 10 to 120, and more preferably 20 to 100 from the viewpoint of good processability. More preferably.
Mooney viscosity can be measured according to ASTM-D1646.
Measuring equipment: ALPHA2000 TECHNOLOGIES MV2000E rotor speed: 2 rpm
Measurement temperature: 100 ° C
上記フッ素ゴム(A)の架橋系としては、例えば、パーオキサイド架橋系、及び、ポリオール架橋系からなる群より選択される少なくとも1種が好ましい。
耐薬品性の観点からはパーオキサイド架橋系が好ましく、耐熱性の観点からはポリオール架橋系が好ましい。上記架橋性組成物は、それぞれの架橋系において使用される架橋剤を含むものであってよい。架橋剤の配合量は、架橋剤の種類等によって適宜選択すればよいが、フッ素ゴム(A)100質量部に対して0.2~5.0質量部であることが好ましく、より好ましくは0.3~3.0質量部である。
As the crosslinking system of the fluororubber (A), for example, at least one selected from the group consisting of a peroxide crosslinking system and a polyol crosslinking system is preferable.
From the viewpoint of chemical resistance, a peroxide crosslinking system is preferred, and from the viewpoint of heat resistance, a polyol crosslinking system is preferred. The crosslinkable composition may contain a crosslinking agent used in each crosslinking system. The amount of the crosslinking agent may be appropriately selected depending on the type of the crosslinking agent and the like, but is preferably 0.2 to 5.0 parts by mass, more preferably 0 to 100 parts by mass of the fluororubber (A). .3 to 3.0 parts by mass.
パーオキサイド架橋は、パーオキサイド架橋可能なフッ素ゴム及び架橋剤として有機過酸化物を使用することにより行うことができる。 Peroxide crosslinking can be performed by using a peroxide-crosslinkable fluororubber and an organic peroxide as a crosslinking agent.
パーオキサイド架橋可能なフッ素ゴムとしては特に限定されず、パーオキサイド架橋可能な部位を有するフッ素ゴムであればよい。上記パーオキサイド架橋可能な部位としては特に限定されず、例えば、ヨウ素原子、臭素原子等を挙げることができる。 The fluororubber capable of peroxide crosslinking is not particularly limited as long as it is a fluororubber having a site capable of peroxide crosslinking. The peroxide-crosslinkable site is not particularly limited, and examples thereof include an iodine atom and a bromine atom.
有機過酸化物としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生し得る有機過酸化物であればよく、たとえば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエイトなどをあげることができる。これらの中でも、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3が好ましい。
有機過酸化物の配合量は、フッ素ゴム(A)100質量部に対して0.1~15質量部が好ましく、より好ましくは0.3~5質量部である。
The organic peroxide may be an organic peroxide that can easily generate a peroxy radical in the presence of heat or a redox system. For example, 1,1-bis (t-butylperoxy) -3, 5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α-bis (t- Butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne -3, benzoyl peroxide, t-butyl peroxybenzene, t-butyl peroxymaleic acid, t-butyl peroxyisopropyl carbonate, t -Butyl peroxybenzoate can be mentioned. Among these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 are preferable.
The compounding amount of the organic peroxide is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
架橋剤が有機過酸化物である場合、上記架橋性組成物は架橋助剤を含むことが好ましい。架橋助剤としては、例えば、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N′-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N′,N′-テトラアリルフタルアミド、N,N,N′,N′-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトなどがあげられる。これらの中でも、架橋性及び機械物性、気密性、液密性が優れる点から、トリアリルイソシアヌレート(TAIC)が好ましい。 When the crosslinking agent is an organic peroxide, the crosslinking composition preferably contains a crosslinking aid. Examples of the crosslinking aid include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N′-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, Tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro-2-propenyl) -1,3,5-triazine-2 , 4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodecafluorohexane, hexaallylphosphoramide, N, N, N ′ , N′-tetraallylphthalamide, N, N, ', N'- tetraallyl malonamide, trivinyl isocyanurate, 2,4,6-vinyl methyl trisiloxane, tri (5-norbornene-2-methylene) cyanurate, triallyl phosphite. Among these, triallyl isocyanurate (TAIC) is preferable in terms of excellent crosslinkability, mechanical properties, airtightness, and liquid tightness.
架橋助剤の配合量は、フッ素ゴム(A)100質量部に対して0.01~10質量部であることが好ましく、0.01~7.0質量部であることがより好ましく、更に好ましくは0.1~5.0質量部である。架橋助剤が、0.01質量部より少ないと、機械物性が低下し、気密性、液密性が劣り、10質量部を超えると、耐熱性に劣り、耐薬品性も低下する傾向がある。 The amount of the crosslinking aid is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 7.0 parts by mass, and still more preferably 100 parts by mass of the fluororubber (A). Is 0.1 to 5.0 parts by mass. When the crosslinking aid is less than 0.01 parts by mass, the mechanical properties are deteriorated, and the airtightness and liquid tightness are inferior. When it exceeds 10 parts by mass, the heat resistance is inferior and the chemical resistance tends to be reduced. .
ポリオール架橋は、ポリオール架橋可能なフッ素ゴム及び架橋剤としてポリヒドロキシ化合物を使用することにより行うことができる。 Polyol crosslinking can be performed by using a polyol-crosslinkable fluororubber and a polyhydroxy compound as a crosslinking agent.
上記ポリオール架橋可能なフッ素ゴムとしては特に限定されず、ポリオール架橋可能な部位を有するフッ素ゴムであればよい。上記ポリオール架橋可能な部位としては特に限定されず、例えば、フッ化ビニリデン(VdF)単位を有する部位等を挙げることができる。上記架橋部位を導入する方法としては、フッ素ゴムの重合時に架橋部位を与える単量体を共重合する方法等が挙げられる。 The polyol-crosslinkable fluororubber is not particularly limited as long as it is a fluororubber having a polyol-crosslinkable site. The polyol-crosslinkable site is not particularly limited, and examples thereof include a site having a vinylidene fluoride (VdF) unit. Examples of the method for introducing the crosslinking site include a method of copolymerizing a monomer that gives a crosslinking site during the polymerization of the fluororubber.
ポリヒドロキシ化合物としては、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。 As the polyhydroxy compound, a polyhydroxy aromatic compound is preferably used from the viewpoint of excellent heat resistance.
上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン(以下、ビスフェノールAFという)、レゾルシン、1,3-ジヒドロキシベンゼン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシスチルベン、2,6-ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2-ビス(4-ヒドロキシフェニル)ブタン(以下、ビスフェノールBという)、4,4-ビス(4-ヒドロキシフェニル)吉草酸、2,2-ビス(4-ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルケトン、トリ(4-ヒドロキシフェニル)メタン、3,3’,5,5’-テトラクロロビスフェノールA、3,3’,5,5’-テトラブロモビスフェノールAなどがあげられる。これらのポリヒドロキシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、酸を用いて共重合体を凝析した場合は、上記金属塩は用いないことが好ましい。ポリヒドロキシ芳香族化合物の配合量は、フッ素ゴム(A)100質量部に対して、0.1~15質量部、好ましくは0.5~5質量部である。 The polyhydroxy aromatic compound is not particularly limited. For example, 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A), 2,2-bis (4-hydroxyphenyl) perfluoropropane (Hereinafter referred to as bisphenol AF), resorcin, 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, , 2-Bis (4-hydroxyphenyl) Tetrafluorodichloropropane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl ketone, tri (4-hydroxyphenyl) methane, 3,3 ′, 5,5′-tetrachlorobisphenol A, 3,3 Examples include ', 5,5'-tetrabromobisphenol A. These polyhydroxy aromatic compounds may be an alkali metal salt, an alkaline earth metal salt or the like, but when the copolymer is coagulated using an acid, it is preferable not to use the metal salt. The compounding amount of the polyhydroxy aromatic compound is 0.1 to 15 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
架橋剤がポリヒドロキシ化合物である場合、上記架橋性組成物は架橋促進剤を含むことが好ましい。架橋促進剤は、ポリマー主鎖の脱フッ酸反応における分子内二重結合の生成と、生成した二重結合へのポリヒドロキシ化合物の付加を促進する。 When the crosslinking agent is a polyhydroxy compound, the crosslinkable composition preferably contains a crosslinking accelerator. A crosslinking accelerator accelerates | stimulates the production | generation of the intramolecular double bond in the dehydrofluorination reaction of a polymer principal chain, and the addition of the polyhydroxy compound to the produced | generated double bond.
架橋促進剤としては、オニウム化合物があげられ、オニウム化合物のなかでも、第4級アンモニウム塩等のアンモニウム化合物、第4級ホスホニウム塩等のホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、及び、1官能性アミン化合物からなる群より選択される少なくとも1種であることが好ましく、第4級アンモニウム塩及び第4級ホスホニウム塩からなる群より選択される少なくとも1種であることがより好ましい。 Examples of the crosslinking accelerator include onium compounds. Among onium compounds, ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and 1 It is preferably at least one selected from the group consisting of functional amine compounds, and more preferably at least one selected from the group consisting of quaternary ammonium salts and quaternary phosphonium salts.
第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド、8-テトラコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライドなどがあげられる。これらの中でも、架橋性、機械物性、気密性、及び、液密性の点から、DBU-Bが好ましい。 The quaternary ammonium salt is not particularly limited. For example, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-methyl-1,8-diazabicyclo [5. 4.0] -7-undecenium iodide, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-methyl-1,8-diazabicyclo [5] 4.0] -7-undecenium methyl sulfate, 8-ethyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide, 8-propyl-1,8-diazabicyclo [5 4.0] -7-undecenium bromide, 8-dodecyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-dodecyl-1,8-diazabicyclo 5.4.0] -7-undecenium hydroxide, 8-eicosyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-tetracosyl-1,8-diazabicyclo [ 5.4.0] -7-undecenium chloride, 8-benzyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride (hereinafter referred to as DBU-B), 8-benzyl -1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-phenethyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8- ( 3-phenylpropyl) -1,8-diazabicyclo [5.4.0] -7-undecenium chloride. Among these, DBU-B is preferable from the viewpoints of crosslinkability, mechanical properties, airtightness, and liquid tightness.
また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロライド、ベンジルトリフェニルホスホニウムクロライド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロライド、ベンジルトリブチルホスホニウムクロライド、トリブチルアリルホスホニウムクロライド、トリブチル-2-メトキシプロピルホスホニウムクロライド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロライドなどをあげることができ、これらの中でも、架橋性、機械物性、気密性、及び、液密性の点から、ベンジルトリフェニルホスホニウムクロライド(BTPPC)が好ましい。 The quaternary phosphonium salt is not particularly limited. For example, tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltributylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl. -2-Methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) phosphonium chloride, and the like. Among these, benzyltriphenylphosphonium chloride is used in terms of crosslinkability, mechanical properties, airtightness, and liquid tightness. (BTPPC) is preferred.
また、架橋促進剤として、第4級アンモニウム塩又は第4級ホスホニウム塩とビスフェノールAFの固溶体、特開平11-147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。 Further, as a crosslinking accelerator, a quaternary ammonium salt or a quaternary phosphonium salt and a bisphenol AF solid solution, or a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can be used.
架橋促進剤の配合量は、フッ素ゴム(A)100質量部に対して、0.01~8質量部であることが好ましく、より好ましくは0.02~5質量部である。架橋促進剤が、0.01質量部未満であると、フッ素ゴムの架橋が充分に進行せず、得られる注射器の耐熱性等が低下するおそれがある。8質量部を超えると、上記架橋性組成物の成形加工性が低下するおそれや、機械物性における伸びが低下し、気密性、液密性も低下する傾向がある。 The blending amount of the crosslinking accelerator is preferably 0.01 to 8 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A). When the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking of the fluororubber does not proceed sufficiently, and the heat resistance of the resulting syringe may be lowered. If the amount exceeds 8 parts by mass, the moldability of the crosslinkable composition may decrease, the elongation in mechanical properties may decrease, and the airtightness and liquid tightness tend to decrease.
(B)フッ素樹脂
フッ素樹脂(B)としては、溶融加工性のフッ素樹脂であることが好ましい。溶融加工性のフッ素樹脂を用いることによって、本発明の注射器は、シリンジとガスケットとの摺動特性が優れる。また、後述するような、表面に凸部を有する弾性部材からなるガスケットを得ることができ、このようなガスケットから構成される注射器は、より優れた摺動性を備えるものとなる。
溶融加工性のフッ素樹脂としては、例えば、TFE/HFP共重合体、TFE/PAVE共重合体〔PFA〕、Et/TFE共重合体、Et/TFE/HFP共重合体、ポリクロロトリフルオロエチレン〔PCTFE〕、CTFE/TFE共重合体、Et/CTFE共重合体、ポリフッ化ビニリデン〔PVdF〕、TFE/VdF共重合体、VdF/HFP/TFE共重合体、VdF/HFP共重合体、及び、ポリフッ化ビニル〔PVF〕からなる群より選択される少なくとも1種であることが好ましい。また、溶融加工性であれば、低分子量のPTFEも用いることも可能である。
(B) Fluororesin The fluororesin (B) is preferably a melt processable fluororesin. By using a melt-processable fluororesin, the syringe of the present invention has excellent sliding characteristics between the syringe and the gasket. Moreover, the gasket which consists of an elastic member which has a convex part on the surface which is mentioned later can be obtained, and the syringe comprised from such a gasket is provided with the more excellent slidability.
Examples of the melt processable fluororesin include TFE / HFP copolymer, TFE / PAVE copolymer [PFA], Et / TFE copolymer, Et / TFE / HFP copolymer, polychlorotrifluoroethylene [ PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, polyvinylidene fluoride [PVdF], TFE / VdF copolymer, VdF / HFP / TFE copolymer, VdF / HFP copolymer, and polyfluoride. It is preferably at least one selected from the group consisting of vinyl fluoride [PVF]. Also, low molecular weight PTFE can be used as long as it is melt processable.
フッ素樹脂(B)は、シリンジとガスケットとの摺動性が優れる点、耐熱性、耐薬品性の点から、パーフルオロフッ素樹脂であることが好ましい。 The fluororesin (B) is preferably a perfluorofluororesin from the viewpoint of excellent slidability between the syringe and the gasket, heat resistance, and chemical resistance.
シリンジとガスケットとの摺動性が優れる点から、フッ素樹脂(B)はTFE/HFP共重合体、すなわち、TFE単位とHFP単位とからなる共重合体(以下、「FEP」ともいう。)であることがより好ましい。FEPは、耐熱性が優れたものとなる点でも好ましい。 The fluororesin (B) is a TFE / HFP copolymer, that is, a copolymer composed of TFE units and HFP units (hereinafter also referred to as “FEP”) from the viewpoint of excellent slidability between the syringe and the gasket. More preferably. FEP is also preferable in that it has excellent heat resistance.
FEPとしては、TFE単位70~99モル%とHFP単位1~30モル%からなる共重合体であることが好ましく、TFE単位80~97モル%とHFP単位3~20モル%からなる共重合体であることがより好ましい。TFE単位が70モル%未満では機械物性が低下する傾向があり、99モル%を超えると融点が高くなりすぎ成形性が低下する傾向がある。 The FEP is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of HFP units, and a copolymer comprising 80 to 97 mol% of TFE units and 3 to 20 mol% of HFP units. It is more preferable that If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
FEPは、TFE、HFP、並びに、TFE及びHFPと共重合可能な単量体からなる共重合体であってもよく、当該単量体としては、CF=CF-ORf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、CX=CX(CF(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられ、なかでも、PAVEであることが好ましい。 FEP may be a copolymer comprising TFE, HFP, and a monomer copolymerizable with TFE and HFP. As the monomer, CF 2 = CF-ORf 6 (wherein Rf 6 represents a perfluoroalkyl group having 1 to 5 carbon atoms.) Perfluoro (alkyl vinyl ether) [PAVE], CX 5 X 6 = CX 7 (CF 2 ) n X 8 (wherein X 5 , X 6 and X 7 are the same or different and each represents a hydrogen atom or a fluorine atom, X 8 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 2 to 10. A vinyl monomer, and an alkyl perfluorovinyl ether derivative represented by CF 2 ═CF—OCH 2 —Rf 7 (wherein Rf 7 represents a perfluoroalkyl group having 1 to 5 carbon atoms). Named, Even if, it is preferable that the PAVE.
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)からなる群より選択される少なくとも1種であることが好ましく、なかでも、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることがより好ましい。 The PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, and more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE.
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCH-CFCFがより好ましい。 As the alkyl perfluorovinyl ether derivative, those in which Rf 7 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ═CF—OCH 2 —CF 2 CF 3 is more preferable.
FEPは、TFE及びHFPと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びHFP単位が合計で90~99.9モル%であることが好ましい。共重合可能な単量体単位が0.1モル%未満であると成形性、耐環境応力割れ性及び耐ストレスクラック性に劣りやすく、10モル%を超えると、耐熱性、機械特性、生産性などに劣る傾向にある。 In FEP, the monomer units derived from monomers copolymerizable with TFE and HFP are 0.1 to 10 mol%, and the total of TFE units and HFP units is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be inferior, and if it exceeds 10 mol%, heat resistance, mechanical properties, and productivity are obtained. Tend to be inferior.
フッ素樹脂(B)の融点は、フッ素ゴム(A)の一次架橋温度以上であることが好ましい。フッ素樹脂(B)の融点は、フッ素ゴム(A)の種類により適宜決定されるが、150℃以上であることがより好ましく、180℃以上であることが更に好ましい。上限は特に限定されないが、例えば、300℃であってよい。
融点が低すぎると、後述する架橋成形時にフッ素樹脂が溶融し、所望する形状の架橋成形品が得られないおそれがある。また、弾性部材の表面に後述するような凸部を形成する場合、充分な数の凸部を有する弾性部材が得られないおそれがある。
The melting point of the fluororesin (B) is preferably equal to or higher than the primary crosslinking temperature of the fluororubber (A). Although melting | fusing point of a fluororesin (B) is suitably determined by the kind of fluororubber (A), it is more preferable that it is 150 degreeC or more, and it is still more preferable that it is 180 degreeC or more. Although an upper limit is not specifically limited, For example, it may be 300 degreeC.
If the melting point is too low, the fluororesin melts at the time of cross-linking molding described later, and a cross-linked molded product having a desired shape may not be obtained. Moreover, when forming the convex part which is mentioned later on the surface of an elastic member, there exists a possibility that the elastic member which has a sufficient number of convex parts may not be obtained.
フッ素樹脂(B)は、372℃におけるメルトフローレート〔MFR〕が0.3~100g/10分であることが好ましい。MFRが小さすぎると良好な摺動性が得られないおそれがあり、MFRが大きすぎると成形が困難になるおそれがある。
上記MFRは、ASTM-D1238に準拠し、温度372℃、荷重5kgで測定して得られる値である。
The fluororesin (B) preferably has a melt flow rate [MFR] at 372 ° C. of 0.3 to 100 g / 10 min. If the MFR is too small, good slidability may not be obtained, and if the MFR is too large, molding may be difficult.
The MFR is a value obtained by measuring at a temperature of 372 ° C. and a load of 5 kg in accordance with ASTM-D1238.
フッ素樹脂(B)とフッ素ゴム(A)との相溶性向上のため、上記架橋性組成物は、少なくとも1種の多官能化合物を含有してもよい。多官能化合物とは、1つの分子中に同一または異なる構造の2つ以上の官能基を有する化合物である。 In order to improve the compatibility between the fluororesin (B) and the fluororubber (A), the crosslinkable composition may contain at least one polyfunctional compound. The polyfunctional compound is a compound having two or more functional groups having the same or different structures in one molecule.
多官能化合物が有する官能基としては、カルボニル基、カルボキシル基、ハロホルミル基、アミド基、オレフィン基、アミノ基、イソシアネート基、ヒドロキシ基、エポキシ基等、一般に反応性を有することが知られている官能基であれば任意に用いることができる。
これらの官能基を有する化合物は、フッ素ゴム(A)との親和性が高いだけではなく、フッ素樹脂(B)が持つ反応性を有することが知られている官能基とも反応し、さらに相溶性が向上することも期待される。
The functional groups possessed by the polyfunctional compound include carbonyl groups, carboxyl groups, haloformyl groups, amide groups, olefin groups, amino groups, isocyanate groups, hydroxy groups, epoxy groups, etc., which are generally known to have reactivity. Any group can be used.
The compounds having these functional groups not only have high affinity with the fluororubber (A), but also react with functional groups known to have the reactivity possessed by the fluororesin (B), and are further compatible with each other. Is expected to improve.
上記フッ素ゴム(A)及びフッ素樹脂(B)を含む架橋性組成物は、フッ素ゴム(A)とフッ素樹脂(B)との体積比(フッ素ゴム(A))/(フッ素樹脂(B))が60/40~95/5であることが好ましい。フッ素樹脂(B)が少なすぎるとシリンジとガスケットとの摺動性が充分でなくなるおそれがあり、一方、フッ素樹脂(B)が多すぎると、ガスケット表面のゴム弾性が損なわれる恐れがある。フッ素ゴムに起因する柔軟性(注射器の気密性、液密性)と、フッ素樹脂に起因する低摩擦性(シリンジとガスケットとの摺動性)の両方が良好な点から、(フッ素ゴム(A))/(フッ素樹脂(B))は、65/35~95/5であることがより好ましく、70/30~90/10であることがさらに好ましい。 The crosslinkable composition containing the fluororubber (A) and the fluororesin (B) has a volume ratio of the fluororubber (A) to the fluororesin (B) (fluororubber (A)) / (fluororesin (B)). Is preferably 60/40 to 95/5. If the amount of the fluororesin (B) is too small, the slidability between the syringe and the gasket may be insufficient. On the other hand, if the amount of the fluororesin (B) is too large, the rubber elasticity of the gasket surface may be impaired. From the point that both the flexibility (airtightness and liquid-tightness of the syringe) due to the fluororubber and the low friction (slidability between the syringe and the gasket) due to the fluororesin are good, (the fluororubber (A )) / (Fluororesin (B)) is more preferably 65/35 to 95/5, and still more preferably 70/30 to 90/10.
上記架橋性組成物は、必要に応じてフッ素ゴム中に配合される通常の添加剤、たとえば充填剤、加工助剤、可塑剤、着色剤、安定剤、接着助剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤などの各種添加剤を配合することができ、これらの添加剤は、本発明の効果を損なわない範囲で使用すればよい。 The above-mentioned crosslinkable composition is a usual additive blended in the fluororubber as necessary, for example, a filler, a processing aid, a plasticizer, a colorant, a stabilizer, an adhesion aid, a mold release agent, a conductivity. Various additives such as an imparting agent, a thermal conductivity imparting agent, a surface non-adhesive agent, a flexibility imparting agent, a heat resistance improving agent, and a flame retardant can be blended, and these additives impair the effects of the present invention. It may be used within the range.
上記弾性部材は、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られるものである。上記弾性部材は、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋して得られるものであれば限定されないが、後述する製造方法により得られるものであることが好ましい。 The elastic member is obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B). The elastic member is not limited as long as it is obtained by crosslinking a crosslinkable composition containing fluororubber (A) and fluororesin (B), but is preferably obtained by a production method described later. .
上記弾性部材は、表面に凸部を有することが好ましい。凸部が弾性部材の表面に存在していることにより、本発明の注射器は、シリンジとガスケットとの摺動性が優れる。 The elastic member preferably has a convex portion on the surface. Since the convex portion exists on the surface of the elastic member, the syringe of the present invention is excellent in the sliding property between the syringe and the gasket.
凸部は、実質的に架橋性組成物に含まれるフッ素樹脂(B)からなることが好ましい。凸部は、例えば後述する方法により、上記架橋性組成物に含まれるフッ素樹脂(B)を表面に析出させて形成することができる。 It is preferable that a convex part consists of a fluororesin (B) substantially contained in a crosslinkable composition. A convex part can be formed by depositing the fluororesin (B) contained in the said crosslinkable composition on the surface by the method mentioned later, for example.
凸部は、弾性部材との間に明確な界面等が存在せず、上記凸部と弾性部材が一体的に構成されていることとなり、上記凸部が脱落したり、欠損したりしにくい。 The convex part does not have a clear interface or the like between the elastic member, and the convex part and the elastic member are integrally formed, and the convex part is unlikely to drop off or be lost.
凸部が実質的に上記架橋性組成物に含まれるフッ素樹脂(B)からなることは、IR分析やESCA分析によってフッ素ゴム(A)由来のピークとフッ素樹脂(B)由来のピークのピーク比を求めることで示すことができる。例えば、凸部を有する領域において、IR分析によって、フッ素ゴム(A)由来の特性吸収のピークとフッ素樹脂(B)由来の特性吸収のピークとの比(成分由来ピーク比)を、凸部と凸部外のそれぞれの部分で測定し、(凸部ピーク/凸部外ピーク=ピーク比)が、1.2以上、好ましくは1.5以上であればよい。 The fact that the convex portion is substantially made of the fluororesin (B) contained in the crosslinkable composition means that the peak ratio between the peak derived from the fluororubber (A) and the peak derived from the fluororesin (B) by IR analysis or ESCA analysis. It can be shown by seeking. For example, in a region having a convex portion, by IR analysis, a ratio (a component-derived peak ratio) between a characteristic absorption peak derived from the fluororubber (A) and a characteristic absorption peak derived from the fluororesin (B) is calculated as It is measured at each part outside the convex part, and (the convex part peak / outside convex part peak = peak ratio) may be 1.2 or more, preferably 1.5 or more.
凸部の形状について、図面を参照しながらもう少し詳しく説明する。
図1(a)は、ガスケット表面の弾性部材30が有する凸部の形状を模式的に示す斜視図であり、(b)は(a)の表面に垂直な直線Bと直線Bを含む平面で凸部31を切断した断面図であり、(c)は(a)の表面と平行な直線Cと直線Cを含む平面で切断した断面図である。そして、図1(a)~(c)には、注射器の表面の微小領域を模式的に描画している。注射器の表面には、図1(a)~(c)に示すように、例えば、略円錐形状(コーン形状)の凸部31が形成されている。
The shape of the protrusion will be described in more detail with reference to the drawings.
FIG. 1A is a perspective view schematically showing the shape of the convex portion of the elastic member 30 on the gasket surface, and FIG. 1B includes straight lines B 1 and B 2 perpendicular to the surface of FIG. a sectional view of the convex portion 31 in plan, is a cross-sectional view taken along (c) is a plane including a surface parallel to the straight line C 1 and the line C 2 of the (a). 1 (a) to 1 (c) schematically depict a minute region on the surface of the syringe. As shown in FIGS. 1A to 1C, for example, a substantially conical (cone-shaped) convex portion 31 is formed on the surface of the syringe.
ここで、凸部31の高さとは、弾性部材の表面から突出した部分の高さをいう(図1(b)中、H参照)。また、凸部31の底部断面積とは、凸部31を、弾性部材表面と平行な平面(直線Cと直線Cを含む平面)で切断した面において観察される凸部31(図1(c)参照)の断面に於ける面積の値をいう。 Here, the height of the convex portion 31 refers to the height of the portion protruding from the surface of the elastic member (see H in FIG. 1B). Further, the bottom cross-sectional area of the projecting portion 31, the convex portion 31 convex portion 31 is observed in the cut surface of an elastic member parallel to the surface plane (a plane including the straight line C 1 and the line C 2) (Figure 1 (C) refers to the value of the area in the cross section.
上記弾性部材の表面積に対して、上記凸部を有する領域の面積比(凸部の占有率)は、0.06(6%)以上であることが好ましい。より好ましい面積比は、0.15(15%)以上であり、0.30(30%)以上が更に好ましい。上記弾性部材表面における、凸部を有する領域の面積比は、上記凸部の底部断面積を評価する切断面において、凸部が占める面積の比率をいう。 It is preferable that the area ratio of the region having the convex portion (occupation ratio of the convex portion) is 0.06 (6%) or more with respect to the surface area of the elastic member. A more preferable area ratio is 0.15 (15%) or more, and further preferably 0.30 (30%) or more. The area ratio of the region having the convex portion on the surface of the elastic member refers to the ratio of the area occupied by the convex portion in the cut surface for evaluating the bottom cross-sectional area of the convex portion.
上記弾性部材において、フッ素樹脂(B)の体積比は、上記弾性部材に対して0.05~0.45(5~45体積%)であることが好ましい。体積比の下限は、0.10(10体積%)であることがより好ましい。体積比の上限は、0.40(40体積%)であることがより好ましく、0.35(35体積%)であることが更に好ましく、0.30(30体積%)であることが特に好ましい。フッ素樹脂は優れた耐熱性を有するため、成形架橋工程や熱処理工程によって分解することがないので、上記体積比は、架橋性組成物におけるフッ素樹脂の体積割合と同一と推測できる。 In the elastic member, the volume ratio of the fluororesin (B) is preferably 0.05 to 0.45 (5 to 45% by volume) with respect to the elastic member. The lower limit of the volume ratio is more preferably 0.10 (10% by volume). The upper limit of the volume ratio is more preferably 0.40 (40% by volume), still more preferably 0.35 (35% by volume), and particularly preferably 0.30 (30% by volume). . Since the fluororesin has excellent heat resistance, it is not decomposed by the molding cross-linking step or the heat treatment step, so it can be assumed that the volume ratio is the same as the volume ratio of the fluororesin in the cross-linkable composition.
上記凸部を有する領域の面積比が、フッ素樹脂(B)の体積比の1.2倍以上であることが好ましく、1.3倍以上であることがより好ましい。上記弾性部材は、弾性部材の表面における凸部を有する領域の比率が、弾性部材のフッ素樹脂(B)の体積比よりも高く、架橋性組成物におけるフッ素樹脂の体積比よりも高くなる。
弾性部材は、この特徴によりフッ素樹脂の混合割合が小さくても、フッ素ゴムの欠点であった摺動性が改善され、また、フッ素ゴムの利点が損なわれることもない。
なお、上記凸部を有する領域の面積比は、シリンジと密着するガスケットの表面部分において達成されていれば、本発明の効果は十分に奏される。
The area ratio of the region having the convex portions is preferably 1.2 times or more, more preferably 1.3 times or more of the volume ratio of the fluororesin (B). The ratio of the area | region which has a convex part in the surface of an elastic member is higher than the volume ratio of the fluororesin (B) of an elastic member, and the said elastic member becomes higher than the volume ratio of the fluororesin in a crosslinkable composition.
Due to this feature, even if the mixing ratio of the fluororesin is small, the elastic member improves the slidability, which was a drawback of the fluororubber, and does not impair the advantages of the fluororubber.
In addition, if the area ratio of the area | region which has the said convex part is achieved in the surface part of the gasket closely_contact | adhered with a syringe, the effect of this invention will be fully show | played.
上記凸部は、高さが0.1~30.0μmであることが好ましい。凸部の高さがこの範囲にあると、シリンジとガスケットとの摺動性がより優れる。より好ましい高さは、0.3~20.0μmであり、更に好ましくは、0.5~10.0μmである。 The convex portion preferably has a height of 0.1 to 30.0 μm. When the height of the convex portion is within this range, the slidability between the syringe and the gasket is more excellent. The height is more preferably 0.3 to 20.0 μm, still more preferably 0.5 to 10.0 μm.
上記凸部は、底部断面積が0.1~2000μmであることが好ましい。凸部の底部断面積がこの範囲にあると、シリンジとガスケットとの摺動性がより優れる。より好ましい底部断面積は、0.3~1500μmであり、更に好ましい底部断面積は、0.5~1000μmである。 The convex part preferably has a bottom sectional area of 0.1 to 2000 μm 2 . When the bottom cross-sectional area of the convex portion is within this range, the slidability between the syringe and the gasket is more excellent. A more preferable bottom cross-sectional area is 0.3 to 1500 μm 2 , and a still more preferable bottom cross-sectional area is 0.5 to 1000 μm 2 .
上記弾性部材は、上記凸部の高さの標準偏差が0.300以下であることが好ましい。この範囲にあると、シリンジとガスケットとの摺動性がより優れる。 The elastic member preferably has a standard deviation of the height of the convex portion of 0.300 or less. Within this range, the slidability between the syringe and the gasket is more excellent.
上記弾性部材は、凸部の数が500~60000個/mmであることが好ましい。この範囲にあると、シリンジとガスケットとの摺動性がより優れる。 The elastic member preferably has 500 to 60000 convex portions / mm 2 . Within this range, the slidability between the syringe and the gasket is more excellent.
凸部を有する領域の面積比、凸部の高さ、凸部の底部断面積、凸部の数等は、例えば、キーエンス社製、カラー3Dレーザー顕微鏡(VK-9700)を用い、解析ソフトとして三谷商事株式会社製のWinRooF Ver.6.4.0を用いて算出することができる。凸部を有する領域の面積比は、凸部の底部断面積を求め、断面積合計の値が、測定全領域面積に占める割合として求められる。凸部の数は、測定領域中の凸部の数を1mm当たりの数に換算したものである。 The area ratio, the height of the convex portion, the sectional area of the bottom portion of the convex portion, the number of convex portions, etc., for example, manufactured by Keyence Corporation, using a color 3D laser microscope (VK-9700) as analysis software WinRooF Ver. It can be calculated using 6.4.0. The area ratio of the region having the convex part is obtained as the ratio of the total cross-sectional area to the total cross-sectional area value obtained by calculating the bottom cross-sectional area of the convex part. The number of convex portions is obtained by converting the number of convex portions in the measurement region into a number per 1 mm 2 .
上記弾性部材において、上記凸部は弾性部材の表面の一部に形成されていればよく、弾性部材の表面には該凸部が形成されていない領域を有していてもよい。例えば、シリンジと密着しない部分には、上記凸部が形成されている必要はない。 In the elastic member, the convex portion may be formed on a part of the surface of the elastic member, and the elastic member may have a region where the convex portion is not formed. For example, the convex portion need not be formed in a portion that is not in close contact with the syringe.
次に、本発明の注射器の製造方法について説明する。 Next, the manufacturing method of the syringe of this invention is demonstrated.
本発明の注射器は、下記製造方法により得られたものであることが好ましい。下記製造方法により、基材及び上記弾性部材からなり、基材の表面に上記弾性部材が設けられたガスケットを有する注射器を製造することができる。
本発明の注射器は、
フッ素ゴム(A)とフッ素樹脂(B)とを混合して架橋性組成物を得る混合工程、
架橋性組成物を成形及び架橋することにより、所望の形状の架橋成形体を得る成形架橋工程、
成形架橋工程で得られた架橋成形体をフッ素樹脂(B)の融点以上の温度に加熱して弾性部材を得る熱処理工程、
基材の表面に弾性部材を設けて、少なくとも表面が弾性部材からなるガスケットを得る工程、及び、
得られたガスケットをプランジャーの先端部に装着させ、ガスケットを装着したプランジャーをシリンジに挿入する工程、
からなる製造方法(以下、「第一の製造方法」という。)により得たものであることが好ましい。
以下各工程について説明する。
The syringe of the present invention is preferably obtained by the following production method. By the following manufacturing method, it is possible to manufacture a syringe including a base material and the above elastic member, and having a gasket provided with the above elastic member on the surface of the base material.
The syringe of the present invention is
A mixing step of mixing the fluororubber (A) and the fluororesin (B) to obtain a crosslinkable composition;
A molding and crosslinking step for obtaining a crosslinked molded article having a desired shape by molding and crosslinking the crosslinkable composition;
A heat treatment step for obtaining an elastic member by heating the cross-linked molded article obtained in the molding cross-linking step to a temperature equal to or higher than the melting point of the fluororesin (B)
Providing an elastic member on the surface of the substrate to obtain a gasket having at least a surface made of the elastic member; and
Attaching the obtained gasket to the tip of the plunger and inserting the plunger with the gasket into the syringe;
It is preferable to be obtained by a production method comprising (hereinafter referred to as “first production method”).
Each step will be described below.
〔混合工程〕
上記架橋性組成物を得る方法は、フッ素ゴム(A)とフッ素樹脂(B)とを均一に混合できる方法を用いれば特に制限はないが、例えば、フッ素ゴム(A)とフッ素樹脂(B)とを溶融混練する方法、又は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析する方法が好ましい。
以下に、溶融混練と共凝析について説明する。
[Mixing process]
The method for obtaining the crosslinkable composition is not particularly limited as long as a method capable of uniformly mixing the fluororubber (A) and the fluororesin (B) is used. For example, the fluororubber (A) and the fluororesin (B) And a method of co-coagulating the fluororubber (A) and the fluororesin (B) are preferable.
Below, melt-kneading and co-coagulation will be described.
(溶融混練)
溶融混練は、フッ素ゴム(A)とフッ素樹脂(B)とを、フッ素樹脂(B)の融点より5℃低い温度以上の温度、好ましくはフッ素樹脂(B)の融点以上の温度で行う。加熱温度の上限は、フッ素ゴム(A)またはフッ素樹脂(B)のいずれか低い方の熱分解温度未満である。
(Melt kneading)
The melt-kneading is performed with the fluororubber (A) and the fluororesin (B) at a temperature that is at least 5 ° C. lower than the melting point of the fluororesin (B), preferably at a temperature that is higher than the melting point of the fluororesin (B). The upper limit of the heating temperature is lower than the lower thermal decomposition temperature of the fluororubber (A) or the fluororesin (B).
溶融混練は、その温度で架橋を引き起こす条件(架橋剤、架橋促進剤および受酸剤の存在下など)では行わないが、フッ素樹脂の融点より5℃低い温度以上の溶融混練温度で架橋を引き起こさない成分(たとえば特定の架橋剤のみ、架橋剤と架橋促進剤の組合せのみ、など)であれば、溶融混練時に添加混合してもよい。架橋を引き起こす条件としては、例えば、ポリオール架橋剤と架橋促進剤と受酸剤との組合せが挙げられる。 Melt-kneading is not performed under conditions that cause crosslinking at that temperature (in the presence of a crosslinking agent, crosslinking accelerator, and acid acceptor, etc.), but crosslinking is caused at a melt-kneading temperature that is 5 ° C lower than the melting point of the fluororesin. If there are no components (for example, only a specific cross-linking agent, only a combination of a cross-linking agent and a cross-linking accelerator, etc.), they may be added and mixed during melt kneading. Examples of conditions that cause crosslinking include a combination of a polyol crosslinking agent, a crosslinking accelerator, and an acid acceptor.
したがって、上記溶融混練では、フッ素ゴム(A)とフッ素樹脂(B)とを溶融混練してプレコンパウンド(予備混合物)を調製し、ついで、架橋温度未満の温度で他の添加剤や配合剤を混練してフルコンパウンド(架橋性組成物)とする2段階混練法が好ましい。もちろん、全ての成分を架橋剤の架橋温度未満の温度で混練する方法でもよい。 Therefore, in the above melt kneading, the fluororubber (A) and the fluororesin (B) are melt kneaded to prepare a pre-compound (preliminary mixture), and then other additives and compounding agents are added at a temperature lower than the crosslinking temperature. A two-stage kneading method in which a full compound (crosslinkable composition) is obtained by kneading is preferred. Of course, a method of kneading all the components at a temperature lower than the crosslinking temperature of the crosslinking agent may be used.
上記架橋剤としては、アミン架橋剤、ポリオール架橋剤、パーオキサイド架橋剤等の公知の架橋剤を使用することができる。 As said crosslinking agent, well-known crosslinking agents, such as an amine crosslinking agent, a polyol crosslinking agent, and a peroxide crosslinking agent, can be used.
溶融混練は、バンバリーミキサー、加圧ニーダー、押出機等を使用して、フッ素樹脂の融点より5℃低い温度以上の温度、たとえば180℃以上、通常200~290℃でフッ素ゴムと混練することにより行うことができる。これらの中でも、高剪断力を加えることができる点で、加圧ニーダーまたは二軸押出機等の押出機を用いることが好ましい。 Melt kneading is performed by kneading with fluororubber using a Banbury mixer, a pressure kneader, an extruder, etc. at a temperature of 5 ° C. lower than the melting point of the fluororesin, for example, 180 ° C. or more, usually 200 to 290 ° C. It can be carried out. Among these, it is preferable to use an extruder such as a pressure kneader or a twin screw extruder because a high shear force can be applied.
また、2段階混練法におけるフルコンパウンド化は、架橋温度未満、たとえば100℃以下の温度でオープンロール、バンバリーミキサー、加圧ニーダーなどを用いて行うことができる。 Further, full compounding in the two-stage kneading method can be performed using an open roll, a Banbury mixer, a pressure kneader, or the like at a temperature lower than the crosslinking temperature, for example, 100 ° C. or lower.
上記溶融混練と類似の処理として、フッ素樹脂中でフッ素ゴムをフッ素樹脂の溶融条件下で架橋する処理(動的架橋)がある。動的架橋では、熱可塑性樹脂のマトリックス中に未架橋ゴムをブレンドし、混練しながら未架橋ゴムを架橋させ、かつその架橋したゴムをマトリックス中にミクロに分散させる方法であるが、上記溶融混練は、架橋を引き起こさない条件(架橋に必要な成分の不存在、またはその温度で架橋反応が起こらない配合など)で溶融混練するものであり、またマトリックスは未架橋ゴムとなり、未架橋ゴム中にフッ素樹脂が均一に分散している混合物である点において本質的に異なる。 As a process similar to the above melt-kneading, there is a process (dynamic cross-linking) of cross-linking fluororubber in a fluororesin under the melt condition of the fluororesin. Dynamic crosslinking is a method in which uncrosslinked rubber is blended in a matrix of a thermoplastic resin, uncrosslinked rubber is crosslinked while kneading, and the crosslinked rubber is dispersed microscopically in the matrix. Is melt kneaded under conditions that do not cause cross-linking (such as the absence of components necessary for cross-linking or a compound that does not cause a cross-linking reaction at that temperature), and the matrix becomes uncross-linked rubber, It is essentially different in that it is a mixture in which the fluororesin is uniformly dispersed.
(共凝析)
フッ素ゴム(A)とフッ素樹脂(B)とがより均一に混合される点から、上記架橋性組成物は、共凝析により得られるものであることが好ましい。すなわち、上記架橋性組成物は、共凝析により得られたフッ素ゴム(A)とフッ素樹脂(B)を含むものであることが好ましい。共凝析を用いることで、シリンジとガスケットとの摺動性がより優れる注射器を製造することができる。また、弾性部材の表面に形成される凸部を均一に形成することができるし、凸部を有する領域の面積比(占有率)を十分に高くすることもできる。
(Coaggregation)
From the viewpoint that the fluororubber (A) and the fluororesin (B) are more uniformly mixed, the crosslinkable composition is preferably obtained by co-coagulation. That is, the crosslinkable composition preferably contains a fluororubber (A) and a fluororesin (B) obtained by co-coagulation. By using co-coagulation, it is possible to manufacture a syringe that is more slidable between the syringe and the gasket. Moreover, the convex part formed in the surface of an elastic member can be formed uniformly, and the area ratio (occupancy) of the area | region which has a convex part can also be made high enough.
上記架橋性組成物が、共凝析させたフッ素ゴム(A)とフッ素樹脂(B)とを含むと、フッ素ゴム(A)とフッ素樹脂(B)とが架橋性組成物中に均一に分散していると予想される。 When the crosslinkable composition contains co-coagulated fluororubber (A) and fluororesin (B), the fluororubber (A) and fluororesin (B) are uniformly dispersed in the crosslinkable composition. It is expected that
上記共凝析の方法としては、例えば、(i)フッ素ゴム(A)の水性分散液と、フッ素樹脂(B)の水性分散液とを混合した後に凝析させる方法、(ii)フッ素ゴム(A)の粉末を、フッ素樹脂(B)の水性分散液に添加した後に凝析させる方法、(iii)フッ素樹脂(B)の粉末を、フッ素ゴム(A)の水性分散液に添加した後に凝析させる方法が挙げられる。上記共凝析の方法としては、特に各樹脂が均一に分散し易い点で、上記(i)の方法が好ましい。 Examples of the co-coagulation method include: (i) a method in which an aqueous dispersion of fluororubber (A) and an aqueous dispersion of fluororesin (B) are mixed and then coagulated; (ii) fluororubber ( A method in which the powder of A) is coagulated after being added to the aqueous dispersion of fluororesin (B), and (iii) the powder of fluororesin (B) is coagulated after being added to the aqueous dispersion of fluororubber (A). The method of analyzing is mentioned. As the co-coagulation method, the above method (i) is particularly preferable in that each resin is easily dispersed uniformly.
上記(i)~(iii)の凝析方法における凝析は、例えば、凝集剤を用いて行うことができる。このような凝集剤としては、特に限定されるものではないが、例えば、硫酸アルミニウム、ミョウバン等のアルミニウム塩、硫酸カルシウム等のカルシウム塩、硫酸マグネシウム、塩化マグネシウム等のマグネシウム塩、塩化ナトリウムや塩化カリウム等の一価カチオン塩等の公知の凝集剤が挙げられる。凝集剤により凝析を行う際、凝集を促進させるために酸又はアルカリを添加してpHを調整してもよい。 The coagulation in the coagulation methods (i) to (iii) can be performed using, for example, a flocculant. Such a flocculant is not particularly limited, but examples thereof include aluminum salts such as aluminum sulfate and alum, calcium salts such as calcium sulfate, magnesium salts such as magnesium sulfate and magnesium chloride, sodium chloride and potassium chloride. And known aggregating agents such as monovalent cation salts. When coagulating with a flocculant, the pH may be adjusted by adding an acid or an alkali in order to promote aggregation.
上記架橋性組成物は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して得られた共凝析粉末を含むものであることが好ましい。上記共凝析粉末は、例えば、フッ素ゴム(A)の水性分散液と、フッ素樹脂(B)の水性分散液とを混合した後に凝析し、次いで凝析物を回収し、所望により乾燥させることにより得ることができる。また、上記架橋性組成物は、上記共凝析粉末と架橋剤とを含むものであることが好ましく、更に、後述する各種添加剤等を含むものであってもよい。
上記架橋性組成物は、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得て、該共凝析粉末に架橋剤を添加して得られるものであることが好ましい。
The crosslinkable composition preferably contains a co-coagulated powder obtained by co-coagulating the fluororubber (A) and the fluororesin (B). For example, the co-coagulated powder is coagulated after mixing the aqueous dispersion of fluororubber (A) and the aqueous dispersion of fluororesin (B), and then the coagulated product is recovered and dried as desired. Can be obtained. Moreover, it is preferable that the said crosslinkable composition contains the said co-coagulated powder and a crosslinking agent, and may further contain the various additives etc. which are mentioned later.
The crosslinkable composition is obtained by co-coagulating fluororubber (A) and fluororesin (B) to obtain a co-coagulated powder, and adding a cross-linking agent to the co-coagulated powder. It is preferable.
フッ素ゴム(A)の架橋系によっては架橋剤が必要であるので、フッ素ゴム(A)とフッ素樹脂(B)とを共凝析して共凝析粉末を得た後、共凝析粉末に架橋剤を添加して架橋性組成物を得てもよい。 Depending on the cross-linking system of the fluororubber (A), a cross-linking agent may be necessary. Therefore, after co-coagulating the fluororubber (A) and the fluororesin (B) to obtain a co-coagulated powder, A crosslinkable composition may be obtained by adding a crosslinking agent.
通常は、共凝析粉末に架橋剤を添加した後、共凝析粉末と架橋剤とを混合する。上記混合は、例えば、ニーダー等を用いた通常の混合方法により、フッ素樹脂(B)の融点未満の温度で混合することができる。 Usually, after adding a cross-linking agent to the co-coagulated powder, the co-coagulated powder and the cross-linking agent are mixed. The said mixing can be mixed by the normal mixing method using a kneader etc. at the temperature below melting | fusing point of a fluororesin (B), for example.
〔成形架橋工程〕
次に、架橋性組成物を成形及び架橋することにより、所望の形状の架橋成形体を作製する。成形及び架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋を同時に行ってもよい。
[Molding cross-linking step]
Next, a cross-linked molded body having a desired shape is produced by molding and cross-linking the cross-linkable composition. The order of molding and crosslinking is not limited, and may be crosslinked after molding, may be molded after crosslinking, or may be molded and crosslinked simultaneously.
架橋性組成物の成形及び架橋の方法は、採用する成形及び架橋において公知の方法でよい。 The molding and crosslinking methods of the crosslinkable composition may be known methods for the molding and crosslinking employed.
成形方法としては、例えば、押出成形、圧縮成形、射出成形、トランスファー成形等が挙げられる。 Examples of the molding method include extrusion molding, compression molding, injection molding, transfer molding, and the like.
架橋方法としては、スチーム架橋法、加圧成形法、放射線架橋法、加熱により架橋反応が開始される通常の方法が採用できる。本発明においては、シリンジとガスケットとの摺動性がより優れる点から、加熱による架橋反応が好適である。 As the cross-linking method, a steam cross-linking method, a pressure molding method, a radiation cross-linking method, or a normal method in which a cross-linking reaction is started by heating can be employed. In the present invention, a crosslinking reaction by heating is preferable because the sliding property between the syringe and the gasket is more excellent.
架橋を行う温度は、フッ素ゴム(A)の架橋温度以上であり、フッ素樹脂(B)の融点未満であることが好ましい。架橋をフッ素樹脂(B)の融点以上で行うと、架橋成形時にフッ素樹脂(B)が溶融し、充分な数の凸部を有する弾性部材を得ることができず、充分な摺動性が得られないおそれがある。架橋を行う温度は、フッ素樹脂(B)の融点より5℃低い温度未満であり、かつフッ素ゴム(A)の架橋温度以上であることがより好ましい。架橋時間としては、例えば、1分間~24時間であり、使用する架橋剤などの種類により適宜決定すればよい。 The temperature at which crosslinking is performed is not less than the crosslinking temperature of the fluororubber (A) and is preferably less than the melting point of the fluororesin (B). If the crosslinking is performed at a melting point or higher of the fluororesin (B), the fluororesin (B) melts at the time of cross-linking molding, and an elastic member having a sufficient number of convex portions cannot be obtained, and sufficient slidability is obtained. There is a risk of not being able to. More preferably, the crosslinking temperature is less than 5 ° C. lower than the melting point of the fluororesin (B) and not less than the crosslinking temperature of the fluororubber (A). The crosslinking time is, for example, 1 minute to 24 hours, and may be appropriately determined depending on the type of crosslinking agent used.
ところで、フッ素ゴムの架橋において、最初の架橋処理(1次架橋という)を施した後に2次架橋と称される後処理工程を施すことがあるが、下記の熱処理工程で説明するように、従来の2次架橋工程と本明細書の熱処理工程とは異なる処理工程である。 By the way, in the cross-linking of fluororubber, after the first cross-linking treatment (referred to as primary cross-linking), a post-processing step called secondary cross-linking may be performed, but as described in the heat treatment step below, The secondary crosslinking step and the heat treatment step of this specification are different treatment steps.
〔熱処理工程〕
この工程では、成形架橋工程で得られた架橋成形体をフッ素樹脂(B)の融点以上の温度に加熱して弾性部材を得る。
[Heat treatment process]
In this step, the elastic molded member is obtained by heating the crosslinked molded body obtained in the molding crosslinking step to a temperature equal to or higher than the melting point of the fluororesin (B).
熱処理工程は、弾性部材の表面のフッ素樹脂比率を高めるために行う処理工程であり、この目的に即して、フッ素樹脂(B)の融点以上かつフッ素ゴム(A)及びフッ素樹脂(B)の熱分解温度未満の温度が加熱温度として採用される。 The heat treatment step is a treatment step performed to increase the ratio of the fluororesin on the surface of the elastic member. In accordance with this purpose, the melting point of the fluororesin (B) and the fluororubber (A) and the fluororesin (B) A temperature lower than the thermal decomposition temperature is adopted as the heating temperature.
加熱温度がフッ素樹脂(B)の融点よりも低い場合は、多数の凸部を有する弾性部材を得ることができない。また、加熱温度は、フッ素ゴム及びフッ素樹脂の熱分解を回避するために、フッ素ゴム(A)またはフッ素樹脂(B)のいずれか低い方の熱分解温度未満の温度でなければならない。好ましい加熱温度は、短時間で摺動性を高めることができる点から、フッ素樹脂の融点より5℃以上高い温度である。 When heating temperature is lower than melting | fusing point of a fluororesin (B), the elastic member which has many convex parts cannot be obtained. Moreover, in order to avoid thermal decomposition of fluororubber and fluororesin, the heating temperature must be lower than the lower thermal decomposition temperature of fluororubber (A) or fluororesin (B). A preferable heating temperature is a temperature that is 5 ° C. or more higher than the melting point of the fluororesin because the slidability can be improved in a short time.
上記の上限温度は通常のフッ素ゴムの場合であり、超耐熱性を有するフッ素ゴムの場合は、上限温度は超耐熱性を有するフッ素ゴムの分解温度であるので、上記上限温度はこの限りではない。 The above upper limit temperature is the case of ordinary fluoro rubber, and in the case of fluoro rubber having super heat resistance, since the upper limit temperature is the decomposition temperature of fluoro rubber having super heat resistance, the above upper limit temperature is not limited to this. .
熱処理工程において、加熱温度は加熱時間と密接に関係しており、加熱温度が比較的下限に近い温度では比較的長時間の加熱を行い、比較的上限に近い加熱温度では比較的短い加熱時間を採用することが好ましい。このように加熱時間は加熱温度との関係で適宜設定すればよいが、加熱処理をあまり長時間行うとフッ素ゴムが熱劣化することがあるので、加熱処理時間は、耐熱性に優れたフッ素ゴムを使用する場合を除いて実用上96時間までである。通常、加熱処理時間は1分間~72時間が好ましい。生産性が良好な点からは1分間~24時間がより好ましいが、摺動性を向上させる観点からは、8~72時間であることがより好ましい。 In the heat treatment step, the heating temperature is closely related to the heating time. When the heating temperature is relatively close to the lower limit, the heating is performed for a relatively long time, and when the heating temperature is relatively close to the upper limit, the heating time is relatively short. It is preferable to adopt. As described above, the heating time may be appropriately set in relation to the heating temperature. However, if the heat treatment is performed for a long time, the fluororubber may be thermally deteriorated. It is practically up to 96 hours excluding the case where is used. Usually, the heat treatment time is preferably 1 minute to 72 hours. From the viewpoint of good productivity, 1 minute to 24 hours is more preferable, but from the viewpoint of improving slidability, 8 to 72 hours is more preferable.
ところで、従来行われている2次架橋は1次架橋終了時に残存している架橋剤を完全に分解してフッ素ゴムの架橋を完結し、架橋成形品の機械的特性や圧縮永久ひずみ特性を向上させるために行う処理である。
したがって、フッ素樹脂(B)の共存を想定していない従来の2次架橋条件は、その架橋条件が偶発的に本発明における熱処理工程の加熱条件と重なるとしても、2次架橋ではフッ素樹脂の存在を架橋条件設定の要因として考慮せずにフッ素ゴムの架橋の完結(架橋剤の完全分解)という目的の範囲内での加熱条件が採用されているにすぎず、フッ素樹脂(B)を配合した場合にゴム架橋物(ゴム未架橋物ではない)中でフッ素樹脂(B)を加熱軟化または溶融する条件を導き出せるものではない。
By the way, the conventional secondary cross-linking completely decomposes the cross-linking agent remaining at the end of the primary cross-linking to complete the cross-linking of the fluororubber, thereby improving the mechanical properties and compression set properties of the cross-linked molded product. This is a process to be performed.
Therefore, the conventional secondary crosslinking conditions that do not assume the coexistence of the fluororesin (B) are present in the secondary crosslinking even if the crosslinking conditions accidentally overlap with the heating conditions of the heat treatment step in the present invention. Is not used as a factor for setting the crosslinking conditions, but only the heating conditions within the range of the purpose of completion of crosslinking of the fluororubber (complete decomposition of the crosslinking agent) are employed, and the fluororesin (B) is blended. In this case, the conditions for heat softening or melting the fluororesin (B) in a crosslinked rubber (not an uncrosslinked rubber) cannot be derived.
なお、上記成形架橋工程において、フッ素ゴム(A)の架橋を完結させるため(架橋剤を完全に分解するため)の2次架橋を行ってもよい。 In addition, in the said shaping | molding bridge | crosslinking process, you may perform secondary bridge | crosslinking in order to complete bridge | crosslinking of fluororubber (A) (in order to decompose | disassemble a crosslinking agent completely).
また、熱処理工程において、残存する架橋剤の分解が起こり、フッ素ゴム(A)の架橋が完結する場合もあるが、熱処理工程におけるかかるフッ素ゴム(A)の架橋はあくまで副次的な効果にすぎない。 Further, in the heat treatment step, the remaining crosslinking agent may be decomposed to complete the cross-linking of the fluororubber (A). However, the cross-linking of the fluororubber (A) in the heat treatment step is only a secondary effect. Absent.
上記熱処理工程を行うことにより、弾性部材の表面では、フッ素樹脂(B)の特性が充分に発揮され、熱処理をしないものより摺動性が格段に向上した注射器を得ることができる。また、弾性部材の表面領域以外ではフッ素ゴム(A)の特性が発揮でき、全体として、シリンジとガスケットとの摺動性、気密性、液密性のいずれにもバランスよく優れた注射器が得られる。 By performing the heat treatment step, it is possible to obtain a syringe in which the characteristics of the fluororesin (B) are sufficiently exhibited on the surface of the elastic member and the slidability is remarkably improved as compared with those without heat treatment. In addition, the characteristics of the fluororubber (A) can be exhibited in areas other than the surface area of the elastic member, and as a whole, an excellent syringe can be obtained with a good balance in terms of slidability, airtightness, and liquidtightness between the syringe and the gasket. .
〔ガスケットを得る工程〕
基材の表面に上記弾性部材を設けて、少なくとも表面が上記弾性部材からなるガスケットを得る工程は、ガスケットの少なくともシリンジの内壁と密着する部分に弾性部材を設けるものであればよく、特に限定されない。例えば、円柱状の基材の表面にシート状の弾性部材を巻き、基材と弾性部材を接着させる方法等が挙げられる。
基材と弾性部材を接着させる方法としては、基材と弾性部材を共架橋することにより接着する方法や接着剤を用いる方法等が挙げられる。
[Process for obtaining gaskets]
The step of providing the elastic member on the surface of the base material to obtain a gasket having at least the surface made of the elastic member is not particularly limited as long as the elastic member is provided on at least a portion of the gasket that is in close contact with the inner wall of the syringe. . For example, a method of winding a sheet-like elastic member around the surface of a columnar base material and bonding the base material and the elastic member can be used.
Examples of the method for bonding the base material and the elastic member include a method of bonding by co-crosslinking the base material and the elastic member, a method using an adhesive, and the like.
〔注射器を得る工程〕
得られたガスケットをプランジャーの先端部に装着させ、ガスケットを装着したプランジャーをシリンジに挿入し注射器を得る工程は、注射器の製造で一般的に行われる方法を採用することができる。
[Step of obtaining a syringe]
The process generally performed in manufacture of a syringe can be employ | adopted as the process of attaching the obtained gasket to the front-end | tip part of a plunger, and inserting the plunger equipped with the gasket into a syringe, and obtaining a syringe.
上記第一の製造方法により、基材及び上記弾性部材からなり、基材の表面に上記弾性部材が設けられたガスケットを有する注射器を製造することができる。 By the first manufacturing method, it is possible to manufacture a syringe including a base material and the elastic member, and having a gasket in which the elastic member is provided on the surface of the base material.
本発明の注射器は、ガスケットの全体が弾性部材からなるものであってもよい。その場合、本発明の注射器は、下記製造方法により得られたものであることが好ましい。
本発明の注射器は、
フッ素ゴム(A)とフッ素樹脂(B)とを溶融混練又は共凝析して架橋性組成物を得る混合工程、
架橋性組成物を成形及び架橋することにより、所望の形状の架橋成形体を得る成形架橋工程、
成形架橋工程で得られた架橋成形体をフッ素樹脂(B)の融点以上の温度に加熱して弾性部材からなるガスケットを得る熱処理工程、及び、
得られたガスケットをプランジャーの先端部に装着させ、ガスケットを装着したプランジャーをシリンジに挿入する工程、
からなる製造方法(以下、「第二の製造方法」ともいう。)により得たものであってもよい。
上記第二の製造方法においては、成形架橋工程が、ガスケットと略同形状の架橋成形体を得るものであること、基材の表面に弾性部材を設ける工程を必要とせず、上記熱処理工程により弾性部材からなるガスケットを得ること、以外は上記第一の製造方法と同じ方法を採用できる。
In the syringe of the present invention, the entire gasket may be made of an elastic member. In that case, the syringe of the present invention is preferably obtained by the following production method.
The syringe of the present invention is
A mixing step in which the fluororubber (A) and the fluororesin (B) are melt-kneaded or co-coagulated to obtain a crosslinkable composition;
A molding and crosslinking step for obtaining a crosslinked molded article having a desired shape by molding and crosslinking the crosslinkable composition;
A heat treatment step of obtaining a gasket made of an elastic member by heating the cross-linked molded product obtained in the molding cross-linking step to a temperature equal to or higher than the melting point of the fluororesin (B); and
Attaching the obtained gasket to the tip of the plunger and inserting the plunger with the gasket into the syringe;
It may be obtained by a production method comprising (hereinafter also referred to as “second production method”).
In the second production method, the molding and crosslinking step is to obtain a crosslinked molded body having substantially the same shape as the gasket, and does not require a step of providing an elastic member on the surface of the base material. The same method as the first manufacturing method can be adopted except that a gasket made of members is obtained.
ここで、本発明の注射器を得るための具体的方法について説明するが、本発明の注射器を得る方法は、下記方法に限られるものではない。 Here, although the specific method for obtaining the syringe of this invention is demonstrated, the method of obtaining the syringe of this invention is not restricted to the following method.
(合成例1)
容量1Lのミキサー内に、水500ccと塩化マグネシウム4gをあらかじめ混合した溶液に下記フッ素樹脂ディスパージョン(B1)と下記フッ素ゴムディスパージョン(A1)とを、固形分が体積比で75/25(フッ素ゴム/FEP)となるようにあらかじめ混合した溶液400ccを投入し、ミキサーにて5分間混合し、共凝析した。
共凝析後、固形分を取り出し、120℃×24時間乾燥炉で乾燥させた後、オープンロールにて、下記充填剤、架橋剤、架橋促進剤、架橋助剤を表1に示す部数で混合して、架橋性組成物1を得た。
(Synthesis Example 1)
The following fluororesin dispersion (B1) and the following fluororubber dispersion (A1) are mixed in a solution in which 500 cc of water and 4 g of magnesium chloride are mixed in advance in a mixer having a capacity of 1 L, and the solid content is 75/25 (fluorine). 400 cc of a solution previously mixed so as to be (rubber / FEP) was added, mixed for 5 minutes in a mixer, and co-coagulated.
After co-coagulation, the solid content is taken out, dried in a drying oven at 120 ° C. for 24 hours, and then mixed with the following filler, crosslinking agent, crosslinking accelerator, and crosslinking aid in the number of parts shown in Table 1. Thus, a crosslinkable composition 1 was obtained.
(実施例1)
その後、成形金型を用いて、得られた架橋性組成物1をガスケット形状に成形し、180℃、5分間、40kg/cmの条件で架橋して、架橋成形品を得た。
その後、架橋成形品を230℃に維持された加熱炉中に24時間入れて加熱処理を行い、ガスケット1を製造した。
製造されたガスケットをプランジャーに装着し、シリンジ内に挿入することで、図4で示される本発明の注射器を得ることができる。
(Example 1)
Thereafter, the resulting crosslinkable composition 1 was molded into a gasket shape using a molding die, and crosslinked at 180 ° C. for 5 minutes at 40 kg / cm 2 to obtain a crosslinked molded product.
Thereafter, the crosslinked molded product was placed in a heating furnace maintained at 230 ° C. for 24 hours and subjected to heat treatment to produce a gasket 1.
The manufactured gasket of the present invention shown in FIG. 4 can be obtained by attaching the manufactured gasket to the plunger and inserting it into the syringe.
(合成例2)
容量1Lのミキサー内に、水500ccと塩化マグネシウム4gをあらかじめ混合した溶液に下記フッ素樹脂ディスパージョン(B1)と下記フッ素ゴムディスパージョン(A1)とを、固形分が体積比で92.5/7.5(フッ素ゴム/FEP)となるようにあらかじめ混合した溶液400ccを投入し、ミキサーにて5分間混合し、共凝析した。
共凝析後、固形分を取り出し、120℃×24時間乾燥炉で乾燥させた後、オープンロールにて、下記充填剤、架橋剤、架橋促進剤、架橋助剤を表1に示す部数で混合して、架橋性組成物2を得た。
(Synthesis Example 2)
The following fluororesin dispersion (B1) and the following fluororubber dispersion (A1) were added to a solution prepared by previously mixing 500 cc of water and 4 g of magnesium chloride in a mixer having a capacity of 1 L, and the solid content was 92.5 / 7 in volume ratio. 400 cc of a solution mixed in advance so as to be 5 (fluororubber / FEP) was added, mixed for 5 minutes in a mixer, and co-coagulated.
After co-coagulation, the solid content is taken out, dried in a drying oven at 120 ° C. for 24 hours, and then mixed with the following filler, crosslinking agent, crosslinking accelerator, and crosslinking aid in the number of parts shown in Table 1. Thus, a crosslinkable composition 2 was obtained.
(実施例2)
架橋性組成物1の代わりに、架橋性組成物2を用いた以外は、実施例1と同様にしてガスケット2を得た。
(Example 2)
A gasket 2 was obtained in the same manner as in Example 1 except that the crosslinkable composition 2 was used instead of the crosslinkable composition 1.
(合成例3)
容量1Lのミキサー内に、水500ccと塩化マグネシウム4gをあらかじめ混合した溶液に下記フッ素樹脂ディスパージョン(B1)と下記フッ素ゴムディスパージョン(A1)とを、固形分が体積比で87.5/12.5(フッ素ゴム/FEP)となるようにあらかじめ混合した溶液400ccを投入し、ミキサーにて5分間混合し、共凝析した。
共凝析後、固形分を取り出し、120℃×24時間乾燥炉で乾燥させた後、オープンロールにて、下記充填剤、架橋剤、架橋促進剤、架橋助剤を表1に示す部数で混合して、架橋性組成物3を得た。
(Synthesis Example 3)
The following fluororesin dispersion (B1) and the following fluororubber dispersion (A1) are mixed into a solution prepared by previously mixing 500 cc of water and 4 g of magnesium chloride in a mixer having a capacity of 1 L, and the solid content is 87.5 / 12 in volume ratio. 400 cc of a solution mixed in advance so as to be 5 (fluororubber / FEP) was added, mixed for 5 minutes in a mixer, and co-coagulated.
After co-coagulation, the solid content is taken out, dried in a drying oven at 120 ° C. for 24 hours, and then mixed with the following filler, crosslinking agent, crosslinking accelerator, and crosslinking aid in the number of parts shown in Table 1. Thus, a crosslinkable composition 3 was obtained.
(実施例3)
架橋性組成物1の代わりに、架橋性組成物3を用いた以外は、実施例1と同様にしてガスケット3を得た。
(Example 3)
A gasket 3 was obtained in the same manner as in Example 1 except that the crosslinkable composition 3 was used instead of the crosslinkable composition 1.
(合成例4)
容量1Lのミキサー内に、水500ccと塩化マグネシウム4gをあらかじめ混合した溶液に下記フッ素樹脂ディスパージョン(B1)と下記フッ素ゴムディスパージョン(A1)とを、固形分が体積比で60/40(フッ素ゴム/FEP)となるようにあらかじめ混合した溶液400ccを投入し、ミキサーにて5分間混合し、共凝析した。
共凝析後、固形分を取り出し、120℃×24時間乾燥炉で乾燥させた後、オープンロールにて、下記充填剤、架橋剤、架橋促進剤、架橋助剤を表1に示す部数で混合して、架橋性組成物4を得た。
(Synthesis Example 4)
The following fluororesin dispersion (B1) and the following fluororubber dispersion (A1) are mixed in a solution in which 500 cc of water and 4 g of magnesium chloride are mixed in advance in a mixer having a capacity of 1 L, and the solid content is 60/40 (fluorine in volume ratio). 400 cc of a solution previously mixed so as to be (rubber / FEP) was added, mixed for 5 minutes in a mixer, and co-coagulated.
After co-coagulation, the solid content is taken out, dried in a drying oven at 120 ° C. for 24 hours, and then mixed with the following filler, crosslinking agent, crosslinking accelerator, and crosslinking aid in the number of parts shown in Table 1. Thus, a crosslinkable composition 4 was obtained.
(実施例4)
架橋性組成物1の代わりに、架橋性組成物4を用いた以外は、実施例1と同様にしてガスケット4を得た。
Example 4
A gasket 4 was obtained in the same manner as in Example 1 except that the crosslinkable composition 4 was used instead of the crosslinkable composition 1.
フッ素ゴムディスパージョン(A1)
ポリオール架橋可能な2元フッ素ゴム(VdF/HFP共重合体、VdF/HFP=78/22、ムーニー粘度(ML1+10(100℃)):80)のディスパージョン(固形分濃度:24質量%)
Fluoro rubber dispersion (A1)
Dispersion (solid content concentration: 24% by mass) of polyol-crosslinkable binary fluororubber (VdF / HFP copolymer, VdF / HFP = 78/22, Mooney viscosity (ML 1 + 10 (100 ° C.)): 80)
フッ素樹脂ディスパージョン(B1)
FEP(TFE/HFP共重合体、TFE/HFP=87.9/12.1、MFR:31.7g/10min(327℃測定)、融点:約215℃)の水性ディスパージョン(固形分濃度:21質量%)
Fluorine resin dispersion (B1)
Aqueous dispersion (solid content concentration: 21) of FEP (TFE / HFP copolymer, TFE / HFP = 87.9 / 12.1, MFR: 31.7 g / 10 min (measured at 327 ° C.), melting point: about 215 ° C.) mass%)
充填剤:カーボンブラック(Cancarb社製のMTカーボン:N990)
架橋剤:ビスフェノールAF 特級試薬 和光純薬工業(株)製
架橋促進剤:BTPPC   特級試薬 和光純薬工業(株)製
架橋助剤:酸化マグネシウム 協和化学工業(株)製 MA150
水酸化カルシウム 近江化学工業(株)製 CALDIC2000
Filler: Carbon black (MT carbon manufactured by Cancarb: N990)
Cross-linking agent: Bisphenol AF Special grade reagent Wako Pure Chemical Industries, Ltd. Cross-linking accelerator: BTPPC Special grade reagent Wako Pure Chemical Industries, Ltd. Cross-linking aid: Magnesium oxide MA 150, manufactured by Kyowa Chemical Industry Co., Ltd.
CALDIC2000 manufactured by Omi Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(合成例5)
ブチルゴム(BUTYL365、JSR社製)をオープンロールにて、下記充填剤、架橋剤、架橋促進剤、軟化剤を表2に示す部数で混合して、架橋性組成物5を得た。
(Synthesis Example 5)
Butyl rubber (BUTYL365, manufactured by JSR Corporation) was mixed with the following filler, crosslinking agent, crosslinking accelerator, and softener in the number of parts shown in Table 2 using an open roll to obtain a crosslinkable composition 5.
(比較例1)
その後、成形金型を用いて、得られた架橋性組成物5をガスケット形状に成形し、160℃、20分間、40kg/cmの条件で架橋して、ガスケット5を製造した。
(Comparative Example 1)
Thereafter, the obtained crosslinkable composition 5 was molded into a gasket shape using a molding die, and crosslinked at 160 ° C. for 20 minutes at 40 kg / cm 2 to produce a gasket 5.
充填剤:カーボンブラック(東海カーボン(株)製のシーストSO)
    酸化亜鉛(三井金属鉱業(株)製の酸化亜鉛3種)
    ステアリン酸(日油(株)製のステアリン酸「椿」)
架橋剤:硫黄 MIWON社製 MIDAS-105
架橋促進剤:サンセラーEM-5-CR 三新化学工業(株)製
軟化剤:パラフィンオイル(出光興産(株)製のプロセスオイル PT-32)
Filler: Carbon black (Shiest SO manufactured by Tokai Carbon Co., Ltd.)
Zinc oxide (3 types of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd.)
Stearic acid (stearic acid “椿” manufactured by NOF Corporation)
Crosslinking agent: Sulfur MIDAON MIDAS-105
Cross-linking accelerator: Sunseller EM-5-CR Sanshin Chemical Co., Ltd. Softener: Paraffin oil (Process oil PT-32 manufactured by Idemitsu Kosan Co., Ltd.)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(摺動性の測定)
JIS K7125に準拠して、動摩擦係数の測定を行った。合成例1~5で得られた架橋性組成物1~5をプレス成形して、120mm×160mm×2mmの試料(試験用シート)を得た。得られた試料に対し、相手材としてシクロオレフィンポリマー(COP、日本ゼオン社製)の成形品(65mm×65mm×3mm、6g)を接触させた状態で94gの錘を載せた。インストロン社製万能材料試験機5566型を用いて、すべり速度100mm/minでCOP成形品を水平に引っ張り、錘が移動中の平均荷重(F)を測定し、下記式より動摩擦係数(μ)を求めた。測定数は、各試料n=4とした。架橋性組成物5から得られた試験用シートの場合のみは、相手材との間に潤滑油(シリコンオイル、360 Medicai Fluid、100cSt、東レ・ダウコーニング株式会社製)を塗布し、測定を行った。結果を表3に示す。
(Slidability measurement)
The dynamic friction coefficient was measured according to JIS K7125. The crosslinkable compositions 1 to 5 obtained in Synthesis Examples 1 to 5 were press-molded to obtain 120 mm × 160 mm × 2 mm samples (test sheets). A 94 g weight was placed on the obtained sample in a state where a molded product (65 mm × 65 mm × 3 mm, 6 g) of a cycloolefin polymer (COP, manufactured by Nippon Zeon Co., Ltd.) was brought into contact with the obtained sample. Using a universal material testing machine 5566 manufactured by Instron, the COP molded product was pulled horizontally at a sliding speed of 100 mm / min, and the average load (F) while the weight was moving was measured. Asked. The number of measurements was set for each sample n = 4. Only in the case of the test sheet obtained from the crosslinkable composition 5, a lubricating oil (silicone oil, 360 Medica Fluid, 100 cSt, manufactured by Toray Dow Corning Co., Ltd.) is applied between the mating material and measurement is performed. It was. The results are shown in Table 3.
動摩擦係数(μ)=F(g)/(錘+相手材)の重さ(g) Coefficient of dynamic friction (μ) = F (g) / Weight (weight + mating material) (g)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
10a、10b、10c:注射器
11:シリンジ
12:プランジャー
13a、13b:基材
14a、14b:弾性部材
15a、15b:ガスケット
15c:ガスケット(弾性部材)
16b、16c:リップ部
30:弾性部材
31:凸部
10a, 10b, 10c: syringe 11: syringe 12: plunger 13a, 13b: base material 14a, 14b: elastic member 15a, 15b: gasket 15c: gasket (elastic member)
16b, 16c: Lip part 30: Elastic member 31: Convex part

Claims (6)

  1. シリンジと、プランジャーと、前記プランジャーの先端部に装着して前記シリンジの内壁面に密着させつつ摺動させるガスケットと、を有する注射器であって、
    前記ガスケットの少なくとも表面が、フッ素ゴム(A)とフッ素樹脂(B)とを含む架橋性組成物を架橋することにより得られる弾性部材からなる
    ことを特徴とする注射器。
    A syringe having a syringe, a plunger, and a gasket that is attached to the tip of the plunger and is slid while being in close contact with the inner wall surface of the syringe,
    At least surface of the said gasket consists of an elastic member obtained by bridge | crosslinking the crosslinkable composition containing a fluororubber (A) and a fluororesin (B), The syringe characterized by the above-mentioned.
  2. フッ素樹脂(B)は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン/フッ化ビニリデン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、及び、ポリフッ化ビニルからなる群より選択される少なくとも1種である請求項1記載の注射器。 The fluororesin (B) is tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene. Copolymer, polychlorotrifluoroethylene, chlorotrifluoroethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, vinylidene fluoride / Hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, and at least one selected from the group consisting of polyvinyl fluoride Syringe to claim 1, wherein.
  3. フッ素樹脂(B)は、パーフルオロフッ素樹脂である請求項1又は2記載の注射器。 The syringe according to claim 1 or 2, wherein the fluororesin (B) is a perfluorofluororesin.
  4. フッ素樹脂(B)は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体である請求項1、2又は3記載の注射器。 The syringe according to claim 1, 2 or 3, wherein the fluororesin (B) is a tetrafluoroethylene / hexafluoropropylene copolymer.
  5. 弾性部材に対するフッ素樹脂(B)の体積比が0.05~0.45である
    請求項1、2、3又は4記載の注射器。
    The syringe according to claim 1, 2, 3 or 4, wherein the volume ratio of the fluororesin (B) to the elastic member is 0.05 to 0.45.
  6. フッ素ゴム(A)は、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン共重合体、エチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体、エチレン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、ビニリデンフルオライド/テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、及び、ビニリデンフルオライド/クロロトリフルオロエチレン共重合体からなる群より選択される少なくとも1種である
    請求項1、2、3、4又は5記載の注射器。
    The fluororubber (A) is composed of vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene / propylene / vinylidene fluoride. Ride copolymer, ethylene / hexafluoropropylene copolymer, ethylene / hexafluoropropylene / vinylidene fluoride copolymer, ethylene / hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene / perfluoro The (alkyl vinyl ether) copolymer and at least one selected from the group consisting of vinylidene fluoride / chlorotrifluoroethylene copolymer, , 3, 4 or 5 syringe according.
PCT/JP2013/076328 2012-10-01 2013-09-27 Syringe WO2014054535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539706A JPWO2014054535A1 (en) 2012-10-01 2013-09-27 Syringe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-219812 2012-10-01
JP2012219812 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054535A1 true WO2014054535A1 (en) 2014-04-10

Family

ID=50434863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076328 WO2014054535A1 (en) 2012-10-01 2013-09-27 Syringe

Country Status (2)

Country Link
JP (1) JPWO2014054535A1 (en)
WO (1) WO2014054535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406565B2 (en) 2015-03-10 2022-08-09 Regeneran Pharmaceuticals, Inc. Aseptic piercing system and method
US11547801B2 (en) 2017-05-05 2023-01-10 Regeneron Pharmaceuticals, Inc. Auto-injector
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277187A (en) * 1992-03-31 1993-10-26 Ntn Corp Piston sealing material for syringe
WO1998010815A1 (en) * 1996-09-10 1998-03-19 Tetsuro Higashikawa Slide valve for syringes, syringe, and kit preparations
JP2012153880A (en) * 2011-01-05 2012-08-16 Daikin Industries Ltd Fluoro-rubber molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277187A (en) * 1992-03-31 1993-10-26 Ntn Corp Piston sealing material for syringe
WO1998010815A1 (en) * 1996-09-10 1998-03-19 Tetsuro Higashikawa Slide valve for syringes, syringe, and kit preparations
JP2012153880A (en) * 2011-01-05 2012-08-16 Daikin Industries Ltd Fluoro-rubber molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406565B2 (en) 2015-03-10 2022-08-09 Regeneran Pharmaceuticals, Inc. Aseptic piercing system and method
US11547801B2 (en) 2017-05-05 2023-01-10 Regeneron Pharmaceuticals, Inc. Auto-injector
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector

Also Published As

Publication number Publication date
JPWO2014054535A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5786967B2 (en) Oil seal for automobile
JP5644913B2 (en) Crosslinkable fluororubber composition, fluororubber molded product and method for producing the same
JP5293805B2 (en) Fluoro rubber molded product
JP5304645B2 (en) Laminated body comprising fluororubber layer and non-fluororubber layer and method for producing the same
JP2007191576A (en) Thermoplastic polymer composition, thermoplastic resin composition, molded product using the same and manufacturing method for thermoplastic resin composition
JP5880685B2 (en) Automotive filler cap
WO2014054535A1 (en) Syringe
JP5176288B2 (en) Flame retardant materials, wire jackets and LAN cables formed from them
WO2019155073A1 (en) Fluoroelastomer curable composition
JP2016090013A (en) Oil seal
JP7219856B2 (en) Fluoro rubber composition
JP5821348B2 (en) Fixing roll and fixing belt
JP6163809B2 (en) Fluoro rubber composition
JP2010209275A (en) Polymer composition and molded article
JP2013195234A (en) Oil level gauge for automobile
JP7436910B2 (en) Fluororubber composition and molded article
JP2015152123A (en) oil seal
JP2016090014A (en) Valve stem seal
JP2013086524A (en) Wiper blade rubber
JP2015151962A (en) Valve-stem seal
JP2024094966A (en) Fluororubber composition and molded article
JP2008087402A (en) Multi-layer blow-molded article
JP2011185355A (en) Member for automobile valve
JP2007224086A (en) Fluororesin composition and method for producing the same
JP2013067774A (en) Crosslinkable fluororubber composition and fluororubber molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844338

Country of ref document: EP

Kind code of ref document: A1