WO2014051353A2 - Microcapsule comprising glycoprotein derived from plants - Google Patents

Microcapsule comprising glycoprotein derived from plants Download PDF

Info

Publication number
WO2014051353A2
WO2014051353A2 PCT/KR2013/008632 KR2013008632W WO2014051353A2 WO 2014051353 A2 WO2014051353 A2 WO 2014051353A2 KR 2013008632 W KR2013008632 W KR 2013008632W WO 2014051353 A2 WO2014051353 A2 WO 2014051353A2
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
protein
microcapsules
glycoprotein
polysaccharide
Prior art date
Application number
PCT/KR2013/008632
Other languages
French (fr)
Korean (ko)
Other versions
WO2014051353A3 (en
Inventor
임형준
김한별
김도훈
신송석
박영호
Original Assignee
(주)아모레퍼시픽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130110382A external-priority patent/KR102152751B1/en
Application filed by (주)아모레퍼시픽 filed Critical (주)아모레퍼시픽
Priority to JP2015534389A priority Critical patent/JP6290899B2/en
Priority to US14/431,566 priority patent/US9802064B2/en
Priority to CN201380050900.0A priority patent/CN104812380B/en
Publication of WO2014051353A2 publication Critical patent/WO2014051353A2/en
Publication of WO2014051353A3 publication Critical patent/WO2014051353A3/en
Priority to HK15108277.0A priority patent/HK1207818A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/645Proteins of vegetable origin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/524Preservatives

Definitions

  • the present invention relates to microcapsules comprising plant derived glycoproteins. [Background]
  • New stabilized capsules are being developed to develop colloidal stabilization systems consisting of edible biopolymers and protein complexes. If the glycoproteins with plant peptide origin have antioxidant power, they will be able to more reliably protect the substances carried in the capsule. In particular, efforts have been made in the art to attempt stabilization by introducing biopolymers derived from nature from the dimension replacing existing petroleum-derived synthetic polymers.
  • the present inventors have completed the present invention by confirming that capsules containing plant glycoproteins together with polysaccharides and proteins can be prepared simply and conveniently, and have an antioxidant capacity, which greatly increases the stability of the supported material.
  • An object of the present invention is to provide a microcapsule having an antioxidant capacity and easy to manufacture.
  • the present invention provides a polysaccharide having a total charge ( ne t charge) of a negative charge;
  • the microcapsules of the present invention have the advantage of stabilizing active ingredients of an emulsifier type stabilized by conventional petroleum-derived synthetic polymers or surfactants with naturally occurring ingredients.
  • the manufacturing process of the capsule since the organic solvent is not used separately, the manufacturing is simple and more environmentally friendly.
  • the microcapsule of the present invention can pursue the stabilization of the potency as a soft microcapsules such as hydrogel, rather than a hard microcapsule, it is useful in showing the effect of the potent component.
  • the microcapsules of the present invention are reversible generation and breakdown of stable particles according to pH It has the advantage that it can be used as a pH sensitive carrier.
  • the microcapsules of the present invention also have antioxidant properties, and can prevent oxidation and decay of the internally supported materials.
  • 3 is a photograph taken to compare the degree of turbidity and precipitate formation.
  • 11 to 15 show results of confirming particle sizes and uniformities of Examples 24 to 26 and 35 to 50 (scale bars are 10 micrometers).
  • the present invention provides a polysaccharide having a net charge of negative charge; Proteins having an isoelectric point (PI) of 4 to 6; and microcapsules comprising plant derived glycoproteins whose net charge is negatively charged.
  • PI isoelectric point
  • the 'polysaccharide' is a total charge in the presence of an aqueous solution or moisture.
  • net charge means a polysaccharide having a negative charge
  • the 'polysaccharide' in the present specification may have an anionic functional group, such as C00H, but is not limited to the functional group, the charges of the polysaccharide functional group If the total charge has a negative charge, it is applicable without limitation.
  • the polysaccharide is pectin, xanthan, bit pectin (beet pectin), carrageenan (carrageenan), chitosan, acacia (gum arabic), inulin (inulin), Oz, xanthan gum, methyl selreul, flaxseed gum (flaxseed gum ), Kappa-carrageenan ( ⁇ — carrageenan), iota-carrageenan (L—carrageenan), gellan gum, dextran sulfate, galactomannans, alginate, and the like. But it is not limited thereto.
  • the 'protein' refers to a protein having a surface potential that is changed according to pH change, that is, having an isoelectric point.
  • the protein of the present specification means a protein having an isoelectric point between pH 4 and 6, and these proteins may have a positive charge at pH 7 and then change to an acidic condition.
  • the 'protein' may have a positive total charge between pH 4 and 6 to form a complex with polysaccharides and plant-derived glycoproteins, thereby producing a microcapsule.
  • the 'protein' may be used as a surfactant.
  • the protein herein may include, but is not limited to, soy protein, casein, ovalbumin, lactoglobulin, and the like.
  • the isoelectric point of the protein may be 4 or more, 4.2 or more, 4.6 or more, 4.8 or more or 4.9 or more and 6 or less, 5.8 or less, 5.6 or less, 5.4 or less, 5.2 or less, or 5.1 or less.
  • soy protein is not limited to include soy protein, but may include all proteins that can be obtained from beans.
  • soybean is a soybean (67yc / / 2e max (L.) Merr.), White kidney beans (/ 3 ⁇ 4as? / S multif lorus Wi 1 Id.
  • I bus Bailey Haenyeo beans
  • CaAS s / s I i neat a (Thunberg) DC Pigeon pea
  • Cajanus cajan (L.) Mi lisp) Pigeon pea
  • ⁇ r ⁇ ⁇ r Dipteryx odora t aAAubl.
  • Willd Big Fox 0 y cA s / a acuminati folia Makino
  • Carob beans Ceatonia siliqua (L.) Taub.
  • Swallow beans aZ?
  • the soy protein or soy protein in the present specification may be an isolated soy protein (ISP).
  • ISP isolated soy protein
  • the 'plant-derived glycoprotein' is also a net charge in the presence of an aqueous solution or water. Means negatively charged glycoprotein.
  • the 'plant-derived glycoprotein' may have an anionic functional group, for example, C00H, to the functional group of the sugar or protein, but is not limited thereto, and the total charge sum of the charges of the functional group has a negative charge. If so, it can be applied without limitation.
  • the plant-derived glycoprotein may include, but is not limited to, Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Abis-derived glycoprotein. It is not.
  • the 'plant-derived glycoprotein' of this specification also has an antioxidant ability, thereby preventing the oxidation of the material carried in the microcapsules.
  • Microcapsules of one aspect of the present invention can be stably prepared in combination with a positively charged protein, a negatively charged glycoprotein and a polysaccharide under acidic conditions.
  • Glycoprotein as a natural component plays a role of a surfactant, so there is little irritation, and since it does not require a separate organic solvent for its preparation, it is easy to manufacture and environmentally friendly.
  • the microcapsules, which is an aspect of the present invention have the advantage that particles which are stable according to pH are reversibly generated and decomposed, and thus can be used as a pH sensitive carrier.
  • the plant-derived glycoprotein is Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Avis-derived sugar. At least one selected from the group consisting of proteins.
  • the glycoprotein has an antioxidant ability to prevent oxidation and decay of the water contained in the capsule, as well as less irritation as a natural derived material.
  • the plant-derived glycoprotein may have a carboxylic acid functional group.
  • the plant-derived glycoprotein may have a carboxylic acid functional group on a sugar or protein.
  • the polysaccharide comprises pectin, xanthan, beet pectin, carrageenan, chitosan, gum arabic, inulin, and methyl cells.
  • pectin may be high methoxy pectin (HME).
  • the high or low hydroxypectin is determined by how much methyl carboxyl groups are substituted by the carboxyl groups in the main chain.
  • the high methoxy pectin (HME) refers to a pectin in which at least 50% of carboxyl groups are substituted with methyl ester groups.
  • the high methoxypectin (HME) may refer to pectin in which carboxyl groups of 69 to 74% are substituted with methyl ester groups.
  • the protein is a soy protein.
  • the weight ratio of the polysaccharide to the protein may be 1 to 9: 1.
  • the weight ratio of the polysaccharide: protein is from 1 to 8: 1, from 1 to 7: 1, from 1 to 6: 1, from 1 to 5: 1, 1 to 4: 1, 1 to 1 to 1 or 1 ⁇ 2: 1, specifically 1-2.3: 1.
  • the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 9: 1: 0.01-0.99.
  • the weight ratio of the polysaccharide: protein: sugar protein may be 1-7: 1: 0.01 0.9, 1-5: 1: 0.01-0.8, or 1-3: 1: 0.01-0.7. .
  • the microcapsules may include a fat-soluble substance in the coating.
  • Microcapsules which are aspects of the present invention, have an antioxidant capability, and have an advantage of preventing oxidation and decay of the fat-soluble substance loaded therein.
  • the 'lipophilic material' includes a material which is not mixed with the water-soluble material and is separated and exists as a layer, and may include an extract or a compound having a fat-soluble property.
  • the fat-soluble substance may mean a substance capable of producing a desired effect with an active ingredient or an active ingredient.
  • the active ingredients having fat-soluble properties are supported, manufactured, distributed and sold. If you do, you will be able to prevent oxidation and will have fewer side effects, including plant-derived glycoproteins.
  • the 'fat-soluble substance' in the present specification is not limited as long as it is a soluble active ingredient that can be dissolved in ester-based oil, triglyceride-based oil, silicone-based oil, or hydrocarbon-based oil, the efficacy of terpenoid-based, flavonoid-based It also contains ingredients.
  • the fat-soluble substance is coenzyme
  • It may be one or more selected from the group consisting of Q10, Carnosic acid, omega-3 and beta carotene.
  • the present invention relates to a method for preparing microcapsule, comprising reacting a plant-derived glycoprotein having a net charge with a negative charge at pH 4 to pH 6.
  • the step (a) and (b) has a pH of 6 to
  • the pH of step (c) is pH 4.2 to 5.5, pH 4.4 to 5.5, pH 4.5 to 5.5, pH 4.6 to 5.4, pH 4.7 to 5.3, pH 4.8 to 5.2 or pH 4.9 to 5.1.
  • the pH of step (c) is around 5, specifically, the pH may be 4.8 to 5.2.
  • the 'water-soluble material' may include a material that is not completely integrated with the fat-soluble material and is present in different layers.
  • the water-soluble substance of the present specification may include water, but is not limited thereto.
  • the 'oil drop' means that the oil-soluble substance is present as a drop, that is, a drop between the water-soluble substances.
  • Microcapsules which is an aspect of the present invention, may surround the oil drop with a surfactant to make the oil drop's internal environment more completely anhydrous, and a polysaccharide such as high viscosity pectin is added thereto. Water-soluble by forming bonds Intrusion of powder can be prevented more strongly.
  • Step (b) may include reacting the polysaccharide and the plant-derived glycoprotein after reacting the oil drop with the protein.
  • the oil drop and the protein are first reacted to provide a more powerful anhydrous environment.
  • the polysaccharide and plant-derived sugar The step of reacting the protein may first react the plant-derived glycoprotein and then react the polysaccharide.
  • the plant-derived glycoprotein is reacted first, the plant-derived glycoprotein is present closer to the supported material, thereby maximizing the antioxidant capacity of the supported material, and the polysaccharide with the negative charge is present externally. Because of the characteristics of the particles having a surface having a negative charge it is possible to prevent the coalescence between the particles, etc. has the advantage of increasing the stability of the particles.
  • the fat-soluble substance of step (a) may include a mixture of oil-soluble substance and oil. It may include carbon-based, triglyceride-based or ester-based oils, and any substance capable of dissolving the active ingredient fat-soluble substance to a high content can be used without limitation.
  • the plant-derived glycoprotein is Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Abis-derived. At least one selected from the group consisting of glycoproteins.
  • the plant-derived sugar protein may include a carboxylic acid functional group.
  • the polysaccharide is pectin, xanthan, beet pectin, carrageenan, chitosan, gum arabic, inulin ), Methyl salorose, xanthan gum, flaxseed gum, ⁇ ! " ⁇ ⁇ 1" raginan ( ⁇ ⁇ carrageenan), ⁇ 1 " 0 1 ota_garrageenan ( ⁇ _ carrageenan), gellan gum (gel lan gum), dextran sulfate, galactomannans, and alginate.
  • the protein is a group consisting of soy protein, casein, ovalbumin, and lactoglobulin. It may be one or more selected from.
  • the said polysaccharide: Protein The increase in quality can range from 9 to 1: 1.
  • the weight ratio of the polysaccharide: protein is from 1 to 8: 1, 1-7: 1, 1 to 6: 1, 1 to 5: 1, 1-4: 1, 1-3: 1 or 1 ⁇ 2: 1, specifically 1-2.3: 1.
  • the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 9: 1: 0.01 to 0.99.
  • the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 7: 1: 0.01-0.9, 1 to 5: 1: 0.01 to 0.8, or 1 to 3: 1: 0.01 to 0.7.
  • the present invention may be an emulsion including microcapsules prepared according to the method for preparing microcapsules or microcapsules according to the present specification.
  • the protein may be 0.1 to 1% by weight based on the total weight of the final composition comprising the microcapsule. Also in one aspect of the invention, the protein is 0.01 to 5% by weight, 0.05 to 4.5% by weight, 0.1 to 4% by weight, 0.2 to 3.5% by weight based on the total weight of the final composition comprising microcapsule , 0.3 to 3% by weight, 0.4 to 2.5% by weight, 0.5 to 2% by weight, 0.6 to 1.5% by weight or 0.7 to 1% by weight.
  • the polysaccharide may be from 1 to 3% by weight based on the total weight of the final composition containing the microcapsules.
  • the polysaccharide is 0.1 to 5% by weight 0.5 to 4% by weight, 1 to 3.5% by weight, 1.3 to 3% by weight, 1.6 based on the total weight of the final composition comprising microcapsule To 2.7 weight percent or 2 to 2.4 weight percent.
  • the fat-soluble substance comprises a final microcapsule
  • fat-soluble substance 0.001 to 30% by weight based on the total weight of the final composition, 1 to 25% by weight, 10 to 20 parts by weight 3 ⁇ 4 containing microcapsules>, 12 to 18 increases It may be an amount% or 14 to 16% by weight.
  • Another aspect of the present invention is a method of manufacturing microcapsule, the method
  • It relates to a method comprising a.
  • the method may be performed at room temperature.
  • the steps i) and ii) may be performed at a pH of 6 to 7.
  • the pH of step iii) is pH 4.2 to 5.5, pH 4.4 to 5.5, pH 4.5 to 5.5, pH 4.6 to 5.4, pH 4.7 to 5.3, pH 4.8 to 5.2 or pH It may be 4.9 to 5.1, preferably the P H of the step Hi) is around 5, specifically may be pH 4.8 to 5.2.
  • HOH 3% aqueous solution was prepared by adding NaOH and adjusting to pH 7.
  • the SC powder was dissolved in water with stirring to prepare a 3> aqueous solution (the concentration of SC was adjusted below the HMP concentration). After agitation, the micelle water solution composed of SC is prepared and has an average particle size of about 100-200 nm.
  • the pH is prepared in the vicinity of 7 and when the pH is high or low, the NaOH or citric acid was adjusted to pH 7 using the prepared SC 3% aqueous solution.
  • the HMP 3% aqueous solution and SC 3% aqueous solution prepared above were mixed by ratio (9: 1/7: 3/5: 5) to make a mixed aqueous solution and stirred.
  • Example 75 In the process of mixing the HMP aqueous solution and the SC aqueous solution of the production method of Example I, the green tea-derived glycoprotein powder (ISAI-016, Dure Co., Ltd.) was completely dissolved together and the pH was adjusted to adjust the pH of the green tea-derived glycoprotein. Preparation of microcapsules introduced as a capsule component was
  • Example m Preparation of HMP / SC / glycoprotein capsule having oil in the particle core
  • an aqueous solution of o / w emulsion form using SC as a surfactant was used.
  • the oil is added to the water first, and an aqueous solution having oil drops is made through a homer mixer, and a certain amount of SC powder is added to the homer for mixing with homer.
  • HMP 3% aqueous solution prepared above and the ISP 1.8% aqueous solution prepared according to Example IV were mixed (1: 1/2: 1/4: 1) by weight ratio to make a mixed aqueous solution and stirred.
  • Microcapsules are produced by forming a complex (HMP is coated on the surface of ISP particles or ISP particle clusters).
  • the green tea-derived glycoprotein powder (ISAI-016, Dure Co., Ltd.) was dissolved with 0.01-0.1% by weight.
  • pH was adjusted (using 1M citric acid), green tea-derived glycoprotein was prepared as a microcapsule.
  • the sugar portion of the green tea-derived glycoprotein used here is neutral sugar (49.3 weight3 ⁇ 4>) + uronic acid (50.7 Weight percent) (the negative charge of uronic acid is thought to be complex with the positive charges on the surface of the ISP nanoparticles).
  • Examples 27 to 30 according to Table 9 correspond to samples in which 1M citric acid was slowly added while stirring the aqueous solution of ISP prepared in Example 23, and the pH was lowered to around 6, 5.5, 5, and 4.5, respectively.
  • an aqueous solution in the form of an o / w emulsion using ISP as a surfactant was used.
  • a primary o / w emulsion was prepared using a Homer mixer while a certain amount of oil was added to an ISP aqueous solution.
  • HMP aqueous solution (+ glycoprotein) is added to make a mixture, and the aqueous solution of citric acid is slowly added and the pH is lowered to around 5.
  • an HMP-coated capsule or emulsion is prepared having an oil core primarily emulsified with the ISP. It is possible to reduce the size of the emulsion particles by using a high pressure emulsifier to reduce the particle size to increase the stability of the emulsion.
  • Examples 31 to 34 according to Table 10 below are CEH as an ester oil, CSA as a triglyceride oil, DC200 100cs as a silicone oil, and L L14E as a hydrocarbon oil. It was prepared by homomixing (5 min, 7500 rpm) while adding oil.
  • HMP aqueous solution and green tea-derived glycoprotein to make a mixture, homomix (5 min, 5000rpm) to lower P H with citric acid and electrostatic bond on the surface of o / w emulsion particles firstly emulsified by ISP. It was prepared by fixing the glycoprotein and HMP using.
  • This process can increase the stability of emulsified particles using ISP.
  • Structural characteristics of the emulsion with multi-layer structure and negative charge by HMP on the outermost layer can greatly improve the stability of o / w emulsification using only ISP.
  • Examples 39 to 42 according to Table 12 below were fixed with csa, a triglyceride-based oil, and given a change in the oil / ISP / HMP content to observe the size change of the finally produced emulsion particles.
  • ISP was used as a primary emulsifier and the HMP and green tea-derived glycoproteins were coated on the surface of the emulsion particles thus formed to maintain higher HMP content than ISP content.
  • the method for preparing this was the same as in the 35 to 38 in the embodiment.
  • Example 43 according to Table 13 is the same as the preparation method of Examples 35 to 3S 15% of three kinds of triglyceride oils are first emulsified with ISP, and correspond to a sample coated with primary milk particles with HMP and glycoprotein.
  • Example 44 is a sample using an additional high-pressure emulsifier to reduce the particle size of the final emulsified particles of Example 43, the high-pressure emulsifier used a model name APV 2000, as soon as the preparation of Example 43 to 1000 bar using APV 2000 High pressure emulsification was turned 4 cycles.
  • Examples 45 to 47 according to Table 14 change the CSA content to 5%, 10%, and 15%, and the ratio of ISP and HMP is fixed, and Examples 48 to 50 are only kinds of triglyceride oils.
  • the oil content of 15% and ISP and HMP were fixed and the production conditions and methods were the same as those of Examples 35 to 38 and the composition was the same as below.
  • all of Examples 45 to 50 additionally used a high pressure emulsifier.
  • Examples 1 and 2 were prepared in a translucent aqueous solution.
  • Example 3 confirmed that the precipitate occurred in Example 4, while the semi-transparent sample.
  • Examples 5-7 the translucent aqueous solution was shown, but in Examples 8-10, the sample appearance changed in the form of an opaque emulsion. This is because the positive charge of HMP complexes with the negative charge of SC micelles and coats the surface as the pH is lowered.
  • HMP SC concentration ratio was changed from 9: 1 to 5: 5
  • the amount of complex formation increased, and thus samples with high turbidity were obtained.
  • Examples 12 and 13 had a slight color change according to the pH change, but the apparent difference could not be confirmed.
  • Examples 14 and 15 it was confirmed that the turbidity changes according to the pH change and a small amount of precipitate is formed. Therefore, it was confirmed that a specific complex was formed between green tea glycoprotein and SC micelle.
  • microcapsules of the present invention showed a similar appearance to general emulsion dogs, and no phenomenon such as precipitation / separation / creaming was observed.
  • the ISP aqueous solution can be confirmed to precipitate and precipitate while losing hydrophilicity as the pH is lowered from 7 to 4.5. This is because the negative charges in the ISP's positive and negative charges are combined with the hydrogen cations by the pH drop and lose their hydrophilicity as they lose their charges.
  • the ISP and HMP aqueous solutions are mixed in a certain ratio and the pH is lowered, The ISP is not precipitated and the positive charges of the ISP and the negative charges of the HMP form a subsequent composite, thereby stably dispersing microparticles as shown in FIG. 9.
  • microparticles were confirmed by optical microscopic observation of the solution containing the microcapsule prepared by each of the above examples.
  • Example 18 looking at the optical microscope image (Fig. 6) of Example 18, it can be seen that the emulsified particles have a particle size of several micrometers ⁇ 10 micrometers by the SC and has an o / w emulsion dog form. there was. Looking at the optical microscope image (FIG. 6) of Example 20, it can be seen that the particle size of the particles compared with Example 18 is slightly increased, it was also confirmed the multi-layer structure seen as a coating layer of HMP.
  • Green tea glycoprotein was confirmed to have a multi-layered structure.
  • the particle size of the resulting ion complex microcapsules changes according to the mixing ratio of the aqueous solution. From Example 24 to 26, it can be seen that the amount of ISP that can be considered to form the core side of the capsule is smaller, and the particle size of the microcapsule observed by the microscopic image is also reduced according to this tendency. Therefore, it was confirmed that the larger the amount of ISP, the larger particles are formed, and vice versa, smaller particles are formed.
  • the negative charges of ISP particles are combined with hydrogen cations and lose their hydrophilicity, these micrographs show that when HMP is present, the negative charges of HMP and positive charges of ISP are ion-bonded to coat the ISP, resulting in spherical structure. Eggplant was again confirmed that the water is dispersed in capsule form.
  • Example 35 The optical microscope image (Fig. 12) of the magnetic domain 38 shows that the emulsified particles of Examples 35 and 36 using triglyceride-based or ester-based oils used Example 37 and silicone-based or hydrocarbon-based oils. Remarkably smaller than 3 emulsified particles Confirmed. Therefore, in general, the smaller the emulsified particles can be considered to increase the overall stability of the emulsification system, so using emulsified particles (microcapsules) and emulsions containing triglyceride-based or ester-based oils It was confirmed that it was advantageous in terms of emulsion stability.
  • the optical microscope images (FIG. 13) of Examples 39 to 42 showed that the emulsion particles or emulsions having the composition of Example 40 were the most advantageous in terms of the degree of emulsification. .
  • the content of ISP covered by the experiments of Examples 39 to 42 was about 0.178% to 0.81% based on the final content, the HMP content was about 1.35 to 2.4%, and even lower than this to prepare a high content Emulsified particles that appear to be sufficiently stable are expected to be produced.
  • the higher the content of ISP / HMP is expected to be able to produce a more stable emulsion particles, but considering the final product and the formulation used, it is not recommended to raise the content at random.
  • the oil content is about 0 to 30% by weight
  • the ISP content is about 0.1 to 1% by weight
  • the HMP content is about 1 to 3% by weight based on the total weight of the final product or the formulation. It is considered to be preferable.
  • Example 44 using a high pressure emulsifier, the size of the emulsified particles is much smaller than that of Example 43 which is not. In the case of treatment, it was confirmed that the final emulsion stability increased. In addition, in the case of Example 44, it was possible to obtain a low viscosity ( ⁇ 100 cps) suspension emulsion content that is not easy to prepare a general emulsifier.
  • the size of the emulsified particles gradually increased as the content of the oil phase of the o / w emulsion was increased from 5% to 15% in Examples 45 to 47. The tendency to increase was confirmed.
  • Examples 48 to 50 even if the type of oil is changed in the case of the same series, when the content is maintained at about 15% it was confirmed that there is no significant effect on the size of the emulsion particles.
  • DPPH assay is an experiment to measure the scavenging ability of radicals by the sample to be tested after initiation of oxidation with an oxidizing agent called DPPH.
  • DPPH oxidizing agent
  • the HMP / SC / green tea glycoprotein multilayer microcapsule having the oil core prepared above was stabilized with coenzyme-Q10, which is one of cosmetic efficacy ingredients, and stabilized with coenzyme-Q10 stabilized in a general o / w formulation.
  • coenzyme-Q10 which is one of cosmetic efficacy ingredients
  • Example 52 was used to prepare a P / SC / green tea glycoprotein microcapsule having an oil core.
  • Example 51 was prepared by emulsifying 20% Q10 10% containing oil to 3% SC.
  • the Q10 / CSA / SC emulsion (Example 51) thus prepared was mixed 1: 1 with the HMP 3% aqueous solution of Example 1, and 0.1% of green tea glycoprotein was further dissolved therein.
  • the HMP / SC / green tea glycoprotein microcapsules having C10 oil dissolved in Q10 in the core were prepared by slowly adding 1M citric acid and titrating the pH from about 7 to about .5 with gentle stirring.
  • microcapsules stabilized Q10 1% prepared before (Example
  • Comparative Example 1 in which Q10 1% was stabilized in general o / w emulsification was prepared as follows.
  • the composition of the comparative example 1 is as follows.
  • a patch test of 12 subjects was applied to evaluate the skin safety of the composition of the present invention.
  • the patch was removed 28 hours after the patch was attached, the first reading was made 30 minutes later, and the second reading was made after 96 hours.
  • the skin was given a weight according to the degree of positive reaction of the skin, and the skin average reaction intensity was obtained to visually examine the skin irritation of the sample. The results are shown in the table below.
  • the cosmetic composition of the present invention can be determined to be superior to the safety for the skin.

Abstract

The present invention relates to a microcapsule containing a glycoprotein derived from plants. Also, the present invention provides a microcapsule having oxidation ability and which is easy to prepare. Through said antioxidant capacity, oxidation and decomposition of an internally contained material can be prevented. According to the microcapsule of the present invention, the active components, in a form which was previously stabilized by a synthetic polymer derived from crude oil or by a surfactant, can be stabilized by naturally derived components. Also, since an organic solvent is not additionally used during the capsule preparation process, the preparation is simple and eco-friendly.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
식물 유래 당단백질을 포함하는 마이크로캡술  Microcapsule containing plant-derived glycoprotein
【기술분야】  Technical Field
본 발명은 식물 유래 당단백질을 포함하는 마이크로캡슐에 관한 것이다. [배경기술]  The present invention relates to microcapsules comprising plant derived glycoproteins. [Background]
먹을 수 있는 바이오폴리머와 단백질 복합체로 구성된 콜로이드 안정화 시스 템 개발을 위해서 신규한 안정화 캡슐이 개발되고 있다. 식물 펩티드 오리진을 가 지는 당단백질들이 항산화력을 가지고 있다면 캡술에 담지한 물질들을 좀 더 안정 적으로 보호할 수 있을 것이다. 특히, 기존 석유 유래 합성고분자들을 대체하는 차 원에서 천연 유래 바이오폴리머들을 도입하여 안정화를 시도하고자 하는 .노력이 당 업계에서 이루어지고 있다.  New stabilized capsules are being developed to develop colloidal stabilization systems consisting of edible biopolymers and protein complexes. If the glycoproteins with plant peptide origin have antioxidant power, they will be able to more reliably protect the substances carried in the capsule. In particular, efforts have been made in the art to attempt stabilization by introducing biopolymers derived from nature from the dimension replacing existing petroleum-derived synthetic polymers.
본 발명자들은 다당류 및 단백질과 더불어 식물 당단백질을 포함하는 캡슐이 간단하고 편리하게 제조가능하며 항산화능을 가져서 담지한 물질의 안정성을 크게 증가시키는 것을 확인하고 본 발명을 완성하게 되었다.  The present inventors have completed the present invention by confirming that capsules containing plant glycoproteins together with polysaccharides and proteins can be prepared simply and conveniently, and have an antioxidant capacity, which greatly increases the stability of the supported material.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 항산화능을 가지고 제조가 용이한 마이크로캡슐을 제공하 는 것이다.  An object of the present invention is to provide a microcapsule having an antioxidant capacity and easy to manufacture.
【기술적 해결방법】  Technical Solution
상기 목적을 달성하기 위하여 본 발명은 총전하 (net charge)가 음전하인 다 당류; 4 내지 6의 등전점 (isoelectric point, PI)을 가지는 단백질;및 총전하 (net charge)가 음전하인 식물 유래 당단백질을 포함하는, 마이크로캡슐 및 상기 캡슐의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a polysaccharide having a total charge ( ne t charge) of a negative charge; Provided is a protein having an isoelectric point (PI) of 4 to 6; and a plant-derived glycoprotein having a net charge of negative charge.
【유리한 효과】  Advantageous Effects
본 발명의 마이크로캡슐은 종래 석유 유래 합성고분자나 계면활성제에 의해 안정화시켰던 유화제형의 활성 성분들을 천연 유래 성분들로 안정화시킬 수 있다는 장점이 있다. 또한 캡슐의 제조 과정에 있어서, 유기용매를 별도로 사용하지 않기 때문에 제조가 간편하고 보다 친환경적이다. 아울러, 본 발명의 마이크로캡술은 하 드한 마이크로캡술이 아닌, 하이드로겔과 같은 소프트한 마이크로캡슐로써 효능성 분의 안정화를 추구할 수 있고, 효능성분의 효과 발휘에 있어서 유용하다. 더불어, 본 발명의 마이크로캡슐은 pH에 따라 안정한 입자가 가역적으로 생성되고 와해되는 특징을 가져서 pH 민감성 전달체로 사용될 수 있다는 장점이 있다. 본 발명의 마이 크로캡슐은 또한 항산화능을 가져서, 내부 담지 물질의 산화 및 부패를 방지할 수 있다. The microcapsules of the present invention have the advantage of stabilizing active ingredients of an emulsifier type stabilized by conventional petroleum-derived synthetic polymers or surfactants with naturally occurring ingredients. In addition, in the manufacturing process of the capsule, since the organic solvent is not used separately, the manufacturing is simple and more environmentally friendly. In addition, the microcapsule of the present invention can pursue the stabilization of the potency as a soft microcapsules such as hydrogel, rather than a hard microcapsule, it is useful in showing the effect of the potent component. In addition, the microcapsules of the present invention are reversible generation and breakdown of stable particles according to pH It has the advantage that it can be used as a pH sensitive carrier. The microcapsules of the present invention also have antioxidant properties, and can prevent oxidation and decay of the internally supported materials.
【도면의 간단한 설명】  [Brief Description of Drawings]
<7> 도 1은 입도를 분석한 결과이다.  1 is a result of analyzing the particle size.
<8> 도 2는 표면전위를 분석한 결과이다.  2 shows the result of analyzing the surface potential.
<9> 도 3은 탁도 및 침전물 생성 정도를 비교하기 위하여 찍은 사진이다.  3 is a photograph taken to compare the degree of turbidity and precipitate formation.
<ιο> 도 4 내지 도 6은 입자 크기 및 균일성을 확인한 결과이다. (스케일바는 10 마이크로미터)  4 to 6 show results of checking particle size and uniformity. (Scale bar is 10 micrometers)
<π> 도 7은 식물 유래 당단백질의 항산화능을 확인한 결과이다.  <π> Figure 7 shows the results of confirming the antioxidant capacity of the plant-derived glycoprotein.
<12> 도 8은 ISP 나노 입자의 입도를 분석한 결과 (A) 및 ISP수용액의 사진 (B)이 다.  8 shows the results of analyzing the particle size of the ISP nanoparticles (A) and photograph (B) of the ISP aqueous solution.
<13> 도 9는 탁도 및 침전물 생성 정도를 비교하기 위하여 찍은 실시예 24 내지  9 shows Examples 24 to 15 taken to compare the degree of turbidity and precipitate formation.
26의 사진이다.  It is a photo of 26.
<14> 도 10은 탁도 및 침전물 생성 정도를 비교하기 위하여 찍은 실시예 23 및 27 내지 30의 사진이다.  10 is a photograph of Examples 23 and 27 to 30 taken to compare the degree of turbidity and precipitate generation.
<15> 도 11 내지 도 15는 실시예 24 내지 26 및 35 내지 50의 입자 크기 및 균일 성을 확인한 결과이다 (스케일바는 10마이크로미터).  11 to 15 show results of confirming particle sizes and uniformities of Examples 24 to 26 and 35 to 50 (scale bars are 10 micrometers).
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<16> 본 발명은 일 관점에서 총전하 (net charge)가 음전하인 다당류; 4 내지 6의 등전점 (isoelectric point, PI)을 가지는 단백질;및 총전하 (net charge)가 음전하 인 식물 유래 당단백질을 포함하는, 마이크로캡슐에 관한 것이다.  In one aspect, the present invention provides a polysaccharide having a net charge of negative charge; Proteins having an isoelectric point (PI) of 4 to 6; and microcapsules comprising plant derived glycoproteins whose net charge is negatively charged.
<17> 본 명세서에서 상기 '다당류'는 수용액 또는 수분의 존재 하에서 총전하  In the present specification, the 'polysaccharide' is a total charge in the presence of an aqueous solution or moisture.
(net charge)가 음전하인 다당류를 의미한다, 구체적으로, 본 명세서에서 상기 '다 당류'는 작용기에 음이온성 작용기, 예컨대, C00H를 가질 수 있으나 이에 제한되는 것은 아니며, 다당류 작용기의 전하들을 합산한 총전하가 음전하를 가진다면 제한 없이 적용가능하다. 구체적으로, 상기 다당류는 펙틴, 잔탄, 비트 펙틴 (beet pectin) , 카라기난 (carrageenan) , 키토산,' 아라비아 고무 (gum arabic) , 이눌린 (inulin), 메틸 셀를로오즈, 잔탄검, 아마씨 검 (flaxseed gum), 카파-카라기난 (κ— carrageenan) , 아이오타―카라기난 ( L—carrageenan) , 젤란검 (gellan gum) , 황산 덱 스트란 (extran sulfate), 갈락토만난 (galactomannans) , 알지네이트 등을 포함할 수 있지만 이에 제한되는 것은 아니다. <18> 본 명세서에서 상기 '단백질'은 pH 변화에 따라 표면 전위가 달라지는, 즉, 등전점을 가지는 단백질을 의미한다. 구체적으로 본 명세서의 상기 단백질은 pH 4 내지 6 사이에서 등전점을 가지는 단백질을 의미하는 것이고, 이러한 단백질들은 pH 7에서 음전하를 가지고 있다가 산성 조건으로 바뀜에 따라 양전하를 가질 수 있 다. 본 명세서에서 상기 '단백질'은 pH 4 내지 6 사이에서 양의 총전하를 가지게 되어 다당류 및 식물 유래 당단백질과 복합체 (complex)를 형성할 수 있고, 그에 따라 마이크로캡슬을 생성할 수 있다. 본 명세서에서 상기 '단백질'은 계면활성제 로 이용될 수 있다. 예컨대, 본 명세서에서 상기 단백질은 콩 단백질, 카제인 (casein), 오브알부민 (ovalbumin), 락토글로불린 (lactoglobulin) 등을 포함할 수 있지만, 이에 제한되는 것은 아니다. (net charge) means a polysaccharide having a negative charge, specifically, the 'polysaccharide' in the present specification may have an anionic functional group, such as C00H, but is not limited to the functional group, the charges of the polysaccharide functional group If the total charge has a negative charge, it is applicable without limitation. Specifically, the polysaccharide is pectin, xanthan, bit pectin (beet pectin), carrageenan (carrageenan), chitosan, acacia (gum arabic), inulin (inulin), Oz, xanthan gum, methyl selreul, flaxseed gum (flaxseed gum ), Kappa-carrageenan (κ— carrageenan), iota-carrageenan (L—carrageenan), gellan gum, dextran sulfate, galactomannans, alginate, and the like. But it is not limited thereto. In the present specification, the 'protein' refers to a protein having a surface potential that is changed according to pH change, that is, having an isoelectric point. Specifically, the protein of the present specification means a protein having an isoelectric point between pH 4 and 6, and these proteins may have a positive charge at pH 7 and then change to an acidic condition. In the present specification, the 'protein' may have a positive total charge between pH 4 and 6 to form a complex with polysaccharides and plant-derived glycoproteins, thereby producing a microcapsule. In the present specification, the 'protein' may be used as a surfactant. For example, the protein herein may include, but is not limited to, soy protein, casein, ovalbumin, lactoglobulin, and the like.
<19> 본 명세서에서 단백질의 등전점은 4 이상, 4.2 이상, 4.6 이상, 4.8 이상 또 는 4.9 이상 일 수 있으며 6 이하, 5.8 이하, 5.6 이하, 5.4 이하, 5.2 이하 또는 5.1 이하 일 수 있다.  In the present specification, the isoelectric point of the protein may be 4 or more, 4.2 or more, 4.6 or more, 4.8 or more or 4.9 or more and 6 or less, 5.8 or less, 5.6 or less, 5.4 or less, 5.2 or less, or 5.1 or less.
<20> 본 명세서에서 콩 단백질은 대두 단백질을 포함하는 것이나 이에 제한되는 것이 아니라콩류로부터 얻을 수 있는 단백질을 모두 포함하는 것일 수 있다.  In this specification, soy protein is not limited to include soy protein, but may include all proteins that can be obtained from beans.
<2i> 본 명세서에서 콩은 대두 (67yc//2e max (L.) Merr.), 흰강낭콩 (/¾as ?/ s multif lorus Wi 1 Id. for. a I bus Bailey), 해녀콩 (CaAS s/ s I i neat a (Thunberg) DC) , 비둘기콩 (pigeon pea, Cajanus cajan (L. ) Mi lisp), ^r \^r{Dipteryx odora t aiAubl .) Willd), 큰여우콩 0 y cA s/a acuminati folia Makino) , 캐롭콩 ( Ceratonia siliqua (L.) Taub.), 제비콩 ( aZ?/ b purpureus (L. ) Sweet), 누에콩 ( Vicia faba L. ) , 이집트콩 (C/ce arietinu L. ) , ° -^-^-{Rhynchosai volubi lis Loureira) , ¾ °1 ( Rhynchos ia nulubilis) , Glycine soja Sieb. et<2i> In the present specification, soybean is a soybean (67yc / / 2e max (L.) Merr.), White kidney beans (/ ¾as? / S multif lorus Wi 1 Id. For.a I bus Bailey), Haenyeo beans (CaAS s / s I i neat a (Thunberg) DC), Pigeon pea, Cajanus cajan (L.) Mi lisp), ^ r \ ^ r (Dipteryx odora t aAAubl.) Willd), Big Fox 0 y cA s / a acuminati folia Makino, Carob beans (Ceratonia siliqua (L.) Taub.), Swallow beans (aZ? / b purpureus (L.) Sweet), Silkworm beans (Vicia faba L.), Egyptian beans (C / ce arietinu L.), °-^-^-(Rhynchosai volubi lis Loureira), ¾ ° 1 (Rhynchos ia nulubilis), Glycine soja Sieb. et
Zucc) , 스위트피. Oa Ajr s odoratus Linne) , 1] ( Amphicarpaea bracteata subsp. edgeworthii (Benth. ) H.Ohashi ) , 살갈퀴 ( 7c/a angustifol ia Linne var. segetilis (Thui 11.) K. Koch.), ^ ^ Lathurus vaniotii Leveille.), 비진도콩 {Dumas i a t rune at a Sieb. et Zucc.), -^-^^^^-{Phaseolus multif lous Wild.), 벌 ^¾"°1 {Lotus corniculatus Linne var. japonicus Rege 1 ) , 백편두 0¾// ¾c»s lab lab L. ) , ul "^"Sfl ^^-{Amphicarpaea bracteata) , 만년콩 0¾cAras 3 japonica Hook f i 1. ex Regel . ) , 리 ] "콩 0¾as«?/i/s lunatus L. ) , 렌즈콩 culinaris Medik) , ^^{Arachis hypogaea L. ) , ^-^\{Glycine max Merrill), -{Glycine soja Sieb. et Zucc), 도두 Canava a gladiata (Jacq.) DC), 덩굴강낭콩 (/¾aseo/"s vulgaris) , 미선콩 (^ σ//7ί/5 luteus) , 그린콩 radiatus L. var. aurea) , 검정콩 (67yc/?e max (L.) Merr.), 및 강낭콩 0¾aseo/ s vulgaris L.)으로 이루어진 군으로부터 선택된 하나 이상인 것일 수 있다. Zucc), Sweet Pe. Oa Ajr s odoratus Linne), 1] (Amphicarpaea bracteata subsp.edgeworthii (Benth.) H.Ohashi), Rake (7c / a angustifol ia Linne var. Segetilis (Thui 11.) K. Koch.), ^ ^ Lathurus vaniotii Leveille.), Bijindo bean (Dumas iat rune at a Sieb. et Zucc.),-^-^^^^-(Phaseolus multif lous Wild.), Bee ^ ¾ "° 1 (Lotus corniculatus Linne var. japonicus Rege 1), Baekdu 0¾ // ¾c» s lab lab L. ), u l " ^ " Sfl ^^-(Amphicarpaea bracteata), fountain bean 0¾cAras 3 japonica Hook fi 1. ex Regel.), Lee] "bean 0¾as«? / i / s lunatus L.), lentil culinaris Medik ), ^^ (Arachis hypogaea L.), ^-^ \ (Glycine max Merrill),-(Glycine soja Sieb. et Zucc), Dried Canava a gladiata (Jacq.) DC), Honeysuckle Beans (/ ¾aseo / "s vulgaris), Beans (^ σ // 7ί / 5 luteus), Green Bean radiatus L. var. aurea), Black beans (67yc /? E max (L.) Merr.), And kidney beans 0¾aseo / s vulgaris L.).
<22> 본 명세서에서 콩 단백질 또는 대두 단백질은 분리대두단백 (isolated soy protein, ISP)일 수 있다.본 명세서에서 상기 '식물 유래 당단백질'은 역시 수용액 또는 수분의 존재 하에서 총전하 (net charge)가 음전하인 당단백질을 의미한다. 구체적으로, 본 명세서에서 상기 '식물 유래 당단백질'은 당 또는 단백질의 작용기 에 음이온성 작용기, 예컨대, C00H를 가질 수 있으나 이에 제한되는 것은 아니며, 상기 작용기의 전하들을 합산한 총전하가 음전하를 가진다면 제한 없이 적용가능하 다. 구체적으로, 상기 식물 유래 당^백질은 버지니아 유래 당단백질, 녹차 유래 당단백질, 인삼 유래 당단백질, 솔잎 유래 당단백질, 로디올라 유래 당단백질 및 아비스 유래 당단백질 등을 포함할.수 있지만 이에 제한되는 것은 아니다. 본 명세 서의 '식물 유래 당단백질'은 또한 항산화능을 가지므로, 마이크로캡슐에 담지한 물질의 산화를 방지할 수 있다. The soy protein or soy protein in the present specification may be an isolated soy protein (ISP). In the present specification, the 'plant-derived glycoprotein' is also a net charge in the presence of an aqueous solution or water. Means negatively charged glycoprotein. Specifically, in the present specification, the 'plant-derived glycoprotein' may have an anionic functional group, for example, C00H, to the functional group of the sugar or protein, but is not limited thereto, and the total charge sum of the charges of the functional group has a negative charge. If so, it can be applied without limitation. Specifically, the plant-derived glycoprotein may include, but is not limited to, Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Abis-derived glycoprotein. It is not. The 'plant-derived glycoprotein' of this specification also has an antioxidant ability, thereby preventing the oxidation of the material carried in the microcapsules.
<23> 본 발명의 일 관점인 마이크로캡슐은 산성 조건에서 양전하를 가지는 단백질 과 음전하를 가지는 당단백질 및 다당류와와 결합으로 안정하게 제조될 수 있다, • 본 발명의 일 관점인 마이크로캡슐은 식물 유래 천연성분인 당단백질이 계면활성제 역할을 수행하여 자극이 거의 없을 뿐 아니라, 이의 제조를 위하여 별도의 유기용 매를 필요로 하지 않으므로 제조가 쉽고 친환경적이다. 아울러, 본 발명의 일 관점 인 마이크로캡슐은 pH에 따라 안정한 입자가 가역적으로 생성되고 와해되는 특징을 가져서 pH 민감성 전달체로 사용될 수 있다는 장점이 있다.  Microcapsules of one aspect of the present invention can be stably prepared in combination with a positively charged protein, a negatively charged glycoprotein and a polysaccharide under acidic conditions. Glycoprotein as a natural component plays a role of a surfactant, so there is little irritation, and since it does not require a separate organic solvent for its preparation, it is easy to manufacture and environmentally friendly. In addition, the microcapsules, which is an aspect of the present invention, have the advantage that particles which are stable according to pH are reversibly generated and decomposed, and thus can be used as a pH sensitive carrier.
<24> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 식물 유래 당단백질은 버 지니아 유래 당단백질, 녹차 유래 당단백질, 인삼 유래 당단백질, 솔잎 유래 당단 백질, 로디올라 유래 당단백질 및 아비스 유래 당단백질로 구성된 군에서 선택되는 하나 이상을 포함한다. 상기 당단백질은 항산화능을 가져서 캡슐 내부에 담지한 물 질의 산화 및 부패를 방지할 뿐 아니라, 천연 유래 물질로서 자극이 적다.  In the microcapsules of one aspect of the present invention, the plant-derived glycoprotein is Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Avis-derived sugar. At least one selected from the group consisting of proteins. The glycoprotein has an antioxidant ability to prevent oxidation and decay of the water contained in the capsule, as well as less irritation as a natural derived material.
<25> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 식물 유래 당단백질은 카 르복실산 (carboxylic acid) 작용기를 가질 수 있다. 상기 식물 유래 당단백질은 당또는 단백질에 카르복실산 (carboxylic acid) 작용기를 가질 수 있다.  In the microcapsules of one aspect of the present invention, the plant-derived glycoprotein may have a carboxylic acid functional group. The plant-derived glycoprotein may have a carboxylic acid functional group on a sugar or protein.
<26> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 다당류는 펙틴, 잔탄, 비 트 펙틴 (beet pectin), 카라기난 (carrageenan), 키토산, 아라비아 고무 (gum arabic), 이눌린 (inulin), 메틸 셀를로오즈, 잔탄검, 아마씨 검 (flaxseed gum), 카 파—^ 1"라'기난 ( κ—carrageenan) , 0 0]오타—카라기난 ( ι -carrageenan) , 젤란검 (gellan gum), 황산 덱스트란 (extran sulfate), 갈락토만난 (galactomannans) , 및 알지네이 트로 이루어진 군에서 선택되는 하나 이상을 포함한다. 구체적으로, 상기 펙틴은 고메록시펙틴 (High Methoxy Pectin, HME)일 수 있다. 고 또는 저메록시펙틴은 주 쇄 (maun chain)의 카르복실 기가 얼마나 메틸 에스터 (methyl ester) 기로 치환되 어 있는지에 의하여 결정된다. 본 명세서에서 상기 고메특시펙틴 (High Methoxy Pectin, HME)은 50% 이상의 카르복실 기가 메틸 에스터 (methyl ester) 기로 치환 되어 있는 펙틴을 의미한다. 구체적으로, 상기 고메톡시펙틴 (High Methoxy Pectin, HME)은 69 내지 74%의 카르복실 기가 메틸 에스터 (methyl ester) 기로 치 환되어 있는 펙틴을 의미할 수 있다. In the microcapsules of one aspect of the present invention, the polysaccharide comprises pectin, xanthan, beet pectin, carrageenan, chitosan, gum arabic, inulin, and methyl cells. Rhodes, xanthan gum, flaxseed gum, kappa— ^ 1 "la ' κ-carrageenan, 0 0 ] Ota-carrageenan (ι -carrageenan), gellan gum (gellan) gum, dextran sulfate, galactomannans, and alginate. Specifically, the pectin may be high methoxy pectin (HME). The high or low hydroxypectin is determined by how much methyl carboxyl groups are substituted by the carboxyl groups in the main chain. In the present specification, the high methoxy pectin (HME) refers to a pectin in which at least 50% of carboxyl groups are substituted with methyl ester groups. Specifically, the high methoxypectin (HME) may refer to pectin in which carboxyl groups of 69 to 74% are substituted with methyl ester groups.
<27> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 단백질은 소이 단백질  In a microcapsule which is an aspect of the present invention, the protein is a soy protein.
(soy protein), 카제인 (casein), 오브알부민 (ovalbumin) 및 락토글로불린 (lactoglobulin)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.  (soy protein), casein, ovalbumin and lactoglobulin may be one or more selected from the group consisting of.
<28> 본 발명의 일 관점인 마이크로캠슐에 있어서, 상기 다당류:단백질의 중량비 는 1~9:1일 수 있다. 상기 중량비로 마이크로캡슐을 제조하는 경우, 보다 더 균일 한 입자크기를 가지는 보다 더 많은 수의 마이크로캡슐을 제조할 수 있다. 상기와 같은 관점에서, 상기 다당류:단백질의 중량비는 1~8:1, 1~7: 1, 1~6:1, 1~5:1, 1-4:1, 1-3:1또는 1~2:1 일 수 있고, 구체적으로 1~2.3:1일 수 있다.  In the microcapsule which is an aspect of the present invention, the weight ratio of the polysaccharide to the protein may be 1 to 9: 1. When preparing the microcapsules in the weight ratio, it is possible to produce a larger number of microcapsules having a more uniform particle size. In view of the above, the weight ratio of the polysaccharide: protein is from 1 to 8: 1, from 1 to 7: 1, from 1 to 6: 1, from 1 to 5: 1, 1 to 4: 1, 1 to 1 to 1 or 1 ˜2: 1, specifically 1-2.3: 1.
<29> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 다당류:단백질:당단백질 의 중량비는 1~9: 1:0.01-0.99일 수 있다. 상기 증량비로 마이크로캡술을 제조하는 경우, 보다 더 균일한 입자크기를 가지는 보다 더 많은 수의 마이크로캡슐을 제조 할 수 있고, 마이크로캡술의 항산화능이 극대화될 수 있다. 상기와 같은 관점에서 상기 다당류:단백질:당단백질의 중량비는 1-7:1:0.01 0.9, 1~5:1:0.01~0.8 또는 1~3:1:0.01~0.7일 수 있다.. In the microcapsules according to the aspect of the present invention, the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 9: 1: 0.01-0.99. When the microcapsule is produced at the increase ratio, a larger number of microcapsules having a more uniform particle size may be prepared, and the antioxidant capacity of the microcapsule may be maximized. In view of the above, the weight ratio of the polysaccharide: protein: sugar protein may be 1-7: 1: 0.01 0.9, 1-5: 1: 0.01-0.8, or 1-3: 1: 0.01-0.7. .
<30> 본 발명의 일 관점인 마이크로캡슐에 있어서, 상기 마이크로캡슐은 피막 내 부에 지용성 물질을 포함할 수 있다. 본 발명의 일 관점인 마이크로캡슐은 항산화 능을 가져서, 내부에 담지된 지용성 물질의 산화 및 부패를 방지할 수 있는 장점이 있다. In the microcapsules of one aspect of the present invention, the microcapsules may include a fat-soluble substance in the coating. Microcapsules, which are aspects of the present invention, have an antioxidant capability, and have an advantage of preventing oxidation and decay of the fat-soluble substance loaded therein.
<31> 본 명세서에서 상기 '지용성 물질'은 수용성 물질과 섞이지 못하고 분리되어 층을 이루어 존재하는 물질을 포함하는 것이고, 지용성을 가지는 추출물 또는 화합 물을 포함할 수 있다. 상기 지용성 물질은 유효성분 또는 활성성분을 가지고 목적 하는 효과를 낼 수 있는 물질을 의미할 수 있다. 화장품, 약품 또는 건강식품의 제 조에 있어서 지용성을 가지는 유효성분을 본 캡슐에 담지하여 제조, 유통 및 판매 하는 경우, 산화를 방지할 수 있고, 식물 유래 당단백질을 포함하여 부작용이 적을 것이다. 구체적으로 본 명세서에서 상기 '지용성 물질'은 에스터계 오일, 트리글리 세라이드계 오일, 실리콘계 오일, 또는 하이드로카본계 오일에 용해될 수 있는 유 용성 활성성분이라면 제한이 없으며, 터페노이드 계열, 플라보노이드 계열의 효능 성분 역시 포함한다. In the present specification, the 'lipophilic material' includes a material which is not mixed with the water-soluble material and is separated and exists as a layer, and may include an extract or a compound having a fat-soluble property. The fat-soluble substance may mean a substance capable of producing a desired effect with an active ingredient or an active ingredient. In the manufacture of cosmetics, medicines or health foods, the active ingredients having fat-soluble properties are supported, manufactured, distributed and sold. If you do, you will be able to prevent oxidation and will have fewer side effects, including plant-derived glycoproteins. Specifically, the 'fat-soluble substance' in the present specification is not limited as long as it is a soluble active ingredient that can be dissolved in ester-based oil, triglyceride-based oil, silicone-based oil, or hydrocarbon-based oil, the efficacy of terpenoid-based, flavonoid-based It also contains ingredients.
<32> 본 발명의 일 관점인 마이크로캡술에 있어서, 상기 지용성 물질은 코엔자임  In microcapsule which is an aspect of the present invention, the fat-soluble substance is coenzyme
Q10, 카르노직산 (Carnosic acid), 오메가 -3 및 베타카로틴으로 구성된 군에서 선 택되는 하나 이상일 수 있다.  It may be one or more selected from the group consisting of Q10, Carnosic acid, omega-3 and beta carotene.
<33> 본 발명은 다른 관점에서 ,  In another aspect, the present invention,
<34> (a) 지용성물질 및 물을 흔합하여 오일 드롭 (oil drop)을 제조하는 단계; (A) mixing an oil soluble substance and water to prepare an oil drop;
<35> (b) 상기 오일 드롭과 (B) the oil drop and
<36> 총전하 (net charge)가 음전하인 다당류;  Polysaccharides with a net charge of negative charge;
<37> 4내지 6의 등전점 (PI)을 가지는 단백질;및  A protein having an isoelectric point (PI) of 4 to 6; and
<38> 총전하 (net charge)가 음전하인 식물 유래 당단백질을 pH 4 내지 pH 6에서 반응시키는 단계를 포함하는, 마이크로캡술의 제조방법에 관한 것이다.  The present invention relates to a method for preparing microcapsule, comprising reacting a plant-derived glycoprotein having a net charge with a negative charge at pH 4 to pH 6.
<39> 본 발명의 일 관점인 방법에 있어서, 상기 (a) 및 (b) 단계는 pH 가 6 내지  In one aspect of the invention, the step (a) and (b) has a pH of 6 to
7인 상태에서 수행되는 것일 수 있다.  It may be performed in the state of seven.
<40> 본 발명의 일 관점인 방법에 있어서, 상기 방법은  In the method which is one aspect of this invention, the said method is
<4i> (c) 2차 유화한 에멀전을 pH 4 내자 5.5로 낮추어 마이크로캡슬을 형성하는 단계를 더 포함할 수 있다.  (C) lowering the second emulsified emulsion to pH 4 to 5.5 to form a microcapsule.
<42> 본 발명의 일 관점에 있어서, (c) 단계의 pH는 pH 4.2 내지 5.5, pH 4.4 내 지 5.5, pH 4.5 내지 5.5, pH 4.6 내지 5.4, pH 4.7 내지 5.3, pH 4.8 내지 5.2 또 는 pH 4.9 내지 5.1일 수 있다. 바람직하게 (c) 단계의 pH는 5 부근인 것이며, 구 체적으로 pH 4.8 내지 5.2일 수 있다. In one aspect of the invention, the pH of step (c) is pH 4.2 to 5.5, pH 4.4 to 5.5, pH 4.5 to 5.5, pH 4.6 to 5.4, pH 4.7 to 5.3, pH 4.8 to 5.2 or pH 4.9 to 5.1. Preferably the pH of step (c) is around 5, specifically, the pH may be 4.8 to 5.2.
<43> 본 명세서에서 상기 '수용성 물질'은 지용성 물질과 완전히 섞이어 일체를 이루지 못하고 층을 달리하여 존재하는 물질을 포함할 수 있다. 구체적으로, 본 명 세서의 수용성 물질은 물을 포함할 수 있으나 이에 제한되는 것은 아니다.  In the present specification, the 'water-soluble material' may include a material that is not completely integrated with the fat-soluble material and is present in different layers. Specifically, the water-soluble substance of the present specification may include water, but is not limited thereto.
<44> 본 명세서에서 상기 '오일 드롭 (oil drop)'은 지용성 물질이 수용성 물질 사이사이에서 드롭, 즉 방울을 이루어 존재하는 것을 의미하는 것이다. 본 발명의 일 관점인 마이크로캡슐은 상기 오일 드롭을 단백질이 계면활성제로써 감싸주어, 오일 드롭의 내부 환경을 보다 완벽한 무수 환경으로 만들어 줄 수 있고, 이에 대 하여 점도가 높은 펙틴과 같은 다당류가 투입되어 결합을 형성함으로써 수용성 성 분의 함입을 더욱 강력하게 방지할 수 있다. In the present specification, the 'oil drop' means that the oil-soluble substance is present as a drop, that is, a drop between the water-soluble substances. Microcapsules, which is an aspect of the present invention, may surround the oil drop with a surfactant to make the oil drop's internal environment more completely anhydrous, and a polysaccharide such as high viscosity pectin is added thereto. Water-soluble by forming bonds Intrusion of powder can be prevented more strongly.
<45> 본 발명의 일 관점인 마이크로캡슐의 제조방법에 있어서, 상기 제조방법의 In the manufacturing method of a microcapsule which is an aspect of the present invention,
(b) 단계는 상기 오일 드롭과 단백질을 반웅시킨 후, 다당류 및 식물 유래 당단백 질을 반응시키는 단계를 포함할 수 있다. 상기 제조방법에서 오일드롭과 단백질을 먼저 반웅시켜, 보다 강력한 무수 환경을 만들어 줄 수 있다는 장점이 있다, <46> 본 발명의 일 관점인 마이크로캡슐의 제조방법에 있어서, 상기 다당류 및 식 물 유래 당단백질을 반웅시키는 단계는 식물 유래 당단백질을 먼저 반웅시킨 후, 다당류를 반웅시킬 수 있다. 식물 유래 당단백질을 먼저 반응시키는 경우, 식물 유 래 당단백질이 담지한 물질과 보다 더 가깝게 존재하게 되어 담지한 물질에 대한 항산화능을 극대화시킬 수 있으며, 총전하가 음전하인 다당류가 외부에 존재하게 되어 음전하를 가지는 표면을 가지는 입자의 특성을 가지므로 입자들 사이의 합일 등을 방지할 수 있어 입자의 안정도를 높이는 장점이 있다.  Step (b) may include reacting the polysaccharide and the plant-derived glycoprotein after reacting the oil drop with the protein. In the preparation method, the oil drop and the protein are first reacted to provide a more powerful anhydrous environment. In the manufacturing method of the microcapsules, which is an aspect of the present invention, the polysaccharide and plant-derived sugar The step of reacting the protein may first react the plant-derived glycoprotein and then react the polysaccharide. When the plant-derived glycoprotein is reacted first, the plant-derived glycoprotein is present closer to the supported material, thereby maximizing the antioxidant capacity of the supported material, and the polysaccharide with the negative charge is present externally. Because of the characteristics of the particles having a surface having a negative charge it is possible to prevent the coalescence between the particles, etc. has the advantage of increasing the stability of the particles.
<47> 본 발명의 일 관점인 마이크로캡슐의 제조방법에 있어서, 상기 (a) 단계의 지용성 물질은 지용성 물질과 오일의 흔합물을 포함할 수 있다, 본 명세서에서 상 기 오일은 실리콘 계열, 하이드로카본 계열, 트리글리세라이드 계열 또는 에스터 계열 오일을 포함할 수 있으며, 활성성분인 지용성물질을 고함량으로 녹일 수 있는 물질이라면 제한없이 사용 가능하다. 본 발명의 일 관점인 마이크로캡슐의 제조방 법에 있어서, 상기 식물 유래 당단백질은 버지니아 유래 당단백질, 녹차 유래 당단 백질, 인삼 유래 당단백질, 솔잎 유래 당단백질, 로디을라 유래 당단백질 및 아비 스 유래 당단백질로 이루어진 군에서 선택되는 하나 이상을 포함한다.  In the method of manufacturing a microcapsule, which is an aspect of the present invention, the fat-soluble substance of step (a) may include a mixture of oil-soluble substance and oil. It may include carbon-based, triglyceride-based or ester-based oils, and any substance capable of dissolving the active ingredient fat-soluble substance to a high content can be used without limitation. In the method of producing a microcapsule, which is an aspect of the present invention, the plant-derived glycoprotein is Virginia-derived glycoprotein, green tea-derived glycoprotein, ginseng-derived glycoprotein, pine needle-derived glycoprotein, Rhodiola-derived glycoprotein, and Abis-derived. At least one selected from the group consisting of glycoproteins.
<48> 본 발명의 일 관점인 마이크로캡술의 제조방법에 있어서, 상기 식물 유래 당 단백질은 카르복실산 (carboxylic acid) 작용기를 포함할 수 있다.  In the method of preparing microcapsule, which is an aspect of the present invention, the plant-derived sugar protein may include a carboxylic acid functional group.
<49> 본 발명의 일 관점인 마이크로캡술의 제조방법에 있어서, 상기 다당류는 펙 틴, 잔탄, 비트 펙틴 (beet pectin), 카라기난 (carrageenan), 키토산, 아라비아 고 무 (gum arabic), 이눌린 (inulin), 메틸 샐를로오즈, 잔탄검, 아마씨 검 (flaxseed gum) , ^!"파ᅳ^ 1"라기난 ( κᅳ carrageenan) , ό1"01오타ᅳ가라기난 ( ι_ carrageenan) , 젤란 검 (gel lan gum) , 황산 덱스트란 (extran sulfate) , 갈락토만난 (galactomannans), 및 알지네이트로 이루어진 군에서 선택되는 하나 이상을 포함한다. In the method for preparing microcapsule, which is an aspect of the present invention, the polysaccharide is pectin, xanthan, beet pectin, carrageenan, chitosan, gum arabic, inulin ), Methyl salorose, xanthan gum, flaxseed gum, ^! " ᅳ ^ 1" raginan (κ ᅳ carrageenan), ό 1 " 0 1 ota_garrageenan (ι_ carrageenan), gellan gum (gel lan gum), dextran sulfate, galactomannans, and alginate.
<50> 본 발명의 일 관점인 마이크로캡슐의 제조방법에 있어서, 상기 단백질은 소 이 단백질 (soy protein), 카제인 (casein), 오브알부민 (ovalbumin) 및 락토글로불 린 (lactoglobulin)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.  In the method of manufacturing a microcapsule which is an aspect of the present invention, the protein is a group consisting of soy protein, casein, ovalbumin, and lactoglobulin. It may be one or more selected from.
<51> 본 발명의 일 관점인 마이크로캡술의 제조방법에 있어서, 상기 다당류:단백 질의 증량비는 9~1:1일 수 있다. 상기 중량비로 마이크로캡슐을 제조하는 경우, 보 다 더 균일한 입자크기를 가지는 보다 더 많은 수의 마이크로¾슐을 제조할 수 있 다. 상기와 같은 관점에서, 상기 다당류:단백질의 중량비는 1~8:1, 1-7: 1, 1~6:1, 1~5:1, 1-4: 1, 1-3:1 또는 1~2:1 일 수 있고, 구체적으로 1~2.3:1일 수 있다. In the manufacturing method of microcapsule which is one aspect of this invention, the said polysaccharide: Protein The increase in quality can range from 9 to 1: 1. When preparing the microcapsules in the weight ratio, it is possible to produce a larger number of microcapsules having a more uniform particle size. In view of the above, the weight ratio of the polysaccharide: protein is from 1 to 8: 1, 1-7: 1, 1 to 6: 1, 1 to 5: 1, 1-4: 1, 1-3: 1 or 1 ˜2: 1, specifically 1-2.3: 1.
<52> 본 발명의 일 관점인 마이크로캡슐의 제조방법에 있어서, 상기 다당류:단백 질:당단백질의 중량비는 1~9:1:0.01~0.99일 수 있다. 상기 중량비로 마이크로캡슐 을 제조하는 경우, 보다 더 균일한 입자크기를 가지는 보다 더 많은 수의 마이크로 캡슐을 제조할 수 있고, 마이크로캡슐의 항산화능이 극대확될 수 있다. 상기와 같 은 관점에서 상기 다당류:단백질:당단백질의 중량비는 1~7:1:0.01-0.9, 1~5:1:0.01~0.8 또는 1~3:1:0.01~0.7일 수 있다.  In the method of preparing a microcapsule, which is an aspect of the present invention, the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 9: 1: 0.01 to 0.99. When preparing the microcapsules by the weight ratio, it is possible to produce a larger number of microcapsules having a more uniform particle size, the anti-oxidation capacity of the microcapsules can be maximized. In view of the above, the weight ratio of the polysaccharide: protein: sugar protein may be 1 to 7: 1: 0.01-0.9, 1 to 5: 1: 0.01 to 0.8, or 1 to 3: 1: 0.01 to 0.7.
<53> 본 발명은 일 관점에 있어서, 본 명세서에 따른 마이크로캡슐 또는 마이크로 캡슐의 제조방법에 따라 제조된 마이크로캡술을 포함하는 에멀전 (emulsion) 일 수 있다.  In one aspect, the present invention may be an emulsion including microcapsules prepared according to the method for preparing microcapsules or microcapsules according to the present specification.
<54> 본 발명의 일 관점에 있어서, 단백질은 마이크로캡슬을 포함하는 최종 조성 물의 총 중량을 기초로 하여 0.1 내지 1중량%일 수 있다. 또한 본 발명의 일 관점 에 있어서, 단백질은 마이크로캡술을 포함하는 최종 조성물의 총 중량을 기초로 하 여 0.01 내지 5중량 %, 0.05 내지 4.5중량%, 0.1내지 4중량 %, 0.2 내지 3.5 중량 ¾>, 0.3 내지 3중량 %, 0.4 내지 2.5중량%, 0.5 내지 2중량 %, 0.6 내지 1.5중량 % 또는 0.7 내지 1중량 %일 수 있다.  In one aspect of the invention, the protein may be 0.1 to 1% by weight based on the total weight of the final composition comprising the microcapsule. Also in one aspect of the invention, the protein is 0.01 to 5% by weight, 0.05 to 4.5% by weight, 0.1 to 4% by weight, 0.2 to 3.5% by weight based on the total weight of the final composition comprising microcapsule , 0.3 to 3% by weight, 0.4 to 2.5% by weight, 0.5 to 2% by weight, 0.6 to 1.5% by weight or 0.7 to 1% by weight.
<55> 본 발명의 일 관점에 있어서, 다당류는 마이크로캡슐을 포함하는 최종 조성 물의 총 중량을 기초로 하여 1 내지 3중량 %일 수 있다. 또한, 본 발명의 일 관점에 있어서, 다당류는 마이크로캡술을 포함하는 최종 조성물의 총 중량을 기초로 하여 0.1 내지 5중량 0.5 내지 4중량 %, 1 내지 3.5중량¾>, 1.3 내지 3중량 %, 1.6 내지 2.7중량%또는 2 내지 2.4중량%일 수 있다.  In one aspect of the invention, the polysaccharide may be from 1 to 3% by weight based on the total weight of the final composition containing the microcapsules. In addition, in one aspect of the present invention, the polysaccharide is 0.1 to 5% by weight 0.5 to 4% by weight, 1 to 3.5% by weight, 1.3 to 3% by weight, 1.6 based on the total weight of the final composition comprising microcapsule To 2.7 weight percent or 2 to 2.4 weight percent.
<56> 본 발명의 일 관점에 있어서, 지용성 물질은 마이크로캡술을 포함하는 최종 In one aspect of the invention, the fat-soluble substance comprises a final microcapsule
' 조성물의 총 중량을 기초로 하여 0.01 내지 30중량 %일 수 있다. 또한 본 발명의 일 관점에 있어서, 지용성 물질은 마이크로캡슐을 포함하는' 최종 조성물의 총 중량을 기초로 하여 0.001 내지 30중량 %, 1 내지 25중량 %, 10 내지 20중량 ¾>, 12 내지 18증 량%또는 14 내지 16중량%일 수 있다. ' Can be from 0.01 to 30% by weight based on the total weight of the composition. In addition, according to one aspect of the present invention, fat-soluble substance, 0.001 to 30% by weight based on the total weight of the final composition, 1 to 25% by weight, 10 to 20 parts by weight ¾ containing microcapsules>, 12 to 18 increases It may be an amount% or 14 to 16% by weight.
<57> 본 발명의 또 다른 일 관점은 마이크로캡술을 제조하는 방법으로서, 상기 방 법은  Another aspect of the present invention is a method of manufacturing microcapsule, the method
<58> i) 지용성 물질을 4 내지 6의 등전점 (PI)을 가지는 단백질과 1차 유화를 하 여 1차 oAv 에멀전을 제조하는 단계; 및 I) Performing primary emulsification with a protein having an isoelectric point (PI) of 4 to 6 Preparing a primary oAv emulsion; And
<59> ii) 상기 제조된 1차 에멀전에 총전하 (net charge)가 음전하인 다당류 및 총전하 (net charge)가 음전하인 식물 유래 당단백질을 첨가하여 2차 유화 하는 단 계; Ii) adding a polysaccharide having a net charge of negative charge and a plant-derived glycoprotein having a net charge of negative charge in the prepared primary emulsion to secondary emulsification;
<60> 를 포함하는 방법에 관한 것이다.  It relates to a method comprising a.
<61> 본 발명의 일 관점인 방법에 있어서, 상기 방법은 상온에서 수행되는 것일 수 있다.  In one aspect of the invention, the method may be performed at room temperature.
<62> 본 발명의 일 관점인 방법쎄 있어서, 상기 i) 및 ii) 단계는 pH 가 6 내지 7 인 상태에서 수행되는 것일 수 있다.  In one aspect of the present invention, the steps i) and ii) may be performed at a pH of 6 to 7.
<63> 본 발명의 일 관점인 방법에 있어서, 상기 방법은  In a method of one aspect of the invention, the method
<64> iii) 2차 유화한 에멀전을 pH 4내지 5.5로 낮추어 마이크로캡슐을 형성하는 단계를 더 포함할 수 있다.  Iii) lowering the second emulsified emulsion to pH 4 to 5.5 to form microcapsules.
<65> 본 발명의 일 관점에 있어서, iii) 단계의 pH는 pH 4.2 내지 5.5, pH 4.4 내 지 5.5, pH 4.5 내지 5.5, pH 4.6 내지 5.4, pH 4.7 내지 5.3, pH 4.8 내지 5.2 또 는 pH 4.9 내지 5.1일 수 있다, 바람직하게 Hi) 단계의 PH는 5부근인 것이며, 구 체적으로 pH 4.8 내지 5.2일 수 있다. In one aspect of the invention, the pH of step iii) is pH 4.2 to 5.5, pH 4.4 to 5.5, pH 4.5 to 5.5, pH 4.6 to 5.4, pH 4.7 to 5.3, pH 4.8 to 5.2 or pH It may be 4.9 to 5.1, preferably the P H of the step Hi) is around 5, specifically may be pH 4.8 to 5.2.
<66> 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다ᅳ 이들 실시 예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의 해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있 어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to examples. These examples are only for illustrating the present invention, and the scope of the present invention is not interpreted to be limited by these examples. It will be obvious to those of ordinary skill in the industry.
<67> [실시예]  [67] [Example]
<68> [실시예 I ] HMP/SC캡슐 제조  Example I Preparation of HMP / SC Capsule
<69> 다음 조성으로 실험을 진행하였다. 하기에서 사용된 High-methoxy pectin은  The experiment was conducted with the following composition. High-methoxy pectin used in
Genuee Pectin(CP Kelco사, Denmark)이고 이는 69 내지 74%의 카르복실기가 메틸에 스터기로 치환된 펙틴이며, Sodium caseinate는 American Casein Company로부터 얻 은 것이다..  Genuee Pectin (CP Kelco, Denmark), which is a pectin with 69 to 74% carboxyl group substituted with methyl ester, and Sodium caseinate is obtained from American Casein Company.
<70> 【표 1】
Figure imgf000012_0001
<70> [Table 1]
Figure imgf000012_0001
<71> 【표 2]  <71> [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
<?2> HMP 분말을 물에 교반하면서 용해시켜 3%수용액을 제조하였다 (HMP의 농도는  <? 2> HMP powder was dissolved in water with stirring to prepare a 3% aqueous solution.
1~3¾>가 적당). pH가 낮으므로 NaOH를 추가하여 pH 7 부근으로 맞춰 HMP 3% 수용액 을 준비하였다. SC 분말을 물에 교반하면서 용해시켜 3 > 수용액을 제조하였다 (SC의 농도는 HMP 농도보다 낮게 조절). 층분히 교반을 시켜주면 SC로 구성된 마이셀 수 용액이 제조되며 평균 입도는 100~200 nm 정도를 가진다. pH는 7부근으로 제조되며 pH가 많이 높거나 낮을 경우 NaOH나 citric acid를 이용하여 pH 7 부근으로 조절해 주어 SC 3% 수용액올 준비하였다. 상기에 준비된 HMP 3% 수용액과 SC 3% 수용액을 비율별로 흔합 (9: 1/7:3/5:5)하여 흔합수용액을 만들어 교반시켜 주었다.  1 ~ 3¾> is suitable). Since pH is low, HOH 3% aqueous solution was prepared by adding NaOH and adjusting to pH 7. The SC powder was dissolved in water with stirring to prepare a 3> aqueous solution (the concentration of SC was adjusted below the HMP concentration). After agitation, the micelle water solution composed of SC is prepared and has an average particle size of about 100-200 nm. The pH is prepared in the vicinity of 7 and when the pH is high or low, the NaOH or citric acid was adjusted to pH 7 using the prepared SC 3% aqueous solution. The HMP 3% aqueous solution and SC 3% aqueous solution prepared above were mixed by ratio (9: 1/7: 3/5: 5) to make a mixed aqueous solution and stirred.
<73> 상기 흔합액을 일정속도로 계속 교반시켜주면서 citric acid 수용액을 천천 히 가해주면서 pH를 5부근으로 낮춰주면 SC 마이셀 표면의 음전하가 양전화로 변하 면서 HMP의 음전하와 복합체를 형성하게 됨으로써 마이크로캡슬이 생성된다 (SC 마 이셀 표면에 HMP가 코팅됨).  While stirring the mixture at a constant speed, the aqueous solution of citric acid is slowly added while the pH is lowered to around 5, and the negative charge on the surface of the SC micelle is changed to positive charge, forming a complex with the negative charge of HMP. A capsule is produced (HMP coated on the SC micelle surface).
<74> [실시예 Π] HMP/SC/당단백질 캡슐 제조 ·  [Example Π] HMP / SC / glycoprotein Capsule Preparation
<75> 실시예 I 제조방법의 HMP 수용액과 SC 수용액을 믹싱하는 과정에 있어서, 녹 차유래 당단백질 분말 (ISAI-016, 주식회사 두레)올 함께 충분히 용해시켜주고 pH 를 조절하여 녹차유래 당단백질이 캡슬구성 성분으로 도입된 마이크로캡슐을 제조 하였다 Example 75 In the process of mixing the HMP aqueous solution and the SC aqueous solution of the production method of Example I, the green tea-derived glycoprotein powder (ISAI-016, Dure Co., Ltd.) was completely dissolved together and the pH was adjusted to adjust the pH of the green tea-derived glycoprotein. Preparation of microcapsules introduced as a capsule component Was
<76> 【표 3] <76> [Table 3]
Figure imgf000013_0001
Figure imgf000013_0001
<77> 【표 4】
Figure imgf000013_0002
<77> [Table 4]
Figure imgf000013_0002
[실시예 m] 오일을 입자 코어에 가지고 있는 HMP/SC/당단백질 캡술제조 상기 실시예에서 사용된 SC 수용액 대신에 SC를 계면활성제로써 사용한 o/w 에멀견형태의 수용액을 사용하였다. 이의 제조를 위하여, 물에 오일을 먼저 투입하 면서 호머믹서를 통해 오일 drop들을 가지는 수용액을 만들고 여기에 일정량의 SC 분말을 투입하여 호머믹싱을 해주어 유화력을 가지는 SC로 o/w 형태의 에멀젼 수용 액을 제조하였다.  [Example m] Preparation of HMP / SC / glycoprotein capsule having oil in the particle core Instead of the aqueous SC solution used in the above example, an aqueous solution of o / w emulsion form using SC as a surfactant was used. For the preparation of this, the oil is added to the water first, and an aqueous solution having oil drops is made through a homer mixer, and a certain amount of SC powder is added to the homer for mixing with homer. Was prepared.
【표 5】
Figure imgf000013_0003
Table 5
Figure imgf000013_0003
<81> 【표 6】  <81> [Table 6]
Figure imgf000013_0004
<82> [실시예 IV] Isolated soy Protein(ISP) 수용액의 제조
Figure imgf000013_0004
Example IV Preparation of Isolated Soy Protein (ISP) Aqueous Solution
<83> 물을 상온에서 아지믹서 (agi mixer)로 적당한 속도로 교반 해주면서 isolated soy protein인 Fuji Pro NKJILIN FUJI PROTEIN사, China)을 수용액의 최 종 조성에 3 중량 %가 되도록 넣었다. 이를 상온에서 계속 교반 해주는 상태로 6시 간 동안 방치 하였다. 제조된 현탁물을 원심분리기를 이용하여 물에 녹지 않는 부 분을 분리하였다 (7000 rpm, 30 분). 그런 뒤 물에 녹지 않고 가라앉은 부분을 버리 고 상등액만을 취하였다. 이렇게 얻어진 ISP수용액은 1.8 중량 %의 콩 단백질을 함 유하였다. While stirring the water at a suitable speed with an ag mixer at room temperature, Fuji Pro NKJILIN FUJI PROTEIN, China, an isolated soy protein, was added to the final composition of the aqueous solution to 3% by weight. It was left to stand for 6 hours while stirring at room temperature. The prepared suspension was separated using a centrifuge to dissolve in water (7000 rpm, 30 minutes). Then, the submerged portion was discarded without dissolving in water and only the supernatant was taken. The ISP aqueous solution thus obtained contained 1.8% by weight of soy protein.
<84> [실시예 V] HMP/ISP캡슐 제조  Example V Preparation of HMP / ISP Capsule
<85> 다음 조성으로 실험을 진행하였다.  The experiment was conducted with the following composition.
<86> 【표 7】  <86> [Table 7]
Figure imgf000014_0001
Figure imgf000014_0001
<87> MP분말을 물에 교반하면서 용해시켜 3%수용액을 제조하였다 (HMP의 농도는  MP powder was dissolved in water with stirring to prepare a 3% aqueous solution (concentration of HMP
1~3%가 적당), pH가 낮으므로 NaOH를 추가하여 pH 7 부근으로 맞춰 HMP 3% 수용액 을 준비하였다. 상기에 준비된 HMP 3%수용액과 실시예 IV에 따라 준비된 ISP 1.8% 수용액을 중량비율별로 흔합 (1:1/2:1/4:1)하여 흔합수용액을 만들어 교반시켜 주었 다.  1 ~ 3% is appropriate), since the pH is low, NaOH was added to adjust the pH to near 7 to prepare a HMP 3% aqueous solution. The HMP 3% aqueous solution prepared above and the ISP 1.8% aqueous solution prepared according to Example IV were mixed (1: 1/2: 1/4: 1) by weight ratio to make a mixed aqueous solution and stirred.
<88> 상기 흔합액을 일정속도로 계속 교반시켜주면서 citric acid 수용액을 천천 히 가해주면서 pH를 5부근으로 낮춰주면 ISP 나노입자 표면의 음전하들이 줄어들면 서 상대적으로 높아지는 양전화들과 HMP의 음전하와 복합체를 형성하게 됨으로써 마이크로캡슐이 생성된다 (ISP 입자들 내지는 ISP 입자 cluster 표면에 HMP가 코팅 됨).  While stirring the mixture at a constant speed, slowly adding a citric acid solution and lowering the pH to around 5, the negative charges on the surface of the ISP nanoparticles are reduced and the negative charges of HMP and HMP are relatively high. Microcapsules are produced by forming a complex (HMP is coated on the surface of ISP particles or ISP particle clusters).
<89> [실시예 VI] HMP/ISP/당단백질 캡슐 제조  Example VI Preparation of HMP / ISP / Glycoprotein Capsules
<90> 실시예 V의 제조방법에서 HMP 수용액과 ISP 수용액을 믹성하는 과정에 있어 서, 녹차유래 당단백질 분말 (ISAI-016, 주식회사 두레)을 0.01-0.1 중량 % 정도 함 께 층분히 용해시켜주고 pH를 조절해줌 (1M의 citric acid를 이용)에 따라 녹차유래 당단백질이 캡술구성 성분으로 도입된 마이크로캡술을 제조하였다. 여기에 사용되 는 녹차유래 당단백질의 당부분은 neutral sugar (49.3중량¾>) + Uronic acid (50.7 중량 %) 정도로 구성된 것이다 (uronic acid의 음전하가 ISP 나노입자 표면의 양전하 들과 complex되는 것으로 판단된다). In the process of mixing the HMP aqueous solution and the ISP aqueous solution in the preparation method of Example V, the green tea-derived glycoprotein powder (ISAI-016, Dure Co., Ltd.) was dissolved with 0.01-0.1% by weight. As the pH was adjusted (using 1M citric acid), green tea-derived glycoprotein was prepared as a microcapsule. The sugar portion of the green tea-derived glycoprotein used here is neutral sugar (49.3 weight¾>) + uronic acid (50.7 Weight percent) (the negative charge of uronic acid is thought to be complex with the positive charges on the surface of the ISP nanoparticles).
【표 8】  Table 8
Figure imgf000015_0001
Figure imgf000015_0001
하기 표 9에 따른 실시예 27 내지 30은 실시예 23에서 제조된 ISP 수용액을 교반시키면서 1M citric acid를 천천히 가해주며 각각 pH를 6, 5.5, 5, 4.5 부근으 로 낮춘 샘플에 해당한다.  Examples 27 to 30 according to Table 9 correspond to samples in which 1M citric acid was slowly added while stirring the aqueous solution of ISP prepared in Example 23, and the pH was lowered to around 6, 5.5, 5, and 4.5, respectively.
【표 9】  Table 9
Figure imgf000015_0002
Figure imgf000015_0002
<94> [실시예 VII] 오일을 입자 코어에 가지고 있는 HMP/ISP(/당단백질) 캡슐 내 지 에멀전 제조  [Example VII] Preparation of HMP / ISP (/ glycoprotein) Capsule-Emulsion with Oil in Particle Core
<95> 상기 실시예에서 사용된 ISP 수용액 대신에 ISP를 계면활성제로써 사용한 o/w 에멀전형태의 수용액을 사용하였다. ISP 수용액에 일정량의 오일을 투입하면서 호머믹서를 이용하여 1차 o/w 에멀전을 제조하였다. 1차 유화를 하고 난 뒤 HMP 수 용액 (+당단백질)을 첨가하여 흔합물을 만들고 citric acid 수용액을 천천히 가해주 면서 pH를 5 부근으로 낮춰주면 ISP로 생성된 유화입자 표면의 양전하와 匪 P/당단 백질의 음전하가 복합체를 형성하게 되면서 ISP로 1차 유화된 오일코어를 가지면서 HMP가 코팅된 캡슬 내지 에멀전이 제조된다. 입도를 줄여 유화안정도를 높여주기 위하여 고압유화기를 사용하여 상기 유화입자의 크기를 줄여줄 수 있다.  Instead of the aqueous ISP solution used in the above example, an aqueous solution in the form of an o / w emulsion using ISP as a surfactant was used. A primary o / w emulsion was prepared using a Homer mixer while a certain amount of oil was added to an ISP aqueous solution. After the first emulsification, HMP aqueous solution (+ glycoprotein) is added to make a mixture, and the aqueous solution of citric acid is slowly added and the pH is lowered to around 5. As the negative charge of the glycoprotein forms a complex, an HMP-coated capsule or emulsion is prepared having an oil core primarily emulsified with the ISP. It is possible to reduce the size of the emulsion particles by using a high pressure emulsifier to reduce the particle size to increase the stability of the emulsion.
<96>  <96>
<97> 하기 표 10에 따른 실시예 31 내지 34는 에스터계 오일로 C.E.H, 트리글리세 라이드계 오일로 CSA, 실리콘계 오일로 DC200 lOOcs, 하이드로카본계 오일로 L L14E를 사용한 것이며 , 실시예 23에 각 오일을 투입하면서 호모믹싱 (5분, 7500rpm) 하여 제조하였다.  Examples 31 to 34 according to Table 10 below are CEH as an ester oil, CSA as a triglyceride oil, DC200 100cs as a silicone oil, and L L14E as a hydrocarbon oil. It was prepared by homomixing (5 min, 7500 rpm) while adding oil.
<98> 【표 10】
Figure imgf000016_0001
<98> [Table 10]
Figure imgf000016_0001
<99> 하기 표 11에 따른 실시예 35 내지 38은 실시예 31 내지 34에 실시예 1의  Examples 35 to 38 according to Table 11 of Example 1 to Examples 31 to 34
HMP 수용액 및 녹차유래 당단백질을 추가하여 흔합물을 만들고 호모믹싱 (5분 , 5000rpm)하면서 citric acid로 PH를 낮춰주며 ISP에 의해 1차 유화된 o/w 유화입자 의 표면에 정전기적 결합을 이용하여 당단백질 및 HMP를 고팅하여 제조한 것이다.Add HMP aqueous solution and green tea-derived glycoprotein to make a mixture, homomix (5 min, 5000rpm) to lower P H with citric acid and electrostatic bond on the surface of o / w emulsion particles firstly emulsified by ISP. It was prepared by fixing the glycoprotein and HMP using.
<ιοο> 이러한 과정을 통하여 ISP를 이용한 유화입자의 안정도를 증가시킬 수 있다. <ιοο> This process can increase the stability of emulsified particles using ISP.
다층구조로 이루어진 에멀전의 구조적인 특징과 최외곽층에 HMP에 의한 음전하 부 가를 통하여 ISP만을 이용한 o/w유화의 안정도를 매우 높여줄 수 있다.  Structural characteristics of the emulsion with multi-layer structure and negative charge by HMP on the outermost layer can greatly improve the stability of o / w emulsification using only ISP.
<ιοι> 【표 11】  <ιοι> 【Table 11】
Figure imgf000016_0002
Figure imgf000016_0002
<102> 하기 표 12에 따른 실시예 39 내지 42는 오일을 트리글리세라이드계 오일인 csa로 고정하고 오일 /ISP/HMP의 함량의 변화를 주어 최종적으로 생성되는 유화입자 의 크기 변화를 관찰한 것이다. ISP가 1차 유화제로 사용되고 이렇게 형성된 유화 입자의 표면에 HMP와 녹차유래 당단백질을 코팅하므로 ISP함량보다 HMP의 함량을 더 높게 유지하였다. 이를 제조하는 방법은 실시에 35 내지 38의 것과 동일하게 하 였다.  Examples 39 to 42 according to Table 12 below were fixed with csa, a triglyceride-based oil, and given a change in the oil / ISP / HMP content to observe the size change of the finally produced emulsion particles. ISP was used as a primary emulsifier and the HMP and green tea-derived glycoproteins were coated on the surface of the emulsion particles thus formed to maintain higher HMP content than ISP content. The method for preparing this was the same as in the 35 to 38 in the embodiment.
<103> 【표 12】  <103> [Table 12]
Figure imgf000016_0003
Figure imgf000016_0003
<104> 하기 표 13에 따른 실시예 43은 실시예 35 내지 3S의 제조방법과 동일하게 트리글리세라이드계 오일 3종 15%를 ISP로 1차 유화하고, HMP와 당단백질을 1차 유 와입자에 코팅시킨 샘플에 해당한다. 실시예 44는 실시예 43의 최종 유화입자의 입 도를 줄이기 위해 고압유화기를 추가로 사용한 샘플이며, 고압유화기는 모델명 APV 2000을 사용하였으며 , 실시예 43을 제조하자마자 APV 2000을 이용하여 1000 bar로 4cycle을 돌려 고압유화 하였다. Example 43 according to Table 13 is the same as the preparation method of Examples 35 to 3S 15% of three kinds of triglyceride oils are first emulsified with ISP, and correspond to a sample coated with primary milk particles with HMP and glycoprotein. Example 44 is a sample using an additional high-pressure emulsifier to reduce the particle size of the final emulsified particles of Example 43, the high-pressure emulsifier used a model name APV 2000, as soon as the preparation of Example 43 to 1000 bar using APV 2000 High pressure emulsification was turned 4 cycles.
<105> 【표 13】<105> [Table 13]
Figure imgf000017_0001
Figure imgf000017_0001
<106> 하기 표 14에 따른 실시예 45 내지 47은 CSA 함량을 5%, 10%, 15%로 변화시 키며 ISP와 HMP의 비율은 고정한 것이고 실시예 48 내지 50은 트리글리세라이드계 오일의 종류만 변화시켜가며 오일 함량 15%와 ISP 및 HMP의 양은 고정하여 제조한 것으로서 제조 조건 및 방법은 상기 실시예 35 내지 38의 것과 동일하고 조성은 아 래와 같게 하였다. 또한 실시예 45 내지 50은 모두 고압유화기를 추가적으로 사용 하였다.  Examples 45 to 47 according to Table 14 change the CSA content to 5%, 10%, and 15%, and the ratio of ISP and HMP is fixed, and Examples 48 to 50 are only kinds of triglyceride oils. The oil content of 15% and ISP and HMP were fixed and the production conditions and methods were the same as those of Examples 35 to 38 and the composition was the same as below. In addition, all of Examples 45 to 50 additionally used a high pressure emulsifier.
<107> 【표 14】
Figure imgf000017_0002
<107> [Table 14]
Figure imgf000017_0002
[시험예 1] 입도분석  Test Example 1 Particle Size Analysis
실시예 3에서 제조된 SC 1.5% 수용액 및 실시예 IV에서 제조된 ISP 1.8% 수 용액 (pH 6, 3)의 입도분석을 동적광산란장치 (기기명 : 말번사 Nano-ZS)를 이용하여 하였다. Particle size analysis of SC 1.5% aqueous solution prepared in Example 3 and ISP 1.8% aqueous solution prepared in Example IV (pH 6, 3) was carried out using a dynamic light scattering apparatus (device name: Malvern Corporation Nano-ZS). It was.
<ιιο> 그 결과 SC 1.5%수용액의 경우 (도 1), 평균입도는 262.6 nm, PE)I는 0.289를 얻¾고, SC는 수용액상에서 아래 입도분포의 SC 마이셀을 형성하고 있음을 확인하 였다. As a result, in case of 1.5% aqueous solution of SC (Fig. 1), average particle size was 262.6 nm, PE ) I was obtained 0.289, and SC formed SC micelles with the following particle size distribution in aqueous solution. .
<ιιι> 또한 ISP 1.8%수용액의 경우 (도 8의 A), 평균 입도는 287nm, PDI는 0.428을 얻었고, ISP는 수용액 상에서 아래 입도 분포의 ISP 마이셀을 형성하고 있음을 확 인하였다.  <ιιι> Also, in case of ISP 1.8% aqueous solution (A of FIG. 8), the average particle size was 287 nm and PDI was obtained at 0.428, and ISP confirmed that ISP micelles were formed in the below particle size distribution in aqueous solution.
<112> [시험예 2] 표면전위  Test Example 2 Surface Potential
<ιΐ3> 실시예 3에서 제조된 SC 1.5% 수용액의 SC 마이셀 표면전위 및 및 실시예 IV 에서 제조된 ISP 1.8% 수용액 (pH 6.3)의 ISP 마이셀 표면전위를 동적광산란장치 (기 기명: 말번사 Nano-ZS)를 이용하여 측정하였다, 자동적정 장치를 이용하여 초기 pH 7부근의 샘플의 pH를 pH 5 부근으로 낮춰주며 특정 pH에서의 SC 마이샐 표면전위를 확인하였다.  <ιΐ3> The SC micelle surface potential of the SC 1.5% aqueous solution prepared in Example 3 and the ISP micelle surface potential of the ISP 1.8% aqueous solution prepared in Example IV (pH 6.3) were measured using a dynamic light scattering device (registered name: Malvern Corporation Nano). -ZS), using an automatic titrator, lowered the pH of the sample near the initial pH to pH 5 and confirmed the SC micelle surface potential at a specific pH.
<ιΐ4> 그 결과 SC 마이셀 표면전위의 경우 (도 2), 높은 pH에서 음전하의 표면전위 를 가지는 SC 마이셀이 pH를 낮춰줌에 따라 등전점 4.89 부근에서 표면전위가 양전 하로 바뀌는 것을 알 수 있다.  As a result, in the case of the SC micelle surface potential (FIG. 2), it can be seen that the surface potential of the SC micelle having a negative surface potential at high pH is changed to a positive charge near the isoelectric point 4.89 as the pH is lowered.
<ιΐ5> 또한 ISP 마이셀 표면 전위의 경우 pH 7에서 -12.9 mV(S.D.: 3.02), pH 6에 서 -9.33 mV(S.D.: 2.69), pH 5.5에서 -6.31 mV(S.D.: 4.08), pH 5에서 -4.54 mV(S.D.: 5.64), pH 4.5에서 -().86 mV(S.D.: 6.65)임을 확인하였다. ISP 마이셀의 경우도 SC 마이셀과 마찬가지로 pH를 낮춰줌에 따라 점점 음전하가 줄어드는 경향 이 있음을 확인할 수 있다.  <ιΐ5> Also, for ISP micelle surface potential, -12.9 mV (SD: 3.02) at pH 7, -9.33 mV (SD: 2.69) at pH 6, -6.31 mV (SD: 4.08) at pH 5.5, and pH 5 It was confirmed that-(). 86 mV (SD: 6.65) at -4.54 mV (SD: 5.64) and pH 4.5. In the case of ISP micelles, as with SC micelles, the negative charge tends to decrease gradually as the pH is lowered.
<116>  <116>
<Π7> [시험예 3] 탁도 및 침전물 생성 정도  <Π7> [Test Example 3] Turbidity and precipitate formation
<118> 상기 실시예의 탁도 및 침전물 생성 정도를 비교하기 위해 디지털 카메라로 촬영한 결과, 도 3, 도 9 및 도 10과 같은 결과를 얻었다.  As a result of photographing with a digital camera in order to compare the turbidity and precipitate generation degree of the above embodiment, the same results as in FIGS. 3, 9 and 10 were obtained.
<ιΐ9> 실시예 1과 2는 반투명한 수용액으로 제조되었다. 실시예 3은 반투명한 샘플 임에 비해 실시예 4는 침전물이 발생한 것을 확인하였다.  Examples 1 and 2 were prepared in a translucent aqueous solution. Example 3 confirmed that the precipitate occurred in Example 4, while the semi-transparent sample.
<120> 실시예 5~7에서는 반투명한 수용액의 특징을 보이지만, 실시예 8~10에서 불 투명한 유액의 형태로 샘플 외관이 바뀌는 것을 볼 수 있었다. 이는 pH가 낮아짐에 따라 HMP의 양전하가 SC 마이셀의 음전하와 복합체를 이루며 표면을 코팅함에 의한 것이다. 아울러, HMP:SC의 농도 비율이 9:1에서 5:5로 바뀜에 따라 복합체가 형성 되는 양이 많아지므로 탁도가 높은 샘플이 얻어졌다. <i2i> 실시예 12 및 13은 pH 변화에 따라 약간의 색상변화가 있을 뿐 외관상의 뚜 렷한 차이는 확인 할 수 없었다. 반면, 실시예 14 및 15에서는 pH 변화에 따라 탁 도가 변화하며 소량의 침전물이 형성되는 것을 확인하였다. 그러므로 녹차당단백질 과 SC마이셀 간에 특이적인 복합체를 형성함을 확인할 수 있었다. In Examples 5-7, the translucent aqueous solution was shown, but in Examples 8-10, the sample appearance changed in the form of an opaque emulsion. This is because the positive charge of HMP complexes with the negative charge of SC micelles and coats the surface as the pH is lowered. In addition, as the HMP: SC concentration ratio was changed from 9: 1 to 5: 5, the amount of complex formation increased, and thus samples with high turbidity were obtained. <i2i> Examples 12 and 13 had a slight color change according to the pH change, but the apparent difference could not be confirmed. On the other hand, in Examples 14 and 15 it was confirmed that the turbidity changes according to the pH change and a small amount of precipitate is formed. Therefore, it was confirmed that a specific complex was formed between green tea glycoprotein and SC micelle.
<122> 실시예 16 및 17에 의하여 HMP/SC마이셀 /녹차당단백질 3가지 성분이 함께 일 정한 입도를 가지는 마이크로캡슐을 구성하는 것을 확인할 수 있었다.  According to Examples 16 and 17, it was confirmed that the three components of HMP / SC micelles / green tea glycoproteins together form a microcapsule having a predetermined particle size.
<123> 또한, 실시예 18~20의 사진에서 볼 수 있듯이 본 발명의 마이크로캡슐은 일 반 에멀견과 유사한 외관을 보이며 침전 /분리 /크리밍 등의 현상등은 관찰되지 않음 을 알수 있었다.  In addition, as shown in the photographs of Examples 18 to 20, the microcapsules of the present invention showed a similar appearance to general emulsion dogs, and no phenomenon such as precipitation / separation / creaming was observed.
<124> 실시예 21 및 22의 사진에 의하여 HMP/SC/녹차당단백질 마이크로입자들과 침 전 /분리 /크리밍 등의 현상없이 잘 만들어짐을 알 수 있었다,  The photographs of Examples 21 and 22 showed that HMP / SC / tea green tea glycoprotein microparticles were well formed without sedimentation / separation / creaming.
<125> 또한, 실시예 24내지 26의 사진에서 볼 수 있듯이 (도 9) 丽 P:ISP의 중량 비 율이 1:1 에서 2:1ᅳ 4:1 로 증가함에 따라 복합체가 형성되는 양이 적어짐에 따라 탁도가 낮은 샘플이 얻어졌다, 실시예 24 내지 26에 의하여 丽 P/ISP 나노입자 /녹차 당단백질 3가지 성분이 일정한 입도를 가지는 마이크로캡술을 구성하는 것을 확인 할 수 있었다.  In addition, as shown in the photographs of Examples 24 to 26 (Fig. 9), the amount of the composite is formed as the weight ratio of P: ISP increases from 1: 1 to 2: 1 ᅳ 4: 1. As the turbidity decreased, samples with low turbidity were obtained. According to Examples 24 to 26, it was confirmed that three components of Li P / ISP nanoparticles / green tea glycoproteins constitute microcapsules having a constant particle size.
<126> 실시예 23 및 27 내지 30의 사진에서 볼 수 있듯이 (도 10), ISP수용액은 pH를 7에서부터 4.5까지 낮춰줌에 따라 친수성을 잃으면서 석출되고 침전되는 것을 확인할 수 있다. 이는 ISP가 가지고 있던 양전하와 음전하들 증에 음전하들이 pH drop에 의해 수소양이온들과 결합하여 전하를 잃으면서 친수성을 잃기 때문이다, 반면 이러한 ISP 수용액과 HMP 수용액을 일정 비율로 흔합하고 pH를 낮춰주면 ISP 가 석출되지 않고 ISP의 양전하들과 HMP의 음전하들이 이은 복합체를 형성하면서 안정하게 수분산 되어있는 마이크로입자들을 도 9의 결과와 같이 형성하게 된다. As can be seen in the photographs of Examples 23 and 27 to 30 (FIG. 10), the ISP aqueous solution can be confirmed to precipitate and precipitate while losing hydrophilicity as the pH is lowered from 7 to 4.5. This is because the negative charges in the ISP's positive and negative charges are combined with the hydrogen cations by the pH drop and lose their hydrophilicity as they lose their charges. On the other hand, if the ISP and HMP aqueous solutions are mixed in a certain ratio and the pH is lowered, The ISP is not precipitated and the positive charges of the ISP and the negative charges of the HMP form a subsequent composite, thereby stably dispersing microparticles as shown in FIG. 9.
<127> <127>
<128> [시험예 4] 입자 크기 및 균일성 확인  Test Example 4 Confirmation of Particle Size and Uniformity
<129> 상기 각각의 실시예에 의해 제조된 마이크로캡술을 포함하는 용액의 광학현 미경 관찰을 통하여 마이크로입자들의 형성유무와 구조를 확인하였다.  The formation and the structure of the microparticles were confirmed by optical microscopic observation of the solution containing the microcapsule prepared by each of the above examples.
<130> 실시예 8~10에 해당하는 광학현미경 이미지 (도 4)를 통해 HMP:SC의 비율이 달라짐에 따라 생성되는 마이크로캡슐의 빈도수가 달라지는 것을 확인할 수 있었으 며 7:3 이상의 비율로 흔합되어 pH를 조절해줌에 따라 안정하고 비교적 균일한 입 도의 마이크로캡술 (SC 마이셀에 HMP가 코팅되어 있는 형태)이 제조됨을 알 수 있었 다. <i3i> 또한 실시예 15에 해당하는 광학현미경 사진 (도 5)을 보면 알 수 있듯이The optical microscopy images (FIG. 4) corresponding to Examples 8 to 10 showed that the frequency of the generated microcapsules was changed as the ratio of HMP: SC was changed. As the pH was adjusted, it was found that a stable and relatively uniform particle size microcapsule (in the form of HMP coated on SC micelles) was prepared. <i3i> As can be seen from the optical micrograph (FIG. 5) corresponding to Example 15
HMP와 SC 흔합물의 마이크로캡슐 광학이미지에서 볼 수 있는 입자들도 녹차당단백 질과 SC 흔합물의 이미지에서도 일부 확인할 수 있었다. 이는 SC 마이샐의 표면에 일부 녹차당단백질이 이온결합을 통해서 코팅이 될 수 있다는 점을 간접적으로 알 려준다. 하지만 HMP와 SC의 complex를 통한 마이크로캡술과 같이 균일하고 구형의 고른 입도분포의 입자들의 관찰은 어려웠다. 반면, 실시예 17에 해당하는 광학현미 경 사진 (도 5)을 보면 알 수 있듯이 HMP/SC/녹차당단백질의 조합으로 제조한 마이 크로캡슐은 매우 균일한 분포의 입도를 가지는 구형의 마이크로캡술들이 제조됨을 알 수 있었다. 그러므로, SC 마이셀에 녹차당단백질과 HMP가 이온결합으로 고르게 코팅되어 캡슐을 형성함을 알 수 있었다. Particles found in the microcapsule optical images of the HMP and SC complexes were also identified in the green tea glycoproteins and the SC complexes. This indirectly indicates that some green tea glycoproteins can be coated on the surface of SC micelles through ionic bonds. However, it was difficult to observe uniform, spherical and uniform particle size distributions, such as microcapsule through HMP and SC complex. On the other hand, as shown in the optical micrograph (FIG. 5) corresponding to Example 17, the microcapsules prepared by the combination of HMP / SC / tea green tea glycoproteins were spherical microcapsules having a very uniform particle size. It can be seen that manufactured. Therefore, it was found that green tea glycoprotein and HMP were uniformly coated by ionic bond on SC micelles to form capsules.
<132> 아울러, 실시예 18의 광학현미경 이미지 (도 6)를 보면, 유화입자들이 SC에 의해 수마이크로미터〜 10 마이크로미터 정도의 입도를 가지며 o/w 에멀견 형태를 가 지고 있는 것을 확인할 수 있었다. 실시예 20의 광학현미경 이미지 (도 6)를 보면, 실시예 18과 비교하여 입자들의 입도가 조금 커진 것을 확인할 수 있으며, HMP의 코팅층으로 보이는 다층구조도 확인할 수 있었다.  In addition, looking at the optical microscope image (Fig. 6) of Example 18, it can be seen that the emulsified particles have a particle size of several micrometers ~ 10 micrometers by the SC and has an o / w emulsion dog form. there was. Looking at the optical microscope image (FIG. 6) of Example 20, it can be seen that the particle size of the particles compared with Example 18 is slightly increased, it was also confirmed the multi-layer structure seen as a coating layer of HMP.
<133> 또한 실시예 22에 해당하는 광학이미지 (도 6)는 코어에 CSA가 들어있는 丽 P/SC/녹차당단백질의 마이크로캡술이 잘 제조된 것을 확인할 수 있었다. In addition, the optical image (FIG. 6) corresponding to Example 22 was confirmed that the microcapsule of the P-SC / green tea glycoprotein containing CSA in the core was well prepared.
<)34> 특히, 실시예 20 및 22 모두 캡슐의 코어루부터 CSA (오일), SC마이셀, 腿 P (+ 34) In particular, both Examples 20 and 22 from the core of the capsule to CSA (oil), SC micelles, 腿 P (+
녹차당단백질)의 다층구조를 가지고 있음을 확인할 수 있었다.  Green tea glycoprotein) was confirmed to have a multi-layered structure.
<135> 실시예 24 내지 26의 광학현미경 이미지 (도 11),를 보면, HMP 수용액과 ISP  In the optical microscope image (FIG. 11) of Examples 24 to 26, HMP aqueous solution and ISP
수용액의 흔합비율에 따라서 생성되는 이온복합체 마이크로캡슐의 입자 크기가 변 화한다는 것을 확인할 수 있다. 실시예 24 에서 26으로 갈수록 캡슬의 코어 쪽을 형성한다고 볼 수 있는 ISP의 양이 적어지고, 이러한 경향에 따라 현미경 이미지로 관찰된 마이크로캡술의 입자 크기도 작아지는 것을 확인할 수 있다. 따라서 ISP의 양이 많을수록 더 큰 입자가 형성되고 그 반대의 경우 더 작은 입자가 형성된다는 것을 확인할 수 있었다. 또한 이러한 현미경 사진을 통하여 ISP 입자들의 음전하가 수소양이온과 결합하여 친수성을 잃게 될 때 HMP가 존재하게 되면 HMP의 음전하들 과 ISP의 양전하들이 이온 결합을 하여 ISP를 코팅해 주게 되면서 spherical한 구 조를 가지는 캡슐형태로 수분산 된다는 것을 다시금 확인할 수 있었다.  It can be seen that the particle size of the resulting ion complex microcapsules changes according to the mixing ratio of the aqueous solution. From Example 24 to 26, it can be seen that the amount of ISP that can be considered to form the core side of the capsule is smaller, and the particle size of the microcapsule observed by the microscopic image is also reduced according to this tendency. Therefore, it was confirmed that the larger the amount of ISP, the larger particles are formed, and vice versa, smaller particles are formed. In addition, when the negative charges of ISP particles are combined with hydrogen cations and lose their hydrophilicity, these micrographs show that when HMP is present, the negative charges of HMP and positive charges of ISP are ion-bonded to coat the ISP, resulting in spherical structure. Eggplant was again confirmed that the water is dispersed in capsule form.
<136> 실시예 35 내자 38의 광학현미경 이미지 (도 12)를 보면, 트리글리세라이드계 오일 또는 에스터계 오일을 사용한 실시예 35 및 36의 유화입자가 실리콘계 또는 하이드로카본계 오일을 사용한 실시예 37 및 3 의 유화입자보다 현저히 작은 것이 확인되었다. 따라서 일반적으로 유화입자가 작게 만들어질수록 유화시스템의 전체 적인 안정도가 증가하는 것으로 생각 할 수 있으므로, 트리글리세라이드계 또는 에 스터계 오일을 사용하여 유화입자 (마이크로캡슐) 및 이를 포함하는 에멀전을 만드 는 것이 유화 안정도 측면에서 유리한 것을 확인할 수 있었다. Example 35 The optical microscope image (Fig. 12) of the magnetic domain 38 shows that the emulsified particles of Examples 35 and 36 using triglyceride-based or ester-based oils used Example 37 and silicone-based or hydrocarbon-based oils. Remarkably smaller than 3 emulsified particles Confirmed. Therefore, in general, the smaller the emulsified particles can be considered to increase the overall stability of the emulsification system, so using emulsified particles (microcapsules) and emulsions containing triglyceride-based or ester-based oils It was confirmed that it was advantageous in terms of emulsion stability.
<137> 실시예 39 내지 42의 광학현미경 이미지 (도 13)을 보면, 실시예 40의 조성을 갖는 유화입자 또는 에멀전이 유화 입자의 크기가 가장 작은 것으로 보아 유화 안 정도 측면에서 가장 유리한 것임을 확인할 수 있었다. 실시예 39 내지 42의 실험을 통해 커버한 ISP의 함량은 최종 내용물을 기준으로 0.178% 내지 0.81% 정도 였으 며, HMP의 함량은 1.35 내지 2.4% 정도 였으며, 이보다 더 낮거자 높은 함량으로 제조하여도 층분히 안정해 보이는 유화입자는 제조될 것으로 보인다. 다만 ISP/HMP 의 함량이 높을수록 좀 더 안정한 유화입자의 제조가 가능할 것으로 예상되지만, 최종 산물 및 사용되는 제형을 고려해 보았을 때 그 함량을 무작정 올리는 것은 바 람직하지 않다. 따라서 에멀전 등의 제형일 경우 최종 산물 또는 제형의 총 중량을 기준으로 하여 오일 함량은 약 0~30 증량 %, ISP 함량은 0.1~1 중량 %, 그리고 HMP의 함량은 1~3 중량 % 정도인 경우에 바람직할 것으로 판단된다.  The optical microscope images (FIG. 13) of Examples 39 to 42 showed that the emulsion particles or emulsions having the composition of Example 40 were the most advantageous in terms of the degree of emulsification. . The content of ISP covered by the experiments of Examples 39 to 42 was about 0.178% to 0.81% based on the final content, the HMP content was about 1.35 to 2.4%, and even lower than this to prepare a high content Emulsified particles that appear to be sufficiently stable are expected to be produced. However, the higher the content of ISP / HMP is expected to be able to produce a more stable emulsion particles, but considering the final product and the formulation used, it is not recommended to raise the content at random. Therefore, in the case of an emulsion or the like, the oil content is about 0 to 30% by weight, the ISP content is about 0.1 to 1% by weight, and the HMP content is about 1 to 3% by weight based on the total weight of the final product or the formulation. It is considered to be preferable.
<138> 실시예 43 및 44의 광학현미경 이미지 (도 14)를 보면, 고압유화기를 사용한 실시예 44의 경우 그렇지 않은 실시예 43 보다 유화 입자의 크기가 훨씬 작아짐을 확인할 수 있었으며, 이를 통해 고압유화 처리를 하는 경우 최종 유화 안정도가 증 가함을 확인할 수 있었다. 또한 실시예 44의 경우 일반 유화제로 제조하기 쉽지 않 은 저점도 (<100 cps) 현탁유액 내용물을 얻을 수 있었다.  Looking at the optical microscope images (FIG. 14) of Examples 43 and 44, it could be seen that in Example 44 using a high pressure emulsifier, the size of the emulsified particles is much smaller than that of Example 43 which is not. In the case of treatment, it was confirmed that the final emulsion stability increased. In addition, in the case of Example 44, it was possible to obtain a low viscosity (<100 cps) suspension emulsion content that is not easy to prepare a general emulsifier.
<139> 실시예 45 내지 50의 광학현미경 이미지 (도 15)를 보면, 실시예 45 내지 47 에서 o/w 유화의 오일 상의 함량을 5%에서 15%로 증가시킴에 따라서 유화 입자의 크기는 조금씩 증가하는 경향을 확인할 수 있었다. 또한 실시예 48 내지 50에서는 동일한 계열인 경우 오일의 종류를 바꾸어도 함량이 15% 정도로 유지되는 경우에는 유화입자의 크기에는 큰 영향이 없는 것을 확인할 수 있었다.  Referring to the optical microscope image (FIG. 15) of Examples 45 to 50, the size of the emulsified particles gradually increased as the content of the oil phase of the o / w emulsion was increased from 5% to 15% in Examples 45 to 47. The tendency to increase was confirmed. In addition, in Examples 48 to 50, even if the type of oil is changed in the case of the same series, when the content is maintained at about 15% it was confirmed that there is no significant effect on the size of the emulsion particles.
<140>  <140>
<141> [시험예 5] 항산화능의 확인  Test Example 5 Confirmation of Antioxidant Activity
<142> 항산화능을 평가하기 위하여, DPPH 어세이를 이용하였다. 실험에서 사용한 시료 (주식회사 두레)는 다음과 같다.  In order to evaluate the antioxidant activity, a DPPH assay was used. Samples used in the experiment (Dure) are as follows.
<143> 【표 15】 .
Figure imgf000022_0001
Table 15.
Figure imgf000022_0001
<i44> DPPH 어세이는 DPPH라는 산화제로 산화를 개시시킨 후 실험하고자 하는 시료 에 의해서 라디칼에 대한 소거 능력을 측정하는 실험으로, DPPH가 항산화 활성이 있는 물질과 만나면 전자를 내어주면서 라디칼이 소멸되면서 보라색에서 노란색으 로 색깔이 변하게 되어 산화 활성을 육안으로도 쉽게 관찰할 수 있다.  <i44> DPPH assay is an experiment to measure the scavenging ability of radicals by the sample to be tested after initiation of oxidation with an oxidizing agent called DPPH. When DPPH encounters a substance with antioxidant activity, it releases electrons while giving off electrons. The color changes from purple to yellow so that the oxidation activity can be easily observed with the naked eye.
<145> 상기 각각의 시료를 lOul씩 96 웰 플레이트에 넣고, lOOuM DPPH를 190ul씩 넣었다. 37°C에서 30분간 반응시키고 517nm에서 흡광도를 측정하였다. 양성 대조군 으로는 vitamin C를 사용하였다 (10, 5, 2.5 ug/ml). Each sample was placed in a 96 well plate by lOul and 190ul by lOOuM DPPH. The reaction was carried out at 37 ° C. for 30 minutes and the absorbance at 517 nm was measured. Vitamin C was used as a positive control (10, 5, 2.5 ug / ml).
<146> 그 결과 (도 7), 버지니아당단백질 (ISAI-021) > 녹차당단백질 (ISAI-016)=아 비스당단백질 (ISAI— 019) >솔잎당단백질 (ISAI-018)순서로 우수한 항산화력을 가짐 을 확인하였다.  As a result (FIG. 7), Virginia glycoprotein (ISAI-021)> green tea glycoprotein (ISAI-016) = abis glycoprotein (ISAI-019)> pine needle glycoprotein (ISAI-018) in order of excellent antioxidant It was confirmed to have a force.
<147> 캡슐의 주 구성성분인 카제인 나트륨 (ISAI-022)와 펙틴 (ISAI-023) 모두 자유 라디칼 소거능을 가지고 있지 않기 때문에 상기와 같은 당단백질을 도입하여 항산 화능을 증진시킴으로써, 담지체의 효능을 향상시킬 수 있을 것이다.  Since neither casein sodium (ISAI-022) nor pectin (ISAI-023), which are the main constituents of the capsule, have free radical scavenging ability, by introducing the above glycoproteins to enhance the antioxidant activity, Will be able to improve.
<148>  <148>
<149> [시험예 6] 오일 코어 내부 성분의 안정성 확인  [Test Example 6] Checking the stability of the components inside the oil core
<150> 상기 제조된 오일 코어를 가지는 HMP/SC/녹차당단백질 다층 마이크로캡술에 화장품 효능 성분 중의 하나인 코엔자임 -Q10을 안정화시켜보았으며, 일반 o/w 제형 에 안정화시킨 코엔자임 -Q10과 안정화효과를 비교평가해보았다.  The HMP / SC / green tea glycoprotein multilayer microcapsule having the oil core prepared above was stabilized with coenzyme-Q10, which is one of cosmetic efficacy ingredients, and stabilized with coenzyme-Q10 stabilized in a general o / w formulation. We compared and evaluated.
<i5i> 먼저 오일 코어를 가지는 圈 P/SC/녹차당단백질 마이크로캡슐을 제조하기 위 하여 하기 실시예 52를 이용하였다.  <i5i> Example 52 was used to prepare a P / SC / green tea glycoprotein microcapsule having an oil core.
<152> [실시예 52]  Example 52
<153> 【표 16】
Figure imgf000023_0001
<153> [Table 16]
Figure imgf000023_0001
> 코엔자임 -QIO(QIO) 10%를 CSA에 용해시키고, 앞서 제조된 실시예 18과 같이> Coenzyme-QIO (QIO) 10% is dissolved in CSA, as in Example 18 previously prepared
Q10 10% 함유 오일 20%를 SC 3%로 유화하여 실시예 51을 제조하였다. 이렇게 제조 된 Q10/CSA/SC 에멀젼 (실시예 51)을 실시예 1의 HMP 3% 수용액과 1:1로 흔합해주고 여기에 녹차 당단백질을 0.1% 추가로 용해시켰다. 층분히 교반을 시켜주면서 1M citric acid를 천천히 추가해주면서 pH를 7 부근에서 .5 부근으로 적정해 줌으로써 Q10이 용해되어 있는 CSA 오일을 코어에 가지는 HMP/SC/녹차당단백질 마이크로캡슐 을 제조하였다.Example 51 was prepared by emulsifying 20% Q10 10% containing oil to 3% SC. The Q10 / CSA / SC emulsion (Example 51) thus prepared was mixed 1: 1 with the HMP 3% aqueous solution of Example 1, and 0.1% of green tea glycoprotein was further dissolved therein. The HMP / SC / green tea glycoprotein microcapsules having C10 oil dissolved in Q10 in the core were prepared by slowly adding 1M citric acid and titrating the pH from about 7 to about .5 with gentle stirring.
> 아울러, 비교예로서 앞서 제조한 Q10 1%를 안정화시킨 마이크로캡슐 (실시예In addition, as a comparative example, the microcapsules stabilized Q10 1% prepared before (Example
52)의 대조군으로써 일반적인 o/w 유화에 Q10 1%를 안정화시킨 비교예 1을 다음과 같이 제조해보았다. 비교예 1의 조성은 아래표와 같다.As a control of 52), Comparative Example 1 in which Q10 1% was stabilized in general o / w emulsification was prepared as follows. The composition of the comparative example 1 is as follows.
> [표 17】 Table 17
Figure imgf000023_0002
<i57> 이렇게 제조된 실시예 52와 비교예 1에 해당하는 샘플의 Q10 안정도를 상온 및 40도에서 4주간 측정해본 결과, 초기 Q10 함량대비 4주간의 안정도 결과는 아래 와 같았다. 다음 결과를 통해 마이크로캡슐화한 원료의 Q10 안정도가 월등함을 알 수 있었다. ·
Figure imgf000023_0002
<i57> As a result of measuring the Q10 stability of the sample corresponding to Example 52 and Comparative Example 1 prepared at room temperature and 40 degrees for 4 weeks, the stability results for 4 weeks compared to the initial Q10 content was as follows. The following results show that the Q10 stability of the microencapsulated raw material is superior. ·
<158> 【표 18】  <158> [Table 18]
Figure imgf000024_0001
Figure imgf000024_0001
<159> [시험예 7] 피부 안전성에 대한 평가  Experimental Example 7 Evaluation of Skin Safety
<160> 본 발명 실시예들의 피부 안전성을 확인하기 위해 성인 여성 18명 및 남성  18 adult women and men to confirm the skin safety of the embodiments of the present invention
12명을 대상 (평균 32.5세)으로 제품을 도포한 첩포 시험을 진행하여 본 발명의 조 성물에 대한 피부 안전성을 평가하였다.  A patch test of 12 subjects (average 32.5 years) was applied to evaluate the skin safety of the composition of the present invention.
<i6i> 측정 방법은 첩포를 부착한 뒤 28시간 경과 후 첩포를 제거, 30분 후에 첫 판독을 시행하였고 96시간이 경과한 후에 2차 판독을 시행하였다. 시료의 피부 자 극의 강도를 알아보기 위해 피부의 양성반웅의 정도에 따라 가중치를 부여하여 피 부 평균 반웅도를 구하여 시료의 피부 자극을 육안관정하였다. 그 결과는 하기 표 에 나타내었다,  In <i6i>, the patch was removed 28 hours after the patch was attached, the first reading was made 30 minutes later, and the second reading was made after 96 hours. In order to determine the intensity of skin irritation of the sample, the skin was given a weight according to the degree of positive reaction of the skin, and the skin average reaction intensity was obtained to visually examine the skin irritation of the sample. The results are shown in the table below.
<162> 【표 19】 <162> [Table 19]
Figure imgf000025_0001
Figure imgf000025_0001
> 상기 표에서 보는 바와 같이 실시예 8, 9, 10, 17, 20, 22, 52, 비교예 1 실시예 35 내지 50은 모두 피부에 자극을 주지 않는 것을 확인하였다.> As shown in the above table, Examples 8, 9, 10, 17, 20, 22, 52, and Comparative Example 1 Examples 35 to 50 all confirmed that they do not irritate the skin.
> 따라서, 본 발명의 화장료 조성물은 피부에 대한 안전성이 우수한 것으로 ¾ 정할 수 있다.Therefore, the cosmetic composition of the present invention can be determined to be superior to the safety for the skin.
> 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 ^ 상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양¾ 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 띠 라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 ¾ 의된다고 할 것이다. > The specific parts of the present invention have been described in detail above, and for those skilled in the art, these specific descriptions are only preferred embodiments, and thus the scope of the present invention is not limited thereto. Will be obvious. Therefore, the substantial scope of the present invention will be determined by the appended claims and their equivalents.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
총전하 (net charge)가 음전하인 다당류;  Polysaccharides with a net charge of negative charge;
4내지 6의 등전점 (PI)을 가지는 단백질; 및  Proteins having an isoelectric point (PI) of 4 to 6; And
총전하 (net charge)가 음전하인 식물 유래 당단백질을 포함하는 마이크로 캡슬.  A microcapsule comprising a plant derived glycoprotein with a net charge of negative charge.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 식물 유래 당단백질은 버지니아 유래 당단백질, 녹차 유래 당단백질, 솔잎 유래 당단백질 및 아비스 유래 당단백질로 이루어진 군에서 선택되는 하나 이 상인, 마이크로캡슐.  The plant-derived glycoprotein is one or more selected from the group consisting of Virginia-derived glycoprotein, green tea-derived glycoprotein, pine needle-derived glycoprotein, and Abis-derived glycoprotein, and microcapsules.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 식물 유래 당단백질은 카르복실산 (carboxylic acid) 작용기를 가지는, 마이크로캡슐.  The microcapsule of claim 1, wherein the plant-derived glycoprotein has a carboxylic acid functional group.
【청구항 4] [Claim 4]
제 1항에 있어서, 상기 다당류는 펙틴, 잔탄, 비트 펙틴 (beet pectin), 카라 기난 (carrageenan), 키토산, 아라비아 고무 (gum arabic), 이눌린 (inulin), 메틸 샐 를로오즈, 잔탄검, 아마씨 검 (flaxseed gum), 카파-카라기난 ( κ -carrageenan), 아 이오타-카라기난 ( L -carrageenan), 젤란검 (gellan gum), 황산 덱스트란 (extran sulfate), 갈락토만난 (galactomannans), 및 알지네이트로 이루어진 군에서 선택되 는 하나 이상인, 마이크로캡술.  The method of claim 1, wherein the polysaccharide is pectin, xanthan, beet pectin, carrageenan, chitosan, gum arabic, inulin, methyl salulose, xanthan gum, flaxseed Flaxseed gum, kappa-carrageenan, l-carrageenan, gellan gum, dextran sulfate, galactomannans, and alginate One or more microcapsules selected from the group consisting of:
[청구항 5】 [Claim 5]
제 1항에 있어서, 상기 단백질은 콩 단백질, 카제인 (casein), 오브알부민 (ovalbumin) 및 락토글로불린 ( lactoglobul in)으로 이루어진 군에서 선택되는 하나 이상인, 마이크로캡슬.  The microcapsule of claim 1, wherein the protein is at least one selected from the group consisting of soy protein, casein, ovalbumin, and lactoglobulin.
【청구항 6】 [Claim 6]
제 5항에 있어서, 상기 콩 단백질은 대두 단백질인 것인 마이크로캡술. The microcapsule of claim 5, wherein the soy protein is soy protein.
【청구항 7】 [Claim 7]
제 1항에 있어서, 상기 다당류:단백질의 중량비는 9~1:1인, 마이크로캡슐,  The microcapsule according to claim 1, wherein the weight ratio of polysaccharide to protein is 9 to 1: 1.
【청구항 8】 [Claim 8]
거 U항에 있어서, 상기 다당류:단백질:당단백질의 중량비는 9~1:1:0.01~0.99 인, 마이크로캡슐.  The microcapsule according to claim U, wherein the weight ratio of the polysaccharide: protein: sugar protein is 9-1: 1: 0.01-0.99.
【청구항 9】 [Claim 9]
제 1항에 있어서, 상기 마이크로캡슐은 피막 내부에 지용성 물질을 포함하는, 마이크로캡술.  The microcapsule of claim 1, wherein the microcapsule comprises a fat-soluble substance in the film.
【청구항 10】 [Claim 10]
제 9항에 있어서, 상기 지용성 물질은 에스터계 오일, 트리글리세라이드계 오 일, 실리콘계 오일, 또는 하이드로카본계 오일에 용해될 수 있는 지용성 물질인 마 이크로캡슐.  The microcapsule of claim 9, wherein the fat-soluble substance is a fat-soluble substance that can be dissolved in an ester oil, a triglyceride oil, a silicone oil, or a hydrocarbon oil.
【청구항 11】 [Claim 11]
마이크로캡슐을 제조하는 방법으로세 상기 방법은  In the method for preparing microcapsules
i) 지용성 물질을 4 내지 6의 등전점 (PI)을 가지는 단백질과 1차 유화를 하 여 1차 o/w에멀전을 제조하는 단계 ; 및  i) preparing a primary o / w emulsion by first emulsifying the fat-soluble substance with a protein having an isoelectric point (PI) of 4 to 6; And
ii) 상기 제조된 1차 에멀전에 총전하 (net charge)가 음전하인 다당류 및 총전하 (net charge)가 음전하인 식물 유래 당단백질을 첨가하여 2차 유화 하는 단 계;  ii) secondary emulsification by adding a polysaccharide having a net charge of negative charge and a plant derived glycoprotein having a net charge of negative charge to the prepared primary emulsion;
를 포함하는 방법 .  How to Include
【청구항 12] [Claim 12]
제 11항에 있어서,  The method of claim 11,
i) 및 Π) 단계는 pH 6내지 7에서 수행하는 것이고,  steps i) and Π) are carried out at pH 6-7;
상기 방법은,  The method is
iii) 2차 유화한 에멀전을 pH 4.8 내지 5.2로 낮추어 마이크로캡슐을 형성하 는 단계를 더 포함하는 방법 . iii) lowering the secondary emulsified emulsion to pH 4.8 to 5.2 to form microcapsules.
【청구항 13】 [Claim 13]
제 1항 내지 제 10항 중 어느 한 항에 따른 마이크로캡슐을 포함하는 에멀전 (emulsion) 조성물.  Emulsion composition comprising the microcapsules according to any one of claims 1 to 10.
【청구항 14】 [Claim 14]
제 13항에 있어서, 상기 단백질은 마이크로캡슐을 포함하는 에멀전 조성물의 총 중량을 기초로 하여 0.1 내지 1중량 %인 것인 에멀전 조성물.  The emulsion composition of claim 13, wherein the protein is 0.1 to 1% by weight based on the total weight of the emulsion composition comprising microcapsules.
[청구항 15】 [Claim 15]
제 13항에 있어서, 상기 다당류는 마이크로캡슐을 포함하는 에멀전 조성물의 총 중량을 기초로 하여 1 내지 3중량 %인 것인 에멀전 조성물.  14. The emulsion composition of claim 13, wherein said polysaccharide is 1-3 weight percent based on the total weight of the emulsion composition comprising microcapsules.
【청구항 16】 [Claim 16]
제 13항에 있어서, 상기 지용성 물질은 마이크로캡술을 포함하는 에멀전 조성물의 총 중량을 기초로 하여 0.01 내지 30중량 %인 것인 에멀전 조성물. The emulsion composition of claim 13, wherein the fat soluble material is from 0.01 to 30% by weight based on the total weight of the emulsion composition comprising microcapsule.
PCT/KR2013/008632 2012-09-28 2013-09-26 Microcapsule comprising glycoprotein derived from plants WO2014051353A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015534389A JP6290899B2 (en) 2012-09-28 2013-09-26 Microcapsules containing plant-derived glycoproteins
US14/431,566 US9802064B2 (en) 2012-09-28 2013-09-26 Microcapsule comprising glycoprotein derived from plants
CN201380050900.0A CN104812380B (en) 2012-09-28 2013-09-26 Microcapsules containing the glycoprotein from plant
HK15108277.0A HK1207818A1 (en) 2012-09-28 2015-08-26 Microcapsule comprising glycoprotein derived from plants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120109161 2012-09-28
KR10-2012-0109161 2012-09-28
KR1020130110382A KR102152751B1 (en) 2012-09-28 2013-09-13 Microcapsule containing glycoprotein of plant origin
KR10-2013-0110382 2013-09-13

Publications (2)

Publication Number Publication Date
WO2014051353A2 true WO2014051353A2 (en) 2014-04-03
WO2014051353A3 WO2014051353A3 (en) 2014-05-22

Family

ID=50389097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008632 WO2014051353A2 (en) 2012-09-28 2013-09-26 Microcapsule comprising glycoprotein derived from plants

Country Status (1)

Country Link
WO (1) WO2014051353A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037016A (en) * 2003-06-12 2004-05-04 박원봉 A composition for an enteric coating of natural product containing lectin
US20110117180A1 (en) * 2007-01-10 2011-05-19 Ocean Nutrition Canada Limited Vegetarian microcapsules
US20120164666A1 (en) * 2008-11-10 2012-06-28 The Mitre Corporation Glycoprotein Vesicles and Their Methods of Use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037016A (en) * 2003-06-12 2004-05-04 박원봉 A composition for an enteric coating of natural product containing lectin
US20110117180A1 (en) * 2007-01-10 2011-05-19 Ocean Nutrition Canada Limited Vegetarian microcapsules
US20120164666A1 (en) * 2008-11-10 2012-06-28 The Mitre Corporation Glycoprotein Vesicles and Their Methods of Use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENICHOU, A. ET AL.: 'Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters' ADVANCES IN COLLOID AND INTERFACE SCIENCE vol. 108-109, 2004, pages 29 - 41 *
TONG, W. ET AL.: 'pH-responsive protein microcapsules fabricated via glutaraldehyde mediated covalent layer-by-layer assembly' COLLOID AND POLYMER SCIENCE vol. 286, no. 10, 2008, pages 1103 - 1109 *

Also Published As

Publication number Publication date
WO2014051353A3 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
McClements Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals
Fu et al. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility
Cheng et al. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process
Lu et al. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality
Mehrnia et al. Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein
Wang et al. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs)
Shah et al. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles
KR102152751B1 (en) Microcapsule containing glycoprotein of plant origin
Chen et al. Influence of pH and cinnamaldehyde on the physical stability and lipolysis of whey protein isolate-stabilized emulsions
Zhang et al. Improving the emulsifying property of gliadin nanoparticles as stabilizer of Pickering emulsions: Modification with sodium carboxymethyl cellulose
Chuacharoen et al. Comparative effects of curcumin when delivered in a nanoemulsion or nanoparticle form for food applications: Study on stability and lipid oxidation inhibition
Lacatusu et al. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol
Jain et al. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: An approach to enhance oral absorption of lycopene in rats in vivo
Gasa-Falcon et al. Development, physical stability and bioaccessibility of β-carotene-enriched tertiary emulsions
Ghiasi et al. Development of highly stable colloidal dispersions of gelled-oil nanoparticles loaded with cuminaldehyde
Urbánková et al. Formation of oleogels based on emulsions stabilized with cellulose nanocrystals and sodium caseinate
Han et al. Modulation of physicochemical stability and bioaccessibility of β-carotene using alginate beads and emulsion stabilized by scallop (Patinopecten yessoensis) gonad protein isolates
Hao et al. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation
Zhang et al. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3
Prichapan et al. Utilization of multilayer-technology to enhance encapsulation efficiency and osmotic gradient tolerance of iron-loaded W1/O/W2 emulsions: Saponin-chitosan coatings
Gahruie et al. Co‐encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types
Ribeiro et al. Digestibility and bioaccessibility of pickering emulsions of roasted coffee oil stabilized by chitosan and chitosan-sodium tripolyphosphate nanoparticles
Ribeiro et al. In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods
Fu et al. A composite chitosan derivative nanoparticle to stabilize a W1/O/W2 emulsion: Preparation and characterization
Li et al. Effect of soybean lipophilic protein–methyl cellulose complex on the stability and digestive properties of water–in–oil–in–water emulsion containing vitamin B12

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2015534389

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431566

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 05.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13842893

Country of ref document: EP

Kind code of ref document: A2