WO2014051212A1 - 구동배선이 교차패턴을 갖는 터치패널 - Google Patents
구동배선이 교차패턴을 갖는 터치패널 Download PDFInfo
- Publication number
- WO2014051212A1 WO2014051212A1 PCT/KR2012/011317 KR2012011317W WO2014051212A1 WO 2014051212 A1 WO2014051212 A1 WO 2014051212A1 KR 2012011317 W KR2012011317 W KR 2012011317W WO 2014051212 A1 WO2014051212 A1 WO 2014051212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- electrode
- driving
- sensing
- touch panel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04164—Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0448—Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a driving electrode used in a touch input device and a pattern of a driving wiring connected thereto, a touch panel module having a pattern of the driving electrode and the driving wiring, and an electronic device using the same.
- the touch input device refers to an input device that detects a touch position of a finger or the like on the touch panel and provides information on the detected touch position as input information.
- Typical touch input devices include a resistive method and a capacitive method.
- the capacitive type is largely divided into self-capacitance and mutual storage.
- the mutual storage method has a driving electrode and a sensing electrode made of a transparent conductive material, and a capacitance may be formed between the two electrodes.
- a capacitance may be formed between the two electrodes.
- the value of the capacitance formed between the two electrodes changes. Accordingly, by measuring whether the capacitance value formed between the two electrodes changes, it is possible to determine whether the finger touches the touch panel.
- an electrical signal is applied to the driving electrode, charge is injected into the sensing electrode. Since the amount of charge injected depends on the capacitance value formed between the two electrodes, the change in capacitance can be determined by measuring the amount of charge injected, and as a result, it is possible to know whether a touch input has been made.
- the operation electrode may be formed on the same layer as the sensing electrode or on different layers.
- the thickness of the touch panel may be thinner than that of forming different layers, but the arrangement may be complicated to prevent the operation electrode and the sensing electrode from being shorted to each other. Accordingly, the touch input sensing performance may vary.
- one driving electrode may include a plurality of driving electrodes-cells spaced apart from each other.
- the same driving signal should be applied to a plurality of driving electrode-cells belonging to one driving electrode.
- driving wirings should be connected to each driving electrode-cell belonging to one driving electrode. It must be electrically connected to each other.
- the sensing wire may be connected to the sensing electrode.
- one sensing electrode may be composed of a plurality of sensing electrode-cells spaced apart from each other.
- the sensing wires may be connected to each sensing electrode cell.
- the uniformity of the overall sensing sensitivity of the touch panel changes according to the shape and arrangement of the sensing electrode, the driving electrode, the driving wiring, and the sensing wiring, the deviation of the sensing sensitivity in each sensing region of the touch panel is minimized. To provide a structure that can be done.
- N sensing electrodes-cells arranged along a first direction (+ y direction); And N driving electrodes-cells disposed in the vicinity of the sensing electrodes-cells along the first direction, and a k-th driving wiring connected to a k-th driving electrode-cell of the N driving electrodes-cells includes: The k + 1th driving wiring connected to the edge of the kth driving electrode-cell in the second direction (+ x) and connected to the k + 1th driving electrode-cell among the N driving electrode-cells is k + 1.
- the above-described problem can be achieved by using a touch panel connected to the third driving electrode cell in the third direction (-x).
- a touch panel in which a sensing electrode and a driving electrode are arranged in a matrix on the same layer.
- the touch panel includes N sensing electrodes-cells included in the first sensing electrodes included in the first column; And N driving electrodes-cells disposed in the first row to be capacitively coupled to the N sensing electrodes-cells, respectively.
- a k-th driving wiring connected to a k-th driving electrode-cell among the N driving electrodes-cells extends along the first row from the right side of the first row, and k + 1 of the N driving electrodes-cells.
- the k + 1th driving wiring connected to the first driving electrode-cell extends along the first row from the left of the first row.
- a touch panel includes a plurality of sensing electrodes including a plurality of sensing electrodes and cells and extending in a vertical direction, and including a plurality of driving electrodes and cells and extending in a left and right direction. It includes a plurality of driving electrodes formed.
- the plurality of sensing electrodes and the plurality of driving electrodes are arranged in a matrix form.
- the driving wiring connected to the k-th driving electrode of the plurality of driving electrodes-cells disposed to be capacitively coupled to the plurality of sensing electrodes-cells included in the first sensing electrodes of the plurality of sensing electrodes is the first sensing electrode.
- the driving line extends along the extending direction of the first sensing electrode at a right side of the first sensing electrode, and extends along the extending direction of the first sensing electrode at a left side of the first sensing electrode.
- the k-th driving electrode-cell may have a symmetrical shape with respect to the k + 1th driving electrode-cell.
- the k-th node formed by the k-th driving electrode-cell and the k-th sensing electrode-cell capacitively coupled with the k-th driving electrode-cell is the k + 1th driving electrode-cell and the k + 1. It may have a symmetrical shape with respect to the k + 1th node formed by the k + 1th sensing electrode-cell capacitively coupled to the first driving electrode-cell.
- the k-th driving electrode-cell and the k-th sensing electrode-cell capacitively coupled to the k-th driving electrode-cell may each have a vortex shape rotating in the same direction.
- the touch panel provided according to another aspect of the present invention includes a plurality of touch nodes formed by capacitive coupling of one first type-cell and one second type-cell.
- the plurality of touch nodes are arranged in a matrix form.
- a wire connected to a k-th first type-cell of the plurality of first type-cells included in a first column extending upward and downward extends along the first row from the right side of the first row.
- the wiring connected to the k + 1 th first type-cell extends along the first row from the left of the first row.
- the first type-cell may be a driving electrode-cell
- the second type-cell may be a sensing electrode-cell
- the wiring may be a driving wiring
- the first type-cell may be a sensing electrode-cell
- the second type-cell may be a driving electrode-cell
- the wiring may be a sensing wiring
- the k-th first type-cell may have a symmetrical shape with respect to the k + 1th first type-cell.
- the one first type-cell and the one second type-cell may each have a vortex shape rotating in the same direction.
- FIG. 1A and 1B illustrate an operation principle of a touch panel in which a driving electrode and a sensing electrode are formed on the same layer.
- 2A to 2C illustrate changes in capacitance according to a touch input position in a touch panel.
- 3A to 3E illustrate a touch panel in which a sensing electrode and a driving electrode are disposed on the same layer.
- 4A to 4E illustrate a touch panel having a matrix structure of 8 rows * 4 columns according to another embodiment.
- 5A illustrates the structure of a touch panel according to an embodiment of the present invention.
- FIG. 5B shows the first column of FIG. 5A in more detail
- FIG. 5C shows the eighth column of FIG. 5A in more detail.
- FIG. 5D illustrates the second column of FIG. 5A in more detail to illustrate the capacitance formed at each node of FIG. 5A.
- FIG. 5E is an enlarged view of some nodes of FIG. 5A.
- FIG. 5F illustrates a result of applying the change in capacitance described with reference to FIG. 2C to FIG. 5E.
- 6A to 6D illustrate various structures of different nodes arranged in the vertical direction according to one embodiment of the present invention.
- FIG. 7A and 7B illustrate a structure of one sensing electrode, a driving electrode-cell electrostatically coupled to the sensing electrode, and a driving wiring connected to the driving electrode-cell according to an embodiment of the present invention.
- FIG. 8A to 8D illustrate a touch panel according to another exemplary embodiment of the present invention.
- FIGS. 9A to 9D illustrate a touch panel according to another exemplary embodiment of the present invention.
- the touch panel may include a plurality of transparent electrodes extending in a first direction, for example, a vertical direction.
- the touch panel may include a plurality of transparent electrodes extending in a second direction, for example, in a horizontal direction.
- the first direction and the second direction may be perpendicular to each other, but are not limited thereto.
- the electrode extending in the vertical direction may be referred to as a sensing electrode
- the electrode extending in the horizontal direction may be referred to as a driving electrode.
- the roles of the vertical electrode and the horizontal electrode may be interchanged.
- the sensing electrodes and the driving electrodes may be formed on different layers, or may be formed on the same layer.
- An intersection region of the sensing electrodes and the driving electrode may be defined, and these intersection regions may have a matrix structure.
- An area corresponding to each element of the matrix structure may be used as a reference unit for determining a touch input position in the touch panel.
- Such a basic unit may be referred to as a node in the present invention.
- charge When a voltage is applied to the driving electrode, charge may be injected to the sensing electrodes through mutual capacitance Csense at the intersection of the driving electrode and the sensing electrodes.
- a driving signal such as a pulse train in which the voltage of the first level Vdrive and the voltage of the second level 0V are periodically repeated may be applied to one of the driving electrodes.
- the driving signal may be applied to another driving electrode.
- a DC voltage for example, a voltage of 0V may be applied to the other driving electrodes except for the driving electrode to which the driving signal is input.
- a configuration in which a driving signal is simultaneously applied to several driving electrodes may be used.
- each driving electrode 110 includes a plurality of driving electrode-cells separated from each other, and each sensing electrode 120 is directly connected to each other. It may consist of two sensing electrodes-cells. In this case, each driving electrode-cell may be disposed between the sensing electrodes 120. In this case, the driving electrodes-cells separated from each other in one driving electrode 110 may be connected to each other outside the sensing region in which the sensing electrode 120 and the driving electrode 110 are disposed. To this end, driving wirings may be connected to the driving electrode-cell. As shown in FIG.
- 2A to 2C illustrate changes in capacitance according to a touch input position in a touch panel.
- FIG. 2A illustrates a touch panel in which a total of eight sensing electrodes C1 to C8 and a total of 12 driving electrodes R1 to R12 are formed.
- the area of each node where the sensing electrode and each driving electrode intersect is indicated by a square.
- an area that actually blocks the electric field from the driving electrode to the sensing electrode may be modeled as an ellipse or a circle.
- the description is based on the assumption that the model is circular.
- FIG. 2B details the nodes [R3, C4], nodes [R3, C5], and nodes [R3, C6] of FIG. 2A.
- the touch input may be made around the point indicated by the indexes [-9] to [9] shown in FIG. 2B.
- touch input is made around the points indicated by the index ([-9]), the index ([0]), and the index ([9])
- the electric field is cut off by the circular area (A [-9]), Circular region A [0], and circular region A [9].
- the y-axis values in FIG. 2C represent capacitance change values of the nodes [R3, C5], and the + x and -x axes represent distances spaced to the right and left from the center point of the nodes [[R3, C5], respectively).
- the indices [-9] to [9] in Fig. 2C correspond to the indices [-9] to [9] in Fig. 2B, respectively.
- the straight line LI shown in FIG. 2C shows the change in the ideal capacitance according to the touch input position
- the curve LR shows the change in the actual capacitance in accordance with the touch input position.
- the straight line LI is ideal because the calculation to be performed in the touch input processor can be simplified if the capacitance change due to the change in the touch input position satisfies the linearity.
- D (xn) shown in FIG. 2C represents the difference between the straight line LI and the curve LR at the point x n .
- the degree suitable for interpolation is defined by the term Interpolability , which can be obtained by measuring the amount of change in capacitance between two adjacent cells over distance. Equation 1 quantifies the difference between an ideal interpolation response profile (IRP) and the actual interpolation response profile.
- IRP ideal interpolation response profile
- Equation 1 it can be seen that the greater the interpolability, the closer to the ideal IRP.
- the density of the line (sensing line) of the pattern in the sensing electrode and / or the driving electrode may be designed to be maximum.
- the density of the sensing line determines the distribution of the fringing cap in one cell node, which is proportional to the length of the driving electrode and the sensing electrode facing each other.
- the interpolation response profile shown in FIG. 2C shows a symmetrical shape
- this profile may appear mainly when each node of the touch panel has a symmetrical pattern.
- the interpolation response profile is asymmetrical, there may be a problem in that the uniformity of touch input sensing is degraded.
- the touch panel of FIG. 3A illustrates a touch panel in which a sensing electrode and a driving electrode are disposed on the same layer.
- Each driving electrode includes four driving electrodes-cells 210, and each sensing electrode includes eight sensing electrodes-cells 200.
- Eight sensing electrodes-cells 200 belonging to one sensing electrode are connected to each other vertically. Since the sensing electrode and the driving electrode are disposed on the same layer, the four driving electrodes-cells 210 belonging to one driving electrode cannot be connected to each other across the sensing electrode in the horizontal direction, and the sensing electrode-cell 200
- the driving electrode-cells 210 may be connected to each other through a wire connected to the outside of the region where the driving electrode-cell 210 is disposed.
- This area can act as a so-called deadzone (DZ), which does not contribute significantly in detecting real touch input.
- DZ deadzone
- the symmetry of one node may be determined according to the specific shape of the dead zone.
- FIG. 3B shows eight sensing electrode-cells arranged in the first column C1 of FIG. 3A, eight sensing electrode-cells and eight driving electrode-cells arranged in the second column C2, and the first column C1.
- the eight driving wires disposed between the second column C2 and connected to the eight driving electrodes-cells are enlarged.
- the driving electrode cells D12, D22, D32, D42, D52, D62, D72, and D82 and the sensing electrode cells S12, S22, S32, S42, S52, S62, S72, S82) were arrange
- the driving electrode cells D12, D22, D32, D42, D52, D62, D72, and D82 belong to different driving electrodes, and are all electrically separated from each other.
- the capacitance formed at the node 12 is mainly formed by the capacitance CM1 of Table 1 below.
- the capacitance formed at the node 22 is mainly formed by the first capacitance CM1 of Table 2 below.
- the capacitance formed at the node 32 is mainly formed by the first capacitance CM1 of Table 3 below.
- the capacitance formed at the node 42 includes the first capacitance CM1, the second capacitance CM2, the third capacitance CM3, the fourth capacitance CM4, and the fifth capacitance CM5 in Table 4 below. It is mainly formed by
- CM1> formed between driving electrode-cell D42 and sensing electrode-cell S42.
- CM2> driving wiring TR42 connected to driving electrode-cell D42.
- CM3> formed between the drive wiring TR42 connected to the driving electrode-cell D42 and the sensing electrode-cell S31.
- 4 capacitance CM4 formed between the drive wiring TR42 connected to the driving electrode cell D42 and the sensing electrode cell S21.
- CM5> At the driving electrode cell D42. It is formed between the connected drive wiring TR42 and the sensing electrode-cell S11.
- the capacitance formed at the node 42 is not determined only by the first capacitance CM1 generated by the shape of the driving electrode cell and the sensing electrode cell.
- the driving wiring TR42 connected to the driving electrode cell D42 is adjacent to the sensing electrodes cells S11 to S41 adjacent to the left side thereof.
- second to fifth capacitances CM2 to CM5 are additionally generated between the driving wiring TR42 and the four sensing electrode cells S11 to S41. .
- the capacitance CM of the node 42 including the sensing electrode cell S42 and the driving electrode cell D42 is determined by the combination of the first to fifth capacitances CM1 to CM5 described above. Properties.
- FIG. 3C illustrates a shape in which the ground electrode GND1 is additionally disposed between the wiring TR42 and the four sensing electrodes cells S11 to S41 of FIG. 3B. Since the ground electrode GND1 prevents generation of the second to fifth capacitances CM2 to CM5 described above, the structure shown in FIG. 3C exhibits more uniform capacitance characteristics than the structure of FIG. 3B. However, the dead zone DZ becomes wider due to the addition of the ground electrode GND1.
- the "dead zone (DZ)” refers to a region occupied by the sensing wiring, the driving wiring, and the ground electrode except for the sensing electrode and the driving electrode among the sensing regions, and the wiring included in the “dead zone (DZ)"; Since the electrodes are additional components to arrange the sensing electrode and the driving electrode in one layer, the electrodes may have an unwanted effect on the performance of the touch input. Therefore, it may be preferable that the size of the dead zone is small.
- FIG. 3D is an enlarged view of the node P12 of FIG. 3A.
- the sensing electrode cell 200 and the driving electrode cell 210 are disposed to the right of the node P12, and the driving wires and the ground electrode are disposed to the left of the node P12.
- 3E illustrates a result of applying the change in capacitance described with reference to FIG. 2C to FIG. 3D. Due to the asymmetrical structure of the node P12, the change in capacitance due to the change in the touch position in the node P12 is asymmetrical.
- FIG. 4A illustrates a touch panel having a matrix structure of 8 rows * 4 columns according to another embodiment.
- this embodiment since seven driving wirings are disposed along the left and right directions between the second column C2 and the third column C3, the left and right widths of the dead zone DZ are considerably large.
- FIG. 4B in which a portion of FIG. 4A is enlarged, it can be seen that capacitances such as the second to fifth capacitances CM2 to CM5 shown in FIG. 3B do not appear.
- FIG. 4C is an enlarged view of the node P12 of FIG. 4A.
- the sensing electrode cell 200 and the driving electrode cell 210 are disposed to the left of the node P12, and the driving wires are disposed to the right of the node P12.
- FIG. 4D illustrates a result of applying the change in capacitance described with reference to FIG. 2C to FIG. 4C. Due to the left and right asymmetrical structure of the node P12, the change in capacitance according to the change of the touch position in the node P12 is asymmetrical with respect to the center of the node o.
- 5A illustrates the structure of a touch panel according to an embodiment of the present invention.
- FIG. 5A illustrates an example of a touch panel having a matrix structure of 8 rows * 4 columns, according to an embodiment of the present invention.
- Each of the driving electrodes R1 to R8 includes four driving electrodes-cells 210, and each of the sensing electrodes C1 to C4 includes eight sensing electrodes-cells 200. Eight sensing electrode-cells belonging to one sensing electrode are connected to each other up and down by a connecting conductor (eg, a transparent conductor) 111.
- a connecting conductor eg, a transparent conductor
- the sensing electrodes C1 to C4 and the driving electrodes R1 to R8 are disposed on the same layer, four driving electrodes-cells 210 belonging to one driving electrode may be connected to each other across the sensing electrode in left and right directions.
- the sensing electrode cell 200 and the driving electrode cell 210 may be connected to each other through a wire connected to the outside of the region where the sensing electrode cell 200 and the driving electrode cell 210 are disposed.
- the driving signal generator 220 applies the driving signals to the eight driving electrodes R1 to R8, and the touch input signal detecting unit 230 is connected to the four sensing electrodes C1 to C4 to determine whether a touch is input. And an input position.
- FIG. 5B shows the first column R1 of FIG. 5A in more detail
- FIG. 5C shows the eighth column R8 of FIG. 5A in more detail.
- the drive wirings are indicated by reference numerals 211 to 214, 221 to 224, 231 to 234, 241 to 244, 251 to 254, 261 to 264, 271 to 274 and 281 to 284, respectively.
- the dead zone DZ shown in FIGS. 5B and 5C has a narrower left and right widths than the dead zone DZ shown in FIG. 4A, and is more uniformly distributed throughout the touch panel.
- FIG. 5D illustrates the second column C2 of FIG. 5A in more detail to explain the capacitance formed in each node of FIG. 5A.
- the scales in the left and right directions are expanded.
- the capacitance formed at the node 12 is mainly formed by the first capacitance CM1 of Table 5 below.
- the capacitance formed at the node 22 is mainly formed by the first capacitance CM1 and the second capacitance CM2 in Table 6 below.
- the capacitance formed at the node 32 is mainly formed by the first capacitance CM1 and the third capacitance CM3 in Table 7 below.
- the capacitance formed at the node 42 is mainly formed by the first capacitance CM1 and the third capacitance CM3 in Table 8 below.
- Table 8 ⁇ First capacitance CM1>: formed between driving electrode-cell D42 and sensing electrode-cell S42. ⁇ Third capacitance CM3>: driving wiring 242 connected to driving electrode-cell D42. ) And the sensing electrode-cell (S32).
- FIG. 5E is an enlarged view of the node P12 of FIG. 5A.
- the sensing electrode-cell 200, the driving electrode-cell 210, and the driving wirings generally have a structure close to symmetry. In particular, the driving wirings are evenly distributed in the left and right directions within the node P12.
- FIG. 5F illustrates a result of applying the change in capacitance described with reference to FIG. 2C to FIG. 5E. Since the node P12 has a structure close to the left and right symmetry, the change in capacitance caused by the change in the position of the touch input in the node P12 is almost symmetrical with respect to the center o of the node P12.
- 6A to 6D illustrate various structures of different nodes arranged in the vertical direction according to one embodiment of the present invention.
- FIG. 6A illustrates two sequential nodes arranged up and down in one column in a touch panel having a structure as shown in FIG. 5A.
- the shape of the k-th node is symmetrical with the k + 1 th node in the left-right direction.
- the k-th sensing electrode-cell and the k + 1th sensing electrode-cell are electrically connected to each other by the conductor pattern 111.
- 6b to 6d respectively show a modified pattern from FIG. 6a.
- FIGS. 6A-6D Common features of FIGS. 6A-6D are as follows.
- the sensing electrode-cell 200 of the k-th node and the sensing electrode-cell 200 of the k + 1th node are connected to each other by the conductor pattern 111 in the vertical direction.
- the driving electrode-cell 210 of the k-th node is exposed to the first side (left or right), and the driving electrode-cell 210 of the k + 1th node is exposed to the second side (right or left).
- the shape of the k-th node may have a structure substantially symmetrical with the k + 1 th node.
- FIG. 7A and 7B illustrate a structure of one sensing electrode, a driving electrode-cell electrostatically coupled to the sensing electrode, and a driving wiring connected to the driving electrode-cell according to an embodiment of the present invention.
- one sensing electrode-cell 200 basically included in the sensing electrode may be provided to itself except for the slits SL1 and SL3 formed on one side or the slits SL2 and SL4 formed on the other side.
- the driving electrode-cell 210 to be electrostatically coupled has a structure that wraps up, down, left, and right.
- the outer shape of the sensing electrodes-cell is generally rectangular in shape, but the present invention is not limited thereto.
- the touch panel is not rectangular in shape, it may be easily understood that the outer shape of each sensing electrode cell may not be rectangular in order to optimally arrange the sensing electrode cells.
- the inner edge of each sensing electrode cell may have an arbitrary shape, and each driving electrode cell may also have any shape.
- the sensing electrode cells 200 belonging to one sensing electrode may be directly connected up and down by the connecting conductor 111.
- Slits formed in the k-th sensing electrode-cell and the k + 1th sensing electrode-cell vertically adjacent to one sensing electrode may be formed in opposite directions.
- the slits SL1 are formed in the right direction, but the slits SL2 are formed in the left direction.
- FIG. 7A if two sensing electrode cells vertically adjacent to each other are disposed close enough to each other, a component corresponding to the connection conductor 111 may be omitted. As a result, FIG. 7A may be modified into the same shape as that of FIG. 7B.
- FIG. 8A to 8D illustrate a touch panel according to another exemplary embodiment of the present invention.
- each driving electrode cell 210 has a symmetrical structure up, down, left, and right, and each sensing electrode cell 200 has a shape corresponding to the shape of the driving electrode cell 210.
- a slit SL is formed in each sensing electrode cell 200 to pass a sensing wiring to a left side or a right side thereof.
- FIG. 8C corresponds to four columns R1 to R4 and four rows C1 to C4 of the touch panel illustrated in FIG. 5A, and each touch node is replaced with the touch node shown in FIG. 8A.
- FIG. 8D illustrates a configuration in which the components corresponding to the connection conductors 111 are omitted since the sensing electrodes-cells vertically adjacent to each other in FIG. 8C are sufficiently disposed.
- FIGS. 9A to 9D illustrate a touch panel according to another exemplary embodiment of the present invention.
- FIG. 9A shows one touch node formed by one sensing electrode cell and one driving electrode cell electrostatically coupled thereto.
- the sensing electrode-cell and the driving electrode-cell of the touch node according to FIG. 9A have a swirl shape that rotates in the same direction.
- a slit SL is formed on the right side of the sensing electrode cell 200 to pass the sensing wiring.
- FIG. 9B illustrates the structure of the touch panel in which the touch nodes are arranged in a matrix form. In FIG. 9B, the drive wiring is not shown for convenience. However, in order to arrange the driving wirings alternately, two touch nodes adjacent to each other vertically in one sensing electrode ex C1 have a symmetrical structure in the horizontal direction.
- FIG. 9A shows one touch node formed by one sensing electrode cell and one driving electrode cell electrostatically coupled thereto.
- the sensing electrode-cell and the driving electrode-cell of the touch node according to FIG. 9A have a swirl shape that rotates in the same direction.
- FIG. 9C illustrates a configuration in which components corresponding to the connection conductors 111 are omitted since the sensing electrodes-cells vertically adjacent to each other in FIG. 9B are sufficiently disposed.
- FIG. 9D shows only one sensing electrode of the electrode structure shown in FIG. 9C separately.
- the sizes of the slits shown in FIGS. 7 to 9 may be exaggerated, and in fact, may be formed to have a very narrow width.
- the driving electrode cells constituting one touch node have a symmetrical shape in up, down, left, and right sides, and the corresponding sensing electrode cells are also vertically, up, down, left, and right except for slits. It has a symmetrical shape.
- the length of the boundary portion where the driving electrode cell and the sensing electrode cell face each other can be configured to be sufficiently large, it is very advantageous to uniformize the distribution of the touch input sensitivity within one touch node. It can be easily understood that similar effects to those of FIGS. 8A to 8D can be obtained even when the electrode patterns described with reference to FIGS. 9A to 9D are used.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Input By Displaying (AREA)
Abstract
하나의 제1 타입-셀과 하나의 제2 타입-셀의 용량결합에 의해 형성되는 터치노드를 복수 개 포함하며, 상기 복수 개의 터치노드가 행렬형태로 배열된 터치패널이 공개된다. 이때, 상하로 연장된 제1 행(column)에 포함된 복수 개의 상기 제1 타입-셀 중 k 번째의 제1 타입-셀에 연결된 배선은 상기 제1 행의 오른쪽에서 상기 제1 행을 따라 연장되고, k+1 번째의 제1 타입-셀에 연결된 배선은 상기 제1 행의 왼쪽에서 상기 제1 행을 따라 연장된다.
Description
본 발명은 터치입력장치에 사용되는 구동전극 및 여기에 연결된 구동배선의 패턴, 이러한 구동전극과 구동배선의 패턴을 갖는 터치패널 모듈, 그리고 이를 이용한 전자장치에 관한 것이다.
터치입력장치는 터치패널 상에서 손가락 등의 접촉위치를 감지하고, 감지된 접촉위치에 관한 정보를 입력정보로서 제공하는 입력장치를 지칭한다. 터치입력장치에는 대표적으로 저항 방식과 용량성 방식이 있다. 용량성 방식은 크게 자기축전방식과 상호축전방식이 있다.
상호축전방식은 투명한 전도성 소재로 이루어진 구동전극 및 감지전극을 갖는데, 이 두 전극 사이에 커패시턴스가 형성될 수 있다. 손가락을 이 두 전극 근처에 가져가거나 또는 접촉하게 되면 두 전극 사이에 형성되는 커패시턴스의 값이 변화하게 된다. 따라서 두 전극 사이에 형성되는 캐패시턴스의 값의 변화 여부를 측정하면 손가락으로 터치패널에 접촉했는지 여부를 알아낼 수 있다. 이를 위하여 구동전극에 전기신호를 인가하면 감지전극에 전하가 주입된다. 주입되는 전하의 양은 두 전극 사이에 형성된 커패시턴스 값에 따라 달라지기 때문에 주입된 전하의 양을 측정함으로써 캐패시턴스의 변화를 알아낼 수 있고 그 결과 터치입력이 이루어졌는지 여부를 알 수 있다.
상호축전방식에 있어서, 동작전극은 감지전극과 동일한 층에 형성될 수도 있고 서로 다른 층에 형성될 수도 있다. 동일한 층에 형성하는 경우에는 서로 다른 층에 형성되는 경우에 비하여 터치패널의 두께를 얇게 할 수 있으나 동작전극과 감지전극이 서로 단락되지 않도록 하기 위하여 그 배치가 복잡해질 수 있으며, 패턴의 구체적인 배치에 따라 터치입력 감지성능이 달라질 수 있다.
감지전극과 구동전극이 동일 층에 배치되는 터치패널에서 하나의 구동전극은 서로 이격된 복수 개의 구동전극-셀을 포함할 수 있다. 하나의 구동전극에 속한 복수 개의 구동전극-셀에는 동일한 구동신호가 인가되어야 하는데, 이를 위해서는 하나의 구동전극에 속한 각각의 구동전극-셀에 구동배선들이 연결되어야 하고, 이 구동배선들은 터치패널에서 서로 전기적으로 접속되어야 한다. 감지전극에는 감지배선이 연결될 수 있다.
감지전극과 구동전극이 동일 층에 배치되는 또 다른 실시예에서는, 위와 달리, 하나의 감지전극이 서로 이격된 복수 개의 감지전극-셀로 구성될 수 있다. 이 경우에도 위와 마찬가지로 각각의 감지전극-셀에 감지배선들이 각각 연결되어야 할 수 있다.
감지전극, 구동전극, 구동배선, 및 감지배선의 형상 및 배치에 따라 터치패널의 전체적 감지감도의 균일성이 변화하게 되기 때문에, 본 발명에서는 터치패널의 각 감지영역에서의 감지감도의 편차를 최소화할 수 있는 구조를 제공하고자 한다.
제1방향(+y 방향)을 따라 배열된 N개의 감지전극-셀; 및 상기 제1방향을 따라 상기 각각의 감지전극-셀의 근처에 배치된 N개의 구동전극-셀을 포함하며, 상기 N개의 구동전극-셀 중 k번째 구동전극-셀에 연결된 k번째 구동배선은 상기 k번째 구동전극-셀의 제2방향(+x)쪽 가장자리에 연결되고, 상기 N개의 구동전극-셀 중 k+1번째 구동전극-셀에 연결된 k+1번째 구동배선은 상기 k+1번째 구동전극-셀의 제3방향(-x)쪽 가장자리에 연결된 터치패널을 이용하여 상술한 과제를 달성할 수 있다.
본 발명의 일 양상에 따라 감지전극과 구동전극이 동일층에 행렬형태로 배치된 터치패널이 제공된다. 이 터치패널은 제1 행(column)에 포함된 제1 감지전극에 포함된 N개의 감지전극-셀; 및 상기 제1 행에서 각각 상기 N개의 감지전극-셀과 용량결합되도록 배치된 N개의 구동전극-셀을 포함한다. 이때, 상기 N개의 구동전극-셀 중 k번째 구동전극-셀에 연결된 k번째 구동배선은 상기 제1 행의 오른쪽에서 상기 제1 행을 따라 연장되고, 상기 N개의 구동전극-셀 중 k+1번째 구동전극-셀에 연결된 k+1번째 구동배선은 상기 제1 행의 왼쪽에서 상기 제1 행을 따라 연장된다
본 발명의 다른 관점에 따라 제공되는 터치패널은, 복수 개의 감지전극-셀을 포함하며 수직방향으로 연장되어 형성된 감지전극을 복수 개 포함하고, 복수 개의 구동전극-셀을 포함하며 좌우방향으로 연장되어 형성된 구동전극을 복수 개 포함한다. 이때, 상기 복수 개의 감지전극과 상기 복수 개의 구동전극이 행렬형태로 배치된다. 그리고 상기 복수 개의 감지전극 중 제1 감지전극에 포함된 복수 개의 감지전극-셀과 용량결합하도록 배치된 복수 개의 구동전극-셀 중, k번째 구동전극-셀에 연결된 구동배선은 상기 제1 감지전극의 오른쪽에서 상기 제1 감지전극의 연장방향을 따라 연장되고, k+1번째 구동전극-셀에 연결된 구동배선은 상기 제1 감지전극의 왼쪽에서 상기 제1 감지전극의 연장방향을 따라 연장된다.
이때, 상기 k번째 구동전극-셀은 상기 k+1번째 구동전극-셀에 대하여 대칭인 모양을 가질 수 있다.
이때, 상기 k번째 구동전극-셀 및 상기 k번째 구동전극-셀과 용량결합하는 k번째 감지전극-셀에 의해 형성되는 k번째 노드는, 상기 k+1번째 구동전극-셀 및 상기 k+1번째 구동전극-셀과 용량결합하는 k+1번째 감지전극-셀에 의해 형성되는 k+1번째 노드에 대하여 대칭인 모양을 가질 수 있다.
이때, 상기 k번째 구동전극-셀과 상기 k번째 구동전극-셀과 용량결합하는 k번째 감지전극-셀은 각각 동일한 방향으로 회전하는 소용돌이 형상을 갖고 있을 수 있다.
본 발명의 또 다른 관점에 따라 제공되는 터치패널은 하나의 제1 타입-셀과 하나의 제2 타입-셀의 용량결합에 의해 형성되는 터치노드를 복수 개 포함한다. 이때, 상기 복수 개의 터치노드가 행렬형태로 배열된다. 그리고 상하로 연장된 제1 행(column)에 포함된 복수 개의 상기 제1 타입-셀 중 k 번째의 제1 타입-셀에 연결된 배선은 상기 제1 행의 오른쪽에서 상기 제1 행을 따라 연장되고, k+1 번째의 제1 타입-셀에 연결된 배선은 상기 제1 행의 왼쪽에서 상기 제1 행을 따라 연장된다.
이때, 상기 제1 타입-셀은 구동전극-셀이고 상기 제2 타입-셀은 감지전극-셀이며, 상기 배선은 구동배선일 수 있다. 또는, 상기 제1 타입-셀은 감지전극-셀이고 상기 제2 타입-셀은 구동전극-셀이며, 상기 배선은 감지배선일 수 있다.
이때, 상기 k 번째의 제1 타입-셀은 상기 k+1 번째의 제1 타입-셀에 대하여 대칭인 모양을 가질 수 있다.
이때, 상기 하나의 제1 타입-셀과 상기 하나의 제2 타입-셀은 각각 동일한 방향으로 회전하는 소용돌이 형상을 가질 수 있다.
본 발명에 따르면, 터치패널의 각 감지영역에서의 감지감도의 편차를 최소화할 수 있는 구조를 제공할 수 있다.
도 1a와 도 1b는 구동전극과 감지전극이 동일층에 형성된 터치패널의 동작원리를 설명하기 위한 도면이다.
도 2a 내지 도 2c는 터치패널에서 터치입력 위치에 따른 정전용량의 변화를 설명하기 위한 것이다.
도 3a 내지 도 3e는 일 실시예에 따라 감지전극과 구동전극이 동일한 층에 배치된 터치패널을 나타낸다.
도 4a 내지 도 4e는 또 다른 실시예에 따른 8 row * 4 column의 매트릭스 구조를 갖는 터치패널을 나타낸 것이다.
도 5a는 본 발명의 일 실시예에 따른 터치패널의 구조를 나타낸 것이다.
도 5b는 도 5a의 첫번째 열을 더 자세히 나타낸 것이고, 도 5c는 도 5a의 여덟 번째 열을 더 자세히 나나낸 것이다.
도 5d는 도 5a의 각 노드에 형성되는 정전용량을 설명하기 위하여 도 5a의 두 번째 칼럼을 더 자세히 도시한 것이다.
도 5e는 도 5a의 일부 노드를 확대도시한 것이다.
도 5f는 도 2c를 통해 설명한 정전용량의 변화를 도 5e에 적용한 결과를 나타낸다.
도 6a 내지 도 6d는 본 발명의 일 실시에에 따라 상하 방향으로 배치된 서로 다른 노드의 다양한 구조를 나타낸다.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 한 개의 감지전극과 이 감지전극에 정전결합되는 구동전극-셀, 그리고 이 구동전극-셀에 연결되는 구동배선의 구조를 나타낸 것이다.
도 8a 내지 도 8d는 본 발명의 다른 실시예에 따른 터치패널을 설명하기 위한 것이다.
도 9a 내지 도 9d는 본 발명의 또 다른 실시예에 따른 터치패널을 설명하기 위한 것이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 이하에서 사용되는 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 이하에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 본 명세서에 첨부한 도면은 설명의 편의를 위해 일부 과장되거나 축소되어 도시되었으며, 본 발명의 일 실시예를 실제로 구현할 경우 도면에 나타난 구성요소의 각 부분의 축척은 달라질 수 있다.
본 발명의 일 실시예에 따른 터치패널은 제1 방향, 예를 들어 수직방향으로 연장된 투명전극을 여러 개 포함할 수 있다. 또한, 터치패널은 제2 방향, 예를 들어 수평방향으로 연장된 투명전극을 여러 개 포함할 수 있다. 여기서 제1 방향과 제2 방향은 서로 수직인 방향일 수 있으나 이에 국한되지는 않는다. 본 명세서에서는 편의상, 도면에서 수직방향으로 연장된 전극은 감지전극(sensing electrode)이라고 지칭할 수 있고 수평방향으로 연장된 전극은 구동전극(driving electrode)이라고 지칭할 수 있다. 그러나 다른 실시예에서는 수직방향의 전극과 수평방향의 전극의 역할은 서로 바뀔 수 있다.
감지전극들과 구동전극들은 서로 다른 레이어(layer, 층)에 형성될 수도 있고, 또는 동일한 레이어에 형성될 수도 있다. 감지전극들과 구동전극의 교차영역을 정의할 수 있는데, 이들 교차영역은 행렬구조를 가질 수 있다. 이 행렬구조의 각 요소(element)에 대응하는 영역은 터치패널 내에서의 터치입력위치를 결정하기 위한 기준 단위로 사용될 수 있다. 이러한 기본 단위를 본 발명에서는 노드(node)라고 지칭할 수 있다.
구동전극에 전압이 인가되면, 구동전극과 감지전극들의 교차점에서 상호 커패시턴스(mutual capacitance)(Csense)를 통해 감지전극들에게 전하(charge)가 주입될 수 있다. 각 감지전극에 입력되는 전하량(Qsense)은 구동신호의 제1 레벨(Vdrive)과 상호 커패시턴스(Csense)의 곱으로 나타낼 수 있다(즉, Qsense = Vdrive * Csense).
특정 시구간 동안, 제1 레벨(Vdrive)의 전압과 제2 레벨(0V)의 전압이 주기적으로 반복되는 펄스 트레인과 같은 구동신호를 구동전극 중 하나의 전극에게 인가할 수 있다. 특정 시구간이 끝나면, 구동신호를 다른 구동전극에 인가할 수 있다. 구동신호가 입력되는 구동전극을 제외한 나머지 구동전극들에는 직류전압, 예컨대 0V의 전압이 인가될 수 있다. 그러나 실시예에 따라서는 여러 개의 구동전극에 구동신호를 동시에 인가하는 구성을 사용할 수도 있다.
도 1a와 도 1b는 구동전극과 감지전극이 동일층에 형성된 터치패널의 동작원리를 설명하기 위한 도면이다. 구동전극(110)과 감지전극(120)이 서로 단락되지 않도록 하기 위하여 각각의 구동전극(110)은 여러 개의 서로 분리된 구동전극-셀로 구성되고, 각각의 감지전극(120)은 서로 직접 연결된 여러 개의 감지전극-셀로 구성될 수 있다. 이때 각각의 구동전극-셀들은 감지전극(120)들 사이에 배치될 수 있다. 이때 하나의 구동전극(110) 내에서 서로 분리되어 있는 구동전극-셀들은 감지전극(120)과 구동전극(110)이 배치된 감지영역의 외곽에서 서로 연결될 수 있다. 이를 위하여 구동전극-셀에 구동배선들이 연결될 수 있다. 도 1b와 같이 손가락(600)에 의한 터치입력이 이루어지면 구동전극(110)으로부터 나오는 전기장(510) 중 일부가 손가락(600)에 흡수되어 차단되기 때문에 구동전극(110)과 감지전극(120) 사이의 상호 커패시턴스 값이 달라질 수 있다(Csense → Csense - ΔCsense).
도 2a 내지 도 2c는 터치패널에서 터치입력 위치에 따른 정전용량의 변화를 설명하기 위한 것이다.
도 2a에서는 설명의 편의를 위하여 총 8개의 감지전극(C1 ~ C8)과 총 12개의 구동전극(R1 ~ R12)이 형성된 터치패널을 도시하였다. 감지전극과 각 구동전극이 교차하는 각각의 노드의 영역은 정사각형으로 표시하였다. 손가락으로 터치한 경우, 구동전극으로부터 감지전극으로 향하는 전기장을 실제로 차단하는 영역은 타원형 또는 원형 등으로 모델링될 수 있다. 여기서는 설명의 편의를 위해 원형으로 모델링함을 전제로 설명한다.
도 2b는 도 2a의 노드([R3, C4]), 노드([R3, C5]), 및 노드([R3, C6])를 자세히 도시한 것이다. 터치입력은 도 2b에 표시된 인덱스([-9] ~ [9])가 나타내는 지점을 중심으로 이루어질 수 있다. 인덱스([-9]), 인덱스([0]), 및 인덱스([9])가 나타내는 지점을 중심으로 터치입력이 이루어진 경우 전기장이 차단된 영역은 각각 원형영역(A[-9]), 원형영역(A[0]), 및 원형영역(A[9])일 수 있다.
도 2c의 y축 값은 노드([R3, C5])의 정전용량 변화값을 나타내며, +x축과 -x축은 각각 노드([R3, C5])의 중심점으로부터 우측 및 좌측으로 이격된 거리를 나타낸다. 도 2c의 인덱스([-9] ~ [9])는 각각 도 2b의 인덱스([-9] ~ [9])에 대응한다. 인덱스([0])가 나타내는 지점을 중심으로 터치입력이 이루어진 경우 노드([R3, C5]) 상의 전기장을 가장 많이 차단하게 되므로 y값은 최대값이 된다. 인덱스([-9]) 또는 인덱스([9])가 나타내는 지점을 중심으로 터치입력이 이루어진 경우 노드([R3, C5]) 상의 전기장은 차단되지 않으므로 y값은 0이 된다. 도 2c에 도시한 직선(L-I)는, 터치입력 위치에 따른 이상적인 정전용량의 변화를 나타내며, 곡선(L-R)은 터치입력 위치에 따른 실제 정전용량의 변화를 나타낸다. 직선(L-I)이 이상적인 이유는, 터치입력 위치 변화에 따른 정전용량의 변화가 선형성을 만족하면, 터치입력 프로세서에서 수행해야하는 계산이 간소화될 수 있기 때문이다. 도 2c에 나타낸 D(xn)은 지점 xn에서의 직선(L-I)과 곡선(L-R)의 차이값을 나타낸다.
본 발명에서는 인터폴레이션에 적합한 정도를 Interpolability라는 용어로 정의하는데, 이는 인접한 두 셀 사이에서의 정전용량의 변화량의 크기를 거리에 따라 측정하여 얻을 수 있다. 수학식 1은 이상적인 인터폴레이션 응답 프로파일(IRP, Interpolation Response Profile)과 실제 인터폴레이션 응답 프로파일과의 차이를 정량화한 것이다.
수학식 1에 따르면, Interpolability가 클수록 이상적인 IRP에 가깝다는 것을 알 수 있다.
본 발명의 일 실시예에서는 IRP를 크게 하기 위하여 감지전극 및/또는 구동전극 내의 패턴의 라인(line)(감지라인)의 밀도를 최대가 되도록 설계할 수 있다. 감지라인의 밀도는 한 개의 셀 노드 내에서는 프린징 용량(fringing cap)의 분포를 결정하는데, 프린징 용량은 구동전극과 감지전극이 마주보는 길이에 비례한다.
도 2c에 나타낸 인터폴레이션 응답 프로파일은 좌우 대칭인 형태를 나타내고 있지만, 이러한 프로파일은 주로 터치패널의 각 노드가 대칭인 패턴을 갖는 경우에 나타날 수 있다. 그런데 터치패널의 구체적인 구성에 따라, 각 노드가 갖는 비대칭성이 커질수록 도 2c에 나타낸 인터폴레이션 응답 프로파일과 같이 좌우 대칭인 프로파일을 갖기 어렵다. 이와 같이 인터폴레이션 응답 프로파일이 좌우 비대칭인 경우 터치입력 감지의 균일성이 저하되는 문제가 발생할 수 있다.
도 3a는 일 실시예에 따라 감지전극과 구동전극이 동일한 층에 배치된 터치패널을 나타낸다. 도 3a의 터치패널은, 각각 좌우로 연장되어 있으며 수직방향을 따라 배열된 8개의 구동전극(R1~R8)을 포함하고, 각각 상하로 연장되어 형성된 4개의 감지전극(C1~C4)을 포함한다. 즉, 8 row * 4 column의 행렬구조를 갖는다. 각 행과 열의 교차영역을 '노드'라고 지칭할 때에 도 3a의 터치패널은 총 8*4=32개의 노드를 포함한다. 각각의 구동전극은 4개의 구동전극-셀(210)을 포함하며, 각각의 감지전극은 8개의 감지전극-셀(200)을 포함한다. 하나의 감지전극에 속한 8개의 감지전극-셀(200)은 상하로 서로 연결되어 있다. 감지전극와 구동전극이 동일한 층에 배치되기 때문에, 하나의 구동전극에 속해있는 4개의 구동전극-셀(210)들은 감지전극을 가로방향으로 가로질러 서로 연결될 수 없으며, 감지전극-셀(200)과 구동전극-셀(210)이 배치된 영역의 외부로 연결된 배선을 통해 서로 연결될 수 있다. 상하로 배열된 8개의 감지전극-셀(200)들로 이루어진 하나의 감지전극과, 그 왼쪽에 위치한 8개의 구동전극-셀(210)들 사이에는, 이 8개의 구동전극-셀들에 연결된 구동배선들과 접지전극(빗금친 사각형)을 배치하기 위한 영역을 준비해야 한다. 이 영역은 실제 터치입력을 감지하는데 있어서 크게 기여하지 못하는 이른바 데드존(deadzone, DZ)으로 작용할 수 있다. 터치패널의 실시예에 따라서는 데드존의 폭이 작도록 형성하는 것이 바람직할 수 있다. 또한 이 데드존의 구체적인 형상에 따라 하나의 노드의 대칭성이 결정될 수 있다.
도 3b는 도 3a의 첫번째 칼럼(C1)에 배치된 8개의 감지전극-셀, 두번째 칼럼(C2)에 배치된 8개의 감지전극-셀 및 8개의 구동전극-셀, 그리고 첫번째 칼럼(C1)과 두번째 칼럼(C2) 사이에 배치되어 있으며, 상기 8개의 구동전극-셀에 각각 연결된 8개의 구동배선들을 확대하여 도시한 것이다. 이 실시예에서는 두번째 칼럼(C2) 내에서 구동전극-셀(D12, D22, D32, D42, D52, D62, D72, D82)과 감지전극-셀(S12, S22, S32, S42, S52, S62, S72, S82)을 각각 좌우로 인접하여 배치하였다. 하나의 구동전극-셀과 그 바로 우측에 인접한 감지전극-셀로 이루어진 노드들은 모두 동일한 모양으로 형성되어 있기 때문에 터치입력이 없을 경우 각 노드의 커패시턴스는 동일할 것으로 기대된다. 그러나 상술한 구동배선의 구체적인 배치형태에 따라 의도하지 않은 노드 간 커패시턴스의 편차가 크게 발생한다. 이하 도 2b의 설명을 위하여, 구동전극-셀(Dxy)과 감지전극-셀(Sxy)을 포함하여 이루어지는 노드를 노드(xy)로 표기한다(x=1, 2, 3, 4, 5, 6, 7, 8, y=2). 구동전극-셀(D12, D22, D32, D42, D52, D62, D72, D82)은 각각 서로 다른 구동전극에 속한 것으로서, 모두 서로 전기적으로 분리되어 있다.
도 3b를 참조하여 설명하면, 노드(12)에서 형성되는 커패시턴스는 아래 표 1의 커패시턴스(CM1)에 의해 주로 형성된다.
표 1
<제1 커패시턴스(CM1)>: 구동전극-셀(D12)과 감지전극-셀(S12) 사이에 형성. |
노드(22)에서 형성되는 커패시턴스는, 아래 표 2의 제1 커패시턴스(CM1)에 의해 주로 형성된다.
표 2
<제1 커패시턴스(CM1)>: 구동전극-셀(D22)과 감지전극-셀(S22) 사이에 형성. |
노드(32)에서 형성되는 커패시턴스는, 아래 표 3의 제1 커패시턴스(CM1)에 의해 주로 형성된다.
표 3
<제1 커패시턴스(CM1)>: 구동전극-셀(D32)과 감지전극-셀(S32) 사이에 형성. |
노드(42)에서 형성되는 커패시턴스는, 아래 표 4의 제1 커패시턴스(CM1), 제2 커패시턴스(CM2), 제3 커패시턴스(CM3), 제4 커패시턴스(CM4), 및 제5 커페시턴스(CM5)에 의해 주로 형성된다.
표 4
<제1 커패시턴스(CM1)>: 구동전극-셀(D42)과 감지전극-셀(S42) 사이에 형성.<제2 커패시턴스(CM2)>: 구동전극-셀(D42)에 연결된 구동배선(TR42)과 감지전극-셀(S41) 사이에 형성.<제3 커패시턴스(CM3)>: 구동전극-셀(D42)에 연결된 구동배선(TR42)과 감지전극-셀(S31) 사이에 형성.<제4 커패시턴스(CM4)>: 구동전극-셀(D42)에 연결된 구동배선(TR42)과 감지전극-셀(S21) 사이에 형성.<제5 커패시턴스(CM5)>: 구동전극-셀(D42)에 연결된 구동배선(TR42)과 감지전극-셀(S11) 사이에 형성. |
즉, 노드(12, 22, 32)에서 형성되는 각각의 커패시턴스(CM)는 각 노드에 포함된 구동전극-셀과 감지전극-셀의 형상에 의해 생성되는 제1 커패시턴스(CM1)에 의해 주로 결정된다(즉, CM=CM1).
그러나 노드(42)에서 형성되는 커패시턴스는 구동전극-셀과 감지전극-셀의 형상에 의해 생성되는 제1 커패시턴스(CM1)에 의해서만 결정되지 않는다. 구동전극-셀(D42)에 연결된 구동배선(TR42)는 그 왼쪽에 인접한 감지전극-셀(S11~S41)의 바로 옆에 인접하게 된다. 이때, 구동전극-셀(D42)에 구동신호가 인가되면, 구동배선(TR42)과 4개의 감지전극-셀(S11~S41) 사이에 제2 내지 제5 커패시턴스(CM2~CM5)가 추가적으로 발생한다. 결과적으로, 감지전극-셀(S42)과 구동전극-셀(D42)를 포함하는 노드(42)의 커패시턴스(CM)는 상술한 제1 내지 제5 커패시턴스(CM1~CM5)의 조합에 의해 결정되는 성질을 나타낸다.
따라서 도 3b와 같은 구조에 따르면 노드(12, 22, 32)에서 형성되는 커패시턴스와 노드(42)에서 형성되는 커패시턴스의 격차가 크다는 것을 알 수 있다. 노드(52, 62, 72, 82)에 대해서도 마찬가지 논리로 설명할 수 있다.
도 3c는 도 3b의 배선(TR42)과 4개의 감지전극-셀(S11~S41) 사이에 접지전극(GND1)을 추가 배치한 형상을 나타낸다. 접지전극(GND1)은 상술한 제2 내지 제5 커패시턴스(CM2~CM5)의 발생을 막기 때문에, 도 3c 와 같은 구조는 도 3b의 구조에 비하여 더 균일한 커패시턴스 특성을 나타낸다. 그러나 접지전극(GND1)의 추가로 인하여 데드존(DZ)이 더 넓어지게 된다. 본 명세서에서 '데드존(DZ)'은 감지영역 중 감지전극과 구동전극을 제외한 감지배선, 구동배선, 및 접지전극 등이 차지하는 영역을 지칭하는데, '데드존(DZ)'에 포함된 배선 및 전극들은 감지전극과 구동전극을 1개의 층 내에 배치하기 위하여 추가적으로 구성되는 요소이기 때문에 터치입력의 성능에 원하지 않는 영향을 줄 수 있다. 따라서 데드존의 크기가 작은 것이 바람직할 수 있다.
도 3d는 도 3a의 노드(P12)를 확대하여 도시한 것이다. 감지전극-셀(200)과 구동전극-셀(210)이 노드(P12)의 오른쪽에 치우져 배치되어 있으며, 구동배선들과 접지전극은 왼쪽에 치우져 배치되어 있다.
도 3e는 도 2c를 통해 설명한 정전용량의 변화를 도 3d에 적용한 결과를 나타낸다. 노드(P12)이 좌우 비대칭적 구조로 인하여 노드(P12) 내에서의 터치위치의 변화에 따른 정전용량의 변화가 비대칭적인 모습을 나타낸다.
도 4a는 또 다른 실시예에 따른 8 row * 4 column의 매트릭스 구조를 갖는 터치패널을 나타낸 것이다. 이 실시예에 따르면 두번째 칼럼(C2)과 세번째 칼럼(C3) 사이에 총 7개의 구동배선이 좌우 방향을 따라 배치되기 때문에 데드존(DZ)의 좌우 폭이 상당히 크다. 그러나 도 4a의 일부를 확대하여 도시한 도 4b를 참조하면, 도 3b에 나타낸 제2 내지 제5 커패시턴스(CM2~CM5)와 같은 커패시턴스는 나타나지 않는다는 것을 알 수 있다.
도 4c는 도 4a의 노드(P12)를 확대도시한 것이다. 감지전극-셀(200)과 구동전극-셀(210)이 노드(P12)의 왼쪽에 치우져 배치되어 있으며, 구동배선들은 오른쪽에 치우져 배치되어 있다.
도 4d는 도 2c를 통해 설명한 정전용량의 변화를 도 4c에 적용한 결과를 나타낸다. 노드(P12)의 좌우 비대칭적 구조로 인하여 노드(P12) 내에서의 터치위치의 변화에 따른 정전용량의 변화가 노드의 중심(o)에 대해 비대칭적인 모습을 나타낸다.
도 5a는 본 발명의 일 실시예에 따른 터치패널의 구조를 나타낸 것이다.
도 5a는 본 발명이 일 실시예에 따른 터치패널로서, 8 row * 4 column의 매트릭스 구조를 갖는 터치패널의 예를 들은 것이다. 이 터치패널은 총 8*4=32개의 노드를 포함한다. 각각의 구동전극(R1~R8)은 4개의 구동전극-셀(210)을 포함하며, 각각의 감지전극(C1~C4)은 8개의 감지전극-셀(200)을 포함한다. 하나의 감지전극에 속한 8개의 감지전극-셀은 연결도체(예컨대 투명도체)(111)에 의해 상하로 서로 연결되어 있다. 감지전극(C1~C4)과 구동전극(R1~R8)이 동일한 층에 배치되기 때문에, 하나의 구동전극에 속해있는 4개의 구동전극-셀(210)들은 감지전극을 좌우방향으로 가로질러 서로 연결될 수 없으며, 감지전극-셀(200)과 구동전극-셀(210)이 배치된 영역의 외부로 연결된 배선을 통해 서로 연결될 수 있다. 구동신호 생성부(220)는 8개의 구동전극(R1~R8)에 구동신호를 인가하도록 되어있고, 터치입력신호 감지부(230)는 4개의 감지전극(C1~C4)에 연결되어 터치입력 여부 및 입력위치를 감지할 수 있다.
도 5b는 도 5a의 첫번째 열(R1)을 더 자세히 나타낸 것이고, 도 5c는 도 5a의 여덟 번째 열(R8)을 더 자세히 나나낸 것이다.
구동배선들은 각각 참조번호 211~214, 221~224, 231~234, 241~244, 251~254, 261~264, 271~274, 281~284로 표시되어 있다. 구동배선(21x) (x=1, 2, 3, 4)는 제1 구동전극에 연결되고, 구동배선(22x)(x=1, 2, 3, 4)는 제2 구동전극에 연결되고, 구동배선(23x)(x=1, 2, 3, 4)는 제3 구동전극에 연결된다. 나머지 구동배선들도 마찬가지 방식으로 연결된다. 즉, 구동배선(2yx)(x=1, 2, 3, 4)는 y번째(y=1, 2, 3, 4, 5, 6, 7, 8) 구동전극에 연결된다. 도 5b 및 도 5c에 도시한 데드존(DZ)은 도 4a에 도시한 데드존(DZ)에 비하여 좌우 폭이 더 좁으며, 터치패널 전체에 걸쳐 더 균일하게 분포되어 있음을 알 수 있다.
도 5d는 도 5a의 각 노드에 형성되는 정전용량을 설명하기 위하여 도 5a의 두 번째 칼럼(C2)을 더 자세히 도시한 것이다. 설명의 편의를 위하여 좌우방향의 스케일을 확장하여 도시하였다. 이하 도 5d의 설명을 위하여, 구동전극-셀(Dxy)과 감지전극-셀(Sxy)을 포함하는 노드를 노드(xy)로 표기한다(x=1, 2, 3, 4, 5, 6, 7, 8, y=2).
도 5d를 참조하여 설명하면, 노드(12)에서 형성되는 커패시턴스는 아래 표 5의 제1 커패시턴스(CM1)에 의해 주로 형성된다.
표 5
<제1 커패시턴스(CM1)>: 구동전극-셀(D12)과 감지전극-셀(S12) 사이에 형성. |
노드(22)에서 형성되는 커패시턴스는, 아래 표 6의 제1 커패시턴스(CM1) 및 제2 커패시턴스(CM2)에 의해 주로 형성된다.
표 6
<제1 커패시턴스(CM1)>: 구동전극-셀(D22)과 감지전극-셀(S22) 사이에 형성.<제2 커패시턴스(CM2)>: 구동전극-셀(D22)에 연결된 구동배선(222)와 감지전극-셀(S12) 사이에 형성. |
노드(32)에서 형성되는 커패시턴스는, 아래 표 7의 제1 커패시턴스(CM1) 및 제3 커패시턴스(CM3)에 의해 주로 형성된다.
표 7
<제1 커패시턴스(CM1)>: 구동전극-셀(D32)과 감지전극-셀(S32) 사이에 형성.<제3 커패시턴스(CM3)>: 구동전극-셀(D32)에 연결된 구동배선(232)와 감지전극-셀(S22) 사이에 형성. |
노드(42)에서 형성되는 커패시턴스는, 아래 표 8의 제1 커패시턴스(CM1) 및 제3 커패시턴스(CM3)에 의해 주로 형성된다.
표 8
<제1 커패시턴스(CM1)>: 구동전극-셀(D42)과 감지전극-셀(S42) 사이에 형성.<제3 커패시턴스(CM3)>: 구동전극-셀(D42)에 연결된 구동배선(242)와 감지전극-셀(S32) 사이에 형성. |
구동전극-셀(D42)에 구동신호가 인가될 때에, 구동전극-셀(D42)에 연결된 구동배선(242)와 감지전극-셀(S12) 사이에 형성되는 커패시턴스는 무시하였는데, 이는 감지전극-셀(S12)과 구동배선(242) 사이에 구동배선(222)가 존재하기 때문이다.
도 5d 와 같은 패턴에 따르면 도 3b와 같은 패턴에 비해 각 노드 별 커패시턴스의 격차가 상하 방향으로 더 균일하다는 것을 알 수 있다.
도 5e는 도 5a의 노드(P12)을 확대도시한 것이다. 감지전극-셀(200)과 구동전극-셀(210), 그리고 구동배선들이 대체적으로 좌우 대칭에 가까운 구조를 갖는다. 특히 구동배선들이 노드(P12) 내에서 좌우방향으로 고르게 분포하는 특징을 갖는다.
도 5f는 도 2c를 통해 설명한 정전용량의 변화를 도 5e에 적용한 결과를 나타낸다. 노드(P12)가 좌우 대칭에 가까운 구조를 갖기 때문에, 노드(P12) 내에서의 터치입력 위치변화에 따른 정전용량의 변화가 노드(P12)의 중심(o)에 대하여 대칭에 가까운 모습을 나타낸다.
도 6a 내지 도 6d는 본 발명의 일 실시에에 따라 상하 방향으로 배치된 서로 다른 노드의 다양한 구조를 나타낸다.
도 6a는 도 5a에 나타낸 것과 같은 구조의 터치패널에 있어서, 하나의 칼럼 내에서 위아래로 배치된 두 개의 순차적인 노드를 나타낸 것이다. k번째 노드의 모양은 k+1번째 노드과 좌우 방향으로 대칭인 구조를 갖는다. 또한, k번째 감지전극-셀과 k+1번째 감지전극-셀은 전도체 패턴(111)에 의해 서로 전기적으로 연결된다.
도 6b 내지 도 6d는 각각 도 6a로부터 변형된 패턴을 나타낸 것이다.
도 6a 내지 도 6d의 공통된 특징은 다음과 같다. k번째 노드의 감지전극-셀(200)과 k+1번째 노드의 감지전극-셀(200)은 상하방향으로 전도체 패턴(111)에 의하여 서로 연결된다. 또한, k번째 노드의 구동전극-셀(210)은 제1측(왼쪽 또는 오른쪽)으로 노출되어 있고, k+1번째 노드의 구동전극-셀(210)은 제2측(오른쪽 또는 왼쪽)으로반 노출되어 있다. 나아가, k번째 노드의 모양은 k+1번째 노드과 실질적으로 대칭인 구조를 가질 수도 있다.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 한 개의 감지전극과 이 감지전극에 정전결합되는 구동전극-셀, 그리고 이 구동전극-셀에 연결되는 구동배선의 구조를 나타낸 것이다.
도 7a를 참조하면 기본적으로 감지전극에 포함된 하나의 감지전극-셀(200)은 그 일측에 형성된 슬릿(SL1, SL3) 또는 타측에 형성된 슬릿(SL2, SL4) 부분을 제외하고는, 자신에게 정전결합되는 하나의 구동전극-셀(210)을 상하좌우로 모두 감싸는 구조를 갖는다. 감지전극-셀들이 직사각형 모양의 터치패널에 행렬형태로 배치되는 경우, 보통은 감지전극-셀의 외곽의 모양은 직사각형 형상을 하는 것이 일반적이지만, 본 발명이 이에 한정되는 것은 아니다. 또한 터치패널이 직사각형 모양이 아닌 경우에는 감지전극-셀들의 최적배치를 위하여 각각의 감지전극-셀의 외곽의 모양이 직사각형이 아닐 수도 있다는 점을 쉽게 이해할 수 있다. 또한, 각 감지전극-셀의 내부 가장자리는 임의의 모양을 하고 있을 수 있으며, 각 구동전극-셀 역시 임의의 모양을 할 수 있다.
도 7a에서 하나의 감지전극에 속한 감지전극-셀(200)들은 연결도체(111)에 의해 상하로 직접 연결될 수 있다. 하나의 감지전극에 속해 있으며 상하로 인접한 k번째 감지전극-셀과 k+1번째 감지전극-셀에 형성된 슬릿은 서로 반대방향으로 형성될 수 있다. 컨대 슬릿(SL1)은 우측방향에 형성되어 있지만, 슬릿(SL2)는 좌측방향에 형성되어 있다.
도 7a에서 상하로 인접한 두 개의 감지전극-셀들이 서로 충분히 가까이 배치된다면 연결도체(111)에 대응하는 구성요소가 생략될 수 있다. 그 결과 도 7a는 도 7b와 같은 형상으로 변형될 수 있다.
도 8a 내지 도 8d는 본 발명의 다른 실시예에 따른 터치패널을 설명하기 위한 것이다.
도 8a 또는 도 8b는 각각 한 개의 감지전극-셀과 여기에 정전결합하는 한 개의 구동전극-셀에 의해 형성되는 하나의 터치노드를 나타낸 것이다. 상술한 도 7a에서 설명한 하나의 구동전극-셀(210) 및 여기에 정전결합되는 감지전극-셀(200)은 도 8a 또는 도 8b와 같은 형태로 변형되어 제공될 수 있다. 도 8a 및 도 8b에서 각 구동전극-셀(210)은 스스로 상하좌우 대칭인 구조를 하고 있으며, 각 감지전극-셀(200)은 구동전극-셀(210)의 모양에 대응하는 모양을 갖는다. 또한, 각 감지전극-셀(200)에는 그 좌측 또는 우측에 감지배선을 통과시키기 위한 슬릿(SL)이 형성되어 있다. 도 8c는 도 5a에 제시한 터치패널의 4개의 열(R1~R4) 및 4개의 행(C1~C4)에 대응하며, 각 터치노드가 도 8a에 도시한 터치노드로 대체된 형태이다. 도 8d는 도 8c에서 상하로 인접한 감지전극-셀들이 충분히 가까이 배치됨으로써 연결도체(111)에 대응하는 구성요소가 생략된 형태를 나타낸다.
도 9a 내지 도 9d는 본 발명의 또 다른 실시예에 따른 터치패널을 설명하기 위한 것이다.
도 9a는 한 개의 감지전극-셀과 여기에 정전결합하는 한 개의 구동전극-셀에 의해 형성되는 하나의 터치노드를 나타낸 것이다. 도 9a에 따른 터치노드의 감지전극-셀과 구동전극-셀은 동일한 방향으로 회전하는 소용돌이 모양을 갖는다. 그리고 감지전극-셀(200)의 우측에 감지배선을 통과시키기 위한 슬릿(SL)이 형성되어 있다. 도 9b는 도 9a이 터치노드가 행렬형태로 배열되어 형성된 터치패널의 구조를 나타낸 것이다. 도 9b에서 구동배선은 편의상 도시하지 않았다. 다만 구동배선을 좌우 교대로 배치하기 위하여 하나의 감지전극(ex: C1) 내에서 상하로 서로 인접해 있는 두 개의 터치노드는 좌우 방향으로 서로 대칭인 구조를 갖는다. 도 9c는 도 9b에서 상하로 인접한 감지전극-셀들이 충분히 가까이 배치됨으로써 연결도체(111)에 대응하는 구성요소가 생략된 형태를 나타낸다. 도 9d는 도 9c에 나타낸 전극구조 중 하나의 감지전극만을 따로 도시한 것이다.
도 7 내지 도 9에 도시한 슬릿의 크기를 과장된 것일 수 있으며, 실제로는 매우 좁은 폭을 갖도록 형성될 수 있다.
도 8a 내지 도 8d를 통해 설명한 구조를 이용하면, 하나의 터치노드를 구성하는 구동전극-셀이 상하좌우로 대칭인 형상을 하고 있으며, 이에 대응하는 감지전극-셀 역시 슬릿을 제외하고는 상하좌우로 대칭인 형상을 하고 있다. 또한 구동전극-셀과 감지전극-셀이 서로 마주보는 경계부의 길이가 충분히 크도록 구성할 수 있기 때문에, 하나의 터치노드 내에서의 터치입력 감도의 분포를 균일화하는 데에 매우 유리하다. 도 9a 내지 도 9d를 통해 설명한 전극패턴을 이용하더라도 도 8a 내지 도 8d와 유사한 효과를 얻을 수 있다는 점을 쉽게 이해할 수 있다.
본 명세서와 함께 제공된 도면은 설명의 편의를 위하여 제공된 것으로서 실제 구현에 따른 패턴과 축척이 일치하지 않을 수 있으며, 일부 구성요소의 크기가 과장되어 있을 수 있으나 이로 인해 본 발명의 범위가 제한되는 것은 아니다.
이상 본 발명이 양호한 실시예와 관련하여 설명되었으나, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다.
그러므로 개시된 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 진정한 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
Claims (15)
- 감지전극과 구동전극이 동일층에 행렬형태로 배치된 전극패턴을 포함하는 터치패널로서,제1 행(column)에 포함된 제1 감지전극에 포함된 N개의 감지전극-셀; 및상기 제1 행에서 각각 상기 N개의 감지전극-셀과 용량결합되도록 배치된 N개의 구동전극-셀을 포함하며,상기 N개의 구동전극-셀 중 k번째 구동전극-셀에 연결된 k번째 구동배선은 상기 제1 행의 오른쪽에서 상기 제1 행을 따라 연장되고,상기 N개의 구동전극-셀 중 k+1번째 구동전극-셀에 연결된 k+1번째 구동배선은 상기 제1 행의 왼쪽에서 상기 제1 행을 따라 연장되는,터치패널.
- 제1항에 있어서, 상기 k번째 구동전극-셀은 상기 k+1번째 구동전극-셀에 대하여 대칭인 모양을 갖는, 터치패널.
- 제1항에 있어서, 상기 k번째 구동전극-셀과 용량결합하는 k번째 감지전극-셀과 상기 k번째 구동전극-셀에 의해 형성되는 k번째 터치노드는, 상기 k+1번째 구동전극-셀과 용량결합하는 k+1번째 감지전극-셀과 상기 k+1번째 구동전극-셀에 의해 형성되는 k+1번째 터치노드에 대하여 대칭인 모양을 갖는, 터치패널.
- 제1항에 있어서,상기 k번째 감지전극-셀은 상기 k번째 감지전극-셀과 용량결합하는 k번째 구동전극-셀을 둘러싸고 있고, 상기 k+1번째 감지전극-셀은 상기 k+1번째 감지전극-셀과 용량결합하는 k+1번째 구동전극-셀을 둘러싸고 있으며,상기 k번째 감지전극-셀에는 상기 k번째 구동배선이 상기 k번째 구동전극-셀에 연결될 수 있도록 k번째 슬릿이 형성되어 있고, 상기 k+1번째 감지전극-셀에는 상기 k+1번째 구동배선이 상기 k+1번째 구동전극-셀에 연결될 수 있도록 k+1번째 슬릿이 형성되어 있는,터치패널.
- 제4항에 있어서, 상기 k번째 구동전극-셀은 상하좌우 대칭인 형상을 갖고 있는, 터치패널.
- 제1항에 있어서, 상기 k번째 구동전극-셀과 용량결합하는 k번째 감지전극-셀과 상기 k번째 구동전극-셀은 각각 동일한 방향으로 회전하는 소용돌이 형상을 갖고 있는, 터치패널.
- 복수 개의 감지전극-셀을 포함하며 수직방향으로 연장되어 형성된 감지전극을 복수 개 포함하고, 복수 개의 구동전극-셀을 포함하며 좌우방향으로 연장되어 형성된 구동전극을 복수 개 포함하며, 상기 복수 개의 감지전극과 상기 복수 개의 구동전극이 행렬형태로 배치된 전극패턴을 포함하는 터치패널로서,상기 복수 개의 감지전극 중 제1 감지전극에 포함된 복수 개의 감지전극-셀과 용량결합하도록 배치된 복수 개의 구동전극-셀 중, k번째 구동전극-셀에 연결된 구동배선은 상기 제1 감지전극의 오른쪽에서 상기 제1 감지전극의 연장방향을 따라 연장되고, k+1번째 구동전극-셀에 연결된 구동배선은 상기 제1 감지전극의 왼쪽에서 상기 제1 감지전극의 연장방향을 따라 연장되는,터치패널.
- 제7항에 있어서, 상기 k번째 구동전극-셀은 상하좌우 대칭인 형상을 갖고 있는, 터치패널.
- 제7항에 있어서, 상기 k번째 구동전극-셀과 상기 k번째 구동전극-셀과 용량결합하는 k번째 감지전극-셀은 각각 동일한 방향으로 회전하는 소용돌이 형상을 갖고 있는, 터치패널.
- 하나의 제1 타입-셀과 하나의 제2 타입-셀의 용량결합에 의해 형성되는 터치노드를 복수 개 포함하며, 상기 복수 개의 터치노드가 행렬형태로 배열된 전극패턴을 포함하는 터치패널로서,상하로 연장된 제1 행(column)에 포함된 복수 개의 상기 제1 타입-셀 중 k 번째 제1 타입-셀에 연결된 배선은 상기 제1 행의 오른쪽에서 상기 제1 행을 따라 연장되고,상기 1 행에 포함된 복수 개의 상기 제1 타입-셀 중 k+1 번째 제1 타입-셀에 연결된 배선은 상기 제1 행의 왼쪽에서 상기 제1 행을 따라 연장되는,터치패널.
- 제9항에 있어서, 상기 제1 타입-셀은 구동전극-셀이고 상기 제2 타입-셀은 감지전극-셀이며, 상기 배선은 구동배선인, 터치패널.
- 제10항에 있어서, 상기 제1 타입-셀은 감지전극-셀이고 상기 제2 타입-셀은 구동전극-셀이며, 상기 배선은 감지배선인, 터치패널.
- 제1 타입-셀; 및 상기 제1 타입-셀과 동일한 층에 형성되어 있으며 상기 제1 타입-셀을 둘러싸는 모양을 갖고 있되, 상기 제1 타입-셀에 연결되는 배선을 통과시키기 위한 슬릿이 형성되어 있는 제2 타입-셀;로 구성되는 터치노드가 행렬형태로 복수 개 배치된 터치패턴을 포함하는 터치패널로서,상기 복수 개의 터치노드 중 제1 터치노드의 상기 제2 타입-셀에 형성된 상기 슬릿은 오른쪽에 형성되어 있으며,상기 복수 개의 터치노드 중 상기 제1 터치노드의 상측 또는 하측에 인접하여 배치된 제2 터치노드의 상기 제2 타입-셀에 형성된 상기 슬릿은 왼쪽에 형성되어 있는,터치패널.
- 제13항에 있어서, 상기 제1 타입-셀은 구동전극-셀이고, 상기 제2 타입-셀은 감지전극-셀인, 터치패널.
- 제14항에 있어서, 상기 제1 타입-셀은 대칭인 형상을 하고 잇는, 터치패널.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120107296A KR101463051B1 (ko) | 2012-09-26 | 2012-09-26 | 전도체 패턴, 터치패널 모듈, 및 전자장치 |
KR10-2012-0107296 | 2012-09-26 | ||
KR10-2012-0117549 | 2012-10-22 | ||
KR20120117549 | 2012-10-22 | ||
KR10-2012-0148303 | 2012-12-18 | ||
KR1020120148303A KR101456543B1 (ko) | 2012-10-22 | 2012-12-18 | 구동배선이 교차패턴을 갖는 터치패널 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014051212A1 true WO2014051212A1 (ko) | 2014-04-03 |
Family
ID=50388570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/011317 WO2014051212A1 (ko) | 2012-09-26 | 2012-12-21 | 구동배선이 교차패턴을 갖는 터치패널 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014051212A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090098947A (ko) * | 2009-08-25 | 2009-09-18 | (주)세인정보통신 | 낮은 저항 값을 가지는 캐패시티브 방식 터치 스크린의 투명전극 패턴 구조 |
KR20120043406A (ko) * | 2010-10-26 | 2012-05-04 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 |
KR20120076025A (ko) * | 2010-12-29 | 2012-07-09 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 및 그의 구동방법 |
KR20120083692A (ko) * | 2011-01-18 | 2012-07-26 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 |
KR101169250B1 (ko) * | 2012-05-02 | 2012-08-02 | (주)이미지스테크놀로지 | 단일 적층 구조를 갖는 개량된 접촉 위치 감지 패널 |
-
2012
- 2012-12-21 WO PCT/KR2012/011317 patent/WO2014051212A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090098947A (ko) * | 2009-08-25 | 2009-09-18 | (주)세인정보통신 | 낮은 저항 값을 가지는 캐패시티브 방식 터치 스크린의 투명전극 패턴 구조 |
KR20120043406A (ko) * | 2010-10-26 | 2012-05-04 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 |
KR20120076025A (ko) * | 2010-12-29 | 2012-07-09 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 및 그의 구동방법 |
KR20120083692A (ko) * | 2011-01-18 | 2012-07-26 | 삼성모바일디스플레이주식회사 | 터치 스크린 패널 |
KR101169250B1 (ko) * | 2012-05-02 | 2012-08-02 | (주)이미지스테크놀로지 | 단일 적층 구조를 갖는 개량된 접촉 위치 감지 패널 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014092231A1 (ko) | 터치전극패턴, 터치패널, 및 이를 포함하는 터치입력장치 | |
WO2012057409A1 (en) | Touch panel sensor | |
WO2015002464A1 (ko) | 전자기 유도 방식의 위치감지와 정전용량 방식의 위치감지를 수행할 수 있는 타블렛 | |
US8456427B2 (en) | Floating capacitive couplers used to enhance signal coupling in a capacitive touchpad | |
WO2016089149A1 (ko) | 디스플레이 패널, 터치입력장치, 디스플레이 패널로부터 터치위치와 터치압력을 검출하는 검출장치, 및 검출방법 | |
CN107340917A (zh) | 一种触控显示面板、触控显示装置及驱动方法 | |
KR101814656B1 (ko) | 전기 장치 및 그에 따른 단일 층 상호 정전용량 터치 스크린 | |
CN104571655B (zh) | 触控显示装置 | |
WO2017024599A1 (zh) | 一种具有触控功能的阵列基板及显示装置 | |
WO2013180438A1 (ko) | 개선된 원 레이어 정전식 터치 패널 | |
WO2012176966A1 (en) | Touch sensor panel | |
WO2017023108A1 (ko) | 터치 검출기, 터치 검출 칩 및 터치 입력 장치 | |
EP2788844A1 (en) | Electrode pattern of touch panel and method of manufacturing the same | |
WO2014051210A1 (ko) | 전도체 패턴, 터치패널 모듈, 및 전자장치 | |
WO2014054878A2 (ko) | 간섭 없이 감도가 향상되는 단일 적층 구조를 갖는 터치스크린 패널 | |
WO2012177032A2 (ko) | 정전용량 터치 패널의 제조 방법 및 이에 의해 제조되는 터치 패널 | |
WO2012157930A2 (ko) | 터치 위치의 검출 정확도가 향상된 터치 패널 센서 장치 | |
WO2010002202A2 (ko) | 고감도 디지탈방식의 정전용량터치패널장치 | |
CN105122188A (zh) | Oled触控显示装置及其制作方法和触控屏制作方法 | |
WO2014051211A1 (ko) | 전도체 패턴, 터치패널 모듈, 및 전자장치 | |
WO2015174751A1 (ko) | 균일한 입력감도를 가지며 향상된 저항특성을 갖는 터치패널, 및 이를 포함하는 터치입력장치 | |
WO2019045172A1 (ko) | 터치 패널 | |
WO2014051212A1 (ko) | 구동배선이 교차패턴을 갖는 터치패널 | |
KR101456543B1 (ko) | 구동배선이 교차패턴을 갖는 터치패널 | |
WO2015016473A1 (ko) | 터치 스크린 패널 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12885266 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/06/2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12885266 Country of ref document: EP Kind code of ref document: A1 |