WO2014050897A1 - Ultrasonic inspection device, method for generating ultrasonic image data, and program - Google Patents

Ultrasonic inspection device, method for generating ultrasonic image data, and program Download PDF

Info

Publication number
WO2014050897A1
WO2014050897A1 PCT/JP2013/075923 JP2013075923W WO2014050897A1 WO 2014050897 A1 WO2014050897 A1 WO 2014050897A1 JP 2013075923 W JP2013075923 W JP 2013075923W WO 2014050897 A1 WO2014050897 A1 WO 2014050897A1
Authority
WO
WIPO (PCT)
Prior art keywords
element data
ultrasonic
transmission
unit
data
Prior art date
Application number
PCT/JP2013/075923
Other languages
French (fr)
Japanese (ja)
Inventor
拓明 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014050897A1 publication Critical patent/WO2014050897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52047Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to an ultrasonic inspection apparatus that performs imaging of an inspection target such as an organ in a living body by transmitting and receiving an ultrasonic beam, and generates an ultrasonic image used for inspection and diagnosis of the inspection target.
  • the present invention relates to an ultrasonic image data generation method and program.
  • an ultrasonic inspection apparatus such as an ultrasonic diagnostic imaging apparatus using an ultrasonic image
  • this type of ultrasonic inspection apparatus has an ultrasonic probe (ultrasonic probe) including a plurality of elements (ultrasonic transducers), and an apparatus main body connected to the ultrasonic probe.
  • the ultrasonic probe transmits the ultrasonic beam from the multiple elements of the ultrasonic probe toward the inspection object (subject), receives the ultrasonic echo from the subject, and receives the ultrasonic echo.
  • An ultrasonic image is generated by electrically processing the ultrasonic echo signal thus processed in the apparatus main body.
  • an ultrasonic wave is focused on a region to be inspected of a subject, for example, an organ in a living body or a lesion in the organ from a plurality of elements of the probe. Transmits a beam and receives ultrasonic echoes from the surface or interface of a reflector in the examination target area, for example, an organ or a lesion, via multiple elements, but is reflected by the same reflector. Are reflected by the reflector located at the focal position of the ultrasonic beam transmitted from the transmitting element, and reflected by the same reflector with respect to the ultrasonic echo signal received by the transmitting element.
  • the ultrasonic echo signals received by other elements different from the transmitting element are delayed, the ultrasonic echo signals received by a plurality of elements are subjected to A / D (analog / digital) conversion to obtain element data and After Data reception focusing processing, and generates an ultrasound image based on the generated sound ray signals by phasing and adding the combined phase, thus obtained sound ray signal or delay correction to.
  • a / D analog / digital
  • a virtual point sound source is formed by focusing transmission ultrasonic waves radiated from a plurality of vibration elements constituting a transmission vibration element group on a transmission focusing point.
  • Received ultrasonic waves reflected from a plurality of continuous observation points by transmitted ultrasonic waves radiated from a sound source are received by a plurality of vibration elements constituting a reception vibration element group, and the received signals for the obtained channels are received.
  • Receive phasing and addition is performed so that the observation point becomes the reception focus point.
  • reception phasing addition is performed on the reception signal obtained using each of the reception vibration element group and the transmission vibration element group sequentially shifted in the arrangement direction of the vibration elements.
  • an ultrasonic diagnostic apparatus that performs transmission phasing addition for correcting a transmission delay caused by a difference in propagation distance from each transmission focusing point to an observation point with respect to a reception signal after phase addition.
  • the reception phasing addition and the transmission phasing addition are performed on reception signals obtained from a plurality of vibration elements, thereby having a substantially uniform thin beam width in the depth direction of the subject.
  • the transmission beam and the reception beam can be formed with high accuracy and high sensitivity. For this reason, Patent Document 1 discloses that image data having excellent spatial resolution, contrast resolution, and S / N can be generated and displayed.
  • Patent Document 1 an image with higher image quality than that of the conventional technique can be obtained.
  • the focal point is regarded as a virtual point sound source and a plurality of received signals are combined.
  • the focal point is not converged so as to be regarded as a point sound source and has a finite spread. For this reason, there is a problem that when the received signal is synthesized, the closer the image is to the focal region, the lower the accuracy of the data and the SN ratio and resolution.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, increase the SN ratio and increase the resolution of the entire image, including the region close to the focal point, and maintain the same frame rate as the conventional one.
  • Another object of the present invention is to provide an ultrasonic inspection apparatus, an ultrasonic image data generation method, and a program capable of obtaining a sharp ultrasonic image with high resolution and optimum spatial resolution.
  • the present invention provides an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, a focus setting unit that sets a plurality of transmission focal points in the inspection object, A probe including a plurality of elements that generates each component of a sound beam and receives an ultrasonic echo reflected by an inspection object and outputs a received analog element signal, and a probe, Using a plurality of elements, a transmission unit that generates an ultrasonic beam for each transmission focus set by the focus setting unit, and a plurality of elements corresponding to the transmission of individual ultrasonic beams to each transmission focus A receiving unit that receives the analog element signal received by the receiver and performs a predetermined process; an AD conversion unit that performs A / D conversion on the analog element signal processed by the receiving unit to obtain first element data that is a digital element signal; , Inspection object Element data for generating second element data corresponding to the data calculation point from the calculation element setting unit for setting at least one data calculation point to the first element data obtained by transmitting a
  • the calculation point position determination unit preferably determines whether or not the distance from the data calculation point to the transmission focal point is equal to or less than a predetermined threshold.
  • the calculation point setting unit is preferably set on the transmission line of the ultrasonic beam, and the calculation point position determination unit is preferably determined based on the distance to the transmission focal point on the transmission line corresponding to the data calculation point.
  • the focus setting unit determines whether or not the depth of each transmission focus set by the focus setting unit is within a predetermined range, and the focus resetting is performed to reset the depth of the transmission focus within the predetermined range to a different depth. It is preferable to have a part.
  • the focus resetting unit sets the position of the transmission focus to a position deeper than the position set by the focus setting unit. It is preferable to reset.
  • the focus resetting unit resets the position of the transmission focus to a position shallower than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth. It is preferable to set.
  • the transmission unit causes the probe to use a plurality of elements and transmits an ultrasonic beam to each transmission focal point by changing a central element.
  • the element data processing unit is obtained by transmitting a plurality of ultrasonic beams having different central elements. Moreover, it is preferable that an element data processing part produces
  • the element data processing unit generates a second element data corresponding to the data calculation point by superimposing a plurality of first element data according to the reception time when the element receives the ultrasonic echo and the position of the element. It is preferable to do.
  • the element data processing unit synthesizes a plurality of first element data obtained by transmitting the ultrasonic beam with the elements that are continuous in the element arrangement direction as the center elements, and generates second element data. Is preferably generated.
  • the element data processing unit is obtained by transmitting an ultrasonic beam by using the same number of elements adjacent to both sides of the element serving as the center when transmitting the ultrasonic beam corresponding to the data calculation point, respectively. It is preferable to generate the second element data by combining the first element data.
  • the element data processing unit includes a delay time calculation unit that calculates a delay time of two or more first element data, a delay time calculated from two or more first element data, and a received probe. It is preferable to have a superimposition processing unit that superimposes based on the position of the element and generates second element data.
  • the delay time calculation unit includes the probe acquired in advance, the sound speed of the inspection object, the position of the transmission focus of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the probe of the probe by the reception unit. The delay time of two or more first element data is calculated based on at least one piece of information about the reception aperture, and the overlay processing unit superimposes among the preset two or more first element data.
  • the element data processing unit preferably superimposes two or more pieces of first element data after multiplying each of the first element data by a weighting coefficient.
  • the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals.
  • An ultrasonic image data generation method for generating an ultrasonic image data by generating an ultrasonic beam by using a probe having the above-described elements, and generating ultrasonic image data.
  • a focus setting step for setting a probe a transmission step for generating an ultrasonic beam for each transmission focus set in the focus setting step using a plurality of elements in the probe, and an individual for each transmission focus
  • the analog element signal received by a plurality of elements is received and a predetermined process is performed, and the analog element signal processed in the reception step is A / D converted.
  • a calculation point position determination step for determining whether or not
  • a process determination step for determining whether or not to perform the process according to the element data processing step according to the determination result of the calculation point position determination step.
  • the element data processing step is performed to transmit the transmission focal point. If it is determined that the distance up to is within a predetermined range, any one of the plurality of first element data is used as element data corresponding to the data calculation point. I will provide a.
  • the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals.
  • An ultrasonic image data generation program for causing a computer to generate an ultrasonic beam by a probe including the element, inspect an inspection object, and generate ultrasonic image data.
  • a focus setting step for setting a plurality of transmission focal points within a transmission step for generating an ultrasonic beam for each of the transmission focal points set in the focus setting step using a plurality of elements for the probe, Corresponding to the transmission of each ultrasonic beam to each transmission focal point, a reception step that receives analog element signals received by a plurality of elements and performs predetermined processing, and a reception step A / D conversion of the analog element signal that has been performed to obtain first element data that is a digital element signal, a calculation point setting step that sets at least one data calculation point in the inspection object, From each of the first element data obtained by transmitting the ultrasonic beam, an element data processing step for generating second element data corresponding to the data calculation point, and a data calculation point set in the calculation point setting step, A calculation point position determination step for determining whether or not the distance to the transmission focal point is within a predetermined range, and a process determination for determining whether or not to perform processing by the element data processing step according to the determination result of the calculation point position determination step
  • one of the plurality of first element data is set as element data corresponding to the data calculation point.
  • An ultrasonic image data generation program characterized by being executed by a computer is provided.
  • the process of generating a plurality of element data by combining a plurality of element data according to the position of the focus is performed, so that the accuracy of the data decreases when the element data such as the vicinity of the focus is combined.
  • the S / N ratio can be increased and the resolution can be increased over the entire image, and at the same resolution as the conventional frame rate, the optimum spatial resolution can be achieved. A sharp ultrasonic image with can be obtained.
  • FIG. 5 is an explanatory diagram showing element data obtained respectively.
  • (A) And (c) is explanatory drawing in the case of transmitting an actual ultrasonic beam from the element directly above the reflection point of the subject and the element not directly above, respectively, (b) and (d) It is explanatory drawing which shows the element data obtained, respectively.
  • (A) And (b) is explanatory drawing explaining the distance of the transmission path
  • FIG. 1 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG. 1. It is a block diagram which shows notionally another example of a structure of the ultrasonic inspection apparatus which concerns on this invention.
  • (A) to (C) are conceptual diagrams for explaining resetting of the focal position. It is a flowchart for demonstrating operation
  • FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
  • the ultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
  • a process determination unit 21 an element data processing unit 22, an image generation unit 24, a display control unit 26, a display unit 28, a control unit 30, an operation unit 32, a storage unit 34, and a calculation point setting.
  • a unit 92, a calculation point position determination unit 94, and a focus setting unit 96 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
  • the ultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
  • a process determination unit 21 an element data processing unit 22
  • an image generation unit 24 an image
  • the ultrasonic probe (ultrasonic probe) 12 has a transducer array 36 used in a normal ultrasonic inspection apparatus.
  • the transducer array 36 includes a plurality of elements arranged in a one-dimensional or two-dimensional array, that is, ultrasonic transducers. These ultrasonic transducers transmit an ultrasonic beam to a subject in accordance with a drive signal supplied from the transmission unit 14 when an ultrasonic image of an object to be examined (hereinafter referred to as a subject) is captured. An ultrasonic echo from the specimen is received and a reception signal (analog element signal) is output.
  • each of the predetermined number of ultrasonic transducers forming one set among the plurality of ultrasonic transducers of the transducer array 36 generates each component of one ultrasonic beam, and sets a predetermined number of ultrasonic transducers.
  • the ultrasonic transducer generates one ultrasonic beam that is transmitted to the subject.
  • Each ultrasonic transducer is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate). It is constituted by an element in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by a solid solution, that is, a vibrator.
  • PZT lead zirconate titanate
  • PVDF polymer piezoelectric element represented by PVDF (polyvinylidene fluoride)
  • PMN-PT magnesium niobate / lead titanate
  • each vibrator When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. As a result, an ultrasonic beam is formed.
  • each vibrator expands and contracts by receiving propagating ultrasonic waves to generate electric signals, and these electric signals are output as ultrasonic reception signals (analog element signals).
  • the focus setting unit 96 transmits a plurality of transmission lines and each transmission when the transducer array 36 transmits an ultrasonic beam according to transmission focus information (focus position information) input from the operation unit 32. Set the focal position on the line. Specifically, like the conventional ultrasonic inspection apparatus, the focus setting unit 96 sets the display area (inspection range), the depth (depth), and the like input from the operation unit 32, and the transducer array 36. A plurality of transmission lines for transmitting the ultrasonic beam are set according to information such as the arrangement interval of the transducers, and the position that becomes the focal point of the ultrasonic beam is automatically set on each transmission line. Note that the focus setting unit 96 may set the focus position from the focus position information directly input by the operator from the operation unit 32.
  • FIG. 2 shows an example of the set focal position.
  • one transmission line is set on the same line as each element corresponding to each element (ultrasonic transducer) of the transducer array 36.
  • one focal position is set at the same depth on each transmission line. Information on the set focal position is supplied to the transmission unit 14, the calculation point position determination unit 94, and the control unit 30.
  • the transmission unit 14 includes, for example, a plurality of pulsars, and based on the transmission delay pattern selected according to the control signal from the control unit 30 and the focus position information from the focus setting unit 96, the transducer array 36.
  • An ultrasonic beam component transmitted from a set of a predetermined number of ultrasonic transducers (hereinafter referred to as ultrasonic elements) forms one ultrasonic beam and forms a focal point at a set focal position.
  • the delay amount of the drive signal is adjusted and supplied to a plurality of ultrasonic elements forming a set.
  • the transmission unit 14 uses an ultrasonic element on the same line as the set transmission line as a central element, and the central element and a plurality of adjacent ultrasonic elements are combined into a set of transmission elements (transmission apertures). ), A drive signal is supplied so as to transmit an ultrasonic beam that forms a focal point at the set focal position.
  • the receiving unit 16 In response to a control signal from the control unit 30, the receiving unit 16 causes the transducer array 36 to transmit the ultrasonic echo generated by the interaction between the ultrasonic beam transmitted from the transducer array 36 and the subject. Received and output received signals, ie, analog element signals for each ultrasonic element are amplified and output. Specifically, the receiving unit 16 uses the central element when the corresponding ultrasonic beam is transmitted and a plurality of ultrasonic elements adjacent to the central element as a set of receiving elements (reception apertures). The ultrasonic echoes reflected within are received.
  • the reception unit 16 includes a plurality of analog element signals received by a plurality of ultrasonic elements, corresponding to one transmission of the ultrasonic beam, and includes information on the received ultrasonic elements and information on reception times.
  • One analog element data (first element data) is output. That is, the element data (first element data) is data representing the intensity of the received signal with respect to the position of the element and the reception time (see FIG. 4 and the like).
  • the receiving unit 16 receives an ultrasonic echo and outputs analog element data every time the transmitting unit 14 transmits one ultrasonic beam. Therefore, the transmission unit 14 outputs a plurality of analog element data corresponding to each transmission by transmitting the ultrasonic beam a plurality of times in accordance with the set transmission line.
  • the receiver 16 supplies analog element data to the A / D converter 18.
  • the A / D converter 18 is connected to the receiver 16 and converts the analog element data supplied from the receiver 16 into digital element data (first element data).
  • the A / D converter 18 supplies the A / D converted digital element data to the element data storage unit 20.
  • the element data storage unit 20 sequentially stores digital element data output from the A / D conversion unit 18.
  • the element data storage unit 20 stores information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) in the digital element data ( Hereinafter, the data is stored in association with element data).
  • the element data storage unit 20 stores and holds two or more element data obtained by transmitting and receiving ultrasonic waves to different transmission lines based on control by the control unit 30.
  • the calculation point setting unit 92 sets the positions of a plurality of data calculation points when the element data processing unit 22 (to be described later) processes element data based on the imaging conditions input from the operation unit 32. Specifically, the calculation point setting unit 92 sets the display area (inspection range), depth (depth), image quality, and the like input from the operation unit 32, and the transmission line and focus set by the focus setting unit 96. A plurality of data calculation points (sampling points) for processing the element data are set on each transmission line based on the position information and information such as the arrangement interval of the transducers in the transducer array 36.
  • FIG. 2 shows an example of the set sampling points.
  • a transmission line is set for each element of the transducer array 36, and a plurality of sampling points are arranged at equal intervals on each transmission line.
  • a sampling point is also set at the focal position.
  • the sampling points are arranged at equal intervals.
  • the present invention is not limited to this, and the arrangement intervals of the sampling points may be different depending on the depth. For example, in the depth region of interest, the sampling point arrangement interval may be close.
  • the set sampling point position information is supplied to the calculation point position determination unit 94.
  • the calculation point position determination unit 94 is a part that determines whether the distance from the focal point is within a predetermined range for each sampling point (data calculation point) set by the calculation point setting unit 92. Specifically, the calculation point position determination unit 94 calculates the distance from the focal point on the same transmission line for each sampling point set by the calculation point setting unit 92, and whether the calculated distance is within a predetermined threshold. It is determined whether or not it is in the vicinity of the focal point.
  • the threshold value for determining the distance to the focal point is not particularly limited, but may be set according to transmission conditions such as numerical aperture and F value where the convergence of the focal point changes.
  • the thickness is preferably 5 to 30 mm.
  • the threshold value may be changeable from the operation unit 32.
  • one focus is set on one transmission line.
  • the present invention is not limited to this, and a plurality of focal points may be set on one transmission line.
  • it may be determined whether the distance from the closest focal point is within a predetermined threshold.
  • the depth of focus set is the same for all transmission lines, but the present invention is not limited to this, and the focus may be set to a different depth for each transmission line.
  • the configuration is not limited to determining whether the distance to the focal point on the same transmission line is within a threshold value, and whether the distance to the closest focal point including a different transmission line is within the threshold value. May be determined.
  • the calculation point position determination unit 94 holds the determination result for each sampling point.
  • the calculation point position determination unit 94 supplies the determination result to the process determination unit 21.
  • the process determination unit 21 is a part that determines whether or not to perform the process by the element data processing unit 22 according to the determination result of the calculation point position determination unit 94.
  • the processing determination unit 21 causes the element data processing unit 22 to perform processing on the sampling point for which the calculation point position determination unit 94 determines that the distance from the focal point is greater than a predetermined threshold, and the distance from the focal point. Is not performed on the sampling point for which the sampling point is determined to be within the predetermined threshold, and the element data corresponding to the transmission line in which the sampling point exists is not subjected to the processing by the element data processing unit 22. Is supplied to the image generation unit 24 (phasing addition unit 38).
  • the element data processing unit 22 has a sampling point determined to be processed by the processing determination unit 21 based on control by the control unit 30, that is, the calculated point position determination unit 94 has a distance from the focal point based on a predetermined threshold.
  • element data hereinafter also referred to as unprocessed element data
  • the element data (unprocessed element data) corresponding to the line is read from the element data storage unit 20, and the time and position are corrected and superimposed based on the information on the reception time and the information on the geometric arrangement of the ultrasonic elements.
  • element data after superposition processing (second element data, hereinafter referred to as processed element data) is generated, and this sampling point is generated. And respond to element data. That is, the element data processing unit 22 performs a process of superimposing unprocessed element data on a sampling point whose distance from the focal point is larger than a predetermined threshold, and reconstructs element data corresponding to the sampling point. .
  • the element data processing unit 22 supplies element data at each sampling point to the image generation unit 24 (the phasing addition unit 38).
  • the present invention determines whether or not to generate the second element data from the first element data depending on whether or not the distance between the data calculation point and the focal point is within a predetermined range.
  • second element data is generated from a plurality of first element data.
  • a plurality of unprocessed element data are synthesized based on information on the geometrical arrangement of the elements and the reception time, and newly Processed element data (second element data) is generated.
  • no processing is performed.
  • a sharp ultrasound image with an optimal spatial resolution can be obtained at a high resolution while maintaining a frame rate that is the same as the conventional one, with a higher S / N ratio and higher resolution without degrading. Can do. Details of the element data processing unit 22 will be described later.
  • the image generation unit 24 generates a sound ray signal (reception data) from the element data supplied from the process determination unit 21 or the element data processing unit 22 under the control of the control unit 30, and an ultrasonic image is generated from the sound ray signal. Is generated.
  • the image generation unit 24 includes a phasing addition unit 38, a detection processing unit 40, a DSC 42, an image creation unit 44, and an image memory 46.
  • the phasing addition unit 38 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the control unit 30, and based on the selected reception delay pattern Thus, the reception focus processing is performed by adding the respective delays to the signal of each element of the element data. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
  • the phasing addition unit 38 supplies the received data to the detection processing unit 40.
  • the detection processing unit 40 corrects attenuation according to the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the phasing addition unit 38, and then performs envelope detection processing to perform detection.
  • B-mode image data that is tomographic image information related to the tissue in the specimen is generated.
  • a DSC (digital scan converter) 48 converts (raster conversion) the B-mode image data generated by the detection processing unit 40 into image data according to a normal television signal scanning method.
  • the image creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
  • the image memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44.
  • the inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
  • the display control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to the image processing by the image creation unit 44.
  • the display unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
  • the control unit 30 controls each unit of the ultrasonic inspection apparatus 10 based on a command input from the operation unit 32 by the operator.
  • the control unit 30 receives various information by the operator via the operation unit 32, particularly information necessary for setting the transmission focus by the focus setting unit 96, and element data by the element data processing unit 22.
  • the above-described various information input from the operation unit 32 is transmitted to the transmission unit 14, the reception unit 16, the element data storage unit 20, the element as necessary.
  • the data is supplied to the data processing unit 22, the image generation unit 24, the display control unit 26, the focus setting unit 96, and the like.
  • the operation unit 32 is for an operator to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, and the like. In addition, the operation unit 32 displays various information as required by the operator, in particular, a display region (examination range) used for setting the transmission focus, a depth (depth), a transducer array 36, a position of the transmission focus, and the like. Information about the object to be used for element data processing, information about the inspection aperture of the subject, transmission aperture and reception aperture of the transducer array 36, and element data processing such as the number of overlapping element data and the overlapping processing method An input device is provided for inputting information related to the information.
  • the storage unit 34 is a variety of information input from the operation unit 32, in particular, information related to the display area, depth, probe 12 (vibrator array 36), sound speed, transmission focal point position, transmission aperture, reception aperture, and the like, Information relating to element data processing such as the number of overlapping element data and the overlay processing method, etc., transmission unit 14, reception unit 16, element data storage unit 20, element data processing unit 22, image generation unit 24, display control unit 26, etc.
  • Information relating to element data processing such as the number of overlapping element data and the overlay processing method, etc.
  • the information required for the processing and operation of each unit controlled by the control unit 30 and the operation program and processing program for executing the processing and operation of each unit are stored.
  • Hard disk, flexible disk, MO, MT Recording media such as RAM, CD-ROM, and DVD-ROM can be used.
  • the element data processing unit 22, the phasing addition unit 38, the detection processing unit 40, the DSC 42, the image creation unit 44, the focus setting unit 96, the focus resetting unit 98, and the display control unit 26 include a CPU and various types of CPUs.
  • the program is composed of operation programs for performing processing, but may be configured by a digital circuit.
  • the element data processing unit 22 includes a delay time calculation unit 48 and an overlay processing unit 50.
  • the delay time calculation unit 48 examines the plurality of ultrasonic elements and the subject of the transducer array 36 of the probe 12 input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Information on the sound speed of the target area, information on the transmission aperture and reception aperture of the transducer array 36, information on the transmission focus set by the focus setting unit 96, and information on the data calculation point set by the calculation point setting unit 92 are acquired in advance.
  • the superimposition processing unit 50 is input from the operation unit 32 or input from the operation unit 32 for a sampling point whose distance from the transmission focus is determined by the calculation point position determination unit 94 to be outside a predetermined range. Based on information relating to element data processing such as the number of element data to be superimposed and the overlay processing method stored in the storage unit 34, ultrasonic beams are transmitted to different transmission lines stored and held by the element data storage unit 20. 2 or more element data obtained by transmitting, and paying attention to a predetermined point (sampling point) of the target line to be subjected to the superimposition processing, the delay time calculated by the delay time calculation unit 48 Based on the received time of two or more raw element data, i.e.
  • an ultrasonic beam (hereinafter simply referred to as a transmission beam) is transmitted to an object from an ultrasonic element (hereinafter simply referred to as a transmission element) forming a transmission aperture of the transducer array 36 of the ultrasonic probe 12, and between the objects.
  • element data unprocessed element data
  • an ultrasonic element (hereinafter simply referred to as a receiving element) that forms a receiving aperture of the transducer array 36.
  • transmission lines are set corresponding to each ultrasonic element in a direction orthogonal to the arrangement direction of the ultrasonic elements, and one focal position is set for each transmission line. It is a figure which shows typically each ultrasonic element, ultrasonic beam, focal position, and ultrasonic echo when set.
  • three ultrasonic elements 52c to 52e and 52d to 52f are used as transmitting elements, respectively, and seven ultrasonic elements (hereinafter also simply referred to as elements) 52a to 52g are used.
  • the transmission beam 56 to be transmitted to the inspection target area including the reflection point 54 is ideally narrowed to an element interval or less.
  • the focal point 58 of the transmission beam 56 is 4d and is in a straight line connecting the reflection point 54, the transmitted beam 56, since it is transmitted to the reflection point 54, the ultrasonic echoes are generated to be reflected from the reflection point 54.
  • the ultrasonic echoes from the reflection point 54 are received by the receiving elements 52a to 52g through the receiving path 60 spreading at a predetermined angle, and the element data 62 as shown in FIG. 4B is obtained by the receiving elements 52a to 52g. Will be.
  • the transmission beam 56 is transmitted to the transmission line corresponding to the element 52e, and the ultrasonic echoes are received by the reception elements 52b to 52h.
  • the reflection point 54 does not exist on the transmission direction of the transmission beam 56, that is, on the straight line connecting the transmission element 52 e and the focal point 58 (on the transmission line). Not sent. For this reason, the ultrasonic echo reflected from the reflection point 54 is not generated, and the receiving elements 52b to 52h do not receive the ultrasonic echo. Therefore, as shown in FIG. It becomes the data of.
  • the actual transmission beam 64 is wider than the element spacing.
  • the transmission beam 64 is transmitted to the transmission line corresponding to the element 52d, with the elements 52c to 52e having the element 52d immediately above the reflection point 54 as the central element.
  • the transmission beam 56 is wide, its focal point 58 is on a straight line connecting the element 54d and the reflection point 54, and the transmission beam 64 is reflected. Reflected at point 54, an ultrasonic echo is generated.
  • an ultrasonic echo is generated.
  • the ultrasonic echo from the reflection point 54 is received by the receiving elements 52a to 52g through the receiving path 60 spreading to a predetermined angle, and is received by the receiving elements 52a to 52g.
  • True element data 66 as shown in FIG. 5B is obtained.
  • the center of the transmitting element is shifted by one element from the reflection point 54 in the element direction (right direction in the figure).
  • the transmission beam 64 is transmitted to the transmission line corresponding to the element 52e, with the elements 52d to 52f having the element 52e adjacent to the element 52d immediately above the reflection point 54 as the central element as transmission elements.
  • the transmission beam 64 is wide, so that the reflection point 54 does not exist on the transmission direction, that is, on the straight line connecting the transmitting element 52e and the focal point 58. However, the transmission beam 64 is transmitted to the reflection point 54.
  • the ultrasonic echo reflected from the reflection point 54 is received by the receiving elements 52b to 52h through the receiving path 60 spread at a predetermined angle, and as shown in FIG. 5D by the receiving elements 52b to 52h.
  • Element data 68 affected by the reflection point is obtained.
  • an acoustic ray signal is generated from element data 68 (hereinafter also referred to as ghost element data) affected by a reflection point other than on the transmission line
  • an ultrasonic image is generated, which corresponds to the element 52e.
  • An image of a reflection point that does not actually exist is reproduced in the line image, so-called ghost is generated, and this causes a decrease in the accuracy of the ultrasonic image.
  • the transmission beam 64 shown in FIG. 5C is transmitted from the transmission element 52e through the focal point 58 to the reflection point 54, and the ultrasonic echo from the reflection point 54 is received from the reception elements 52b to 52h.
  • the sum (propagation distance) with the path is such that the transmission beam 64 shown in FIG. 5A reaches the reflection point 54 from the transmission element 52 d via the focal point 58 and the reflected ultrasonic echo from the reflection point 54. It becomes longer than the sum (propagation distance) with the reception path reaching each of the receiving elements 52a to 52g. Therefore, the ghost element data 68 as shown in FIG. 5D is delayed with respect to the true element data 66 as shown in FIG. 5B.
  • the geometrical arrangement of the sampling point on the transmission line of interest and the central element corresponding to each transmission line causes the transmission line to exceed the transmission line of interest.
  • Element data obtained by transmitting / receiving sound waves hereinafter also referred to as “target element data”
  • element data obtained by transmitting / receiving ultrasonic waves to a transmission line different from the target transmission line hereinafter, “non-target element data”.
  • the shape of the ultrasonic probe 12 (vibrator array 36) (element spacing, linear, convex, etc.), the sound velocity of the examination region of the subject, the focal position, the transmission aperture, the reception aperture, etc.
  • Information is necessary, and in the delay time calculation unit 48, information on the focal position set by the focus setting unit 96, information on the sampling point set by the calculation point setting unit 92, input by the operation unit 32, or storage The information stored in the unit 34 is acquired and the delay time is calculated.
  • the delay time is calculated from, for example, the transmission path and sampling point of the transmission beam from the transmission element to the sampling point through the focal point, which is calculated from the geometry of the transmission element, the focus of the ultrasonic beam, the sampling point, and the reception element. It can be calculated from the difference between the total length (propagation distance) of the reception path of the reflected signal reaching the reception element and the propagation time calculated by the sound speed.
  • the lengths of the transmission path of the transmission beam and the reception path of the ultrasonic echo of each of the target element data and the non-target element data are set. Can be sought.
  • FIG. 6A and FIG. 6B for the sake of explanation, it is assumed that there is a reflection point 54 at the sampling point on the target transmission line. As shown in FIG.
  • the central elements of the transmission elements 52c to 52e, and the reception element coincide with each other, and a focal point 58 and a reflection point 54 are disposed directly below the central element.
  • the position of the element 52d directly above the reflection point 54 is the coordinate (x0, 0) on the xy two-dimensional coordinate, the element interval is Le, the position of the focal point 58 is the coordinate (x0, df), and the position of the reflection point 54 is the coordinate ( x0, z), the position of the transmitting element 52d is also in the same coordinate (x0, 0) as the element 52d immediately above the reflecting point 54, and the transmission beam transmitted from the transmitting element 52d through the focal point 58 to the reflecting point 54 is transmitted.
  • the positions of the central elements of the transmission elements 52d to 52f are The focal point 58 is arranged just below the element 52e, which is the central element, while being shifted by one element (x direction: right direction in the figure) with respect to the reflection point 54 (sampling point). It is arranged directly below 52d.
  • the position of the receiving element 52d immediately above the reflection point 54 is set to the coordinates (x0, 0) on the xy two-dimensional coordinates, the element interval is Le, and the position of the reflection point 54 is the coordinates (x0).
  • the position of the transmitting element 52e is the coordinate (x0 + Le, 0)
  • the position of the focal point 58 is the coordinate (x0 + Le, df). Therefore, the transmission beam from the transmitting element 52e through the focal point 58 to the reflection point 54
  • the value obtained by dividing the ultrasonic propagation distance Lua by the sum of the distance Lta of the transmission path 61 and the distance Lra of the reception path 60 obtained by the geometrical arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received for acquisition.
  • the value obtained by dividing the ultrasonic propagation distance Lub which is the sum of the distance Ltb of the transmission path 61 and the distance Lrb of the reception path 60 obtained by the geometric arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received on the transmission line adjacent to the transmission line.
  • the calculation of the delay time is based on the propagation time of the ultrasonic wave between the ultrasonic element and the sampling point when acquiring the element-of-interest data and between the ultrasonic element and the sampling point when acquiring the non-target element data.
  • the delay time is obtained from the difference in ultrasonic propagation time.
  • the transmission path 61 is a model that passes through the focal point 58, but the present invention is not limited to this, for example, it passes through the focal point 58. Alternatively, a route that directly reaches the reflection point 54 may be used.
  • this delay time calculation method uses a delay time in the element 52 located immediately below the sampling point as a representative value in the transmission / reception of ultrasonic waves with a certain element as the central element, and this representative value is used as the total value in this transmission / reception. This is used as the delay time of the element.
  • the present invention is not limited to this.
  • the reception path distance Lrb of the element 52c, the element 52b, or the like whose position in the x direction is different from the sampling point, that is, the element 52d immediately below is the element directly below.
  • Lrb ⁇ ⁇ (n ⁇ Le) 2 + z 2 ⁇ .
  • the geometric model of Fig.6 (a) and FIG.6 (b) is a case of a linear probe, not only this but another probe can perform the same geometric calculation from the shape of a probe.
  • a geometric model can be set from the radius of the probe and the angle between the elements, and the calculation can be performed in the same way.
  • a geometric model (not shown) that considers information such as the transmission angle is used, and the attention element data and the surrounding non- attention element data are determined from the positional relationship between the transmission element and the sampling point. The delay time can be calculated.
  • the delay time is not limited to the method of calculating the delay time using the geometric model, and the delay time is obtained for each measurement condition from the measurement result obtained by measuring the high-intensity reflection point according to the measurement condition of the apparatus in advance. By storing in the apparatus, the delay time of the same measurement condition may be read out.
  • FIG. 6C shows true element data 66 which is element data when there is a reflection point on the transmission line in the center, and element data 68 of a ghost in which a ghost is generated due to the influence of the reflection point on both sides.
  • FIG. 6D shows the ghost element data 68, which is the non-attention element data, when the central true element data 66 obtained from the above geometric calculation is set as the attention element data.
  • An example of delay time is shown. It is shown that when the true element data 66 is the target element data, the ghost element data 68 is symmetrically delayed. In this way, the delay time calculated by the delay time calculation unit 48 of the element data processing unit 22 can also be used for delay correction in the phasing addition unit 38.
  • the delay time calculation unit is thus performed for the sampling points for which the calculation point position determination unit 94 determines that the distance from the transmission focus is outside a predetermined range.
  • the delay time calculated in 48 the target element data of the target transmission line and the non-target element data which is the element data of the transmission line in the vicinity thereof are superimposed.
  • information on the number of superposition element data and the superposition processing method at the time of superposition is necessary, but these may be input in advance by the operation unit 32. Alternatively, it may be stored in the storage unit 34.
  • FIGS. 7A to 7H show a specific example of overlay processing performed by the overlay processor 50 when the number of element data is 5 and the number of overlay element data is 3.
  • FIG. FIG. 7 (a) shows five element data obtained by performing ultrasonic transmission / reception side by side in a transmission line having five adjacent elements as the central elements, and for each element data, It shows a state in which an ultrasonic beam is transmitted and a reflected signal is received.
  • the horizontal axis of each element data represents a receiving element, and the respective element data are displayed with the center element at the time of transmission of the ultrasonic beam as the center.
  • the vertical axis represents the reception time.
  • the element data in the middle there is a reflection point immediately below the element at the center of the element data (element at the center of the receiving element), that is, the center element at the time of transmission (transmitting element).
  • a reflection signal (ultrasonic echo) from the reflection point is received. That is, this reflected signal is a true signal, and the element data in the middle represents the true element data.
  • the transmission element of the middle element data A reflected signal, i.e., a ghost, which is generated when an ultrasonic beam hits a reflection point existing directly below, is reflected. Since the propagation time of the ultrasonic wave to the reflection point becomes longer as the ghost is away from the true signal, the reception time is delayed as compared with the true element data.
  • the position of the receiving element where the reflected signal from the reflection point is first received is the element immediately above the reflection point, but the horizontal axis of the element data is centered on the central element at the time of transmitting the ultrasonic beam.
  • the center element is shifted by one element for each element data, that is, the transmission line is shifted by one line
  • the absolute position of the element is shifted by one element in each element data. That is, in the middle element data, the receiving element from which the reflected signal from the reflection point is received first is the middle element, but the element data on both sides is shifted by one element from the middle element data.
  • the element data is shifted one element to the left, and the left element data is shifted one element to the right.
  • the element data at both ends are shifted by two elements from the middle element data, the leftmost element data is shifted by two elements to the left, and the leftmost element data is shifted by two elements to the right.
  • the ghost signal is not only delayed in reception time with respect to the true signal, but also deviated from the direction of the receiving element.
  • FIG. 7B when the element data in the middle of the element data for five elements shown in FIG. 7A is set as the element data of interest, that is, for a predetermined sampling point on the transmission line corresponding to the element in the middle.
  • An example of delay time of reception time is shown.
  • the overlay processing unit 50 uses the delay time shown in FIG. 7B to set the element data in the middle as the element data of interest.
  • the delay time correction is performed on the three element data, and the amount of deviation between the center element (target element) corresponding to the transmission line of the target element data and each center element, in the illustrated example, one element on both sides.
  • the data is shifted in the direction, that is, the unprocessed element data corresponding to the three transmission lines is superposed with the phase being matched to obtain one overlap-processed element data corresponding to a predetermined sampling point of the target transmission line.
  • FIG. 7C shows the superposed element data obtained at the sampling point where the reflection point is on the same line. Since the element data of the target element shown in FIG. 7A is the element data of the true signal, the delay time correction and the lateral shift are performed on the unprocessed element data of the adjacent elements on both sides of the target element.
  • the unprocessed element data of the adjacent element and the unprocessed element data of the target element overlap each other at the high luminance position because the phases match. Therefore, when these element data are added, for example, the element data value shows a large value (high luminance value), and for example, even if an average value is obtained by averaging, an emphasized value (high luminance value) is shown.
  • FIG. 7D shows the same element data group as FIG. 7A, but the element data on the left side of the middle element data, that is, the ghost element data is set as the element data of interest, that is, An example in which processing is performed on a sampling point on the transmission line on the left adjacent to the middle is shown.
  • FIG. 7E shows an example of the delay time of the reception time when the center left adjacent element is the target element. Since FIG. 7A and FIG. 7D are the same element data group, the delay time shown in FIG. 7E is the same as FIG. 7B except for the element of interest.
  • the overlay processing unit 50 uses the delay time shown in FIG.
  • FIG. 7F shows the element data obtained by superimposing the sampling points having the reflection points on the adjacent lines. Since the element data of the target element shown in FIG. 7D is ghost element data, phase adjustment is performed by performing delay time correction and lateral shift on the unprocessed element data of adjacent elements on both sides of the target element. Even if it is performed, as shown in FIG. 7F, the unprocessed element data of the adjacent element and the unprocessed element data of the target element do not overlap each other because the phases do not match. For this reason, even if these three element data are added, for example, since the phases are not matched, signals that are inverted in phase cancel each other out, so the added value does not increase. When the average value is obtained, a small value is shown.
  • FIG. 7 (h) shows the result of, for example, addition processing or average processing as superimposing processing shown in (g).
  • FIG. 7 (h) shows the transmission line of interest when the coordinates of the central element and the reflection point of the transmission element shown in FIG. 7 (a) are coincident (when there is a reflection point on the transmission line).
  • the element data of the true signal is obtained as superposed processed element data having a high luminance value, and the ghost element data is added to the element data whose phases are not in phase with each other in all four elements on both sides. Or, since they will cancel each other, the ghost superimposed element data is smaller than the superimposed element data having a high luminance value whose value is the element data of the true signal.
  • the influence of the ghost element data on the element data of the true signal can be reduced, or the influence can be reduced to the extent that the influence can be ignored.
  • an average value or a median value may be taken, or addition may be performed after multiplying coefficients.
  • taking an average value or median value is thought to correspond to applying an averaging filter or median filter at the element data level, but is performed by normal image processing instead of the averaging filter or median filter.
  • An inverse filter or the like may also be applied.
  • the element data to be superimposed are compared, and if they are similar, the maximum value is taken, if not, the average value is taken, and if there is a distribution bias, the intermediate value is taken.
  • the overlay process may be changed based on the feature amount of each element data to be superimposed.
  • the number of element data to be superimposed is matched to the extent of the beam width of the ultrasonic beam. Therefore, when the beam width changes depending on the depth, the number of overlapping element data may be changed depending on the depth. Further, since the beam width depends on the transmission numerical aperture, the number of overlapping element data may be changed according to the transmission numerical aperture. Alternatively, the number of overlapping element data may be changed based on a feature quantity such as the luminance value of the image, or the optimum number of overlapping element data is selected from images created by changing the number of overlapping element data. May be. As a result of the superposition, as described above, the signal phase matches in the element data of the true signal, but the signal phase does not match in the ghost.
  • the element data processing unit 22 does not perform the above-described superimposition processing for the sampling points for which the calculation point position determination unit 94 determines that the distance to the transmission focus is within a predetermined range.
  • the present invention determines whether to generate the second element data from the first element data according to whether the distance between the sampling point and the focal point is within a predetermined range, If it is outside the predetermined range, second element data is generated from the plurality of first element data. If it is within the predetermined range, no processing is performed. Specifically, when the sampling point is determined that the distance from the focal point is outside the predetermined range, that is, when the sampling point is far from the focal point, a plurality of raw element data is received and the geometrical arrangement and reception of the element are received. Based on the time information, new processed element data (second element data) corresponding to this sampling point is generated.
  • the sampling point far from the focal point by superimposing the plurality of first element data, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point. Therefore, one transmission / reception may be performed per transmission line, high-accuracy element data can be obtained without increasing the number of transmissions, and real-time characteristics are maintained without reducing the frame rate. The SN ratio and resolution of the image can be improved. In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
  • the ultrasonic inspection apparatus of the present invention can improve the S / N ratio and resolution of the entire image, and is sharp with an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one. An ultrasonic image can be obtained.
  • FIG. 8 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG.
  • the focus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the transmission unit 14 and the calculation point position determination unit 94.
  • the calculation point setting unit 92 sets data calculation points (sampling points) according to the information input from the operation unit 32 and supplies the data calculation points to the calculation point position determination unit 94.
  • the calculation point position determination unit 94 determines whether the distance from the focal point is within a predetermined range for each sampling point based on the supplied sampling point information and focal point position information, and determines the processing result. To the unit 21.
  • an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted.
  • the transducer array 36 receives the echo and outputs an analog element signal as a reception signal.
  • the transmission unit 14 drives the transducer array 36 so as to transmit an ultrasonic beam that forms a focal point at the focal position supplied from the focal point setting unit 96.
  • the receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18.
  • the A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
  • the process determination unit 21 determines whether or not to perform the process in the element data processing unit 22 for each sampling point.
  • the element data processing unit 22 uses the delay time calculation unit 48 (FIG. 3) for the sampling points determined to be processed by the processing determination unit 21 and the unprocessed element data of the transmission line of interest and the surrounding transmission lines.
  • the delay time for example, FIG. 7 (b) and FIG. 7 (e), both of which are the same
  • the delay time for example, FIG. 7 (b) and FIG. 7 (e), both of which are the same
  • the unprocessed element data, and the transmission element, the focus, the reflection point, and the reception element for each sampling point
  • the sound speed of the examination region of the subject input and set in advance for example, calculation is performed using the geometric model of FIG. 6).
  • the element data processing unit 22 sequentially performs processing according to the determination result of the calculation point position determination unit 94 for each sampling point (calculation coordinates Pst to Pend).
  • a plurality of unprocessed element data including unprocessed element data of the transmission line corresponding to the sampling point is read from the element data storage unit 20 and processed.
  • the element data of interest and the unprocessed element data is obtained by superposing the target element data in phase with each other.
  • enhanced processed element data is obtained for unprocessed element data including a true signal, and attenuated processed element data is determined for ghost unprocessed element data.
  • the process determination unit 21 sets the unprocessed element data of the transmission line corresponding to the sampling point as element data corresponding to the sampling point. .
  • the element data thus obtained is supplied to the phasing adder 38 of the image generator 24.
  • the phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40.
  • the detection processing unit 40 processes the sound ray signal and generates a B-mode image signal.
  • the DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image.
  • the generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
  • the ultrasonic inspection apparatus 10 determines whether or not to generate the second element data from the first element data according to whether or not the distance between the sampling point and the focal point is within a predetermined range. If it is outside the predetermined range, the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed. Thereby, at the sampling point far from the focal point, by superimposing the plurality of first element data, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point.
  • the ultrasonic inspection apparatus of the present invention can improve the S / N ratio and resolution of the entire image, and is sharp with an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one. An ultrasonic image can be obtained.
  • the element data to be superimposed on the target element data is the element data of the transmission line adjacent to the transmission line of the target element data.
  • the present invention is not limited to this. Any transmission line different from the transmission line may be used.
  • the element data to be superimposed on the element data of interest is preferably element data of an adjacent transmission line or a nearby transmission line.
  • the element data to be superimposed on the element data of interest is acquired by transmitting / receiving ultrasonic waves with the transmission line symmetrical about the transmission line of the element of interest data, that is, the element symmetrical about the element of interest as the central element.
  • Element data is preferred.
  • the ultrasonic beam is transmitted in a direction orthogonal to the arrangement direction of the ultrasonic elements.
  • the present invention is not limited to this, and is inclined with respect to the arrangement direction of the ultrasonic elements. It is good also as a structure which transmits an ultrasonic beam in the direction (steer) which is carrying out.
  • the said Example although it was set as the structure with which 1 set of transmission elements (transmission opening) and transmission of one ultrasonic beam respond
  • the ultrasonic inspection apparatus of the present embodiment is controlled by an ultrasonic image data generation program stored in a memory attached to a control unit (not shown). That is, the control unit reads out the ultrasound image data generation program from the memory, sets the focus and the sampling point according to the ultrasound image data generation program, and directs the subject to the subject according to the set focus. Transmitting the ultrasonic beam, receiving the ultrasonic echo reflected from the subject, and synthesizing the first element data obtained by receiving at the sampling point whose distance from the focal point is within the predetermined range The function of generating the second element data is executed.
  • the ultrasonic image data generation program is not limited to the one stored in the memory attached to the control unit in this way, and the ultrasonic image data generation program may be the present ultrasonic image processing such as a CD-ROM.
  • the information may be recorded in a memory medium (removable medium) configured to be detachable from the apparatus, and read into the apparatus via an interface corresponding to the removable medium.
  • FIG. 9 is a block diagram conceptually showing another example of the ultrasonic inspection apparatus according to the present invention.
  • the ultrasonic inspection apparatus 100 illustrated in FIG. 9 includes a process determination unit 21 a instead of the process determination unit 21, an element data processing unit 22 a instead of the element data processing unit 22, and a focus resetting unit 98.
  • 1 has the same configuration as that of the ultrasonic inspection apparatus 10 shown in FIG. 1, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic inspection apparatus 100 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, an element data storage unit 20, and a process determination unit 21a.
  • a determination unit, a focus setting unit 96, and a focus resetting unit 98 are included.
  • the focus resetting unit 98 determines whether or not each focus position set by the focus setting unit 96 is within a predetermined depth range. If the focus position is within the predetermined range, the focus position is set to a different depth. Reset it. Specifically, the focus resetting unit 98 is positioned deeper than the position set by the focus setting unit 96 when the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. If the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, the focus position is set to a position shallower than the position set by the focus setting unit 96. Reset it.
  • the focus resetting unit 98 resets the focus position when the focus position set by the focus setting unit 96 is not within the predetermined range, that is, when the focus position is at a depth between Za and Zb.
  • the position set by the focus setting unit 96 is set as the focus position without setting.
  • each focus position is set on the same transmission line.
  • a deep position is reset to a position deeper than Zb in the illustrated example.
  • FIG. 10B when the focus position set by the focus setting unit 96 is at a position deeper than the predetermined depth Zb, each focus position is set on the same transmission line. In the illustrated example, the position is reset to a position shallower than Za.
  • the predetermined depths Za and Zb for determining whether or not the focus resetting unit 98 resets the focal position are not particularly limited, but the predetermined depth Za is sufficient for the ultrasonic beam. It is preferable that the depth is shallower than the depth that can be converged to, for example, about 1 cm, and the predetermined depth Zb can sufficiently converge the ultrasonic beam when the transmission numerical aperture is maximum. It is preferable that the depth is deeper than the depth. That is, when the focal position is at a position where the ultrasonic beam can be sufficiently converged (between Za and Zb), the focal position is not reset and the ultrasonic beam is sufficiently converged. If it is at a position where no focus is possible, it is preferable to reset the focus position. Whether or not the convergence degree of the ultrasonic beam is sufficient may be determined according to the performance of the ultrasonic probe, the required SN ratio, resolution, and the like.
  • the depth of focus when the focus resetting unit 98 resets the focus position is not particularly limited, but the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. In this case, it is preferable to reset to a position deeper than the predetermined depth Za, and it is more preferable to reset to a position as deep as possible within the range where the focus can be achieved. Similarly, when the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, it is preferable to reset to a position shallower than the predetermined depth Zb, and as much as possible within the range where the focus can be achieved. It is more preferable to reset to a shallow position.
  • the focus resetting unit 98 supplies the reset focus information to the transmission unit 14 and the control unit 30.
  • the transmission unit 14 and the reception unit 16 drive the transducer array 36 based on the focus information set by the focus setting unit 96 or the focus information reset by the focus resetting unit 98, thereby Send and receive.
  • the process determination unit 21a first causes the element data processing unit 22a to perform the process when the focus is reset based on information on whether or not the focus is reset by the focus resetting unit 98. If the focus has not been reset, the element data processing is performed for the sampling point for which the distance from the focus is determined to be greater than the predetermined threshold according to the determination result of the calculation point position determination unit 94. The processing by the unit 22 is performed, and the sampling point for which the distance from the focal point is determined to be within the predetermined threshold is not processed by the element data processing unit 22 and corresponds to the transmission line where the sampling point exists. The element data is supplied to the image generation unit 24 (the phasing addition unit 38) as element data corresponding to the sampling point.
  • the element data processing unit 22a is obtained by transmitting and receiving ultrasonic waves to the focus reset by the focus resetting unit 98.
  • the unprocessed element data is calculated at each sampling point based on the delay time calculated from the geometric arrangement of the ultrasonic element and based on the absolute position of the element. Is performed, and processed element data is generated. Note that the delay time calculation method and element data superposition method are the same as the method performed by the element data processing unit 22.
  • the focal position of the ultrasonic beam when the focal position of the ultrasonic beam is within a predetermined range, the focal position is reset and obtained by transmitting a plurality of ultrasonic beams.
  • Second element data is generated from the first element data.
  • the focal position of the ultrasonic beam is shallower than the predetermined depth Za (on the surface layer)
  • the focal position is reset to a deeper position and deeper than the predetermined depth Zb ( In the deep layer)
  • the focus position is reset to a shallower position
  • ultrasonic waves are transmitted / received to the reset focus position, and a plurality of unprocessed element data (first element data) obtained are obtained.
  • new processed element data (second element data) is generated.
  • the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to.
  • element data first element data
  • the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line can be obtained.
  • the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before.
  • a sharp ultrasonic image can be obtained.
  • the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
  • the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed. Therefore, at the sampling point far from the focal point, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam, and the same element data (second element data) as that at which the focal point is formed at each sampling point is obtained. be able to.
  • the element data is not superimposed, and it is possible to prevent the data quality from being deteriorated by the processing.
  • the unprocessed element data is superimposed at all sampling points.
  • the present invention is not limited to this. Instead, even when the focus position is reset, the unprocessed element data may be overlaid depending on whether the distance to the focus is within a predetermined range.
  • the focus position is changed when the focal position is shallower than the predetermined depth Za or deeper than the predetermined depth Zb.
  • the focus position may be reset to a position deeper than Za when it is shallower than the predetermined depth Za.
  • the focal position may be reset to a position shallower than Zb when deeper than the predetermined depth Zb.
  • FIG. 11 is a flowchart for explaining the operation of the ultrasonic inspection apparatus 100 shown in FIG.
  • the focus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the focus resetting unit 98.
  • the focus resetting unit 98 determines whether or not the set focus position is within a predetermined depth range, and when the focus position is shallower than the predetermined depth Za, resets the focus position to a deeper position, When the depth is deeper than the predetermined depth Zb, the focus position is reset to a shallower position, and when the depth is between Za and Zb, the focus position information is not changed without changing the focus position. Is supplied to the transmission unit 14 and the calculation point position determination unit 94. In addition, the calculation point setting unit 92 sets sampling points according to information input from the operation unit 32 and supplies the sampling points to the calculation point position determination unit 94. The calculation point position determination unit 94 determines whether the distance from the focal point is within a predetermined range for each of the supplied sampling points, and supplies the determination result to the processing determination unit 21a.
  • an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted.
  • the transducer array 36 receives the echo and outputs an analog element signal as a reception signal.
  • the transmission unit 14 transmits an ultrasonic beam that forms a focus at the reset focus position, and is not reset.
  • the transducer array 36 is driven so as to transmit an ultrasonic beam that forms a focal point at the focal position set by the focal point setting unit 96.
  • the receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18.
  • the A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
  • the process determination unit 21a causes the element data processing unit 22a to perform processing based on the focus reset information and the determination result of the calculation point position determination unit 94. In addition, corresponding sampling data is supplied to the image generation unit 24 as sampling data for the sampling point determined not to be processed.
  • the element data processing unit 22a delays the unprocessed element data of the target transmission line and the unprocessed element data of the surrounding transmission lines (for example, FIG. 7B). 7 (e), both of which are the same.) For each sampling point, the geometric arrangement of the transmitting element, the focal point, the reflecting point, and the receiving element, and the subject that has been input and set in advance. (E.g., using the geometric model in FIG. 6).
  • the element data processing unit 22a for element data obtained by resetting the focal position, at each sampling point, includes a plurality of unprocessed element data including transmission element unprocessed element data corresponding to the sampling point.
  • the processing element data is read from the element data storage unit 20, the element data to be processed is set as the target element data, and the overlap processing unit 50 (FIG. 3) uses the delay time calculated by the delay time calculation unit 48.
  • Processed element data is obtained by superimposing the element data and the unprocessed element data (non-target element data) of the surrounding transmission lines in phase.
  • unprocessed element data of the transmission line corresponding to the sampling point is used.
  • a plurality of unprocessed element data is read from the element data storage unit 20, and the element data to be processed is set as target element data, and the delay time calculated by the delay time calculation unit 48 in the overlay processing unit 50 (FIG. 3).
  • Is used to obtain the processed element data by superimposing the target element data and the unprocessed element data (non-target element data) on the transmission lines around the target element data in phase.
  • the element data thus obtained is supplied to the phasing adder 38 of the image generator 24.
  • the phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40.
  • the detection processing unit 40 processes the sound ray signal and generates a B-mode image signal.
  • the DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image.
  • the generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
  • the ultrasonic inspection apparatus 100 is obtained by resetting the focal position and transmitting a plurality of ultrasonic beams when the focal position of the ultrasonic beam is within a predetermined range.
  • Second element data is generated from the first element data.
  • the set focus position is the surface layer or deep layer where it is difficult to converge the ultrasonic beam
  • the element data First element data
  • an ultrasonic beam can be obtained even at a position away from the focal point. It is possible to reduce the influence of a ghost generated by the spread of the element, and it is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line.
  • the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed. Therefore, at the sampling point far from the focal point, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam, and the same element data (second element data) as that at which the focal point is formed at each sampling point is obtained. be able to.
  • the element data is not overlapped, and it is possible to prevent the data quality from being deteriorated by the processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic inspection device that can have increased resolution and an increased signal-to-noise ratio in an entire image including the region close to the focal point, and can obtain a sharp ultrasonic image having optimal spatial resolving power at a high resolution at a frame rate that is no different from conventional frame rates. It is determined whether or not the distance between a data calculation point and a transmission focal point is within a predetermined range, when the distance to the transmission focal point has been determined to be outside the predetermined range, second element data is generated corresponding to the data calculation point from a plurality of first element data, and when the distance to the transmission focal point has been determined to be within the predetermined range, one unit of the plurality of first element data is considered to be element data corresponding to the data calculation point.

Description

超音波検査装置、超音波画像データ生成方法およびプログラムUltrasonic inspection apparatus, ultrasonic image data generation method and program
 本発明は、超音波ビームを送受信することにより生体内の臓器等の検査対象物の撮像を行って、検査対象物の検査や診断のために用いられる超音波画像を生成する超音波検査装置、超音波画像データ生成方法およびプログラムに関する。 The present invention relates to an ultrasonic inspection apparatus that performs imaging of an inspection target such as an organ in a living body by transmitting and receiving an ultrasonic beam, and generates an ultrasonic image used for inspection and diagnosis of the inspection target. The present invention relates to an ultrasonic image data generation method and program.
 従来から、医療分野において、超音波画像を利用した超音波画像診断装置等の超音波検査装置が実用化されている。一般に、この種の超音波検査装置は、複数の素子(超音波トランスデューサ)を内蔵した超音波探触子(超音波プローブ)と、この超音波探触子に接続された装置本体とを有しており、超音波探触子の複数の素子から検査対象物(被検体)に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波探触子で受信して、その受信した超音波エコー信号を装置本体で電気的に処理することにより超音波画像が生成される。 Conventionally, in the medical field, an ultrasonic inspection apparatus such as an ultrasonic diagnostic imaging apparatus using an ultrasonic image has been put into practical use. In general, this type of ultrasonic inspection apparatus has an ultrasonic probe (ultrasonic probe) including a plurality of elements (ultrasonic transducers), and an apparatus main body connected to the ultrasonic probe. The ultrasonic probe transmits the ultrasonic beam from the multiple elements of the ultrasonic probe toward the inspection object (subject), receives the ultrasonic echo from the subject, and receives the ultrasonic echo. An ultrasonic image is generated by electrically processing the ultrasonic echo signal thus processed in the apparatus main body.
 超音波検査装置においては、超音波画像を生成するとき、被検体の検査対象領域、例えば、生体内の臓器やその臓器内の病巣等に探触子の複数の素子から焦点を合わせて超音波ビームを送信し、検査対象領域の反射体、例えば臓器や病巣等の表面や界面からの超音波エコーを複数の素子を介して受信しているが、同一の反射体で反射された超音波エコーを複数の素子で受信するので、送信素子から送信された超音波ビームの焦点位置に位置する反射体で反射され、送信素子で受信された超音波エコー信号に対して、同一の反射体で反射され、送信素子と異なるその他の素子で受信された超音波エコー信号は遅延することになるので、複数の素子で受信した超音波エコー信号をA/D(アナログ/デジタル)変換して素子データとした後、素子データを受信フォーカス処理して、即ち遅延補正して位相を合わせ整相加算して音線信号を生成し、こうして得られた音線信号に基づいて超音波画像を生成している。 In an ultrasonic inspection apparatus, when generating an ultrasonic image, an ultrasonic wave is focused on a region to be inspected of a subject, for example, an organ in a living body or a lesion in the organ from a plurality of elements of the probe. Transmits a beam and receives ultrasonic echoes from the surface or interface of a reflector in the examination target area, for example, an organ or a lesion, via multiple elements, but is reflected by the same reflector. Are reflected by the reflector located at the focal position of the ultrasonic beam transmitted from the transmitting element, and reflected by the same reflector with respect to the ultrasonic echo signal received by the transmitting element. Since the ultrasonic echo signals received by other elements different from the transmitting element are delayed, the ultrasonic echo signals received by a plurality of elements are subjected to A / D (analog / digital) conversion to obtain element data and After Data reception focusing processing, and generates an ultrasound image based on the generated sound ray signals by phasing and adding the combined phase, thus obtained sound ray signal or delay correction to.
 このような超音波検査技術において、超音波画像の画質を向上させるために、複数の異なる焦点で送信した信号を足し合わせることで、従来よりも信号の質を改善することが行われている。
 例えば、特許文献1には、送信用振動素子群を構成する複数個の振動素子から放射される送信超音波を送信集束点に集束させることにより仮想的な点音源を形成し、そして、この点音源から放射される送信超音波によって連続した複数の観測点から反射する受信超音波を、受信用振動素子群を構成する複数個の振動素子によって受信し、得られたチャンネル分の受信信号に対し観測点が受信集束点となるような受信整相加算を行う。更に、前記受信用振動素子群と振動素子の配列方向に順次シフトさせた送信用振動素子群の各々を用いて得られた受信信号に対しても同様の受信整相加算を行い、これら受信整相加算後の受信信号に対し各々の送信集束点から観測点までの伝搬距離の差異に起因した送信遅延を補正する送信整相加算を行う超音波診断装置が開示されている。
 特許文献1では、複数の振動素子から得られた受信信号に対して受信整相加算と送信整相加算を行なうことにより被検体の深さ方向に対してほぼ一様な細いビーム幅を有した送信ビーム及び受信ビームを高精度かつ高感度で形成することができる。このため、特許文献1は、空間分解能、コントラスト分解能及びS/Nに優れた画像データの生成と表示が可能となることを開示している。
In such an ultrasonic inspection technique, in order to improve the image quality of an ultrasonic image, the signal quality is improved compared to the conventional technique by adding together signals transmitted at a plurality of different focal points.
For example, in Patent Document 1, a virtual point sound source is formed by focusing transmission ultrasonic waves radiated from a plurality of vibration elements constituting a transmission vibration element group on a transmission focusing point. Received ultrasonic waves reflected from a plurality of continuous observation points by transmitted ultrasonic waves radiated from a sound source are received by a plurality of vibration elements constituting a reception vibration element group, and the received signals for the obtained channels are received. Receive phasing and addition is performed so that the observation point becomes the reception focus point. Further, similar reception phasing addition is performed on the reception signal obtained using each of the reception vibration element group and the transmission vibration element group sequentially shifted in the arrangement direction of the vibration elements. There has been disclosed an ultrasonic diagnostic apparatus that performs transmission phasing addition for correcting a transmission delay caused by a difference in propagation distance from each transmission focusing point to an observation point with respect to a reception signal after phase addition.
In Patent Document 1, the reception phasing addition and the transmission phasing addition are performed on reception signals obtained from a plurality of vibration elements, thereby having a substantially uniform thin beam width in the depth direction of the subject. The transmission beam and the reception beam can be formed with high accuracy and high sensitivity. For this reason, Patent Document 1 discloses that image data having excellent spatial resolution, contrast resolution, and S / N can be generated and displayed.
特開2009-240700号公報JP 2009-240700 A
 しかしながら、特許文献1に開示の技術では、従来技術よりも高画質な画像が得られるが、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる必要があり、従来技術よりも送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。また、特許文献1では、焦点を仮想的な点音源とみなして、複数の受信信号を合成しているが、実際は、点音源とみなせるほど焦点は収束しておらず、有限の広がりを持っているため、焦点に近い領域の画像ほど、受信信号を合成した際に、データの精度が低下して、SN比や解像度が低下するという問題があった。 However, with the technique disclosed in Patent Document 1, an image with higher image quality than that of the conventional technique can be obtained. However, in order to create one line of data, it is necessary to generate a plurality of transmission beams by changing transmission positions. Since the number of transmissions is higher than that of the technology, there is a problem that the frame rate is lowered and the real-time property is deteriorated. In Patent Document 1, the focal point is regarded as a virtual point sound source and a plurality of received signals are combined. However, in reality, the focal point is not converged so as to be regarded as a point sound source and has a finite spread. For this reason, there is a problem that when the received signal is synthesized, the closer the image is to the focal region, the lower the accuracy of the data and the SN ratio and resolution.
 本発明の目的は、上記従来技術の問題点を解消し、焦点に近い領域も含めて、画像全体で、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる超音波検査装置、超音波画像データ生成方法およびプログラムを提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, increase the SN ratio and increase the resolution of the entire image, including the region close to the focal point, and maintain the same frame rate as the conventional one. Another object of the present invention is to provide an ultrasonic inspection apparatus, an ultrasonic image data generation method, and a program capable of obtaining a sharp ultrasonic image with high resolution and optimum spatial resolution.
 上記目的を達成するために、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、検査対象物内に複数の送信焦点を設定する焦点設定部と、超音波ビームの各成分を発生し、かつ、検査対象物によって反射された超音波エコーを受信して、受信したアナログ素子信号を出力する、複数の素子を備える探触子と、探触子に、複数の素子を用いて、焦点設定部で設定された送信焦点それぞれに対して、超音波ビームを発生させる送信部と、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が受信したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定部と、複数の超音波ビームの送信で得られた第1の素子データから、データ算出点に対応する第2の素子データを生成する素子データ処理部と、算出点設定部が設定したデータ算出点それぞれについて、送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断部と、算出点位置判断部の判断結果に応じて、素子データ処理部による処理を行うか否かを判断する処理判断部と、を備え、処理判断部は、データ算出点から送信焦点までの距離が所定の範囲以外と判断された場合には、素子データ処理部に処理を行わせ、送信焦点までの距離が所定の範囲以内と判断された場合には、複数の第1の素子データのいずれか1つをデータ算出点に対応する素子データとすることを特徴とする超音波検査装置を提供する。 To achieve the above object, the present invention provides an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, a focus setting unit that sets a plurality of transmission focal points in the inspection object, A probe including a plurality of elements that generates each component of a sound beam and receives an ultrasonic echo reflected by an inspection object and outputs a received analog element signal, and a probe, Using a plurality of elements, a transmission unit that generates an ultrasonic beam for each transmission focus set by the focus setting unit, and a plurality of elements corresponding to the transmission of individual ultrasonic beams to each transmission focus A receiving unit that receives the analog element signal received by the receiver and performs a predetermined process; an AD conversion unit that performs A / D conversion on the analog element signal processed by the receiving unit to obtain first element data that is a digital element signal; , Inspection object Element data for generating second element data corresponding to the data calculation point from the calculation element setting unit for setting at least one data calculation point to the first element data obtained by transmitting a plurality of ultrasonic beams For each of the data calculation points set by the processing unit and the calculation point setting unit, a calculation point position determination unit that determines whether or not the distance to the transmission focal point is within a predetermined range, and a determination result of the calculation point position determination unit A process determination unit that determines whether or not to perform processing by the element data processing unit, and the process determination unit determines that the distance from the data calculation point to the transmission focal point is outside a predetermined range, If the element data processing unit performs processing and it is determined that the distance to the transmission focal point is within a predetermined range, one of the plurality of first element data and element data corresponding to the data calculation point are Features to do To provide an ultrasonic inspection apparatus.
 ここで、算出点位置判断部は、データ算出点から送信焦点までの距離が所定の閾値以下か否かを判断することが好ましい。
 また、算出点設定部は、超音波ビームの送信ライン上に設定され、算出点位置判断部は、データ算出点に対応する送信ライン上の送信焦点までの距離に基づいて判断することが好ましい。
Here, the calculation point position determination unit preferably determines whether or not the distance from the data calculation point to the transmission focal point is equal to or less than a predetermined threshold.
The calculation point setting unit is preferably set on the transmission line of the ultrasonic beam, and the calculation point position determination unit is preferably determined based on the distance to the transmission focal point on the transmission line corresponding to the data calculation point.
 また、焦点設定部により設定された各送信焦点の深さが、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の深さを異なる深さに再設定する焦点再設定部を有することが好ましい。 Further, it is determined whether or not the depth of each transmission focus set by the focus setting unit is within a predetermined range, and the focus resetting is performed to reset the depth of the transmission focus within the predetermined range to a different depth. It is preferable to have a part.
 ここで、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも深い位置に再設定することが好ましい。
 また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも浅い位置に再設定することが好ましい。
 また、送信部は、送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させることを、中心となる素子を変更して行わせることが好ましい。
Here, when the depth of the transmission focus set by the focus setting unit is shallower than the predetermined depth, the focus resetting unit sets the position of the transmission focus to a position deeper than the position set by the focus setting unit. It is preferable to reset.
The focus resetting unit resets the position of the transmission focus to a position shallower than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth. It is preferable to set.
In addition, it is preferable that the transmission unit causes the probe to use a plurality of elements and transmits an ultrasonic beam to each transmission focal point by changing a central element.
 また、素子データ処理部は、中心となる素子が異なる、複数の超音波ビームの送信で得られたことが好ましい。
 また、素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の超音波ビームの送信で得られた記第1の素子データを用いて第2の素子データを生成することが好ましい。
 また、素子データ処理部は、素子が超音波エコーを受信した受信時間および素子の位置に応じて複数の第1の素子データを重ね合わせて、データ算出点に対応する第2の素子データを生成することが好ましい。
 また、素子データ処理部は、素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
 また、素子データ処理部は、データ算出点に対応する超音波ビームを送信する際の中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
Moreover, it is preferable that the element data processing unit is obtained by transmitting a plurality of ultrasonic beams having different central elements.
Moreover, it is preferable that an element data processing part produces | generates 2nd element data using the 1st element data obtained by transmission of the some ultrasonic beam with which the transmission area | region of an ultrasonic beam overlaps.
The element data processing unit generates a second element data corresponding to the data calculation point by superimposing a plurality of first element data according to the reception time when the element receives the ultrasonic echo and the position of the element. It is preferable to do.
In addition, the element data processing unit synthesizes a plurality of first element data obtained by transmitting the ultrasonic beam with the elements that are continuous in the element arrangement direction as the center elements, and generates second element data. Is preferably generated.
In addition, the element data processing unit is obtained by transmitting an ultrasonic beam by using the same number of elements adjacent to both sides of the element serving as the center when transmitting the ultrasonic beam corresponding to the data calculation point, respectively. It is preferable to generate the second element data by combining the first element data.
 また、素子データ処理部は、2以上の第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の第1の素子データを算出された遅延時間及び受信された探触子の素子の位置に基づいて重ね合わせ、第2の素子データを生成する重ね合わせ処理部とを有することが好ましい。
 また、遅延時間算出部は、事前に取得された探触子、検査対象物の音速、超音波ビームの送信焦点の位置、送信部による探触子の送信開口、及び受信部による探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の第1の素子データの遅延時間を算出し、重ね合わせ処理部は、予め設定された、2以上の第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の第1の素子データを重ね合わせ、第2の素子データを生成することが好ましい。
 さらに、素子データ処理部は、2以上の第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせることが好ましい。
 また、受信部が出力した第1の素子データのすべてを保持する素子データ保持部を有することが好ましい。
In addition, the element data processing unit includes a delay time calculation unit that calculates a delay time of two or more first element data, a delay time calculated from two or more first element data, and a received probe. It is preferable to have a superimposition processing unit that superimposes based on the position of the element and generates second element data.
In addition, the delay time calculation unit includes the probe acquired in advance, the sound speed of the inspection object, the position of the transmission focus of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the probe of the probe by the reception unit. The delay time of two or more first element data is calculated based on at least one piece of information about the reception aperture, and the overlay processing unit superimposes among the preset two or more first element data. It is preferable to generate the second element data by superimposing two or more pieces of the first element data based on the number of element data of one and the overlay processing method.
Furthermore, the element data processing unit preferably superimposes two or more pieces of first element data after multiplying each of the first element data by a weighting coefficient.
Moreover, it is preferable to have an element data holding part which hold | maintains all the 1st element data which the receiving part output.
 また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、検査対象物内に複数の送信焦点を設定する焦点設定ステップと、探触子に、複数の素子を用いて、焦点設定ステップで設定された送信焦点それぞれに対して、超音波ビームを発生させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が受信したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップで処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定ステップと、複数の超音波ビームの送信で得られた第1の素子データから、データ算出点に対応する第2の素子データを生成する素子データ処理ステップと、算出点設定ステップで設定したデータ算出点それぞれについて、送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断ステップと、算出点位置判断ステップの判断結果に応じて、素子データ処理ステップによる処理を行うか否かを判断する処理判断ステップと、を備え、処理判断ステップは、データ算出点から送信焦点までの距離が所定の範囲以外と判断された場合には、素子データ処理ステップによる処理を行わせ、送信焦点までの距離が所定の範囲以内と判断された場合には、複数の第1の素子データのいずれか1つをデータ算出点に対応する素子データとすることを特徴とする超音波画像データ生成方法を提供する。 In order to achieve the above object, the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals. An ultrasonic image data generation method for generating an ultrasonic image data by generating an ultrasonic beam by using a probe having the above-described elements, and generating ultrasonic image data. A focus setting step for setting a probe, a transmission step for generating an ultrasonic beam for each transmission focus set in the focus setting step using a plurality of elements in the probe, and an individual for each transmission focus Corresponding to the transmission of the ultrasonic beam, the analog element signal received by a plurality of elements is received and a predetermined process is performed, and the analog element signal processed in the reception step is A / D converted. An AD conversion step as first element data which is a digital element signal, a calculation point setting step for setting at least one data calculation point in the inspection object, and a first obtained by transmitting a plurality of ultrasonic beams Whether the distance to the transmission focus is within a predetermined range for each of the element data processing step for generating second element data corresponding to the data calculation point from the element data of 1 and the data calculation point set in the calculation point setting step A calculation point position determination step for determining whether or not, and a process determination step for determining whether or not to perform the process according to the element data processing step according to the determination result of the calculation point position determination step. If it is determined that the distance from the data calculation point to the transmission focal point is outside the predetermined range, the element data processing step is performed to transmit the transmission focal point. If it is determined that the distance up to is within a predetermined range, any one of the plurality of first element data is used as element data corresponding to the data calculation point. I will provide a.
 また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、検査対象物内に複数の送信焦点を設定する焦点設定ステップと、探触子に、複数の素子を用いて、焦点設定ステップで設定された送信焦点それぞれに対して、超音波ビームを発生させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が受信したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップで処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定ステップと、複数の超音波ビームの送信で得られた第1の素子データから、データ算出点に対応する第2の素子データを生成する素子データ処理ステップと、算出点設定ステップで設定したデータ算出点それぞれについて、送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断ステップと、算出点位置判断ステップの判断結果に応じて、素子データ処理ステップによる処理を行うか否かを判断する処理判断ステップと、を備え、処理判断ステップは、データ算出点から送信焦点までの距離が所定の範囲以外と判断された場合には、素子データ処理ステップによる処理を行わせ、送信焦点までの距離が所定の範囲以内と判断された場合には、複数の第1の素子データのいずれか1つをデータ算出点に対応する素子データとすることをコンピュータに実行させることを特徴とする超音波画像データ生成プログラムを提供する。 In order to achieve the above object, the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals. An ultrasonic image data generation program for causing a computer to generate an ultrasonic beam by a probe including the element, inspect an inspection object, and generate ultrasonic image data. A focus setting step for setting a plurality of transmission focal points within, a transmission step for generating an ultrasonic beam for each of the transmission focal points set in the focus setting step using a plurality of elements for the probe, Corresponding to the transmission of each ultrasonic beam to each transmission focal point, a reception step that receives analog element signals received by a plurality of elements and performs predetermined processing, and a reception step A / D conversion of the analog element signal that has been performed to obtain first element data that is a digital element signal, a calculation point setting step that sets at least one data calculation point in the inspection object, From each of the first element data obtained by transmitting the ultrasonic beam, an element data processing step for generating second element data corresponding to the data calculation point, and a data calculation point set in the calculation point setting step, A calculation point position determination step for determining whether or not the distance to the transmission focal point is within a predetermined range, and a process determination for determining whether or not to perform processing by the element data processing step according to the determination result of the calculation point position determination step A step of determining the element data when the distance from the data calculation point to the transmission focus is determined to be outside a predetermined range. When processing by steps is performed and it is determined that the distance to the transmission focus is within a predetermined range, one of the plurality of first element data is set as element data corresponding to the data calculation point. An ultrasonic image data generation program characterized by being executed by a computer is provided.
 本発明によれば、焦点の位置に応じて、複数の素子データを合成して第2の素子データを生成する処理を行うので、焦点の近傍などの、素子データを合成するとデータの精度が低下してしまう領域の素子データの精度を低下させることなく、画像全体で、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。 According to the present invention, the process of generating a plurality of element data by combining a plurality of element data according to the position of the focus is performed, so that the accuracy of the data decreases when the element data such as the vicinity of the focus is combined. Without increasing the accuracy of the element data in the area where the image is generated, the S / N ratio can be increased and the resolution can be increased over the entire image, and at the same resolution as the conventional frame rate, the optimum spatial resolution can be achieved. A sharp ultrasonic image with can be obtained.
本発明に係る超音波検査装置の構成の一例を概念的に示すブロック図である。It is a block diagram which shows notionally an example of a structure of the ultrasonic inspection apparatus which concerns on this invention. 焦点位置およびデータ算出点を説明するための概念図である。It is a conceptual diagram for demonstrating a focus position and a data calculation point. 図1に示す超音波検査装置の素子データ処理部の構成の一例を概念的に示すブロック図である。It is a block diagram which shows notionally an example of a structure of the element data processing part of the ultrasonic inspection apparatus shown in FIG. (a)及び(c)は、それぞれ理想的な超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。(A) And (c) is explanatory drawing in the case of transmitting an ideal ultrasonic beam from the element right above the reflective point of a subject, and the element not right above, respectively, (b) and (d) FIG. 5 is an explanatory diagram showing element data obtained respectively. (a)及び(c)は、それぞれ実際の超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。(A) And (c) is explanatory drawing in the case of transmitting an actual ultrasonic beam from the element directly above the reflection point of the subject and the element not directly above, respectively, (b) and (d) It is explanatory drawing which shows the element data obtained, respectively. (a)及び(b)は、それぞれ真の反射超音波エコーとゴーストの反射信号の場合の超音波ビームの送信経路及び受信経路の距離を説明する説明図であり、(c)及び(d)は、それぞれ複数の素子で得られる素子データ及びそれらの遅延時間を示す説明図である。(A) And (b) is explanatory drawing explaining the distance of the transmission path | route and reception path | route of an ultrasonic beam in the case of the reflected signal of a true reflected ultrasonic echo and a ghost, respectively (c) and (d) These are explanatory drawings showing element data obtained by a plurality of elements and their delay times. (a)、(b)及び(c)並びに(d)、(e)及び(f)は、それぞれ真の信号の場合並びにゴーストの場合の複数の素子で得られる素子データ、それらの遅延時間及び素子データの重ね合わせ状態を示す説明図であり、(g)及び(h)は、それぞれ複数の素子に対応する素子データの重ね合わせ状態及びその結果を示す説明図である。(A), (b) and (c) and (d), (e) and (f) are respectively the element data obtained by a plurality of elements in the case of a true signal and the case of a ghost, their delay time and It is explanatory drawing which shows the superimposition state of element data, (g) And (h) is explanatory drawing which shows the superimposition state of the element data corresponding to a some element, respectively, and its result. 図1に示す超音波検査装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG. 1. 本発明に係る超音波検査装置の他の構成の一例を概念的に示すブロック図である。It is a block diagram which shows notionally another example of a structure of the ultrasonic inspection apparatus which concerns on this invention. (A)~(C)は、焦点位置の再設定を説明するための概念図である。(A) to (C) are conceptual diagrams for explaining resetting of the focal position. 図9に示す超音波検査装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the ultrasonic inspection apparatus shown in FIG.
 本発明に係る超音波検査装置、超音波画像データ生成方法およびプログラムを添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION The ultrasonic inspection apparatus, ultrasonic image data generation method and program according to the present invention will be described below in detail based on preferred embodiments shown in the accompanying drawings.
 図1は、本発明の超音波検査装置の構成の一実施例を概念的に示すブロック図である。
 図1に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、処理判断部21と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、算出点設定部92と、算出点位置判断部94と、焦点設定部96とを有する。
FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
As shown in FIG. 1, the ultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20. A process determination unit 21, an element data processing unit 22, an image generation unit 24, a display control unit 26, a display unit 28, a control unit 30, an operation unit 32, a storage unit 34, and a calculation point setting. A unit 92, a calculation point position determination unit 94, and a focus setting unit 96.
 超音波プローブ(超音波探触子)12は、通常の超音波検査装置に用いられる振動子アレイ36を有する。
 振動子アレイ36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号(アナログ素子信号)を出力する。本実施形態では、振動子アレイ36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。
The ultrasonic probe (ultrasonic probe) 12 has a transducer array 36 used in a normal ultrasonic inspection apparatus.
The transducer array 36 includes a plurality of elements arranged in a one-dimensional or two-dimensional array, that is, ultrasonic transducers. These ultrasonic transducers transmit an ultrasonic beam to a subject in accordance with a drive signal supplied from the transmission unit 14 when an ultrasonic image of an object to be examined (hereinafter referred to as a subject) is captured. An ultrasonic echo from the specimen is received and a reception signal (analog element signal) is output. In the present embodiment, each of the predetermined number of ultrasonic transducers forming one set among the plurality of ultrasonic transducers of the transducer array 36 generates each component of one ultrasonic beam, and sets a predetermined number of ultrasonic transducers. The ultrasonic transducer generates one ultrasonic beam that is transmitted to the subject.
 各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子、即ち振動子によって構成される。 Each ultrasonic transducer is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate). It is constituted by an element in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by a solid solution, that is, a vibrator.
 このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号(アナログ素子信号)として出力される。 When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. As a result, an ultrasonic beam is formed. In addition, each vibrator expands and contracts by receiving propagating ultrasonic waves to generate electric signals, and these electric signals are output as ultrasonic reception signals (analog element signals).
 焦点設定部96は、操作部32から入力された送信焦点の情報(焦点の位置情報)に応じて、振動子アレイ36が超音波ビームを送信する際の、複数の送信ライン、および、各送信ライン上の焦点位置を設定する。
 具体的には、従来の超音波検査装置と同様に、焦点設定部96は、操作部32から入力された表示領域(検査範囲)、深度(depth)等の設定、ならびに、振動子アレイ36の振動子の配置間隔等の情報に応じて、超音波ビームを送信するための複数の送信ラインを設定し、各送信ライン上に超音波ビームの焦点となる位置を自動的に設定する。
 なお、焦点設定部96は、操作者が操作部32から直接、入力した焦点の位置情報から、焦点位置を設定するようにしてもよい。
The focus setting unit 96 transmits a plurality of transmission lines and each transmission when the transducer array 36 transmits an ultrasonic beam according to transmission focus information (focus position information) input from the operation unit 32. Set the focal position on the line.
Specifically, like the conventional ultrasonic inspection apparatus, the focus setting unit 96 sets the display area (inspection range), the depth (depth), and the like input from the operation unit 32, and the transducer array 36. A plurality of transmission lines for transmitting the ultrasonic beam are set according to information such as the arrangement interval of the transducers, and the position that becomes the focal point of the ultrasonic beam is automatically set on each transmission line.
Note that the focus setting unit 96 may set the focus position from the focus position information directly input by the operator from the operation unit 32.
 図2に、設定された焦点位置の一例を示す。
 図2に示す例では、振動子アレイ36の各素子(超音波トランスデューサ)に対応して、各素子と同一ライン上に、それぞれ1つの送信ラインが設定されている。また、各送信ライン上には、同一の深さに、それぞれ1つの焦点位置が設定されている。
 設定された焦点位置の情報は、送信部14、算出点位置判断部94、および制御部30に供給される。
FIG. 2 shows an example of the set focal position.
In the example shown in FIG. 2, one transmission line is set on the same line as each element corresponding to each element (ultrasonic transducer) of the transducer array 36. In addition, one focal position is set at the same depth on each transmission line.
Information on the set focal position is supplied to the transmission unit 14, the calculation point position determination unit 94, and the control unit 30.
 送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号および焦点設定部96からの焦点位置の情報に応じて選択された送信遅延パターンに基づいて、振動子アレイ36の一組の所定数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成し、設定された焦点位置に焦点を形成するようにそれぞれの駆動信号の遅延量を調節して組を成す複数の超音波素子に供給する。
 具体的には、送信部14は、設定された送信ラインと同一ライン上にある超音波素子を中心素子として、この中心素子と両隣の複数の超音波素子とを一組の送信素子(送信開口)として、設定された焦点位置に焦点を形成する超音波ビームを送信するように、駆動信号を供給する。
The transmission unit 14 includes, for example, a plurality of pulsars, and based on the transmission delay pattern selected according to the control signal from the control unit 30 and the focus position information from the focus setting unit 96, the transducer array 36. An ultrasonic beam component transmitted from a set of a predetermined number of ultrasonic transducers (hereinafter referred to as ultrasonic elements) forms one ultrasonic beam and forms a focal point at a set focal position. The delay amount of the drive signal is adjusted and supplied to a plurality of ultrasonic elements forming a set.
Specifically, the transmission unit 14 uses an ultrasonic element on the same line as the set transmission line as a central element, and the central element and a plurality of adjacent ultrasonic elements are combined into a set of transmission elements (transmission apertures). ), A drive signal is supplied so as to transmit an ultrasonic beam that forms a focal point at the set focal position.
 受信部16は、制御部30からの制御信号に応じて、振動子アレイ36から送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを、振動子アレイ36が受信して出力した、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して出力する。
 具体的には、受信部16は、対応する超音波ビームを送信した際の中心素子と、この中心素子の両隣の複数の超音波素子とを一組の受信素子(受信開口)として、被検体内で反射された超音波エコーを受信する。
In response to a control signal from the control unit 30, the receiving unit 16 causes the transducer array 36 to transmit the ultrasonic echo generated by the interaction between the ultrasonic beam transmitted from the transducer array 36 and the subject. Received and output received signals, ie, analog element signals for each ultrasonic element are amplified and output.
Specifically, the receiving unit 16 uses the central element when the corresponding ultrasonic beam is transmitted and a plurality of ultrasonic elements adjacent to the central element as a set of receiving elements (reception apertures). The ultrasonic echoes reflected within are received.
 ここで、受信部16は、1回の超音波ビームの送信に対応して、複数の超音波素子が受信した複数のアナログ素子信号を、受信した超音波素子の情報および受信時間の情報を含む、1つのアナログの素子データ(第1の素子データ)として出力する。すなわち、素子データ(第1の素子データ)は、素子の位置と受信時間とに対する受信信号の強度を表すデータである(図4等参照)。
 また、受信部16は、送信部14による1回の超音波ビームの送信ごとに、超音波エコーを受信してアナログの素子データを出力する。したがって、送信部14が、設定された送信ラインに応じて、複数回の超音波ビームの送信を行うことにより、各送信に対応した複数のアナログの素子データを出力する。
 受信部16は、アナログの素子データをA/D変換部18に供給する。
Here, the reception unit 16 includes a plurality of analog element signals received by a plurality of ultrasonic elements, corresponding to one transmission of the ultrasonic beam, and includes information on the received ultrasonic elements and information on reception times. One analog element data (first element data) is output. That is, the element data (first element data) is data representing the intensity of the received signal with respect to the position of the element and the reception time (see FIG. 4 and the like).
The receiving unit 16 receives an ultrasonic echo and outputs analog element data every time the transmitting unit 14 transmits one ultrasonic beam. Therefore, the transmission unit 14 outputs a plurality of analog element data corresponding to each transmission by transmitting the ultrasonic beam a plurality of times in accordance with the set transmission line.
The receiver 16 supplies analog element data to the A / D converter 18.
 A/D変換部18は、受信部16に接続され、受信部16から供給されたアナログの素子データを、デジタルの素子データ(第1の素子データ)に変換する。A/D変換部18は、A/D変換されたデジタルの素子データを素子データ記憶部20に供給する。 The A / D converter 18 is connected to the receiver 16 and converts the analog element data supplied from the receiver 16 into digital element data (first element data). The A / D converter 18 supplies the A / D converted digital element data to the element data storage unit 20.
 素子データ記憶部20は、A/D変換部18から出力されるデジタルの素子データを順次格納する。また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタルの素子データ(以下、単に素子データという)に関連付けて格納する。
 ここで、素子データ記憶部20は、制御部30による制御に基づいて、互いに異なる送信ラインに超音波を送受信して得られた2以上の素子データを記憶保持する。
The element data storage unit 20 sequentially stores digital element data output from the A / D conversion unit 18. In addition, the element data storage unit 20 stores information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) in the digital element data ( Hereinafter, the data is stored in association with element data).
Here, the element data storage unit 20 stores and holds two or more element data obtained by transmitting and receiving ultrasonic waves to different transmission lines based on control by the control unit 30.
 算出点設定部92は、操作部32から入力された撮像条件に基づいて、後述する素子データ処理部22で素子データの処理を行う際の、複数のデータ算出点の位置を設定する。
 具体的には、算出点設定部92は、操作部32から入力された表示領域(検査範囲)、深度(depth)、画質等の設定、および、焦点設定部96で設定された送信ライン、焦点位置の情報、ならびに、振動子アレイ36の振動子の配置間隔等の情報に基づいて、各送信ライン上に、素子データの処理を行う、複数のデータ算出点(サンプリング点)を設定する。
The calculation point setting unit 92 sets the positions of a plurality of data calculation points when the element data processing unit 22 (to be described later) processes element data based on the imaging conditions input from the operation unit 32.
Specifically, the calculation point setting unit 92 sets the display area (inspection range), depth (depth), image quality, and the like input from the operation unit 32, and the transmission line and focus set by the focus setting unit 96. A plurality of data calculation points (sampling points) for processing the element data are set on each transmission line based on the position information and information such as the arrangement interval of the transducers in the transducer array 36.
 図2に、設定されたサンプリング点の一例を示す。
 図2に示す例では、振動子アレイ36の素子ごとに送信ラインが設定されており、各送信ライン上に、複数のサンプリング点が等間隔で配置されている。なお、焦点位置にもサンプリング点が設定されている。
 なお、図示例においては、サンプリング点は、等間隔に配置されたが、これに限定はされず、サンプリング点の配置間隔は深さに応じて異なっていてもよい。例えば、着目する深さ領域では、サンプリング点の配置間隔を密にしてもよい。
 設定されたサンプリング点の位置情報は、算出点位置判断部94に供給される。
FIG. 2 shows an example of the set sampling points.
In the example shown in FIG. 2, a transmission line is set for each element of the transducer array 36, and a plurality of sampling points are arranged at equal intervals on each transmission line. A sampling point is also set at the focal position.
In the illustrated example, the sampling points are arranged at equal intervals. However, the present invention is not limited to this, and the arrangement intervals of the sampling points may be different depending on the depth. For example, in the depth region of interest, the sampling point arrangement interval may be close.
The set sampling point position information is supplied to the calculation point position determination unit 94.
 算出点位置判断部94は、算出点設定部92で設定された各サンプリング点(データ算出点)について、焦点との距離が所定の範囲以内か否かを判断する部位である。
 具体的には、算出点位置判断部94は、算出点設定部92で設定されたサンプリング点それぞれについて、同じ送信ライン上の焦点との距離を算出して、算出した距離が所定の閾値以内か否か、すなわち、焦点の近傍か否かを判断する。
The calculation point position determination unit 94 is a part that determines whether the distance from the focal point is within a predetermined range for each sampling point (data calculation point) set by the calculation point setting unit 92.
Specifically, the calculation point position determination unit 94 calculates the distance from the focal point on the same transmission line for each sampling point set by the calculation point setting unit 92, and whether the calculated distance is within a predetermined threshold. It is determined whether or not it is in the vicinity of the focal point.
 なお、焦点との距離を判定するための閾値の値については、特に限定はないが、焦点の収束性が変化する、開口数、F値などの送信条件等に応じて設定すればよく、例えば、5~30mmとするのが好ましい。さらに、F値が小さく焦点の収束性が高い場合には、5mm程度に範囲を狭めて設定し、逆にF値が大きく焦点の収束性が低い場合には30mm程度に範囲を広げて設定してもよい。また、操作部32から閾値を変更可能にしてもよい。 Note that the threshold value for determining the distance to the focal point is not particularly limited, but may be set according to transmission conditions such as numerical aperture and F value where the convergence of the focal point changes. The thickness is preferably 5 to 30 mm. Furthermore, when the F value is small and the focus convergence is high, the range is narrowed to about 5 mm. Conversely, when the F value is large and the focus convergence is low, the range is expanded to about 30 mm. May be. Further, the threshold value may be changeable from the operation unit 32.
 また、図示例においては、1つの送信ラインに1つの焦点が設定される構成としたが、これに限定はされず、1つの送信ライン上に複数の焦点が設定されてもよく、1つの送信ライン上に複数の焦点が設定されている場合には、最も近い焦点との距離が所定の閾値以内か否かを判断すればよい。
 また、図示例においては、全ての送信ラインで、設定される焦点の深さは同じとしたが、これに限定はされず、送信ラインごとに異なる深さに焦点が設定されてもよい。また、その場合には、同一の送信ライン上の焦点との距離が閾値以内か否かを判断する構成には限定されず、異なる送信ラインも含む最も近い焦点との距離が閾値以内か否かを判断するようにしてもよい。
 また、サンプリング点および焦点は、一旦、設定されると、操作部32からの変更指示等がない限り変更されないので、算出点位置判断部94は、サンプリング点ごとの判断結果を保持しておき、撮像条件の変更等により、サンプリング点または焦点の設定が変更された場合に、再度、各サンプリング点の焦点との距離が所定の範囲以内か否かを判断すればよい。
 算出点位置判断部94は、判断結果を処理判断部21に供給する。
In the illustrated example, one focus is set on one transmission line. However, the present invention is not limited to this, and a plurality of focal points may be set on one transmission line. When a plurality of focal points are set on the line, it may be determined whether the distance from the closest focal point is within a predetermined threshold.
In the illustrated example, the depth of focus set is the same for all transmission lines, but the present invention is not limited to this, and the focus may be set to a different depth for each transmission line. In this case, the configuration is not limited to determining whether the distance to the focal point on the same transmission line is within a threshold value, and whether the distance to the closest focal point including a different transmission line is within the threshold value. May be determined.
Further, once the sampling point and focus are set, they are not changed unless there is a change instruction from the operation unit 32, so the calculation point position determination unit 94 holds the determination result for each sampling point, When the setting of the sampling point or focus is changed due to a change in the imaging condition or the like, it may be determined again whether the distance from the focus of each sampling point is within a predetermined range.
The calculation point position determination unit 94 supplies the determination result to the process determination unit 21.
 処理判断部21は、算出点位置判断部94の判断結果に応じて、素子データ処理部22による処理を行うか否かを判断する部位である。
 処理判断部21は、算出点位置判断部94において、焦点との距離が所定の閾値より大きいと判断されたサンプリング点に対しては、素子データ処理部22による処理を行わせ、焦点との距離が所定の閾値以内と判断されたサンプリング点に対しては、素子データ処理部22による処理を行わせず、サンプリング点が存在する送信ラインに対応する素子データを、このサンプリング点に対応する素子データとして、画像生成部24(整相加算部38)に供給する。
The process determination unit 21 is a part that determines whether or not to perform the process by the element data processing unit 22 according to the determination result of the calculation point position determination unit 94.
The processing determination unit 21 causes the element data processing unit 22 to perform processing on the sampling point for which the calculation point position determination unit 94 determines that the distance from the focal point is greater than a predetermined threshold, and the distance from the focal point. Is not performed on the sampling point for which the sampling point is determined to be within the predetermined threshold, and the element data corresponding to the transmission line in which the sampling point exists is not subjected to the processing by the element data processing unit 22. Is supplied to the image generation unit 24 (phasing addition unit 38).
 素子データ処理部22は、制御部30による制御に基づいて、処理判断部21で処理を行うと判断されたサンプリング点、すなわち、算出点位置判断部94において、焦点との距離が所定の閾値より大きいと判断されたサンプリング点それぞれについて、このサンプリング点が存在する送信ラインに超音波ビームを送信して得られた素子データ(以下、未処理素子データともいう)と、この素子データとは異なる送信ラインに対応する素子データ(未処理素子データ)を素子データ記憶部20から読み出して、受信時間の情報および超音波素子の幾何学的な配置の情報に基づいて、時間および位置を補正して重ね合わせて、重ね合わせ処理後素子データ(第2の素子データ、以下、処理済素子データという)を生成し、このサンプリング点に対応する素子データとする。すなわち、素子データ処理部22は、焦点との距離が所定の閾値よりも大きいサンプリング点に対して、未処理素子データの重ね合わせ処理を行って、このサンプリング点に対応する素子データを再構築する。
 素子データ処理部22は、各サンプリング点の素子データを画像生成部24(整相加算部38)に供給する。
The element data processing unit 22 has a sampling point determined to be processed by the processing determination unit 21 based on control by the control unit 30, that is, the calculated point position determination unit 94 has a distance from the focal point based on a predetermined threshold. For each sampling point determined to be large, element data (hereinafter also referred to as unprocessed element data) obtained by transmitting an ultrasonic beam to the transmission line where the sampling point exists, and transmission different from this element data The element data (unprocessed element data) corresponding to the line is read from the element data storage unit 20, and the time and position are corrected and superimposed based on the information on the reception time and the information on the geometric arrangement of the ultrasonic elements. In addition, element data after superposition processing (second element data, hereinafter referred to as processed element data) is generated, and this sampling point is generated. And respond to element data. That is, the element data processing unit 22 performs a process of superimposing unprocessed element data on a sampling point whose distance from the focal point is larger than a predetermined threshold, and reconstructs element data corresponding to the sampling point. .
The element data processing unit 22 supplies element data at each sampling point to the image generation unit 24 (the phasing addition unit 38).
 前述のとおり、高画質な画像を得るために、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる場合、送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。また、焦点を仮想的な点音源とみなして複数の受信信号を合成すると、実際には、点音源とみなせるほど焦点は収束しておらず、有限の広がりを持っているため、焦点に近い領域では、受信信号を合成した際にデータの精度が低下してSN比や解像度が低下するという問題があった。 As described above, in order to obtain a high-quality image, when a plurality of transmission beams are generated by changing the transmission position in order to create one line of data, the frame rate is lowered because the number of transmissions is increased, and real-time characteristics are improved. There was a problem of getting worse. In addition, when combining multiple received signals with the focal point regarded as a virtual point sound source, the focal point is actually not converged enough to be regarded as a point sound source and has a finite extent. However, there has been a problem that when the received signal is synthesized, the accuracy of the data is lowered and the SN ratio and resolution are lowered.
 これに対して、本発明は、データ算出点と焦点と間の距離が所定の範囲内か否かに応じて、第1の素子データから第2の素子データを生成するか否かを判断し、所定の範囲以外の場合には、複数の第1の素子データから第2の素子データを生成する。具体的には、焦点からの距離が所定の範囲以外と判断された場合には、複数の未処理素子データを、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな処理済素子データ(第2の素子データ)を生成する。一方、焦点からの距離が所定の範囲以内と判断された場合には、処理を行わない。
 これにより、焦点から遠い位置では、素子データを合成して、データの精度を向上させると共に、焦点の近傍などの、素子データを合成するとデータの精度が低下してしまう領域の素子データの精度を低下させることなく、画像全体で、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
 素子データ処理部22の詳細については、後述する。
In contrast, the present invention determines whether or not to generate the second element data from the first element data depending on whether or not the distance between the data calculation point and the focal point is within a predetermined range. In cases other than the predetermined range, second element data is generated from a plurality of first element data. Specifically, when it is determined that the distance from the focal point is outside the predetermined range, a plurality of unprocessed element data are synthesized based on information on the geometrical arrangement of the elements and the reception time, and newly Processed element data (second element data) is generated. On the other hand, if it is determined that the distance from the focal point is within a predetermined range, no processing is performed.
This improves the accuracy of the data by synthesizing the element data at a position far from the focal point, and improves the accuracy of the element data in the area where the accuracy of the data decreases when the element data is synthesized, such as near the focal point. A sharp ultrasound image with an optimal spatial resolution can be obtained at a high resolution while maintaining a frame rate that is the same as the conventional one, with a higher S / N ratio and higher resolution without degrading. Can do.
Details of the element data processing unit 22 will be described later.
 画像生成部24は、制御部30による制御下で、処理判断部21または素子データ処理部22から供給された素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成するものである。
 画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。
The image generation unit 24 generates a sound ray signal (reception data) from the element data supplied from the process determination unit 21 or the element data processing unit 22 under the control of the control unit 30, and an ultrasonic image is generated from the sound ray signal. Is generated.
The image generation unit 24 includes a phasing addition unit 38, a detection processing unit 40, a DSC 42, an image creation unit 44, and an image memory 46.
 整相加算部38は、制御部30において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データの素子ごとの信号にそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
 整相加算部38は、受信データを検波処理部40に供給する。
The phasing addition unit 38 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the control unit 30, and based on the selected reception delay pattern Thus, the reception focus processing is performed by adding the respective delays to the signal of each element of the element data. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
The phasing addition unit 38 supplies the received data to the detection processing unit 40.
 検波処理部40は、整相加算部38で生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
 DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。
The detection processing unit 40 corrects attenuation according to the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the phasing addition unit 38, and then performs envelope detection processing to perform detection. B-mode image data that is tomographic image information related to the tissue in the specimen is generated.
A DSC (digital scan converter) 48 converts (raster conversion) the B-mode image data generated by the detection processing unit 40 into image data according to a normal television signal scanning method.
 画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
 画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。
The image creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
The image memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44. The inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
 表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
 表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。
The display control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to the image processing by the image creation unit 44.
The display unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
 制御部30は、操作者により操作部32から入力された指令に基づいて超音波検査装置10の各部の制御を行う。
 ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、焦点設定部96で送信焦点を設定するために必要な情報、および、素子データ処理部22で素子データを処理するために必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24、表示制御部26および焦点設定部96等の各部に供給する。
The control unit 30 controls each unit of the ultrasonic inspection apparatus 10 based on a command input from the operation unit 32 by the operator.
Here, the control unit 30 receives various information by the operator via the operation unit 32, particularly information necessary for setting the transmission focus by the focus setting unit 96, and element data by the element data processing unit 22. When the information necessary for processing is input, the above-described various information input from the operation unit 32 is transmitted to the transmission unit 14, the reception unit 16, the element data storage unit 20, the element as necessary. The data is supplied to the data processing unit 22, the image generation unit 24, the display control unit 26, the focus setting unit 96, and the like.
 操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
 また、操作部32は、操作者が必要に応じて各種の情報、特に上述の送信焦点の設定に用いられる表示領域(検査範囲)、深度(depth)、振動子アレイ36、送信焦点の位置等に関する情報、ならびに、素子データ処理に用いられる被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、並びに重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等を入力操作するための入力装置を備えている。
The operation unit 32 is for an operator to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, and the like.
In addition, the operation unit 32 displays various information as required by the operator, in particular, a display region (examination range) used for setting the transmission focus, a depth (depth), a transducer array 36, a position of the transmission focus, and the like. Information about the object to be used for element data processing, information about the inspection aperture of the subject, transmission aperture and reception aperture of the transducer array 36, and element data processing such as the number of overlapping element data and the overlapping processing method An input device is provided for inputting information related to the information.
 格納部34は、操作部32から入力された各種の情報、特に、上述の表示領域、深度、プローブ12(振動子アレイ36)、音速、送信焦点の位置、送信開口及び受信開口等に関する情報、重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等や、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24及び表示制御部26等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD-ROM、DVD-ROM等の記録媒体を用いることができる。
 なお、素子データ処理部22、整相加算部38、検波処理部40、DSC42、画像作成部44、焦点設定部96、焦点再設定部98及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。
The storage unit 34 is a variety of information input from the operation unit 32, in particular, information related to the display area, depth, probe 12 (vibrator array 36), sound speed, transmission focal point position, transmission aperture, reception aperture, and the like, Information relating to element data processing such as the number of overlapping element data and the overlay processing method, etc., transmission unit 14, reception unit 16, element data storage unit 20, element data processing unit 22, image generation unit 24, display control unit 26, etc. The information required for the processing and operation of each unit controlled by the control unit 30 and the operation program and processing program for executing the processing and operation of each unit are stored. Hard disk, flexible disk, MO, MT Recording media such as RAM, CD-ROM, and DVD-ROM can be used.
The element data processing unit 22, the phasing addition unit 38, the detection processing unit 40, the DSC 42, the image creation unit 44, the focus setting unit 96, the focus resetting unit 98, and the display control unit 26 include a CPU and various types of CPUs. The program is composed of operation programs for performing processing, but may be configured by a digital circuit.
 ここで、素子データ処理部22を、図3に基づいて詳細に説明する。
 同図に示すように、素子データ処理部22は、遅延時間算出部48と、重ね合わせ処理部50とを有する。
 遅延時間算出部48は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されているプローブ12の振動子アレイ36の複数の超音波素子、被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、ならびに、焦点設定部96が設定した送信焦点に関する情報、算出点設定部92が設定したデータ算出点に関する情報を事前に取得しておき、超音波ビームを形成し送信する、送信開口の超音波素子(送信素子)と、被検体からの、超音波ビームによる超音波エコーを受信する、受信開口の超音波素子(受信素子)との幾何学的配置に基づいて、受信開口の各超音波素子で受信される素子データの遅延時間を算出する。
Here, the element data processing unit 22 will be described in detail with reference to FIG.
As shown in the figure, the element data processing unit 22 includes a delay time calculation unit 48 and an overlay processing unit 50.
The delay time calculation unit 48 examines the plurality of ultrasonic elements and the subject of the transducer array 36 of the probe 12 input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Information on the sound speed of the target area, information on the transmission aperture and reception aperture of the transducer array 36, information on the transmission focus set by the focus setting unit 96, and information on the data calculation point set by the calculation point setting unit 92 are acquired in advance. The ultrasonic element (transmission element) of the transmission aperture that forms and transmits the ultrasonic beam, and the ultrasonic element (reception element) of the reception aperture that receives the ultrasonic echo by the ultrasonic beam from the subject. ) And the delay time of the element data received by each ultrasonic element of the reception aperture is calculated.
 重ね合わせ処理部50は、算出点位置判断部94において、送信焦点との距離が所定の範囲以外と判断されたサンプリング点について、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されている、重ね合わせる素子データの数及び重ね合わせ処理方法等の素子データ処理に関する情報に基づいて、素子データ記憶部20によって記憶保持された、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを読み出して、重ね合わせ処理を行うべき注目ラインの所定の点(サンプリング点)に注目して、遅延時間算出部48でそれぞれ算出された遅延時間に基づいて、2以上の未処理素子データを受信時間上で、即ち時間を合わせて、かつ、受信された探触子の素子の絶対的な位置を合わせて、重ね合わせて処理済データを生成する。
 なお、処理判断部21において、処理しないと判断されたサンプリング点、すなわち、送信焦点近傍のサンプリング点については、素子データ処理部22による重ね合わせ処理を行わず、このサンプリング点が存在する送信ラインに超音波ビームを送信して得られた未処理素子データを、このサンプリング点に対応する素子データとして、画像生成部24に供給する。
The superimposition processing unit 50 is input from the operation unit 32 or input from the operation unit 32 for a sampling point whose distance from the transmission focus is determined by the calculation point position determination unit 94 to be outside a predetermined range. Based on information relating to element data processing such as the number of element data to be superimposed and the overlay processing method stored in the storage unit 34, ultrasonic beams are transmitted to different transmission lines stored and held by the element data storage unit 20. 2 or more element data obtained by transmitting, and paying attention to a predetermined point (sampling point) of the target line to be subjected to the superimposition processing, the delay time calculated by the delay time calculation unit 48 Based on the received time of two or more raw element data, i.e. timed and the absolute position of the received element of the probe Align Te, to generate the processed data are superimposed.
Note that the sampling point determined not to be processed by the processing determination unit 21, that is, the sampling point in the vicinity of the transmission focal point, is not subjected to the overlay processing by the element data processing unit 22, and the transmission line where this sampling point exists Unprocessed element data obtained by transmitting the ultrasonic beam is supplied to the image generation unit 24 as element data corresponding to this sampling point.
 次に、素子データ処理部22で行う素子データ処理について詳細に説明する。
 まず、超音波プローブ12の振動子アレイ36の送信開口をなす超音波素子(以下、単に送信素子という)から超音波ビーム(以下、送信ビームという)を被検体に送信し、被検体との間の相互作用によって発生された超音波エコーを振動子アレイ36の受信開口をなす超音波素子(以下、単に受信素子という)で受信して素子データ(未処理素子データ)を得る場合において、送信素子からの送信ビームと受信素子で得られる素子データとの関係について説明する。
Next, element data processing performed by the element data processing unit 22 will be described in detail.
First, an ultrasonic beam (hereinafter simply referred to as a transmission beam) is transmitted to an object from an ultrasonic element (hereinafter simply referred to as a transmission element) forming a transmission aperture of the transducer array 36 of the ultrasonic probe 12, and between the objects. In the case where element data (unprocessed element data) is obtained by receiving an ultrasonic echo generated by the interaction of the ultrasonic echoes by an ultrasonic element (hereinafter simply referred to as a receiving element) that forms a receiving aperture of the transducer array 36, The relationship between the transmission beam from the element and element data obtained by the receiving element will be described.
 図4(a)及び(c)は、一例として、超音波素子の配列方向と直交する方向に、各超音波素子に対応して、送信ラインが設定され、各送信ラインに1つの焦点位置が設定された場合の、各超音波素子、超音波ビーム、焦点位置および超音波エコーを模式的に示す図である。
 図4(a)及び(c)に示すように、それぞれ3つの超音波素子52c~52e及び52d~52fを送信素子として、それぞれ7つの超音波素子(以下、単に、素子ともいう)52a~52g及び52b~52hを受信素子として超音波エコーを受信して素子データを取得する時、反射点54を含む検査対象領域に送信する送信ビーム56が理想的に素子間隔以下に絞れている理想的な場合には、図4(a)のように、検査対象領域内の反射点54の真上にある、素子52a~52gの中心の素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム56を送信し、受信素子52a~52gで超音波エコーを受信して素子データを取得する場合、送信ビーム56の焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム56は、反射点54まで送信されるので、反射点54から反射される超音波エコーが生成される。反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図4(b)に示すような素子データ62が得られることになる。
4A and 4C, as an example, transmission lines are set corresponding to each ultrasonic element in a direction orthogonal to the arrangement direction of the ultrasonic elements, and one focal position is set for each transmission line. It is a figure which shows typically each ultrasonic element, ultrasonic beam, focal position, and ultrasonic echo when set.
As shown in FIGS. 4A and 4C, three ultrasonic elements 52c to 52e and 52d to 52f are used as transmitting elements, respectively, and seven ultrasonic elements (hereinafter also simply referred to as elements) 52a to 52g are used. And 52b to 52h are used as receiving elements to receive elemental echoes and acquire element data, the transmission beam 56 to be transmitted to the inspection target area including the reflection point 54 is ideally narrowed to an element interval or less. In this case, as shown in FIG. 4A, the elements 52c to 52e having the central element 52d of the elements 52a to 52g, which are directly above the reflection point 54 in the inspection target area, as the transmission elements, When transmitting the transmission beam 56 to the transmission line corresponding to the element 52d and receiving the ultrasonic echoes by the receiving elements 52a to 52g to acquire element data, the focal point 58 of the transmission beam 56 is 4d and is in a straight line connecting the reflection point 54, the transmitted beam 56, since it is transmitted to the reflection point 54, the ultrasonic echoes are generated to be reflected from the reflection point 54. The ultrasonic echoes from the reflection point 54 are received by the receiving elements 52a to 52g through the receiving path 60 spreading at a predetermined angle, and the element data 62 as shown in FIG. 4B is obtained by the receiving elements 52a to 52g. Will be.
 これに対し、図4(c)に示すように、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d~52fを送信素子として、素子52eに対応する送信ラインに送信ビーム56を送信し、受信素子52b~52hで超音波エコーを受信する場合には、送信ビーム56の送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上(送信ライン上)に反射点54が存在しないため、送信ビーム56は、反射点54に送信されない。このため、反射点54から反射される超音波エコーは生成されず、受信素子52b~52hでは、超音波エコーを受信しないので、図4(d)に示すように、素子データは信号強度が0のデータになる。 On the other hand, as shown in FIG. 4C, when the center of the transmitting element is shifted by one element from the reflection point 54 in the element direction (right direction in the figure), that is, the reflection point 54. The element 52d to 52f having the element 52e adjacent to the element 52d immediately above the center element as the central element is used as the transmission element, the transmission beam 56 is transmitted to the transmission line corresponding to the element 52e, and the ultrasonic echoes are received by the reception elements 52b to 52h. , The reflection point 54 does not exist on the transmission direction of the transmission beam 56, that is, on the straight line connecting the transmission element 52 e and the focal point 58 (on the transmission line). Not sent. For this reason, the ultrasonic echo reflected from the reflection point 54 is not generated, and the receiving elements 52b to 52h do not receive the ultrasonic echo. Therefore, as shown in FIG. It becomes the data of.
 しかしながら、図5(a)及び(c)に示すように、実際の送信ビーム64は、素子間隔より幅が広い。
 ここで、図5(a)のように、反射点54の真上にある素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム64を送信した場合には、図4(a)の場合と同様に、送信ビーム56が幅広であっても、その焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム64は、反射点54で反射され、超音波エコーが生成される。その結果、図4(a)の場合と同様に、反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図5(b)に示すような真の素子データ66が得られることになる。
However, as shown in FIGS. 5A and 5C, the actual transmission beam 64 is wider than the element spacing.
Here, as shown in FIG. 5A, the transmission beam 64 is transmitted to the transmission line corresponding to the element 52d, with the elements 52c to 52e having the element 52d immediately above the reflection point 54 as the central element. In this case, as in the case of FIG. 4A, even if the transmission beam 56 is wide, its focal point 58 is on a straight line connecting the element 54d and the reflection point 54, and the transmission beam 64 is reflected. Reflected at point 54, an ultrasonic echo is generated. As a result, similarly to the case of FIG. 4A, the ultrasonic echo from the reflection point 54 is received by the receiving elements 52a to 52g through the receiving path 60 spreading to a predetermined angle, and is received by the receiving elements 52a to 52g. True element data 66 as shown in FIG. 5B is obtained.
 一方、図5(c)に示すように、図4(c)の場合と同様に、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d~52fを送信素子として、素子52eに対応する送信ラインに送信ビーム64を送信し、受信素子52b~52hで超音波エコーを受信する場合、送信ビーム64は幅広であるため、その送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上に反射点54が存在していなくても、送信ビーム64は、反射点54に送信されることになる。このため、反射点54から反射された超音波エコーは、所定角度に広がる受信経路60を通って受信素子52b~52hに受信され、受信素子52b~52hによって、図5(d)に示すような反射点の影響を受けた素子データ68が得られることになる。
 このような送信ライン上以外の反射点の影響を受けた素子データ68(以下、ゴーストの素子データ、ともいう)から音線信号を生成して、超音波画像を生成すると、素子52eに対応するラインの画像に、実際には存在しない反射点の映像が再生され、所謂ゴーストが発生し、超音波画像の精度を低下させる原因となる。
On the other hand, as shown in FIG. 5C, as in the case of FIG. 4C, the center of the transmitting element is shifted by one element from the reflection point 54 in the element direction (right direction in the figure). In other words, the transmission beam 64 is transmitted to the transmission line corresponding to the element 52e, with the elements 52d to 52f having the element 52e adjacent to the element 52d immediately above the reflection point 54 as the central element as transmission elements. When receiving the ultrasonic echoes by the receiving elements 52b to 52h, the transmission beam 64 is wide, so that the reflection point 54 does not exist on the transmission direction, that is, on the straight line connecting the transmitting element 52e and the focal point 58. However, the transmission beam 64 is transmitted to the reflection point 54. Therefore, the ultrasonic echo reflected from the reflection point 54 is received by the receiving elements 52b to 52h through the receiving path 60 spread at a predetermined angle, and as shown in FIG. 5D by the receiving elements 52b to 52h. Element data 68 affected by the reflection point is obtained.
When an acoustic ray signal is generated from element data 68 (hereinafter also referred to as ghost element data) affected by a reflection point other than on the transmission line, an ultrasonic image is generated, which corresponds to the element 52e. An image of a reflection point that does not actually exist is reproduced in the line image, so-called ghost is generated, and this causes a decrease in the accuracy of the ultrasonic image.
 ここで、図5(c)に示す送信ビーム64が送信素子52eから焦点58を経由して反射点54に至る送信経路と反射点54からの超音波エコーが各受信素子52b~52hに至る受信経路との和(伝播距離)は、それぞれ図5(a)に示す送信ビーム64が送信素子52dから焦点58を経由して反射点54に至る送信経路と反射した超音波エコーが反射点54から各受信素子52a~52gに至る受信経路との和(伝播距離)より長くなる。そのため、図5(d)に示すようなゴーストの素子データ68は、図5(b)に示すような真の素子データ66に対して遅延することになる。 Here, the transmission beam 64 shown in FIG. 5C is transmitted from the transmission element 52e through the focal point 58 to the reflection point 54, and the ultrasonic echo from the reflection point 54 is received from the reception elements 52b to 52h. The sum (propagation distance) with the path is such that the transmission beam 64 shown in FIG. 5A reaches the reflection point 54 from the transmission element 52 d via the focal point 58 and the reflected ultrasonic echo from the reflection point 54. It becomes longer than the sum (propagation distance) with the reception path reaching each of the receiving elements 52a to 52g. Therefore, the ghost element data 68 as shown in FIG. 5D is delayed with respect to the true element data 66 as shown in FIG. 5B.
 本発明の素子データ処理部22の遅延時間算出部48においては、注目する送信ライン上のサンプリング点と、各送信ラインに対応する中心素子との幾何学的な配置から、注目する送信ラインに超音波を送受信して得られた素子データ(以下、注目素子データ、ともいう)と、注目する送信ラインとは異なる送信ラインに超音波を送受信して得られた素子データ(以下、非注目素子データ、ともいう)との時間差、即ち遅延時間を算出する。したがって、遅延時間の計算には、超音波プローブ12(振動子アレイ36)の形状(素子間隔、リニア、コンベックスなど)、被検体の検査対象領域の音速、焦点位置、送信開口、受信開口などの情報が必要であり、遅延時間算出部48では、焦点設定部96で設定された焦点位置の情報、算出点設定部92で設定されたサンプリング点の情報、操作部32によって入力された、若しくは格納部34に格納されたこれらの情報を取得して遅延時間の計算を行う。遅延時間は、例えば、送信素子、超音波ビームの焦点、サンプリング点、及び受信素子の幾何学的配置から算出される、送信素子から焦点を経てサンプリング点に至る送信ビームの送信経路及びサンプリング点から受信素子に至る反射信号の受信経路の合計長さ(伝播距離)とその音速によって算出される伝搬時間の差から算出することができる。 In the delay time calculation unit 48 of the element data processing unit 22 according to the present invention, the geometrical arrangement of the sampling point on the transmission line of interest and the central element corresponding to each transmission line causes the transmission line to exceed the transmission line of interest. Element data obtained by transmitting / receiving sound waves (hereinafter also referred to as “target element data”) and element data obtained by transmitting / receiving ultrasonic waves to a transmission line different from the target transmission line (hereinafter, “non-target element data”) ), That is, a delay time is calculated. Therefore, for calculating the delay time, the shape of the ultrasonic probe 12 (vibrator array 36) (element spacing, linear, convex, etc.), the sound velocity of the examination region of the subject, the focal position, the transmission aperture, the reception aperture, etc. Information is necessary, and in the delay time calculation unit 48, information on the focal position set by the focus setting unit 96, information on the sampling point set by the calculation point setting unit 92, input by the operation unit 32, or storage The information stored in the unit 34 is acquired and the delay time is calculated. The delay time is calculated from, for example, the transmission path and sampling point of the transmission beam from the transmission element to the sampling point through the focal point, which is calculated from the geometry of the transmission element, the focus of the ultrasonic beam, the sampling point, and the reception element. It can be calculated from the difference between the total length (propagation distance) of the reception path of the reflected signal reaching the reception element and the propagation time calculated by the sound speed.
 本発明では、例えば、図6(a)及び図6(b)に示すようにして、注目素子データと、非注目素子データそれぞれの送信ビームの送信経路及び超音波エコーの受信経路の長さを求めることができる。図6(a)及び図6(b)においては、説明のため、注目送信ライン上のサンプリング点に反射点54があるとしている。
 図6(a)に示すように、注目素子データの場合、すなわち、注目する送信ラインと、超音波ビームを送信した送信ラインが一致する場合は、送信素子52c~52eの中心素子と、受信素子52a~52gの中心素子とが、一致し、その真下に、焦点58及び反射点54が配置されている。反射点54の真上の素子52dの位置をxy2次元座標上の座標(x0、0)とし、素子間隔をLe、焦点58の位置を座標(x0、df)、反射点54の位置を座標(x0、z)とする時、送信素子52dの位置も反射点54の真上の素子52dと同じく座標(x0、0)となり、送信素子52dから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltaは、及び、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lraは、Lta=Lra=zによって算出することができる。
 したがって、注目素子データの場合の超音波の伝播距離Luaは、Lua=Lta+Lra=2zとなる。
In the present invention, for example, as shown in FIGS. 6 (a) and 6 (b), the lengths of the transmission path of the transmission beam and the reception path of the ultrasonic echo of each of the target element data and the non-target element data are set. Can be sought. In FIG. 6A and FIG. 6B, for the sake of explanation, it is assumed that there is a reflection point 54 at the sampling point on the target transmission line.
As shown in FIG. 6A, in the case of element-of-interest data, that is, when the transmission line of interest coincides with the transmission line that transmitted the ultrasonic beam, the central elements of the transmission elements 52c to 52e, and the reception element The central elements 52a to 52g coincide with each other, and a focal point 58 and a reflection point 54 are disposed directly below the central element. The position of the element 52d directly above the reflection point 54 is the coordinate (x0, 0) on the xy two-dimensional coordinate, the element interval is Le, the position of the focal point 58 is the coordinate (x0, df), and the position of the reflection point 54 is the coordinate ( x0, z), the position of the transmitting element 52d is also in the same coordinate (x0, 0) as the element 52d immediately above the reflecting point 54, and the transmission beam transmitted from the transmitting element 52d through the focal point 58 to the reflecting point 54 is transmitted. The length (transmission path distance) Lta of the path 61 and the length (reception path distance) Lra of the reception path 60 of the ultrasonic echo from the reflection point 54 to the receiving element 52d are calculated by Lta = Lra = z. be able to.
Accordingly, the ultrasonic propagation distance Lua in the case of the target element data is Lua = Lta + Lra = 2z.
 一方、図(b)に示すように、非注目素子データの場合、すなわち、注目する送信ラインと隣接する送信ラインに超音波ビームを送信する場合は、送信素子52d~52fの中心素子の位置が反射点54(サンプリング点)に対して1素子分横(x方向:図中右方向)にずれて、焦点58は中心素子である素子52eの真下に配置されるが、反射点54は受信素子52dの真下に配置されている。反射点54の真上の受信素子52dの位置を、図6(a)の場合と同じくxy2次元座標上の座標(x0、0)とし、素子間隔をLe、反射点54の位置を座標(x0、z)とすると、送信素子52eの位置は座標(x0+Le、0)、焦点58の位置は座標(x0+Le、df)となるので、送信素子52eから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltbは、Ltb=df+√{(z-df)+Le}によって算出することができ、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lrbは、Lrb=zによって算出することができる。
 したがって、非注目素子データの場合の超音波の伝播距離Lubは、Lub=Ltb+Lrb=df+√{(z-df)+Le}+zとなる。
On the other hand, as shown in FIG. 5B, in the case of non-target element data, that is, when an ultrasonic beam is transmitted to a transmission line adjacent to the target transmission line, the positions of the central elements of the transmission elements 52d to 52f are The focal point 58 is arranged just below the element 52e, which is the central element, while being shifted by one element (x direction: right direction in the figure) with respect to the reflection point 54 (sampling point). It is arranged directly below 52d. As in the case of FIG. 6A, the position of the receiving element 52d immediately above the reflection point 54 is set to the coordinates (x0, 0) on the xy two-dimensional coordinates, the element interval is Le, and the position of the reflection point 54 is the coordinates (x0). , Z), the position of the transmitting element 52e is the coordinate (x0 + Le, 0), and the position of the focal point 58 is the coordinate (x0 + Le, df). Therefore, the transmission beam from the transmitting element 52e through the focal point 58 to the reflection point 54 The length (transmission path distance) Ltb of the transmission path 61 can be calculated by Ltb = df + √ {(z−df) 2 + Le 2 }, and the ultrasonic echo reception path from the reflection point 54 to the reception element 52d. The length 60 (reception path distance) Lrb of 60 can be calculated by Lrb = z.
Accordingly, the ultrasonic propagation distance Lub in the case of non-target element data is Lub = Ltb + Lrb = df + √ {(z−df) 2 + Le 2 } + z.
 こうして、図6(a)に示す幾何学配置で求めた送信経路61の距離Ltaと受信経路60の距離Lraを合計した超音波の伝播距離Luaを音速で割った値が、注目する素子データを取得するために超音波を送受信した時の、超音波素子とサンプリング点との間の伝播時間となる。また、図6(b)に示す幾何学配置で求めた送信経路61の距離Ltbと受信経路60の距離Lrbを合計した超音波の伝播距離Lubを音速で割った値が、注目する素子データの送信ラインの隣の送信ラインで超音波を送受信した時の、超音波素子とサンプリング点との間の伝搬時間となる。
 遅延時間の算出は、注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間と、非注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間の差から遅延時間を求める。
 なお、図6(a)及び図6(b)の幾何学モデルでは、送信経路61が焦点58を経由したモデルになっているが、本発明はこれに限定されず、例えば、焦点58を経由せずに直接反射点54に至る経路であっても良い。
In this way, the value obtained by dividing the ultrasonic propagation distance Lua by the sum of the distance Lta of the transmission path 61 and the distance Lra of the reception path 60 obtained by the geometrical arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received for acquisition. Also, the value obtained by dividing the ultrasonic propagation distance Lub, which is the sum of the distance Ltb of the transmission path 61 and the distance Lrb of the reception path 60 obtained by the geometric arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received on the transmission line adjacent to the transmission line.
The calculation of the delay time is based on the propagation time of the ultrasonic wave between the ultrasonic element and the sampling point when acquiring the element-of-interest data and between the ultrasonic element and the sampling point when acquiring the non-target element data. The delay time is obtained from the difference in ultrasonic propagation time.
6 (a) and 6 (b), the transmission path 61 is a model that passes through the focal point 58, but the present invention is not limited to this, for example, it passes through the focal point 58. Alternatively, a route that directly reaches the reflection point 54 may be used.
 なお、この遅延時間の計算方法は、或る素子を中心素子とする超音波の送受信において、サンプリング点の直下に位置する素子52における遅延時間を代表値として、この代表値を、この送受信における全素子の遅延時間として用いている。
 しかしながら、本発明は、これに限定はされず、例えば、素子52cや素子52bなど、x方向の位置がサンプリング点、すなわち、直下の素子52dとは異なる素子の受信経路距離Lrbは、直下の素子52dからの素子数nに応じて、Lrb=√{(n×Le)2+z2}で算出してもよい。
Note that this delay time calculation method uses a delay time in the element 52 located immediately below the sampling point as a representative value in the transmission / reception of ultrasonic waves with a certain element as the central element, and this representative value is used as the total value in this transmission / reception. This is used as the delay time of the element.
However, the present invention is not limited to this. For example, the reception path distance Lrb of the element 52c, the element 52b, or the like whose position in the x direction is different from the sampling point, that is, the element 52d immediately below is the element directly below. Depending on the number of elements n from 52d, it may be calculated as Lrb = √ {(n × Le) 2 + z 2 }.
 また、図6(a)及び図6(b)の幾何学モデルはリニアプローブの場合であるが、これに限らず他のプローブにおいても、プローブの形状から同様の幾何学計算を行うことができる。例えば、コンベックスプローブの場合、プローブの半径と素子間隔の角度から幾何学モデルを設定して同じように計算することができる。
 また、ステア送信の場合には、送信角度などの情報を考慮した幾何学モデル(図示せず)を用い、送信素子とサンプリング点との位置関係から注目素子データ及びその周辺の非注目素子データの遅延時間を算出することができる。
 さらに、幾何学モデルによって遅延時間を算出する方法に限らず、あらかじめ装置の計測条件に合わせて高輝度反射点を計測した計測結果から、計測条件毎に遅延時間を求めておき、その遅延時間を装置内に記憶しておくことで、同じ計測条件の遅延時間を読み出すようにしておいてもよい。
Moreover, although the geometric model of Fig.6 (a) and FIG.6 (b) is a case of a linear probe, not only this but another probe can perform the same geometric calculation from the shape of a probe. . For example, in the case of a convex probe, a geometric model can be set from the radius of the probe and the angle between the elements, and the calculation can be performed in the same way.
In the case of steer transmission, a geometric model (not shown) that considers information such as the transmission angle is used, and the attention element data and the surrounding non- attention element data are determined from the positional relationship between the transmission element and the sampling point. The delay time can be calculated.
Furthermore, the delay time is not limited to the method of calculating the delay time using the geometric model, and the delay time is obtained for each measurement condition from the measurement result obtained by measuring the high-intensity reflection point according to the measurement condition of the apparatus in advance. By storing in the apparatus, the delay time of the same measurement condition may be read out.
 図6(c)に、中央に、送信ライン上に反射点がある場合の素子データである真の素子データ66、両側に、この反射点の影響でゴーストが発生しているゴーストの素子データ68を示し、図6(d)に、上述の幾何学的な計算から得られた、中央の真の素子データ66を注目素子データとしたときの、非注目素子データであるゴーストの素子データ68の遅延時間の一例を示す。真の素子データ66を注目素子データとした場合に、ゴーストの素子データ68は、対称的に時間が遅れることが示されている。
 なお、こうして、素子データ処理部22の遅延時間算出部48において算出された遅延時間を整相加算部38における遅延補正に用いることもできる。
FIG. 6C shows true element data 66 which is element data when there is a reflection point on the transmission line in the center, and element data 68 of a ghost in which a ghost is generated due to the influence of the reflection point on both sides. FIG. 6D shows the ghost element data 68, which is the non-attention element data, when the central true element data 66 obtained from the above geometric calculation is set as the attention element data. An example of delay time is shown. It is shown that when the true element data 66 is the target element data, the ghost element data 68 is symmetrically delayed.
In this way, the delay time calculated by the delay time calculation unit 48 of the element data processing unit 22 can also be used for delay correction in the phasing addition unit 38.
 次に、本発明の素子データ処理部22の重ね合わせ処理部50においては、算出点位置判断部94において送信焦点との距離が所定の範囲以外と判断されたサンプリング点について、こうして遅延時間算出部48において算出された遅延時間を用いて、注目する送信ラインの注目素子データ及びその周辺の送信ラインの素子データである非注目素子データの重ね合わせ処理を行う。
 重ね合わせ処理部50における重ね合わせ処理では、重ね合わせる時の重ね合わせ素子データ数と重ね合わせ処理方法の情報が必要になるが、これらは、予め、操作部32によって入力しておいても良いし、格納部34に格納しておいても良い。
Next, in the overlay processing unit 50 of the element data processing unit 22 of the present invention, the delay time calculation unit is thus performed for the sampling points for which the calculation point position determination unit 94 determines that the distance from the transmission focus is outside a predetermined range. Using the delay time calculated in 48, the target element data of the target transmission line and the non-target element data which is the element data of the transmission line in the vicinity thereof are superimposed.
In the superposition processing in the superposition processing unit 50, information on the number of superposition element data and the superposition processing method at the time of superposition is necessary, but these may be input in advance by the operation unit 32. Alternatively, it may be stored in the storage unit 34.
 図7(a)~(h)に、重ね合わせ処理部50で行われる、素子データ数が5つ、重ね合わせ素子データ数が3つの場合の重ね合わせ処理の一具体例を示す。
 図7(a)は、隣接する5つの素子をそれぞれ中心素子とする送信ラインで、超音波の送受信を行って得られた5つの素子データを横に並べて表示しており、素子データ毎に、超音波ビームを送信し、反射信号を受信した様子を表している。各素子データの横軸は、受信素子を表しており、それぞれの素子データにおいて超音波ビームの送信時における中心の素子を中心にして表示している。縦軸は、受信時間を表す。
 5つの素子データのうち、真中の素子データでは、素子データの中心の素子(受信素子の中心の素子)、即ち、送信時における中心素子(送信素子)の真下に反射点が存在しており、反射点からの反射信号(超音波エコー)が受信されている。つまり、この反射信号は真の信号であり、真中の素子データは、真の素子データを表す。
FIGS. 7A to 7H show a specific example of overlay processing performed by the overlay processor 50 when the number of element data is 5 and the number of overlay element data is 3. FIG.
FIG. 7 (a) shows five element data obtained by performing ultrasonic transmission / reception side by side in a transmission line having five adjacent elements as the central elements, and for each element data, It shows a state in which an ultrasonic beam is transmitted and a reflected signal is received. The horizontal axis of each element data represents a receiving element, and the respective element data are displayed with the center element at the time of transmission of the ultrasonic beam as the center. The vertical axis represents the reception time.
Among the five element data, in the element data in the middle, there is a reflection point immediately below the element at the center of the element data (element at the center of the receiving element), that is, the center element at the time of transmission (transmitting element). A reflection signal (ultrasonic echo) from the reflection point is received. That is, this reflected signal is a true signal, and the element data in the middle represents the true element data.
 真中の素子データ以外の両側2つの素子データについては、送信時における中心の素子の真下には反射点は存在していないが、送信した超音波ビームの広がりによって、真中の素子データの送信素子の真下に存在する反射点に超音波ビームが当たることで生じた反射信号、即ちゴーストが写り込んでいる。ゴーストは、真の信号から離れるほど反射点までの超音波の伝播時間が長くなるため、真の素子データよりも受信時間が遅くなる。また、反射点からの反射信号が初めに受信される受信素子の位置は、反射点の真上の素子であるが、素子データの横軸は超音波ビームの送信時における中心素子を中心にしているため、素子データ毎にこの中心素子を1素子ずつずらして、すなわち、送信ラインを1ラインずつずらして送信していることから、各素子データにおいて素子の絶対位置は1素子ずつずれている。つまり、真中の素子データでは、反射点からの反射信号がはじめに受信される受信素子は真中の素子であるが、両隣の素子データにおいては、真中の素子データよりも1素子ずれており、右側の素子データでは左に1素子ずれ、左側の素子データでは右に1素子ずれている。更に、両端の素子データでは、真中の素子データよりも2素子ずれており、右端の素子データでは左に2素子ずれ、左端の素子データでは右に2素子ずれている。このように、ゴーストの信号は、真の信号に対して、受信時間が遅れるだけでなく、受信素子の方向に対してもずれを生じている。 For the two element data on both sides other than the middle element data, there is no reflection point directly below the central element at the time of transmission, but due to the spread of the transmitted ultrasonic beam, the transmission element of the middle element data A reflected signal, i.e., a ghost, which is generated when an ultrasonic beam hits a reflection point existing directly below, is reflected. Since the propagation time of the ultrasonic wave to the reflection point becomes longer as the ghost is away from the true signal, the reception time is delayed as compared with the true element data. The position of the receiving element where the reflected signal from the reflection point is first received is the element immediately above the reflection point, but the horizontal axis of the element data is centered on the central element at the time of transmitting the ultrasonic beam. Therefore, since the center element is shifted by one element for each element data, that is, the transmission line is shifted by one line, the absolute position of the element is shifted by one element in each element data. That is, in the middle element data, the receiving element from which the reflected signal from the reflection point is received first is the middle element, but the element data on both sides is shifted by one element from the middle element data. The element data is shifted one element to the left, and the left element data is shifted one element to the right. Further, the element data at both ends are shifted by two elements from the middle element data, the leftmost element data is shifted by two elements to the left, and the leftmost element data is shifted by two elements to the right. As described above, the ghost signal is not only delayed in reception time with respect to the true signal, but also deviated from the direction of the receiving element.
 図7(b)に、図7(a)に示す5素子分の素子データの真中の素子データを注目素子データとした場合、すなわち、真中の素子に対応する送信ライン上の所定のサンプリング点に対する受信時間の遅延時間の一例を示す。
 重ね合わせ処理部50では、図7(b)に示す遅延時間を用いて、真中の素子データを注目素子データとした場合に、注目素子データを中心に、重ね合わせ素子データ数分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子データの送信ラインに対応する中心素子(注目素子)と、各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、即ち位相を合わせて3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を所定のサンプリング点で行うことにより、サンプリング点で焦点が絞りこまれたような素子データを得ることができる。
In FIG. 7B, when the element data in the middle of the element data for five elements shown in FIG. 7A is set as the element data of interest, that is, for a predetermined sampling point on the transmission line corresponding to the element in the middle. An example of delay time of reception time is shown.
The overlay processing unit 50 uses the delay time shown in FIG. 7B to set the element data in the middle as the element data of interest. In the example shown in FIG. The delay time correction is performed on the three element data, and the amount of deviation between the center element (target element) corresponding to the transmission line of the target element data and each center element, in the illustrated example, one element on both sides. The data is shifted in the direction, that is, the unprocessed element data corresponding to the three transmission lines is superposed with the phase being matched to obtain one overlap-processed element data corresponding to a predetermined sampling point of the target transmission line. By performing such superposition processing at a predetermined sampling point, element data that is focused at the sampling point can be obtained.
 こうして得られた、同一ライン上に反射点があるサンプリング点での重ね合わせ処理済素子データを図7(c)に示す。
 図7(a)に示す注目素子の素子データは、真の信号の素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行うと、図7(c)に示すように、隣接素子の未処理素子データと、注目素子の未処理素子データとは、位相が合うので高輝度位置で重なり合う。したがって、これらの素子データを、例えば加算すると素子データ値は大きな値(高輝度値)を示し、例えば、平均して平均値を求めても強調された値(高輝度値)を示す。
FIG. 7C shows the superposed element data obtained at the sampling point where the reflection point is on the same line.
Since the element data of the target element shown in FIG. 7A is the element data of the true signal, the delay time correction and the lateral shift are performed on the unprocessed element data of the adjacent elements on both sides of the target element. When the matching is performed, as shown in FIG. 7C, the unprocessed element data of the adjacent element and the unprocessed element data of the target element overlap each other at the high luminance position because the phases match. Therefore, when these element data are added, for example, the element data value shows a large value (high luminance value), and for example, even if an average value is obtained by averaging, an emphasized value (high luminance value) is shown.
 これに対し、図7(d)は、図7(a)と同じ素子データ群であるが、真中の素子データの左隣の素子データ、つまりゴーストの素子データを注目素子データとした場合、すなわち、真中の左隣の送信ライン上のサンプリング点について処理を行う場合の一例を示す。
 図7(e)は、真中の左隣を注目素子とした場合の受信時間の遅延時間の一例を示すものである。図7(a)と図7dは、同じ素子データ群であるので、図7(e)に示す遅延時間は、注目素子が異なるのみで、図7(b)と同様である。
 重ね合わせ処理部50では、図7(e)に示す遅延時間を用いて、注目素子を中心に、重ね合わせ素子データ分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子と各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を所定のサンプリング点で行うことにより、このサンプリング点で焦点が絞りこまれたような素子データを得ることができる。
On the other hand, FIG. 7D shows the same element data group as FIG. 7A, but the element data on the left side of the middle element data, that is, the ghost element data is set as the element data of interest, that is, An example in which processing is performed on a sampling point on the transmission line on the left adjacent to the middle is shown.
FIG. 7E shows an example of the delay time of the reception time when the center left adjacent element is the target element. Since FIG. 7A and FIG. 7D are the same element data group, the delay time shown in FIG. 7E is the same as FIG. 7B except for the element of interest.
The overlay processing unit 50 uses the delay time shown in FIG. 7E to correct the delay time for the overlap element data, in the illustrated example, for the overlap element data, centering on the element of interest, and The amount of shift between the element and each center element, in the example shown in the figure, is shifted laterally by one element on both sides, and the unprocessed element data for three transmission lines is overlaid, and a predetermined sampling point of the target transmission line is obtained. It is obtained as one corresponding superposed processed element data. By performing such superposition processing at a predetermined sampling point, it is possible to obtain element data whose focus is narrowed down at this sampling point.
 こうして得られた、隣接するライン上に反射点があるサンプリング点の重ね合わせ処理済素子データを図7(f)に示す。
 図7(d)に示す注目素子の素子データは、ゴーストの素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行っても、図7(f)に示すように、隣接素子の各未処理素子データと注目素子の未処理素子データとは、それぞれ位相が合わないので重なり合わない。このため、これらの3つの素子データを、例えば加算しても、位相が合っていないために、位相が反転している信号などは信号が打ち消しあうため、加算値は大きくならず、例えば、平均して平均値を求めると小さな値を示すことになる。
FIG. 7F shows the element data obtained by superimposing the sampling points having the reflection points on the adjacent lines.
Since the element data of the target element shown in FIG. 7D is ghost element data, phase adjustment is performed by performing delay time correction and lateral shift on the unprocessed element data of adjacent elements on both sides of the target element. Even if it is performed, as shown in FIG. 7F, the unprocessed element data of the adjacent element and the unprocessed element data of the target element do not overlap each other because the phases do not match. For this reason, even if these three element data are added, for example, since the phases are not matched, signals that are inverted in phase cancel each other out, so the added value does not increase. When the average value is obtained, a small value is shown.
 他の素子データに関しても、注目素子データとして同様の遅延時間補正及び横方向のシフトを行った結果、図示例の5つの素子データについての隣接する3つの送信ラインの素子データの重なり状態を図7(g)に示し、これらに対して、重ね合わせ処理として、例えば、加算処理、若しくは平均処理した結果を図7(h)に示す。
 図7(h)に示すように、図7(a)に示す送信素子の中心素子と反射点との座標が一致している時(送信ライン上に反射点がある時)の注目送信ラインでは、真の信号の素子データが高輝度値を持つ重ね合わせ処理済素子データとして求められ、その両側の各2素子の全4素子では、ゴーストの素子データは互いに位相が合わない素子データを加算し、又は平均するので、互いに打ち消し合うことになるため、ゴーストの重ね合わせ処理済素子データは、その値が真の信号の素子データである高輝度値を持つ重ね合わせ処理済素子データに対して小さくなり、真の信号の素子データに対してゴーストの素子データの影響を低減させることができ、又は、その影響を無視できる程、小さくすることができる。
As for the other element data, the same delay time correction and lateral shift are performed as the element data of interest. As a result, the overlapping state of the element data of three adjacent transmission lines for the five element data in the illustrated example is shown in FIG. FIG. 7 (h) shows the result of, for example, addition processing or average processing as superimposing processing shown in (g).
As shown in FIG. 7 (h), in the transmission line of interest when the coordinates of the central element and the reflection point of the transmission element shown in FIG. 7 (a) are coincident (when there is a reflection point on the transmission line). The element data of the true signal is obtained as superposed processed element data having a high luminance value, and the ghost element data is added to the element data whose phases are not in phase with each other in all four elements on both sides. Or, since they will cancel each other, the ghost superimposed element data is smaller than the superimposed element data having a high luminance value whose value is the element data of the true signal. Thus, the influence of the ghost element data on the element data of the true signal can be reduced, or the influence can be reduced to the extent that the influence can be ignored.
 なお、重ね合わせ処理部50における重ね合わせ処理方法としては、単に、加算するだけでなく、平均値や中央値をとってもよいし、係数を掛け合わせた上で加算してもよい。なお、平均値や中央値を取ることは、素子データレベルでの平均化フィルタやメディアンフィルタを掛けることに相当すると考えられるが、平均化フィルタやメディアンフィルタの代わりに、通常の画像処理で行われる逆フィルタなども適用してもよい。或いは、重ね合わせる各素子データ同士を比較し、類似している場合には最大値、類似していない場合には平均値、分布の偏りがある場合には中間値をとるなど、これに限らず、重ね合わせる各素子データの特徴量に基づいて重ね合わせ処理を変えてもよい。 In addition, as a superimposition processing method in the superimposition processing unit 50, not only addition but also an average value or a median value may be taken, or addition may be performed after multiplying coefficients. Note that taking an average value or median value is thought to correspond to applying an averaging filter or median filter at the element data level, but is performed by normal image processing instead of the averaging filter or median filter. An inverse filter or the like may also be applied. Alternatively, the element data to be superimposed are compared, and if they are similar, the maximum value is taken, if not, the average value is taken, and if there is a distribution bias, the intermediate value is taken. The overlay process may be changed based on the feature amount of each element data to be superimposed.
 また、重ね合わせる素子データ数は、超音波ビームのビーム幅の広がり程度に合わせた方が望ましい。従って、深さによってビーム幅が変わる場合には、重ね合わせ素子データ数も深さによって変更してもよい。また、ビーム幅は送信開口数に依存することから、送信開口数に応じて重ね合わせ素子データ数を変更してもよい。或いは、画像の輝度値などの特徴量に基づいて重ね合わせ素子データ数を変更してもよいし、重ね合わせ素子データ数を複数パターン変えて作成した画像から最適な重ね合わせ素子データ数を選択してもよい。
 重ね合わせた結果、上述したように、真の信号の素子データでは信号の位相が合うが、ゴーストでは信号の位相が合わないため、加算などの重ね合わせ処理の結果、様々な位相の信号がお互いに打ち消し合い、信号が弱くなる。結果的に、真の信号は、有効な値を持つ、例えば高輝度の素子データとして残り、ゴーストの信号は、減弱した値を持つ、例えば低輝度の素子データとして得ることができる。
Further, it is desirable that the number of element data to be superimposed is matched to the extent of the beam width of the ultrasonic beam. Therefore, when the beam width changes depending on the depth, the number of overlapping element data may be changed depending on the depth. Further, since the beam width depends on the transmission numerical aperture, the number of overlapping element data may be changed according to the transmission numerical aperture. Alternatively, the number of overlapping element data may be changed based on a feature quantity such as the luminance value of the image, or the optimum number of overlapping element data is selected from images created by changing the number of overlapping element data. May be.
As a result of the superposition, as described above, the signal phase matches in the element data of the true signal, but the signal phase does not match in the ghost. As a result of superposition processing such as addition, signals of various phases are mutually connected. Cancel each other and the signal becomes weaker. As a result, the true signal remains as effective element data having a valid value, for example, high luminance, and the ghost signal can be obtained as element data having a reduced value, for example, low luminance.
 また、素子データ処理部22は、算出点位置判断部94において、送信焦点までの距離が所定の範囲以内と判断されたサンプリング点については、上記の重ね合わせ処理を行わない。 In addition, the element data processing unit 22 does not perform the above-described superimposition processing for the sampling points for which the calculation point position determination unit 94 determines that the distance to the transmission focus is within a predetermined range.
 前述のとおり、高画質な画像を得るために、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる場合、送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。
 また、複数の受信信号を遅延時間の補正をして合成する場合において、遅延時間の算出を行う際に、焦点を点(点音源)とみなして送信経路を算出すると、実際には、送信される超音波ビームの焦点は、点とみなせるほど収束しておらず、有限の幅の広がりを持っているため、焦点近傍では、実際の超音波ビームの送信経路との誤差が大きくなり、実際の遅延時間と、算出される遅延時間との誤差も大きくなってしまう。このような遅延時間を用いて受信信号の合成を行うと、データの精度が低下して、画像のSN比や解像度が低下するという問題があった。
As described above, in order to obtain a high-quality image, when a plurality of transmission beams are generated by changing the transmission position to create one line of data, the number of transmissions is increased, so that the frame rate is lowered and real-time characteristics are improved. There was a problem of getting worse.
In addition, when combining multiple received signals with delay time correction, when calculating the delay time, if the transmission path is calculated by regarding the focal point as a point (point sound source), it is actually transmitted. The focal point of the ultrasonic beam does not converge so as to be regarded as a point, and has a finite width, so that there is a large error in the vicinity of the focal point and the transmission path of the actual ultrasonic beam. The error between the delay time and the calculated delay time also increases. When the received signal is synthesized using such a delay time, there is a problem that the accuracy of data is lowered and the SN ratio and resolution of the image are lowered.
 これに対して、本発明は、サンプリング点と焦点と間の距離が所定の範囲内か否かに応じて、第1の素子データから第2の素子データを生成するか否かを判断し、所定の範囲以外の場合には、複数の第1の素子データから第2の素子データを生成し、所定の範囲内の場合には、処理を行わない。具体的には、サンプリング点が、焦点からの距離が所定の範囲以外と判断された場合、すなわち、焦点から遠い場合には、複数の未処理素子データを、素子の幾何学的な配置および受信時間の情報に基づいて合成して、このサンプリング点に対応する、新たな処理済素子データ(第2の素子データ)を生成する。一方、サンプリング点の焦点からの距離が所定の範囲以内と判断された場合、すなわち、焦点近傍の場合には、処理を行わず、対応する送信ラインの未処理素子データを、このサンプリング点の素子データとする。 On the other hand, the present invention determines whether to generate the second element data from the first element data according to whether the distance between the sampling point and the focal point is within a predetermined range, If it is outside the predetermined range, second element data is generated from the plurality of first element data. If it is within the predetermined range, no processing is performed. Specifically, when the sampling point is determined that the distance from the focal point is outside the predetermined range, that is, when the sampling point is far from the focal point, a plurality of raw element data is received and the geometrical arrangement and reception of the element are received. Based on the time information, new processed element data (second element data) corresponding to this sampling point is generated. On the other hand, when it is determined that the distance from the focal point of the sampling point is within a predetermined range, that is, in the vicinity of the focal point, no processing is performed, and the unprocessed element data of the corresponding transmission line is converted to the element at the sampling point. Data.
 これにより、焦点から遠いサンプリング点では、複数の第1の素子データを重ね合わせすることにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、1送信ラインにつき、1回の送受信を行えばよく、送信回数を増加させることなく、高精度な素子データを得ることができ、フレームレートを低下させることなく、リアルタイム性を維持したまま、画像のSN比や解像度を向上させることができる。
 また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。
Thereby, at the sampling point far from the focal point, by superimposing the plurality of first element data, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point. Therefore, one transmission / reception may be performed per transmission line, high-accuracy element data can be obtained without increasing the number of transmissions, and real-time characteristics are maintained without reducing the frame rate. The SN ratio and resolution of the image can be improved.
In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
 さらに、焦点近傍のサンプリング点では、素子データの重ね合わせ処理を行わず、対応する送信ラインの未処理素子データを、このサンプリング点の素子データとする。焦点付近では、超音波ビームはある程度、絞り込まれているため、そもそも送信ライン上以外の反射点の影響を受けにくく、データの重ね合わせ処理を行わなくても、十分に精度の高いデータが得られる。
 以上により、本発明の超音波検査装置は、画像全体で、SN比や解像度を向上させることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
Further, at the sampling point in the vicinity of the focal point, the element data is not overlapped, and the unprocessed element data of the corresponding transmission line is set as the element data of this sampling point. In the vicinity of the focal point, the ultrasonic beam is narrowed down to some extent, so it is hardly affected by reflection points other than on the transmission line in the first place, and sufficiently accurate data can be obtained without performing data overlay processing. .
As described above, the ultrasonic inspection apparatus of the present invention can improve the S / N ratio and resolution of the entire image, and is sharp with an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one. An ultrasonic image can be obtained.
 本発明の超音波検査装置の動作、作用及び超音波画像の作成方法について説明する。
 図8は、図1に示す超音波検査装置の動作を説明するためのフローチャートである。
 まず、操作部32から入力された情報に応じて、焦点設定部96が焦点の位置を設定し、設定した焦点位置の情報を送信部14および算出点位置判断部94に供給する。
 また、算出点設定部92は、操作部32から入力された情報に応じて、データ算出点(サンプリング点)を設定し、算出点位置判断部94に供給する。
 算出点位置判断部94は、供給されたサンプリング点の情報および焦点位置の情報に基づいて、サンプリング点それぞれについて、焦点からの距離が所定の範囲以内か否かを判断し、判断結果を処理判断部21に供給する。
The operation and action of the ultrasonic inspection apparatus of the present invention and the method for creating an ultrasonic image will be described.
FIG. 8 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG.
First, the focus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the transmission unit 14 and the calculation point position determination unit 94.
The calculation point setting unit 92 sets data calculation points (sampling points) according to the information input from the operation unit 32 and supplies the data calculation points to the calculation point position determination unit 94.
The calculation point position determination unit 94 determines whether the distance from the focal point is within a predetermined range for each sampling point based on the supplied sampling point information and focal point position information, and determines the processing result. To the unit 21.
 操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。このとき、送信部14は、焦点設定部96から供給された焦点位置に焦点を形成する超音波ビームを送信するように、振動子アレイ36を駆動する。
 受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
When the operator abuts the ultrasonic probe 12 on the surface of the subject and starts measurement, an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted. The transducer array 36 receives the echo and outputs an analog element signal as a reception signal. At this time, the transmission unit 14 drives the transducer array 36 so as to transmit an ultrasonic beam that forms a focal point at the focal position supplied from the focal point setting unit 96.
The receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18. The A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
 処理判断部21は、算出点位置判断部94の判断結果に基づいて、各サンプリング点について、素子データ処理部22での処理を行うか否かを判断する。
 素子データ処理部22は、処理判断部21で処理を行うと判断されたサンプリング点について、遅延時間算出部48(図3)において、注目する送信ラインの未処理素子データと、周辺の送信ラインの未処理素子データとの遅延時間(例えば、図7(b)、図7(e)、どちらも同じものである。)を、各サンプリング点ごとに、送信素子、焦点、反射点、及び受信素子の幾何学的配置、及び予め入力されて設定されている被検体の検査対象領域の音速等から算出する(例えば、図6の幾何学モデルを用いて算出する)。
Based on the determination result of the calculation point position determination unit 94, the process determination unit 21 determines whether or not to perform the process in the element data processing unit 22 for each sampling point.
The element data processing unit 22 uses the delay time calculation unit 48 (FIG. 3) for the sampling points determined to be processed by the processing determination unit 21 and the unprocessed element data of the transmission line of interest and the surrounding transmission lines. The delay time (for example, FIG. 7 (b) and FIG. 7 (e), both of which are the same) with the unprocessed element data, and the transmission element, the focus, the reflection point, and the reception element for each sampling point And the sound speed of the examination region of the subject input and set in advance (for example, calculation is performed using the geometric model of FIG. 6).
 次に、素子データ処理部22は、各サンプリング点に対して順次(計算座標Pst~Pend)、算出点位置判断部94の判断結果に応じた処理を行う。
 サンプリング点と焦点との距離が所定の範囲以外の場合には、サンプリング点に対応する送信ラインの未処理素子データを含む、複数の未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子データとし、重ね合わせ処理部50(図3)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子データとその周辺の送信ラインの未処理素子データ(非注目素子データ)とを位相合わせて重ね合わせて処理済素子データを求める。これにより、真の信号を含む未処理素子データであれば、強調された処理済素子データが求まると共に、ゴーストの未処理素子データであれば減弱した処理済素子データが求まる。
 また、サンプリング点と焦点との距離が所定の範囲内の場合には、処理判断部21は、このサンプリング点に対応する送信ラインの未処理素子データを、このサンプリング点に対応する素子データとする。
 こうして求めた素子データを画像生成部24の整相加算部38に供給する。
Next, the element data processing unit 22 sequentially performs processing according to the determination result of the calculation point position determination unit 94 for each sampling point (calculation coordinates Pst to Pend).
When the distance between the sampling point and the focal point is outside the predetermined range, a plurality of unprocessed element data including unprocessed element data of the transmission line corresponding to the sampling point is read from the element data storage unit 20 and processed. Using the element data as the element data of interest and using the delay time calculated by the delay time calculator 48 in the overlay processing unit 50 (FIG. 3), the element data of interest and the unprocessed element data (non- The processed element data is obtained by superposing the target element data) in phase with each other. As a result, enhanced processed element data is obtained for unprocessed element data including a true signal, and attenuated processed element data is determined for ghost unprocessed element data.
When the distance between the sampling point and the focal point is within a predetermined range, the process determination unit 21 sets the unprocessed element data of the transmission line corresponding to the sampling point as element data corresponding to the sampling point. .
The element data thus obtained is supplied to the phasing adder 38 of the image generator 24.
 画像生成部24の整相加算部38は、処理済素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。 The phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40. The detection processing unit 40 processes the sound ray signal and generates a B-mode image signal. The DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image. The generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
 このように本発明の超音波検査装置10は、サンプリング点と焦点と間の距離が所定の範囲内か否かに応じて、第1の素子データから第2の素子データを生成するか否かを判断し、所定の範囲以外の場合には、複数の第1の素子データから第2の素子データを生成し、所定の範囲内の場合には、処理を行わない。
 これにより、焦点から遠いサンプリング点では、複数の第1の素子データを重ね合わせすることにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、高精度な素子データを得ることができ、フレームレートを低下させることなく、リアルタイム性を維持したまま、画像のSN比や解像度を向上させることができる。
 また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。
As described above, the ultrasonic inspection apparatus 10 according to the present invention determines whether or not to generate the second element data from the first element data according to whether or not the distance between the sampling point and the focal point is within a predetermined range. If it is outside the predetermined range, the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed.
Thereby, at the sampling point far from the focal point, by superimposing the plurality of first element data, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point. Therefore, highly accurate element data can be obtained, and the SN ratio and resolution of the image can be improved while maintaining the real-time property without reducing the frame rate.
In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
 さらに、焦点近傍のサンプリング点では、素子データの重ね合わせ処理を行わず、対応する送信ラインの未処理素子データを、サンプリング点の素子データとする。焦点付近では、超音波ビームはある程度、絞り込まれているため、そもそも送信ライン上以外の反射点の影響を受けにくく、データの重ね合わせ処理を行わなくても、十分に精度の高いデータが得られる。
 以上により、本発明の超音波検査装置は、画像全体で、SN比や解像度を向上させることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
Further, at the sampling point in the vicinity of the focal point, the element data is not overlapped, and the unprocessed element data of the corresponding transmission line is set as the element data at the sampling point. In the vicinity of the focal point, the ultrasonic beam is narrowed down to some extent, so it is hardly affected by reflection points other than on the transmission line in the first place, and sufficiently accurate data can be obtained without performing data overlay processing. .
As described above, the ultrasonic inspection apparatus of the present invention can improve the S / N ratio and resolution of the entire image, and is sharp with an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one. An ultrasonic image can be obtained.
 なお、上記実施例においては、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインと隣接する送信ラインの素子データとしたが、本発明はこれに限定はされず、注目素子データの送信ラインとは異なる送信ラインであればよい。なお、素子データを重ね合わせる際には、各素子データを取得する時に送信した送信ビームの領域が、注目素子データを取得する時に送信した送信ビームの領域と重複していることが好ましい。したがって、注目素子データと重ね合わせる素子データは、隣接する送信ライン、あるいは、近傍の送信ラインの素子データであることが好ましい。
 また、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインを中心に対称な送信ライン、すなわち、注目素子を中心に対称な素子をそれぞれ中心素子として超音波の送受信を行って取得した素子データであることが好ましい。
In the above embodiment, the element data to be superimposed on the target element data is the element data of the transmission line adjacent to the transmission line of the target element data. However, the present invention is not limited to this. Any transmission line different from the transmission line may be used. In addition, when superimposing element data, it is preferable that the area | region of the transmission beam transmitted when acquiring each element data overlaps the area | region of the transmission beam transmitted when acquiring element-of-interest data. Therefore, the element data to be superimposed on the element data of interest is preferably element data of an adjacent transmission line or a nearby transmission line.
The element data to be superimposed on the element data of interest is acquired by transmitting / receiving ultrasonic waves with the transmission line symmetrical about the transmission line of the element of interest data, that is, the element symmetrical about the element of interest as the central element. Element data is preferred.
 また、上記実施例においては、超音波素子の配列方向とは直交する方向に、超音波ビームを送信する構成としたが、これに限定はされず、超音波素子の配列方向に対して、傾斜している方向(ステア)に超音波ビームを送信する構成としてもよい。また、上記実施例においては、一組の送信素子(送信開口)と1回の超音波ビームの送信とが1対1で対応する構成としたが、これに限定はされず、同じ一組の送信素子を用いて、異なる方向に複数の超音波ビームを送信する構成としてもよい。 In the above embodiment, the ultrasonic beam is transmitted in a direction orthogonal to the arrangement direction of the ultrasonic elements. However, the present invention is not limited to this, and is inclined with respect to the arrangement direction of the ultrasonic elements. It is good also as a structure which transmits an ultrasonic beam in the direction (steer) which is carrying out. Moreover, in the said Example, although it was set as the structure with which 1 set of transmission elements (transmission opening) and transmission of one ultrasonic beam respond | correspond one-to-one, it is not limited to this, The same set of sets A configuration may be adopted in which a plurality of ultrasonic beams are transmitted in different directions using a transmitting element.
 また、本実施形態の超音波検査装置は、図示を省略した制御部に付属したメモリに格納された超音波画像データ生成プログラムによって制御される。すなわち、制御部によってメモリから超音波画像データ生成プログラムが読み出され、該超音波画像データ生成プログラムに従って、焦点およびサンプリング点を設定して、設定された焦点に応じて、被検者に向けて超音波ビームを送信するとともに、被検者から反射された超音波エコーを受信し、焦点との距離が所定範囲以内のサンプリング点において、受信して得られた第1の素子データを合成して、第2の素子データを生成する機能が実行される。 Also, the ultrasonic inspection apparatus of the present embodiment is controlled by an ultrasonic image data generation program stored in a memory attached to a control unit (not shown). That is, the control unit reads out the ultrasound image data generation program from the memory, sets the focus and the sampling point according to the ultrasound image data generation program, and directs the subject to the subject according to the set focus. Transmitting the ultrasonic beam, receiving the ultrasonic echo reflected from the subject, and synthesizing the first element data obtained by receiving at the sampling point whose distance from the focal point is within the predetermined range The function of generating the second element data is executed.
 なお、超音波画像データ生成プログラムは、このように制御部に付属のメモリに格納されるものに限定されず、該超音波画像データ生成プログラムを、例えば、CD-ROMなど、本超音波画像処理装置に着脱可能に構成されるメモリ媒体(リムーバブル媒体)に記録しておき、リムーバブル媒体に対応するインターフェイスを介して本装置に読み込むように構成してもよい。 Note that the ultrasonic image data generation program is not limited to the one stored in the memory attached to the control unit in this way, and the ultrasonic image data generation program may be the present ultrasonic image processing such as a CD-ROM. The information may be recorded in a memory medium (removable medium) configured to be detachable from the apparatus, and read into the apparatus via an interface corresponding to the removable medium.
 次に、図9に基づいて、本発明の超音波検査装置の他の実施例について説明する。
 図9は、本発明に係る超音波検査装置の他の一例を概念的に示すブロック図である。
 なお、図9に示す超音波検査装置100は、処理判断部21に代えて処理判断部21aを有し、素子データ処理部22に代えて素子データ処理部22aを有し、焦点再設定部98を備える以外は、図1に示す超音波検査装置10と、同じ構成を有するので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
Next, another embodiment of the ultrasonic inspection apparatus of the present invention will be described with reference to FIG.
FIG. 9 is a block diagram conceptually showing another example of the ultrasonic inspection apparatus according to the present invention.
The ultrasonic inspection apparatus 100 illustrated in FIG. 9 includes a process determination unit 21 a instead of the process determination unit 21, an element data processing unit 22 a instead of the element data processing unit 22, and a focus resetting unit 98. 1 has the same configuration as that of the ultrasonic inspection apparatus 10 shown in FIG. 1, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
 超音波検査装置100は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、処理判断部21aと、素子データ処理部22aと、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、算出点設定部92と、算出点位置判断部と、焦点設定部96と、焦点再設定部98とを有する。 The ultrasonic inspection apparatus 100 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, an element data storage unit 20, and a process determination unit 21a. The element data processing unit 22a, the image generation unit 24, the display control unit 26, the display unit 28, the control unit 30, the operation unit 32, the storage unit 34, the calculation point setting unit 92, and the calculation point position. A determination unit, a focus setting unit 96, and a focus resetting unit 98 are included.
 焦点再設定部98は、焦点設定部96で設定された各焦点位置が、所定の深さ範囲にあるか否かを判断し、所定の範囲にある場合には、焦点位置を異なる深さに再設定する。
 具体的には、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の深さZaよりも浅い場合には、焦点設定部96で設定された位置よりも深い位置に焦点位置を再設定し、焦点設定部96で設定された焦点の位置が、所定の深さZbよりも深い場合には、焦点設定部96で設定された位置よりも浅い位置に焦点位置を再設定する。また、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の範囲にない場合、すなわち、ZaとZbとの間の深さにある場合には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。
The focus resetting unit 98 determines whether or not each focus position set by the focus setting unit 96 is within a predetermined depth range. If the focus position is within the predetermined range, the focus position is set to a different depth. Reset it.
Specifically, the focus resetting unit 98 is positioned deeper than the position set by the focus setting unit 96 when the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. If the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, the focus position is set to a position shallower than the position set by the focus setting unit 96. Reset it. The focus resetting unit 98 resets the focus position when the focus position set by the focus setting unit 96 is not within the predetermined range, that is, when the focus position is at a depth between Za and Zb. The position set by the focus setting unit 96 is set as the focus position without setting.
 図10(A)~(C)を用いて、焦点位置の再設定をより詳細に説明する。
 図10(A)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより深い位置に、図示例においては、Zbよりも深い位置に再設定する。
 また、図10(B)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより浅い位置に、図示例においては、Zaよりも浅い位置に再設定する。
 また、図10(C)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも深く、Zbよりも浅い場合(ZaとZbとの間の深さにある場合)には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。
The resetting of the focal position will be described in more detail with reference to FIGS. 10 (A) to (C).
As shown in FIG. 10A, when the focus position set by the focus setting unit 96 is at a position shallower than the predetermined depth Za, each focus position is set on the same transmission line. A deep position is reset to a position deeper than Zb in the illustrated example.
As shown in FIG. 10B, when the focus position set by the focus setting unit 96 is at a position deeper than the predetermined depth Zb, each focus position is set on the same transmission line. In the illustrated example, the position is reset to a position shallower than Za.
As shown in FIG. 10C, when the focus position set by the focus setting unit 96 is deeper than the predetermined depth Za and shallower than Zb (the depth is between Za and Zb). In the case), the focus position is not reset, and the position set by the focus setting unit 96 is set as the focus position.
 ここで、焦点再設定部98が、焦点位置を再設定するか否かを判断する所定の深さZaおよびZbには、特に限定はないが、所定の深さZaは、超音波ビームを十分に収束させることができる深さよりも浅い深さ、例えば、1cm程度とすることが好ましく、また、所定の深さZbは、送信開口数が最大時に、超音波ビームを十分に収束させることができる深さよりも深い深さとすることが好ましい。すなわち、焦点位置が、超音波ビームを十分に収束させることができる位置(ZaとZbとの間)にある場合には、焦点位置の再設定は行わず、超音波ビームを十分に収束させることができない位置にある場合には、焦点位置の再設定を行うことが好ましい。
 超音波ビームの収束度合が十分か否かの判断は、超音波プローブの性能や、要求されるSN比、解像度等に応じて決定すればよい。
Here, the predetermined depths Za and Zb for determining whether or not the focus resetting unit 98 resets the focal position are not particularly limited, but the predetermined depth Za is sufficient for the ultrasonic beam. It is preferable that the depth is shallower than the depth that can be converged to, for example, about 1 cm, and the predetermined depth Zb can sufficiently converge the ultrasonic beam when the transmission numerical aperture is maximum. It is preferable that the depth is deeper than the depth. That is, when the focal position is at a position where the ultrasonic beam can be sufficiently converged (between Za and Zb), the focal position is not reset and the ultrasonic beam is sufficiently converged. If it is at a position where no focus is possible, it is preferable to reset the focus position.
Whether or not the convergence degree of the ultrasonic beam is sufficient may be determined according to the performance of the ultrasonic probe, the required SN ratio, resolution, and the like.
 また、焦点再設定部98が、焦点位置を再設定する際の焦点の深さには、特に限定はないが、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い場合には、所定の深さZaよりも深い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ深い位置に再設定するのがさらに好ましい。同様に、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い場合には、所定の深さZbよりも浅い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ浅い位置に再設定するのがさらに好ましい。
 焦点再設定部98は、再設定した焦点の情報を送信部14および制御部30に供給する。
Further, the depth of focus when the focus resetting unit 98 resets the focus position is not particularly limited, but the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. In this case, it is preferable to reset to a position deeper than the predetermined depth Za, and it is more preferable to reset to a position as deep as possible within the range where the focus can be achieved. Similarly, when the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, it is preferable to reset to a position shallower than the predetermined depth Zb, and as much as possible within the range where the focus can be achieved. It is more preferable to reset to a shallow position.
The focus resetting unit 98 supplies the reset focus information to the transmission unit 14 and the control unit 30.
 送信部14および受信部16は、焦点設定部96で設定された焦点、または、焦点再設定部98で再設定された焦点の情報に基づいて、振動子アレイ36を駆動して、超音波の送受信を行う。 The transmission unit 14 and the reception unit 16 drive the transducer array 36 based on the focus information set by the focus setting unit 96 or the focus information reset by the focus resetting unit 98, thereby Send and receive.
 処理判断部21aは、まず、焦点再設定部98で焦点が再設定されたか否かの情報に基づいて、焦点が再設定されている場合には、素子データ処理部22aの処理を行わせる。また、焦点が再設定されていない場合には、算出点位置判断部94の判断結果に応じて、焦点との距離が所定の閾値より大きいと判断されたサンプリング点に対しては、素子データ処理部22による処理を行わせ、焦点との距離が所定の閾値以内と判断されたサンプリング点に対しては、素子データ処理部22による処理を行わせず、サンプリング点が存在する送信ラインに対応する素子データを、このサンプリング点に対応する素子データとして、画像生成部24(整相加算部38)に供給する。 The process determination unit 21a first causes the element data processing unit 22a to perform the process when the focus is reset based on information on whether or not the focus is reset by the focus resetting unit 98. If the focus has not been reset, the element data processing is performed for the sampling point for which the distance from the focus is determined to be greater than the predetermined threshold according to the determination result of the calculation point position determination unit 94. The processing by the unit 22 is performed, and the sampling point for which the distance from the focal point is determined to be within the predetermined threshold is not processed by the element data processing unit 22 and corresponds to the transmission line where the sampling point exists. The element data is supplied to the image generation unit 24 (the phasing addition unit 38) as element data corresponding to the sampling point.
 素子データ処理部22aは、処理判断部21aの判断結果に基づいて、焦点が再設定されている場合には、すなわち、焦点再設定部98で再設定された焦点に超音波を送受信して得られた未処理素子データに対しては、各サンプリング点において、超音波素子の幾何学的配置から算出される遅延時間に基づいて、かつ、素子の絶対的な位置に基づいて、未処理素子データの重ね合わせ処理を行い、処理済素子データを生成する。なお、遅延時間の算出方法および素子データの重ね合わせ方法は、素子データ処理部22で行う方法と同じである。
 次に、焦点が再設定されていない場合には、素子データ処理部22と同様の処理、すなわち、算出点位置判断部94において送信焦点までの距離が所定の範囲以外と判断されたサンプリング点について、遅延時間算出部において算出された遅延時間を用いて、注目する送信ラインの注目素子データ及びその周辺の送信ラインの素子データである非注目素子データの重ね合わせ処理を行って処理済素子データを生成する。
When the focus is reset based on the determination result of the process determination unit 21a, the element data processing unit 22a is obtained by transmitting and receiving ultrasonic waves to the focus reset by the focus resetting unit 98. For the unprocessed element data obtained, the unprocessed element data is calculated at each sampling point based on the delay time calculated from the geometric arrangement of the ultrasonic element and based on the absolute position of the element. Is performed, and processed element data is generated. Note that the delay time calculation method and element data superposition method are the same as the method performed by the element data processing unit 22.
Next, when the focus has not been reset, the same processing as that of the element data processing unit 22, that is, the sampling point at which the calculation point position determination unit 94 determines that the distance to the transmission focus is outside the predetermined range. Then, using the delay time calculated in the delay time calculation unit, the element data of interest of the transmission line of interest and the non-attention element data which is the element data of the transmission line in the vicinity thereof are superposed to process processed element data. Generate.
 従来、超音波画像を取得する際には、着目する領域の近傍に超音波ビームの焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成していた。しかしながら、超音波プローブに近い位置(表層)や、超音波プローブから遠い位置(深層)では、原理的に超音波ビームを設定した焦点位置に収束させることが難しく、そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。 Conventionally, when acquiring an ultrasound image, by setting the focal point of the ultrasound beam near the region of interest and transmitting and receiving ultrasound, an ultrasound image with good image quality in the region of interest is generated. It was. However, at a position close to the ultrasonic probe (surface layer) or a position far from the ultrasonic probe (deep layer), it is difficult in principle to converge the ultrasonic beam to the set focal position, so focus on the surface layer or the deep layer. In some cases, it has been difficult to improve the image quality of the surface layer and the deep layer.
 これに対して、超音波検査装置100においては、超音波ビームの焦点位置が、所定の範囲内にある場合に、焦点の位置を再設定して、複数の超音波ビームの送信で得られた第1の素子データから、第2の素子データを生成する。具体的には、超音波ビームの焦点位置が、所定の深さZaより浅い(表層にある)場合には、より深い位置に焦点位置を再設定し、また、所定の深さZbより深い(深層にある)場合には、より浅い位置に焦点位置を再設定して、再設定した焦点位置に超音波の送受信を行い、得られた複数の未処理素子データ(第1の素子データ)を、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな処理済素子データ(第2の素子データ)を生成する。
 これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
 また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。
On the other hand, in the ultrasonic inspection apparatus 100, when the focal position of the ultrasonic beam is within a predetermined range, the focal position is reset and obtained by transmitting a plurality of ultrasonic beams. Second element data is generated from the first element data. Specifically, when the focal position of the ultrasonic beam is shallower than the predetermined depth Za (on the surface layer), the focal position is reset to a deeper position and deeper than the predetermined depth Zb ( In the deep layer), the focus position is reset to a shallower position, ultrasonic waves are transmitted / received to the reset focus position, and a plurality of unprocessed element data (first element data) obtained are obtained. Then, based on the information on the geometrical arrangement of the elements and the reception time, new processed element data (second element data) is generated.
Thereby, by resetting the focal position, the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to. Furthermore, by combining a plurality of first element data obtained by resetting the focal position, it is possible to reduce the influence of a ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. Thus, the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line can be obtained. Therefore, even in the surface layer and deep layer where it is difficult to converge the focus, the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before. A sharp ultrasonic image can be obtained.
In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
 また、焦点の位置が表層や深層ではない場合には、サンプリング点と焦点と間の距離が所定の範囲内か否かに応じて、未処理素子データから処理済素子データを生成するか否かを判断し、所定の範囲以外の場合には、複数の第1の素子データから第2の素子データを生成し、所定の範囲内の場合には、処理を行わない。そのため、焦点から遠いサンプリング点では、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。また、焦点近傍のサンプリング点では、素子データの重ね合わせ処理を行わず、処理によってデータの質が低下することを防止することができる。
 以上により、画像全体で、SN比や解像度を向上させることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
Whether or not to generate processed element data from unprocessed element data depending on whether or not the distance between the sampling point and the focal point is within a predetermined range when the position of the focal point is not the surface layer or the deep layer If it is outside the predetermined range, the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed. Therefore, at the sampling point far from the focal point, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam, and the same element data (second element data) as that at which the focal point is formed at each sampling point is obtained. be able to. Further, at the sampling point near the focal point, the element data is not superimposed, and it is possible to prevent the data quality from being deteriorated by the processing.
As described above, it is possible to improve the SN ratio and resolution of the entire image, and to obtain a sharp ultrasonic image having an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one.
 なお、図9に示す超音波検査装置100においては、焦点の位置を再設定した場合には、すべてのサンプリング点において、未処理素子データの重ね合わせ処理を行う構成としたが、これに限定はされず、焦点の位置を再設定した場合にも、焦点までの距離が所定の範囲以内か否かに応じて、未処理素子データの重ね合わせ処理を行う構成としてもよい。 In the ultrasonic inspection apparatus 100 shown in FIG. 9, when the focus position is reset, the unprocessed element data is superimposed at all sampling points. However, the present invention is not limited to this. Instead, even when the focus position is reset, the unprocessed element data may be overlaid depending on whether the distance to the focus is within a predetermined range.
 また、上記実施例においては、焦点位置が、所定の深さZaより浅い場合、あるいは、所定の深さZbより深い場合に、焦点の位置を変更する構成としたが、本発明はこれに限定はされず、所定の深さZaよりも浅い場合に、Zaよりも深い位置に焦点位置を再設定する構成としてもよい。あるいは、所定の深さZbよりも深い場合に、Zbよりも浅い位置に焦点位置を再設定する構成としてもよい。 In the above embodiment, the focus position is changed when the focal position is shallower than the predetermined depth Za or deeper than the predetermined depth Zb. However, the present invention is not limited to this. The focus position may be reset to a position deeper than Za when it is shallower than the predetermined depth Za. Alternatively, the focal position may be reset to a position shallower than Zb when deeper than the predetermined depth Zb.
 次に、超音波検査装置100の動作、作用及び超音波画像の作成方法について説明する。
 図11は、図9に示す超音波検査装置100の動作を説明するためのフローチャートである。
 まず、操作部32から入力された情報に応じて、焦点設定部96が焦点の位置を設定し、設定した焦点位置の情報を焦点再設定部98に供給する。
 焦点再設定部98は、設定された焦点位置が所定の深さ範囲にあるか否かを判断し、所定の深さZaよりも浅い場合には、より深い位置に焦点位置を再設定し、所定の深さZbよりも深い場合には、より浅い位置に焦点位置を再設定し、ZaとZbとの間の深さにある場合には、焦点位置を変更せずに、焦点位置の情報を送信部14および算出点位置判断部94に供給する。
 また、算出点設定部92は、操作部32から入力された情報に応じて、サンプリング点を設定し、算出点位置判断部94に供給する。
 算出点位置判断部94は、供給されたサンプリング点それぞれについて、焦点からの距離が所定の範囲以内か否かを判断し、判断結果を処理判断部21aに供給する。
Next, the operation and action of the ultrasonic inspection apparatus 100 and a method for creating an ultrasonic image will be described.
FIG. 11 is a flowchart for explaining the operation of the ultrasonic inspection apparatus 100 shown in FIG.
First, the focus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the focus resetting unit 98.
The focus resetting unit 98 determines whether or not the set focus position is within a predetermined depth range, and when the focus position is shallower than the predetermined depth Za, resets the focus position to a deeper position, When the depth is deeper than the predetermined depth Zb, the focus position is reset to a shallower position, and when the depth is between Za and Zb, the focus position information is not changed without changing the focus position. Is supplied to the transmission unit 14 and the calculation point position determination unit 94.
In addition, the calculation point setting unit 92 sets sampling points according to information input from the operation unit 32 and supplies the sampling points to the calculation point position determination unit 94.
The calculation point position determination unit 94 determines whether the distance from the focal point is within a predetermined range for each of the supplied sampling points, and supplies the determination result to the processing determination unit 21a.
 操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。このとき、送信部14は、焦点再設定部98で焦点が再設定された場合には、再設定された焦点位置に焦点を形成する超音波ビームを送信するように、また、再設定されなかった場合には、焦点設定部96で設定された焦点位置に焦点を形成する超音波ビームを送信するように、振動子アレイ36を駆動する。
 受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
When the operator abuts the ultrasonic probe 12 on the surface of the subject and starts measurement, an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted. The transducer array 36 receives the echo and outputs an analog element signal as a reception signal. At this time, when the focus is reset by the focus resetting unit 98, the transmission unit 14 transmits an ultrasonic beam that forms a focus at the reset focus position, and is not reset. In such a case, the transducer array 36 is driven so as to transmit an ultrasonic beam that forms a focal point at the focal position set by the focal point setting unit 96.
The receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18. The A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
 処理判断部21aは、焦点再設定の情報および算出点位置判断部94の判断結果に基づいて、素子データ処理部22aの処理を行わせる。また、処理を行わないと判断されたサンプリング点に対して、対応する素子データをこのサンプリング点の素子データとして画像生成部24に供給する。
 素子データ処理部22aは、遅延時間算出部48(図3)において、注目する送信ラインの未処理素子データと、周辺の送信ラインの未処理素子データとの遅延時間(例えば、図7(b)、図7(e)、どちらも同じものである。)を、サンプリング点ごとに、送信素子、焦点、反射点、及び受信素子の幾何学的配置、及び予め入力されて設定されている被検体の検査対象領域の音速等から算出する(例えば、図6の幾何学モデルを用いて算出する)。
The process determination unit 21a causes the element data processing unit 22a to perform processing based on the focus reset information and the determination result of the calculation point position determination unit 94. In addition, corresponding sampling data is supplied to the image generation unit 24 as sampling data for the sampling point determined not to be processed.
In the delay time calculation unit 48 (FIG. 3), the element data processing unit 22a delays the unprocessed element data of the target transmission line and the unprocessed element data of the surrounding transmission lines (for example, FIG. 7B). 7 (e), both of which are the same.) For each sampling point, the geometric arrangement of the transmitting element, the focal point, the reflecting point, and the receiving element, and the subject that has been input and set in advance. (E.g., using the geometric model in FIG. 6).
 次に、素子データ処理部22aは、焦点位置が再設定されて得られた素子データに対しては、各サンプリング点において、サンプリング点に対応する送信ラインの未処理素子データを含む、複数の未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子データとし、重ね合わせ処理部50(図3)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子データとその周辺の送信ラインの未処理素子データ(非注目素子データ)とを位相合わせて重ね合わせて処理済素子データを求める。
 また、再設定されていない焦点位置に対応する素子データであって、処理判断部21aで処理を行うと判断された素子データに対しては、サンプリング点に対応する送信ラインの未処理素子データを含む、複数の未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子データとし、重ね合わせ処理部50(図3)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子データとその周辺の送信ラインの未処理素子データ(非注目素子データ)とを位相合わせて重ね合わせて処理済素子データを求める。
 こうして求めた素子データを画像生成部24の整相加算部38に供給する。
Next, the element data processing unit 22a, for element data obtained by resetting the focal position, at each sampling point, includes a plurality of unprocessed element data including transmission element unprocessed element data corresponding to the sampling point. The processing element data is read from the element data storage unit 20, the element data to be processed is set as the target element data, and the overlap processing unit 50 (FIG. 3) uses the delay time calculated by the delay time calculation unit 48. Processed element data is obtained by superimposing the element data and the unprocessed element data (non-target element data) of the surrounding transmission lines in phase.
For element data corresponding to a focus position that has not been reset, and for element data determined to be processed by the processing determination unit 21a, unprocessed element data of the transmission line corresponding to the sampling point is used. A plurality of unprocessed element data is read from the element data storage unit 20, and the element data to be processed is set as target element data, and the delay time calculated by the delay time calculation unit 48 in the overlay processing unit 50 (FIG. 3). Is used to obtain the processed element data by superimposing the target element data and the unprocessed element data (non-target element data) on the transmission lines around the target element data in phase.
The element data thus obtained is supplied to the phasing adder 38 of the image generator 24.
 画像生成部24の整相加算部38は、処理済素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。 The phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40. The detection processing unit 40 processes the sound ray signal and generates a B-mode image signal. The DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image. The generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
 このように本発明の超音波検査装置100は、超音波ビームの焦点位置が、所定の範囲内にある場合に、焦点の位置を再設定して、複数の超音波ビームの送信で得られた第1の素子データから、第2の素子データを生成する。設定した焦点位置が、超音波ビームを収束させることが難しい表層や深層の場合に、焦点の位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができ、さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。 As described above, the ultrasonic inspection apparatus 100 according to the present invention is obtained by resetting the focal position and transmitting a plurality of ultrasonic beams when the focal position of the ultrasonic beam is within a predetermined range. Second element data is generated from the first element data. When the set focus position is the surface layer or deep layer where it is difficult to converge the ultrasonic beam, by resetting the focus position, the ultrasonic beam is sufficiently converged to the set focus position, and the element data ( First element data), and by combining a plurality of first element data obtained by resetting the focal position, an ultrasonic beam can be obtained even at a position away from the focal point. It is possible to reduce the influence of a ghost generated by the spread of the element, and it is possible to obtain the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line.
 また、焦点の位置が表層や深層ではない場合には、サンプリング点と焦点と間の距離が所定の範囲内か否かに応じて、未処理素子データから処理済素子データを生成するか否かを判断し、所定の範囲以外の場合には、複数の第1の素子データから第2の素子データを生成し、所定の範囲内の場合には、処理を行わない。そのため、焦点から遠いサンプリング点では、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。また、焦点近傍のサンプリング点では、素子データの重ね合わせ処理を行わず、処理によってデータの質が低下することを防止することができる。
 以上により、画像全体で、SN比や解像度を向上させることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
Whether or not to generate processed element data from unprocessed element data depending on whether or not the distance between the sampling point and the focal point is within a predetermined range when the position of the focal point is not the surface layer or the deep layer If it is outside the predetermined range, the second element data is generated from the plurality of first element data. If it is within the predetermined range, the process is not performed. Therefore, at the sampling point far from the focal point, it is possible to reduce the influence of the ghost generated by the spread of the ultrasonic beam, and the same element data (second element data) as that at which the focal point is formed at each sampling point is obtained. be able to. In addition, at the sampling point near the focal point, the element data is not overlapped, and it is possible to prevent the data quality from being deteriorated by the processing.
As described above, it is possible to improve the SN ratio and resolution of the entire image, and to obtain a sharp ultrasonic image having an optimum spatial resolution at a high resolution with a frame rate unchanged from the conventional one.
 以上、本発明の超音波検査装置、超音波画像データ生成方法およびプログラムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。 The ultrasonic inspection apparatus, the ultrasonic image data generation method, and the program according to the present invention have been described in detail above. However, the present invention is not limited to the above examples, and various types can be made without departing from the gist of the present invention. Of course, improvements and modifications may be made.
  10、100 超音波検査装置
  12  超音波プローブ
  14  送信部
  16  受信部
  18  A/D変換部
  20  素子データ記憶部
  21  処理判断部
  22  素子データ処理部
  24  画像生成部
  26  表示制御部
  28  表示部
  30  制御部
  32  操作部
  34  格納部
  36  振動子アレイ
  38  整相加算部
  40  検波処理部
  42  DSC
  44  画像作成部
  46  画像メモリ
  48  遅延時間算出部
  50  重ね合わせ処理部
  52  素子
  54  反射点
  56  送信ビーム
  58  焦点
  60  受信経路
  62  素子データ
  64  送信ビーム
  66  真の素子データ
  68  ゴーストの素子データ
  92  算出点設定部
  94  算出点位置判断部
  96  焦点設定部
  98  焦点再設定部
DESCRIPTION OF SYMBOLS 10,100 Ultrasonic inspection apparatus 12 Ultrasonic probe 14 Transmission part 16 Reception part 18 A / D conversion part 20 Element data memory | storage part 21 Process judgment part 22 Element data processing part 24 Image generation part 26 Display control part 28 Display part 30 Control Unit 32 operation unit 34 storage unit 36 transducer array 38 phasing addition unit 40 detection processing unit 42 DSC
44 Image creation unit 46 Image memory 48 Delay time calculation unit 50 Overlay processing unit 52 Element 54 Reflection point 56 Transmission beam 58 Focus 60 Reception path 62 Element data 64 Transmission beam 66 True element data 68 Ghost element data 92 Calculation point setting Unit 94 calculation point position determination unit 96 focus setting unit 98 focus resetting unit

Claims (18)

  1.  超音波ビームを用いて検査対象物を検査する超音波検査装置であって、
     前記検査対象物内に複数の送信焦点を設定する焦点設定部と、
     前記超音波ビームの各成分を発生し、かつ、前記検査対象物によって反射された超音波エコーを受信して、受信したアナログ素子信号を出力する、複数の素子を備える探触子と、
     前記探触子に、複数の前記素子を用いて、前記焦点設定部で設定された送信焦点それぞれに対して、超音波ビームを発生させる送信部と、
     前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が受信したアナログ素子信号を受け、所定の処理を施す受信部と、
     前記受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、
     前記検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定部と、
     複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記データ算出点に対応する第2の素子データを生成する素子データ処理部と、
     前記算出点設定部が設定した前記データ算出点それぞれについて、前記送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断部と、
     前記算出点位置判断部の判断結果に応じて、前記素子データ処理部による処理を行うか否かを判断する処理判断部と、を備え、
     前記処理判断部は、前記データ算出点から前記送信焦点までの距離が所定の範囲以外と判断された場合には、前記素子データ処理部に処理を行わせ、前記送信焦点までの距離が所定の範囲以内と判断された場合には、複数の前記第1の素子データのいずれか1つを前記データ算出点に対応する素子データとすることを特徴とする超音波検査装置。
    An ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam,
    A focus setting unit for setting a plurality of transmission focal points in the inspection object;
    A probe including a plurality of elements that generates each component of the ultrasonic beam and receives an ultrasonic echo reflected by the inspection object and outputs a received analog element signal;
    A transmitter that generates an ultrasonic beam for each of transmission focal points set by the focus setting unit, using a plurality of the elements in the probe;
    In response to transmission of the individual ultrasonic beams for each of the transmission focal points, a receiving unit that receives analog element signals received by a plurality of elements and performs predetermined processing;
    A / D conversion of the analog element signal processed by the reception unit to obtain first element data which is a digital element signal;
    A calculation point setting unit for setting at least one data calculation point in the inspection object;
    An element data processing unit that generates second element data corresponding to the data calculation point from the first element data obtained by transmitting a plurality of the ultrasonic beams;
    For each of the data calculation points set by the calculation point setting unit, a calculation point position determination unit that determines whether the distance to the transmission focus is within a predetermined range;
    A process determination unit that determines whether or not to perform the process by the element data processing unit according to the determination result of the calculation point position determination unit,
    When the distance from the data calculation point to the transmission focal point is determined to be outside a predetermined range, the processing determination unit causes the element data processing unit to perform processing, and the distance to the transmission focal point is a predetermined distance. When it is determined that the value is within the range, any one of the plurality of first element data is used as element data corresponding to the data calculation point.
  2.  前記算出点位置判断部は、前記データ算出点から前記送信焦点までの距離が所定の閾値以下か否かを判断する請求項1に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, wherein the calculation point position determination unit determines whether or not a distance from the data calculation point to the transmission focus is equal to or less than a predetermined threshold.
  3.  前記算出点設定部は、前記超音波ビームの送信ライン上に設定され、
     前記算出点位置判断部は、前記データ算出点に対応する前記送信ライン上の前記送信焦点までの距離に基づいて判断する請求項1または2に記載の超音波検査装置。
    The calculation point setting unit is set on a transmission line of the ultrasonic beam,
    The ultrasonic inspection apparatus according to claim 1, wherein the calculation point position determination unit makes a determination based on a distance to the transmission focus on the transmission line corresponding to the data calculation point.
  4.  前記焦点設定部により設定された各送信焦点の深さが、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の深さを異なる深さに再設定する焦点再設定部を有する請求項1~3のいずれか1項に記載の超音波検査装置。 A focus resetting unit that determines whether the depth of each transmission focus set by the focus setting unit is within a predetermined range and resets the depth of the transmission focus within the predetermined range to a different depth. The ultrasonic inspection apparatus according to any one of claims 1 to 3, further comprising:
  5.  前記焦点再設定部は、前記焦点設定部により設定された送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも深い位置に再設定する請求項4に記載の超音波検査装置。 The focus resetting unit, when the depth of the transmission focus set by the focus setting unit is shallower than a predetermined depth, sets the position of the transmission focus to a position deeper than the position set by the focus setting unit. The ultrasonic inspection apparatus according to claim 4, which is reset.
  6.  前記焦点再設定部は、前記焦点設定部により設定された送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも浅い位置に再設定する請求項4または5に記載の超音波検査装置。 When the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth, the focus resetting unit sets the position of the transmission focus to a position shallower than the position set by the focus setting unit. The ultrasonic inspection apparatus according to claim 4 or 5, which is reset.
  7.  前記送信部は、前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させることを、中心となる素子を変更して行わせる請求項1~6のいずれか1項に記載の超音波検査装置。 The transmission unit causes the probe to use the plurality of elements and transmit the ultrasonic beam to each of the transmission focal points by changing a central element. The ultrasonic inspection apparatus according to any one of 6.
  8.  前記素子データ処理部は、中心となる素子が異なる、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いる請求項1~7のいずれかに記載の超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 7, wherein the element data processing unit uses the first element data obtained by transmitting a plurality of the ultrasonic beams different in a central element.
  9.  前記素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いて前記第2の素子データを生成する請求項1~8のいずれか1項に記載の超音波診断装置。 The element data processing unit generates the second element data using the first element data obtained by transmitting a plurality of the ultrasonic beams in which the transmission areas of the ultrasonic beams overlap. The ultrasonic diagnostic apparatus according to any one of 8.
  10.  前記素子データ処理部は、前記素子が超音波エコーを受信した受信時間および前記素子の位置に応じて複数の前記第1の素子データを重ね合わせて、前記データ算出点に対応する第2の素子データを生成する請求項1~9のいずれか1項に記載の超音波診断装置。 The element data processing unit superimposes a plurality of first element data according to a reception time when the element receives an ultrasonic echo and a position of the element, and a second element corresponding to the data calculation point The ultrasonic diagnostic apparatus according to any one of claims 1 to 9, which generates data.
  11.  前記素子データ処理部は、前記素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1~10のいずれか1項に記載の超音波検査装置。 The element data processing unit synthesizes a plurality of the first element data obtained by transmitting an ultrasonic beam with an element continuous in the arrangement direction of the elements as a center element, and the second element data The ultrasonic inspection apparatus according to any one of claims 1 to 10, which generates element data.
  12.  前記素子データ処理部は、前記データ算出点に対応する超音波ビームを送信する際の中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1~11のいずれか1項に記載の超音波検査装置。 The element data processing unit is obtained by transmitting an ultrasonic beam using the same number of elements adjacent to both sides of the element serving as the center when transmitting the ultrasound beam corresponding to the data calculation point, respectively. The ultrasonic inspection apparatus according to any one of claims 1 to 11, wherein the second element data is generated by combining the first element data.
  13.  前記素子データ処理部は、2以上の前記第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の前記第1の素子データを算出された遅延時間及び受信された前記探触子の前記素子の位置に基づいて重ね合わせ、前記第2の素子データを生成する重ね合わせ処理部とを有する請求項1~12のいずれか1項に記載の超音波検査装置。 The element data processing unit includes: a delay time calculation unit that calculates a delay time of two or more first element data; a delay time that calculates two or more first element data; and the received probe The ultrasonic inspection apparatus according to any one of claims 1 to 12, further comprising an overlay processing unit that superimposes based on a position of the element of a child and generates the second element data.
  14.  前記遅延時間算出部は、事前に取得された前記探触子、前記検査対象物の音速、前記超音波ビームの送信焦点の位置、前記送信部による前記探触子の送信開口、及び前記受信部による前記探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の前記第1の素子データの遅延時間を算出し、
     前記重ね合わせ処理部は、予め設定された、2以上の前記第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の前記第1の素子データを重ね合わせ、前記第2の素子データを生成する請求項13に記載の超音波検査装置。
    The delay time calculation unit includes the probe acquired in advance, the speed of sound of the inspection object, the position of the transmission focal point of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the reception unit Calculating a delay time of the two or more first element data based on at least one piece of information regarding the receiving aperture of the probe according to
    The superimposition processing unit sets two or more first element data based on a preset number of first element data to be superimposed among the two or more first element data and an overlay processing method. The ultrasonic inspection apparatus according to claim 13, wherein the second element data is generated by superimposing data.
  15.  前記素子データ処理部は、2以上の前記第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせる請求項1~14のいずれか1項に記載の超音波検査装置。 The element data processing unit according to any one of claims 1 to 14, wherein the element data processing unit superimposes the two or more first element data after multiplying each of the first element data by a weighting coefficient. Ultrasonic inspection equipment.
  16.  前記受信部が出力した前記第1の素子データのすべてを保持する素子データ保持部を有する請求項1~15のいずれか1項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, further comprising an element data holding unit that holds all of the first element data output from the receiving unit.
  17.  超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、
     前記検査対象物内に複数の送信焦点を設定する焦点設定ステップと、
     前記探触子に、複数の前記素子を用いて、前記焦点設定ステップで設定された前記送信焦点それぞれに対して、超音波ビームを発生させる送信ステップと、
     前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が受信したアナログ素子信号を受け、所定の処理を施す受信ステップと、
     前記受信ステップで処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
     前記検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定ステップと、
     複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記データ算出点に対応する第2の素子データを生成する素子データ処理ステップと、
     前記算出点設定ステップで設定した前記データ算出点それぞれについて、前記送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断ステップと、
     前記算出点位置判断ステップの判断結果に応じて、前記素子データ処理ステップによる処理を行うか否かを判断する処理判断ステップと、を備え、
     前記処理判断ステップは、前記データ算出点から前記送信焦点までの距離が所定の範囲以外と判断された場合には、前記素子データ処理ステップによる処理を行わせ、前記送信焦点までの距離が所定の範囲以内と判断された場合には、複数の前記第1の素子データのいずれか1つを前記データ算出点に対応する素子データとすることを特徴とする超音波画像データ生成方法。
    The ultrasonic beam is generated by a probe having a plurality of elements that generates each component of the ultrasonic beam, receives an ultrasonic echo reflected in the inspection object, and outputs a received analog signal. An ultrasonic image data generation method for inspecting the inspection object and generating ultrasonic image data,
    A focus setting step of setting a plurality of transmission focal points in the inspection object;
    A transmission step of generating an ultrasonic beam for each of the transmission focal points set in the focus setting step using a plurality of the elements in the probe;
    In response to transmission of the individual ultrasonic beams to each of the transmission focal points, a reception step of receiving analog element signals received by the plurality of elements and performing predetermined processing;
    A / D conversion of the analog element signal processed in the reception step to obtain first element data which is a digital element signal;
    A calculation point setting step of setting at least one data calculation point in the inspection object;
    An element data processing step of generating second element data corresponding to the data calculation point from the first element data obtained by transmitting a plurality of the ultrasonic beams;
    For each of the data calculation points set in the calculation point setting step, a calculation point position determination step for determining whether the distance to the transmission focus is within a predetermined range;
    A process determination step for determining whether or not to perform the process according to the element data processing step according to the determination result of the calculation point position determination step,
    In the process determination step, when it is determined that the distance from the data calculation point to the transmission focal point is outside a predetermined range, the process according to the element data processing step is performed, and the distance to the transmission focal point is predetermined. An ultrasonic image data generation method, characterized in that if it is determined that the value is within a range, any one of the plurality of first element data is set as element data corresponding to the data calculation point.
  18.  超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、
     前記検査対象物内に複数の送信焦点を設定する焦点設定ステップと、
     前記探触子に、複数の前記素子を用いて、前記焦点設定ステップで設定された前記送信焦点それぞれに対して、超音波ビームを発生させる送信ステップと、
     前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が受信したアナログ素子信号を受け、所定の処理を施す受信ステップと、
     前記受信ステップで処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
     前記検査対象物内に少なくとも1つのデータ算出点を設定する算出点設定ステップと、
     複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記データ算出点に対応する第2の素子データを生成する素子データ処理ステップと、
     前記算出点設定ステップで設定した前記データ算出点それぞれについて、前記送信焦点までの距離が所定の範囲か否かを判断する算出点位置判断ステップと、
     前記算出点位置判断ステップの判断結果に応じて、前記素子データ処理ステップによる処理を行うか否かを判断する処理判断ステップと、を備え、
     前記処理判断ステップは、前記データ算出点から前記送信焦点までの距離が所定の範囲以外と判断された場合には、前記素子データ処理ステップによる処理を行わせ、前記送信焦点までの距離が所定の範囲以内と判断された場合には、複数の前記第1の素子データのいずれか1つを前記データ算出点に対応する素子データとすることをコンピュータに実行させることを特徴とする超音波画像データ生成プログラム。
    The ultrasonic beam is generated by a probe having a plurality of elements that generates each component of the ultrasonic beam, receives an ultrasonic echo reflected in the inspection object, and outputs a received analog signal. An ultrasonic image data generation program for causing a computer to inspect the inspection object and generate ultrasonic image data,
    A focus setting step of setting a plurality of transmission focal points in the inspection object;
    A transmission step of generating an ultrasonic beam for each of the transmission focal points set in the focus setting step using a plurality of the elements in the probe;
    In response to transmission of the individual ultrasonic beams to each of the transmission focal points, a reception step of receiving analog element signals received by the plurality of elements and performing predetermined processing;
    A / D conversion of the analog element signal processed in the reception step to obtain first element data which is a digital element signal;
    A calculation point setting step of setting at least one data calculation point in the inspection object;
    An element data processing step of generating second element data corresponding to the data calculation point from the first element data obtained by transmitting a plurality of the ultrasonic beams;
    For each of the data calculation points set in the calculation point setting step, a calculation point position determination step for determining whether the distance to the transmission focus is within a predetermined range;
    A process determination step for determining whether or not to perform the process according to the element data processing step according to the determination result of the calculation point position determination step,
    In the process determination step, when it is determined that the distance from the data calculation point to the transmission focal point is outside a predetermined range, the process according to the element data processing step is performed, and the distance to the transmission focal point is predetermined. When it is determined that the value is within the range, the ultrasonic image data causes the computer to execute any one of the plurality of first element data as element data corresponding to the data calculation point. Generation program.
PCT/JP2013/075923 2012-09-28 2013-09-25 Ultrasonic inspection device, method for generating ultrasonic image data, and program WO2014050897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012217091A JP2014068807A (en) 2012-09-28 2012-09-28 Ultrasonic inspection apparatus, ultrasonic image data generation method and program
JP2012-217091 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050897A1 true WO2014050897A1 (en) 2014-04-03

Family

ID=50388292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075923 WO2014050897A1 (en) 2012-09-28 2013-09-25 Ultrasonic inspection device, method for generating ultrasonic image data, and program

Country Status (2)

Country Link
JP (1) JP2014068807A (en)
WO (1) WO2014050897A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206301A (en) * 1996-01-31 1997-08-12 Ge Yokogawa Medical Syst Ltd Method for generating sound ray signal and ultrasonograph
JPH11113898A (en) * 1997-10-17 1999-04-27 Aloka Co Ltd Ultrasonograph
JP2002238896A (en) * 2001-02-21 2002-08-27 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206301A (en) * 1996-01-31 1997-08-12 Ge Yokogawa Medical Syst Ltd Method for generating sound ray signal and ultrasonograph
JPH11113898A (en) * 1997-10-17 1999-04-27 Aloka Co Ltd Ultrasonograph
JP2002238896A (en) * 2001-02-21 2002-08-27 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device

Also Published As

Publication number Publication date
JP2014068807A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP5946427B2 (en) Ultrasonic inspection apparatus, ultrasonic inspection method, program, and recording medium
JP5905856B2 (en) Ultrasonic inspection equipment
JP6006249B2 (en) Acoustic wave processing device, signal processing method and program for acoustic wave processing device
JP5905808B2 (en) Ultrasonic inspection apparatus, ultrasonic image data generation method and program
JP6000197B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image generation method and program
US10231709B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP6000196B2 (en) Ultrasonic diagnostic apparatus, sound speed determination method and program
JP6165089B2 (en) Acoustic wave processing device, signal processing method and program for acoustic wave processing device
US10299762B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP6285241B2 (en) Acoustic wave processing device, signal processing method and program for acoustic wave processing device
JP5873412B2 (en) Ultrasonic diagnostic apparatus, sound speed determination method and program
JP6129108B2 (en) Acoustic wave processing device, signal processing method and program for acoustic wave processing device
WO2014050897A1 (en) Ultrasonic inspection device, method for generating ultrasonic image data, and program
WO2014050847A1 (en) Ultrasonic diagnosis device, method for generating ultrasonic image data, and program
JP6047041B2 (en) Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus
WO2014050756A1 (en) Ultrasonic inspection device, method for generating ultrasonic image data, and program
JP2014233402A (en) Ultrasonic diagnostic apparatus, sound-ray signal generation method for ultrasonic diagnostic apparatus, and sound-ray signal generating program for ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840592

Country of ref document: EP

Kind code of ref document: A1