WO2014050867A1 - Laminated coil component and method for producing same - Google Patents

Laminated coil component and method for producing same Download PDF

Info

Publication number
WO2014050867A1
WO2014050867A1 PCT/JP2013/075871 JP2013075871W WO2014050867A1 WO 2014050867 A1 WO2014050867 A1 WO 2014050867A1 JP 2013075871 W JP2013075871 W JP 2013075871W WO 2014050867 A1 WO2014050867 A1 WO 2014050867A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
conductor
content
region
coil component
Prior art date
Application number
PCT/JP2013/075871
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 修
山本 篤史
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014050867A1 publication Critical patent/WO2014050867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core

Definitions

  • the present invention relates to a laminated coil component, and more particularly to a laminated coil component having a magnetic part containing at least Fe, Zn and Ni and a coiled conductor part mainly composed of copper.
  • Patent Document 1 has a magnetic body portion made of a ferrite material and a conductor portion mainly composed of copper, and the magnetic body portion includes a divalent element containing trivalent Fe and at least divalent Ni. And the Fe content is 20 to 48% in terms of molar ratio in terms of Fe 2 O 3 , and the ratio of Mn to the total of Fe and Mn is Mn 2 O 3 and Fe 2 O
  • the ceramic electronic component is characterized in that the magnetic body portion contains the Mn so that the molar ratio is less than 50% (including 0%) in terms of a molar ratio.
  • laminated coil parts are small and light, but when a large direct current is applied, the magnetic material becomes magnetically saturated and the inductance decreases. There is a drawback that is small. Therefore, it is required for the laminated coil component to increase the saturation magnetic flux density, in other words, to improve the DC superposition characteristics (to obtain a stable inductance over a larger DC current range).
  • Patent Document 2 a method of manufacturing a laminated bead component in which a magnetic layer and a conductor pattern are laminated and an impedance element is formed in the element body, a sintering regulator composed of SiO 2 covering silver powder is mixed.
  • a method of manufacturing a laminated bead component has been proposed, which includes printing the conductive paste on the magnetic layer to form the conductive pattern.
  • the sintering conditioner in the conductor paste is appropriately diffused into the magnetic material, and the sintered state of the magnetic material in the vicinity of the conductor pattern is delayed more than the other portions, and magnetically
  • the inactive layer can be formed in a slanted manner, whereby it is possible to improve the direct current superimposition characteristics up to a large current range in the high frequency band and to prevent the magnetic characteristics from deteriorating.
  • the ceramic electronic component (laminated coil component) described in Patent Document 1 can use copper, which is cheaper than silver, as an internal conductor, its direct current superposition characteristics are not sufficient.
  • An object of the present invention is to provide a laminated coil component that can use inexpensive copper as an internal conductor and has excellent direct current superposition characteristics.
  • the present inventors have determined that the ratio of the Cu content in the central region of the magnetic body portion to the Cu content in the vicinity of the conductor portion of the magnetic body portion is 0 in the laminated coil component. It has been found that by setting it to ⁇ 0.6, copper can be used as the internal conductor and the DC superimposition characteristics can be improved, and the present invention has been achieved.
  • a laminated coil component having a magnetic part containing at least Fe, Mn, Zn and Ni, and a coiled conductor part mainly composed of copper,
  • the ratio of the Cu content (CuO equivalent) in the central region of the magnetic part to the Cu content (CuO equivalent) in the region near the conductor part of the magnetic part is 0 to 0.6.
  • a coil component is provided.
  • the ratio of the Cu content (CuO equivalent) in the central region of the magnetic part to the Cu content (CuO equivalent) in the region near the conductor part of the magnetic part is set to 0 to 0.6.
  • a multilayer coil component can be provided in which copper can be used as the inner conductor and the DC superposition characteristics and the thermal shock resistance are improved.
  • FIG. 2 is a schematic exploded perspective view of the laminated coil component in the embodiment of FIG. 1, with the external electrodes omitted.
  • FIG. 2 is a schematic cross-sectional view of the laminated coil component in the embodiment of FIG. 1 as viewed along the line A-A ′ of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a laminated coil component in a modified example of the embodiment of FIG. 1 as viewed along the line A-A ′ of FIG. 1. It is a figure corresponding to FIG.
  • (a) is a figure which shows the center area
  • (b) is a low Cu content area
  • the laminated coil component 11 of this embodiment is schematically a laminated body having a magnetic body portion 2 and a coil-shaped conductor portion 3 embedded in the magnetic body portion 2.
  • the external electrodes 5a and 5b can be provided so as to cover the outer peripheral end faces of the multilayer body 1, and the lead portions 4a and 4b located at both ends of the conductor portion 3 are connected to the external electrodes 5a and 5b, respectively. Can be done.
  • the magnetic part 2 is formed by laminating magnetic layers 8a to 8h.
  • the conductor 3 has a plurality of conductor pattern layers 9a to 9f disposed between the magnetic layers 8a to 8h, respectively, and passes through the via holes 10a to 10e provided in the magnetic layers 8b to 8f. Connected to each other.
  • the magnetic part 2 is made of sintered ferrite containing Fe, Mn, Ni, Zn and Cu.
  • the conductor portion 3 may be made of a conductor containing copper, but is preferably made of a conductor containing copper as a main component.
  • the external electrodes 5a and 5b are not particularly limited, but are usually made of a conductor containing silver as a main component, and may be plated with nickel and / or tin as necessary.
  • a nonmagnetic material layer 12 can be provided to be an open magnetic circuit type.
  • the nonmagnetic layer 12 may be installed so as to cross the magnetic path formed by the coil, and may be installed either between the coils or outside the coil.
  • the non-magnetic layer 12 is made of a material having a thermal expansion coefficient similar to that of the magnetic unit 2 (magnetic layers 8a to 8h), for example, Ni in the Ni—Cu—Zn-based ferrite material of the magnetic unit 2 is entirely contained in Zn. Substituted Zn—Cu ferrite materials can be used. According to such an open magnetic circuit type laminated coil component, it is possible to further improve the DC superposition characteristics.
  • the laminated coil component 11 of the present embodiment described above is manufactured as follows.
  • a ferrite material containing Fe, Mn, Zn, Ni and Cu is prepared.
  • the ferrite material contains Fe, Mn, Zn, Ni, and Cu as main components, and may further contain additional components as necessary.
  • ferrite materials can be prepared by mixing and calcining powders of Fe 2 O 3 , Mn 2 O 3 , ZnO, NiO and CuO at a desired ratio as raw materials of these main components. It is not limited.
  • the Fe (Fe 2 O 3 equivalent) content in the ferrite material is preferably 20 to 48 mol% (main component total reference).
  • the Fe (Fe 2 O 3 equivalent) content is preferably 20 to 48 mol% (main component total reference).
  • the Fe (Fe 2 O 3 equivalent) content is preferably 20 mol% or more.
  • the Mn (Mn 2 O 3 equivalent) content in the ferrite material is less than 50% in molar ratio with respect to the total of Fe (Fe 2 O 3 equivalent) content and Mn (Mn 2 O 3 equivalent) content, preferably Is preferably 2% or more and less than 50%.
  • Mn the magnetic retentivity is reduced and the magnetic flux density is increased, so that the magnetic permeability can be improved.
  • Mn is reduced preferentially over Fe, Fe It is possible to avoid a decrease in specific resistance due to the reduction of.
  • Mn (Mn 2 O 3 conversion) By making Mn content less than 50% by molar ratio with respect to the total of Fe (Fe 2 O 3 conversion) content and Mn (Mn 2 O 3 conversion) content, Mn (Mn 2 O 3 conversion) ) It is possible to avoid a decrease in insulation due to the content being higher than the Fe (Fe 2 O 3 equivalent) content, to avoid a decrease in Curie point, and to avoid a decrease in operating temperature of the laminated coil component. it can. Further, Fe (Fe 2 O 3 basis) relative to total content and Mn (Mn 2 O 3 basis) content, by 2% or more by molar ratio, effectively getting the effect of adding Mn Can do.
  • the Zn (ZnO equivalent) content in the ferrite material is preferably 6 to 33 mol% (main component total standard).
  • the Zn (ZnO equivalent) content is preferably 6 to 33 mol% (main component total standard).
  • the Cu (CuO equivalent) content in the ferrite material is 0 to 6.0 mol% (based on the total amount of main components), preferably 1.0 to 5.0 mol%.
  • the content of Ni (NiO equivalent) in the ferrite material is not particularly limited, and may be the balance of Fe, Mn, Zn, and Cu, which are the other main components described above.
  • Bi content is the sum of the main components (Fe (Fe 2 O 3 equivalent), Mn (Mn 2 O 3 equivalent), Zn (ZnO equivalent), Ni (NiO equivalent), Cu (CuO equivalent))).
  • the amount is preferably 0.1 to 1 part by weight in terms of Bi 2 O 3 with respect to 100 parts by weight.
  • Bi (Bi 2 O 3 equivalent) content is too high, abnormal grain growth is likely to occur, the specific resistance is reduced at the abnormal grain growth site, and the abnormal grain growth site is formed during the plating process during external electrode formation. Since plating adheres, it is not preferable.
  • a magnetic sheet is prepared using the ferrite material prepared as described above.
  • a magnetic material sheet may be obtained by mixing / kneading a ferrite material with an organic vehicle containing a binder resin and an organic solvent and forming the sheet into a sheet shape, but is not limited thereto.
  • the average particle diameter D50 of the copper powder in the conductor paste (diameter equivalent to 50% of the volume-based cumulative percentage obtained by the laser diffraction scattering method) is preferably in the range of 0.5 to 10 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m. More preferably.
  • the magnetic material sheet (corresponding to the magnetic material layers 8a to 8h) is laminated via a conductive paste layer containing copper (corresponding to the conductive pattern layers 9a to 9f), and the conductive paste layer is formed on the magnetic material sheet.
  • a laminated body (an unfired laminated body and corresponding to the laminated body 1) interconnected in a coil shape through via holes (corresponding to the via holes 10a to 10e) provided through is obtained.
  • the formation method of the laminate is not particularly limited, and the laminate may be formed using a sheet lamination method, a printing lamination method, or the like.
  • the sheet lamination method via holes are appropriately provided in the magnetic sheet, and the conductor paste is printed in a predetermined pattern (filling the via holes if via holes are provided) to form a conductor paste layer.
  • a magnetic sheet on which a conductive paste layer is appropriately formed can be laminated and pressure-bonded, and cut into a predetermined size to obtain a laminated body.
  • a conductor paste is printed on a magnetic sheet in a predetermined pattern to form a conductor paste layer, on which another magnetic sheet with via holes is placed, and the conductor paste is placed in a predetermined pattern. Then, printing (while filling the via hole) is repeated as appropriate to form a conductive paste layer, and finally a magnetic sheet is placed and pressure-bonded, and cut into a predetermined size to obtain a laminate.
  • the laminated body may be a plurality of laminated bodies produced in a matrix at a time, and then cut into individual pieces by dicing or the like (element separation), but is individually produced in advance. May be.
  • the unfired laminate obtained above is heat-treated under a predetermined oxygen partial pressure to sinter the magnetic paste and the conductor paste layer containing copper, so that the magnetic layers 8a to 8h and the conductor pattern, respectively, are fired. Layers 9a to 9f are assumed.
  • the magnetic layers 8a to 8h form the magnetic portion 2, and the conductor pattern layers 9a to 9f form the conductor 3.
  • the oxygen partial pressure during the firing is preferably equal to or lower than the Cu—Cu 2 O equilibrium oxygen partial pressure (reducing atmosphere).
  • the unfired laminate can be sintered at a lower temperature than in the case of heat treatment in air, and for example, the firing temperature can be 950 to 1100 ° C.
  • the present invention is not limited by any theory, but when fired in a low oxygen concentration atmosphere, oxygen defects are formed in the crystal structure, and interdiffusion of Fe, Mn, Ni, Cu, Zn is promoted through such oxygen defects. Therefore, it is considered that the low temperature sinterability can be improved.
  • external electrodes 5a and 5b are formed so as to cover both end faces of the laminate 1 obtained above.
  • the external electrodes 5a and 5b are formed, for example, by applying a paste made of silver powder together with glass or the like to a predetermined region, and subjecting the resulting structure to an atmosphere in which copper is not oxidized, for example, 700 to It can be carried out by heat treating at 850 ° C. and baking the silver.
  • the laminated coil component 11 of the present embodiment is manufactured.
  • the central region of the magnetic body portion means a region of the magnetic body portion that is located on the inner side of the coil formed by the conductor pattern layer and located on and near the central axis of the coil, Specifically, it is defined as an area within 10 ⁇ m from the central axis of the coil.
  • the “region near the conductor portion of the magnetic body portion” means a region of the magnetic body portion that is close to the interface between the magnetic body portion and the conductor portion, and the inside of the magnetic body from the interface between the magnetic body portion and the conductor portion. It is defined as a region that is 1 ⁇ m or more apart and within 10 ⁇ m. For example, in this embodiment, as exemplarily shown in FIG.
  • the central region X of the magnetic body portion 2 is 10 ⁇ m from the central axis (indicated by a dotted line) of the coil formed by the conductor portion 3.
  • the conductor vicinity region Y of the magnetic body portion 2 is defined as a region within 1 to 10 ⁇ m from the interface between the magnetic body portion 2 and the conductor portion 3 toward the inside of the magnetic body 2.
  • FIG. 5A shows an example in which the conductor portion vicinity region Y is separated between the conductor pattern layers, but the present embodiment is not limited to this, and may be overlapped between the conductor pattern layers.
  • the Cu content (CuO equivalent) X1 in the conductor vicinity region Y of the magnetic part 2 is higher than the Cu content (CuO equivalent) X2 in the central area X of the magnetic part 2.
  • the Cu content (CuO equivalent) X2 in the central region X of the magnetic part 2 with respect to the Cu content (CuO equivalent) X1 in the conductor vicinity area Y of the magnetic part 2 is as follows.
  • the ratio X2 / X1 is in the range of 0 to 0.6, preferably 0.1 to 0.55.
  • the Fe, Mn and Cu contents in the magnetic part 2 are 5 mol% or less in terms of CuO, 25 to 47 mol% in terms of Fe 2 O 3 , and Mn 2
  • the O 3 equivalent content is 1 mol% or more and less than 7.5 mol%, or the Fe 2 O 3 equivalent content is 35 to 45 mol% and the Mn 2 O 3 equivalent content is 7.5 to 10 mol%. Is preferred.
  • the present invention is not limited by any theory, when a ferrite material and a conductor paste containing copper are co-fired, the copper in the conductor portion diffuses into the conductor vicinity region Y of the magnetic body portion in the firing process, thereby providing magnetic properties. It is considered that the amount of Cu in the conductor portion vicinity region Y of the body portion increases. As a result of this copper diffusion, a high Cu content region Y ′ (including the conductor vicinity region Y) is formed around the conductor 3 in the magnetic body 2 as exemplarily shown in FIG. As a result, the other bulk region has a relatively low Cu content and becomes a low Cu content region X ′.
  • the Cu content (CuO equivalent) in the central region X of the magnetic part 2 can be understood as representative of the Cu content (CuO equivalent) in the low Cu content region X ′, and the vicinity of the conductor part of the magnetic part 2
  • the Cu content (CuO equivalent) in the region Y can be understood as representing the Cu content (CuO equivalent) in the high Cu content region Y ′.
  • the high Cu content region Y ′ is preferably formed without a gap between the conductor pattern layers, but the present invention is not limited to this.
  • the sinterability is lowered, the particle growth is suppressed, and the sintered density is lowered. As a result, the magnetic permeability Also lower.
  • the central region X of the magnetic body portion 2 since the Cu content is relatively low, the sinterability is high, the particle growth is sufficiently promoted, and the sintered density is increased. Magnetic susceptibility also increases. In other words, in the multilayer coil component 11 of the present embodiment, the magnetic flux concentration is reduced because the magnetic permeability of the region Y near the conductor portion of the magnetic body portion is lower than that of the central region X of the magnetic body portion 2.
  • the present invention is not bound by any theory, as described above, when the conductor portion is mainly composed of copper, the ferrite material and the conductor paste containing copper are simultaneously fired in a reducing atmosphere in which Cu is not oxidized. Although it is necessary, when firing in a reducing atmosphere having such a low oxygen concentration, it is considered that CuO is likely to precipitate as a heterogeneous phase in crystal grains as compared with firing in an air atmosphere. Therefore, when the CuO content in the magnetic part increases (for example, when the Cu content (CuO equivalent) exceeds 6 mol%), the precipitation amount of CuO increases, and the sinterability of the magnetic part due to this CuO precipitation. Is expected to decrease.
  • the magnetic flux formed around the conductor portion 3 is likely to pass through a region having a higher magnetic permeability, so that the high Cu content region Y ′.
  • a low Cu content region X ′ (a region having a high magnetic permeability and including a central region X) located outside the region having a low magnetic permeability and including the conductor vicinity region Y). It is considered that the magnetic path becomes longer as compared with the case where the entire magnetic body portion 2 has a high magnetic permeability. As the magnetic path becomes longer, a stable inductance can be obtained over a larger DC current range, and thus the laminated coil component 11 of the present embodiment has improved DC superposition characteristics.
  • the laminated coil component 11 since the laminated coil component 11 has a low sintered density in the conductor portion vicinity region Y in the magnetic body portion 2, internal stress that can be generated in the magnetic body portion 2 due to a cooling process after heat treatment (firing) or the like. (Or stress strain) can be relaxed or reduced. Therefore, when the laminated coil component 11 is subjected to a thermal shock test, or when the laminated coil component 11 is used (reflow processing when mounted on a substrate or actually used by a user), it is exposed to a sudden temperature change or external stress. Or the like, it is possible to reduce the fluctuation of internal stress in the conductor vicinity region Y (region where the sintered density is low), and therefore, it is possible to reduce changes in magnetic characteristics such as inductance and impedance. .
  • Sample No. Examples 1 to 7 are examples of the present invention. 8 to 9 (indicated by the symbol “*” in the table) are comparative examples.
  • the ceramic slurry obtained above was formed into a sheet having a thickness of 25 ⁇ m by a doctor blade method.
  • the obtained molded body was punched into a size of 50 mm in length and 50 mm in width to produce a magnetic material sheet of ferrite material.
  • via holes were formed at predetermined positions on the magnetic sheet and the non-magnetic sheet prepared above, and then separately prepared copper powder (average particle diameter D50: 1.5 ⁇ m), varnish, A conductor paste containing an organic solvent was screen-printed on the surface of the magnetic material sheet while filling a via hole formed in the magnetic material sheet to form a coil pattern (conductor paste layer).
  • a pressure-bonding block was produced by pressure bonding at a temperature of 100 MPa and a pressure of 100 MPa for 1 minute. And this press-bonded block was cut into a predetermined size to produce a ceramic laminate.
  • the ceramic laminate obtained above was sufficiently degreased by heating in an atmosphere in which copper was not oxidized.
  • the ceramic laminate was placed in a firing furnace in which the oxygen partial pressure was controlled to a Cu—Cu 2 O equilibrium oxygen partial pressure (1.8 ⁇ 10 ⁇ 1 Pa) with a mixed gas of N 2 —H 2 —H 2 O.
  • the mixture was charged, heated to 950 ° C., and held for 1 to 5 hours for firing.
  • the conductive paste for external electrodes was applied to both end faces of the fired laminate and dried. Baked at 750 ° C. in an atmosphere where copper does not oxidize, and in addition, Ni and Sn plating are performed in order by electrolytic plating, external electrodes are formed, and a sample (laminated coil component) in which a coil conductor is embedded in a magnetic part Produced.
  • sample no Samples were prepared for 1-9.
  • the outer diameter of the sample is 2.1 mm in length, 1.0 mm in width, and 1.0 mm in thickness, and a predetermined inductance value (about 1 ⁇ H at 1 MHz) can be obtained for the number of turns of the conductor (coil). Adjusted.
  • Sample No. Samples obtained for 1-9 were evaluated by CuO content, DC overlay characteristics and thermal shock tests.
  • the laminated coil component obtained by the present invention can be used in a wide variety of applications, for example, as an impedance element of a high frequency circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

The present invention provides a laminated coil component (11) which comprises a magnetic part (2) that contains at least Fe, Mn, Zn and Ni and a coil-shaped conductor part (3) that is mainly composed of copper, and which is characterized in that the ratio of the Cu content of the magnetic part (2) in the central region to the Cu content of the magnetic part (2) in a region close to the conductor part is 0-0.6. A laminated coil component of the present invention is able to use inexpensive copper as an inner conductor and has excellent direct current superposition characteristics.

Description

積層コイル部品およびその製造方法Multilayer coil component and manufacturing method thereof
 本発明は、積層コイル部品に関し、より詳細には、少なくともFe、ZnおよびNiを含む磁性体部と、銅を主成分としたコイル状の導体部とを有する積層コイル部品に関する。 The present invention relates to a laminated coil component, and more particularly to a laminated coil component having a magnetic part containing at least Fe, Zn and Ni and a coiled conductor part mainly composed of copper.
 積層コイル部品の内部導体として銅を用いる場合、銅が酸化しないような還元雰囲気で銅導体とフェライト材料とを同時焼成する必要があるが、このような条件下で焼成すると、フェライト材料のFeが3価から2価に還元され、積層コイル部品の比抵抗が低下する等の問題がある。したがって、一般的に、銀を主成分とする導体が用いられてきた。しかしながら、低抵抗であることや導通性に優れていること、かつ銀よりも安価であることを考慮すると、銅を主成分とする導体を用いることが好ましい。 When copper is used as the inner conductor of the laminated coil component, it is necessary to fire the copper conductor and the ferrite material simultaneously in a reducing atmosphere in which the copper is not oxidized. There is a problem that the specific resistance of the laminated coil component is reduced due to reduction from trivalent to divalent. Therefore, a conductor mainly composed of silver has been generally used. However, it is preferable to use a conductor mainly composed of copper in consideration of low resistance, excellent conductivity, and cheaper than silver.
 特許文献1は、フェライト材料からなる磁性体部と、銅を主成分とする導体部とを有し、前記磁性体部が、3価のFeと少なくとも2価のNiを含む2価元素とを含有すると共に、前記Feの含有量が、Feに換算してモル比で20~48%であり、かつ、FeおよびMnの総計に対するMnの比率が、MnおよびFeに換算してモル比で50%未満(0%を含む)となるように、前記磁性体部が前記Mnを含有していることを特徴としたセラミック電子部品を開示している。このような組成とすることにより、銅とフェライト材料を同時焼成しても、フェライト材料の比抵抗の低下を抑制することができ、安価な銅を内部導体として使用できるとしている。 Patent Document 1 has a magnetic body portion made of a ferrite material and a conductor portion mainly composed of copper, and the magnetic body portion includes a divalent element containing trivalent Fe and at least divalent Ni. And the Fe content is 20 to 48% in terms of molar ratio in terms of Fe 2 O 3 , and the ratio of Mn to the total of Fe and Mn is Mn 2 O 3 and Fe 2 O The ceramic electronic component is characterized in that the magnetic body portion contains the Mn so that the molar ratio is less than 50% (including 0%) in terms of a molar ratio. By setting it as such a composition, even if it co-fires copper and a ferrite material, the fall of the specific resistance of a ferrite material can be suppressed, and cheap copper can be used as an internal conductor.
 また、一般的に、積層コイル部品は、小型で軽量であるものの、大きな直流電流が通電されると、磁性体が磁気飽和し、インダクタンスが低下するため、巻線型コイル部品に比較して定格電流が小さいという難点がある。よって、積層コイル部品に対して、飽和磁束密度を高めること、換言すれば、直流重畳特性を向上させること(安定したインダクタンスをより大きな直流電流域に亘って得ること)が求められている。 In general, laminated coil parts are small and light, but when a large direct current is applied, the magnetic material becomes magnetically saturated and the inductance decreases. There is a drawback that is small. Therefore, it is required for the laminated coil component to increase the saturation magnetic flux density, in other words, to improve the DC superposition characteristics (to obtain a stable inductance over a larger DC current range).
 特許文献2は、磁性体層と導体パターンを積層し、素体内にインピーダンス素子が形成された積層型ビーズ部品の製造方法において、銀粉末を被覆するSiOによって構成された焼結調整剤を混入した導体ペーストを該磁性体層に印刷して該導体パターンを形成することを含む積層型ビーズ部品の製造方法が提案されている。このような製造方法によれば、導体ペースト中の焼結調整剤が適度に磁性体に拡散し、導体パターンの近傍の磁性体の焼結状態をそれ以外の部分よりも遅らせて、磁気的に不活性な層を傾斜的に形成することができ、これにより、高周波帯域において大電流域まで直流重畳特性を向上させることができると共に、磁気特性が劣化するのを防止できる、とされている。 In Patent Document 2, a method of manufacturing a laminated bead component in which a magnetic layer and a conductor pattern are laminated and an impedance element is formed in the element body, a sintering regulator composed of SiO 2 covering silver powder is mixed. A method of manufacturing a laminated bead component has been proposed, which includes printing the conductive paste on the magnetic layer to form the conductive pattern. According to such a manufacturing method, the sintering conditioner in the conductor paste is appropriately diffused into the magnetic material, and the sintered state of the magnetic material in the vicinity of the conductor pattern is delayed more than the other portions, and magnetically The inactive layer can be formed in a slanted manner, whereby it is possible to improve the direct current superimposition characteristics up to a large current range in the high frequency band and to prevent the magnetic characteristics from deteriorating.
国際公開第2011/108701号International Publication No. 2011/108701 特開2006-237438号JP 2006-237438 A
 しかしながら、特許文献1に記載のセラミック電子部品(積層コイル部品)は、内部導体として銀よりも安価な銅を使用することができるものの、その直流重畳特性は十分ではないと考えられる。 However, although the ceramic electronic component (laminated coil component) described in Patent Document 1 can use copper, which is cheaper than silver, as an internal conductor, its direct current superposition characteristics are not sufficient.
 一方、特許文献2に記載の方法では、直流重畳特性は改善できるものの、内部導体として高価なAgを使用する必要があり、また、導体ペーストに焼結調整剤(具体的には、銀粉末を被覆するSiO)を混入させているので、導体ペーストを焼結して得られる導体部の抵抗が必然的に大きくなり、直流抵抗(Rdc)が大きくなるという別の問題が生じ得る。 On the other hand, in the method described in Patent Document 2, although the DC superposition characteristics can be improved, it is necessary to use expensive Ag as the inner conductor, and a sintering adjuster (specifically, silver powder is used as the conductor paste). Since the covering SiO 2 ) is mixed, another problem that the resistance of the conductor part obtained by sintering the conductor paste inevitably increases and the direct current resistance (Rdc) increases can arise.
 本発明の目的は、内部導体として安価な銅を用いることができ、かつ直流重畳特性に優れた積層コイル部品を提供することにある。 An object of the present invention is to provide a laminated coil component that can use inexpensive copper as an internal conductor and has excellent direct current superposition characteristics.
 本発明者らは、上記問題を解消すべく鋭意検討した結果、積層コイル部品において、磁性体部の導体部近傍領域におけるCu含有量に対する、磁性体部の中央領域におけるCu含有量の比を0~0.6とすることにより、内部導体として銅を用いることが可能になり、かつ直流重畳特性を向上させることができることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have determined that the ratio of the Cu content in the central region of the magnetic body portion to the Cu content in the vicinity of the conductor portion of the magnetic body portion is 0 in the laminated coil component. It has been found that by setting it to ˜0.6, copper can be used as the internal conductor and the DC superimposition characteristics can be improved, and the present invention has been achieved.
 本発明の1つの要旨によれば、少なくともFe、Mn、ZnおよびNiを含む磁性体部と、銅を主成分としたコイル状の導体部とを有する積層コイル部品であって、
 磁性体部の導体部近傍領域におけるCu含有量(CuO換算)に対する、磁性体部の中央領域におけるCu含有量(CuO換算)の比が、0~0.6であることを特徴とする、積層コイル部品が提供される。
According to one aspect of the present invention, there is provided a laminated coil component having a magnetic part containing at least Fe, Mn, Zn and Ni, and a coiled conductor part mainly composed of copper,
The ratio of the Cu content (CuO equivalent) in the central region of the magnetic part to the Cu content (CuO equivalent) in the region near the conductor part of the magnetic part is 0 to 0.6. A coil component is provided.
 本発明によれば、磁性体部の導体部近傍領域におけるCu含有量(CuO換算)に対する、磁性体部の中央領域におけるCu含有量(CuO換算)の比を0~0.6とすることにより、内部導体として銅を用いることができ、かつ直流重畳特性および耐熱衝撃性が改善された積層コイル部品が提供される。 According to the present invention, the ratio of the Cu content (CuO equivalent) in the central region of the magnetic part to the Cu content (CuO equivalent) in the region near the conductor part of the magnetic part is set to 0 to 0.6. In addition, a multilayer coil component can be provided in which copper can be used as the inner conductor and the DC superposition characteristics and the thermal shock resistance are improved.
本発明の1つの実施形態における積層コイル部品の概略斜視図である。It is a schematic perspective view of the laminated coil component in one embodiment of this invention. 図1の実施形態における積層コイル部品の概略分解斜視図であって、外部電極を省略した図である。FIG. 2 is a schematic exploded perspective view of the laminated coil component in the embodiment of FIG. 1, with the external electrodes omitted. 図1の実施形態における積層コイル部品の概略断面図であって、図1のA-A’線に沿って見たものである。FIG. 2 is a schematic cross-sectional view of the laminated coil component in the embodiment of FIG. 1 as viewed along the line A-A ′ of FIG. 1. 図1の実施形態の改変例における積層コイル部品の概略断面図であって、図1のA-A’線に沿って見たものである。FIG. 2 is a schematic cross-sectional view of a laminated coil component in a modified example of the embodiment of FIG. 1 as viewed along the line A-A ′ of FIG. 1. 図3に対応する図であって、(a)は、磁性体部の中央領域および導体部近傍領域を例示的に示す図であり、(b)は、低Cu含有量領域および高Cu含有量領域を例示的に示す図である。It is a figure corresponding to FIG. 3, Comprising: (a) is a figure which shows the center area | region of a magnetic body part, and a conductor part vicinity area | region, (b) is a low Cu content area | region and a high Cu content. It is a figure which shows an area | region exemplarily. 図3に対応する図であって、磁性体部の中央領域および導体部近傍領域のCu含有量の測定箇所を例示的に示す図である。It is a figure corresponding to FIG. 3, Comprising: It is a figure which shows the measurement location of Cu content of the center area | region of a magnetic body part, and a conductor part vicinity area | region.
 本発明の積層コイル部品およびその製造方法について、以下、図面を参照しながら詳細に説明する。但し、本発明の積層コイル部品の構成、形状、巻回数および配置等は、図示する例に限定されないことに留意されたい。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, a laminated coil component and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. However, it should be noted that the configuration, shape, number of turns, arrangement, and the like of the laminated coil component of the present invention are not limited to the illustrated example.
 図1および図3に示すように、本実施形態の積層コイル部品11は、概略的には、磁性体部2と、磁性体部2に埋設されて成るコイル状の導体部3とを有する積層体1を含んで成り、外部電極5aおよび5bが積層体1の外周両端面を覆うように設けられ得、導体部3の両端に位置する引出し部4aおよび4bは外部電極5aおよび5bにそれぞれ接続され得る。 As shown in FIGS. 1 and 3, the laminated coil component 11 of this embodiment is schematically a laminated body having a magnetic body portion 2 and a coil-shaped conductor portion 3 embedded in the magnetic body portion 2. The external electrodes 5a and 5b can be provided so as to cover the outer peripheral end faces of the multilayer body 1, and the lead portions 4a and 4b located at both ends of the conductor portion 3 are connected to the external electrodes 5a and 5b, respectively. Can be done.
 より詳細には、図2を参照して、磁性体部2は、磁性体層8a~8hが積層されて成る。また、導体部3は、磁性体層8a~8h間にそれぞれ配置された複数の導体パターン層9a~9fが、磁性体層8b~8fに貫通して設けられたビアホール10a~10eを通ってコイル状に相互接続されている。 More specifically, referring to FIG. 2, the magnetic part 2 is formed by laminating magnetic layers 8a to 8h. Further, the conductor 3 has a plurality of conductor pattern layers 9a to 9f disposed between the magnetic layers 8a to 8h, respectively, and passes through the via holes 10a to 10e provided in the magnetic layers 8b to 8f. Connected to each other.
 磁性体部2は、Fe、Mn、Ni、ZnおよびCuを含む焼結フェライトから成る。 The magnetic part 2 is made of sintered ferrite containing Fe, Mn, Ni, Zn and Cu.
 導体部3は、銅を含む導体から成るものであればよいが、銅を主成分として含む導体から成ることが好ましい。外部電極5aおよび5bは、特に限定されないが、通常、銀を主成分として含む導体から成り、必要に応じてニッケルおよび/またはスズなどがメッキされ得る。 The conductor portion 3 may be made of a conductor containing copper, but is preferably made of a conductor containing copper as a main component. The external electrodes 5a and 5b are not particularly limited, but are usually made of a conductor containing silver as a main component, and may be plated with nickel and / or tin as necessary.
 かかる本実施形態は種々の改変が可能であり、例えば、図4に示すように、非磁性体層12を設け、開磁路型とすることができる。非磁性体層12は、コイルが形成する磁路を横切るように設置されればよく、コイル間またはコイル外のいずれに設置してもよい。非磁性体層12としては、磁性体部2(磁性体層8a~8h)と熱膨張係数が類似する材料、例えば、磁性体部2のNi-Cu-Zn系フェライト材料のNiをZnで全量置換したZn-Cu系フェライト材料を使用することができる。このような開磁路型の積層コイル部品によれば、より一層の直流重畳特性の向上を図ることができる。 The present embodiment can be variously modified. For example, as shown in FIG. 4, a nonmagnetic material layer 12 can be provided to be an open magnetic circuit type. The nonmagnetic layer 12 may be installed so as to cross the magnetic path formed by the coil, and may be installed either between the coils or outside the coil. The non-magnetic layer 12 is made of a material having a thermal expansion coefficient similar to that of the magnetic unit 2 (magnetic layers 8a to 8h), for example, Ni in the Ni—Cu—Zn-based ferrite material of the magnetic unit 2 is entirely contained in Zn. Substituted Zn—Cu ferrite materials can be used. According to such an open magnetic circuit type laminated coil component, it is possible to further improve the DC superposition characteristics.
 上記した本実施形態の積層コイル部品11は、以下のようにして製造される。 The laminated coil component 11 of the present embodiment described above is manufactured as follows.
 まず、Fe、Mn、Zn、NiおよびCuを含むフェライト材料を準備する。 First, a ferrite material containing Fe, Mn, Zn, Ni and Cu is prepared.
 フェライト材料は、Fe、Mn、Zn、NiおよびCuを主成分として含み、必要に応じて添加成分を更に含んでいてもよい。通常、フェライト材料は、これらの主成分の素原料として、Fe、Mn、ZnO、NiOおよびCuOの粉末を所望の割合で混合および仮焼して調製され得るが、これに限定されるものではない。 The ferrite material contains Fe, Mn, Zn, Ni, and Cu as main components, and may further contain additional components as necessary. Usually, ferrite materials can be prepared by mixing and calcining powders of Fe 2 O 3 , Mn 2 O 3 , ZnO, NiO and CuO at a desired ratio as raw materials of these main components. It is not limited.
 フェライト材料におけるFe(Fe換算)含有量は、20~48mol%(主成分合計基準)とすることが好ましい。Fe(Fe換算)含有量を48mol%以下とすることによって、Feの3価から2価への還元を抑制し、比抵抗の低下を抑制することができる。また、Fe(Fe換算)含有量を20mol%未満とすると、却って比抵抗の低下を招き、絶縁性を確保できなくなることから、20mol%以上であることが好ましい。 The Fe (Fe 2 O 3 equivalent) content in the ferrite material is preferably 20 to 48 mol% (main component total reference). By setting the Fe (Fe 2 O 3 equivalent) content to 48 mol% or less, the reduction of Fe from trivalent to divalent can be suppressed, and the decrease in specific resistance can be suppressed. On the other hand, if the Fe (Fe 2 O 3 equivalent) content is less than 20 mol%, the specific resistance is lowered and insulation cannot be ensured. Therefore, the content is preferably 20 mol% or more.
 フェライト材料におけるMn(Mn換算)含有量は、Fe(Fe換算)含有量とMn(Mn換算)含有量の総計に対して、モル比で50%未満、好ましくは2%以上50%未満とすることが好ましい。Mnを含有させることにより、磁性体の保持力が低減し、磁束密度が大きくなることから、透磁率を向上させることができ、さらに、MnはFeよりも優先的に還元されることから、Feの還元に起因する比抵抗の低下を回避することができる。Mn含有量を、Fe(Fe換算)含有量とMn(Mn換算)含有量の総計に対して、モル比で50%未満とすることによって、Mn(Mn換算)含有量がFe(Fe換算)含有量よりも多くなることによる絶縁性の低下を回避することができ、かつキュリー点の低下を回避でき、積層コイル部品の動作温度の低下を回避できる。また、Fe(Fe換算)含有量とMn(Mn換算)含有量の総計に対して、モル比で2%以上とすることによって、Mnの添加効果を効果的に得ることができる。 The Mn (Mn 2 O 3 equivalent) content in the ferrite material is less than 50% in molar ratio with respect to the total of Fe (Fe 2 O 3 equivalent) content and Mn (Mn 2 O 3 equivalent) content, preferably Is preferably 2% or more and less than 50%. By containing Mn, the magnetic retentivity is reduced and the magnetic flux density is increased, so that the magnetic permeability can be improved. Further, since Mn is reduced preferentially over Fe, Fe It is possible to avoid a decrease in specific resistance due to the reduction of. By making Mn content less than 50% by molar ratio with respect to the total of Fe (Fe 2 O 3 conversion) content and Mn (Mn 2 O 3 conversion) content, Mn (Mn 2 O 3 conversion) ) It is possible to avoid a decrease in insulation due to the content being higher than the Fe (Fe 2 O 3 equivalent) content, to avoid a decrease in Curie point, and to avoid a decrease in operating temperature of the laminated coil component. it can. Further, Fe (Fe 2 O 3 basis) relative to total content and Mn (Mn 2 O 3 basis) content, by 2% or more by molar ratio, effectively getting the effect of adding Mn Can do.
 フェライト材料におけるZn(ZnO換算)含有量は、6~33mol%(主成分合計基準)とすることが好ましい。Zn(ZnO換算)含有量を6mol%以上とすることによって、高い透磁率を得ることができ、大きなインダクタンスを取得できる。また、Zn(ZnO換算)含有量を33mol%以下とすることによって、キュリー点の低下を回避でき、積層コイル部品の動作温度の低下を回避できる。 The Zn (ZnO equivalent) content in the ferrite material is preferably 6 to 33 mol% (main component total standard). By setting the Zn (ZnO equivalent) content to 6 mol% or more, a high magnetic permeability can be obtained and a large inductance can be obtained. Moreover, by making Zn (ZnO conversion) content 33 mol% or less, the fall of a Curie point can be avoided and the fall of the operating temperature of laminated coil components can be avoided.
 フェライト材料におけるCu(CuO換算)含有量は、0~6.0mol%(主成分合計基準)、好ましくは1.0~5.0mol%とする。Cu(CuO換算)含有量を0~6.0mol%として積層体を焼成することによって、直流重畳特性を向上させ、熱衝撃試験に付した場合の磁気特性の変化を小さくすることができる。 The Cu (CuO equivalent) content in the ferrite material is 0 to 6.0 mol% (based on the total amount of main components), preferably 1.0 to 5.0 mol%. By firing the laminate with a Cu (CuO equivalent) content of 0 to 6.0 mol%, the DC superposition characteristics can be improved and the change in magnetic characteristics when subjected to a thermal shock test can be reduced.
 フェライト材料におけるNi(NiO換算)含有量は、特に限定されず、上述した他の主成分であるFe、Mn、ZnおよびCuの残部とし得る。 The content of Ni (NiO equivalent) in the ferrite material is not particularly limited, and may be the balance of Fe, Mn, Zn, and Cu, which are the other main components described above.
 フェライト材料における添加成分としては、例えばBiが挙げられるが、これに限定されるものではない。Bi含有量(添加量)は、主成分(Fe(Fe換算)、Mn(Mn換算)、Zn(ZnO換算)、Ni(NiO換算)、Cu(CuO換算))の合計100重量部に対して、Biに換算して0.1~1重量部とすることが好ましい。Bi(Bi換算)含有量を0.1~1重量部とすることによって、低温焼成がより促進されると共に、異常粒成長を回避することができる。Bi(Bi換算)含有量が高すぎると、異常粒成長が起こり易く、異常粒成長部位にて比抵抗が低下し、外部電極形成時のめっき処理の際に、異常粒成長部位にめっきが付着するので好ましくない。 Examples of the additive component in the ferrite material include Bi, but are not limited thereto. Bi content (addition amount) is the sum of the main components (Fe (Fe 2 O 3 equivalent), Mn (Mn 2 O 3 equivalent), Zn (ZnO equivalent), Ni (NiO equivalent), Cu (CuO equivalent))). The amount is preferably 0.1 to 1 part by weight in terms of Bi 2 O 3 with respect to 100 parts by weight. By setting the Bi (Bi 2 O 3 equivalent) content to 0.1 to 1 part by weight, low-temperature firing is further promoted and abnormal grain growth can be avoided. If the Bi (Bi 2 O 3 equivalent) content is too high, abnormal grain growth is likely to occur, the specific resistance is reduced at the abnormal grain growth site, and the abnormal grain growth site is formed during the plating process during external electrode formation. Since plating adheres, it is not preferable.
 上記のようにして調製したフェライト材料を用いて磁性体シートを準備する。例えば、フェライト材料を、バインダ樹脂および有機溶剤を含む有機ビヒクルと混合/混練し、シート状に成形することにより磁性体シートを得てよいが、これに限定されるものではない。 A magnetic sheet is prepared using the ferrite material prepared as described above. For example, a magnetic material sheet may be obtained by mixing / kneading a ferrite material with an organic vehicle containing a binder resin and an organic solvent and forming the sheet into a sheet shape, but is not limited thereto.
 別途、銅を含む導体ペーストを準備する。市販で入手可能な、銅を粉末の形態で含む一般的な銅ペーストを使用できるが、これに限定されない。導体ペースト中の銅粉末の平均粒径D50(レーザー回折散乱法で求めた体積基準の累積百分率50%相当径)は、0.5~10μmの範囲であることが好ましく、0.5~5μmにすることがより好ましい。銅粉末の平均粒径D50をかかる範囲とすることにより、内部導体から磁性体への銅の拡散が促進され、好適な状態となり、磁性体の特定の領域において所定のCu含有量比を得ることができる。 Separately, prepare a conductor paste containing copper. A commercially available copper paste containing copper in powder form can be used, but is not limited thereto. The average particle diameter D50 of the copper powder in the conductor paste (diameter equivalent to 50% of the volume-based cumulative percentage obtained by the laser diffraction scattering method) is preferably in the range of 0.5 to 10 μm, and preferably in the range of 0.5 to 5 μm. More preferably. By setting the average particle diameter D50 of the copper powder in such a range, the diffusion of copper from the inner conductor to the magnetic body is promoted to be in a suitable state, and a predetermined Cu content ratio is obtained in a specific region of the magnetic body. Can do.
 そして、上記磁性体シート(磁性体層8a~8hに対応する)を、銅を含む導体ペースト層(導体パターン層9a~9fに対応する)を介して積層し、導体ペースト層が磁性体シートに貫通して設けられたビアホール(ビアホール10a~10eに対応する)を通ってコイル状に相互接続されている積層体(未焼成積層体であり、積層体1に対応する)を得る。 Then, the magnetic material sheet (corresponding to the magnetic material layers 8a to 8h) is laminated via a conductive paste layer containing copper (corresponding to the conductive pattern layers 9a to 9f), and the conductive paste layer is formed on the magnetic material sheet. A laminated body (an unfired laminated body and corresponding to the laminated body 1) interconnected in a coil shape through via holes (corresponding to the via holes 10a to 10e) provided through is obtained.
 積層体の形成方法は、特に限定されず、シート積層法および印刷積層法などを利用して積層体を形成してよい。シート積層法による場合、磁性体シートに、適宜ビアホールを設けて、導体ペーストを所定のパターンで(ビアホールが設けられている場合には、ビアホールに充填しつつ)印刷して導体ペースト層を形成し、導体ペースト層が適宜形成された磁性体シートを積層および圧着し、所定の寸法に切断して、積層体を得ることができる。印刷積層法による場合、磁性体シートに、導体ペーストを所定のパターンで印刷して導体ペースト層を形成し、その上に、ビアホールを設けた別の磁性体シートを載せ、導体ペーストを所定のパターンで(ビアホールに充填しつつ)印刷して導体ペースト層を形成することを適宜繰り返し、最後に磁性体シートを載せて圧着し、所定の寸法に切断して、積層体を得ることができる。この積層体は、複数個をマトリクス状に一度に作製した後に、ダイシング等により個々に切断して(素子分離して)個片化したものであってよいが、予め個々に作製したものであってもよい。 The formation method of the laminate is not particularly limited, and the laminate may be formed using a sheet lamination method, a printing lamination method, or the like. In the case of the sheet lamination method, via holes are appropriately provided in the magnetic sheet, and the conductor paste is printed in a predetermined pattern (filling the via holes if via holes are provided) to form a conductor paste layer. Then, a magnetic sheet on which a conductive paste layer is appropriately formed can be laminated and pressure-bonded, and cut into a predetermined size to obtain a laminated body. In the case of the printing lamination method, a conductor paste is printed on a magnetic sheet in a predetermined pattern to form a conductor paste layer, on which another magnetic sheet with via holes is placed, and the conductor paste is placed in a predetermined pattern. Then, printing (while filling the via hole) is repeated as appropriate to form a conductive paste layer, and finally a magnetic sheet is placed and pressure-bonded, and cut into a predetermined size to obtain a laminate. The laminated body may be a plurality of laminated bodies produced in a matrix at a time, and then cut into individual pieces by dicing or the like (element separation), but is individually produced in advance. May be.
 次に、上記で得られた未焼成積層体を、所定の酸素分圧下で熱処理することにより、磁性体シートおよび銅を含む導体ペースト層を焼成して、それぞれ磁性体層8a~8hおよび導体パターン層9a~9fとする。これにより得られた積層体1において、磁性体層8a~8hは磁性体部2を形成し、導体パターン層9a~9fは導体部3を形成する。 Next, the unfired laminate obtained above is heat-treated under a predetermined oxygen partial pressure to sinter the magnetic paste and the conductor paste layer containing copper, so that the magnetic layers 8a to 8h and the conductor pattern, respectively, are fired. Layers 9a to 9f are assumed. In the laminated body 1 thus obtained, the magnetic layers 8a to 8h form the magnetic portion 2, and the conductor pattern layers 9a to 9f form the conductor 3.
 上記焼成を行う際の酸素分圧は、好ましくはCu-CuO平衡酸素分圧以下(還元雰囲気)である。このような酸素分圧で未焼成積層体を熱処理することにより、導体部のCuが酸化するのを回避することができる。また、空気中で熱処理する場合よりも低温で未焼成積層体を焼結でき、例えば、焼成温度を950~1100℃とし得る。本発明はいかなる理論によっても拘束されないが、低酸素濃度雰囲気で焼成した場合、結晶構造中に酸素欠陥が形成され、かかる酸素欠陥を介してFe、Mn、Ni、Cu、Znの相互拡散が促進され、低温焼結性を高めることができるものと考えられる。 The oxygen partial pressure during the firing is preferably equal to or lower than the Cu—Cu 2 O equilibrium oxygen partial pressure (reducing atmosphere). By heat-treating the green laminate with such an oxygen partial pressure, it is possible to avoid oxidation of Cu in the conductor portion. Further, the unfired laminate can be sintered at a lower temperature than in the case of heat treatment in air, and for example, the firing temperature can be 950 to 1100 ° C. The present invention is not limited by any theory, but when fired in a low oxygen concentration atmosphere, oxygen defects are formed in the crystal structure, and interdiffusion of Fe, Mn, Ni, Cu, Zn is promoted through such oxygen defects. Therefore, it is considered that the low temperature sinterability can be improved.
 次に、上記で得られた積層体1の両端面を覆うように、外部電極5aおよび5bを形成する。外部電極5a、5bの形成は、例えば、銀の粉末をガラスなどと一緒にペースト状にしたものを所定の領域に塗布し、得られた構造体を、銅が酸化しない雰囲気下、例えば700~850℃で熱処理して銀を焼き付けることによって実施し得る。 Next, external electrodes 5a and 5b are formed so as to cover both end faces of the laminate 1 obtained above. The external electrodes 5a and 5b are formed, for example, by applying a paste made of silver powder together with glass or the like to a predetermined region, and subjecting the resulting structure to an atmosphere in which copper is not oxidized, for example, 700 to It can be carried out by heat treating at 850 ° C. and baking the silver.
 以上のようにして、本実施形態の積層コイル部品11が製造される。 As described above, the laminated coil component 11 of the present embodiment is manufactured.
 本発明において、「磁性体部の中央領域」とは、磁性体部のうち、導体パターン層が形成するコイルの内側に位置し、コイルの中心軸上およびその近傍に位置する領域を意味し、具体的には、コイルの中心軸から10μm以内の領域として規定される。「磁性体部の導体部近傍領域」とは、磁性体部のうち、磁性体部と導体部との界面に近接した領域を意味し、磁性体部と導体部との界面から磁性体の内部へ1μm以上離れ、10μm以内にある領域として規定される。例えば、本実施形態においては、図5(a)に例示的に示されるように、磁性体部2の中央領域Xは、導体部3が形成するコイルの中心軸(点線にて示す)から10μm以内の領域として規定され、磁性体部2の導体部近傍領域Yは、磁性体部2と導体部3との界面から磁性体2の内部方向へ1~10μm以内の領域として規定される。なお、図5(a)においては、導体部近傍領域Yが導体パターン層間で離間した例を示しているが、本実施形態はこれに限定されず、導体パターン層間で重なり合っていてもよい。 In the present invention, "the central region of the magnetic body portion" means a region of the magnetic body portion that is located on the inner side of the coil formed by the conductor pattern layer and located on and near the central axis of the coil, Specifically, it is defined as an area within 10 μm from the central axis of the coil. The “region near the conductor portion of the magnetic body portion” means a region of the magnetic body portion that is close to the interface between the magnetic body portion and the conductor portion, and the inside of the magnetic body from the interface between the magnetic body portion and the conductor portion. It is defined as a region that is 1 μm or more apart and within 10 μm. For example, in this embodiment, as exemplarily shown in FIG. 5A, the central region X of the magnetic body portion 2 is 10 μm from the central axis (indicated by a dotted line) of the coil formed by the conductor portion 3. The conductor vicinity region Y of the magnetic body portion 2 is defined as a region within 1 to 10 μm from the interface between the magnetic body portion 2 and the conductor portion 3 toward the inside of the magnetic body 2. FIG. 5A shows an example in which the conductor portion vicinity region Y is separated between the conductor pattern layers, but the present embodiment is not limited to this, and may be overlapped between the conductor pattern layers.
 積層コイル部品11において、磁性体部2の導体部近傍領域YにおけるCu含有量(CuO換算)X1は、磁性体部2の中央領域XにおけるCu含有量(CuO換算)X2よりも高くなる。具体的には、積層コイル部品11において、磁性体部2の導体部近傍領域YにおけるCu含有量(CuO換算)X1に対する、磁性体部2の中央領域XにおけるCu含有量(CuO換算)X2の比X2/X1は、0~0.6、好ましくは0.1~0.55の範囲となる。 In the laminated coil component 11, the Cu content (CuO equivalent) X1 in the conductor vicinity region Y of the magnetic part 2 is higher than the Cu content (CuO equivalent) X2 in the central area X of the magnetic part 2. Specifically, in the laminated coil component 11, the Cu content (CuO equivalent) X2 in the central region X of the magnetic part 2 with respect to the Cu content (CuO equivalent) X1 in the conductor vicinity area Y of the magnetic part 2 is as follows. The ratio X2 / X1 is in the range of 0 to 0.6, preferably 0.1 to 0.55.
 積層コイル部品11において、磁性体部2におけるFe、MnおよびCu含有量は、CuO換算含有量が5mol%以下であって、Fe換算含有量が25~47mol%であり、かつMn換算含有量が1mol%以上7.5mol%未満であるか、あるいは、Fe換算含有量が35~45mol%であり、かつMn換算含有量が7.5~10mol%であるのが好ましい。磁性体部2の組成をこのような範囲とすることにより、Cu-CuO平衡酸素分圧以下の酸素分圧(還元雰囲気)で焼成しても、Feが2価に還元されることによる磁性体部の比抵抗の低下を防止することができる。 In the laminated coil component 11, the Fe, Mn and Cu contents in the magnetic part 2 are 5 mol% or less in terms of CuO, 25 to 47 mol% in terms of Fe 2 O 3 , and Mn 2 The O 3 equivalent content is 1 mol% or more and less than 7.5 mol%, or the Fe 2 O 3 equivalent content is 35 to 45 mol% and the Mn 2 O 3 equivalent content is 7.5 to 10 mol%. Is preferred. By setting the composition of the magnetic body part 2 in such a range, even when firing at an oxygen partial pressure (reducing atmosphere) that is equal to or lower than the Cu—Cu 2 O equilibrium oxygen partial pressure, Fe is divalently reduced. A decrease in the specific resistance of the magnetic part can be prevented.
 本発明はいかなる理論によっても拘束されないが、フェライト材料と、銅を含む導体ペーストとを同時焼成すると、焼成過程において導体部の銅が磁性体部の導体部近傍領域Yに拡散することで、磁性体部の導体部近傍領域YのCu量が増加するものと考えられる。この銅の拡散の結果、図5(b)に例示的に示すように、磁性体部2において、導体部3の周囲に高Cu含有量領域Y’(導体部近傍領域Yを含む)が形成され、これにより、その他のバルク領域は、相対的にCu含有量が低くなって、低Cu含有量領域X’となる。磁性体部2の中央領域XにおけるCu含有量(CuO換算)は、低Cu含有量領域X’におけるCu含有量(CuO換算)を代表するものとして理解され得、磁性体部2の導体部近傍領域YにおけるCu含有量(CuO換算)は、高Cu含有量領域Y’におけるCu含有量(CuO換算)を代表するものとして理解され得る。なお、図5(b)に示すように、高Cu含有量領域Y’は、導体パターン層間に隙間なく形成されることが好ましいが、本発明はこれに限定されない。 Although the present invention is not limited by any theory, when a ferrite material and a conductor paste containing copper are co-fired, the copper in the conductor portion diffuses into the conductor vicinity region Y of the magnetic body portion in the firing process, thereby providing magnetic properties. It is considered that the amount of Cu in the conductor portion vicinity region Y of the body portion increases. As a result of this copper diffusion, a high Cu content region Y ′ (including the conductor vicinity region Y) is formed around the conductor 3 in the magnetic body 2 as exemplarily shown in FIG. As a result, the other bulk region has a relatively low Cu content and becomes a low Cu content region X ′. The Cu content (CuO equivalent) in the central region X of the magnetic part 2 can be understood as representative of the Cu content (CuO equivalent) in the low Cu content region X ′, and the vicinity of the conductor part of the magnetic part 2 The Cu content (CuO equivalent) in the region Y can be understood as representing the Cu content (CuO equivalent) in the high Cu content region Y ′. As shown in FIG. 5B, the high Cu content region Y ′ is preferably formed without a gap between the conductor pattern layers, but the present invention is not limited to this.
 このように、磁性体部2の導体部近傍領域YにおいてCu含有量が高くなることにより、焼結性が低下し、粒子成長が抑制されて、焼結密度が低くなり、この結果、透磁率も低くなる。これに対して、磁性体部2の中央領域Xでは、Cu含有量が相対的に低いため、焼結性が高く、粒子成長が十分促進されて、焼結密度が高くなり、この結果、透磁率も高くなる。換言すれば、本実施形態の積層コイル部品11においては、磁性体部2の中央領域Xの透磁率に比べて磁性体部の導体部近傍領域Yの透磁率が低いことにより、磁束の集中が大幅に緩和され、磁気飽和しにくくなり、直流重畳特性が改善される。同時に、磁性体部の導体部近傍領域Yの焼結密度が低下することで内部応力を緩和させることができ、熱衝撃試験などでの磁気特性変動を抑制できる。 Thus, by increasing the Cu content in the conductor portion vicinity region Y of the magnetic body portion 2, the sinterability is lowered, the particle growth is suppressed, and the sintered density is lowered. As a result, the magnetic permeability Also lower. On the other hand, in the central region X of the magnetic body portion 2, since the Cu content is relatively low, the sinterability is high, the particle growth is sufficiently promoted, and the sintered density is increased. Magnetic susceptibility also increases. In other words, in the multilayer coil component 11 of the present embodiment, the magnetic flux concentration is reduced because the magnetic permeability of the region Y near the conductor portion of the magnetic body portion is lower than that of the central region X of the magnetic body portion 2. Significantly relaxed, magnetic saturation is less likely, and DC superposition characteristics are improved. At the same time, the internal stress can be relieved by reducing the sintered density in the conductor portion vicinity region Y of the magnetic body portion, and the magnetic characteristic fluctuation in a thermal shock test or the like can be suppressed.
 本発明はいかなる理論によっても拘束されないが、上記したように、導体部が銅を主成分とする場合は、Cuが酸化しないような還元雰囲気でフェライト材料と銅を含む導体ペーストとを同時焼成する必要があるが、このような酸素濃度の低い還元雰囲気で焼成した場合、大気雰囲気で焼成した場合に比べ、CuOが結晶粒子中に異相として析出しやすくなると考えられる。したがって、磁性体部のCuOの含有量が多くなると(例えばCu含有量(CuO換算)が6mol%を超えると)、CuOの析出量が増大し、このCuOの析出により磁性体部の焼結性が低下すると考えられる。すなわち、焼結前のフェライト材料のCuO含有モル量を6mol%以下とし、銅が酸化しないようなCu-CuO平衡酸素分圧以下の還元雰囲気で焼成を行うと、焼成過程で導体部に含有されている銅が拡散し、このため焼成後には導体部の周囲のCuOの含有量が増加し、その結果、焼結性が低下して粒成長が抑制され、焼結密度が低下すると考えられる。一方、導体部から離れた領域(中央領域など)は銅拡散の影響を受けないことから良好な焼結性を維持することができると考えられる。 Although the present invention is not bound by any theory, as described above, when the conductor portion is mainly composed of copper, the ferrite material and the conductor paste containing copper are simultaneously fired in a reducing atmosphere in which Cu is not oxidized. Although it is necessary, when firing in a reducing atmosphere having such a low oxygen concentration, it is considered that CuO is likely to precipitate as a heterogeneous phase in crystal grains as compared with firing in an air atmosphere. Therefore, when the CuO content in the magnetic part increases (for example, when the Cu content (CuO equivalent) exceeds 6 mol%), the precipitation amount of CuO increases, and the sinterability of the magnetic part due to this CuO precipitation. Is expected to decrease. In other words, when the sintering is performed in a reducing atmosphere having a Cu—Cu 2 O equilibrium oxygen partial pressure or less such that the CuO content molar amount of the ferrite material before sintering is 6 mol% or less and copper is not oxidized, The contained copper diffuses, and therefore, after firing, the content of CuO around the conductor part increases, and as a result, the sinterability is reduced, grain growth is suppressed, and the sintered density is reduced. It is done. On the other hand, it is thought that good sinterability can be maintained because regions (such as the central region) away from the conductor are not affected by copper diffusion.
 かかる積層コイル部品11を使用して、導体部3に電流を流した場合、導体部3の周囲に形成される磁束は、透磁率がより高い領域を通り易いので、高Cu含有量領域Y’(透磁率の低い領域であって、導体部近傍領域Yを含む)よりも、その外に位置する低Cu含有量領域X’(透磁率の高い領域であって、中央領域Xを含む)を通り易くなり、磁性体部2の全体が高透磁率である場合に比べて磁路が長くなると考えられる。磁路が長くなるにつれて、より大きな直流電流域に亘って安定したインダクタンスを得ることが可能となるので、本実施形態の積層コイル部品11は、向上した直流重畳特性を有するものとなる。 When a current is passed through the conductor portion 3 using such a laminated coil component 11, the magnetic flux formed around the conductor portion 3 is likely to pass through a region having a higher magnetic permeability, so that the high Cu content region Y ′. A low Cu content region X ′ (a region having a high magnetic permeability and including a central region X) located outside the region having a low magnetic permeability and including the conductor vicinity region Y). It is considered that the magnetic path becomes longer as compared with the case where the entire magnetic body portion 2 has a high magnetic permeability. As the magnetic path becomes longer, a stable inductance can be obtained over a larger DC current range, and thus the laminated coil component 11 of the present embodiment has improved DC superposition characteristics.
 また、かかる積層コイル部品11は、磁性体部2のうち、導体部近傍領域Yにおける焼結密度が低いので、熱処理(焼成)後の冷却過程などにより磁性体部2内に発生し得る内部応力(または応力歪み)を緩和または低減することができる。よって、積層コイル部品11を熱衝撃試験に付した場合、または積層コイル部品11の用途(基板実装する際のリフロー処理や、ユーザーによる実使用)において、急激な温度変化に曝されたり、外部応力が負荷されたりした場合に、導体部近傍領域Y(焼結密度の低い領域)において内部応力の変動を小さくすることができ、よって、インダクタンスやインピーダンス等の磁気特性の変化を低減することができる。 Moreover, since the laminated coil component 11 has a low sintered density in the conductor portion vicinity region Y in the magnetic body portion 2, internal stress that can be generated in the magnetic body portion 2 due to a cooling process after heat treatment (firing) or the like. (Or stress strain) can be relaxed or reduced. Therefore, when the laminated coil component 11 is subjected to a thermal shock test, or when the laminated coil component 11 is used (reflow processing when mounted on a substrate or actually used by a user), it is exposed to a sudden temperature change or external stress. Or the like, it is possible to reduce the fluctuation of internal stress in the conductor vicinity region Y (region where the sintered density is low), and therefore, it is possible to reduce changes in magnetic characteristics such as inductance and impedance. .
 以上、本発明の1つの実施形態について説明したが、本発明は当該実施形態に限定されるものではなく、種々の改変が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications can be made.
 Fe、Mn、ZnO、NiO、およびCuO粉末を組成が表1の試料No.1~9に示す割合となるように秤量した。なお、試料No.1~7が本発明の実施例であり、試料No.8~9(表中、記号「*」を付して示す)は比較例である。 Fe 2 O 3 , Mn 2 O 3 , ZnO, NiO, and CuO powder were mixed with sample Nos. Weighing was performed so that the ratios shown in 1 to 9 were obtained. Sample No. Examples 1 to 7 are examples of the present invention. 8 to 9 (indicated by the symbol “*” in the table) are comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、試料No.1~9の各秤量物を、純水およびPSZ(Partial Stabilized Zirconia;部分安定化ジルコニア)ボールと共に、塩化ビニル製のポットミルに入れ、湿式で十分に混合粉砕した。粉砕処理物を蒸発乾燥させた後、750℃の温度で2時間仮焼した。これにより得られた仮焼粉を、エタノール(有機溶剤)およびPSZボールと共に、再び塩化ビニル製のポットミに入れ、十分に混合粉砕し、さらにポリビニルブチラール系バインダ(有機バインダ)を加えて十分に混合して、セラミックスラリーを得た。次に、ドクターブレード法により、上記で得たセラミックスラリーを厚さ25μmのシート状に成形した。得られた成形体を縦50mm、横50mmの大きさに打ち抜いて、フェライト材料の磁性体シートを作製した。 Next, Sample No. Each of the 1 to 9 weighed materials was put in a vinyl chloride pot mill together with pure water and PSZ (Partial Stabilized Zirconia) balls, and was sufficiently mixed and pulverized in a wet manner. The pulverized product was evaporated to dryness and calcined at a temperature of 750 ° C. for 2 hours. The calcined powder obtained in this way is put into a pot chloride made of vinyl chloride together with ethanol (organic solvent) and PSZ balls, thoroughly mixed and pulverized, and further mixed with polyvinyl butyral binder (organic binder). Thus, a ceramic slurry was obtained. Next, the ceramic slurry obtained above was formed into a sheet having a thickness of 25 μm by a doctor blade method. The obtained molded body was punched into a size of 50 mm in length and 50 mm in width to produce a magnetic material sheet of ferrite material.
 次に、表1の試料No.1の組成において、NiOを全てZnOに置き換え、Fe:46.5mol%、Mn:2.5mol%、ZnO:51.0mol%として、上記磁性体シートと同様に非磁性体シートを作製した。 Next, sample Nos. In the composition 1, NiO is entirely replaced with ZnO, Fe 2 O 3 : 46.5 mol%, Mn 2 O 3 : 2.5 mol%, ZnO: 51.0 mol%, and nonmagnetic material as in the above magnetic material sheet A sheet was produced.
 レーザー加工機を使用して、上記で作製した磁性体シートおよび非磁性体シートの所定の位置にビアホールを形成した後、別途調製した、銅粉末(平均粒径D50:1.5μm)、ワニスおよび有機溶剤を含む導体ペーストを、磁性体シートに形成したビアホールに充填しつつ、磁性体シートの表面にスクリーン印刷して、コイルパターン(導体ペースト層)を形成した。 Using a laser processing machine, via holes were formed at predetermined positions on the magnetic sheet and the non-magnetic sheet prepared above, and then separately prepared copper powder (average particle diameter D50: 1.5 μm), varnish, A conductor paste containing an organic solvent was screen-printed on the surface of the magnetic material sheet while filling a via hole formed in the magnetic material sheet to form a coil pattern (conductor paste layer).
 次いで、コイルパターンの形成された磁性体シートと非磁性体シートを、非磁性体シートが略中央になるように積層し、これらをコイルパターンの形成されていない磁性体シートで挟持し、60℃の温度で100MPaの圧力で1分間圧着し、圧着ブロックを作製した。そして、この圧着ブロックを所定のサイズに切断して、セラミック積層体を作製した。 Next, the magnetic sheet on which the coil pattern is formed and the nonmagnetic sheet are laminated so that the nonmagnetic sheet is substantially in the center, and these are sandwiched between the magnetic sheets on which the coil pattern is not formed. A pressure-bonding block was produced by pressure bonding at a temperature of 100 MPa and a pressure of 100 MPa for 1 minute. And this press-bonded block was cut into a predetermined size to produce a ceramic laminate.
 上記で得られたセラミック積層体を、銅が酸化しない雰囲気で加熱して十分に脱脂した。次いで、N-H-HOの混合ガスにより酸素分圧がCu-CuO平衡酸素分圧(1.8×10-1Pa)に制御された焼成炉に、セラミック積層体を投入し、950℃に昇温し、1~5時間保持することにより焼成した。 The ceramic laminate obtained above was sufficiently degreased by heating in an atmosphere in which copper was not oxidized. Next, the ceramic laminate was placed in a firing furnace in which the oxygen partial pressure was controlled to a Cu—Cu 2 O equilibrium oxygen partial pressure (1.8 × 10 −1 Pa) with a mixed gas of N 2 —H 2 —H 2 O. The mixture was charged, heated to 950 ° C., and held for 1 to 5 hours for firing.
 その後、銀粉末、ガラスフリット、ワニスおよび有機溶剤を含有した外部電極用導電ペーストを用意し、この外部電極用導電ペーストを、上記で焼成した積層体の両端面に塗布して乾燥させた後、銅が酸化しない雰囲気下、750℃で焼き付け、さらに、電解めっきによりNi、Snめっきを順に施して、外部電極を形成して、磁性体部にコイル導体が埋設された試料(積層コイル部品)を作製した。 Then, after preparing a conductive paste for external electrodes containing silver powder, glass frit, varnish and organic solvent, the conductive paste for external electrodes was applied to both end faces of the fired laminate and dried. Baked at 750 ° C. in an atmosphere where copper does not oxidize, and in addition, Ni and Sn plating are performed in order by electrolytic plating, external electrodes are formed, and a sample (laminated coil component) in which a coil conductor is embedded in a magnetic part Produced.
 以上により、試料No.1~9について試料を作製した。なお、試料の外径寸法は、長さ2.1mm、幅1.0mm、厚さ1.0mmとし、導体部(コイル)のターン数は所定のインダクタンス値(1MHzで約1μH)が取得できるように調整した。 From the above, sample no. Samples were prepared for 1-9. The outer diameter of the sample is 2.1 mm in length, 1.0 mm in width, and 1.0 mm in thickness, and a predetermined inductance value (about 1 μH at 1 MHz) can be obtained for the number of turns of the conductor (coil). Adjusted.
 試料No.1~9について得られた試料を、CuO含有量、直流重畳特性および熱衝撃試験により評価した。 Sample No. Samples obtained for 1-9 were evaluated by CuO content, DC overlay characteristics and thermal shock tests.
・CuO含有量の測定
 試料No.1~9につき各10個の試料について、これら試料の端面が立つように樹脂固めを行ない、端面を試料(積層型コイル部品)の長さ方向に沿って研磨し、長さ方向の約1/2の時点における研磨断面を得て、観察用の断面とした。次に、図6(積層コイル部品の断面図)に例示的に示した断面おいて、コイル導体の略中央部で、各々のコイル導体から約5μm(図6において、t=約5μm)の位置(導体部近傍領域:図6においてY”で示した領域)、および素子の略中央部(中央領域:図6においてX”で示した領域)において、WDX法(波長分散型X線分析法)を使用して組成を定量分析し、磁性体部中のY”およびX”の領域におけるCu含有量(CuO換算)を求め、10個の試料での平均値を算出した。結果を表1に併せて示す。
-Measurement of CuO content Sample No. For each of 10 samples per 1 to 9, resin hardening is performed so that the end surfaces of these samples stand, and the end surfaces are polished along the length direction of the sample (laminated coil component) to obtain about 1 / th of the length direction. A polished cross section at time 2 was obtained and used as an observation cross section. Next, in the cross section exemplarily shown in FIG. 6 (cross-sectional view of the laminated coil component), a position approximately 5 μm from each coil conductor (t = about 5 μm in FIG. 6) at the substantially central portion of the coil conductor. (Conductor vicinity region: region indicated by Y ″ in FIG. 6) and a substantially central portion (center region: region indicated by X ″ in FIG. 6) of the WDX method (wavelength dispersive X-ray analysis method) Was used to quantitatively analyze the composition, and the Cu content (CuO equivalent) in the region of Y ″ and X ″ in the magnetic part was determined, and the average value of 10 samples was calculated. The results are also shown in Table 1.
・直流重畳特性
 試料No.1~9につき各50個の試料について、JIS規格(C2560-2)に準拠し、1Aの直流電流を試料に重畳した。その前後で、試料のインダクタンスLを周波数1MHzで測定し、直流重畳試験前後でのインダクタンス変化率を求め、50個の試料での平均値を算出した。結果を表1に併せて示す。
-DC superimposition characteristics Sample No. In accordance with JIS standard (C2560-2), a direct current of 1 A was superimposed on the samples for 50 samples per 1 to 9. Before and after that, the inductance L of the sample was measured at a frequency of 1 MHz, the inductance change rate before and after the DC superposition test was obtained, and the average value of 50 samples was calculated. The results are also shown in Table 1.
・ヒートサイクル試験(熱衝撃試験)
 試料No.1~9につき各50個の試料について、-55℃~+125℃の範囲で所定のヒートサイクルで2000サイクル繰り返した。試験前後で、試料のインダクタンスLを周波数1MHzで測定し、ヒートサイクル試験前後でのインダクタンス変化率を求め、50個の試料での平均値を算出した。結果を表1に併せて示す。
・ Heat cycle test (thermal shock test)
Sample No. Each of 50 samples per 1 to 9 was repeated 2000 cycles with a predetermined heat cycle in the range of −55 ° C. to + 125 ° C. Before and after the test, the inductance L of the sample was measured at a frequency of 1 MHz, the inductance change rate before and after the heat cycle test was determined, and the average value of 50 samples was calculated. The results are also shown in Table 1.
 表1から理解されるように、試料No.1~7の試料では、磁性体部の導体部近傍領域のCu含有量(CuO換算)X1と、中央領域でのCu含有量(CuO換算)X2の比X2/X1が0~0.6の範囲以内となった。これらの試料では、直流重畳特性および耐熱衝撃性が、X2/X1比が0.6より大きくなった試料No.8および9の試料と比較して改善していることが確認された。特に、試料No.2~5の試料において優れた効果が得られることが確認された。 As can be seen from Table 1, sample no. In the samples 1 to 7, the ratio X2 / X1 of the Cu content (CuO equivalent) X1 in the vicinity of the conductor part of the magnetic part and the Cu content (CuO equivalent) X2 in the central area is 0 to 0.6. Within range. In these samples, the direct current superposition characteristics and the thermal shock resistance of sample Nos. With X2 / X1 ratios greater than 0.6 were obtained. It was confirmed that it was improved as compared with the samples of 8 and 9. In particular, sample no. It was confirmed that an excellent effect was obtained in samples 2 to 5.
 本発明によって得られる積層コイル部品は、例えば高周波回路のインピーダンス素子などとして、幅広く様々な用途に使用され得る。 The laminated coil component obtained by the present invention can be used in a wide variety of applications, for example, as an impedance element of a high frequency circuit.
  1 積層体
  2 磁性体部
  3 導体部
  4a、4b 引出し部
  5a、5b 外部電極
  8a~8h 磁性体層
  9a~9f 導体パターン層
  9a’、9f’ 引出し部
  10a~10e ビアホール
  11 積層コイル部品
  12 非磁性体層
  X 中央領域
  Y 導体部近傍領域
  X’ 低Cu含有量領域
  Y’ 高Cu含有量領域
  X” 中央領域
  Y” 導体部近傍領域
DESCRIPTION OF SYMBOLS 1 Laminated body 2 Magnetic body part 3 Conductor part 4a, 4b Lead part 5a, 5b External electrode 8a-8h Magnetic body layer 9a-9f Conductive pattern layer 9a ', 9f' Lead part 10a-10e Via hole 11 Laminated coil component 12 Nonmagnetic Body layer X Central region Y Near conductor region X 'Low Cu content region Y' High Cu content region X "Central region Y" Near conductor region

Claims (3)

  1.  少なくともFe、Mn、ZnおよびNiを含む磁性体部と、銅を主成分としたコイル状の導体部とを有する積層コイル部品であって、
     磁性体部の導体部近傍領域におけるCu含有量(CuO換算)に対する、磁性体部の中央領域におけるCu含有量(CuO換算)の比が0~0.6であることを特徴とする、積層コイル部品。
    A laminated coil component having a magnetic part containing at least Fe, Mn, Zn and Ni and a coiled conductor part mainly composed of copper,
    A multilayer coil characterized in that a ratio of Cu content (CuO equivalent) in the central region of the magnetic body part to Cu content (CuO equivalent) in the vicinity of the conductor part of the magnetic body part is 0 to 0.6 parts.
  2.  前記磁性体部の中央領域におけるCu含有量が、CuOに換算して0~6mol%であることを特徴とする請求項1記載の積層コイル部品。 2. The laminated coil component according to claim 1, wherein the Cu content in the central region of the magnetic part is 0 to 6 mol% in terms of CuO.
  3.  さらに非磁性層を含む、請求項1または2記載の積層コイル部品。 The multilayer coil component according to claim 1, further comprising a nonmagnetic layer.
PCT/JP2013/075871 2012-09-28 2013-09-25 Laminated coil component and method for producing same WO2014050867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216161 2012-09-28
JP2012-216161 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050867A1 true WO2014050867A1 (en) 2014-04-03

Family

ID=50388264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075871 WO2014050867A1 (en) 2012-09-28 2013-09-25 Laminated coil component and method for producing same

Country Status (1)

Country Link
WO (1) WO2014050867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072427A1 (en) * 2014-11-06 2016-05-12 株式会社村田製作所 Laminated coil component
WO2016072428A1 (en) * 2014-11-06 2016-05-12 株式会社村田製作所 Laminated coil component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219306A (en) * 2005-02-08 2006-08-24 Tdk Corp Oxide magnetic material and laminated inductor
JP2007091539A (en) * 2005-09-29 2007-04-12 Tdk Corp NONMAGNETIC Zn FERRITE AND COMPOUNDED MULTILAYER ELECTRONIC COMPONENT USING IT
JP2007324555A (en) * 2006-06-01 2007-12-13 Taiyo Yuden Co Ltd Laminated inductor
WO2011108701A1 (en) * 2010-03-05 2011-09-09 株式会社 村田製作所 Ceramic electronic component and method for producing ceramic electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219306A (en) * 2005-02-08 2006-08-24 Tdk Corp Oxide magnetic material and laminated inductor
JP2007091539A (en) * 2005-09-29 2007-04-12 Tdk Corp NONMAGNETIC Zn FERRITE AND COMPOUNDED MULTILAYER ELECTRONIC COMPONENT USING IT
JP2007324555A (en) * 2006-06-01 2007-12-13 Taiyo Yuden Co Ltd Laminated inductor
WO2011108701A1 (en) * 2010-03-05 2011-09-09 株式会社 村田製作所 Ceramic electronic component and method for producing ceramic electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072427A1 (en) * 2014-11-06 2016-05-12 株式会社村田製作所 Laminated coil component
WO2016072428A1 (en) * 2014-11-06 2016-05-12 株式会社村田製作所 Laminated coil component
JPWO2016072427A1 (en) * 2014-11-06 2017-08-10 株式会社村田製作所 Multilayer coil parts
JPWO2016072428A1 (en) * 2014-11-06 2017-08-10 株式会社村田製作所 Multilayer coil parts
CN107077949A (en) * 2014-11-06 2017-08-18 株式会社村田制作所 Multilayer coil component
CN107077948A (en) * 2014-11-06 2017-08-18 株式会社村田制作所 Multilayer coil component
US11139095B2 (en) 2014-11-06 2021-10-05 Murata Manufacturing Co., Ltd. Multilayer coil component

Similar Documents

Publication Publication Date Title
JP6222618B2 (en) Multilayer coil parts
WO2011108701A1 (en) Ceramic electronic component and method for producing ceramic electronic component
JP5900501B2 (en) Multilayer coil component and manufacturing method thereof
CN103608876B (en) The manufacture method of multilayer coil component and the multilayer coil component
TWI679660B (en) Coil parts
JP6065439B2 (en) Multilayer coil component and manufacturing method thereof
US9296659B2 (en) Ferrite ceramic composition, ceramic electronic component, and method for manufacturing ceramic electronic component
US20140253276A1 (en) Laminated inductor
JP2015142074A (en) laminated coil component
US9748034B2 (en) Laminated coil component
JP6149392B2 (en) Multilayer board
WO2014050867A1 (en) Laminated coil component and method for producing same
WO2013031641A1 (en) Antenna coil and manufacturing method thereof
WO2016072428A1 (en) Laminated coil component
WO2016072427A1 (en) Laminated coil component
JP2014060289A (en) Laminated coil component
JP6011302B2 (en) Multilayer coil parts
JP2014067889A (en) Multilayer coil and method of manufacturing the same
JP6260211B2 (en) Multilayer coil component and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP