WO2014050776A1 - Organosiloxane-copolymerized resin, and resin mixture, resin solution, coating film and film each produced using said resin - Google Patents

Organosiloxane-copolymerized resin, and resin mixture, resin solution, coating film and film each produced using said resin Download PDF

Info

Publication number
WO2014050776A1
WO2014050776A1 PCT/JP2013/075609 JP2013075609W WO2014050776A1 WO 2014050776 A1 WO2014050776 A1 WO 2014050776A1 JP 2013075609 W JP2013075609 W JP 2013075609W WO 2014050776 A1 WO2014050776 A1 WO 2014050776A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
general formula
organosiloxane
residue
mass
Prior art date
Application number
PCT/JP2013/075609
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 松本
隆昌 秋月
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2014538474A priority Critical patent/JP6333176B2/en
Publication of WO2014050776A1 publication Critical patent/WO2014050776A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • C08G63/6824Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6826Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6954Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from polxycarboxylic acids and polyhydroxy compounds
    • C08G63/6956Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences

Definitions

  • the present invention relates to an organosiloxane copolymer resin, and a resin mixture, a resin solution, a coating film, and a film using the same.
  • polyarylate resins containing bisphenol residues and aromatic dicarboxylic acid residues are well known as engineering plastics.
  • a polyarylate resin comprising 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], terephthalic acid and isophthalic acid has high transparency and heat resistance, and is a machine represented by impact strength. Excellent in mechanical strength and dimensional stability.
  • polyarylate resins are widely used in molded products used in the automobile and electrical / electronic fields.
  • Polyarylate resins are used for films and the like by taking advantage of their excellent transparency and heat resistance.
  • Patent Document 1 a bisphenol component, terephthalic acid and isophthalic acid are copolymerized with a siloxane component to obtain an organosiloxane copolymer resin containing the siloxane component in the polyarylate resin.
  • a solution of an organosiloxane copolymer resin is applied to a substrate, bubbles are more likely to be generated than the applied resin solution, and the generated bubbles are difficult to disappear and handling properties are reduced.
  • a coating film obtained by applying the resin solution to a substrate has low surface smoothness, and minute voids are easily formed. As a result, the adhesion between the coating film and the substrate is lowered, and the coating film is easily peeled off from the substrate.
  • a volatile component containing a low molecular weight siloxane (decomposition product generated in the resin production process, organosiloxane that did not contribute to the copolymerization, etc.) remains.
  • the amount of the volatile component is large, a bleed out occurs in the coating film formed by applying the resin solution to the substrate, thereby causing a problem that the peripheral members are contaminated. Therefore, in electronic material use and food use, it has been required to reduce the content of volatile components in the resin.
  • the above volatile component acts as an antifoaming agent, if the volatile component is reduced in order to prevent the occurrence of bleeding out, the above-described foaming is likely to occur. For this reason, it was difficult to simultaneously realize the suppression of the occurrence of the bleed-out and the suppression of the generation of the bubbles.
  • the resin used in the food packaging body is required to appropriately release moisture generated from the contents of the packaging body in order to extend the shelf life of the food, and is required to have high strength and high water vapor permeability. ing.
  • the present invention suppresses the generation of bubbles when used as a resin solution, and is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability, It aims at providing the organosiloxane copolymer resin which can form the coating film or film in which generation
  • the present inventors have found that the following organosiloxane copolymer resin has a specific bisphenol residue containing a fluorine atom, a specific aromatic carboxylic acid residue, When a specific organosiloxane residue is included, the inherent viscosity is in a specific range, and the amount of siloxane-containing volatile components contained in the resin is reduced to a specific range, the generation of bubbles when used as a resin solution
  • the present inventors have found that it is possible to form a coating film or a film that is suppressed and excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability and in which the occurrence of bleed out is suppressed.
  • the gist of the present invention is as follows. [1] A resin containing a bisphenol residue represented by the general formula (1), an aromatic dicarboxylic acid residue represented by the general formula (2), and an organosiloxane residue represented by the general formula (3) , Inherent viscosity measured at a temperature of 25 ° C. and a concentration of 1 g / dL in 1,1,2,2-tetrachloroethane of the resin is 0.90 dL / g or less, An organosiloxane copolymer resin characterized in that when the resin is heated at 180 ° C. for 10 minutes, the amount of the siloxane-containing component volatilized from the resin is 700 ppm by mass or less.
  • R 1 and R 2 independently represent a hydrocarbon group having 1 to 6 carbon atoms, a halogenated alkyl group, or a halogen atom.
  • p and q independently represent an integer of 0 to 4.
  • X represents a divalent group containing a fluorine atom.
  • R 3 and R 4 independently represent an aliphatic group and / or an aromatic group, and may contain a nitrogen atom or an oxygen atom.
  • R 5 , R 6 , R 7 , and R 8 independently represent an aliphatic group or an aromatic group.
  • m represents a number of 5 or more.
  • the aromatic dicarboxylic acid residue represented by the general formula (2) is a mixture of a terephthalic acid residue and an isophthalic acid residue,
  • the molar ratio of terephthalic acid residue to isophthalic acid residue in the mixture: terephthalic acid / isophthalic acid is 90/10 to 10/90, according to any one of [1] to [3] Organosiloxane copolymer resin.
  • R 9 and R 10 independently represent an aliphatic group having 1 to 12 carbon atoms. r and s independently represent an integer of 1 to 4.
  • R 11 , R 12 and R 13 independently represent an aliphatic group having 1 to 12 carbon atoms.
  • t and u each independently represents an integer of 0 to 4.
  • v represents an integer of 0 to 10.
  • the coating film according to [10], wherein the arithmetic average roughness Ra of the surface is 0.5 ⁇ m or less.
  • the film according to [12], wherein the arithmetic average roughness Ra of the surface is 0.5 ⁇ m or less.
  • the generation of bubbles when used as a resin solution is suppressed, and the coating film or the coating is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability, and generation of bleed out is suppressed.
  • An organosiloxane copolymer resin capable of forming a film can be provided.
  • the organosiloxane copolymer resin Even if the amount of the siloxane-containing volatile component contained in the organosiloxane copolymer resin is reduced to a specific range, the organosiloxane copolymer resin has a specific bisphenol residue containing a fluorine atom and a specific aromatic carboxylic acid residue. And a specific organosiloxane residue, and if the inherent viscosity is in a specific range, the coating film is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability and suppresses the occurrence of bleed out. Or while being able to form a film, it is possible to suppress generation
  • the organosiloxane copolymer resin of the present invention and the mixture of the resin and other specific resin are excellent in water vapor permeability, for example, a protective film or a substrate film used in each member of a liquid crystal display or a plasma display, It is suitably used as a food packaging material.
  • the organosiloxane copolymer resin of the present invention and a mixture of the resin and another specific resin are excellent in electrical characteristics, for example, a film or film for electronic parts such as a transformer or a capacitor, electrophotographic photosensitive resin, etc. It is suitably used for body binder resin, conductive film substrate, and diaphragm film for acoustic equipment.
  • the present invention is a resin copolymerized with an organosiloxane, and a resin containing a bisphenol residue and an aromatic dicarboxylic acid residue constituting the polyarylate resin and an organosiloxane residue (hereinafter referred to as resin A). )
  • the bisphenol residue needs to have a structure represented by the general formula (1).
  • X must be a divalent group containing a fluorine atom.
  • X when X is a divalent group containing a fluorine atom, generation of bubbles when used as a solution containing resin A is suppressed, and strength, heat resistance, adhesion, and surface are reduced.
  • a coating film or film having excellent water vapor permeability can be obtained without impairing the effect of obtaining a coating film or film having excellent smoothness and suppressing bleeding out.
  • the divalent group containing a fluorine atom has, for example, a structure represented by the general formula (1a).
  • R 1a and R 2a independently represent a trifluoromethyl group (CF 3 group), a difluoromethyl group (CF 2 H group), a monofluoromethyl group (CH 2 F group), or It is a fluorine atom. Among these, it is preferable that R 1a and R 2a are trifluoromethyl groups.
  • R 1 and R 2 represent a substituent bonded to the benzene ring in the general formula (1).
  • R 1 and R 2 are each independently a compound having a carbon number of 1 to 2 because the bisphenol giving the structure represented by the general formula (1) is industrially easily available or easily synthesized. 6 hydrocarbon group, halogenated alkyl group or halogen atom. Among these, a chlorine atom, a bromine atom, a methyl group, an ethyl group, a phenyl group, and a cyclohexyl group are preferable, and a bromine atom and a methyl group are more preferable.
  • p and q represent the number of substituents R 1 and R 2 bonded to the benzene ring, respectively, and are each independently an integer of 0 to 4. For example, if p and q is 0, indicating that all of the hydrogen atoms bonded to the benzene ring in the general formula (1) is not substituted with R 1 and R 2.
  • p is 2 to 4
  • a plurality of R 1 may be the same or different from each other.
  • q is 2 to 4
  • the plurality of R 2 may be the same or different from each other. Since bisphenol giving the structure represented by the general formula (1) is easily industrially available or easily synthesized, p and q are preferably 0.
  • Examples of the bisphenol that gives the structure represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF], 2,2-bis (3,5-dimethyl-4-hydroxy). Phenyl) hexafluoropropane and 2,2-bis (tetramethyl-4-hydroxyphenyl) hexafluoropropane.
  • BisAF is more preferable from the viewpoint of industrial availability.
  • the bisphenol residue may contain a residue of bisphenol other than bisphenol which gives the structure of the general formula (1) as long as the effects of the present invention are not impaired.
  • bisphenols that give such residues include 2,2-bis (4-hydroxyphenyl) propane [BisA], 2,2-bis (3-methyl-4-hydroxyphenyl) propane [BisC], 9 , 9-bis (4-hydroxy-3-methylphenyl) fluorene [BCF], 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane, bis (3,5-dimethyl) 4-hydroxyphenyl)
  • the ratio of the bisphenol residue represented by the general formula (1) to the entire bisphenol residue is preferably 80 mol% or more, and more preferably 100 mol%.
  • the aromatic dicarboxylic acid residue needs to have a structure represented by the general formula (2).
  • the heat resistance can be improved by having the structure represented by the general formula (2).
  • Examples of the aromatic dicarboxylic acid that gives the structure represented by the general formula (2) include terephthalic acid, isophthalic acid, and orthophthalic acid. From the viewpoint of high reactivity, it is preferable to use terephthalic acid and isophthalic acid in combination. From the viewpoint of the stability of the resin solution, the molar ratio of terephthalic acid residue to isophthalic acid residue: terephthalic acid / isophthalic acid is preferably 90/10 to 10/90, more preferably 30/70 to 70/30. It is.
  • the aromatic dicarboxylic acid residue may contain a residue of an aromatic dicarboxylic acid other than the aromatic dicarboxylic acid that gives the structure of the general formula (2) as long as the effects of the present invention are not impaired.
  • aromatic dicarboxylic acids that give such residues include 2,6-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) alkane diphenate, diphenyl ether-2,2′-dicarboxylic acid, diphenyl ether-2,3 Aromatic dicarboxylic acids such as' -dicarboxylic acid, diphenyl ether-2,4'-dicarboxylic acid, diphenyl ether-3,3'-dicarboxylic acid, diphenyl ether-3,4'-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid Is mentioned.
  • the resin A of the present invention needs to have an organosiloxane residue represented by the general formula (3).
  • R 3 and R 4 are independently an aliphatic group and an organosiloxane that gives a structure represented by the general formula (3) is industrially available or easily synthesized. / Or an aromatic group.
  • R 3 and R 4 may contain a nitrogen atom or an oxygen atom.
  • R 3 and R 4 preferably contain a divalent group represented by the general formula (6). These divalent groups may be directly bonded to the silicon atom, or may be bonded to the silicon atom via an aromatic group and / or an aliphatic group having 1 to 5 carbon atoms.
  • R 3 and R 4 are preferably a substituent represented by the general formula (7) or (8).
  • the substituent of the general formula (7) or (8) is arranged so that —O— in the general formula (7) or —NH— in the general formula (8) is terminated. .
  • R 14 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 15 is an aliphatic group having 1 to 5 carbon atoms
  • w is an integer of 0 to 4 is there.
  • the plurality of R 14 may be the same or different from each other.
  • R 16 is an aliphatic group having 1 to 5 carbon atoms.
  • R 5 , R 6 , R 7 , and R 8 are independently selected because the organosiloxane giving the structure represented by the general formula (3) is easily industrially available or easily synthesized. And an aliphatic group or an aromatic group. Examples of the aromatic group used in R 5 , R 6 , R 7 , and R 8 include a phenyl group. The aliphatic group used in R 5 , R 6 , R 7 , and R 8 has, for example, 1 to 6 carbon atoms.
  • m represents the number of repeating organosiloxane residues.
  • Organosiloxane is a mixture of components having different repeating numbers, and m represents an average value of the mixture.
  • m must be a number of 5 or more, preferably 10 to 250, and more preferably 20 to 100. When m is 5 or more, heat resistance and water vapor permeability are sufficiently obtained. When m is 250 or less, the mechanical strength and solubility of the resin can be sufficiently obtained.
  • m in the general formula (3) can be adjusted by changing the compounding ratio of the cyclic dimethylsiloxane and the terminal group.
  • the content of the organosiloxane residue represented by the general formula (3) in the resin A is preferably more than 7% by mass and less than 80% by mass.
  • the content of the organosiloxane residue is more than 7% by mass, water vapor permeability can be further improved.
  • the content of the organosiloxane residue is less than 80% by mass, the mechanical strength and heat resistance of the resin can be further increased.
  • the content of the organosiloxane residue represented by the general formula (3) in the resin A is more preferably 10 to 75% by mass, further preferably 10 to 60% by mass, and 10 to 25% by mass. It is particularly preferred that
  • the inherent viscosity of the resin A of the present invention measured in 1,1,2,2-tetrachloroethane at a temperature of 25 ° C. and a concentration of 1 g / dL must be 0.9 dL / g or less. 8 dL / g or less is preferable, and 0.7 dL / g or less is more preferable. If the inherent viscosity exceeds 0.9 dL / g, the resin A solution tends to foam and the surface smoothness of the coating film or film decreases.
  • the inherent viscosity of the resin A can be controlled, for example, by changing the amount of an end-capping agent to be described later.
  • siloxane-containing volatile component When the resin A is heated at 180 ° C. for 10 minutes, the amount of the siloxane-containing component that volatilizes from the resin A (hereinafter referred to as siloxane-containing volatile component) needs to be 700 mass ppm or less, and 500 mass. It is preferably not more than ppm, and more preferably not more than 200 mass ppm.
  • the siloxane-containing volatile component mentioned here is a decomposition product of resin A or a siloxane component having a structure represented by general formula (1) contained in resin A (a low-molecular siloxane component that does not contribute to copolymerization) and its decomposition product. including.
  • the amount of the siloxane-containing volatile component exceeds 700 ppm by mass, the adhesiveness of the coating film obtained by applying the resin solution is lowered, or bleeding out of the volatile component occurs in the coating film or film. In addition, the elongation at break may decrease over time.
  • the amount of the siloxane-containing volatile component can be adjusted by, for example, the degree of washing of the precipitate obtained by the interfacial polymerization method.
  • the sodium remaining in the resin A of the present invention is preferably 10 ppm by mass or less. If the amount of residual sodium exceeds 10 ppm by mass, the electrical properties of the resin A may deteriorate.
  • the concentration of the terminal phenolic hydroxyl group in the resin A is preferably 30 mol / ton or less, It is more preferably 10 mol / ton or less, and further preferably less than 4 mol / ton.
  • the concentration of the terminal carboxyl group in the resin A is preferably 30 mol / ton or less.
  • concentration of the terminal carboxyl group in the resin A exceeds 30 mol / ton, it becomes easy to hydrolyze or to be colored after melt molding, and the electrical breakdown voltage, arc resistance, dielectric constant, etc. of the resin The characteristics may deteriorate.
  • the stability of the resin solution decreases. When the stability of the resin solution is lowered, it becomes cloudy with time, precipitates or insolubles are formed, and the resin is thickened and gelled. As a result, the smoothness of the coating film decreases, and the mechanical properties and electrical characteristics of the coating film may decrease.
  • the concentration of the terminal carboxyl group in the resin A exceeds 30 mol / ton and the concentration of the terminal phenolic hydroxyl group in the resin A exceeds 10 mol / ton, it is completely dissolved when the resin is dissolved in the solvent. Insoluble matter may be generated in the resin solution.
  • the resin A of the present invention includes an aliphatic diol residue, an alicyclic diol residue, an aliphatic dicarboxylic acid residue, and an alicyclic dicarboxylic acid residue within a range not impairing the effects of the present invention. You may go out.
  • the aliphatic diol include ethylene glycol and propylene glycol.
  • the alicyclic diol include 1,4-cyclohexanediol, 1,3-cyclohexanediol, and 1,2-cyclohexanediol.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, adipic acid, and sebacic acid.
  • the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylic acid
  • the resin A may be mixed with other resins other than the resin A and used as a resin mixture.
  • Other resins are used, for example, to improve mechanical strength.
  • other resins include polyarylate resins and polycarbonate resins that do not contain an organosiloxane residue.
  • Examples of the mixing method of the organosiloxane copolymer resin and other resins include a melt kneading method and a method of dissolving and mixing in an organic solvent. Among them, a method of dissolving and mixing in an organic solvent is preferable because the color tone does not deteriorate due to thermal decomposition and can be mixed uniformly.
  • a resin containing a bisphenol residue represented by the following general formula (4) or general formula (5) (hereinafter referred to as a resin B) is preferable. While the mechanical strength of the resin is further increased, a uniform and stable resin mixture solution is obtained, and a uniform coating film is formed by using this resin mixture solution. In addition, the generation of foam when used as a solution containing a resin mixture is suppressed, forming a coating film or film that has excellent heat resistance, adhesion, surface smoothness, and water vapor permeability, and suppresses the occurrence of bleed out. can do.
  • R 9 and R 10 each independently has 1 to 12 aliphatic groups, and r and s are integers of 1 to 4.
  • R 11 , R 12 , and R 13 are each independently carbon because the bisphenol giving the structure represented by the general formula (5) is industrially easily available or easily synthesized. It is an aliphatic group having a number of 1 to 12, t and u are integers of 0 to 4, and v is an integer of 0 to 10.
  • t is 2 to 4
  • u is 2 to 4
  • the plurality of R 12 may be the same or different from each other.
  • v is 2 to 10
  • the plurality of R 13 may be the same or different from each other.
  • Examples of the bisphenol component that gives the structure represented by the general formula (4) include 2,2-bis (3-methyl-4-hydroxyphenyl) propane and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl).
  • Examples include propane.
  • 2,2-bis (3-methyl-4-hydroxyphenyl) propane is preferable because of excellent mechanical strength.
  • 1,1-bis (4-hydroxyphenyl) cyclohexane is preferable because of its excellent mechanical strength.
  • an interfacial polymerization method for example, an interfacial polymerization method, a solution polymerization method, or a melt polycondensation method is used as a method for producing the resin A of the present invention.
  • an interfacial polymerization method for example, when solution polymerization is performed using an amine such as pyridine, the carboxylic acid value may increase and the solution stability may decrease.
  • organosiloxane solution obtained by dissolving organosiloxane in an organic solvent is mixed with an alkaline aqueous solution (aqueous phase) containing bisphenol and a polymerization catalyst. Furthermore, a divalent carboxylic acid halide solution (organic phase 2) obtained by dissolving a divalent carboxylic acid halide in an organic solvent is added to the mixed solution. The mixed solution is stirred at a temperature of 50 ° C. or lower for 1 to 8 hours. In this way, bisphenol, divalent carboxylic acid halide, and organosiloxane are polymerized.
  • alkaline aqueous solution used for the aqueous phase examples include aqueous solutions of sodium hydroxide and potassium hydroxide.
  • Examples of the polymerization catalyst include quaternary ammonium salts and quaternary phosphonium salts.
  • the quaternary ammonium salt include tri-n-butylbenzylammonium halide, tetra-n-butylammonium halide, trimethylbenzylammonium halide, and triethylbenzylammonium halide.
  • Examples of the quaternary phosphonium salt include tri-n-butylbenzylphosphonium halide, tetra-n-butylphosphonium halide, trimethylbenzylphosphonium halide, and triethylbenzylphosphonium halide.
  • tri-n-butylbenzylammonium halide tetra-n-butylammonium halide, tri-n-butylbenzylphosphonium halide, and tetra-n-butylphosphonium halide are preferable from the viewpoint of polymerizability.
  • the organic solvent used in the organic phase is preferably an organic solvent that is incompatible with water and that can dissolve the resin A.
  • organic solvents include methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, o-dichlorobenzene.
  • halogenated hydrocarbon solvents such as m-dichlorobenzene and p-dichlorobenzene; aromatic hydrocarbons such as toluene, benzene and xylene; and ketone solvents such as cyclohexanone and cycloheptanone.
  • methylene chloride, chloroform, toluene, o-xylene, m-xylene, p-xylene and cyclohexanone are preferable from the viewpoint of polymerizability.
  • a terminal sealing agent may be added to the alkaline aqueous solution (aqueous phase) or the organic phase.
  • the end-capping agent is not particularly limited, but is preferably monohydric phenol, monohydric acid chloride, monohydric alcohol, or monohydric carboxylic acid.
  • the monohydric phenol include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol [PTBP], o-phenylphenol, m-phenylphenol, p-phenylphenol, o-methoxyphenol.
  • the monovalent acid chloride include benzoyl chloride, benzoic acid chloride, methanesulfonyl chloride, and phenyl chloroformate.
  • Examples of the monohydric alcohol include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, dodecyl alcohol, stearyl alcohol, benzyl alcohol, and phenethyl alcohol.
  • Examples of the monovalent carboxylic acid include acetic acid, propionic acid, octanoic acid, cyclohexanecarboxylic acid, benzoic acid, toluic acid, phenylacetic acid, p-tert-butylbenzoic acid, and p-methoxyphenylacetic acid.
  • PTBP is preferable from the viewpoints of reactivity and thermal stability.
  • Residual sodium can be made 10 ppm or less by washing until the electric conductivity of the water used for washing becomes 20 ⁇ S / cm or less.
  • Resin A can be precipitated by adding the resin solution to water having a temperature equal to or higher than the boiling point of the organic solvent used in the polymerization and dispersing the organic solvent (hot water method). Moreover, a resin solution can be added to a poor solvent to precipitate the resin A (reprecipitation method).
  • the poor solvent is preferably an alcohol such as methanol, ethanol or isopropyl alcohol, or a hydrocarbon such as hexane.
  • the precipitate can be isolated by filtration or the like, and then dried to obtain a solid content. Examples of the drying include drying under reduced pressure and drying while feeding hot air. In the case of drying under reduced pressure, the drying temperature is preferably more than 70 ° C and not more than 170 ° C. On the other hand, in the case of drying while supplying hot air, the drying temperature is preferably 150 ° C. or lower.
  • a film using the resin A of the present invention or a resin mixture of the resin A and the resin B can be obtained by a casting method or a melt extrusion method.
  • a resin solution obtained by dissolving resin A or a resin mixture of resin A and resin B in an organic solvent is applied to a substrate and dried to form a coating film.
  • the resin A or the resin mixture of the present invention it is possible to form a coating film having an arithmetic average roughness Ra of 5 ⁇ m or less and excellent in surface smoothness. Then, the obtained coating film is peeled from the substrate to produce a film.
  • a molten resin is extruded from a T die or the like onto a cooling roll, and the extruded material is scraped off.
  • the casting method is preferably used because it does not cause a decrease in color tone due to thermal decomposition.
  • Examples of the organic solvent used in the casting method include organic solvents used in the organic phase in the production process of the resin A.
  • Examples of the substrate used in the casting method include a polyethylene terephthalate (PET) film, a polyimide film, a glass plate, and a stainless plate.
  • Examples of the method of applying the resin solution to the substrate include a method using a wire bar coater, a film applicator, brush or spray.
  • Examples of the application method include a gravure roll coating method, a screen printing method, a reverse roll coating method, a lip coating method, an air knife coating method, a curtain flow coating method, and a dip coating method.
  • the resin A or the resin mixture of the resin A and the resin B of the present invention includes, for example, substrates and laminated films for liquid crystal displays and plasma displays, substrates for transparent conductive films, binder resins for electrophotographic photosensitive members, and diaphragms for acoustic devices. It can be used for coatings for electronic parts such as films and capacitors.
  • ⁇ Production Example 1 First, an aqueous phase, an organic phase 1 and an organic phase 2 were prepared by the following method. In a reaction vessel equipped with a stirrer, 100 parts by mass of 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF] as bisphenol and p-tert-butylphenol [PTBP] as end-capping agent2.
  • BisAF 2,2-bis (4-hydroxyphenyl) hexafluoropropane
  • PTBP p-tert-butylphenol
  • phthalic acid chloride obtained by mixing terephthalic acid chloride and isophthalic acid chloride as an aromatic dicarboxylic acid chloride in a molar ratio of 50:50 was dissolved in 900 parts by mass of methylene chloride.
  • Organic phase 2 was obtained.
  • organosiloxane copolymer resin 10 parts by mass of the obtained precipitate (organosiloxane copolymer resin) was dissolved in 300 parts by mass of methylene chloride, and then 1000 parts by mass of methanol was added for reprecipitation. The operation of recovering the polymer obtained by reprecipitation and drying it under reduced pressure at 180 ° C. for 24 hours was repeated twice. In this way, an organosiloxane copolymer resin (P-1) was obtained. The content of the organosiloxane residue in the organosiloxane copolymer resin was 10% by mass.
  • an aqueous phase, an organic phase 1 and an organic phase 2 were prepared by the following method.
  • 100.0 parts by mass (99.25 mol parts) of BisAF as a dihydric phenol component, 0.99 parts by mass (2.2 mol parts) of PTBP as an end-capping agent, and alkali As a polymerization catalyst 25.44 parts by mass of NaOH, 1.28 parts by mass of 50% by weight aqueous solution of TBBAC as a polymerization catalyst, and 0.53 parts by mass of SHS were dissolved in 1000 parts by mass of water to obtain an aqueous phase.
  • the organic phase 1 was obtained by dissolving 7.40 parts by mass (0.75 part by mol) of the organosiloxane represented by the above formula (9) in 200 parts by mass of methylene chloride.
  • Production Example 20 >> 10 parts by mass of the resin (P-10) obtained in Production Example 10 was dissolved in 300 parts by mass of methylene chloride, and then 1000 parts by mass of methanol was added to reprecipitate the polymer. The reprecipitated polymer was collected and dried under reduced pressure at 180 ° C. for 24 hours. This operation was repeated three times. In this way, a resin (P-20) was obtained.
  • an n-hexadecane / hexane solution with a known concentration is prepared, 500 ⁇ L of this solution is put into a sample cup, and hexane is volatilized. Then, the GC / MS method (gas chromatography mass is used under the same heating conditions as the sample. (Analysis method). A calibration curve of the peak area of n-hexadecane and the amount of substance was prepared, and quantified based on the peak area of the siloxane-containing volatile component. As the siloxane-containing volatile component, a plurality of compounds containing siloxane bonds were identified by using an MS (mass spectrometry) database, and 5975C manufactured by Agilent Technologies was used as the apparatus.
  • MS mass spectrometry
  • Resin Solution Characteristics (2-1) Solubility Resin and chloroform were mixed so that the solid content was 15% by mass, and the state of the resin solution after stirring at 25 ° C. for 24 hours was judged visually. ⁇ Good '' is a transparent solution obtained without insoluble matter such as gels in the resin solution, while ⁇ a little '' insoluble matter is floating and slightly cloudy. “Positive”, and those in which the resin was not dissolved and did not become a resin solution state were set to “impossible”
  • Coating film characteristics (3-1) Preparation of coating film Resin and chloroform were mixed so that the solid content would be 12.5% by mass, stirred for 1 hour with a paint shaker, and then allowed to stand for 24 hours to obtain a resin solution. It was. The obtained resin solution was used as a No. manufactured by Yasuda Seiki Seisakusho. Surface of the substrate (non-corona) of polyethylene terephthalate film (Embret made by Unitika Co., Ltd., thickness of about 120 ⁇ m) so that the thickness of the coated film after drying with a bar coater using a 542-AB automatic film applicator is 100 ⁇ m. Surface) and dried at room temperature to obtain a coating film.
  • the obtained resin solution was used as a No. manufactured by Yasuda Seiki Seisakusho.
  • the coating film After coating the surface of the substrate made of PET film so that the thickness of the coating film after drying with a bar coater using a 542-AB automatic film applicator is 100 ⁇ m, the coating film is dried at 80 ° C. Obtained. Then, after cooling a coating film to room temperature, the coating film was peeled from the base material and the film was obtained. The obtained film was dried under reduced pressure at 120 ° C. for 24 hours. In this way, a film having a thickness of 100 ⁇ m was produced.
  • (4-4) Bleed out The film obtained in (4-1) was allowed to stand in an environment of 100 ° C. for 24 hours. At this time, the case where the liquid substance was adhered to the film surface was evaluated as “bleeded out”, and the case where the liquid substance was not adhered to the film surface was evaluated as “no”. The presence or absence of adhesion of the liquid was determined by visually observing the film surface and touching it with a finger.
  • the amount of the siloxane-containing volatile component in the resin (P-10) ′ was 3500 ppm.
  • Example 16 A resin containing an organosiloxane residue (P-6) (4.5 parts by mass), another resin (P-12) containing no organosiloxane residue (10.5 parts by mass), and chloroform (85 parts by mass) The mixture was stirred for 24 hours to prepare a resin solution. Using the obtained resin solution, the properties of the resin solution, the coating film, and the film were evaluated. The evaluation results are shown in Table 5.
  • Examples 17 to 27 and Comparative Example 13 A resin solution was prepared in the same manner as in Example 16 except that the mixed resin composition of a resin containing an organosiloxane residue and another resin not containing an organosiloxane residue was changed as shown in Table 5. Using the obtained resin solution, the properties of the resin solution, the coating film, and the film were evaluated. The evaluation results are shown in Table 5.
  • Examples 1 to 15 had sufficient heat resistance and water vapor permeability.
  • the glass transition temperature is higher than that in Example 5, and the tensile fracture The strength was higher than in Example 6.
  • the arithmetic average roughness Ra of the film surface was smaller than that of Comparative Example 2.
  • the generation of bubbles was suppressed in the solution containing the resin A, the adhesiveness of the coating film was excellent, and voids and bleedout did not occur in the film.
  • Example 15 since the concentration of the terminal phenolic hydroxyl group was 15 mol / ton and the concentration of the terminal carboxyl group was 40 mol / ton, most of the resin was dissolved in the organic solvent when the resin was dissolved in the organic solvent. Although it became a solution state, a trace amount of insoluble matter floated in the resin solution, and the resin solution became slightly cloudy.
  • Examples 16 to 19, 22, and 23 were a mixture of Resin A and Resin B, the resin solution did not undergo phase separation for 3 days, and the solution stability was good.
  • the obtained film was higher in both tensile modulus and tensile breaking strength than Examples 1 to 6, and was excellent in mechanical strength.
  • Examples 20, 21, and 24-27 were a mixture of Resin A and another resin that was not Resin B, the resulting films were higher in both tensile modulus and tensile breaking strength than Examples 1-6. Although excellent in mechanical strength, the resin solution after standing for 3 days was phase-separated, and the solution stability was poor.
  • Examples 16 to 27 when used as a resin solution, the generation of bubbles was suppressed, the adhesion of the coating film was excellent, and voids and bleedout did not occur in the film. In Examples 16 to 27, films excellent in surface smoothness and water vapor permeability were obtained.
  • Comparative Example 1 since the fluorine atom was not contained in the bisphenol component, the water vapor permeability of the film was lowered. Since Comparative Example 3 did not contain the organosiloxane residue represented by the general formula (3) in the resin, the water vapor permeability of the film was lowered. In Comparative Examples 5 and 6, since the fluorine atom was not contained in the bisphenol component and the organosiloxane residue was not contained, the water vapor permeability of the film was lowered.
  • Comparative Examples 2 and 8 since the inherent viscosity was more than 0.9 dL / g, bubbles were generated in the solution containing the resin, and the surface smoothness of the film was lowered. In addition, voids were generated in the film, and the adhesion of the coating film to the substrate was reduced. In Comparative Examples 4 and 12, since the amount of the siloxane-containing volatile component was more than 700 ppm by mass, bleeding out occurred. In Comparative Example 9, although the inherent viscosity is more than 0.9 dL / g, the amount of the siloxane volatile component acting as an antifoaming agent is as large as 3500 mass ppm, so that foaming of the resin solution was suppressed. However, in Comparative Example 9, since the amount of the siloxane-containing volatile component was more than 700 ppm by mass, bleeding out occurred.
  • Comparative Example 11 when DSDC was used as the aromatic dicarboxylic acid chloride, the polymerization reaction did not proceed, a solid precipitated during the polymerization, and no resin was obtained.
  • Comparative Example 13 since the resin containing the organosiloxane residue does not contain the bisphenol residue represented by the general formula (1), the water vapor permeability was lower than that of the films of Examples 16 to 27.

Abstract

A resin produced by copolymerizing an organosiloxane according to the present invention contains a specific bisphenol residue containing a fluorine atom, a specific aromatic dicarboxylic acid residue and a specific organosiloxane residue. The resin has an inherent viscosity of 0.90 dL/g or less as measured in 1,1,2,2-tetrachloroethane at a temperature of 25˚C at a concentration of 1 g/dL. When the resin is heated at 180˚C for 10 minutes, the amount of a siloxane-containing component that is volatilized from the resin is 700 ppm by mass or less.

Description

オルガノシロキサン共重合樹脂、ならびにそれを用いた樹脂混合物、樹脂溶液、塗膜、およびフィルムOrganosiloxane copolymer resin and resin mixture, resin solution, coating film and film using the same
 本発明は、オルガノシロキサン共重合樹脂、ならびにそれを用いた樹脂混合物、樹脂溶液、塗膜、およびフィルムに関する。 The present invention relates to an organosiloxane copolymer resin, and a resin mixture, a resin solution, a coating film, and a film using the same.
 従来より、ビスフェノール残基および芳香族ジカルボン酸残基を含むポリアリレート樹脂は、エンジニアリングプラスチックとしてよく知られている。特に、2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕と、テレフタル酸およびイソフタル酸とからなるポリアリレート樹脂は、高い透明性と耐熱性を有し、衝撃強度に代表される機械的強度や、寸法安定性に優れている。このため、ポリアリレート樹脂は、自動車や電気電子分野で使用される成形品に幅広く使用されている。また、ポリアリレート樹脂は、その優れた透明性と耐熱性を活かしてフィルム等に使用されている。 Conventionally, polyarylate resins containing bisphenol residues and aromatic dicarboxylic acid residues are well known as engineering plastics. In particular, a polyarylate resin comprising 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], terephthalic acid and isophthalic acid has high transparency and heat resistance, and is a machine represented by impact strength. Excellent in mechanical strength and dimensional stability. For this reason, polyarylate resins are widely used in molded products used in the automobile and electrical / electronic fields. Polyarylate resins are used for films and the like by taking advantage of their excellent transparency and heat resistance.
 ところで、ポリアリレート樹脂に撥水性を付与させるために、ビスフェノール成分およびテレフタル酸およびイソフタル酸を、シロキサン成分と共重合させて、ポリアリレート樹脂にシロキサン成分を含ませたオルガノシロキサン共重合樹脂を得ることが提案されている(特許文献1)。 By the way, in order to impart water repellency to the polyarylate resin, a bisphenol component, terephthalic acid and isophthalic acid are copolymerized with a siloxane component to obtain an organosiloxane copolymer resin containing the siloxane component in the polyarylate resin. Has been proposed (Patent Document 1).
特開2009-46667号公報JP 2009-46667 A
 しかし、オルガノシロキサン共重合樹脂の溶液を基材に塗布すると、塗布された樹脂溶液より泡が発生し易く、かつ発生した泡が消失し難く、ハンドリング性が低下する。
 また、その樹脂溶液を基材に塗布して得られる塗膜は、表面平滑性が低く、微小な空孔(ボイド)が形成され易い。その結果、塗膜と基材との密着性が低下して、塗膜が基板から剥がれ易い。
However, when a solution of an organosiloxane copolymer resin is applied to a substrate, bubbles are more likely to be generated than the applied resin solution, and the generated bubbles are difficult to disappear and handling properties are reduced.
In addition, a coating film obtained by applying the resin solution to a substrate has low surface smoothness, and minute voids are easily formed. As a result, the adhesion between the coating film and the substrate is lowered, and the coating film is easily peeled off from the substrate.
 また、オルガノシロキサン共重合樹脂中には、低分子量のシロキサンを含む揮発成分(樹脂の製造過程で生じた分解物や、共重合に寄与しなかったオルガノシロキサン等)が残存する。この揮発成分の量が多いと、樹脂溶液を基材に塗布して形成された塗膜においてブリードアウト(Bleed Out)が発生し、それにより周辺部材が汚染されるという不具合が生じる。よって、電子材料用途や食品用途においては、樹脂中の揮発成分の含有量を低減することが求められていた。
 しかし、上記の揮発成分は消泡剤として作用するため、ブリードアウトの発生を防ぐために揮発成分を低減すると、上述した発泡が起こり易くなる。
 このため、上記のブリードアウトの発生の抑制と、上記の泡の発生の抑制とを同時に実現することは困難であった。
In the organosiloxane copolymer resin, a volatile component containing a low molecular weight siloxane (decomposition product generated in the resin production process, organosiloxane that did not contribute to the copolymerization, etc.) remains. When the amount of the volatile component is large, a bleed out occurs in the coating film formed by applying the resin solution to the substrate, thereby causing a problem that the peripheral members are contaminated. Therefore, in electronic material use and food use, it has been required to reduce the content of volatile components in the resin.
However, since the above volatile component acts as an antifoaming agent, if the volatile component is reduced in order to prevent the occurrence of bleeding out, the above-described foaming is likely to occur.
For this reason, it was difficult to simultaneously realize the suppression of the occurrence of the bleed-out and the suppression of the generation of the bubbles.
 さらに、食品包装体に用いられる樹脂には、食品の賞味期限を延ばすために包装体の内容物から発生する湿気を適度に外部に逃すことが求められ、高い強度とともに高い水蒸気透過性が求められている。 Furthermore, the resin used in the food packaging body is required to appropriately release moisture generated from the contents of the packaging body in order to extend the shelf life of the food, and is required to have high strength and high water vapor permeability. ing.
 そこで、本発明は、上記課題を解決するために、樹脂溶液として用いた際の泡の発生が抑制され、強度、耐熱性、密着性、表面平滑性、および水蒸気透過性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムを形成することが可能なオルガノシロキサン共重合樹脂を提供することを目的とする。また、そのオルガノシロキサン共重合樹脂を用いた樹脂混合物、樹脂溶液、塗膜、およびフィルムを提供することを目的とする。 Therefore, in order to solve the above problems, the present invention suppresses the generation of bubbles when used as a resin solution, and is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability, It aims at providing the organosiloxane copolymer resin which can form the coating film or film in which generation | occurrence | production is suppressed. Moreover, it aims at providing the resin mixture, resin solution, coating film, and film using the organosiloxane copolymer resin.
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下のオルガノシロキサン共重合樹脂が、フッ素原子を含む特定のビスフェノール残基と、特定の芳香族カルボン酸残基と、特定のオルガノシロキサン残基とを含み、インヘレント粘度が特定範囲であり、樹脂中に含まれるシロキサン含有揮発成分の量が特定範囲に低減される場合に、樹脂溶液として用いた際の泡の発生が抑制され、強度、耐熱性、密着性、表面平滑性、および水蒸気透過性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムを形成することができることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have found that the following organosiloxane copolymer resin has a specific bisphenol residue containing a fluorine atom, a specific aromatic carboxylic acid residue, When a specific organosiloxane residue is included, the inherent viscosity is in a specific range, and the amount of siloxane-containing volatile components contained in the resin is reduced to a specific range, the generation of bubbles when used as a resin solution The present inventors have found that it is possible to form a coating film or a film that is suppressed and excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability and in which the occurrence of bleed out is suppressed.
 本発明の要旨は、以下の通りである。
[1]一般式(1)で示されるビスフェノール残基、一般式(2)で示される芳香族ジカルボン酸残基、および一般式(3)で示されるオルガノシロキサン残基を含有する樹脂であって、
 前記樹脂の1,1,2,2-テトラクロロエタン中、温度25℃、濃度1g/dLで測定したインヘレント粘度が0.90dL/g以下であり、
 前記樹脂を180℃で10分間加熱する場合に当該樹脂より揮発するシロキサン含有成分の量が700質量ppm以下であることを特徴とするオルガノシロキサン共重合樹脂。
The gist of the present invention is as follows.
[1] A resin containing a bisphenol residue represented by the general formula (1), an aromatic dicarboxylic acid residue represented by the general formula (2), and an organosiloxane residue represented by the general formula (3) ,
Inherent viscosity measured at a temperature of 25 ° C. and a concentration of 1 g / dL in 1,1,2,2-tetrachloroethane of the resin is 0.90 dL / g or less,
An organosiloxane copolymer resin characterized in that when the resin is heated at 180 ° C. for 10 minutes, the amount of the siloxane-containing component volatilized from the resin is 700 ppm by mass or less.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 式(1)中、RおよびRは、独立して、炭素数が1~6の炭化水素基、ハロゲン化アルキル基、またはハロゲン原子を表す。pおよびqは、独立して、0~4の整数を表す。Xは、フッ素原子を含有する二価基を表す。 In formula (1), R 1 and R 2 independently represent a hydrocarbon group having 1 to 6 carbon atoms, a halogenated alkyl group, or a halogen atom. p and q independently represent an integer of 0 to 4. X represents a divalent group containing a fluorine atom.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 式(3)中、RおよびRは、独立して、脂肪族基および/または芳香族基を表し、窒素原子または酸素原子を含有してもよい。R、R、R、およびRは、独立して、脂肪族基または芳香族基を表す。mは、5以上の数字を表す。 In formula (3), R 3 and R 4 independently represent an aliphatic group and / or an aromatic group, and may contain a nitrogen atom or an oxygen atom. R 5 , R 6 , R 7 , and R 8 independently represent an aliphatic group or an aromatic group. m represents a number of 5 or more.
[2]前記樹脂中の一般式(3)で示されるオルガノシロキサン残基の含有量が7質量%超かつ80質量%未満であることを特徴とする[1]に記載のオルガノシロキサン共重合樹脂。
[3]一般式(1)で示されるビスフェノール残基が、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン残基であることを特徴とする[1]または[2]に記載のオルガノシロキサン共重合樹脂。
[2] The organosiloxane copolymer resin according to [1], wherein the content of the organosiloxane residue represented by the general formula (3) in the resin is more than 7% by mass and less than 80% by mass. .
[3] The organo described in [1] or [2], wherein the bisphenol residue represented by the general formula (1) is a 2,2-bis (4-hydroxyphenyl) hexafluoropropane residue Siloxane copolymer resin.
[4]一般式(2)で示される芳香族ジカルボン酸残基が、テレフタル酸残基とイソフタル酸残基の混合物であり、
 前記混合物におけるテレフタル酸残基とイソフタル酸残基のモル比:テレフタル酸/イソフタル酸が、90/10~10/90であることを特徴とする[1]~[3]のいずれかに記載のオルガノシロキサン共重合樹脂。
[4] The aromatic dicarboxylic acid residue represented by the general formula (2) is a mixture of a terephthalic acid residue and an isophthalic acid residue,
The molar ratio of terephthalic acid residue to isophthalic acid residue in the mixture: terephthalic acid / isophthalic acid is 90/10 to 10/90, according to any one of [1] to [3] Organosiloxane copolymer resin.
[5][1]~[4]のいずれかに記載のオルガノシロキサン共重合樹脂と、前記オルガノシロキサン共重合樹脂以外の他の樹脂とを混合してなることを特徴とする樹脂混合物。
[6]前記オルガノシロキサン共重合樹脂以外の他の樹脂が、一般式(4)または(5)で示されるビスフェノール残基を含む樹脂であることを特徴とする[5]に記載の樹脂混合物。
[5] A resin mixture obtained by mixing the organosiloxane copolymer resin according to any one of [1] to [4] and a resin other than the organosiloxane copolymer resin.
[6] The resin mixture according to [5], wherein the resin other than the organosiloxane copolymer resin is a resin containing a bisphenol residue represented by the general formula (4) or (5).
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
 式(4)中、RおよびR10は、独立して、炭素数が1~12の脂肪族基を表す。rおよびsは、独立して、1~4の整数を表す。 In formula (4), R 9 and R 10 independently represent an aliphatic group having 1 to 12 carbon atoms. r and s independently represent an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 式(5)中、R11、R12、およびR13は、独立して、炭素数が1~12の脂肪族基を表す。tおよびuは、独立して、0~4の整数を表す。vは0~10の整数を表す。 In formula (5), R 11 , R 12 and R 13 independently represent an aliphatic group having 1 to 12 carbon atoms. t and u each independently represents an integer of 0 to 4. v represents an integer of 0 to 10.
[7]一般式(4)で示されるビスフェノール残基が、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン残基であることを特徴とする[6]に記載の樹脂混合物。
[8]一般式(5)で示されるビスフェノール残基が、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン残基であることを特徴とする[6]に記載の樹脂混合物。
[7] The resin mixture as described in [6], wherein the bisphenol residue represented by the general formula (4) is a 2,2-bis (3-methyl-4-hydroxyphenyl) propane residue.
[8] The resin mixture as described in [6], wherein the bisphenol residue represented by the general formula (5) is a 1,1-bis (4-hydroxyphenyl) cyclohexane residue.
[9][1]~[4]のいずれかに記載のオルガノシロキサン共重合樹脂、または[5]~[8]のいずれかに記載の樹脂混合物を有機溶媒に溶解してなることを特徴とする樹脂溶液。 [9] The organosiloxane copolymer resin according to any one of [1] to [4] or the resin mixture according to any one of [5] to [8] is dissolved in an organic solvent. Resin solution.
[10][9]に記載の樹脂溶液を用いて形成されたことを特徴とする塗膜。
[11]表面の算術平均粗さRaが0.5μm以下であることを特徴とする[10]に記載の塗膜。
[12][9]に記載の樹脂溶液を用いて形成されたことを特徴とするフィルム。
[13]表面の算術平均粗さRaが0.5μm以下であることを特徴とする[12]に記載のフィルム。
[10] A coating film formed using the resin solution according to [9].
[11] The coating film according to [10], wherein the arithmetic average roughness Ra of the surface is 0.5 μm or less.
[12] A film formed using the resin solution according to [9].
[13] The film according to [12], wherein the arithmetic average roughness Ra of the surface is 0.5 μm or less.
 本発明によれば、樹脂溶液として用いた際の泡の発生が抑制され、強度、耐熱性、密着性、表面平滑性、および水蒸気透過性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムを形成することが可能なオルガノシロキサン共重合樹脂を提供することができる。 According to the present invention, the generation of bubbles when used as a resin solution is suppressed, and the coating film or the coating is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability, and generation of bleed out is suppressed. An organosiloxane copolymer resin capable of forming a film can be provided.
 オルガノシロキサン共重合樹脂中に含まれるシロキサン含有揮発成分の量が特定範囲に低減されても、オルガノシロキサン共重合樹脂が、フッ素原子を含む特定のビスフェノール残基と、特定の芳香族カルボン酸残基と、特定のオルガノシロキサン残基とを含み、インヘレント粘度が特定範囲であれば、強度、耐熱性、密着性、表面平滑性、および水蒸気透過性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムを形成することができるとともに、樹脂溶液として用いた際の泡の発生を抑制することが可能である。
 さらに、本発明のオルガノシロキサン共重合樹脂は、他の特定の樹脂と混合して用いることにより、機械的強度を向上させることができる。
Even if the amount of the siloxane-containing volatile component contained in the organosiloxane copolymer resin is reduced to a specific range, the organosiloxane copolymer resin has a specific bisphenol residue containing a fluorine atom and a specific aromatic carboxylic acid residue. And a specific organosiloxane residue, and if the inherent viscosity is in a specific range, the coating film is excellent in strength, heat resistance, adhesion, surface smoothness, and water vapor permeability and suppresses the occurrence of bleed out. Or while being able to form a film, it is possible to suppress generation | occurrence | production of the bubble at the time of using as a resin solution.
Furthermore, the organosiloxane copolymer resin of the present invention can be improved in mechanical strength by being used in combination with other specific resins.
 本発明のオルガノシロキサン共重合樹脂や、当該樹脂と他の特定の樹脂との混合物は、水蒸気透過性に優れるため、例えば、液晶ディスプレイやプラズマディスプレイの各部材で使用される保護フィルムや基板フィルム、食品包装用の材料に好適に用いられる。
 また、本発明のオルガノシロキサン共重合樹脂や、当該樹脂と他の特定の樹脂との混合物は、電気特性に優れるため、例えば、変圧器やコンデンサのような電子部品用被膜やフィルム、電子写真感光体のバインダー樹脂、導電性フィルム基板、音響機器用振動板フィルムに好適に用いられる。
Since the organosiloxane copolymer resin of the present invention and the mixture of the resin and other specific resin are excellent in water vapor permeability, for example, a protective film or a substrate film used in each member of a liquid crystal display or a plasma display, It is suitably used as a food packaging material.
In addition, since the organosiloxane copolymer resin of the present invention and a mixture of the resin and another specific resin are excellent in electrical characteristics, for example, a film or film for electronic parts such as a transformer or a capacitor, electrophotographic photosensitive resin, etc. It is suitably used for body binder resin, conductive film substrate, and diaphragm film for acoustic equipment.
本発明を実施するための形態Mode for carrying out the present invention
 以下、本発明について詳細に説明する。
 本発明は、オルガノシロキサンを共重合した樹脂であって、ポリアリレート樹脂を構成するビスフェノール残基および芳香族ジカルボン酸残基と、オルガノシロキサン残基とを含む樹脂(以下、樹脂Aと表記する。)に関する。
Hereinafter, the present invention will be described in detail.
The present invention is a resin copolymerized with an organosiloxane, and a resin containing a bisphenol residue and an aromatic dicarboxylic acid residue constituting the polyarylate resin and an organosiloxane residue (hereinafter referred to as resin A). )
 ビスフェノール残基は、一般式(1)で示される構造を有することが必要である。 The bisphenol residue needs to have a structure represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 一般式(1)中、Xは、フッ素原子を含有する二価基であることが必要である。
 一般式(1)中において、Xがフッ素原子を含有する二価基であることで、樹脂Aを含む溶液として用いた際の泡の発生が抑制され、強度、耐熱性、密着性、および表面平滑性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムが得られるという効果を損なうことなく、優れた水蒸気透過性を有する塗膜またはフィルムが得られる。
 フッ素原子を含有する二価基は、例えば、一般式(1a)で表される構造を有する。
In general formula (1), X must be a divalent group containing a fluorine atom.
In general formula (1), when X is a divalent group containing a fluorine atom, generation of bubbles when used as a solution containing resin A is suppressed, and strength, heat resistance, adhesion, and surface are reduced. A coating film or film having excellent water vapor permeability can be obtained without impairing the effect of obtaining a coating film or film having excellent smoothness and suppressing bleeding out.
The divalent group containing a fluorine atom has, for example, a structure represented by the general formula (1a).
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 一般式(1a)中、R1aおよびR2aは、独立して、トリフルオロメチル基(CF基)、ジフルオロメチル基(CFH基)、モノフルオロメチル基(CHF基)、またはフッ素原子である。これらの中でも、R1aおよびR2aが、トリフルオロメチル基であることが好ましい。 In general formula (1a), R 1a and R 2a independently represent a trifluoromethyl group (CF 3 group), a difluoromethyl group (CF 2 H group), a monofluoromethyl group (CH 2 F group), or It is a fluorine atom. Among these, it is preferable that R 1a and R 2a are trifluoromethyl groups.
 RおよびRは、一般式(1)中のベンゼン環に結合する置換基を表す。
 一般式(1)で示される構造を与えるビスフェノールを工業的に入手し易い、または合成し易いことから、一般式(1)中、RおよびRは、独立して、炭素数が1~6の炭化水素基、ハロゲン化アルキル基またはハロゲン原子である。これらの中でも、塩素原子、臭素原子、メチル基、エチル基、フェニル基、シクロヘキシル基が好ましく、臭素原子、メチル基がより好ましい。
R 1 and R 2 represent a substituent bonded to the benzene ring in the general formula (1).
In the general formula (1), R 1 and R 2 are each independently a compound having a carbon number of 1 to 2 because the bisphenol giving the structure represented by the general formula (1) is industrially easily available or easily synthesized. 6 hydrocarbon group, halogenated alkyl group or halogen atom. Among these, a chlorine atom, a bromine atom, a methyl group, an ethyl group, a phenyl group, and a cyclohexyl group are preferable, and a bromine atom and a methyl group are more preferable.
 pおよびqは、それぞれベンゼン環に結合する置換基RおよびRの数を表し、独立して、0~4の整数である。例えば、pおよびqが0の場合、一般式(1)中におけるベンゼン環に結合するすべての水素原子がRおよびRに置換されていないことを示す。pが2~4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。qが2~4の場合、複数のRは、互いに同じ置換基でもよく、異なる置換基でもよい。一般式(1)で示される構造を与えるビスフェノールを工業的に入手し易い、または合成し易いことから、pおよびqは0であるのが好ましい。 p and q represent the number of substituents R 1 and R 2 bonded to the benzene ring, respectively, and are each independently an integer of 0 to 4. For example, if p and q is 0, indicating that all of the hydrogen atoms bonded to the benzene ring in the general formula (1) is not substituted with R 1 and R 2. When p is 2 to 4, a plurality of R 1 may be the same or different from each other. When q is 2 to 4, the plurality of R 2 may be the same or different from each other. Since bisphenol giving the structure represented by the general formula (1) is easily industrially available or easily synthesized, p and q are preferably 0.
 一般式(1)で示される構造を与えるビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン〔BisAF〕、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(テトラメチル-4-ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられ、中でも、工業的に入手しやすい点から、BisAFがより好ましい。BisAFを用いる場合、一般式(1)において、p=0、q=0、X=-C(CF-である。 Examples of the bisphenol that gives the structure represented by the general formula (1) include 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF], 2,2-bis (3,5-dimethyl-4-hydroxy). Phenyl) hexafluoropropane and 2,2-bis (tetramethyl-4-hydroxyphenyl) hexafluoropropane. BisAF is more preferable from the viewpoint of industrial availability. In the case of using BisAF, in the general formula (1), p = 0, q = 0, and X = —C (CF 3 ) 2 —.
 本発明においては、ビスフェノール残基は、本発明の効果を損なわない範囲で、一般式(1)の構造を与えるビスフェノール以外のビスフェノールの残基を含んでいてもよい。そのような残基を与えるビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン〔BisA〕、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン〔BisC〕、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン〔BCF〕、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)メタン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)ヘキサンが挙げられる。 In the present invention, the bisphenol residue may contain a residue of bisphenol other than bisphenol which gives the structure of the general formula (1) as long as the effects of the present invention are not impaired. Examples of bisphenols that give such residues include 2,2-bis (4-hydroxyphenyl) propane [BisA], 2,2-bis (3-methyl-4-hydroxyphenyl) propane [BisC], 9 , 9-bis (4-hydroxy-3-methylphenyl) fluorene [BCF], 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane, bis (3,5-dimethyl) 4-hydroxyphenyl) methane, bis (3-methyl-4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) hexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) Hexane is mentioned.
 水蒸気透過性の点から、ビスフェノール残基全体に対して一般式(1)で示されるビスフェノール残基が占める割合は、80モル%以上とすることが好ましく、100モル%であることがより好ましい。 From the viewpoint of water vapor permeability, the ratio of the bisphenol residue represented by the general formula (1) to the entire bisphenol residue is preferably 80 mol% or more, and more preferably 100 mol%.
 芳香族ジカルボン酸残基は、一般式(2)で示される構造を有することが必要である。 The aromatic dicarboxylic acid residue needs to have a structure represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
 一般式(2)で示される構造を有することで、耐熱性を向上することができる。 The heat resistance can be improved by having the structure represented by the general formula (2).
 一般式(2)で示される構造を与える芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸が挙げられる。反応性の高さの点から、テレフタル酸およびイソフタル酸を併用するのが好ましい。樹脂溶液の溶液安定性の点から、テレフタル酸残基とイソフタル酸残基のモル比:テレフタル酸/イソフタル酸は、好ましくは90/10~10/90、より好ましくは30/70~70/30である。 Examples of the aromatic dicarboxylic acid that gives the structure represented by the general formula (2) include terephthalic acid, isophthalic acid, and orthophthalic acid. From the viewpoint of high reactivity, it is preferable to use terephthalic acid and isophthalic acid in combination. From the viewpoint of the stability of the resin solution, the molar ratio of terephthalic acid residue to isophthalic acid residue: terephthalic acid / isophthalic acid is preferably 90/10 to 10/90, more preferably 30/70 to 70/30. It is.
 本発明においては、芳香族ジカルボン酸残基は、本発明の効果を損なわない範囲で、一般式(2)の構造を与える芳香族ジカルボン酸以外の芳香族ジカルボン酸の残基を含んでいてもよい。そのような残基を与える芳香族ジカルボン酸としては、例えば、2,6-ナフタレンジカルボン酸、ジフェン酸ビス(p-カルボキシフェニル)アルカン、ジフェニルエーテル-2,2’-ジカルボン酸、ジフェニルエーテル-2,3’-ジカルボン酸、ジフェニルエーテル-2,4’-ジカルボン酸、ジフェニルエーテル-3,3’-ジカルボン酸、ジフェニルエーテル-3,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸等の芳香族ジカルボン酸が挙げられる。 In the present invention, the aromatic dicarboxylic acid residue may contain a residue of an aromatic dicarboxylic acid other than the aromatic dicarboxylic acid that gives the structure of the general formula (2) as long as the effects of the present invention are not impaired. Good. Examples of aromatic dicarboxylic acids that give such residues include 2,6-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) alkane diphenate, diphenyl ether-2,2′-dicarboxylic acid, diphenyl ether-2,3 Aromatic dicarboxylic acids such as' -dicarboxylic acid, diphenyl ether-2,4'-dicarboxylic acid, diphenyl ether-3,3'-dicarboxylic acid, diphenyl ether-3,4'-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid Is mentioned.
 本発明の樹脂Aは、一般式(3)で示されるオルガノシロキサン残基を有することが必要である。 The resin A of the present invention needs to have an organosiloxane residue represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
 一般式(3)で示されるオルガノシロキサン残基を有することで、水蒸気透過性および密着性を付与することができる。 By having an organosiloxane residue represented by the general formula (3), water vapor permeability and adhesion can be imparted.
 一般式(3)で示される構造を与えるオルガノシロキサンは工業的に入手し易い、または合成し易いことから、一般式(3)中、RおよびRは、独立して、脂肪族基および/または芳香族基である。RおよびRは、窒素原子または酸素原子を含有してもよい。RおよびRは、一般式(6)で表される二価基を含むのが好ましい。これらの二価基は、ケイ素原子と直接結合していてもよく、芳香族基および/または炭素数が1~5の脂肪族基を介してケイ素原子と結合していてもよい。 In the general formula (3), R 3 and R 4 are independently an aliphatic group and an organosiloxane that gives a structure represented by the general formula (3) is industrially available or easily synthesized. / Or an aromatic group. R 3 and R 4 may contain a nitrogen atom or an oxygen atom. R 3 and R 4 preferably contain a divalent group represented by the general formula (6). These divalent groups may be directly bonded to the silicon atom, or may be bonded to the silicon atom via an aromatic group and / or an aliphatic group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
 汎用性が高いことから、RおよびRは、一般式(7)または(8)で示される置換基であるのが好ましい。一般式(3)において、一般式(7)中の-O-または一般式(8)中の-NH-が末端となるように一般式(7)または(8)の置換基が配される。 Since versatility is high, R 3 and R 4 are preferably a substituent represented by the general formula (7) or (8). In the general formula (3), the substituent of the general formula (7) or (8) is arranged so that —O— in the general formula (7) or —NH— in the general formula (8) is terminated. .
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
 一般式(7)中、R14は、炭素数が1~6の炭化水素基であり、R15は、炭素数が1~5の脂肪族基であり、wは、0~4の整数である。wが2~4の整数である場合、複数のR14は、互いに同じ置換基でもよく、異なる置換基でもよい。
 一般式(8)中、R16は、炭素数が1~5の脂肪族基である。
In the general formula (7), R 14 is a hydrocarbon group having 1 to 6 carbon atoms, R 15 is an aliphatic group having 1 to 5 carbon atoms, and w is an integer of 0 to 4 is there. When w is an integer of 2 to 4, the plurality of R 14 may be the same or different from each other.
In the general formula (8), R 16 is an aliphatic group having 1 to 5 carbon atoms.
 一般式(3)で示される構造を与えるオルガノシロキサンを工業的に入手し易い、または合成し易いことから、一般式(3)中、R、R、R、およびRは、独立して、脂肪族基または芳香族基である。R、R、R、およびRで用いられる芳香族基としては、例えば、フェニル基が挙げられる。R、R、R、およびRで用いられる脂肪族基の炭素数は、例えば1~6である。 In the general formula (3), R 5 , R 6 , R 7 , and R 8 are independently selected because the organosiloxane giving the structure represented by the general formula (3) is easily industrially available or easily synthesized. And an aliphatic group or an aromatic group. Examples of the aromatic group used in R 5 , R 6 , R 7 , and R 8 include a phenyl group. The aliphatic group used in R 5 , R 6 , R 7 , and R 8 has, for example, 1 to 6 carbon atoms.
 一般式(3)中、mは、オルガノシロキサン残基の繰り返し数を表す。オルガノシロキサンは繰り返し数の異なる成分の混合物であり、mは混合物の平均値を表す。mは5以上の数字であることが必要であり、10~250であることが好ましく、20~100であることがより好ましい。mが5以上であると、耐熱性や水蒸気透過性が十分に得られる。mが250以下であると、樹脂の機械的強度や溶解性が十分に得られる。
 例えば、環状ジメチルシロキサンと末端基の配合比を変えて反応させることで、一般式(3)中のmを調整することができる。
In general formula (3), m represents the number of repeating organosiloxane residues. Organosiloxane is a mixture of components having different repeating numbers, and m represents an average value of the mixture. m must be a number of 5 or more, preferably 10 to 250, and more preferably 20 to 100. When m is 5 or more, heat resistance and water vapor permeability are sufficiently obtained. When m is 250 or less, the mechanical strength and solubility of the resin can be sufficiently obtained.
For example, m in the general formula (3) can be adjusted by changing the compounding ratio of the cyclic dimethylsiloxane and the terminal group.
 樹脂Aの適度なハンドリング性の観点から、樹脂A中における一般式(3)で示されるオルガノシロキサン残基の含有量は、7質量%超かつ80質量%未満であることが好ましい。オルガノシロキサン残基の含有量が7質量%超であると、水蒸気透過性をより高めることができる。一方、オルガノシロキサン残基の含有量が80質量%未満であると、樹脂の機械的強度や耐熱性をより高めることができる。樹脂A中における一般式(3)で示されるオルガノシロキサン残基の含有量は、10~75質量%であることがより好ましく、10~60質量%であることがさらに好ましく、10~25質量%であることが特に好ましい。 From the viewpoint of moderate handling properties of the resin A, the content of the organosiloxane residue represented by the general formula (3) in the resin A is preferably more than 7% by mass and less than 80% by mass. When the content of the organosiloxane residue is more than 7% by mass, water vapor permeability can be further improved. On the other hand, when the content of the organosiloxane residue is less than 80% by mass, the mechanical strength and heat resistance of the resin can be further increased. The content of the organosiloxane residue represented by the general formula (3) in the resin A is more preferably 10 to 75% by mass, further preferably 10 to 60% by mass, and 10 to 25% by mass. It is particularly preferred that
 本発明の樹脂Aの、1,1,2,2-テトラクロロエタン中、温度25℃、濃度1g/dLで測定したインヘレント粘度は、0.9dL/g以下であることが必要であり、0.8dL/g以下が好ましく、0.7dL/g以下がより好ましい。
 インヘレント粘度が0.9dL/gを超えると、樹脂Aの溶液が泡立ち易くなり、塗膜やフィルムの表面平滑性が低下する。樹脂Aのインヘレント粘度は、例えば、後述する末端封止剤の添加量を変えることにより制御することができる。
The inherent viscosity of the resin A of the present invention measured in 1,1,2,2-tetrachloroethane at a temperature of 25 ° C. and a concentration of 1 g / dL must be 0.9 dL / g or less. 8 dL / g or less is preferable, and 0.7 dL / g or less is more preferable.
If the inherent viscosity exceeds 0.9 dL / g, the resin A solution tends to foam and the surface smoothness of the coating film or film decreases. The inherent viscosity of the resin A can be controlled, for example, by changing the amount of an end-capping agent to be described later.
 樹脂Aを180℃で10分間加熱する場合に樹脂Aから揮発するシロキサン含有成分の量(以下、シロキサン含有揮発成分と表記する。)は、700質量ppm以下であることが必要であり、500質量ppm以下であることが好ましく、200質量ppm以下であることがより好ましい。ここでいうシロキサン含有揮発成分は、樹脂Aの分解物または樹脂A中に含まれる一般式(1)で示される構造を有するシロキサン成分(共重合に寄与しない低分子のシロキサン成分)およびその分解物を含む。
 シロキサン含有揮発成分の量が700質量ppmを超えると、樹脂溶液を塗布して得られる塗膜の密着性が低下したり、塗膜やフィルムにおいて揮発成分のブリードアウトが発生したりする。また、破断伸度が経時的に低下する場合がある。シロキサン含有揮発成分の量は、例えば、界面重合法で得られた沈殿物の洗浄度合いにより調整することができる。
When the resin A is heated at 180 ° C. for 10 minutes, the amount of the siloxane-containing component that volatilizes from the resin A (hereinafter referred to as siloxane-containing volatile component) needs to be 700 mass ppm or less, and 500 mass. It is preferably not more than ppm, and more preferably not more than 200 mass ppm. The siloxane-containing volatile component mentioned here is a decomposition product of resin A or a siloxane component having a structure represented by general formula (1) contained in resin A (a low-molecular siloxane component that does not contribute to copolymerization) and its decomposition product. including.
When the amount of the siloxane-containing volatile component exceeds 700 ppm by mass, the adhesiveness of the coating film obtained by applying the resin solution is lowered, or bleeding out of the volatile component occurs in the coating film or film. In addition, the elongation at break may decrease over time. The amount of the siloxane-containing volatile component can be adjusted by, for example, the degree of washing of the precipitate obtained by the interfacial polymerization method.
 本発明の樹脂A中に残留するナトリウムは10質量ppm以下であることが望ましい。残留ナトリウム量が10質量ppmを超えると、樹脂Aの電気特性が低下する場合がある。 The sodium remaining in the resin A of the present invention is preferably 10 ppm by mass or less. If the amount of residual sodium exceeds 10 ppm by mass, the electrical properties of the resin A may deteriorate.
 樹脂Aの溶解性や樹脂溶液の安定性、電気的特性、および溶融成形時の着色の抑制の観点から、樹脂A中の末端フェノール性水酸基の濃度は30モル/トン以下であることが好ましく、10モル/トン以下であることがより好ましく、4モル/トン未満であることがさらに好ましい。 From the viewpoint of the solubility of the resin A, the stability of the resin solution, the electrical characteristics, and the suppression of coloring during melt molding, the concentration of the terminal phenolic hydroxyl group in the resin A is preferably 30 mol / ton or less, It is more preferably 10 mol / ton or less, and further preferably less than 4 mol / ton.
 樹脂A中の末端カルボキシル基の濃度は30モル/トン以下であることが好ましい。樹脂A中の末端カルボキシル基の濃度が30モル/トンを超えると、加水分解し易くなったり、溶融成形後に着色し易くなったり、樹脂の絶縁破壊電圧、耐アーク性、誘電率等の電気的特性が低下したりする場合がある。また、樹脂溶液の安定性が低下する。樹脂溶液の安定性が低下すると、時間の経過とともに、白濁したり、沈澱や不溶物が生じたり、増粘してゲル化したりする。その結果、塗膜の平滑性が低下し、塗膜の機械特性や電気的特性が低下する場合がある。樹脂A中の末端カルボキシル基の濃度が30モル/トンを超え、かつ樹脂A中の末端フェノール性水酸基の濃度が10モル/トンを超える場合、樹脂を溶媒に溶解させたときに、完全に溶解せずに、樹脂溶液中に不溶物が発生する場合がある。 The concentration of the terminal carboxyl group in the resin A is preferably 30 mol / ton or less. When the concentration of the terminal carboxyl group in the resin A exceeds 30 mol / ton, it becomes easy to hydrolyze or to be colored after melt molding, and the electrical breakdown voltage, arc resistance, dielectric constant, etc. of the resin The characteristics may deteriorate. In addition, the stability of the resin solution decreases. When the stability of the resin solution is lowered, it becomes cloudy with time, precipitates or insolubles are formed, and the resin is thickened and gelled. As a result, the smoothness of the coating film decreases, and the mechanical properties and electrical characteristics of the coating film may decrease. When the concentration of the terminal carboxyl group in the resin A exceeds 30 mol / ton and the concentration of the terminal phenolic hydroxyl group in the resin A exceeds 10 mol / ton, it is completely dissolved when the resin is dissolved in the solvent. Insoluble matter may be generated in the resin solution.
 本発明の樹脂Aは、本発明の効果を損なわない範囲で、脂肪族ジオールの残基、脂環族ジオールの残基、脂肪族ジカルボン酸の残基、脂環族ジカルボン酸の残基を含んでいてもよい。脂肪族ジオールとしては、例えば、エチレングリコール、プロピレングリコールが挙げられる。脂環族ジオールとしては、例えば、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,2-シクロヘキサンジオールが挙げられる。脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸が挙げられる。脂環族ジカルボン酸としては、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸が挙げられる。 The resin A of the present invention includes an aliphatic diol residue, an alicyclic diol residue, an aliphatic dicarboxylic acid residue, and an alicyclic dicarboxylic acid residue within a range not impairing the effects of the present invention. You may go out. Examples of the aliphatic diol include ethylene glycol and propylene glycol. Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,3-cyclohexanediol, and 1,2-cyclohexanediol. Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, adipic acid, and sebacic acid. Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylic acid.
 また、本発明は、樹脂Aを、樹脂A以外の他の樹脂と混合し、樹脂混合物として用いてもよい。他の樹脂は、例えば、機械的強度を向上させるために用いられる。他の樹脂としては、オルガノシロキサン残基を含まないポリアリレート樹脂やポリカーボネート樹脂などが挙げられる。オルガノシロキサン共重合樹脂と、他の樹脂との混合方法としては、例えば、溶融混練する方法、有機溶媒中に溶解して混合する方法が挙げられる。中でも、熱分解による色調低下がなく、均一に混合できることから、有機溶媒中に溶解して混合する方法が好ましい。 In the present invention, the resin A may be mixed with other resins other than the resin A and used as a resin mixture. Other resins are used, for example, to improve mechanical strength. Examples of other resins include polyarylate resins and polycarbonate resins that do not contain an organosiloxane residue. Examples of the mixing method of the organosiloxane copolymer resin and other resins include a melt kneading method and a method of dissolving and mixing in an organic solvent. Among them, a method of dissolving and mixing in an organic solvent is preferable because the color tone does not deteriorate due to thermal decomposition and can be mixed uniformly.
 樹脂A以外の他の樹脂としては、下記の一般式(4)または一般式(5)で示されるビスフェノール残基を含む樹脂(以下、樹脂Bと表記する。)が好ましい。樹脂の機械的強度がより高められるとともに、均一で安定な樹脂混合物の溶液が得られ、この樹脂混合物の溶液を用いることで均一な塗膜が形成される。また、樹脂混合物を含む溶液として用いた際の泡の発生が抑制され、耐熱性、密着性、表面平滑性、および水蒸気透過性に優れ、ブリードアウトの発生が抑制される塗膜またはフィルムを形成することができる。 As the resin other than the resin A, a resin containing a bisphenol residue represented by the following general formula (4) or general formula (5) (hereinafter referred to as a resin B) is preferable. While the mechanical strength of the resin is further increased, a uniform and stable resin mixture solution is obtained, and a uniform coating film is formed by using this resin mixture solution. In addition, the generation of foam when used as a solution containing a resin mixture is suppressed, forming a coating film or film that has excellent heat resistance, adhesion, surface smoothness, and water vapor permeability, and suppresses the occurrence of bleed out. can do.
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
 一般式(4)で示される構造を与えるビスフェノールを工業的に入手し易い、または合成し易いことから、一般式(4)中、RおよびR10は、独立して、炭素数が1~12の脂肪族基であり、rおよびsは1~4の整数である。 Since bisphenol giving the structure represented by the general formula (4) is easily industrially available or easy to synthesize, in the general formula (4), R 9 and R 10 each independently has 1 to 12 aliphatic groups, and r and s are integers of 1 to 4.
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 一般式(5)で示される構造を与えるビスフェノールを工業的に入手し易い、または合成し易いことから、一般式(5)中、R11、R12、およびR13は、独立して、炭素数が1~12の脂肪族基であり、tおよびuは0~4の整数であり、vは0~10の整数である。tが2~4の場合、複数のR11は、互いに同じ置換基でもよく、異なる置換基でもよい。uが2~4の場合、複数のR12は、互いに同じ置換基でもよく、異なる置換基でもよい。vが2~10の場合、複数のR13は、互いに同じ置換基でもよく、異なる置換基でもよい。 In the general formula (5), R 11 , R 12 , and R 13 are each independently carbon because the bisphenol giving the structure represented by the general formula (5) is industrially easily available or easily synthesized. It is an aliphatic group having a number of 1 to 12, t and u are integers of 0 to 4, and v is an integer of 0 to 10. When t is 2 to 4, the plurality of R 11 may be the same or different from each other. When u is 2 to 4, the plurality of R 12 may be the same or different from each other. When v is 2 to 10, the plurality of R 13 may be the same or different from each other.
 一般式(4)で示される構造を与えるビスフェノール成分としては、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン等が挙げられる。特に、機械的強度に優れることから、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパンが好ましい。 Examples of the bisphenol component that gives the structure represented by the general formula (4) include 2,2-bis (3-methyl-4-hydroxyphenyl) propane and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl). Examples include propane. In particular, 2,2-bis (3-methyl-4-hydroxyphenyl) propane is preferable because of excellent mechanical strength.
 一般式(5)で示される構造を与えるビスフェノール成分としては、機械的強度に優れることから、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンが好ましい。 As the bisphenol component giving the structure represented by the general formula (5), 1,1-bis (4-hydroxyphenyl) cyclohexane is preferable because of its excellent mechanical strength.
 樹脂Aの特性と樹脂Bの特性とがバランス良く得られることから、樹脂混合物における樹脂Aと樹脂Bの質量比は、樹脂A/樹脂B=1/9~5/5が好ましく、2/8~3/7がより好ましい。 Since the characteristics of the resin A and the characteristics of the resin B can be obtained with a good balance, the mass ratio of the resin A and the resin B in the resin mixture is preferably resin A / resin B = 1/9 to 5/5. ~ 3/7 is more preferred.
 本発明の樹脂Aの製造方法としては、例えば、界面重合法、溶液重合法、溶融重縮合法が用いられる。重合性、樹脂を用いて得られる成形物の外観、および溶液安定性の観点から、界面重合法を用いるのが好ましい。例えば、ピリジンなどのアミンを用いて溶液重合を行うと、カルボン酸価が高くなり、溶液安定性の低下する場合がある。 For example, an interfacial polymerization method, a solution polymerization method, or a melt polycondensation method is used as a method for producing the resin A of the present invention. From the viewpoint of polymerizability, appearance of a molded product obtained using a resin, and solution stability, it is preferable to use an interfacial polymerization method. For example, when solution polymerization is performed using an amine such as pyridine, the carboxylic acid value may increase and the solution stability may decrease.
 以下、界面重合法を用いた樹脂Aの製造方法の一例を示す。
 ビスフェノールおよび重合触媒を含むアルカリ水溶液(水相)に、オルガノシロキサンを有機溶媒に溶解させて得られたオルガノシロキサン溶液(有機相1)を混合する。さらに、この混合溶液に、二価カルボン酸ハライドを有機溶媒に溶解させて得られた二価カルボン酸ハライド溶液(有機相2)を添加する。この混合溶液を50℃以下の温度で1~8時間撹拌する。このようにして、ビスフェノール、二価カルボン酸ハライド、およびオルガノシロキサンを重合させる。
Hereinafter, an example of the manufacturing method of resin A using the interfacial polymerization method will be shown.
An organosiloxane solution (organic phase 1) obtained by dissolving organosiloxane in an organic solvent is mixed with an alkaline aqueous solution (aqueous phase) containing bisphenol and a polymerization catalyst. Furthermore, a divalent carboxylic acid halide solution (organic phase 2) obtained by dissolving a divalent carboxylic acid halide in an organic solvent is added to the mixed solution. The mixed solution is stirred at a temperature of 50 ° C. or lower for 1 to 8 hours. In this way, bisphenol, divalent carboxylic acid halide, and organosiloxane are polymerized.
 水相に用いるアルカリ水溶液としては、例えば、水酸化ナトリウムや水酸化カリウムの水溶液が挙げられる。 Examples of the alkaline aqueous solution used for the aqueous phase include aqueous solutions of sodium hydroxide and potassium hydroxide.
 重合触媒としては、例えば、第四級アンモニウム塩や第四級ホスホニウム塩が挙げられる。第四級アンモニウム塩としては、例えば、トリ-n-ブチルベンジルアンモニウムハライド、テトラ-n-ブチルアンモニウムハライド、トリメチルベンジルアンモニウムハライド、トリエチルベンジルアンモニウムハライドが挙げられる。第四級ホスホニウム塩としては、例えば、トリ-n-ブチルベンジルホスホニウムハライド、テトラ-n-ブチルホスホニウムハライド、トリメチルベンジルホスホニウムハライド、トリエチルベンジルホスホニウムハライドが挙げられる。中でも、重合性の点から、トリ-n-ブチルベンジルアンモニウムハライド、テトラ-n-ブチルアンモニウムハライド、トリ-n-ブチルベンジルホスホニウムハライド、テトラ-n-ブチルホスホニウムハライドが好ましい。 Examples of the polymerization catalyst include quaternary ammonium salts and quaternary phosphonium salts. Examples of the quaternary ammonium salt include tri-n-butylbenzylammonium halide, tetra-n-butylammonium halide, trimethylbenzylammonium halide, and triethylbenzylammonium halide. Examples of the quaternary phosphonium salt include tri-n-butylbenzylphosphonium halide, tetra-n-butylphosphonium halide, trimethylbenzylphosphonium halide, and triethylbenzylphosphonium halide. Of these, tri-n-butylbenzylammonium halide, tetra-n-butylammonium halide, tri-n-butylbenzylphosphonium halide, and tetra-n-butylphosphonium halide are preferable from the viewpoint of polymerizability.
 有機相に用いる有機溶媒としては、水と相溶せず、かつ樹脂Aが溶解可能な有機溶媒が好ましい。そのような有機溶剤としては、例えば、塩化メチレン、1,2-ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、1,1,2,2-テトラクロロエタン、1,1,1-トリクロロエタン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等のハロゲン化炭化水素系溶媒;トルエン、ベンゼン、キシレン等の芳香族系炭化水素;シクロヘキサノン、シクロヘプタノン等のケトン系溶媒が挙げられる。中でも、重合性の点から、塩化メチレン、クロロホルム、トルエン、o-キシレン、m-キシレン、p-キシレン、シクロヘキサノンが好ましい。 The organic solvent used in the organic phase is preferably an organic solvent that is incompatible with water and that can dissolve the resin A. Examples of such organic solvents include methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, o-dichlorobenzene. And halogenated hydrocarbon solvents such as m-dichlorobenzene and p-dichlorobenzene; aromatic hydrocarbons such as toluene, benzene and xylene; and ketone solvents such as cyclohexanone and cycloheptanone. Of these, methylene chloride, chloroform, toluene, o-xylene, m-xylene, p-xylene and cyclohexanone are preferable from the viewpoint of polymerizability.
 樹脂Aの末端を封止するために、アルカリ水溶液(水相)または有機相に末端封止剤を加えてもよい。末端封止剤は、特に限定はされないが、一価フェノール、一価酸クロリド、一価アルコール、一価カルボン酸であるのが好ましい。一価フェノールとしては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、p-tert-ブチルフェノール〔PTBP〕、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-メトキシフェノール、m-メトキシフェノール、p-メトキシフェノール、2,3,6-トリメチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2-フェニル-2-(4-ヒドロキシフェニル)プロパン、2-フェニル-2-(2-ヒドロキシフェニル)プロパン、2-フェニル-2-(3-ヒドロキシフェニル)プロパンが挙げられる。一価酸クロリドとしては、例えば、ベンゾイルクロリド、安息香酸クロリド、メタンスルホニルクロリド、フェニルクロロホルメートが挙げられる。一価アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、ペンタノール、ヘキサノール、ドデシルアルコール、ステアリルアルコール、ベンジルアルコール、フェネチルアルコールが挙げられる。一価カルボン酸としては、例えば、酢酸、プロピオン酸、オクタン酸、シクロヘキサンカルボン酸、安息香酸、トルイル酸、フェニル酢酸、p-tert-ブチル安息香酸、p-メトキシフェニル酢酸が挙げられる。中でも、反応性と熱安定性の点からPTBPが好ましい。 In order to seal the terminal of the resin A, a terminal sealing agent may be added to the alkaline aqueous solution (aqueous phase) or the organic phase. The end-capping agent is not particularly limited, but is preferably monohydric phenol, monohydric acid chloride, monohydric alcohol, or monohydric carboxylic acid. Examples of the monohydric phenol include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol [PTBP], o-phenylphenol, m-phenylphenol, p-phenylphenol, o-methoxyphenol. M-methoxyphenol, p-methoxyphenol, 2,3,6-trimethylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2-phenyl-2- (4-hydroxyphenyl) propane, 2-phenyl-2- (2-hydroxyphenyl) propane, 2-phenyl-2- (3-hydroxyphenyl) propane . Examples of the monovalent acid chloride include benzoyl chloride, benzoic acid chloride, methanesulfonyl chloride, and phenyl chloroformate. Examples of the monohydric alcohol include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, dodecyl alcohol, stearyl alcohol, benzyl alcohol, and phenethyl alcohol. Examples of the monovalent carboxylic acid include acetic acid, propionic acid, octanoic acid, cyclohexanecarboxylic acid, benzoic acid, toluic acid, phenylacetic acid, p-tert-butylbenzoic acid, and p-methoxyphenylacetic acid. Among these, PTBP is preferable from the viewpoints of reactivity and thermal stability.
 重合した後、樹脂溶液に酢酸を添加し、その後、樹脂溶液を水で繰返し洗浄する。洗浄に用いた水の電気伝導度が20μS/cm以下になるまで洗浄することにより、残留ナトリウムを10ppm以下にすることができる。 After polymerization, acetic acid is added to the resin solution, and then the resin solution is repeatedly washed with water. Residual sodium can be made 10 ppm or less by washing until the electric conductivity of the water used for washing becomes 20 μS / cm or less.
 重合の際に用いた有機溶媒の沸点以上の温度の水に樹脂溶液を加えて有機溶媒を飛散させることで樹脂Aを析出させることができる(温水法)。また、貧溶媒に樹脂溶液を加えて樹脂Aを析出させることができる(再沈殿法)。貧溶媒は、メタノール、エタノール、イソプロピルアルコール等のアルコール類や、ヘキサン等の炭化水素が好ましい。析出物をろ過等で単離し、その後、乾燥させることにより固形分を得ることができる。乾燥は、減圧下での乾燥や熱風を送り込みながらの乾燥が挙げられる。減圧下での乾燥の場合、乾燥温度は70℃超かつ170℃以下であるのが好ましい。一方、熱風を送り込みながらの乾燥の場合、乾燥温度は150℃以下とすることが好ましい。 Resin A can be precipitated by adding the resin solution to water having a temperature equal to or higher than the boiling point of the organic solvent used in the polymerization and dispersing the organic solvent (hot water method). Moreover, a resin solution can be added to a poor solvent to precipitate the resin A (reprecipitation method). The poor solvent is preferably an alcohol such as methanol, ethanol or isopropyl alcohol, or a hydrocarbon such as hexane. The precipitate can be isolated by filtration or the like, and then dried to obtain a solid content. Examples of the drying include drying under reduced pressure and drying while feeding hot air. In the case of drying under reduced pressure, the drying temperature is preferably more than 70 ° C and not more than 170 ° C. On the other hand, in the case of drying while supplying hot air, the drying temperature is preferably 150 ° C. or lower.
 本発明の樹脂Aや、樹脂Aと樹脂Bとの樹脂混合物を用いたフィルムは、流延法や溶融押出法により得ることができる。
 流延法では、樹脂A、または樹脂Aと樹脂Bの樹脂混合物を有機溶媒に溶解してなる樹脂溶液を基材に塗布し、乾燥して塗膜を形成する。本発明の樹脂Aまたは樹脂混合物を用いることで、算術平均粗さRaが5μm以下である、表面平滑性に優れた塗膜を形成することが可能である。
 その後、得られた塗膜を基材から剥離してフィルムを作製する。溶融押出法では、溶融樹脂をTダイ等から冷却ロールに押出し、押し出されたものを捲き取る。熱分解による色調低下を生じないことから、流延法を用いることが好ましい。
A film using the resin A of the present invention or a resin mixture of the resin A and the resin B can be obtained by a casting method or a melt extrusion method.
In the casting method, a resin solution obtained by dissolving resin A or a resin mixture of resin A and resin B in an organic solvent is applied to a substrate and dried to form a coating film. By using the resin A or the resin mixture of the present invention, it is possible to form a coating film having an arithmetic average roughness Ra of 5 μm or less and excellent in surface smoothness.
Then, the obtained coating film is peeled from the substrate to produce a film. In the melt extrusion method, a molten resin is extruded from a T die or the like onto a cooling roll, and the extruded material is scraped off. The casting method is preferably used because it does not cause a decrease in color tone due to thermal decomposition.
 流延法で用いる有機溶媒としては、例えば、上記の樹脂Aの製造過程における有機相に用いる有機溶媒が挙げられる。 Examples of the organic solvent used in the casting method include organic solvents used in the organic phase in the production process of the resin A.
 流延法で用いる基材としては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ガラス板、ステンレス板が挙げられる。
 樹脂溶液の基材への塗布方法は、例えば、ワイヤーバーコーター、フィルムアプリケーター、はけやスプレーを用いた方法が挙げられる。また、塗布方法としては、例えば、グラビアロールコーティング法、スクリーン印刷法、リバースロールコーティング法、リップコーティング法、エアナイフコーティング法、カーテンフローコーティング法、浸漬コーティング法が挙げられる。
Examples of the substrate used in the casting method include a polyethylene terephthalate (PET) film, a polyimide film, a glass plate, and a stainless plate.
Examples of the method of applying the resin solution to the substrate include a method using a wire bar coater, a film applicator, brush or spray. Examples of the application method include a gravure roll coating method, a screen printing method, a reverse roll coating method, a lip coating method, an air knife coating method, a curtain flow coating method, and a dip coating method.
 本発明の樹脂Aや、樹脂Aと樹脂Bとの樹脂混合物は、例えば、液晶ディスプレイやプラズマディスプレイの基板および積層フィルム、透明導電フィルムの基板、電子写真感光体のバインダー樹脂、音響機器用振動板フィルム、コンデンサ等の電子部品用被膜に使用することができる。 The resin A or the resin mixture of the resin A and the resin B of the present invention includes, for example, substrates and laminated films for liquid crystal displays and plasma displays, substrates for transparent conductive films, binder resins for electrophotographic photosensitive members, and diaphragms for acoustic devices. It can be used for coatings for electronic parts such as films and capacitors.
 次に、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されない。
《製造例1》
 まず、下記の方法により、水相、有機相1、有機相2を作製した。
 攪拌装置を備えた反応容器中にて、ビスフェノールとして2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン〔BisAF〕100質量部と、末端封止剤としてp-tert-ブチルフェノール〔PTBP〕2.22質量部と、アルカリとして水酸化ナトリウム〔NaOH〕26.0質量部と、重合触媒としてトリ-n-ブチルベンジルアンモニウムクロリド〔TBBAC〕の50質量%水溶液1.33質量部と、酸化防止剤としてハイドロサルファイトナトリウム〔SHS〕0.6質量部とを、水1650質量部に溶解させて、水相を得た。
Next, examples of the present invention will be specifically described, but the present invention is not limited to these examples.
<< Production Example 1 >>
First, an aqueous phase, an organic phase 1 and an organic phase 2 were prepared by the following method.
In a reaction vessel equipped with a stirrer, 100 parts by mass of 2,2-bis (4-hydroxyphenyl) hexafluoropropane [BisAF] as bisphenol and p-tert-butylphenol [PTBP] as end-capping agent2. 22 parts by weight, 26.0 parts by weight of sodium hydroxide [NaOH] as an alkali, 1.33 parts by weight of a 50% by weight aqueous solution of tri-n-butylbenzylammonium chloride [TBBAC] as a polymerization catalyst, and an antioxidant 0.6 parts by mass of sodium hydrosulfite [SHS] was dissolved in 1650 parts by mass of water to obtain an aqueous phase.
 また、塩化メチレンの500質量部に、下記の式(9)で示されるオルガノシロキサン〔ORGS〕(m=40)15.9質量部を溶解させて、有機相1を得た。 Further, 15.9 parts by mass of organosiloxane [ORGS] (m = 40) represented by the following formula (9) was dissolved in 500 parts by mass of methylene chloride to obtain an organic phase 1.
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
 さらに、塩化メチレンの900質量部に、芳香族ジカルボン酸クロリドとしてテレフタル酸クロリドとイソフタル酸クロリドとを50:50のモル比で混合したフタル酸クロリド(MPC)62.9質量部を溶解させて、有機相2を得た。 Furthermore, 62.9 parts by mass of phthalic acid chloride (MPC) obtained by mixing terephthalic acid chloride and isophthalic acid chloride as an aromatic dicarboxylic acid chloride in a molar ratio of 50:50 was dissolved in 900 parts by mass of methylene chloride. Organic phase 2 was obtained.
 上記で得られた水相、有機相1、有機相2を用いて、下記の方法により樹脂(P-1)を得た。
 有機相1を水相中に強撹拌下で添加した後、有機相2を、先に撹拌している水相と有機相1の混合溶液中に強攪拌下で添加し、15℃で2時間、界面重合反応させた。モル比は、BisAF:MPC:ORGS:PTBP:TBBAC:NaOH:=96.0:100.0:1.56:4.88:0.68:210であった。
 その後、攪拌を停止し、水相と有機相をデカンテーションして分離した。水相を除去した後、塩化メチレン500質量部と、純水2000質量部と、酢酸2質量部とを有機相に添加して反応を停止させ、15℃で30分間攪拌した。その後、有機相を、有機相に対して2倍の体積の純水で10回以上洗浄し、洗浄した水の電気伝導度が20μS/cm以下になった時点で、有機相をメタノール中に添加してポリマーを沈殿させた。沈殿させたポリマーを濾過し、120℃で真空乾燥した。得られた沈殿物(オルガノシロキサン共重合樹脂)10質量部を塩化メチレン300質量部に溶解し、その後、メタノール1000質量部を添加して再沈殿させた。再沈殿で得られたポリマーを回収し、減圧下、180℃、24時間乾燥する操作を2回繰り返した。このようにして、オルガノシロキサン共重合樹脂(P-1)を得た。オルガノシロキサン共重合樹脂中のオルガノシロキサン残基の含有量は10質量%であった。
Using the aqueous phase, organic phase 1 and organic phase 2 obtained above, a resin (P-1) was obtained by the following method.
After adding the organic phase 1 into the aqueous phase under strong stirring, the organic phase 2 is added into the mixed solution of the aqueous phase and organic phase 1 previously stirred under strong stirring at 15 ° C. for 2 hours. Then, an interfacial polymerization reaction was performed. The molar ratio was BisAF: MPC: ORGS: PTBP: TBBAC: NaOH: = 96.0: 100.0: 1.56: 4.88: 0.68: 210.
Then, stirring was stopped and the aqueous phase and the organic phase were decanted and separated. After removing the aqueous phase, 500 parts by mass of methylene chloride, 2000 parts by mass of pure water, and 2 parts by mass of acetic acid were added to the organic phase to stop the reaction, followed by stirring at 15 ° C. for 30 minutes. Thereafter, the organic phase is washed 10 times or more with pure water having a volume twice that of the organic phase, and when the electric conductivity of the washed water becomes 20 μS / cm or less, the organic phase is added to methanol. To precipitate the polymer. The precipitated polymer was filtered and dried in vacuum at 120 ° C. 10 parts by mass of the obtained precipitate (organosiloxane copolymer resin) was dissolved in 300 parts by mass of methylene chloride, and then 1000 parts by mass of methanol was added for reprecipitation. The operation of recovering the polymer obtained by reprecipitation and drying it under reduced pressure at 180 ° C. for 24 hours was repeated twice. In this way, an organosiloxane copolymer resin (P-1) was obtained. The content of the organosiloxane residue in the organosiloxane copolymer resin was 10% by mass.
《製造例2~8、19、21~30》
 芳香ジカルボン酸クロリド、ビスフェノール、オルガノシロキサン、および末端封止剤について、表1および2に示す種類およびモル比に変える以外、製造例1と同様の方法により樹脂(P-2)~(P-8)、(P-19)、(P-21)~(P-30)を得た。
<< Production Examples 2-8, 19, 21-30 >>
Resins (P-2) to (P-8) were prepared in the same manner as in Production Example 1, except that the aromatic dicarboxylic acid chloride, bisphenol, organosiloxane, and end-capping agent were changed to the types and molar ratios shown in Tables 1 and 2. ), (P-19), (P-21) to (P-30).
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000022
 
《製造例9》
 攪拌装置を備えた反応容器中に、ビスフェノール成分としてBisAF100質量部と、末端封止剤としてPTBP1.32質量部と、アルカリとしてNaOH25.35質量部と、重合触媒としてTBBACの50質量%水溶液1.28質量部と、酸化防止剤としてハイドロサルファイトナトリウム0.5質量部とを、水1450質量部に溶解させて、水相を得た。
<< Production Example 9 >>
In a reaction vessel equipped with a stirrer, 100 parts by mass of BisAF as a bisphenol component, 1.32 parts by mass of PTBP as an end-capping agent, 25.35 parts by mass of NaOH as an alkali, and a 50% by weight aqueous solution of TBBAC as a polymerization catalyst 1. 28 parts by mass and 0.5 parts by mass of hydrosulfite sodium as an antioxidant were dissolved in 1450 parts by mass of water to obtain an aqueous phase.
 また、水相とは別に、塩化メチレン1300質量部にMPC61.3質量部を溶解させて、有機相を得た。
 水相をあらかじめ攪拌しておき、有機相を水相中に強攪拌下で添加し、15℃で2時間、界面重合反応させた。モル比は、BisAF:MPC:PTBP:TBBAC:NaOH=98.52:100.0:2.96:0.67:210とした。それ以降の工程は、製造例1と同様の方法により樹脂(P-9)を得た。
Separately from the aqueous phase, 61.3 parts by mass of MPC were dissolved in 1300 parts by mass of methylene chloride to obtain an organic phase.
The aqueous phase was agitated in advance, and the organic phase was added to the aqueous phase with vigorous stirring, and an interfacial polymerization reaction was carried out at 15 ° C. for 2 hours. The molar ratio was BisAF: MPC: PTBP: TBBBAC: NaOH = 98.52: 100.0: 2.96: 0.67: 210. In the subsequent steps, a resin (P-9) was obtained in the same manner as in Production Example 1.
《製造例10》
 まず、下記の方法により、水相、有機相1、有機相2を作製した。
 攪拌装置を備えた反応容器中にて、二価フェノール成分としてBisAF100.0質量部(99.25モル部)と、末端封止剤としてPTBP0.99質量部(2.2モル部)と、アルカリとしてNaOH25.44質量部と、重合触媒としてTBBACの50質量%水溶液1.28質量部と、SHS0.53質量部とを、水1000質量部に溶解させて、水相を得た。
<< Production Example 10 >>
First, an aqueous phase, an organic phase 1 and an organic phase 2 were prepared by the following method.
In a reaction vessel equipped with a stirrer, 100.0 parts by mass (99.25 mol parts) of BisAF as a dihydric phenol component, 0.99 parts by mass (2.2 mol parts) of PTBP as an end-capping agent, and alkali As a polymerization catalyst, 25.44 parts by mass of NaOH, 1.28 parts by mass of 50% by weight aqueous solution of TBBAC as a polymerization catalyst, and 0.53 parts by mass of SHS were dissolved in 1000 parts by mass of water to obtain an aqueous phase.
 塩化メチレン200質量部に、上記式(9)で示されるオルガノシロキサン7.40質量部(0.75モル部)を溶解させて、有機相1を得た。 The organic phase 1 was obtained by dissolving 7.40 parts by mass (0.75 part by mol) of the organosiloxane represented by the above formula (9) in 200 parts by mass of methylene chloride.
 塩化メチレン400質量部に、テレフタル酸クロリドとイソテレフタルクロリドとを50:50のモル比で混合したフタル酸クロリド〔MPC〕61.51質量部(101.1モル部)を溶解させて、有機相2を得た。 In 400 parts by mass of methylene chloride, 61.51 parts by mass (101.1 parts by mol) of phthalic acid chloride [MPC] obtained by mixing terephthalic acid chloride and isoterephthalic chloride at a molar ratio of 50:50 was dissolved in an organic phase 2 was obtained.
 上記で得られた水相、有機相1、有機相2を用いて、下記の方法により樹脂(P-10)を得た。
 有機相1を水相中に強撹拌下で添加した後、有機相2を、先に撹拌している水相と有機相1の混合溶液中に強攪拌下で添加し、15℃で2時間、界面重合反応させた。
モル比は、BisAF:MPC:オルガノシロキサン:PTBP:TBBAC:NaOH:=99.25:101.1:0.75:2.2:0.68:210であった。
 その後、攪拌を停止し、水相と有機相をデカンテーションして分離した。水相を除去した後、塩化メチレン200質量部と、純水1000重量部と、酢酸1質量部とを有機相に添加して反応を停止させ、15℃で30分間攪拌した。この有機相を、有機相に対して2倍の体積の純水で5回洗浄した後、有機相をヘキサン中に添加してポリマーを沈殿させた。沈殿させたポリマーを分離回収した後、24時間減圧下にて50℃で乾燥した。このようにして、樹脂(P-10)を得た。
Using the aqueous phase, organic phase 1, and organic phase 2 obtained above, a resin (P-10) was obtained by the following method.
After adding the organic phase 1 into the aqueous phase under strong stirring, the organic phase 2 is added into the mixed solution of the aqueous phase and organic phase 1 previously stirred under strong stirring at 15 ° C. for 2 hours. Then, an interfacial polymerization reaction was performed.
The molar ratio was BisAF: MPC: organosiloxane: PTBP: TBBAC: NaOH: = 99.25: 101.1: 0.75: 2.2: 0.68: 210.
Then, stirring was stopped and the aqueous phase and the organic phase were decanted and separated. After removing the aqueous phase, 200 parts by mass of methylene chloride, 1000 parts by weight of pure water, and 1 part by mass of acetic acid were added to the organic phase to stop the reaction, and the mixture was stirred at 15 ° C. for 30 minutes. This organic phase was washed 5 times with pure water having a volume twice that of the organic phase, and then the organic phase was added into hexane to precipitate the polymer. The precipitated polymer was separated and recovered, and then dried at 50 ° C. under reduced pressure for 24 hours. In this way, a resin (P-10) was obtained.
《製造例11~18》
 芳香ジカルボン酸クロリド、ビスフェノール、および末端封止剤について、表1に示す種類およびモル比に変える以外、製造例9と同様の方法により樹脂(P-11)~(P-18)を得た。
<< Production Examples 11-18 >>
Resins (P-11) to (P-18) were obtained in the same manner as in Production Example 9, except that the aromatic dicarboxylic acid chloride, bisphenol, and terminal blocking agent were changed to the types and molar ratios shown in Table 1.
《製造例20》
 製造例10で得られた樹脂(P-10)の10質量部を塩化メチレン300質量部に溶解し、その後、メタノール1000質量部を添加してポリマーを再沈殿させた。再沈殿したポリマーを回収し、減圧下にて180℃で24時間乾燥した。この操作を3回繰り返した。このようにして、樹脂(P-20)を得た。
<< Production Example 20 >>
10 parts by mass of the resin (P-10) obtained in Production Example 10 was dissolved in 300 parts by mass of methylene chloride, and then 1000 parts by mass of methanol was added to reprecipitate the polymer. The reprecipitated polymer was collected and dried under reduced pressure at 180 ° C. for 24 hours. This operation was repeated three times. In this way, a resin (P-20) was obtained.
《製造例31》
 イソフタル酸クロリド37.56質量部(186モル当量)を含む塩化メチレン溶液を、BisAF61.58質量部(185モル当量)と、アミノプロピル末端ポリジメチルシロキサンオルガノシロキサン24.975質量部(1.85モル当量)と、ピリジンの36.6質量部(463モル当量)を含む塩化メチレン溶液に加え、混合溶液を得た。加える際の温度は10℃、加える時間は45分間とした。その後、その混合溶液を室温で2時間撹拌し、この混合溶液に、イソフタル酸クロリドの塩化メチレン溶液(濃度1重量%)を、粘度がもはや増加しなくなるまで滴下した後、1時間撹拌した。この溶液を塩化メチレンで希釈し、10%塩酸および蒸留水で洗浄し、メタノールを加え、樹脂を沈殿させた。濾過により得られた樹脂の沈殿物を、メタノールで洗い、100℃で減圧乾燥した。このようにして樹脂(P-31)を得た。
 上記で末端封鎖剤を加えなかったが、GPC(ゲル浸透クロマトグラフ分析法)で測定して得られるポリスチレン換算の重量平均分子量が67000であり、末端カルボン酸価が50モル/トンであった。
<< Production Example 31 >>
A methylene chloride solution containing 37.56 parts by mass (186 molar equivalents) of isophthalic acid chloride was mixed with 61.58 parts by mass of BisAF (185 molar equivalents) and 24.975 parts by mass of aminopropyl-terminated polydimethylsiloxane organosiloxane (1.85 mols). Equivalent) and a methylene chloride solution containing 36.6 parts by mass (463 molar equivalents) of pyridine to obtain a mixed solution. The addition temperature was 10 ° C., and the addition time was 45 minutes. Thereafter, the mixed solution was stirred at room temperature for 2 hours, and a methylene chloride solution of isophthalic acid chloride (concentration 1% by weight) was added dropwise to the mixed solution until the viscosity no longer increased, and then stirred for 1 hour. This solution was diluted with methylene chloride, washed with 10% hydrochloric acid and distilled water, and methanol was added to precipitate the resin. The resin precipitate obtained by filtration was washed with methanol and dried at 100 ° C. under reduced pressure. In this way, resin (P-31) was obtained.
Although the terminal blocking agent was not added above, the weight average molecular weight in terms of polystyrene obtained by measurement by GPC (gel permeation chromatography) was 67,000, and the terminal carboxylic acid value was 50 mol / ton.
《製造例32》
 製造例31で得られた樹脂(P-31)10質量部を塩化メチレン300質量部に溶解し、その後、メタノール1000質量部を添加してポリマーを再沈殿させた。再沈殿したポリマーを回収し、減圧下にて180℃で24時間乾燥した。この操作を3回繰り返した。このようにして、樹脂(P-32)を得た。
<< Production Example 32 >>
10 parts by mass of the resin (P-31) obtained in Production Example 31 was dissolved in 300 parts by mass of methylene chloride, and then 1000 parts by mass of methanol was added to reprecipitate the polymer. The reprecipitated polymer was collected and dried under reduced pressure at 180 ° C. for 24 hours. This operation was repeated three times. In this way, Resin (P-32) was obtained.
 以下、評価方法を示す。
〈評価方法〉
1.樹脂特性
(1-1)インヘレント粘度
 得られた樹脂を1,1,2,2-テトラクロロエタンに溶解し、濃度1g/dLの試料溶液を作製した。ウベローデ型粘度計を用い、25℃の温度にて試料溶液および溶媒の落下時間を測定し、以下の式を用いてインヘレント粘度を求めた。
 インヘレント粘度(dL/g)=
    [ln(試料溶液の落下時間/溶媒のみの落下時間)]/樹脂濃度(g/dL)
The evaluation method is shown below.
<Evaluation methods>
1. Resin Characteristics (1-1) Inherent Viscosity The obtained resin was dissolved in 1,1,2,2-tetrachloroethane to prepare a sample solution having a concentration of 1 g / dL. Using an Ubbelohde viscometer, the drop time of the sample solution and the solvent was measured at a temperature of 25 ° C., and the inherent viscosity was determined using the following equation.
Inherent viscosity (dL / g) =
[Ln (sample solution drop time / solvent only drop time)] / resin concentration (g / dL)
(1-2)ガラス転移温度
 得られた樹脂10mgを、DSC(示差走査熱量測定)装置(パーキンエルマー社製、DSC7)を用いて昇温速度10℃/分で昇温し、昇温曲線中のガラス転移に由来する2つの折曲点温度の中間値をガラス転移温度とした。ガラス転移温度が150℃以上である樹脂は、耐熱性に優れていると評価した。
(1-2) Glass transition temperature 10 mg of the obtained resin was heated at a heating rate of 10 ° C./min using a DSC (Differential Scanning Calorimetry) device (DSC7, manufactured by Perkin Elmer). An intermediate value between two bending point temperatures derived from the glass transition was taken as the glass transition temperature. A resin having a glass transition temperature of 150 ° C. or higher was evaluated as having excellent heat resistance.
(1-3)残留ナトリウム量
 ICP発光分光分析装置(サーモフィッシャーサイエンティフィック製、iCAP6500Duo)を用いて、検量線法に基づく定量分析により、得られた樹脂中の残留ナトリウム量を測定した。
(1-3) Residual Sodium Amount The amount of residual sodium in the obtained resin was measured by quantitative analysis based on a calibration curve method using an ICP emission spectroscopic analyzer (manufactured by Thermo Fisher Scientific, iCAP6500Duo).
(1-4)シロキサン含有揮発成分の量
 得られた樹脂10mg(試料)を、島津製作所製のダブルショットパイロライザPY-2020iDを用いて180℃で10分間加熱した後、ガスクロマトグラフ分析装置(アジレント・テクノロジー社製、6890N)を用いて分析し、揮発成分の量を求めた(カラム:UA5(MS/HT)-30M-0.25F、キャリアガス:ヘリウム)。揮発成分の量は、ヘキサデカンを標準試料として作成した検量線(シロキサン含有成分と標準物質ヘキサデカンとの面積比より定量換算)を用いて算出した。具体的には、濃度が公知のn-ヘキサデカン/ヘキサン溶液を作製し、この溶液500μLを試料カップに入れてヘキサンを揮発させた後、試料と同じ加熱条件でGC/MS法(ガスクロマトグラフィー質量分析法)にて測定を行った。n-ヘキサデカンのピーク面積と物質量の検量線を作成し、それを用いてシロキサン含有揮発成分のピーク面積に基づき定量を行った。
 なお、シロキサン含有揮発成分としては、シロキサン結合を含有する複数の化合物をMS(質量分析)データベースを利用することで特定し、装置としては、アジレント・テクノロジー社の5975Cを用いた。
(1-4) Amount of siloxane-containing volatile component 10 mg (sample) of the obtained resin was heated at 180 ° C. for 10 minutes using a double shot pyrolyzer PY-2020iD manufactured by Shimadzu Corporation, and then the gas chromatograph analyzer (Agilent・ Analysis using a technology company, 6890N), the amount of volatile components was determined (column: UA5 (MS / HT) -30M-0.25F, carrier gas: helium). The amount of the volatile component was calculated using a calibration curve (quantitative conversion based on the area ratio of the siloxane-containing component and the standard substance hexadecane) prepared using hexadecane as a standard sample. Specifically, an n-hexadecane / hexane solution with a known concentration is prepared, 500 μL of this solution is put into a sample cup, and hexane is volatilized. Then, the GC / MS method (gas chromatography mass is used under the same heating conditions as the sample. (Analysis method). A calibration curve of the peak area of n-hexadecane and the amount of substance was prepared, and quantified based on the peak area of the siloxane-containing volatile component.
As the siloxane-containing volatile component, a plurality of compounds containing siloxane bonds were identified by using an MS (mass spectrometry) database, and 5975C manufactured by Agilent Technologies was used as the apparatus.
(1-5)樹脂組成および樹脂中の末端フェノール性水酸基の濃度
 得られた樹脂を重水素化クロロホルムに溶解させ試料溶液を得た。試料溶液を用いてH-NMRスペクトルを測定した。測定には、高分解能核磁気共鳴装置(日本電子社製、ECA500 NMR)を用いた。その測定結果に基づき、共重合する各成分のピーク強度から樹脂組成、および樹脂中の末端フェノール性水酸基の濃度を求めた(分解能:500MHz、溶媒:重水素化クロロホルム、温度:25℃)。また、得られた樹脂組成から、樹脂中のオルガノシロキサン残基の含有量を求めた。
 その測定結果より、各樹脂について、得られた重合比率は仕込み比率と同じであることが確認された。
(1-5) Resin composition and concentration of terminal phenolic hydroxyl group in the resin The obtained resin was dissolved in deuterated chloroform to obtain a sample solution. A 1 H-NMR spectrum was measured using the sample solution. For the measurement, a high-resolution nuclear magnetic resonance apparatus (manufactured by JEOL Ltd., ECA500 NMR) was used. Based on the measurement results, the resin composition and the concentration of the terminal phenolic hydroxyl group in the resin were determined from the peak intensity of each component to be copolymerized (resolution: 500 MHz, solvent: deuterated chloroform, temperature: 25 ° C.). Moreover, content of the organosiloxane residue in resin was calculated | required from the obtained resin composition.
From the measurement results, it was confirmed that the polymerization ratio obtained for each resin was the same as the charge ratio.
(1-6)樹脂中の末端カルボキシル基の濃度
 得られた樹脂150mgを、ベンジルアルコール5mlに加温して溶解させた後、冷却し、さらにクロロホルム10mlを加え、混合し、試料溶液を得た。この試料溶液を用い、フェノールレッドを指示薬として0.1Nの水酸化カリウムベンジルアルコール溶液で滴定した。その滴定した値を用いて、樹脂1トン中に含まれるカルボキシル基のモル数を計算した。
(1-6) Concentration of terminal carboxyl group in resin 150 mg of the obtained resin was dissolved in 5 ml of benzyl alcohol by heating and then cooled, and further 10 ml of chloroform was added and mixed to obtain a sample solution. . This sample solution was used and titrated with 0.1N potassium hydroxide benzyl alcohol solution using phenol red as an indicator. Using the titrated value, the number of moles of carboxyl groups contained in 1 ton of resin was calculated.
2.樹脂溶液特性
(2-1)溶解性
 固形分が15質量%になるように樹脂とクロロホルムを混合し、25℃において24時間攪拌した後の樹脂溶液の状態を目視で判断した。
 樹脂溶液中にゲル物等の不溶物が発生せずに透明な溶液の得られたものを「良」、樹脂溶液状態にはなったが微量不溶物は浮遊し少し白濁しているものを「可」、樹脂が溶解せず樹脂溶液状態にならなかったものを「不可」とした。
2. Resin Solution Characteristics (2-1) Solubility Resin and chloroform were mixed so that the solid content was 15% by mass, and the state of the resin solution after stirring at 25 ° C. for 24 hours was judged visually.
`` Good '' is a transparent solution obtained without insoluble matter such as gels in the resin solution, while `` a little '' insoluble matter is floating and slightly cloudy. “Positive”, and those in which the resin was not dissolved and did not become a resin solution state were set to “impossible”
(2-2)溶液安定性
 上記(2-1)で「良」または「可」と判断された樹脂溶液について、25℃で3日間静置した後の樹脂溶液の状態を目視で判断した。
 溶液が均一な状態であり目視での透過性が変化しなかったものを「良」、分相やゲル化は見られないものの目視での透過性が少し低下したものを「可」、分相したものまたはゲル化したものを「不可」とした。
(2-2) Solution Stability For the resin solution judged “good” or “good” in the above (2-1), the state of the resin solution after standing at 25 ° C. for 3 days was judged visually.
“Good” when the solution is in a uniform state and the visual permeability does not change, “No” when no visual separation or gelation is observed, but “Perfect” when the visual permeability is slightly lowered. What was done or gelatinized was made "impossible".
(2-3)発泡性
 固形分が10質量%となるように樹脂とクロロホルムを混合し、樹脂を完全に溶解させ、樹脂溶液を作製した。得られた樹脂溶液を、ペイントシェーカー(東洋精機株式会社製)を用いて60分間振盪させ泡を発生させた。撹拌を停止してから1分間静置した後における発生した泡の高さを観察した。泡の高さが比較例4での泡の高さと同等以上である場合は「不可」、泡の高さが比較例4での泡の高さよりも低い場合は「良」とした。
(2-3) Foamability Resin and chloroform were mixed so that the solid content was 10% by mass, and the resin was completely dissolved to prepare a resin solution. The obtained resin solution was shaken for 60 minutes using a paint shaker (manufactured by Toyo Seiki Co., Ltd.) to generate bubbles. After the stirring was stopped, the height of the generated foam after standing for 1 minute was observed. When the height of the foam was equal to or higher than the height of the foam in Comparative Example 4, it was judged as “impossible”, and when the height of the foam was lower than the height of the foam in Comparative Example 4, it was judged as “Good”.
3.塗膜特性
(3-1)塗膜の作成
 固形分が12.5質量%になるように樹脂とクロロホルムを混合し、ペイントシェイカーで1時間攪拌した後、24時間静置し、樹脂溶液を得た。得られた樹脂溶液を、安田精機製作所社製のNo.542-ABオートマチックフィルムアプリケーターを用いてバーコーターで、乾燥した後の塗膜の厚みが100μmとなるように、ポリエチレンテレフタレートフィルム(ユニチカ社製エンブレット、厚み約120μm)の基材の表面(非コロナ面)に塗布した後、室温で乾燥させ、塗膜を得た。
3. Coating film characteristics (3-1) Preparation of coating film Resin and chloroform were mixed so that the solid content would be 12.5% by mass, stirred for 1 hour with a paint shaker, and then allowed to stand for 24 hours to obtain a resin solution. It was. The obtained resin solution was used as a No. manufactured by Yasuda Seiki Seisakusho. Surface of the substrate (non-corona) of polyethylene terephthalate film (Embret made by Unitika Co., Ltd., thickness of about 120 μm) so that the thickness of the coated film after drying with a bar coater using a 542-AB automatic film applicator is 100 μm. Surface) and dried at room temperature to obtain a coating film.
(3-2)塗膜の密着性
 (3-1)において、乾燥途中に塗膜が基板から一部でも剥離したものを密着性「有」、乾燥途中に塗膜が基板から全く剥離しなかったものを密着性「無」と評価した。
(3-2) Adhesiveness of the coating film In (3-1), if the coating film partially peels off from the substrate during drying, the adhesion is “Yes”, and the coating film does not peel off from the substrate during drying. The adhesive was evaluated as having no adhesion.
4.フィルム特性
(4-1)フィルムの作製
 固形分が12.5質量%になるように樹脂とクロロホルムを混合し、ペイントシェイカーで1時間攪拌した後、24時間静置し、樹脂溶液を得た。得られた樹脂溶液を、安田精機製作所社製のNo.542-ABオートマチックフィルムアプリケーターを用いてバーコーターで、乾燥した後の塗膜の厚みが100μmとなるように、PETフィルムからなる基材の表面に塗布した後、80℃で乾燥させ、塗膜を得た。その後、塗膜を室温まで冷却した後、基材から塗膜を剥離し、フィルムを得た。得られたフィルムを、減圧下、120℃で24時間乾燥した。このようにして、厚み100μmのフィルムを作製した。
4). Film Characteristics (4-1) Production of Film A resin and chloroform were mixed so that the solid content was 12.5% by mass, stirred for 1 hour with a paint shaker, and then allowed to stand for 24 hours to obtain a resin solution. The obtained resin solution was used as a No. manufactured by Yasuda Seiki Seisakusho. After coating the surface of the substrate made of PET film so that the thickness of the coating film after drying with a bar coater using a 542-AB automatic film applicator is 100 μm, the coating film is dried at 80 ° C. Obtained. Then, after cooling a coating film to room temperature, the coating film was peeled from the base material and the film was obtained. The obtained film was dried under reduced pressure at 120 ° C. for 24 hours. In this way, a film having a thickness of 100 μm was produced.
(4-2)引張弾性率、引張破断強度
 (4-1)で得られたフィルムについて、JIS K 7127に準拠してModel 2020(インテスコ社製)を用いて引張弾性率、引張破断強度を測定した。
(4-2) Tensile modulus and tensile breaking strength The film obtained in (4-1) was measured for tensile modulus and tensile breaking strength using Model 2020 (manufactured by Intesco) according to JIS K 7127. did.
(4-3)水蒸気透過度
 (4-1)で得られたフィルムについてボイドのない部分を選び、JIS K 7129に準拠し、PERMATRAN-W 3/31透湿度測定装置(mocon社製)を用い、40℃で100%RHの条件下で水蒸気透過度を測定した。
(4-3) Water Vapor Permeability Using the film obtained in (4-1), a non-voided portion was selected and a PERMATRAN-W 3/31 moisture permeability measuring device (manufactured by mocon) was used according to JIS K 7129. The water vapor permeability was measured under the conditions of 100% RH at 40 ° C.
(4-4)ブリードアウト
 (4-1)で得られたフィルムを、100℃の環境下にて24時間放置した。このとき、フィルム表面に液状物が付着していたものをブリードアウト「有」とし、フィルム表面に液状物が付着していなかったものをブリードアウト「無」と評価した。液状物が付着の有無は、フィルム表面を目視することおよび指で触ることにより判定した。
(4-4) Bleed out The film obtained in (4-1) was allowed to stand in an environment of 100 ° C. for 24 hours. At this time, the case where the liquid substance was adhered to the film surface was evaluated as “bleeded out”, and the case where the liquid substance was not adhered to the film surface was evaluated as “no”. The presence or absence of adhesion of the liquid was determined by visually observing the film surface and touching it with a finger.
(4-5)表面粗さ
 1時間攪拌した後の静置時間を30分に変更した以外、(4-1)と同様の方法によりフィルムを作製した。
 剥離したフィルムの基材と接していた面と反対の面について、JIS B 0601に準拠し、ミツトヨ社製の表面粗さ計SJ-400を用いて算術平均粗さRaを測定した。算術平均粗さRaが0.5μm以下であるフィルムを、表面平滑性に優れていると評価した。
(4-5) Surface roughness A film was produced in the same manner as in (4-1) except that the standing time after stirring for 1 hour was changed to 30 minutes.
The surface of the peeled film opposite to the surface in contact with the substrate was measured for arithmetic average roughness Ra using a surface roughness meter SJ-400 manufactured by Mitutoyo Co., Ltd. according to JIS B 0601. A film having an arithmetic average roughness Ra of 0.5 μm or less was evaluated as having excellent surface smoothness.
(4-6)ボイド
 (4-5)で得られた枚葉状フィルム(17cm×25cm)について、四方向のそれぞれ周辺から端部35%を除いたフィルム中央部分(5cm×8cm)を目視で観察した。ボイドが観察された場合はボイド「有」、ボイドが観察されなかった場合はボイド「無」と評価した。
(4-6) Void With respect to the sheet-like film (17 cm × 25 cm) obtained in (4-5), the central portion of the film (5 cm × 8 cm) excluding 35% of the edge from the periphery in each of the four directions was visually observed. did. When a void was observed, it was evaluated as “existing”, and when no void was observed, it was evaluated as “no”.
《実施例1~15》
 樹脂(P-1)~(P-6)、(P-21)~(P-28)、(P-32)を用いて、各種特性を評価した。その評価結果を表3および4に示す。
<< Examples 1 to 15 >>
Various properties were evaluated using the resins (P-1) to (P-6), (P-21) to (P-28), and (P-32). The evaluation results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000024
 
《比較例1~8、10~12》
 樹脂(P-7)~(P-12)、(P-19)~(P-20)、(P-29)~(P-31)を用いて、各種特性を評価した。その評価結果を表3および4に示す。
<< Comparative Examples 1-8, 10-12 >>
Various properties were evaluated using the resins (P-7) to (P-12), (P-19) to (P-20), and (P-29) to (P-31). The evaluation results are shown in Tables 3 and 4.
《比較例9》
 固形分が12.5質量%になるように、製造例10で得られた比較例4の樹脂(P-10)樹脂とクロロホルムを混合し、ペイントシェイカーで1時間攪拌した後、24時間静置し、樹脂溶液を得た。揮発成分が多い場合を評価するため、便宜上、この樹脂溶液に、化学式(9)で示されるオルガノシロキサン(m=40)を、樹脂(P-10)の固形分に対して1質量%添加した。
 比較例9では、上記で添加したオルガノシロキサンを含む樹脂(P-10)(以下、樹脂(P-10)’と表記する。)として樹脂の特性を評価した。上記で添加した、共重合に寄与しないオルガノシロキサンもシロキサン揮発成分に相当すると考えると、樹脂(P-10)’中のシロキサン含有揮発成分の量は3500ppmであった。
 得られた樹脂溶液を用いて、樹脂溶液、塗膜、およびフィルムの特性を評価した。その評価結果を表3に示す。
<< Comparative Example 9 >>
The resin (P-10) resin of Comparative Example 4 obtained in Production Example 10 and chloroform were mixed so that the solid content was 12.5% by mass, stirred for 1 hour with a paint shaker, and then allowed to stand for 24 hours. Thus, a resin solution was obtained. In order to evaluate the case where there are many volatile components, for convenience, 1% by mass of organosiloxane (m = 40) represented by the chemical formula (9) was added to the resin solution with respect to the solid content of the resin (P-10). .
In Comparative Example 9, the characteristics of the resin as a resin (P-10) containing the organosiloxane added above (hereinafter referred to as resin (P-10) ′) were evaluated. Considering that the organosiloxane added above and not contributing to copolymerization also corresponds to the siloxane volatile component, the amount of the siloxane-containing volatile component in the resin (P-10) ′ was 3500 ppm.
Using the obtained resin solution, the properties of the resin solution, the coating film, and the film were evaluated. The evaluation results are shown in Table 3.
《実施例16》
 オルガノシロキサン残基を含む樹脂(P-6)4.5質量部と、オルガノシロキサン残基を含まない他の樹脂(P-12)10.5質量部と、クロロホルム85質量部とを、25℃において24時間攪拌して、樹脂溶液を作製した。
得られた樹脂溶液を用いて、樹脂溶液、塗膜、およびフィルムの特性を評価した。その評価結果を表5に示す。
Example 16
A resin containing an organosiloxane residue (P-6) (4.5 parts by mass), another resin (P-12) containing no organosiloxane residue (10.5 parts by mass), and chloroform (85 parts by mass) The mixture was stirred for 24 hours to prepare a resin solution.
Using the obtained resin solution, the properties of the resin solution, the coating film, and the film were evaluated. The evaluation results are shown in Table 5.
《実施例17~27および比較例13》
 オルガノシロキサン残基を含む樹脂と、オルガノシロキサン残基を含まない他の樹脂との混合樹脂組成を表5に示すように変更する以外は、実施例16と同様に、樹脂溶液を作製した。
 得られた樹脂溶液を用いて、樹脂溶液、塗膜、およびフィルムの特性を評価した。その評価結果を表5に示す。
<< Examples 17 to 27 and Comparative Example 13 >>
A resin solution was prepared in the same manner as in Example 16 except that the mixed resin composition of a resin containing an organosiloxane residue and another resin not containing an organosiloxane residue was changed as shown in Table 5.
Using the obtained resin solution, the properties of the resin solution, the coating film, and the film were evaluated. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000025
 
 実施例1~15は、耐熱性や水蒸気透過度は十分であった。
 オルガノシロキサン共重合樹脂中における一般式(3)で示されるオルガノシロキサン残基の含有量が10~25質量%である実施例1~4は、ガラス転移温度が実施例5よりも高く、引張破断強度が実施例6よりも高かった。
 実施例1~15は、インヘレント粘度が0.9dL/g以下であったため、フィルム表面の算術平均粗さRaが比較例2よりも小さかった。
 実施例1~15は、樹脂Aを含む溶液において泡の発生が抑制され、塗膜の密着性に優れ、フィルムにおいてボイドおよびブリードアウトは発生しなかった。
 実施例15は、末端フェノール性水酸基の濃度が15モル/トン、末端カルボキシル基の濃度が40モル/トンであったため、樹脂を有機溶媒に溶解した際、大部分の樹脂は有機溶媒中に溶解して溶液状態にはなったものの、樹脂溶液中に微量の不溶物が浮遊し、樹脂溶液が少し白濁した。
Examples 1 to 15 had sufficient heat resistance and water vapor permeability.
In Examples 1 to 4 in which the content of the organosiloxane residue represented by the general formula (3) in the organosiloxane copolymer resin is 10 to 25% by mass, the glass transition temperature is higher than that in Example 5, and the tensile fracture The strength was higher than in Example 6.
In Examples 1 to 15, since the inherent viscosity was 0.9 dL / g or less, the arithmetic average roughness Ra of the film surface was smaller than that of Comparative Example 2.
In Examples 1 to 15, the generation of bubbles was suppressed in the solution containing the resin A, the adhesiveness of the coating film was excellent, and voids and bleedout did not occur in the film.
In Example 15, since the concentration of the terminal phenolic hydroxyl group was 15 mol / ton and the concentration of the terminal carboxyl group was 40 mol / ton, most of the resin was dissolved in the organic solvent when the resin was dissolved in the organic solvent. Although it became a solution state, a trace amount of insoluble matter floated in the resin solution, and the resin solution became slightly cloudy.
 実施例16~19、22、23は、樹脂Aと樹脂Bとの混合物であったため、3日間樹脂溶液が分相することなく、溶液安定性が良好であった。また、得られたフィルムは引張弾性率、引張破断強度ともに、実施例1~6よりも高く、機械的強度に優れていた。
 実施例20、21、24~27は、樹脂Aと樹脂Bではない他の樹脂との混合物であったため、得られたフィルムは引張弾性率、引張破断強度ともに、実施例1~6よりも高く、機械的強度に優れていたが、3日間静置後の樹脂溶液は分相しており、溶液安定性が悪かった。
 実施例16~27は、樹脂溶液として用いた場合に泡の発生が抑制され、塗膜の密着性に優れ、フィルムにおいてボイドおよびブリードアウトは発生しなかった。実施例16~27は、表面平滑性、水蒸気透過性に優れたフィルムが得られた。
Since Examples 16 to 19, 22, and 23 were a mixture of Resin A and Resin B, the resin solution did not undergo phase separation for 3 days, and the solution stability was good. The obtained film was higher in both tensile modulus and tensile breaking strength than Examples 1 to 6, and was excellent in mechanical strength.
Since Examples 20, 21, and 24-27 were a mixture of Resin A and another resin that was not Resin B, the resulting films were higher in both tensile modulus and tensile breaking strength than Examples 1-6. Although excellent in mechanical strength, the resin solution after standing for 3 days was phase-separated, and the solution stability was poor.
In Examples 16 to 27, when used as a resin solution, the generation of bubbles was suppressed, the adhesion of the coating film was excellent, and voids and bleedout did not occur in the film. In Examples 16 to 27, films excellent in surface smoothness and water vapor permeability were obtained.
 比較例1は、ビスフェノール成分にフッ素原子が含まれていなかったため、フィルムの水蒸気透過度が低下した。
 比較例3は、樹脂中の一般式(3)で示されるオルガノシロキサン残基を含まないため、フィルムの水蒸気透過度が低下した。
 比較例5、6は、ビスフェノール成分にフッ素原子が含まれておらず、オルガノシロキサン残基も含まれていなかったため、フィルムの水蒸気透過度が低下した。
In Comparative Example 1, since the fluorine atom was not contained in the bisphenol component, the water vapor permeability of the film was lowered.
Since Comparative Example 3 did not contain the organosiloxane residue represented by the general formula (3) in the resin, the water vapor permeability of the film was lowered.
In Comparative Examples 5 and 6, since the fluorine atom was not contained in the bisphenol component and the organosiloxane residue was not contained, the water vapor permeability of the film was lowered.
 比較例2、4、8では、インヘレント粘度が0.9dL/g超であったため、樹脂を含む溶液では泡が発生し、フィルムの表面平滑性が低下した。また、フィルムにてボイドが発生し、塗膜の基材との密着性が低下した。
 比較例4および12は、シロキサン含有揮発成分の量が700質量ppm超であったため、ブリードアウトを生じた。
 比較例9は、インヘレント粘度が0.9dL/g超であるが、消泡剤として作用するシロキサン揮発成分の量が3500質量ppmと非常に多いため、樹脂溶液の発泡が抑制された。しかし、比較例9は、シロキサン含有揮発成分の量が700質量ppm超であったため、ブリードアウトを生じた。
In Comparative Examples 2, 4, and 8, since the inherent viscosity was more than 0.9 dL / g, bubbles were generated in the solution containing the resin, and the surface smoothness of the film was lowered. In addition, voids were generated in the film, and the adhesion of the coating film to the substrate was reduced.
In Comparative Examples 4 and 12, since the amount of the siloxane-containing volatile component was more than 700 ppm by mass, bleeding out occurred.
In Comparative Example 9, although the inherent viscosity is more than 0.9 dL / g, the amount of the siloxane volatile component acting as an antifoaming agent is as large as 3500 mass ppm, so that foaming of the resin solution was suppressed. However, in Comparative Example 9, since the amount of the siloxane-containing volatile component was more than 700 ppm by mass, bleeding out occurred.
 比較例7は、フッ素原子を含まなかったため、フィルムの水蒸気透過度が低下した。インヘレント粘度は0.9dL/gであったが、一般式(1)におけるXがフッ素原子を含まないフルオレン基であるため、樹脂溶液として用いた場合に泡が発生し、塗膜の基材との密着性も低かった。また、比較例7のフィルムでは、ボイドが発生し、表面平滑性が低下した。
 比較例10は、一般式(9)で示されるオルガノシロキサンにおいてm=2であったため、耐熱性および水蒸気透過性が低下した。
 比較例11は、芳香族ジカルボン酸クロリドとしてDSDCを用いたところ、重合反応が進まず、重合中に固体が析出し、樹脂が得られなかった。
 比較例13は、オルガノシロキサン残基を含む樹脂が一般式(1)で示されるビスフェノール残基を含まないため、実施例16~27のフィルムに比べて水蒸気透過度が低かった。
Since the comparative example 7 did not contain a fluorine atom, the water vapor permeability of the film was lowered. Although the inherent viscosity was 0.9 dL / g, since X in the general formula (1) is a fluorene group containing no fluorine atom, bubbles are generated when used as a resin solution. The adhesion was also low. Moreover, in the film of Comparative Example 7, voids were generated and the surface smoothness was lowered.
In Comparative Example 10, since m = 2 in the organosiloxane represented by the general formula (9), heat resistance and water vapor permeability were lowered.
In Comparative Example 11, when DSDC was used as the aromatic dicarboxylic acid chloride, the polymerization reaction did not proceed, a solid precipitated during the polymerization, and no resin was obtained.
In Comparative Example 13, since the resin containing the organosiloxane residue does not contain the bisphenol residue represented by the general formula (1), the water vapor permeability was lower than that of the films of Examples 16 to 27.

Claims (13)

  1.  一般式(1)で示されるビスフェノール残基、一般式(2)で示される芳香族ジカルボン酸残基、および一般式(3)で示されるオルガノシロキサン残基を含有する樹脂であって、
     前記樹脂の1,1,2,2-テトラクロロエタン中、温度25℃、濃度1g/dLで測定したインヘレント粘度が0.90dL/g以下であり、
     前記樹脂を180℃で10分間加熱する場合に当該樹脂より揮発するシロキサン含有成分の量が700質量ppm以下であることを特徴とするオルガノシロキサン共重合樹脂。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、RおよびRは、独立して、炭素数が1~6の炭化水素基、ハロゲン化アルキル基、またはハロゲン原子を表す。pおよびqは、独立して、0~4の整数を表す。Xは、フッ素原子を含有する二価基を表す。)
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    (式(3)中、RおよびRは、独立して、脂肪族基および/または芳香族基を表し、窒素原子または酸素原子を含有してもよい。R、R、R、およびRは、独立して、脂肪族基または芳香族基を表す。mは、5以上の数字を表す。)
    A resin containing a bisphenol residue represented by the general formula (1), an aromatic dicarboxylic acid residue represented by the general formula (2), and an organosiloxane residue represented by the general formula (3),
    Inherent viscosity measured at a temperature of 25 ° C. and a concentration of 1 g / dL in 1,1,2,2-tetrachloroethane of the resin is 0.90 dL / g or less,
    An organosiloxane copolymer resin characterized in that when the resin is heated at 180 ° C. for 10 minutes, the amount of the siloxane-containing component volatilized from the resin is 700 ppm by mass or less.
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), R 1 and R 2 independently represent a hydrocarbon group having 1 to 6 carbon atoms, a halogenated alkyl group, or a halogen atom. P and q are independently 0 Represents an integer of ˜4, X represents a divalent group containing a fluorine atom.
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In Formula (3), R 3 and R 4 independently represent an aliphatic group and / or an aromatic group, and may contain a nitrogen atom or an oxygen atom. R 5 , R 6 , R 7 And R 8 independently represents an aliphatic group or an aromatic group, and m represents a number of 5 or more.)
  2.  前記樹脂中の一般式(3)で示されるオルガノシロキサン残基の含有量が7質量%超かつ80質量%未満であることを特徴とする請求項1に記載のオルガノシロキサン共重合樹脂。 The organosiloxane copolymer resin according to claim 1, wherein the content of the organosiloxane residue represented by the general formula (3) in the resin is more than 7% by mass and less than 80% by mass.
  3.  一般式(1)で示されるビスフェノール残基が、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン残基であることを特徴とする請求項1または2に記載のオルガノシロキサン共重合樹脂。 3. The organosiloxane copolymer resin according to claim 1, wherein the bisphenol residue represented by the general formula (1) is a 2,2-bis (4-hydroxyphenyl) hexafluoropropane residue.
  4.  一般式(2)で示される芳香族ジカルボン酸残基が、テレフタル酸残基とイソフタル酸残基の混合物であり、
     前記混合物におけるテレフタル酸残基とイソフタル酸残基のモル比:テレフタル酸/イソフタル酸が、90/10~10/90であることを特徴とする請求項1~3のいずれかに記載のオルガノシロキサン共重合樹脂。
    The aromatic dicarboxylic acid residue represented by the general formula (2) is a mixture of a terephthalic acid residue and an isophthalic acid residue,
    The organosiloxane according to any one of claims 1 to 3, wherein a molar ratio of terephthalic acid residue to isophthalic acid residue: terephthalic acid / isophthalic acid in the mixture is 90/10 to 10/90. Copolymer resin.
  5.  請求項1~4のいずれかに記載のオルガノシロキサン共重合樹脂と、前記オルガノシロキサン共重合樹脂以外の他の樹脂とを混合してなることを特徴とする樹脂混合物。 5. A resin mixture comprising the organosiloxane copolymer resin according to claim 1 and a resin other than the organosiloxane copolymer resin.
  6.  前記オルガノシロキサン共重合樹脂以外の他の樹脂が、一般式(4)または(5)で示されるビスフェノール残基を含む樹脂であることを特徴とする請求項5に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000004
     
    (式(4)中、RおよびR10は、独立して、炭素数が1~12の脂肪族基を表す。rおよびsは、独立して、1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
     
    (式(5)中、R11、R12、およびR13は、独立して、炭素数が1~12の脂肪族基を表す。tおよびuは、独立して、0~4の整数を表す。vは0~10の整数を表す。)
    6. The resin mixture according to claim 5, wherein the resin other than the organosiloxane copolymer resin is a resin containing a bisphenol residue represented by the general formula (4) or (5).
    Figure JPOXMLDOC01-appb-C000004

    (In Formula (4), R 9 and R 10 independently represent an aliphatic group having 1 to 12 carbon atoms. R and s independently represent an integer of 1 to 4)
    Figure JPOXMLDOC01-appb-C000005

    (In Formula (5), R 11 , R 12 , and R 13 independently represent an aliphatic group having 1 to 12 carbon atoms. T and u each independently represents an integer of 0 to 4) (V represents an integer of 0 to 10)
  7.  一般式(4)で示されるビスフェノール残基が、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン残基であることを特徴とする請求項6に記載の樹脂混合物。 The resin mixture according to claim 6, wherein the bisphenol residue represented by the general formula (4) is a 2,2-bis (3-methyl-4-hydroxyphenyl) propane residue.
  8.  一般式(5)で示されるビスフェノール残基が、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン残基であることを特徴とする請求項6に記載の樹脂混合物。 The resin mixture according to claim 6, wherein the bisphenol residue represented by the general formula (5) is a 1,1-bis (4-hydroxyphenyl) cyclohexane residue.
  9.  請求項1~4のいずれかに記載のオルガノシロキサン共重合樹脂、または請求項5~8のいずれかに記載の樹脂混合物を有機溶媒に溶解してなることを特徴とする樹脂溶液。 A resin solution obtained by dissolving the organosiloxane copolymer resin according to any one of claims 1 to 4 or the resin mixture according to any one of claims 5 to 8 in an organic solvent.
  10.  請求項9に記載の樹脂溶液を用いて形成されたことを特徴とする塗膜。 A coating film formed using the resin solution according to claim 9.
  11.  表面の算術平均粗さRaが0.5μm以下であることを特徴とする請求項10に記載の塗膜。 The coating film according to claim 10, wherein the arithmetic average roughness Ra of the surface is 0.5 μm or less.
  12.  請求項9に記載の樹脂溶液を用いて形成されたことを特徴とするフィルム。 A film formed using the resin solution according to claim 9.
  13.  表面の算術平均粗さRaが0.5μm以下であることを特徴とする請求項12に記載のフィルム。 The film according to claim 12, wherein the arithmetic average roughness Ra of the surface is 0.5 μm or less.
PCT/JP2013/075609 2012-09-28 2013-09-24 Organosiloxane-copolymerized resin, and resin mixture, resin solution, coating film and film each produced using said resin WO2014050776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538474A JP6333176B2 (en) 2012-09-28 2013-09-24 Organosiloxane copolymer resin and resin mixture, resin solution, coating film and film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217110 2012-09-28
JP2012217110 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050776A1 true WO2014050776A1 (en) 2014-04-03

Family

ID=50388177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075609 WO2014050776A1 (en) 2012-09-28 2013-09-24 Organosiloxane-copolymerized resin, and resin mixture, resin solution, coating film and film each produced using said resin

Country Status (3)

Country Link
JP (1) JP6333176B2 (en)
TW (1) TW201418320A (en)
WO (1) WO2014050776A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151255A (en) * 1995-11-30 1997-06-10 Unitika Ltd Polyarylate
JP2000001530A (en) * 1998-06-16 2000-01-07 Unitika Ltd Film-forming resin and its production
JP2000119593A (en) * 1998-10-19 2000-04-25 Unitika Ltd Resin for forming coat
JP2000136234A (en) * 1998-11-02 2000-05-16 Unitika Ltd Resin for forming coated layer
JP2000143787A (en) * 1998-11-05 2000-05-26 Unitika Ltd Resin for forming coating film
JP2000159871A (en) * 1998-11-26 2000-06-13 Unitika Ltd Resin for forming coating film
JP2000159870A (en) * 1998-11-25 2000-06-13 Unitika Ltd Resin for forming coating film
JP2012077128A (en) * 2010-09-30 2012-04-19 Unitika Ltd Organosiloxane copolymer resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571297B2 (en) * 2007-07-24 2014-08-13 ユニチカ株式会社 Organosiloxane copolymer polyester resin
JP5260111B2 (en) * 2008-03-28 2013-08-14 ユニチカ株式会社 Flame retardant polyarylate resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151255A (en) * 1995-11-30 1997-06-10 Unitika Ltd Polyarylate
JP2000001530A (en) * 1998-06-16 2000-01-07 Unitika Ltd Film-forming resin and its production
JP2000119593A (en) * 1998-10-19 2000-04-25 Unitika Ltd Resin for forming coat
JP2000136234A (en) * 1998-11-02 2000-05-16 Unitika Ltd Resin for forming coated layer
JP2000143787A (en) * 1998-11-05 2000-05-26 Unitika Ltd Resin for forming coating film
JP2000159870A (en) * 1998-11-25 2000-06-13 Unitika Ltd Resin for forming coating film
JP2000159871A (en) * 1998-11-26 2000-06-13 Unitika Ltd Resin for forming coating film
JP2012077128A (en) * 2010-09-30 2012-04-19 Unitika Ltd Organosiloxane copolymer resin

Also Published As

Publication number Publication date
JP6333176B2 (en) 2018-05-30
TW201418320A (en) 2014-05-16
JPWO2014050776A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5283442B2 (en) Organosiloxane copolymerized polyesteramide resin
JP6152235B1 (en) Polyarylate resin, method for producing the same, and polyarylate resin composition
JP6820661B2 (en) Polyarylate resin and film made of it
US9365673B2 (en) Polyarylate resin, and resin solution and film using same
JP6899586B2 (en) Polyarylate resin, film and laminate made of it
JP6193574B2 (en) Polyarylate resin and film comprising the same
JP5571297B2 (en) Organosiloxane copolymer polyester resin
JP6333176B2 (en) Organosiloxane copolymer resin and resin mixture, resin solution, coating film and film using the same
JP2011162632A (en) Heat-resistant polyester resin
JP2012077128A (en) Organosiloxane copolymer resin
WO2018199038A1 (en) Polyarylate resin and polyarylate resin composition
TWI641487B (en) Coating liquid, laminate, optical machine and electronic machine
JP5317564B2 (en) Organosiloxane copolymer resin
JP2013209640A (en) Resin composition including organosiloxane copolymerized polyarylate resin
JP6912802B2 (en) Polyarylate resin and films and laminates made of it
JP5344861B2 (en) Organosiloxane copolymer resin
JP6271824B2 (en) Polyarylate resin and film comprising the same
JP2021038320A (en) Polyester amide and film comprising the same
JP6735732B2 (en) Varnish of polyarylate resin
JP2018070727A (en) Polyarylate resin
WO2023145108A1 (en) Curable resin, curable resin composition, and cured article
JP2018070726A (en) Polyarylate resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840753

Country of ref document: EP

Kind code of ref document: A1