WO2014050705A1 - Phosphor, and method for producing said phosphor - Google Patents

Phosphor, and method for producing said phosphor Download PDF

Info

Publication number
WO2014050705A1
WO2014050705A1 PCT/JP2013/075353 JP2013075353W WO2014050705A1 WO 2014050705 A1 WO2014050705 A1 WO 2014050705A1 JP 2013075353 W JP2013075353 W JP 2013075353W WO 2014050705 A1 WO2014050705 A1 WO 2014050705A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
solution
earth metal
alkaline earth
sample
Prior art date
Application number
PCT/JP2013/075353
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 啓悟
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014538444A priority Critical patent/JP5991555B2/en
Publication of WO2014050705A1 publication Critical patent/WO2014050705A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium

Definitions

  • the present invention relates to a phosphor and a method for producing the phosphor, and more particularly to a phosphor in which a luminescent center element is contained in a base material made of nanoparticles and a method for producing the phosphor.
  • Fluorescent substances are substances that convert externally input energy such as ultraviolet rays, infrared rays, and radiation into light, and are used in various applications.
  • a phosphor containing an element called a luminescence center (hereinafter referred to as “luminescence center element”) in a base material formed of nanoparticles can emit light with high efficiency. This is possible and is expected to be applied to various fluorescent devices.
  • Non-Patent Document 1 is known as a prior art document using a gas phase reaction method.
  • This non-patent document 1 reports the phase structure and fluorescence characteristics of Eu 3+ doped TiO 2 nanocrystals synthesized by Ar / O 2 high-frequency thermal plasma oxidation of a precursor solution.
  • Non-Patent Document 2 is known.
  • This non-patent document 2 reports enhanced fluorescence from Eu 3+ for a low-loss glass-ceramic waveguide containing silicon with a high concentration of SnO 2 .
  • a SiO 2 —SnO 2 glass ceramic thin film waveguide doped with 1 mol% of Eu 3+ is manufactured by a sol-gel method and a dip method.
  • a SiO 2 —SnO 2 film with Eu 3+ added is formed on the transparent SiO 2 surface on the Si substrate, Thereafter, heat treatment is performed at a high temperature of 900 to 1100 ° C., thereby depositing nanocrystals in the amorphous waveguide.
  • Non-Patent Document 1 it has been found that it is difficult to obtain a sufficiently large luminous efficiency when TiO 2 as in Non-Patent Document 1 is used as a base material.
  • Non-Patent Document 1 since the gas phase reaction method described in Non-Patent Document 1 is processed in high-temperature plasma, there is a problem that a large-scale apparatus and a complicated manufacturing process are required, and the manufacturing cost is expensive.
  • Non-Patent Document 1 since the high-temperature heat treatment is performed in the high-temperature plasma as described above, the particle growth of the nanoparticles is promoted and the particle size distribution becomes wide, which may cause deterioration of the fluorescence characteristics. There is.
  • Non-Patent Document 2 even when SnO 2 -based material as in Non-Patent Document 2 is used as a base material, it is difficult to obtain a sufficiently large luminous efficiency as in Non-Patent Document 1. I understood.
  • Non-Patent Document 2 since the precipitation method described in Non-Patent Document 2 requires a high-temperature heating process at 900 to 1100 ° C., similarly to Non-Patent Document 1, a large-scale apparatus and a complicated manufacturing process are required. Becomes expensive. In addition, as in Non-Patent Document 1, the growth of nanoparticles is promoted by a high-temperature heating process, the particle size distribution becomes wide, and there is a possibility that the fluorescence characteristics deteriorate.
  • This invention is made
  • the present inventor conducted intensive research to achieve the above object, and used nanoparticles containing an oxide of Ti and an alkaline earth metal element as a base material, and contained a luminescent center element in the base material. As a result, it has been found that a phosphor having significantly better luminous efficiency than that of the prior art can be obtained.
  • a luminescent center element is contained in a base material formed of nanoparticles, and the base material includes at least Ti and It is characterized by containing an oxide containing an alkaline earth metal element.
  • the ratio of the luminescent center element to the total of Ti and the alkaline earth metal element is preferably 0.03 to 0.10 in molar ratio.
  • the ratio of Ti to the alkaline earth metal element is preferably 1/9 to 9/1 in molar ratio.
  • the alkaline earth metal element is preferably Ba.
  • the emission center element is any one of a rare earth element and a transition metal element.
  • the rare earth element is preferably Eu.
  • a nanoparticle dispersion solution in which nanoparticles containing Ti oxide, alkaline earth metal oxide, and oxide containing a luminescent center element are dispersed in a dispersion solution is obtained.
  • the coating film can be baked without grain growth by preparing and coating the nanoparticle dispersion solution on a substrate to form a coating film and then heat-treating it at a low temperature of 500 ° C. or lower.
  • a nanoparticle aggregate having a minute particle diameter can be obtained, and that the phosphor having good luminous efficiency can be produced.
  • the method for producing a phosphor according to the present invention produces a nanoparticle dispersion solution in which nanoparticles containing Ti oxide, alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution.
  • a desired phosphor can be obtained at a low cost without requiring a high-temperature heating process and, therefore, without requiring a large-scale apparatus or a complicated manufacturing process.
  • the nanoparticle aggregate forming the phosphor is heat-treated at a low temperature of 500 ° C. or lower, it is possible to suppress the nanoparticle from causing grain growth, and to achieve a desired quantum size effect with a uniform particle size distribution.
  • a phosphor capable of expression can be obtained.
  • the phosphor production method of the present invention comprises a microemulsion solution preparation step of preparing a water-in-oil microemulsion solution in which a hydrophobic solvent, a surfactant, and water are mixed to form a water-in-oil microemulsion solution in which water droplets are dispersed in oil.
  • the matrix material formed of the nanoparticles contains the luminescent center element, and the matrix material contains an oxide containing at least Ti and an alkaline earth metal element.
  • the matrix material contains an oxide containing at least Ti and an alkaline earth metal element.
  • a nanoparticle dispersion in which nanoparticles containing at least a Ti oxide, an alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution.
  • a phosphor in which a luminescent center element is added to a base material made of an oxide containing at least Ti and an alkaline earth metal element, and thus requires a high-temperature heating process. Therefore, a desired phosphor can be obtained at low cost without requiring a large-scale apparatus or a complicated manufacturing process. Moreover, since the nanoparticles are heat-treated at a low temperature of 500 ° C. or lower, it is possible to suppress the occurrence of grain growth and obtain a phosphor capable of exhibiting a desired quantum size effect with a uniform particle size distribution. it can.
  • FIG. 3 is an enlarged view of a main part of FIG. 2. It is a schematic diagram for demonstrating the manufacturing method of the said nanoparticle dispersion solution. It is a figure which shows the fluorescence spectrum of the sample number 1. FIG. It is a figure which shows the fluorescence spectrum of sample number 2. FIG. It is a figure which shows the fluorescence spectrum of the sample number 3. FIG. It is a figure which shows the fluorescence spectrum of the sample number 4.
  • FIG. FIG. 6 is a diagram showing fluorescence spectra of sample numbers 2 to 4.
  • FIG. It is a figure which shows the fluorescence spectrum of the sample number 5.
  • FIG. It is a figure which shows the fluorescence spectrum of the sample number 6.
  • FIG. It is a figure which shows the fluorescence spectrum of the sample number 7.
  • FIG. It is a figure which shows the fluorescence spectrum of sample number 2 and 5-7.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a phosphor according to the present invention.
  • the phosphor 1 is formed on a substrate 2 made of quartz glass or the like.
  • the phosphor 1 includes a luminescent center element L contained in a matrix material formed of nanoparticles having a particle size of 5 nm or less, and the matrix material contains at least Ti and an alkaline earth metal element M. Is included. As a result, the luminous efficiency can be significantly improved as compared with the conventional case.
  • the valence band is mainly formed by 2p orbitals of O
  • the conduction band is mainly formed by 3d orbitals of Ti.
  • the electrons are excited from the O2p orbital of the valence band to the Ti3d orbital of the conduction band, and the electrons have an energy level in the valence band.
  • the phosphor 1 emits light by transitioning to an emission center element having an energy level intermediate between the upper end and the lower end of the conduction band and resonating with Ti—O.
  • the s orbit of the outermost shell of the alkaline earth metal element M overlaps with the 2p orbit of O and the 3d orbit of Ti, and orbital hybridization occurs, forming a hybrid orbital. Since this hybrid orbital is close in energy level to the electron orbit of the luminescent center element, resonance energy transfer occurs. As a result, the energy transition efficiency of the electrons excited from the upper end of the valence band to the lower end of the conduction band to the luminescent central element is improved.
  • the base material made of M-Ti-O is formed of nanoparticles of 5 nm or less, and the light absorption efficiency is increased by the quantum size effect.
  • the energy transition efficiency to the element L can be remarkably improved, and the light emission efficiency can be remarkably improved.
  • luminescent center element L various rare earth elements and transition metal elements having an energy level that resonates with the energy level of the base material can be used.
  • the rare earth element includes at least one element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Can be used.
  • transition metal element examples include Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd.
  • One or more selected elements can be used.
  • a luminescent center element is used in which the energy level of the alkaline earth metal element M is located between the energy level at the lower end of the conduction band and the excitation energy level of the luminescent center element L.
  • Eu can be preferably used.
  • the alkaline earth metal element M is not particularly limited, and Mg, Ca, Sr, Ba, and the like can be appropriately selected according to the type of the luminescent center element L. Usually, Ba is preferred. Can be used.
  • nanoparticle dispersion solution in which nanoparticles having a Ti oxide, an alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution is prepared.
  • the method for producing the nanoparticle dispersion solution is not particularly limited, but it is possible to easily obtain ultrafine nanoparticles of 5 nm or less that have a narrow particle size distribution and can exhibit a desired quantum size effect, and It is preferable to use a microemulsion method that can easily change the type of nanoparticles simply by selecting a raw material and has a high degree of design freedom.
  • a highly efficient phosphor 1 can be produced by a low temperature process.
  • FIG. 2 is a front view schematically showing a nanoparticle dispersion solution prepared by a microemulsion method.
  • the nanoparticles 4 are dispersed and suspended in the hydrophobic solvent 6 in a form surrounded by the surfactant 5, and the dispersion solution 3 is contained in the container 7. Yes.
  • the surfactant 5 has a main surfactant 8 and a subsurfactant 9.
  • the main surfactant 8 has a hydrophobic group 8 a and a hydrophilic group 8 b, the hydrophobic group 8 a is adsorbed on the hydrophobic solvent 6, and the hydrophilic group 8 b is adsorbed on the nanoparticles 4.
  • polyoxyethylene alkylphenyl ether (APE (n)) capable of obtaining hydrophilicity at the polyoxyethylene group ((CH 2 CH 2 O) n ) portion is used.
  • polyoxyethylene nonylphenyl ether (NPE (n)) represented by the chemical formula H 3 C (CH 2 ) 8 C 6 H 4 O (CH 2 CH 2 O) n H is preferably used.
  • the side chain length n of APE (n) it is possible to control the average particle diameter D 50 of the resulting nanoparticles 4. That is, as the length of the side chain length n increases, the average particle diameter D 50 of the nanoparticles 4 tends to be smaller than when the length of the side chain length n is short. This is because, as the side chain length n increases, the hydrophilic group also increases, so that the adsorption force to the water droplets contributing to the generation of the nanoparticles 4 becomes stronger and the water droplet diameter becomes smaller. This is probably because the average particle diameter D 50 of the nanoparticles 4 to be produced is also reduced.
  • the average particle diameter D 50 of the nanoparticles 4 can be controlled by utilizing the difference in the side chain length n of APE (n). Therefore, it becomes possible to control the average particle diameter D 50 of the nanoparticles 4 only by selecting APE (n) having different side chain lengths n.
  • the sub-surfactant 9 enters the hydrophilic group 8b of the main surfactant 8 to reduce the interfacial energy with water during the preparation of the microemulsion described later, and the side chain of the hydrophilic group 8b. This has the effect of reducing steric hindrance due to the length n, thereby contributing to the stabilization of water droplets. And when this nanosurfactant 4 is produced
  • a medium chain alcohol represented by the chemical formula C m H 2m + 1 OH (where m is 4 to 10), for example, 1-octanol (C 8 H 17 OH) is used.
  • the carbon number m depends on the length of the side chain length n of the hydrophilic group 8b of the main surfactant 8.
  • the carbon number m is less than 4, the hydrophilicity becomes too large, so that a microemulsion is produced. Occasionally, it dissolves in the water droplets, so that the secondary surfactant 9 may not be present only at the interface between the main surfactant 8 and water.
  • the carbon number m exceeds 10
  • the hydrophobicity may be excessively increased or the steric hindrance may be increased, which is not preferable.
  • hydrophobic solvent 6 nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane, ethers such as diethyl ether and isopropyl ether, petroleum hydrocarbons such as kerosene, etc. may be used. Of these hydrophobic solvents 6, cyclohexane and benzene can be preferably used.
  • the dispersion of the nanoparticles 4 in the solution can be confirmed directly by a transmission electron microscope (hereinafter referred to as “TEM”) or by a limited-field electron diffraction pattern. it can.
  • TEM transmission electron microscope
  • nanoparticle dispersion solution 3 is manufactured by the following methods.
  • the hydrophobic solvent 6, the surfactant 5 (the main surfactant 8 and the subsurfactant 9), and water are put in the container 7 and mixed and stirred.
  • the hydrophobic group 8a of the main surfactant 8 is adsorbed by the hydrophobic solvent 6, while the hydrophilic group 8b of the main surfactant 8 is adsorbed by water
  • the subsurfactant 9 enters the hydrophilic group 8b of the main surfactant 8 and the interfacial energy with water decreases.
  • the water becomes ultrafine water droplets 10 and is confined inside the surfactant 5 (the main surfactant 8 and the subsurfactant 9). That is, the water droplets 10 are dispersed in the hydrophobic solvent 6 in a form surrounded by the surfactant 5, whereby a water-in-oil microemulsion solution is produced.
  • nanoparticles 4 having a desired particle size with a very small particle size distribution it is necessary to avoid an increase in the water droplet size of the water droplet 10 consumed in the hydrolysis reaction. It is desirable to use an anhydride such as an alkoxide.
  • Ti alkoxide, M alkoxide containing alkaline earth metal element M, and L alkoxide containing luminescent center element L are prepared, and these alkoxides are dissolved in an alcohol solution such as isopropyl alcohol, whereby a mixed alkoxide solution is prepared. Make it.
  • the ratio L / (M + Ti) of the luminescent center element L to the total of the alkaline earth metal elements M and Ti in the mixed alkoxide solution is not particularly limited, but is preferably 0.03 in molar ratio. Set to ⁇ 0.1. In order to obtain better luminous efficiency, the ratio L / (M + Ti) is more preferably large in the range of 0.03 to 0.1.
  • the alkaline earth metal elements M and Ti and the ratio M / Ti in the mixed alkoxide solution are not particularly limited, and can be arbitrarily adjusted within a range of, for example, 1/9 to 9/1 in molar ratio. it can.
  • the mixed alkoxide solution is preferably prepared in an inert atmosphere such as an Ar atmosphere from the viewpoint of preventing moisture in the air from entering the mixed alkoxide solution. That is, by preparing the mixed alkoxide solution in an inert atmosphere, excess components do not enter the microemulsion solution, thereby suppressing an increase in the particle size of the nanoparticles 4.
  • the mixed alkoxide solution prepared in this manner is dropped into the microemulsion solution, and stirred and mixed for a predetermined time in an inert atmosphere such as an Ar atmosphere. Then, a hydrolysis reaction occurs between the mixed alkoxide solution and the water droplet 10.
  • the hydrolysis reaction proceeds using the water droplets 10 surrounded by the surfactant 5 as a reaction field, and as shown in FIG. 4B, the water droplets 10 are consumed and titanium oxide, alkaline earth metal oxide, And the nanoparticle 4 which consists of a mixture of the oxide containing a luminescent center element is produced
  • the mixed alkoxide solution is dropped into the microemulsion solution so that the amount of water in the microemulsion solution is 1 to 1.2 times the amount of water necessary for hydrolysis of the mixed alkoxide.
  • the amount of water in the microemulsion solution is less than 1 times the amount of water required for hydrolysis of the mixed alkoxide, the desired hydrolysis reaction does not proceed, while when it exceeds 1.2 times, the amount of water increases.
  • the water droplet 10 becomes large, and therefore, the average particle diameter D 50 of the produced nanoparticles 4 may be increased according to the increased water droplet diameter.
  • alkoxide is not particularly limited, and ethoxide, propoxide, butoxide and the like can be used.
  • the phosphor 1 is prepared using the nanoparticle dispersion solution 3.
  • the nanoparticle dispersion solution 3 is uniformly applied onto the substrate 2 by a spin coating method or the like to form a coating film.
  • the substrate 2 is rotated at a predetermined rotation speed for a predetermined time, so that the nanoparticle dispersion solution 3 is uniformly applied on the substrate 2.
  • heat treatment is performed at a low temperature of 500 ° C. or lower.
  • the hydrophobic solvent 6, the surfactant 5, and the like are burned and decomposed, and an oxide of Ti and the alkaline earth metal element M is used as a base material, and the luminescent center element L is added to the base material.
  • the phosphor 1 made of MO is manufactured.
  • the phosphor 1 is produced by a low-temperature process capable of burning and decomposing organic substances such as the hydrophobic solvent 6 and the surfactant 5. be able to.
  • the heat treatment temperature exceeds 500 ° C., it is not preferable because it promotes nanoparticle growth and the particle size may exceed 5 nm.
  • the lower limit of the heat treatment temperature is not particularly limited, but is preferably a temperature at which the hydrophobic solvent 6 can be sufficiently volatilized, for example, 100 ° C. or higher.
  • the heat treatment temperature can be adjusted to an appropriate temperature in the range of 100 to 500 ° C. according to the type of the base material, that is, the alkaline earth metal element M to be used.
  • the phosphor 1 can be manufactured by a low-temperature process in this way, it can be formed on a low-melting-point substrate such as a resin and can be applied to a flexible device.
  • a high temperature and high pressure environment such as a vapor phase growth method and a precipitation method is not required, and therefore a desired nanoparticle can be obtained by a simple method without requiring a large-scale facility.
  • the desired nanoparticles 4 can be obtained very simply without requiring a process such as heat treatment.
  • the reaction is performed with the minimum amount of water, it is possible to suppress the incorporation of hydroxyl groups into the nanoparticles 4 and the occurrence of defects.
  • the particle diameter of the produced nanoparticles 4 can be controlled, and therefore the degree of freedom in designing the material is also improved. A large phosphor 1 having a desired ultrafine particle diameter can be obtained.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the thin-film phosphor 1 is produced on the substrate 2.
  • the phosphor 1 can be peeled off from the substrate 2 and pulverized to obtain the powder phosphor 1.
  • Ba isopropoxide Ba (OC 3 H 7 ) 2
  • Ti isopropoxide Ti (OC 3 H 7 ) 4 as Ti alkoxide
  • Eu isopropoxide Eu (OC 3 H 7 ) 3
  • Eu alkoxide containing trivalent Eu (emission center element).
  • Ba isopropoxide so that the ratio Ba / Ti of Ba to Ti is 1 in molar ratio, and the ratio Eu / (Ba + Ti) of Eu to the total of Ba and Ti is 0.10 in molar ratio, Ti isopropoxide and Eu isopropoxide were weighed and dissolved in an isopropyl alcohol solution to prepare a mixed alkoxide solution.
  • this mixed alkoxide solution was added dropwise to the microemulsion solution, and further stirred for one week or more, thereby causing hydrolysis to prepare a nanoparticle dispersion solution.
  • the dripping amount of the mixed alkoxide solution is 1.2 times the amount of water used as a reaction field in terms of molar ratio, which is necessary for hydrolysis of Ba isopropoxide, Ti isopropoxide, and Eu isopropoxide. It adjusted so that it might become.
  • the nanoparticle dispersion solution thus obtained is applied onto a quartz glass substrate and heated in the atmosphere at a heat treatment temperature of 300 ° C. for 0.5 hours to burn and decompose the surfactant and the hydrophobic solvent.
  • a sample No. 1 was prepared.
  • TEM transmission electron microscope
  • the sample No. 1 was irradiated with excitation light having a wavelength of 275 nm, and a fluorescence spectrum was measured using a spectroscope (TRIAX320 manufactured by SPECS).
  • FIG. 5 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • fluorescence peaks specific to Eu were observed at wavelengths of 590 nm, 613 nm, and 697 nm, and particularly a sharp fluorescence peak with a narrow half-value width was observed at a wavelength of 613 nm.
  • this sample is known to absorb light having a wavelength of 375 nm or less from the light absorption characteristics.
  • the sample of sample number 1 absorbs light of 275 nm which is an excitation wavelength to form an electron / hole pair, and the energy transitions to the emission wavelength of Eu, so that the luminous efficiency is remarkably improved. I understood.
  • Sample No. 2 was prepared by the same method and procedure as [Sample No. 1] except that the heat treatment temperature was 500 ° C.
  • FIG. 6 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • sample No. 3 Except for adjusting the mixing ratio of the mixed alkoxide so that the Eu ratio Eu / (Ba + Ti) with respect to the total of Ba and Ti is 0.03 in terms of molar ratio, the same method and procedure as in sample number 2 (heat treatment temperature: 500 ° C.), sample No. 3 was prepared, and the fluorescence spectrum was measured by the same method and procedure as Sample No. 1.
  • FIG. 7 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • sample No. 4 Except for adjusting the mixing ratio of the mixed alkoxide so that the Eu ratio Eu / (Ba + Ti) with respect to the total of Ba and Ti is 0.05, the same procedure and procedure (heat treatment temperature: The sample No. 4 was prepared at 500 ° C., and the fluorescence spectrum was measured by the same method and procedure as Sample No. 1.
  • FIG. 8 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • FIG. 9 is a diagram comparing the fluorescence spectra of the samples of sample numbers 2-4.
  • the horizontal axis indicates the emission wavelength (nm), and the vertical axis indicates the emission intensity (counts).
  • sample numbers 3 and 4 have emission intensity of 1.0 ⁇ 10 8 counts or more at a temperature of 300 ° C., although the fluorescence intensity is slightly lower than that of sample number 2. It can be seen that the emission intensity is stronger than the heat-treated sample No. 1. As is clear from Sample Nos. 1 to 4, it was confirmed that a phosphor having an arbitrary emission intensity can be obtained by changing the heat treatment temperature and the mixing ratio of each alkoxide solution in the mixed alkoxide solution.
  • sample No. 5 A sample No. 5 having a base material of BaO was prepared by the same method and procedure (heat treatment temperature: 300 ° C.) as Sample No. 1 except that Ti isopropoxide was not mixed in the mixed alkoxide solution.
  • FIG. 10 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • a sample was prepared with a heat treatment temperature of 350 ° C., and the sample was observed with a TEM. As a result, it was confirmed that grain growth occurred and the particle size exceeded 5 nm. Moreover, when the fluorescence spectrum was observed also about the sample heat-processed at 350 degreeC, it was confirmed that the fluorescence peak intrinsic
  • sample No. 6 A sample No. 6 having a base material made of TiO 2 was prepared in the same manner and procedure as Sample No. 1 except that Ba isopropoxide was not mixed in the mixed alkoxide solution and the heat treatment temperature was 200 ° C. .
  • the sample was formed of a nanoparticle aggregate having a particle size in the range of 1 to 2 nm.
  • FIG. 11 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • the emission intensity of the fluorescence peak with the wavelength of 613 nm is about 2.5 ⁇ 10 6 counts in the sample number 6, which is weaker by about 1 to 3% than the sample numbers 1 to 4. It was found that only emission intensity was obtained. This seems to be because the base material does not contain Ba and is formed of TiO 2 outside the scope of the present invention.
  • Sn isopropoxide Sn (OC 3 H 7 ) 4
  • Sn alkoxide Sn alkoxide
  • Sn isopropoxide and Eu isopropoxide are weighed so that the Eu / Sn ratio Eu / Sn is 0.03 in terms of molar ratio
  • Sn isopropoxide and Eu isopropoxide are isopropyl alcohol.
  • a mixed alkoxide solution was prepared by dissolving in the solution.
  • sample of sample number 7 in which the base material was formed of SnO 2 was prepared by the same method and procedure as in sample number 1 (heat treatment temperature: 300 ° C.) except that this mixed alkoxide solution was used.
  • FIG. 12 shows the measurement results.
  • the horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
  • the luminescence intensity was 6.0 ⁇ 10 5 counts or less, which was confirmed to be extremely weak. This seems to be because the base material was formed of SnO 2 outside the scope of the present invention.
  • FIG. 13 is a diagram comparing the fluorescence spectra of samples Nos. 2 and 5-7.
  • the horizontal axis indicates the emission wavelength (nm), and the vertical axis indicates the emission intensity (counts).
  • sample number 2 can obtain an emission intensity about 100 times that of sample numbers 5 to 7, and sample number 2 within the scope of the present invention is a sample outside the scope of the present invention. It was found that the luminous efficiency was remarkably improved compared to the numbers 5-7.
  • a phosphor having an average particle diameter of 5 nm or less can be easily obtained, and can be used for various devices such as a light emitting element.

Abstract

A phosphor (1) comprises a base material composed of nanoparticles each having a particle diameter of 5 nm or less and a luminescence center element, e.g., Eu, contained in the base material. The base material comprises an oxide containing an alkali earth metal element, e. g., Ti and Ba. The phosphor (1) can be produced by preparing a nanoparticle dispersion solution in which nanoparticles each comprising a Ti oxide, an alkali earth metal oxide and an oxide containing a luminescence center element are dispersed in a dispersion solution, applying the nanoparticle dispersion solution onto a substrate (2) to form a coating film, and then thermally treating the coating film at a low temperature equal to or lower than 500˚C. The nanoparticle dispersion solution may be prepared employing a microemulsion method. In this manner, a phosphor which has good luminous efficiency and a phosphor production method which makes it possible to produce the phosphor readily at low cost can be achieved.

Description

蛍光体と該蛍光体の製造方法Phosphor and method for producing the phosphor
 本発明は、蛍光体と該蛍光体の製造方法に関し、より詳しくはナノ粒子からなる母体材料中に発光中心元素が含有された蛍光体と該蛍光体の製造方法に関する。 The present invention relates to a phosphor and a method for producing the phosphor, and more particularly to a phosphor in which a luminescent center element is contained in a base material made of nanoparticles and a method for producing the phosphor.
 蛍光体は、紫外線や赤外線、放射線等の外部から入力されたエネルギーを光に変換する物質であり、様々な用途に使用されている。そして、これら蛍光体のうち、発光中心と称される元素(以下、「発光中心元素」という。)をナノ粒子で形成された母体材料中に含有した蛍光体は、高効率に発光させることが可能であり、様々な蛍光デバイスへの応用が期待されている。 Fluorescent substances are substances that convert externally input energy such as ultraviolet rays, infrared rays, and radiation into light, and are used in various applications. Among these phosphors, a phosphor containing an element called a luminescence center (hereinafter referred to as “luminescence center element”) in a base material formed of nanoparticles can emit light with high efficiency. This is possible and is expected to be applied to various fluorescent devices.
 この種の蛍光体では、発光中心元素を母体材料であるナノ粒子中に閉じ込め、前記母体材料のエネルギー準位と発光中心元素のエネルギー準位とを共鳴させることにより、良好な発光効率を得ようとしている。 In this type of phosphor, good emission efficiency can be obtained by confining the emission center element in the nanoparticle as the host material and resonating the energy level of the host material and the energy level of the emission center element. It is said.
 ところで、発光中心元素を含有したナノ粒子の作製方法としては、気相反応法や析出法等が知られる。 By the way, as a method for producing nanoparticles containing a luminescent center element, a gas phase reaction method, a precipitation method, and the like are known.
 気相反応法を使用した先行技術文献としては、例えば非特許文献1が知られている。 For example, Non-Patent Document 1 is known as a prior art document using a gas phase reaction method.
 この非特許文献1は、前駆体溶液のAr/O高周波熱プラズマ酸化によって合成されたEu3+をドープしたTiOナノ結晶の相構造及び蛍光特性について報告している。 This non-patent document 1 reports the phase structure and fluorescence characteristics of Eu 3+ doped TiO 2 nanocrystals synthesized by Ar / O 2 high-frequency thermal plasma oxidation of a precursor solution.
 この非特許文献1では、チタンテトラ-n-ブトキシド(TTBO)と硝酸ユウロピウムを含有した前駆体溶液を高温プラズマ中に投入し、これによりEu3+がドープされたTiOのナノ粒子を作製している。 In this non-patent document 1, a precursor solution containing titanium tetra-n-butoxide (TTBO) and europium nitrate is put into a high-temperature plasma, thereby producing TiO 2 nanoparticles doped with Eu 3+. Yes.
 また、析出法を使用した先行技術文献としては、例えば非特許文献2が知られている。 Further, as a prior art document using the precipitation method, for example, Non-Patent Document 2 is known.
 この非特許文献2は、高濃度SnOを有するケイ素を含有した低損失ガラスセラミック製導波路について、Eu3+からの増強された蛍光について報告している。 This non-patent document 2 reports enhanced fluorescence from Eu 3+ for a low-loss glass-ceramic waveguide containing silicon with a high concentration of SnO 2 .
 この非特許文献2では、1mol%のEu3+をドープしたSiO-SnO系ガラスセラミック薄膜導波路をゾル-ゲル法及びディップ法で作製している。 In this non-patent document 2, a SiO 2 —SnO 2 glass ceramic thin film waveguide doped with 1 mol% of Eu 3+ is manufactured by a sol-gel method and a dip method.
 すなわち、ゾル-ゲル法及びディップ法を使用し、数回の熱処理を経た後、Si基板上の透明なSiOの表面にEu3+が添加されたSiO-SnO膜を形成し、更にその後、900~1100℃の高温で熱処理し、これにより非晶質の導波路内にナノ結晶を析出させている。 That is, after several heat treatments using a sol-gel method and a dip method, a SiO 2 —SnO 2 film with Eu 3+ added is formed on the transparent SiO 2 surface on the Si substrate, Thereafter, heat treatment is performed at a high temperature of 900 to 1100 ° C., thereby depositing nanocrystals in the amorphous waveguide.
 しかしながら、本発明者の研究結果により、非特許文献1のようなTiOを母体材料に使用したのでは、十分に大きな発光効率を得るのは困難であることが分かった。 However, according to the research results of the present inventors, it has been found that it is difficult to obtain a sufficiently large luminous efficiency when TiO 2 as in Non-Patent Document 1 is used as a base material.
 また、非特許文献1記載の気相反応法は、高温プラズマ中で処理していることから、大規模な装置や煩雑な製造工程が必要となり、製造コストが高価になるという問題がある。 Further, since the gas phase reaction method described in Non-Patent Document 1 is processed in high-temperature plasma, there is a problem that a large-scale apparatus and a complicated manufacturing process are required, and the manufacturing cost is expensive.
 さらに、非特許文献1では、上述したように高温プラズマ中で高温加熱処理を行っていることから、ナノ粒子の粒成長が促進されて粒度分布が広くなり、このため蛍光特性の劣化を招くおそれがある。 Further, in Non-Patent Document 1, since the high-temperature heat treatment is performed in the high-temperature plasma as described above, the particle growth of the nanoparticles is promoted and the particle size distribution becomes wide, which may cause deterioration of the fluorescence characteristics. There is.
 また、本発明者の研究結果により、非特許文献2のようなSnO系材料を母体材料に使用した場合も、非特許文献1と同様、十分に大きな発光効率を得るのは困難であることが分かった。 Further, according to the research results of the present inventor, even when SnO 2 -based material as in Non-Patent Document 2 is used as a base material, it is difficult to obtain a sufficiently large luminous efficiency as in Non-Patent Document 1. I understood.
 さらに、非特許文献2記載の析出法では、900-1100℃での高温加熱プロセスが必要となることから、非特許文献1と同様、大規模な装置や煩雑な製造工程が必要となり、製造コストが高価になる。また、非特許文献1と同様、高温加熱プロセスによってナノ粒子の粒成長が促進されて粒度分布が広くなり、蛍光特性の劣化を招くおそれがある。 Furthermore, since the precipitation method described in Non-Patent Document 2 requires a high-temperature heating process at 900 to 1100 ° C., similarly to Non-Patent Document 1, a large-scale apparatus and a complicated manufacturing process are required. Becomes expensive. In addition, as in Non-Patent Document 1, the growth of nanoparticles is promoted by a high-temperature heating process, the particle size distribution becomes wide, and there is a possibility that the fluorescence characteristics deteriorate.
 本発明はこのような事情に鑑みなされたものであって、良好な発光効率を有する蛍光体、及び該蛍光体を低コストで容易に製造することができる蛍光体の製造方法を提供することを目的とする。 This invention is made | formed in view of such a situation, Comprising: Provided with the fluorescent substance which has favorable luminous efficiency, and the manufacturing method of the fluorescent substance which can manufacture this fluorescent substance easily at low cost. Objective.
 本発明者は上記目的を達成するために鋭意研究を行ったところ、母体材料としてTi及びアルカリ土類金属元素の酸化物を含有したナノ粒子を使用し、該母体材料中に発光中心元素を含有させることにより、従来に比べて格段に良好な発光効率を有する蛍光体を得ることができるという知見を得た。 The present inventor conducted intensive research to achieve the above object, and used nanoparticles containing an oxide of Ti and an alkaline earth metal element as a base material, and contained a luminescent center element in the base material. As a result, it has been found that a phosphor having significantly better luminous efficiency than that of the prior art can be obtained.
 本発明はこのような知見に基づきなされたものであって、本発明に係る蛍光体は、ナノ粒子で形成された母体材料に発光中心元素が含有されると共に、前記母体材料が、少なくともTi及びアルカリ土類金属元素を含有した酸化物を含んでいることを特徴としている。 The present invention has been made on the basis of such knowledge. In the phosphor according to the present invention, a luminescent center element is contained in a base material formed of nanoparticles, and the base material includes at least Ti and It is characterized by containing an oxide containing an alkaline earth metal element.
 また、本発明の蛍光体は、前記Tiと前記アルカリ土類金属元素の総和に対する前記発光中心元素の比率は、モル比で0.03~0.10であるのが好ましい。 In the phosphor of the present invention, the ratio of the luminescent center element to the total of Ti and the alkaline earth metal element is preferably 0.03 to 0.10 in molar ratio.
 また、本発明の蛍光体は、前記Tiと前記アルカリ土類金属元素との比率は、モル比で1/9~9/1であるのが好ましい。 In the phosphor of the present invention, the ratio of Ti to the alkaline earth metal element is preferably 1/9 to 9/1 in molar ratio.
 また、本発明の蛍光体は、前記アルカリ土類金属元素が、Baであるのが好ましい。 In the phosphor of the present invention, the alkaline earth metal element is preferably Ba.
 また、本発明の蛍光体は、前記発光中心元素が、希土類元素及び遷移金属元素のうちのいずれかであるのが好ましい。 In the phosphor of the present invention, it is preferable that the emission center element is any one of a rare earth element and a transition metal element.
 さらに、本発明の蛍光体は、前記希土類元素が、Euであるのが好ましい。 Furthermore, in the phosphor of the present invention, the rare earth element is preferably Eu.
 また、本発明者が更に鋭意研究を重ねたところ、Ti酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物を含むナノ粒子が分散溶液中に分散したナノ粒子分散溶液を作製し、該ナノ粒子分散溶液を基板上に塗布して塗膜を形成し、その後500℃以下の低温で熱処理することにより、粒成長が生じることもなく塗膜を焼成することができ、これにより微小粒径のナノ粒子集合体を得ることができ、上記発光効率の良好な蛍光体を作製できることが分かった。 In addition, as a result of further extensive research by the present inventors, a nanoparticle dispersion solution in which nanoparticles containing Ti oxide, alkaline earth metal oxide, and oxide containing a luminescent center element are dispersed in a dispersion solution is obtained. The coating film can be baked without grain growth by preparing and coating the nanoparticle dispersion solution on a substrate to form a coating film and then heat-treating it at a low temperature of 500 ° C. or lower. As a result, it was found that a nanoparticle aggregate having a minute particle diameter can be obtained, and that the phosphor having good luminous efficiency can be produced.
 すなわち、本発明に係る蛍光体の製造方法は、Ti酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物を含むナノ粒子が分散溶液中に分散したナノ粒子分散溶液を作製するナノ粒子分散溶液作製工程と、前記ナノ粒子分散溶液を基板上に塗布して塗膜を形成する塗膜形成工程と、前記塗膜を熱処理する熱処理工程とを含み、前記熱処理工程は、前記熱処理を500℃以下の温度で行い、Ti及びアルカリ土類金属元素を含有した酸化物を含む母体材料に発光中心元素が添加された蛍光体を作製することを特徴としている。 That is, the method for producing a phosphor according to the present invention produces a nanoparticle dispersion solution in which nanoparticles containing Ti oxide, alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution. A nanoparticle dispersion solution preparation step, a coating film formation step of coating the nanoparticle dispersion solution on a substrate to form a coating film, and a heat treatment step of heat-treating the coating film, A heat treatment is performed at a temperature of 500 ° C. or lower to produce a phosphor in which a luminescent center element is added to a base material containing an oxide containing Ti and an alkaline earth metal element.
 これにより高温加熱プロセスを要することもなく、したがって大規模な装置や煩雑な製造過程を要することもなく、所望の蛍光体を低コストで得ることができる。しかも、蛍光体を形成するナノ粒子集合体は500℃以下の低温で熱処理されることから、ナノ粒子が粒成長が生じるのを抑制することができ、粒度分布の揃った所望の量子サイズ効果の発現が可能な蛍光体を得ることができる。 Thus, a desired phosphor can be obtained at a low cost without requiring a high-temperature heating process and, therefore, without requiring a large-scale apparatus or a complicated manufacturing process. In addition, since the nanoparticle aggregate forming the phosphor is heat-treated at a low temperature of 500 ° C. or lower, it is possible to suppress the nanoparticle from causing grain growth, and to achieve a desired quantum size effect with a uniform particle size distribution. A phosphor capable of expression can be obtained.
 また、本発明の蛍光体の製造方法は、疎水性溶媒、界面活性剤、及び水を混合し、水滴が油中に分散した油中水滴型のマイクロエマルジョン溶液を作製するマイクロエマルジョン溶液作製工程と、Tiアルコキシド、アルカリ土類金属元素を含有したアルコキシド、及び発光中心元素を含有したアルコキシドを含む複数のアルコキシドを溶媒中で混合して混合アルコキシド溶液を作製する混合アルコキシド溶液作製工程と、前記混合アルコキシド溶液を前記マイクロエマルジョン溶液に注入し、加水分解反応を生じさせる加水分解工程とを含むのが好ましい。 The phosphor production method of the present invention comprises a microemulsion solution preparation step of preparing a water-in-oil microemulsion solution in which a hydrophobic solvent, a surfactant, and water are mixed to form a water-in-oil microemulsion solution in which water droplets are dispersed in oil. A mixed alkoxide solution preparation step of preparing a mixed alkoxide solution by mixing a plurality of alkoxides including Ti alkoxide, an alkoxide containing an alkaline earth metal element, and an alkoxide containing a luminescent center element in a solvent, and the mixed alkoxide It is preferable to include a hydrolysis step of injecting the solution into the microemulsion solution to cause a hydrolysis reaction.
 これによりマイクロエマルジョン溶液に滴下される混合アルコキシド溶液の組成を調整するだけで、容易に所望組成の蛍光体を得ることが可能となる。しかも、混合アルコキシド溶液を形成する原料種を変更するだけで、発光中心元素や母体材料を任意に選択することが可能であり、大規模な装置や煩雑な工程を要することなく、所望の成分組成を有する蛍光体を容易に製造することができる。 This makes it possible to easily obtain a phosphor having a desired composition simply by adjusting the composition of the mixed alkoxide solution dropped into the microemulsion solution. Moreover, it is possible to arbitrarily select the luminescent center element and the base material simply by changing the raw material species for forming the mixed alkoxide solution, and the desired component composition can be obtained without requiring a large-scale apparatus or complicated processes. Can easily be manufactured.
 本発明の蛍光体によれば、ナノ粒子で形成された母体材料に発光中心元素が含有されると共に、前記母体材料が、少なくともTi及びアルカリ土類金属元素を含有した酸化物を含んでいるので、従来に比べて格段に良好な発光効率を有する蛍光体を得ることができる。すなわち、2価のアルカリ土類金属元素と4価のTiが母体材料に混在することにより、これら母体材料を形成するOの2p軌道、Tiの3d軌道及びアルカリ土類金属元素の最外殻軌道との間で混成軌道が形成される。この混成軌道は発光中心元素の電子軌道とエネルギー準位が近いため、共鳴的なエネルギー移動が生じる。これにより発光中心元素へのエネルギーの遷移効率が向上し、従来に比べて発光効率を格段に向上させることができる。 According to the phosphor of the present invention, the matrix material formed of the nanoparticles contains the luminescent center element, and the matrix material contains an oxide containing at least Ti and an alkaline earth metal element. Thus, it is possible to obtain a phosphor having much better light emission efficiency than conventional ones. That is, by mixing a divalent alkaline earth metal element and a tetravalent Ti in the base material, the 2p orbit of O, the 3d orbit of Ti, and the outermost orbit of the alkaline earth metal element forming these base materials. A hybrid orbit is formed between the two. Since this hybrid orbital has an energy level close to that of the electron orbit of the luminescent center element, resonance energy transfer occurs. As a result, the efficiency of energy transition to the luminescent central element is improved, and the luminous efficiency can be significantly improved as compared with the conventional case.
 また、本発明の蛍光体の製造方法によれば、少なくともTi酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物を含有したナノ粒子が分散溶液中に分散したナノ粒子分散溶液を作製するナノ粒子分散溶液作製工程と、前記ナノ粒子分散溶液を基板上に塗布して塗膜を形成する塗膜形成工程と、前記塗膜を熱処理する熱処理工程とを含み、前記熱処理工程は、前記熱処理を500℃以下の温度で行い、少なくともTi及びアルカリ土類金属元素を含有した酸化物からなる母体材料に発光中心元素が添加された蛍光体を作製するので、高温加熱プロセスを要することもなく、したがって大規模な装置や煩雑な製造過程を要することもなく、所望の蛍光体を低コストで得ることができる。しかも、ナノ粒子を500℃以下の低温で熱処理されることから、粒成長が生じるのを抑制することができ、粒度分布の揃った所望の量子サイズ効果の発現が可能な蛍光体を得ることができる。 In addition, according to the method for producing a phosphor of the present invention, a nanoparticle dispersion in which nanoparticles containing at least a Ti oxide, an alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution. A nanoparticle dispersion solution preparation step for preparing a solution, a coating film formation step for forming a coating film by applying the nanoparticle dispersion solution on a substrate, and a heat treatment step for heat-treating the coating film, and the heat treatment step Performs the heat treatment at a temperature of 500 ° C. or less, and produces a phosphor in which a luminescent center element is added to a base material made of an oxide containing at least Ti and an alkaline earth metal element, and thus requires a high-temperature heating process. Therefore, a desired phosphor can be obtained at low cost without requiring a large-scale apparatus or a complicated manufacturing process. Moreover, since the nanoparticles are heat-treated at a low temperature of 500 ° C. or lower, it is possible to suppress the occurrence of grain growth and obtain a phosphor capable of exhibiting a desired quantum size effect with a uniform particle size distribution. it can.
本発明に係る蛍光体の一実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the fluorescent substance which concerns on this invention. 本発明の製造方法で作製されたナノ粒子分散溶液の一実施の形態を模式的に示した正面図である。It is the front view which showed typically one Embodiment of the nanoparticle dispersion solution produced with the manufacturing method of this invention. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 上記ナノ粒子分散溶液の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the said nanoparticle dispersion solution. 試料番号1の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 1. FIG. 試料番号2の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of sample number 2. FIG. 試料番号3の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 3. FIG. 試料番号4の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 4. FIG. 試料番号2~4の蛍光スペクトルを示す図である。FIG. 6 is a diagram showing fluorescence spectra of sample numbers 2 to 4. 試料番号5の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 5. FIG. 試料番号6の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 6. FIG. 試料番号7の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the sample number 7. FIG. 試料番号2及び5~7の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of sample number 2 and 5-7.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は本発明に係る蛍光体の一実施の形態を模式的に示す断面図であって、該蛍光体1は、石英ガラス等で形成された基板2上に形成されている。 FIG. 1 is a cross-sectional view schematically showing an embodiment of a phosphor according to the present invention. The phosphor 1 is formed on a substrate 2 made of quartz glass or the like.
 この蛍光体1は、粒径が5nm以下のナノ粒子で形成された母体材料に発光中心元素Lが含有されると共に、前記母体材料が、少なくともTi及びアルカリ土類金属元素Mを含有した酸化物を含んでいる。そして、これにより従来に比べ発光効率を格段に向上させることができる。 The phosphor 1 includes a luminescent center element L contained in a matrix material formed of nanoparticles having a particle size of 5 nm or less, and the matrix material contains at least Ti and an alkaline earth metal element M. Is included. As a result, the luminous efficiency can be significantly improved as compared with the conventional case.
 すなわち、Ti-O系のエネルギー構造は、価電子帯は主としてOの2p軌道で形成され、伝導帯は主としてTiの3d軌道で形成される。そして、外部エネルギーが蛍光体1に付与され、母体材料が励起光を吸収すると、電子は価電子帯のO2p軌道から伝導帯のTi3d軌道に励起され、この電子が、エネルギー準位が価電子帯上端と伝導帯下端の中間のエネルギー準位を有しかつTi-Oと共鳴する発光中心元素に遷移し、これにより蛍光体1は発光する。 That is, in the Ti—O-based energy structure, the valence band is mainly formed by 2p orbitals of O, and the conduction band is mainly formed by 3d orbitals of Ti. When external energy is applied to the phosphor 1 and the host material absorbs excitation light, the electrons are excited from the O2p orbital of the valence band to the Ti3d orbital of the conduction band, and the electrons have an energy level in the valence band. The phosphor 1 emits light by transitioning to an emission center element having an energy level intermediate between the upper end and the lower end of the conduction band and resonating with Ti—O.
 しかるに、斯かるTi-O系にTiよりもエネルギー準位の低い2価のアルカリ土類金属元素Mを混在させると、アルカリ土類金属元素Mの最外殻のs軌道(例えば、Baの場合は、6s軌道)が、Oの2p軌道及びTiの3d軌道と重なり合って軌道の混成が生じ、混成軌道を形成する。この混成軌道は発光中心元素の電子軌道とエネルギー準位が近いため共鳴的なエネルギー移動が生じる。そしてその結果、価電子帯上端から伝導帯下端に励起した電子の発光中心元素へのエネルギーの遷移効率が向上する。 However, when a divalent alkaline earth metal element M having a lower energy level than Ti is mixed in such a Ti—O system, the s orbit of the outermost shell of the alkaline earth metal element M (for example, in the case of Ba) 6s orbit) overlaps with the 2p orbit of O and the 3d orbit of Ti, and orbital hybridization occurs, forming a hybrid orbital. Since this hybrid orbital is close in energy level to the electron orbit of the luminescent center element, resonance energy transfer occurs. As a result, the energy transition efficiency of the electrons excited from the upper end of the valence band to the lower end of the conduction band to the luminescent central element is improved.
 特に、本実施の形態では、M-Ti-Oからなる母体材料が、5nm以下のナノ粒子で形成されており、量子サイズ効果により光の吸収効率が増大することから、従来に比べて発光中心元素Lへのエネルギーの遷移効率を格段に向上させることができ、発光効率を飛躍的に向上させることが可能となる。 In particular, in this embodiment, the base material made of M-Ti-O is formed of nanoparticles of 5 nm or less, and the light absorption efficiency is increased by the quantum size effect. The energy transition efficiency to the element L can be remarkably improved, and the light emission efficiency can be remarkably improved.
 そして、このような発光中心元素Lとしては、母体材料のエネルギー準位と共鳴するエネルギー準位を有する各種の希土類元素や遷移金属元素を使用することができる。 As the luminescent center element L, various rare earth elements and transition metal elements having an energy level that resonates with the energy level of the base material can be used.
 例えば、希土類元素としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuの群から選択された少なくとも1種以上の元素を使用することができる。 For example, the rare earth element includes at least one element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Can be used.
 また、遷移金属元素としては、例えば、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cdの群から選択された1種以上の元素を使用することができる。 Examples of the transition metal element include Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd. One or more selected elements can be used.
 これら多数の元素の中では、アルカリ土類金属元素Mのエネルギー準位が伝導帯の下端のエネルギー準位と発光中心元素Lの励起エネルギー準位との中間に位置するような発光中心元素を使用するのが好ましく、例えばEuを好んで使用することができる。 Among these many elements, a luminescent center element is used in which the energy level of the alkaline earth metal element M is located between the energy level at the lower end of the conduction band and the excitation energy level of the luminescent center element L. For example, Eu can be preferably used.
 また、アルカリ土類金属元素Mとしては、特に限定されるものではなく、Mg、Ca、Sr、Ba等を発光中心元素Lの種類に応じて適宜選択することができるが、通常はBaを好んで使用することができる。 Further, the alkaline earth metal element M is not particularly limited, and Mg, Ca, Sr, Ba, and the like can be appropriately selected according to the type of the luminescent center element L. Usually, Ba is preferred. Can be used.
 次に、この蛍光体1の製造方法を詳述する。 Next, a method for manufacturing the phosphor 1 will be described in detail.
 まず、Ti酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物を有するナノ粒子を分散溶液中に分散させたナノ粒子分散溶液を作製する。 First, a nanoparticle dispersion solution in which nanoparticles having a Ti oxide, an alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersion solution is prepared.
 ここで、ナノ粒子分散溶液の作製方法は、特には限定されないが、粒度分布が狭く、所望の量子サイズ効果の発現が可能な5nm以下の超微粒のナノ粒子を容易に得ることができ、かつ原料を選択するだけでナノ粒子の種類を簡便に変更でき、設計の自由度が大きなマイクロエマルジョン法を使用するのが好ましい。 Here, the method for producing the nanoparticle dispersion solution is not particularly limited, but it is possible to easily obtain ultrafine nanoparticles of 5 nm or less that have a narrow particle size distribution and can exhibit a desired quantum size effect, and It is preferable to use a microemulsion method that can easily change the type of nanoparticles simply by selecting a raw material and has a high degree of design freedom.
 しかも、このマイクロエマルジョン法では、ナノ粒子が分散溶液中に既に形成されていることから、後述するように疎水性溶媒や界面活性剤を燃焼・分解させるのに必要な加熱処理を行えばよく、低温プロセスで高効率な蛍光体1の作製が可能となる。 Moreover, in this microemulsion method, since the nanoparticles are already formed in the dispersion solution, the heat treatment necessary to burn and decompose the hydrophobic solvent and the surfactant may be performed as described later. A highly efficient phosphor 1 can be produced by a low temperature process.
 以下、このマイクロエマルジョン法を使用したナノ粒子分散溶液の作製方法を解説する。 The following explains how to prepare a nanoparticle dispersion using this microemulsion method.
 図2は、マイクロエマルジョン法で作製されたナノ粒子分散溶液を模式的に示した正面図である。 FIG. 2 is a front view schematically showing a nanoparticle dispersion solution prepared by a microemulsion method.
 すなわち、このナノ粒子分散溶液3は、ナノ粒子4が、界面活性剤5に包囲された形態で疎水性溶媒6中に分散浮遊しており、斯かる分散溶液3が、容器7に収容されている。 That is, in the nanoparticle dispersion solution 3, the nanoparticles 4 are dispersed and suspended in the hydrophobic solvent 6 in a form surrounded by the surfactant 5, and the dispersion solution 3 is contained in the container 7. Yes.
 具体的には、図3に示すように、界面活性剤5は、主界面活性剤8と副界面活性剤9とを有している。 Specifically, as shown in FIG. 3, the surfactant 5 has a main surfactant 8 and a subsurfactant 9.
 そして、主界面活性剤8は、疎水性基8aと親水性基8bとを有し、疎水性基8aは疎水性溶媒6に吸着され、親水性基8bはナノ粒子4に吸着されている。 The main surfactant 8 has a hydrophobic group 8 a and a hydrophilic group 8 b, the hydrophobic group 8 a is adsorbed on the hydrophobic solvent 6, and the hydrophilic group 8 b is adsorbed on the nanoparticles 4.
 ここで、主界面活性剤8としては、ポリオキシエチレン基((CHCHO))の部分で親水性を得ることができるポリオキシエチレンアルキルフェニルエーテル(APE(n))が使用され、特に、化学式HC(CHO(CHCHO)Hで示されるポリオキシエチレンノニルフェニルエーテル(NPE(n))が好んで使用される。 Here, as the main surfactant 8, polyoxyethylene alkylphenyl ether (APE (n)) capable of obtaining hydrophilicity at the polyoxyethylene group ((CH 2 CH 2 O) n ) portion is used. In particular, polyoxyethylene nonylphenyl ether (NPE (n)) represented by the chemical formula H 3 C (CH 2 ) 8 C 6 H 4 O (CH 2 CH 2 O) n H is preferably used.
 そして、APE(n)の側鎖長nを変更することにより、得られるナノ粒子4の平均粒径D50を制御することが可能となる。すなわち、側鎖長nの長さが長くなると、側鎖長nの長さが短いときに比べ、ナノ粒子4の平均粒径D50は小さくなる傾向にある。これは、側鎖長nの長さが大きくなると親水性基も長くなることから、ナノ粒子4の生成に寄与する水滴への吸着力が強くなって水滴径がより小さくなり、その結果、生成されるナノ粒子4の平均粒径D50も小さくなるためと考えられる。 Then, by changing the side chain length n of APE (n), it is possible to control the average particle diameter D 50 of the resulting nanoparticles 4. That is, as the length of the side chain length n increases, the average particle diameter D 50 of the nanoparticles 4 tends to be smaller than when the length of the side chain length n is short. This is because, as the side chain length n increases, the hydrophilic group also increases, so that the adsorption force to the water droplets contributing to the generation of the nanoparticles 4 becomes stronger and the water droplet diameter becomes smaller. This is probably because the average particle diameter D 50 of the nanoparticles 4 to be produced is also reduced.
 このようにAPE(n)の側鎖長nの差を利用してナノ粒子4の平均粒径D50を制御することが可能となる。したがって、側鎖長nの異なるAPE(n)を選択するのみでナノ粒子4の平均粒径D50を制御することが可能となる。 Thus, the average particle diameter D 50 of the nanoparticles 4 can be controlled by utilizing the difference in the side chain length n of APE (n). Therefore, it becomes possible to control the average particle diameter D 50 of the nanoparticles 4 only by selecting APE (n) having different side chain lengths n.
 また、副界面活性剤9は、後述するマイクロエマルジョン作製時において、主界面活性剤8の親水性基8bの内部に入って水との界面エネルギーを低下させ、かつ、親水性基8bの側鎖長nによる立体障害を和らげる効果があり、これにより水滴の安定化に寄与する。そして、この副界面活性剤9は、ナノ粒子4が生成される際に、主界面活性剤8の親水性基8bと共に、ナノ粒子4を包囲する形態でナノ粒子4に吸着され、ナノ粒子4を疎水性溶媒6中に安定して分散させるのに寄与する。 Further, the sub-surfactant 9 enters the hydrophilic group 8b of the main surfactant 8 to reduce the interfacial energy with water during the preparation of the microemulsion described later, and the side chain of the hydrophilic group 8b. This has the effect of reducing steric hindrance due to the length n, thereby contributing to the stabilization of water droplets. And when this nanosurfactant 4 is produced | generated, this subsurfactant 9 is adsorb | sucked by the nanoparticle 4 with the hydrophilic group 8b of the main surfactant 8, and the nanoparticle 4 in the form which surrounds the nanoparticle 4, and nanoparticle 4 Contributes to stable dispersion in the hydrophobic solvent 6.
 このような副界面活性剤9としては、化学式C2m+1OH(ただし、mは4~10)で表される中鎖アルコール、例えば、1-オクタノール(C17OH)を使用することができる。すなわち、炭素数mは、主界面活性剤8の親水性基8bの側鎖長nの長さにも依存するが、炭素数mが4未満では、親水性が大きくなり過ぎるため、マイクロエマルジョン作製時に、水滴内に溶解してしまい、このため副界面活性剤9が主界面活性剤8と水との界面のみに存在しなくなるおそれがある。一方、炭素数mが10を超えると疎水性が大きくなり過ぎたり、立体障害が大きくなったりするおそれがあり、好ましくない。 As such a subsurfactant 9, a medium chain alcohol represented by the chemical formula C m H 2m + 1 OH (where m is 4 to 10), for example, 1-octanol (C 8 H 17 OH) is used. can do. That is, the carbon number m depends on the length of the side chain length n of the hydrophilic group 8b of the main surfactant 8. However, if the carbon number m is less than 4, the hydrophilicity becomes too large, so that a microemulsion is produced. Occasionally, it dissolves in the water droplets, so that the secondary surfactant 9 may not be present only at the interface between the main surfactant 8 and water. On the other hand, when the carbon number m exceeds 10, the hydrophobicity may be excessively increased or the steric hindrance may be increased, which is not preferable.
 疎水性溶媒6としては、シクロへキサン、ヘキサン、シクロペンタン、ベンゼン、オクタンなどの無極性炭化水素、ジエチルエーテル、イソプロピルエーテル等のエーテル類や、ケロシンなどの石油系炭化水素等を使用することができるが、これら疎水性溶媒6の中では、シクロヘキサン、ベンゼンを好んで使用することができる。 As the hydrophobic solvent 6, nonpolar hydrocarbons such as cyclohexane, hexane, cyclopentane, benzene, and octane, ethers such as diethyl ether and isopropyl ether, petroleum hydrocarbons such as kerosene, etc. may be used. Of these hydrophobic solvents 6, cyclohexane and benzene can be preferably used.
 尚、ナノ粒子4が溶液中に分散していることは、透過型電子顕微鏡(Transmission Electron Microscope; 以下、「TEM」という。)で直接視認したり、制限視野電子回折パターン等により確認することができる。 The dispersion of the nanoparticles 4 in the solution can be confirmed directly by a transmission electron microscope (hereinafter referred to as “TEM”) or by a limited-field electron diffraction pattern. it can.
 そして、このナノ粒子分散溶液3は以下のような方法で製造される。 And this nanoparticle dispersion solution 3 is manufactured by the following methods.
 まず、疎水性溶媒6、界面活性剤5(主界面活性剤8及び副界面活性剤9)、及び水を容器7に入れて混合・撹拌する。すると、図4(a)に示すように、主界面活性剤8の疎水性基8aは疎水性溶媒6に吸着される一方、主界面活性剤8の親水性基8bは水に吸着され、さらに副界面活性剤9は主界面活性剤8の親水性基8bに入り込んで水との界面エネルギーが低下する。そしてその結果、水は超微小径の水滴10となって、界面活性剤5(主界面活性剤8及び副界面活性剤9)の内部に閉じ込められる。すなわち、水滴10は界面活性剤5に包囲されるような形態で、疎水性溶媒6中に分散し、これにより油中水滴型のマイクロエマルジョン溶液が作製される。 First, the hydrophobic solvent 6, the surfactant 5 (the main surfactant 8 and the subsurfactant 9), and water are put in the container 7 and mixed and stirred. Then, as shown in FIG. 4 (a), the hydrophobic group 8a of the main surfactant 8 is adsorbed by the hydrophobic solvent 6, while the hydrophilic group 8b of the main surfactant 8 is adsorbed by water, The subsurfactant 9 enters the hydrophilic group 8b of the main surfactant 8 and the interfacial energy with water decreases. As a result, the water becomes ultrafine water droplets 10 and is confined inside the surfactant 5 (the main surfactant 8 and the subsurfactant 9). That is, the water droplets 10 are dispersed in the hydrophobic solvent 6 in a form surrounded by the surfactant 5, whereby a water-in-oil microemulsion solution is produced.
 尚、界面活性剤5、及び水は、最終生成物であるナノ粒子の平均粒径D50が5nm以下(好ましくは、3nm以下)となるように、例えば、水/界面活性剤=0.005~0.05となるように配合されて容器7に投入される。 The surfactant 5 and water are, for example, water / surfactant = 0.005 so that the average particle diameter D 50 of the final product nanoparticles is 5 nm or less (preferably 3 nm or less). It is blended so that it becomes ˜0.05 and put into the container 7.
 次に、ナノ粒子4の原料となる混合アルコキシド溶液を調製する。 Next, a mixed alkoxide solution as a raw material for the nanoparticles 4 is prepared.
 すなわち、超微小で粒度分布の幅が狭い所望粒子径のナノ粒子4を得るためには、加水分解反応に消費される水滴10の水滴径増加を招くのを避ける必要があり、そのためにはアルコキシドのような無水和物を使用するのが望ましい。 That is, in order to obtain nanoparticles 4 having a desired particle size with a very small particle size distribution, it is necessary to avoid an increase in the water droplet size of the water droplet 10 consumed in the hydrolysis reaction. It is desirable to use an anhydride such as an alkoxide.
 そこで、Tiアルコキシド、アルカリ土類金属元素Mを含有したMアルコキシド、発光中心元素Lを含有したLアルコキシドを用意し、これら各アルコキシドをイソプロピルアルコール等のアルコール溶液に溶解させ、これにより混合アルコキシド溶液を作製する。 Therefore, Ti alkoxide, M alkoxide containing alkaline earth metal element M, and L alkoxide containing luminescent center element L are prepared, and these alkoxides are dissolved in an alcohol solution such as isopropyl alcohol, whereby a mixed alkoxide solution is prepared. Make it.
 ここで、混合アルコキシド溶液中のアルカリ土類金属元素MとTiとの総計に対する発光中心元素Lの比率L/(M+Ti)は、特に限定されるものではないが、好ましくはモル比で0.03~0.1に設定される。そして、より良好な発光効率を得るためには、比率L/(M+Ti)は、前記0.03~0.1の範囲内で大きいのがより好ましい。 Here, the ratio L / (M + Ti) of the luminescent center element L to the total of the alkaline earth metal elements M and Ti in the mixed alkoxide solution is not particularly limited, but is preferably 0.03 in molar ratio. Set to ~ 0.1. In order to obtain better luminous efficiency, the ratio L / (M + Ti) is more preferably large in the range of 0.03 to 0.1.
 また、混合アルキシド溶液中のアルカリ土類金属元素MとTiと比率M/Tiは、特に限定されるものではなく、例えばモル比で1/9~9/1の範囲で任意に調整することができる。 Further, the alkaline earth metal elements M and Ti and the ratio M / Ti in the mixed alkoxide solution are not particularly limited, and can be arbitrarily adjusted within a range of, for example, 1/9 to 9/1 in molar ratio. it can.
 尚、混合アルコキシド溶液の調製は、空気中の水分が混合アルコキシド溶液に浸入するのを防ぐ観点から、Ar雰囲気等の不活性雰囲気で行うのが好ましい。すなわち、混合アルコキシド溶液の調製を不活性雰囲気で行うことにより、余分な成分がマイクロエマルジョン溶液に浸入することもなく、これによりナノ粒子4の粒子径が大きくなるのを抑制できる。 The mixed alkoxide solution is preferably prepared in an inert atmosphere such as an Ar atmosphere from the viewpoint of preventing moisture in the air from entering the mixed alkoxide solution. That is, by preparing the mixed alkoxide solution in an inert atmosphere, excess components do not enter the microemulsion solution, thereby suppressing an increase in the particle size of the nanoparticles 4.
 次に、このようにして作製された混合アルコキシド溶液をマイクロエマルジョン溶液に滴下し、Ar雰囲気等の不活性雰囲気下、所定時間、撹拌混合する。すると混合アルコキシド溶液と水滴10との間で加水分解反応が生じる。 Next, the mixed alkoxide solution prepared in this manner is dropped into the microemulsion solution, and stirred and mixed for a predetermined time in an inert atmosphere such as an Ar atmosphere. Then, a hydrolysis reaction occurs between the mixed alkoxide solution and the water droplet 10.
 すなわち、界面活性剤5で包囲された水滴10を反応場として加水分解反応が進行し、図4(b)に示すように、水滴10が消費され、チタン酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物の混合物からなるナノ粒子4が生成され、これによりナノ粒子分散溶液3が作製される。 That is, the hydrolysis reaction proceeds using the water droplets 10 surrounded by the surfactant 5 as a reaction field, and as shown in FIG. 4B, the water droplets 10 are consumed and titanium oxide, alkaline earth metal oxide, And the nanoparticle 4 which consists of a mixture of the oxide containing a luminescent center element is produced | generated, and the nanoparticle dispersion solution 3 is produced by this.
 ここで、混合アルコキシド溶液は、マイクロエマルジョン溶液中の水量が混合アルコキシドの加水分解に必要な水量の1~1.2倍となるように、マイクロエマルジョン溶液に滴下される。これはマイクロエマルジョン溶液中の水量が混合アルコキシドの加水分解に必要な水量の1倍未満の場合は、所望の加水分解反応が進行せず、一方、1.2倍を超えると、水量が多くなって水滴10が大きくなり、このため、大きくなった水滴径に応じ、生成されるナノ粒子4の平均粒径D50も大きくなるおそれがあるからである。 Here, the mixed alkoxide solution is dropped into the microemulsion solution so that the amount of water in the microemulsion solution is 1 to 1.2 times the amount of water necessary for hydrolysis of the mixed alkoxide. This is because when the amount of water in the microemulsion solution is less than 1 times the amount of water required for hydrolysis of the mixed alkoxide, the desired hydrolysis reaction does not proceed, while when it exceeds 1.2 times, the amount of water increases. This is because the water droplet 10 becomes large, and therefore, the average particle diameter D 50 of the produced nanoparticles 4 may be increased according to the increased water droplet diameter.
 尚、アルコキシドの種類は、特に限定されるものではなく、エトキシド、プロポキシド、ブトキシド等を使用することができる。 The type of alkoxide is not particularly limited, and ethoxide, propoxide, butoxide and the like can be used.
 この後、このナノ粒子分散溶液3を使用して蛍光体1を作製する。 Thereafter, the phosphor 1 is prepared using the nanoparticle dispersion solution 3.
 すなわち、ナノ粒子分散溶液3をスピンコーティング法等により基板2上に一様に塗布して塗膜を形成する。 That is, the nanoparticle dispersion solution 3 is uniformly applied onto the substrate 2 by a spin coating method or the like to form a coating film.
 具体的には、ナノ粒子分散溶液3を基板2上に滴下した後、基板2を所定時間、所定回転数で回転させることにより、基板2上にはナノ粒子分散溶液3が一様に塗布される。そしてその後、500℃以下の低温で熱処理を行う。これにより疎水性溶媒6や界面活性剤5等が燃焼・分解し、Ti及びアルカリ土類金属元素Mの酸化物を母体材料とし、該母体材料に発光中心元素Lが添加されたL:Ti-M-Oからなる蛍光体1が製造される。 Specifically, after the nanoparticle dispersion solution 3 is dropped on the substrate 2, the substrate 2 is rotated at a predetermined rotation speed for a predetermined time, so that the nanoparticle dispersion solution 3 is uniformly applied on the substrate 2. The Thereafter, heat treatment is performed at a low temperature of 500 ° C. or lower. As a result, the hydrophobic solvent 6, the surfactant 5, and the like are burned and decomposed, and an oxide of Ti and the alkaline earth metal element M is used as a base material, and the luminescent center element L is added to the base material. The phosphor 1 made of MO is manufactured.
 すなわち、ナノ粒子分散溶液3中にはナノ粒子4が既に作製されていることから、疎水性溶媒6や界面活性剤5等の有機物を燃焼・分解できる程度の低温プロセスで蛍光体1を作製することができる。 That is, since the nanoparticles 4 are already produced in the nanoparticle dispersion solution 3, the phosphor 1 is produced by a low-temperature process capable of burning and decomposing organic substances such as the hydrophobic solvent 6 and the surfactant 5. be able to.
 尚、熱処理温度が500℃を超えると、ナノ粒子の粒成長を助長し、粒径が5nmを超えるおそれがあり、好ましくない。 In addition, when the heat treatment temperature exceeds 500 ° C., it is not preferable because it promotes nanoparticle growth and the particle size may exceed 5 nm.
 また、熱処理温度の下限は、特に限定されるものではないが、疎水性溶媒6を十分に揮発できる温度、例えば100℃以上が好ましい。 The lower limit of the heat treatment temperature is not particularly limited, but is preferably a temperature at which the hydrophobic solvent 6 can be sufficiently volatilized, for example, 100 ° C. or higher.
 このように熱処理温度は、母体材料、すなわち使用するアルカリ土類金属元素Mの種類に応じ100~500℃の範囲で適切な温度に調整することができる。 Thus, the heat treatment temperature can be adjusted to an appropriate temperature in the range of 100 to 500 ° C. according to the type of the base material, that is, the alkaline earth metal element M to be used.
 このように本実施の形態では、ナノ粒子分散溶液3を基板2に塗布した後、500℃以下の低温で熱処理して蛍光体1を作製しているので、蛍光体1を低温で形成することができ、したがって粒成長が抑制され、粒度分布の狭い超微小粒径のナノ粒子を母体材料とする蛍光体1を容易に得ることができる。 Thus, in this Embodiment, after apply | coating the nanoparticle dispersion solution 3 to the board | substrate 2, it heat-processes at the low temperature of 500 degrees C or less, and is producing the fluorescent substance 1, Therefore Forming the fluorescent substance 1 at low temperature Therefore, the grain growth is suppressed, and the phosphor 1 whose base material is nanoparticles having an ultrafine particle diameter with a narrow particle size distribution can be easily obtained.
 しかも、このように蛍光体1を低温プロセスで作製できることから、樹脂等の低融点の基板上にも成膜が可能であり、フレキシブルデバイスへの応用も可能となる。 In addition, since the phosphor 1 can be manufactured by a low-temperature process in this way, it can be formed on a low-melting-point substrate such as a resin and can be applied to a flexible device.
 また、気相成長法や析出法のような高温・高圧環境は不要であり、したがって大規模な設備を要することもなく、簡便な方法で所望のナノ粒子を得ることが可能である。 Also, a high temperature and high pressure environment such as a vapor phase growth method and a precipitation method is not required, and therefore a desired nanoparticle can be obtained by a simple method without requiring a large-scale facility.
 また、室温撹拌のみで加水分解反応が進行するため、熱処理等のプロセスを必要とせず、極めて簡便に所望のナノ粒子4を得ることができる。 In addition, since the hydrolysis reaction proceeds only by stirring at room temperature, the desired nanoparticles 4 can be obtained very simply without requiring a process such as heat treatment.
 また、必要最小限の水量で反応させているので、ナノ粒子4内への水酸基の取り込みや欠陥の発生を抑制することが可能である。しかも、使用する主界面活性剤8の親水性基8bの側鎖長nを種々変更することにより、生成されるナノ粒子4の粒子径を制御することができ、したがって材料の設計の自由度も大きく、所望の超微小粒径を有する蛍光体1を得ることが可能となる。 In addition, since the reaction is performed with the minimum amount of water, it is possible to suppress the incorporation of hydroxyl groups into the nanoparticles 4 and the occurrence of defects. In addition, by changing the side chain length n of the hydrophilic group 8b of the main surfactant 8 to be used, the particle diameter of the produced nanoparticles 4 can be controlled, and therefore the degree of freedom in designing the material is also improved. A large phosphor 1 having a desired ultrafine particle diameter can be obtained.
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲で種々の変形が可能である。例えば上記実施の形態では、基板2上に薄膜状の蛍光体1を作製しているが、蛍光体1を基板2から剥離させ、粉砕等して粉末状の蛍光体1を得ることもできる。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the above embodiment, the thin-film phosphor 1 is produced on the substrate 2. However, the phosphor 1 can be peeled off from the substrate 2 and pulverized to obtain the powder phosphor 1.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
〔試料番号1〕 
 疎水性溶媒としてシクロヘキサン、主界面活性剤として親水性基の側鎖長nが10のNPE(10)、副界面活性剤として1-オクタノールを用意し、さらに水を用意した。
[Sample No. 1]
Cyclohexane as a hydrophobic solvent, NPE (10) having a side chain length n of a hydrophilic group as 10 as a main surfactant, 1-octanol as a secondary surfactant, and water were prepared.
 そして、シクロヘキサン:NPE(10):1-オクタノール:水=30:1.4:1.7:0.03となるように、これらを混合・撹拌し、これにより油中水滴型のマイクロエマルジョン溶液を作製した。 These were mixed and stirred so that cyclohexane: NPE (10): 1-octanol: water = 30: 1.4: 1.7: 0.03, whereby a water-in-oil microemulsion solution was obtained. Was made.
 次に、Ba(アルカリ土類金属元素)を含有したBaアルコキシドとしてのBaイソプロポキシド(Ba(OC)、TiアルコキシドとしてのTiイソプロポキシド(Ti(OC)、及び3価のEu(発光中心元素)を含有したEuアルコキシドとしてのEuイソプロポキシド(Eu(OC)を用意した。 Next, Ba isopropoxide (Ba (OC 3 H 7 ) 2 ) as Ba alkoxide containing Ba (alkaline earth metal element), Ti isopropoxide (Ti (OC 3 H 7 ) 4 as Ti alkoxide. And Eu isopropoxide (Eu (OC 3 H 7 ) 3 ) as Eu alkoxide containing trivalent Eu (emission center element).
 そして、BaとTiとの比率Ba/Tiがモル比で1となり、BaとTiとの総計に対するEuの比率Eu/(Ba+Ti)がモル比で0.10となるように、Baイソプロポキシド、Tiイソプロポキシド、及びEuイソプロポキシドを秤量し、これらをイソプロピルアルコール溶液に溶解させ、混合アルコキシド溶液を作製した。 Ba isopropoxide, so that the ratio Ba / Ti of Ba to Ti is 1 in molar ratio, and the ratio Eu / (Ba + Ti) of Eu to the total of Ba and Ti is 0.10 in molar ratio, Ti isopropoxide and Eu isopropoxide were weighed and dissolved in an isopropyl alcohol solution to prepare a mixed alkoxide solution.
 次に、この混合アルコキシド溶液を前記マイクロエマルジョン溶液に滴下し、さらに1週間以上撹拌し、これにより加水分解を生じさせ、ナノ粒子分散溶液を作製した。 Next, this mixed alkoxide solution was added dropwise to the microemulsion solution, and further stirred for one week or more, thereby causing hydrolysis to prepare a nanoparticle dispersion solution.
 ここで、混合アルコキシド溶液の滴下量は、反応場となる水量が、モル比換算で、Baイソプロポキシド、Tiイソプロポキシド、及びEuイソプロポキシドの加水分解に必要な量の1.2倍となるように調整した。 Here, the dripping amount of the mixed alkoxide solution is 1.2 times the amount of water used as a reaction field in terms of molar ratio, which is necessary for hydrolysis of Ba isopropoxide, Ti isopropoxide, and Eu isopropoxide. It adjusted so that it might become.
 このようにして得られたナノ粒子分散溶液を石英ガラス基板上に塗布し、300℃の熱処理温度で大気中、0.5時間加熱し、界面活性剤や疎水性溶媒を燃焼・分解させ、これにより試料番号1の試料を作製した。 The nanoparticle dispersion solution thus obtained is applied onto a quartz glass substrate and heated in the atmosphere at a heat treatment temperature of 300 ° C. for 0.5 hours to burn and decompose the surfactant and the hydrophobic solvent. A sample No. 1 was prepared.
 次に、この試料番号1の試料を透過型電子顕微鏡(以下、「TEM」という。)で観察したところ、粒径が1~2nmのナノ粒子集合体が形成されていることが分かった。 Next, when the sample No. 1 was observed with a transmission electron microscope (hereinafter referred to as “TEM”), it was found that a nanoparticle aggregate having a particle diameter of 1 to 2 nm was formed.
 次いで、キセノンランプを使用し、275nmの波長の励起光を試料番号1の試料に照射し、分光器(SPECS社製TRIAX320)を使用して蛍光スペクトルを測定した。 Next, using a xenon lamp, the sample No. 1 was irradiated with excitation light having a wavelength of 275 nm, and a fluorescence spectrum was measured using a spectroscope (TRIAX320 manufactured by SPECS).
 図5はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 5 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図5から明らかなように、590nm、613nm、及び697nmの各波長で、Euに固有の蛍光ピークが観察され、特に、613nmの波長では半値幅の狭い急峻な蛍光ピークが認められた。 As is apparent from FIG. 5, fluorescence peaks specific to Eu were observed at wavelengths of 590 nm, 613 nm, and 697 nm, and particularly a sharp fluorescence peak with a narrow half-value width was observed at a wavelength of 613 nm.
 そして、この試料は、光吸収特性から375nm以下の波長の光を吸収することが分かっている。 And this sample is known to absorb light having a wavelength of 375 nm or less from the light absorption characteristics.
 したがって、試料番号1の試料は、励起波長である275nmの光を吸収して電子・正孔対が形成され、Euの発光波長にエネルギーが遷移することによって、発光効率が著しく向上していることが分かった。 Therefore, the sample of sample number 1 absorbs light of 275 nm which is an excitation wavelength to form an electron / hole pair, and the energy transitions to the emission wavelength of Eu, so that the luminous efficiency is remarkably improved. I understood.
〔試料番号2〕
 熱処理温度を500℃で行った以外は、〔試料番号1〕と同様の方法・手順で試料番号2の試料を作製した。
[Sample No. 2]
Sample No. 2 was prepared by the same method and procedure as [Sample No. 1] except that the heat treatment temperature was 500 ° C.
 そして、この試料番号2の試料をTEMで観察したところ、粒径が1~2nmのナノ粒子集合体が形成されていることが分かった。 Then, when the sample of sample number 2 was observed with a TEM, it was found that a nanoparticle aggregate having a particle size of 1 to 2 nm was formed.
 次に、この試料番号2についても、試料番号1と同様の方法で蛍光スペクトルを測定した。 Next, the fluorescence spectrum of this sample number 2 was also measured in the same manner as in sample number 1.
 図6はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 6 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図6から明らかなように、試料番号2においても、試料番号1と同様、590nm、613nm、及び697nmの各波長で、Euに固有の蛍光ピークが観察された。特に、613nmの波長では、300℃の温度で熱処理した試料番号1が約8.5×10カウントであったのに対し、500℃の温度で熱処理した試料番号2では約1.6×10カウントに発光強度が上昇した。 As is clear from FIG. 6, in Sample No. 2, similarly to Sample No. 1, Eu-specific fluorescence peaks were observed at wavelengths of 590 nm, 613 nm, and 697 nm. In particular, at a wavelength of 613 nm, Sample No. 1 heat-treated at a temperature of 300 ° C. had a count of about 8.5 × 10 7 , whereas Sample No. 2 heat-treated at a temperature of 500 ° C. was about 1.6 × 10 7. The emission intensity increased to 8 counts.
 すなわち、試料番号1と2との比較から明らかなように、熱処理温度が300℃の場合でも十分の発光強度を得ることができるが、熱処理温度を500℃に上昇させることにより、更なる発光強度の向上を図ることができることが分かった。換言すると、500℃以下で熱処理することにより、発光強度を任意に制御できることが確認された。 That is, as is clear from the comparison between sample numbers 1 and 2, sufficient light emission intensity can be obtained even when the heat treatment temperature is 300 ° C., but by increasing the heat treatment temperature to 500 ° C., further light emission intensity can be obtained. It was found that the improvement of can be achieved. In other words, it was confirmed that the light emission intensity can be arbitrarily controlled by heat treatment at 500 ° C. or lower.
〔試料番号3〕
 BaとTiとの総計に対するEuの比率Eu/(Ba+Ti)がモル比で0.03となるように混合アルキシドの混合比率を調整した以外は、試料番号2と同様の方法・手順(熱処理温度:500℃)で試料番号3の試料を作製し、試料番号1と同様の方法・手順で蛍光スペクトルを測定した。
[Sample No. 3]
Except for adjusting the mixing ratio of the mixed alkoxide so that the Eu ratio Eu / (Ba + Ti) with respect to the total of Ba and Ti is 0.03 in terms of molar ratio, the same method and procedure as in sample number 2 (heat treatment temperature: 500 ° C.), sample No. 3 was prepared, and the fluorescence spectrum was measured by the same method and procedure as Sample No. 1.
 図7はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 7 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図7から明らかなように、試料番号3においても、試料番号1、2と同様、590nm、613nm、及び697nmの各波長でEuに固有の蛍光ピークが観察された。 As is clear from FIG. 7, in Sample No. 3, as in Sample Nos. 1 and 2, fluorescence peaks specific to Eu were observed at wavelengths of 590 nm, 613 nm, and 697 nm.
〔試料番号4〕
 BaとTiとの総計に対するEuの比率Eu/(Ba+Ti)がモル比で0.05となるように混合アルキシドの混合比率を調整した以外は、試料番号2と同様の方法・手順(熱処理温度:500℃)で試料番号4の試料を作製し、試料番号1と同様の方法・手順で蛍光スペクトルを測定した。
[Sample No. 4]
Except for adjusting the mixing ratio of the mixed alkoxide so that the Eu ratio Eu / (Ba + Ti) with respect to the total of Ba and Ti is 0.05, the same procedure and procedure (heat treatment temperature: The sample No. 4 was prepared at 500 ° C., and the fluorescence spectrum was measured by the same method and procedure as Sample No. 1.
 図8はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 8 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図8から明らかなように、試料番号4においても、試料番号1~3と同様、590nm、613nm、及び697nmの各波長で、Euに固有の蛍光ピークが観察された。 As is clear from FIG. 8, in Sample No. 4, as in Sample Nos. 1 to 3, fluorescence peaks specific to Eu were observed at wavelengths of 590 nm, 613 nm, and 697 nm.
 図9は、試料番号2~4の各試料の蛍光スペクトルを比較した図である。横軸が発光波長(nm)、縦軸が発光強度(counts)を示している。 FIG. 9 is a diagram comparing the fluorescence spectra of the samples of sample numbers 2-4. The horizontal axis indicates the emission wavelength (nm), and the vertical axis indicates the emission intensity (counts).
 この図9から明らかなように、試料番号3、4は、試料番号2よりも蛍光強度は若干低いものの、1.0×10カウント以上の発光強度を有しており、300℃の温度で熱処理した試料番号1よりも発光強度が強いことが分かる。そして、試料番号1~4から明らかなように、熱処理温度や混合アルコシド溶液の各アルコキシド溶液の混合比率を変えることにより、任意の発光強度を有する蛍光体が得られることが確認された。 As is apparent from FIG. 9, sample numbers 3 and 4 have emission intensity of 1.0 × 10 8 counts or more at a temperature of 300 ° C., although the fluorescence intensity is slightly lower than that of sample number 2. It can be seen that the emission intensity is stronger than the heat-treated sample No. 1. As is clear from Sample Nos. 1 to 4, it was confirmed that a phosphor having an arbitrary emission intensity can be obtained by changing the heat treatment temperature and the mixing ratio of each alkoxide solution in the mixed alkoxide solution.
〔試料番号5〕
 混合アルコキシド溶液中にTiイソプロポキシドを混合させなかった以外は、試料番号1と同様の方法・手順(熱処理温度:300℃)で、母体材料がBaOからなる試料番号5の試料を作製した。
[Sample No. 5]
A sample No. 5 having a base material of BaO was prepared by the same method and procedure (heat treatment temperature: 300 ° C.) as Sample No. 1 except that Ti isopropoxide was not mixed in the mixed alkoxide solution.
 そして、この試料をTEMで観察したところ、粒径が1~2nmのナノ粒子集合体が形成されていることが分かった。 When this sample was observed with a TEM, it was found that a nanoparticle aggregate having a particle size of 1 to 2 nm was formed.
 次に、この試料番号5の試料についても、試料番号1と同様の方法で蛍光スペクトルを測定した。 Next, the fluorescence spectrum of this sample No. 5 was also measured in the same manner as Sample No. 1.
 図10はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 10 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図10から明らかなように、試料番号5でも、試料番号1と同様、Euに固有の蛍光ピークが観察されたものの、例えば、波長が613nmの蛍光ピークの発光強度は約1.8×10カウントであり、試料番号1~4と比較すると約1~2%程度の弱い発光強度しか得られないことが分かった。これは、母体材料中にTiを含有せず、本発明範囲外のBaOで形成したためと思われる。 As is clear from FIG. 10, in Sample No. 5 as well as in Sample No. 1, although a fluorescence peak specific to Eu was observed, for example, the emission intensity of the fluorescence peak with a wavelength of 613 nm was about 1.8 × 10 × 10. It was 6 counts, and it was found that only a weak emission intensity of about 1 to 2% was obtained as compared with sample numbers 1 to 4. This is presumably because the base material did not contain Ti and was formed of BaO outside the scope of the present invention.
 尚、別途、熱処理温度を350℃として試料を作製し、該試料をTEMで観察したところ、粒成長が生じて粒径が5nmを超えていることが確認された。また、この350℃で熱処理した試料についても、蛍光スペクトルを観察したところ、Euに固有の蛍光ピークが極端に弱くなることが確認された。 Separately, a sample was prepared with a heat treatment temperature of 350 ° C., and the sample was observed with a TEM. As a result, it was confirmed that grain growth occurred and the particle size exceeded 5 nm. Moreover, when the fluorescence spectrum was observed also about the sample heat-processed at 350 degreeC, it was confirmed that the fluorescence peak intrinsic | native to Eu becomes extremely weak.
〔試料番号6〕
 混合アルコキシド溶液中にBaイソプロポキシドを混合させず、熱処理温度を200℃とした以外は、試料番号1と同様の方法・手順で、母体材料がTiOからなる試料番号6の試料を作製した。
[Sample No. 6]
A sample No. 6 having a base material made of TiO 2 was prepared in the same manner and procedure as Sample No. 1 except that Ba isopropoxide was not mixed in the mixed alkoxide solution and the heat treatment temperature was 200 ° C. .
 そして、この試料をTEMで観察したところ、粒径が1~2nmの範囲のナノ粒子集合体で形成されていることが分かった。 When this sample was observed with a TEM, it was found that the sample was formed of a nanoparticle aggregate having a particle size in the range of 1 to 2 nm.
 次に、この試料番号6の試料についても、試料番号1と同様の方法で蛍光スペクトルを測定した。 Next, the fluorescence spectrum of this sample No. 6 was also measured in the same manner as Sample No. 1.
 図11はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 11 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図11から明らかなように、試料番号6では波長が613nmの蛍光ピークの発光強度は約2.5×10カウントであり、試料番号1~4と比較すると約1~3%程度の弱い発光強度しか得られないことが分かった。これは、母体材料中にBaを含有せず、本発明範囲外のTiOで形成したためと思われる。 As can be seen from FIG. 11, the emission intensity of the fluorescence peak with the wavelength of 613 nm is about 2.5 × 10 6 counts in the sample number 6, which is weaker by about 1 to 3% than the sample numbers 1 to 4. It was found that only emission intensity was obtained. This seems to be because the base material does not contain Ba and is formed of TiO 2 outside the scope of the present invention.
〔試料番号7〕
 SnアルコキシドとしてSnイソプロポキシド(Sn(OC)を用意した。そして、EuとSnとの比率Eu/Snが、モル比換算で0.03となるようにSnイソプロポキシドとEuイソプロポキシドとを秤量し、SnイソプロポキシドとEuイソプロポキシドをイソプロピルアルコール溶液に溶解させて混合アルコキシド溶液を作製した。
[Sample No. 7]
Sn isopropoxide (Sn (OC 3 H 7 ) 4 ) was prepared as the Sn alkoxide. Then, Sn isopropoxide and Eu isopropoxide are weighed so that the Eu / Sn ratio Eu / Sn is 0.03 in terms of molar ratio, and Sn isopropoxide and Eu isopropoxide are isopropyl alcohol. A mixed alkoxide solution was prepared by dissolving in the solution.
 この混合アルコキシド溶液を使用した以外は、試料番号1と同様の方法・手順(熱処理温度:300℃)で、母体材料がSnOで形成された試料番号7の試料を作製した。 A sample of sample number 7 in which the base material was formed of SnO 2 was prepared by the same method and procedure as in sample number 1 (heat treatment temperature: 300 ° C.) except that this mixed alkoxide solution was used.
 次いで、この試料をTEMで観察したところ、粒成長が生じて粒径が5nmを超えていることが確認された。 Next, when this sample was observed with a TEM, it was confirmed that grain growth occurred and the particle diameter exceeded 5 nm.
 次に、この試料番号7の試料についても、試料番号1と同様の方法で蛍光スペクトルを測定した。 Next, the fluorescence spectrum of the sample No. 7 was also measured by the same method as Sample No. 1.
 図12はその測定結果を示している。横軸が発光波長(nm)、縦軸が発光強度(counts)である。 FIG. 12 shows the measurement results. The horizontal axis represents the emission wavelength (nm), and the vertical axis represents the emission intensity (counts).
 この図12から明らかなように、発光ピークの存在は認められるものの、発光強度は6.0×10カウント以下となって極めて弱いことが確認された。これは、母体材料を本発明範囲外のSnOで形成したためと思われる。 As is clear from FIG. 12, although the presence of a luminescence peak was observed, the luminescence intensity was 6.0 × 10 5 counts or less, which was confirmed to be extremely weak. This seems to be because the base material was formed of SnO 2 outside the scope of the present invention.
 図13は、試料番号2、及び5~7の各試料の蛍光スペクトルを比較した図である。横軸が発光波長(nm)、縦軸が発光強度(counts)を示している。 FIG. 13 is a diagram comparing the fluorescence spectra of samples Nos. 2 and 5-7. The horizontal axis indicates the emission wavelength (nm), and the vertical axis indicates the emission intensity (counts).
 この図13から明らかなように、試料番号2は、試料番号5~7に比べて約100倍の発光強度を得ることができ、本発明範囲内の試料番号2は、本発明範囲外の試料番号5~7に比べ、発光効率が格段に向上していることが分かった。 As is apparent from FIG. 13, sample number 2 can obtain an emission intensity about 100 times that of sample numbers 5 to 7, and sample number 2 within the scope of the present invention is a sample outside the scope of the present invention. It was found that the luminous efficiency was remarkably improved compared to the numbers 5-7.
 平均粒径が5nm以下の蛍光体を容易に得ることができ、発光素子等の各種デバイスに利用することができる。 A phosphor having an average particle diameter of 5 nm or less can be easily obtained, and can be used for various devices such as a light emitting element.
1 蛍光体
2 基板
3 ナノ粒子分散溶液
4 ナノ粒子
5 界面活性剤
6 疎水性溶媒
10 水滴
1 Phosphor 2 Substrate 3 Nanoparticle dispersion solution 4 Nanoparticle 5 Surfactant 6 Hydrophobic solvent 10 Water droplet

Claims (8)

  1.  ナノ粒子で形成された母体材料に発光中心元素が含有されると共に、
     前記母体材料が、少なくともTi及びアルカリ土類金属元素を含有した酸化物を含んでいることを特徴とする蛍光体。
    The matrix material made of nanoparticles contains the luminescent center element,
    The phosphor according to claim 1, wherein the base material contains an oxide containing at least Ti and an alkaline earth metal element.
  2.  前記Tiと前記アルカリ土類金属元素の総和に対する前記発光中心元素の比率は、モル比で0.03~0.10であることを特徴とする請求項1記載の蛍光体。 2. The phosphor according to claim 1, wherein a ratio of the emission center element to a total of the Ti and the alkaline earth metal element is 0.03 to 0.10 in molar ratio.
  3.  前記Tiと前記アルカリ土類金属元素との比率は、モル比で1/9~9/1であることを特徴とする請求項1又は請求項2記載の蛍光体。 3. The phosphor according to claim 1, wherein the ratio of Ti to the alkaline earth metal element is 1/9 to 9/1 in molar ratio.
  4.  前記アルカリ土類金属元素は、Baであることを特徴とする請求項1乃至請求項3のいずれかに記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the alkaline earth metal element is Ba.
  5.  前記発光中心元素は、希土類元素及び遷移金属元素のうちのいずれかであることを特徴とする請求項1乃至請求項4のいずれかに記載の蛍光体。 The phosphor according to any one of claims 1 to 4, wherein the emission center element is any one of a rare earth element and a transition metal element.
  6.  前記希土類元素は、Euであることを特徴とする請求項5記載の蛍光体。 6. The phosphor according to claim 5, wherein the rare earth element is Eu.
  7.  Ti酸化物、アルカリ土類金属酸化物、及び発光中心元素を含有した酸化物を含むナノ粒子が分散溶液中に分散したナノ粒子分散溶液を作製するナノ粒子分散溶液作製工程と、
     前記ナノ粒子分散溶液を基板上に塗布して塗膜を形成する塗膜形成工程と、
     前記塗膜を熱処理する熱処理工程とを含み、
     前記熱処理工程は、前記熱処理を500℃以下の温度で行い、Ti及びアルカリ土類金属元素を含有した酸化物を含む母体材料に発光中心元素が添加された蛍光体を作製することを特徴とする蛍光体の製造方法。
    A nanoparticle-dispersed solution preparation step of preparing a nanoparticle-dispersed solution in which nanoparticles containing a Ti oxide, an alkaline earth metal oxide, and an oxide containing an emission center element are dispersed in a dispersed solution;
    A coating film forming step of forming a coating film by applying the nanoparticle dispersion solution on a substrate;
    A heat treatment step of heat-treating the coating film,
    The heat treatment step is characterized in that the heat treatment is performed at a temperature of 500 ° C. or less to produce a phosphor in which a luminescent center element is added to a base material containing an oxide containing Ti and an alkaline earth metal element. A method for producing a phosphor.
  8.  前記ナノ粒子分散溶液作製工程は、疎水性溶媒、界面活性剤、及び水を混合し、水滴が油中に分散した油中水滴型のマイクロエマルジョン溶液を作製するマイクロエマルジョン溶液作製工程と、
     Tiアルコキシド、アルカリ土類金属元素を含有したアルコキシド、及び発光中心元素を含有したアルコキシドを溶媒中で混合して混合アルコキシド溶液を作製する混合アルコキシド溶液作製工程と、
     前記混合アルコキシド溶液を前記マイクロエマルジョン溶液に注入し、加水分解反応を生じさせる加水分解工程とを含むことを特徴とする請求項7記載の蛍光体の製造方法。
    The nanoparticle dispersion solution preparation step comprises mixing a hydrophobic solvent, a surfactant, and water to prepare a water-in-oil microemulsion solution in which water droplets are dispersed in oil, and a microemulsion solution preparation step,
    A mixed alkoxide solution preparation step of preparing a mixed alkoxide solution by mixing Ti alkoxide, an alkoxide containing an alkaline earth metal element, and an alkoxide containing a luminescent center element in a solvent;
    The method for producing a phosphor according to claim 7, further comprising a hydrolysis step of injecting the mixed alkoxide solution into the microemulsion solution to cause a hydrolysis reaction.
PCT/JP2013/075353 2012-09-26 2013-09-19 Phosphor, and method for producing said phosphor WO2014050705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538444A JP5991555B2 (en) 2012-09-26 2013-09-19 Nanoparticle dispersion solution and method for producing phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012212642 2012-09-26
JP2012-212642 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050705A1 true WO2014050705A1 (en) 2014-04-03

Family

ID=50388110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075353 WO2014050705A1 (en) 2012-09-26 2013-09-19 Phosphor, and method for producing said phosphor

Country Status (2)

Country Link
JP (1) JP5991555B2 (en)
WO (1) WO2014050705A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149738A (en) * 2002-11-01 2004-05-27 Sony Corp Crystalline ultrafine particle, composite material, method for preparing crystalline ultrafine particle, reversed micelle, precursor ultrafine particle-including reversed micelle, crystalline ultrafine particle-including reversed micelle, and precursor ultrafine particle
JP2005108843A (en) * 2003-10-01 2005-04-21 General Electric Co <Ge> Light source with nanometer-sized vuv radiation-absorbing phosphor
JP2006143993A (en) * 2004-11-17 2006-06-08 General Electric Co <Ge> Process for producing nanocrystalline powder of oxide-base phosphor for use in lighting applications
JP2008230959A (en) * 2007-02-22 2008-10-02 Kyushu Univ Perovskite oxide single crystal and its manufacture process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985007B2 (en) * 1997-02-24 2010-11-03 Cabot Corporation Oxygen-containing phosphor powders, methods for making phosphor powders and devices incorporating same
JP4727336B2 (en) * 2004-08-03 2011-07-20 富士フイルム株式会社 Fluorescence complex and fluorescence detection method
JP2006152032A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Method for producing phosphor nanoparticle
JP5561723B2 (en) * 2009-05-14 2014-07-30 独立行政法人産業技術総合研究所 Fluorescent fiber made of semiconductor nanoparticles
US8506843B2 (en) * 2010-12-17 2013-08-13 General Electric Company White emitting persistent phosphor
US20140003074A1 (en) * 2011-03-16 2014-01-02 Katsuhiko Kishimoto Wavelength conversion member and method for manufacturing the same, and light-emitting device, illuminating device, and headlight

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149738A (en) * 2002-11-01 2004-05-27 Sony Corp Crystalline ultrafine particle, composite material, method for preparing crystalline ultrafine particle, reversed micelle, precursor ultrafine particle-including reversed micelle, crystalline ultrafine particle-including reversed micelle, and precursor ultrafine particle
JP2005108843A (en) * 2003-10-01 2005-04-21 General Electric Co <Ge> Light source with nanometer-sized vuv radiation-absorbing phosphor
JP2006143993A (en) * 2004-11-17 2006-06-08 General Electric Co <Ge> Process for producing nanocrystalline powder of oxide-base phosphor for use in lighting applications
JP2008230959A (en) * 2007-02-22 2008-10-02 Kyushu Univ Perovskite oxide single crystal and its manufacture process

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KEY ENGINEERING MATERIALS, vol. 216, 2002, pages 57 - 60 *
MATERIALS RESEARCH BULLETIN, vol. 44, 2009, pages 1328 - 1333 *
MATERIALS SCIENCE, vol. 20, no. 1, 2002, pages 43 - 50 *
OPTICAL MATERIALS, vol. 24, 2003, pages 15 - 22 *
SCI. TECHNOL. ADV. MATER., vol. 5, no. 4, 2004, pages 393 - 398 *

Also Published As

Publication number Publication date
JPWO2014050705A1 (en) 2016-08-22
JP5991555B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
Fujihara et al. Multiband orange-red luminescence of Eu3+ ions based on the pyrochlore-structured host crystal
Yang et al. Y2O3: Eu3+ microspheres: solvothermal synthesis and luminescence properties
Lu et al. Synthesis and luminescent properties of GdNbO4: RE3+ (RE= Tm, Dy) nanocrystalline phosphors via the sol–gel process
Lin et al. Multiform oxide optical materials via the versatile Pechini-type sol− gel process: Synthesis and characteristics
Chai et al. 2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology
An et al. Tailoring the morphology and structure of nanosized Zn2SiO4: Mn2+ phosphors using the hydrothermal method and their luminescence properties
Dorman et al. High-quality white light using core–shell RE3+: LaPO4 (RE= Eu, Tb, Dy, Ce) phosphors
Pan et al. Novel energy-transfer route and enhanced luminescent properties in YVO4: Eu3+/YBO3: Eu3+ composite
Mondal et al. Enhanced frequency upconversion in Ho3+/Yb3+/Li+: YMoO4 nanophosphors for photonic and security ink applications
Li et al. Wide-band excited Y6 (WMo) 0.5 O12: Eu red phosphor for white light emitting diode: structure evolution, photoluminescence properties, and energy transfer mechanisms involved
Ramakrishna et al. Synthesis, structural and luminescence properties of Mn doped ZnO/Zn2SiO4 composite microphosphor
CN112080278B (en) Up/down conversion dual-mode luminescent nanocrystal and preparation method and application thereof
Teng et al. Glass-ceramics for photonic devices
Vasanthi et al. Yellow emitting Cd doped SnO2 nanophosphor for phosphor converted white LED applications
Kakoti et al. Effect of ZnS nanoparticles on the Judd-Ofelt and radiative parameters of Sm3+ ions in sol-gel silica matrix
CN101676233B (en) Method for preparing block functional glass
Chen et al. Controlled synthesis and photoluminescence properties of Bi 2 SiO 5: Eu 3+ core-shell nanospheres with an intense 5 D 0→ 7 F 4 transition
Gracie et al. Multifunctional praseodymium-doped composite silica glasses for UV shielding and photonic applications
Yoo et al. Controlled synthesis of luminescent Mn-doped Zn2SiO4 microspheres by thermal hydrolysis of urea
CN102515549A (en) Rare earth doping cerium oxide contained nano-crystal glass ceramic and preparation method thereof
CN113913184B (en) Rare earth co-doped gallium oxide fluorescent material and preparation method and application thereof
Wang et al. SiO2: Tb3+@ Lu2O3: Eu3+ Core–Shell Phosphors: Interfacial Energy Transfer for Enhanced Multicolor Luminescence
JP5991555B2 (en) Nanoparticle dispersion solution and method for producing phosphor
Liao et al. Green up-conversion of C12A7–Ho3+ prepared by co-precipitation method
Ralte et al. Effect of ZnS nanoparticles in photoluminescence properties of Tb3+ ion doped silica glass for photonic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840455

Country of ref document: EP

Kind code of ref document: A1