WO2014050474A1 - Power-assisted bicycle - Google Patents

Power-assisted bicycle Download PDF

Info

Publication number
WO2014050474A1
WO2014050474A1 PCT/JP2013/073835 JP2013073835W WO2014050474A1 WO 2014050474 A1 WO2014050474 A1 WO 2014050474A1 JP 2013073835 W JP2013073835 W JP 2013073835W WO 2014050474 A1 WO2014050474 A1 WO 2014050474A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
bicycle
auxiliary power
power
regenerative
Prior art date
Application number
PCT/JP2013/073835
Other languages
French (fr)
Japanese (ja)
Inventor
有樹 山縣
田中 秀彦
治明 山岡
清吾 松田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014538331A priority Critical patent/JPWO2014050474A1/en
Publication of WO2014050474A1 publication Critical patent/WO2014050474A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially

Definitions

  • the present invention relates to a bicycle with auxiliary power provided with a control function for switching to a regenerative state by detecting a brake state.
  • a regenerative braking control device for a bicycle with auxiliary power described in Patent Document 1 is known.
  • the regenerative braking control device for a bicycle with auxiliary power is controlled so that a brake state is detected by a brake sensor, and a regenerative state is established when the brake state is detected.
  • the regenerative braking control device includes a right brake sensor and a left brake sensor, and a signal indicating a brake state is detected using these brake sensors.
  • a method using a brake sensor used in a conventional regenerative braking control device for a bicycle with auxiliary power requires a brake sensor for monitoring both front and rear brakes and wiring thereof.
  • a brake sensor for monitoring both front and rear brakes and wiring thereof.
  • an object of the present invention is to provide a bicycle with auxiliary power that enables switching to a regenerative state in a bicycle with auxiliary power without using a plurality of brake sensors.
  • a bicycle with auxiliary power is a bicycle with auxiliary power including a motor and a battery for generating auxiliary power, and has a function for detecting the speed in the traveling direction of the bicycle with auxiliary power.
  • Acceleration calculating means for calculating acceleration based on the detected speed
  • gravity direction acceleration detecting means for detecting acceleration in the gravity direction of the bicycle with auxiliary power
  • a regenerative braking control means having a function of detecting at least a brake state in the bicycle with auxiliary power based on the acceleration detected and switching the motor and the battery from the assist state to the regenerative state.
  • a bicycle with auxiliary power is a bicycle with auxiliary power including a motor for generating auxiliary power and a battery, and has a function for detecting the speed in the traveling direction of the bicycle with auxiliary power. And an acceleration calculating means for calculating acceleration based on the detected speed, an elevation angle detecting means for detecting the elevation angle of the bicycle with auxiliary power, an acceleration calculated by the acceleration calculating means, and an angle detected by the elevation angle detecting means. And a regenerative braking control unit having a function of detecting a brake state in the bicycle with auxiliary power and switching at least the motor and the battery from the assist state to the regenerative state.
  • the brake state of the bicycle with auxiliary power can be detected based on the acceleration in the traveling direction and the acceleration in the gravity direction of the bicycle with auxiliary power, or By detecting based on the acceleration in the traveling direction and the elevation angle, it is possible to switch to the regenerative state. Further, the acceleration in the traveling direction is calculated based on the speed detected by the speed sensor. Therefore, since the brake state is not switched to the regenerative state by detection by at least two brake sensors as in the prior art, regenerative charging can be performed in the brake state while reducing the number of sensors. Also, by reducing the number of sensors, restrictions on the selection of installation locations for installing control devices etc. in bicycles with auxiliary power are reduced, and wiring is also reduced, so the appearance of bicycles with auxiliary power is impaired. Can also be avoided.
  • FIG. 1 is a side view showing an example of a bicycle with auxiliary power according to the present invention.
  • the left and right sides of the bicycle with auxiliary power are normally defined as the right when the bicycle is viewed from the rear and the left when the bicycle is viewed from the rear.
  • the bicycle 10 with auxiliary power generally includes a frame 20, a drive unit 30, a handle unit 40, a front wheel 50, a rear wheel 60, a brake unit 70, and a hanger unit 80.
  • the frame 20 has a frame body 22 and a front fork 24.
  • the front fork 24 is attached to the front portion of the frame body 22 so as to be swingable about an oblique axis.
  • the frame 20 is further attached with various parts including a saddle 25, a handle part 40 and a hanger part 80.
  • a rear carrier 26 is attached to the rear upper part of the frame body 22.
  • a rear carrier unit 28 is attached to the rear carrier 26.
  • the rear carrier unit 28 is detachably mounted with a battery 28b serving as a power source for a motor unit 52, an overall controller 28a, a headlamp 48, and the like, which will be described later.
  • a tail lamp 28c is integrally attached to the battery 28b. Further, the rear carrier unit 28 has a regenerative circuit (not shown).
  • the overall control unit 28a has a microcomputer and has a function of controlling the control systems 100 and 200 described later.
  • the overall control unit 28a includes a regenerative braking control unit as a regenerative braking control unit in the bicycle 10 with auxiliary power.
  • the overall control unit 28a includes an acceleration calculation unit.
  • the regenerative braking control unit has a function of instructing at least control for switching from the assist state to the regenerative state based on a control condition described later.
  • the acceleration calculation unit has a function of calculating the acceleration in the traveling direction based on the speed detected by the speed sensor 52c described later.
  • the battery 28b includes, for example, a storage battery such as a nickel metal hydride battery or a lithium ion battery.
  • the regenerative circuit is provided for causing the battery 28b to regenerate the electric power generated by the motor 52a when the regenerative braking control unit is switched to the regenerative state.
  • the regeneration state is performed by turning on a regeneration switch provided in the regeneration circuit.
  • the rear carrier unit 28 is equipped with an acceleration sensor 28d (see FIG. 2).
  • the acceleration sensor 28d is provided for detecting the acceleration in the direction of gravity of the bicycle 10 with auxiliary power.
  • the acceleration sensor 28d is mainly used for detecting whether or not the bicycle 10 with auxiliary power is in a braking state while traveling on an uphill or downhill.
  • an angle sensor 28e may be used (see FIG. 3). If the angle sensor 28e is used, the elevation angle of the bicycle 10 with auxiliary power can be detected.
  • the drive unit 30 includes a crankshaft 32a rotatably supported by the hanger portion 80 of the frame body 22, gear cranks 32b and left cranks (not shown) attached to both ends of the crankshaft 32a, a gear crank 32b, A pedal 32c rotatably attached to the tip of the left crank. Further, the drive unit 30 includes a chain 33 that is stretched around the gear crank 32 b, a gear 34 that is mounted on the rear hub 62 of the rear wheel 60, a front derailleur 36, and a rear derailleur 38.
  • the front derailleur 36 spans the chain 33 on one of, for example, three sprockets mounted on the gear crank 32b.
  • the rear derailleur 38 spans the chain 33 on one of a plurality of sprockets constituting the gear 34 attached to the rear hub 62.
  • the handle portion 40 has a handle stem 42 fixed to the upper portion of the front fork 24 and a bar handle type handle bar 44 fixed to the handle stem 42.
  • a right brake lever 44a and a left brake lever 44b, and a grip 44c are attached to both ends of the handle bar 44.
  • a display device 46 is fixed to the center portion of the handle bar 44 across the handle stem 42, and a headlamp 48 is fixed to the front surface of the center portion of the handle stem 44.
  • a motor unit 52 for driving assistance of the front wheel 50 is mounted. Inside the motor unit 52, as shown in FIG. 2, a motor 52a, an inverter 52b, and a speed sensor 52c are provided.
  • Motor 52a is, for example, a three-phase brushless DC motor or an AC motor.
  • the inverter 52b converts the direct current output from the battery 28b into an alternating current that generates an assist force according to the assist mode of the motor 52a. Further, the regenerative braking force of the motor 52a is changed.
  • the inverter 52b changes the assist force and the regenerative braking force by changing the output current of the motor 52a according to the duty ratio.
  • the speed sensor 52c is provided for detecting the rotational speed of the motor 52a, that is, the speed of the bicycle.
  • the brake unit 70 includes a front brake device 72 and a rear brake device 74.
  • the front brake device 72 has a function of acting so as to brake by contacting the front rim 54 of the front wheel 50.
  • the rear brake device 74 has a function of acting so as to contact and brake the rear rim 64 of the rear wheel 60.
  • the hanger unit 80 is provided with a hanger unit 82.
  • the hanger unit 82 includes a torque sensor 82a and an angle sensor 82b.
  • the torque sensor 82a is provided for detecting a pedaling force acting on the crankshaft 32a.
  • the angle sensor 82b is provided to detect the rotation angle of the crankshaft 32a. Therefore, the angle sensor 82b cannot detect the elevation angle of the bicycle 10 with auxiliary power.
  • FIG. 2 is a block diagram showing the configuration of the control system according to the first embodiment of the bicycle with auxiliary power according to the present invention.
  • the control system 100 mounted on the bicycle 10 with auxiliary power includes a rear carrier unit 28 as a control unit, a motor unit 52, a hanger unit 82, a front derailleur 36 and a rear derailleur 38, An illumination lamp 48, a display device 46, a right brake lever 44a and a left brake lever 44b are provided.
  • These control units are connected by first power lines 90a to 90g and a second power line 92 that can communicate with each other.
  • the first power lines 90a to 90g are indicated by solid lines, and the second power line 92 is indicated by a line thicker than the lines indicating the first power lines 90a to 90g.
  • the first power lines 90a to 90g and the second power line 92 are configured to include two conductive wires. One of the two is a ground line.
  • the rear carrier unit 28 includes an overall control unit 28a that controls the control unit of the control system 100, a battery 28b, a tail lamp 28c, and an acceleration sensor 28d.
  • the rear carrier unit 28 is attached to the rear carrier 26.
  • the overall control unit 28a has a microcomputer.
  • a battery 28b as a power source for the control system 100 is detachably attached to the overall control unit 28a.
  • the tail lamp 28c is integrally attached to the battery 28b.
  • a motor unit 52 is connected to the rear carrier unit 28 via a second power line 92.
  • the second power line 92 is a power line through which a power source current from a voltage source can flow.
  • the first power lines 90a to 90g are power lines through which a power source current from a voltage source can flow.
  • the hanger unit 82 is connected to the rear carrier unit 28 via the first power line 90a. As described above, the hanger unit 82 includes the torque sensor 82a and the angle sensor 82b.
  • the hanger unit 82 is connected to the headlamp 48, the front derailleur 36, and the rear derailleur 38 separately via the first power line 90b, the first power line 90g, and the first power line 90c.
  • the headlamp 48 is a power-saving type using, for example, an LED (light emitting element), and is mounted on the front surface of the center portion of the handle bar 44.
  • the front derailleur 36 has a front transmission motor 36a and a front stage number sensor 36b.
  • the front derailleur 36 includes a front control unit (not shown) that controls the front transmission motor 36a.
  • the rear derailleur 38 includes a rear transmission motor 38a and a rear stage number sensor 38b.
  • the rear derailleur 38 includes a rear control unit (not shown) that controls the rear transmission motor 38a.
  • the outputs of the front stage number sensor 36b and the rear stage number sensor 38b display the number of stages of the front derailleur 36 and the rear derailleur 38 on the display device 46, respectively.
  • a display device 46 is connected to the headlamp 48 via a first power line 90d.
  • the display device 46 is connected to the right brake lever 44a and the left brake lever 44b separately via the first power line 90e and the first power line 90f.
  • the acceleration calculation unit in the overall control unit 28a calculates the acceleration in the traveling direction based on the speed detected by the speed sensor 52c, and the calculated speed and gravity Based on the input signal from the acceleration sensor 28d that detects the acceleration in the direction, the motor 52a and the battery 28b are switched to a regenerative state. Therefore, since the acceleration in the traveling direction is calculated based on the speed sensor 52c, it is not necessary to separately provide a sensor for detecting the acceleration in the traveling direction.
  • the regenerative braking control unit in the overall control unit 28a corresponds to each acceleration of the bicycle 10 with auxiliary power for switching to the regenerative state in accordance with the acceleration value in the traveling direction and the acceleration value in the gravity direction of the bicycle 10 with auxiliary power.
  • a threshold value is stored in advance.
  • the regenerative braking control unit When it is determined that the vehicle is in the brake state, the regenerative braking control unit switches the motor 52a and the battery 28b to the regenerative state. Then, the regenerative braking control unit causes the battery 28b to regenerate the electric power generated by the motor 52a via the regenerative circuit.
  • the setting of the predetermined time is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied and the state where the bicycle 10 is traveling on an uneven road surface. For example, when the brake is applied for the purpose of stopping the user of the auxiliary powered bicycle 10 traveling at 12 km / h, it takes about 0.4 sec until the auxiliary powered bicycle 10 stops. It is considered to be determined as 0.2 sec which is half of the time.
  • the regenerative braking control unit performs regenerative braking control when at least one of the acceleration calculated based on the speed detected by the speed sensor 52c and the acceleration of the acceleration sensor 28d is greater than a predetermined threshold. Since it is determined by the unit that the brake state is not set, the regenerative state does not operate.
  • the threshold values set for the acceleration calculated based on the speed detected by the speed sensor 52c and the acceleration detected by the acceleration sensor 28d are set as follows, for example.
  • the acceleration in the traveling direction is ⁇ 3 m / s 2 or less, and the acceleration in the gravitational direction is 0 or less continuously for 0.2 seconds or more. This 0.2 sec is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied.
  • the gravity direction is the positive direction.
  • the acceleration in the traveling direction is -5 m / s 2 and the acceleration in the gravitational direction is 0 continuously for 0.2 sec or more, so the regenerative state is activated and the motor 52a generates power. Electric power is regenerated to the battery 28b through a regenerative circuit.
  • the auxiliary power-equipped bicycle 10 having the above-described configuration does not switch the brake state to the regenerative state by detection by at least two brake sensors as in the related art, but each value of acceleration in the traveling direction and acceleration in the gravity direction. The determination is made based on Therefore, regenerative charging can be performed in the brake state while reducing the number of sensors.
  • restrictions on selection of an installation location for installing a control device or the like in the bicycle 10 with auxiliary power are reduced, and wiring is reduced, so that the appearance of the bicycle 10 with auxiliary power is impaired. Can also be avoided.
  • FIG. 3 is a block diagram showing the configuration of the control system according to the second embodiment of the bicycle with auxiliary power according to the present invention.
  • the control system 200 mounted on the bicycle 10 with auxiliary power includes a rear carrier unit 28 ′, a motor unit 52, a hanger unit 82, a front derailleur 36 and a rear derailleur 38, and a headlamp 48. And a display device 46, and a right brake lever 44a and a left brake lever 44b.
  • the control system 200 according to the second embodiment has the same configuration as the control system 100 of the first embodiment shown in FIG. 2 except for the configuration of the rear carrier unit 28 ′. A description of the common configuration is omitted.
  • the rear carrier unit 28 ′ as a control unit provided in the control system 200 includes an overall control unit 28 a that controls the control unit of the control system 200, a battery 28 b, a tail lamp 28 c, and an angle sensor 28 e. .
  • the rear carrier unit 28 ′ is attached to the rear carrier 26.
  • the overall control unit 28a has a microcomputer.
  • a battery 28b as a power source for the control system 200 is detachably attached to the overall control unit 28a.
  • the tail lamp 28c is integrally attached to the battery 28b.
  • the acceleration calculation unit in the overall control unit 28a calculates the acceleration in the traveling direction (direction perpendicular to the gravity direction) based on the speed detected by the speed sensor 52c. Based on the input signal from the angle sensor 28e that calculates and detects the calculated speed and elevation angle, the motor 52a and the battery 28b are switched to either the regenerative state or not. Therefore, since the acceleration in the traveling direction is calculated based on the speed sensor 52c, it is not necessary to separately provide a sensor for detecting the acceleration in the traveling direction.
  • the regenerative braking control unit in the overall control unit 28a includes the acceleration and elevation angle of the auxiliary powered bicycle 10 for switching to the regenerative state in accordance with the acceleration value in the traveling direction and the elevation angle value of the bicycle 10 with auxiliary power.
  • a threshold value for the angle is stored in advance.
  • the regenerative braking control unit When the acceleration in the traveling direction is equal to or less than a predetermined acceleration as a threshold value, and the angle of the elevation angle is continuously longer than a predetermined time and equal to or less than the predetermined angle as a threshold value, it is determined that the regenerative braking control unit is in a brake state Thus, the regenerative braking control unit switches the motor 52a and the battery 28b to the regenerative state. Then, the regenerative braking control unit causes the battery 28b to regenerate the electric power generated by the motor 52a via the regenerative circuit.
  • the setting of the predetermined time is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied and the state where the bicycle 10 is traveling on an uneven road surface. For example, when the brake is applied for the purpose of stopping the user of the auxiliary powered bicycle 10 traveling at 12 km / h, it takes about 0.4 sec until the auxiliary powered bicycle 10 stops. It is considered to be determined as 0.2 sec which is half of the time.
  • the regenerative braking control unit performs regenerative braking control when at least one of the acceleration calculated based on the speed detected by the speed sensor 52c and the angle of the angle sensor 28e is greater than a predetermined threshold. Since it is determined by the unit that the brake state is not set, the regenerative state does not operate.
  • the threshold values set for the acceleration calculated based on the speed detected by the speed sensor 52c and the angle detected by the angle sensor 28e are set as follows, for example.
  • the acceleration in the traveling direction was set to ⁇ 3 m / s 2 or less, and the elevation angle was set to substantially 0 ° or less continuously for 0.2 seconds or more.
  • the elevation angle is positive when the traveling direction is upward.
  • the acceleration in the traveling direction is ⁇ 5 m / s 2 and the elevation angle is substantially 0 ° continuously for 0.2 sec or more, so the regenerative state is activated and the motor 52a generates power. Electric power is regenerated to the battery 28b through a regenerative circuit.
  • the acceleration in the traveling direction is ⁇ 5 m / s 2 and the elevation angle is ⁇ 5 ° continuously for 0.2 sec or more, so that the regenerative state operates and the motor 52a
  • the battery 28b regenerates the electric power generated in step 1 through the regenerative circuit.
  • the acceleration in the traveling direction is ⁇ 3 m / s 2 and the elevation angle is 5 ° continuously for 0.2 sec or more, so the regenerative state does not operate.
  • the auxiliary power-equipped bicycle 10 configured as described above is based on the values of the acceleration in the traveling direction and the elevation angle, instead of switching the brake state to the regenerative state by detection by at least two brake sensors as in the prior art. To make a decision. Therefore, regenerative charging can be performed in the brake state while reducing the number of sensors. In addition, by reducing the number of sensors, restrictions on selection of an installation location for installing a control device or the like in the bicycle 10 with auxiliary power are reduced, and wiring is reduced, so that the appearance of the bicycle 10 with auxiliary power is impaired. Can also be avoided.
  • the motor unit is mounted on the front wheel, but the present invention is not limited to this, and the motor unit may be mounted on the hanger part or the rear wheel.
  • the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist.

Abstract

Provided is a power-assisted bicycle such that the power-assisted bicycle can be switched over to a regenerative state without the use of multiple brake sensors. This power-assisted bicycle (10) is equipped with: a speed sensor (52c) for detecting speed in order to calculate the acceleration of the power-assisted bicycle in the traveling direction; an acceleration sensor (28d) for detecting the acceleration of the power-assisted bicycle (10) in the direction of gravity; and a regenerative braking control part that, upon detecting braking on the basis of the acceleration that is calculated from the speed detected by the speed sensor (52c) and the acceleration that is detected by the acceleration sensor (28d), switches a motor (52a) and a battery (28b) to a regenerative state.

Description

補助動力付き自転車Bicycle with auxiliary power
 本発明は、ブレーキ状態を検知することで、回生状態に切り替える制御機能を備えた補助動力付き自転車に関する。 The present invention relates to a bicycle with auxiliary power provided with a control function for switching to a regenerative state by detecting a brake state.
 従来、補助動力付き自転車の回生制動制御装置として、特許文献1に記載のものが知られている。この補助動力付き自転車の回生制動制御装置は、ブレーキセンサによってブレーキ状態を検知し、ブレーキ状態と検知された場合に回生状態となるように制御されている。回生制動制御装置には、右ブレーキセンサと左ブレーキセンサとを含み、それらのブレーキセンサを用いてブレーキ状態を示す信号が検出される。 Conventionally, a regenerative braking control device for a bicycle with auxiliary power described in Patent Document 1 is known. The regenerative braking control device for a bicycle with auxiliary power is controlled so that a brake state is detected by a brake sensor, and a regenerative state is established when the brake state is detected. The regenerative braking control device includes a right brake sensor and a left brake sensor, and a signal indicating a brake state is detected using these brake sensors.
特開2012-50304号公報JP 2012-50304 A
 しかしながら、従来の補助動力付き自転車の回生制動制御装置で用いられるブレーキセンサを使用する方式は、フロント、リア両ブレーキを監視するためのブレーキセンサおよびその配線が必要となる。その結果、複数のセンサが必要となり、コストが増加するとともに、センサやその配線を設置するため、スペースの制約も生ずるという問題があった。さらに、配線の取り回しによって補助動力付き自転車の外観が損なわれる等の弊害も生ずるという問題があった。 However, a method using a brake sensor used in a conventional regenerative braking control device for a bicycle with auxiliary power requires a brake sensor for monitoring both front and rear brakes and wiring thereof. As a result, there are problems that a plurality of sensors are required and the cost is increased, and space is also limited because the sensors and their wiring are installed. In addition, there is a problem in that adverse effects such as deterioration of the appearance of the bicycle with auxiliary power are caused by the wiring.
 それゆえに、本発明の目的は、補助動力付き自転車における回生状態への切り替えを、複数のブレーキセンサを用いることなく実現することを可能とする補助動力付き自転車を提供することである。 Therefore, an object of the present invention is to provide a bicycle with auxiliary power that enables switching to a regenerative state in a bicycle with auxiliary power without using a plurality of brake sensors.
 この発明にかかる補助動力付き自転車は、補助力を発生するためのモータとバッテリとを備えた補助動力付き自転車であって、補助動力付き自転車の進行方向の速度を検出するため機能を有し、検出された速度に基づいて加速度を算出する加速度算出手段と、補助動力付き自転車の重力方向の加速度を検出する重力方向用加速度検出手段と、加速度算出手段が算出した加速度および重力方向用加速度検出手段が検出した加速度に基づき、補助動力付き自転車におけるブレーキ状態を検知し、モータおよびバッテリを、少なくともアシスト状態から回生状態に切り替える機能を有する回生制動制御手段と、を備える、補助動力付き自転車である。
 また、この発明にかかる補助動力付き自転車は、補助力を発生するためのモータとバッテリとを備えた補助動力付き自転車であって、補助動力付き自転車の進行方向の速度を検出するため機能を有し、検出された速度に基づいて加速度を算出する加速度算出手段と、補助動力付き自転車の仰俯角を検出する仰俯角検出手段と、加速度算出手段が算出した加速度および仰俯角検出手段が検出した角度に基づき、補助動力付き自転車におけるブレーキ状態を検知し、モータおよびバッテリを、少なくともアシスト状態から回生状態に切り替える機能を有する回生制動制御手段と、を備える、補助動力付き自転車である。
A bicycle with auxiliary power according to the present invention is a bicycle with auxiliary power including a motor and a battery for generating auxiliary power, and has a function for detecting the speed in the traveling direction of the bicycle with auxiliary power. Acceleration calculating means for calculating acceleration based on the detected speed, gravity direction acceleration detecting means for detecting acceleration in the gravity direction of the bicycle with auxiliary power, acceleration calculated by acceleration calculating means and acceleration detecting means for gravity direction And a regenerative braking control means having a function of detecting at least a brake state in the bicycle with auxiliary power based on the acceleration detected and switching the motor and the battery from the assist state to the regenerative state.
A bicycle with auxiliary power according to the present invention is a bicycle with auxiliary power including a motor for generating auxiliary power and a battery, and has a function for detecting the speed in the traveling direction of the bicycle with auxiliary power. And an acceleration calculating means for calculating acceleration based on the detected speed, an elevation angle detecting means for detecting the elevation angle of the bicycle with auxiliary power, an acceleration calculated by the acceleration calculating means, and an angle detected by the elevation angle detecting means. And a regenerative braking control unit having a function of detecting a brake state in the bicycle with auxiliary power and switching at least the motor and the battery from the assist state to the regenerative state.
 この発明にかかる補助動力付き自転車によれば、補助動力付き自転車のブレーキ状態を補助動力付き自転車の進行方向の加速度および重力方向の加速度に基づいて検知することができ、あるいは、補助動力付き自転車の進行方向の加速度および仰俯角に基づいて検出することで、回生状態に切り替えることができる。また、進行方向の加速度は、速度センサにより検出される速度に基づいて算出される。したがって、従来のようにブレーキ状態を、少なくとも2個のブレーキセンサによる検知により回生状態に切り替えるのではないことから、センサの数を減らしながら、ブレーキ状態において回生による充電を行うことができる。また、センサの数を減らすことで、補助動力付き自転車において制御機器等を設置するための設置場所の選定の制約も低減され、配線も少なくなることから、補助動力付き自転車の外観が損なわれることも回避することができる。 According to the bicycle with auxiliary power according to the present invention, the brake state of the bicycle with auxiliary power can be detected based on the acceleration in the traveling direction and the acceleration in the gravity direction of the bicycle with auxiliary power, or By detecting based on the acceleration in the traveling direction and the elevation angle, it is possible to switch to the regenerative state. Further, the acceleration in the traveling direction is calculated based on the speed detected by the speed sensor. Therefore, since the brake state is not switched to the regenerative state by detection by at least two brake sensors as in the prior art, regenerative charging can be performed in the brake state while reducing the number of sensors. Also, by reducing the number of sensors, restrictions on the selection of installation locations for installing control devices etc. in bicycles with auxiliary power are reduced, and wiring is also reduced, so the appearance of bicycles with auxiliary power is impaired. Can also be avoided.
 本発明によれば、補助動力付き自転車における回生状態への切り替えを、複数のブレーキセンサを用いることなく実現することを可能とする補助動力付き自転車を得ることができる。 According to the present invention, it is possible to obtain a bicycle with auxiliary power that enables switching to a regenerative state in a bicycle with auxiliary power without using a plurality of brake sensors.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
本発明にかかる補助動力付き自転車の一例を示す側面図である。It is a side view showing an example of a bicycle with auxiliary power according to the present invention. 本発明にかかる補助動力付き自転車の第1の実施の形態による制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system by 1st Embodiment of the bicycle with auxiliary power concerning this invention. 本発明にかかる補助動力付き自転車の第2の実施の形態による制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system by 2nd Embodiment of the bicycle with auxiliary power concerning this invention.
 (補助動力付き自転車)
 図1は、本発明にかかる補助動力付き自転車の一例を示す側面図である。なお、以下の説明において、補助動力付き自転車の左右は、通常、自転車を後方から見たときに右にあるものを右とし、左にあるものを左と規定している。
(Bicycle with auxiliary power)
FIG. 1 is a side view showing an example of a bicycle with auxiliary power according to the present invention. In the following description, the left and right sides of the bicycle with auxiliary power are normally defined as the right when the bicycle is viewed from the rear and the left when the bicycle is viewed from the rear.
 補助動力付き自転車10は、概略、フレーム20と、駆動部30と、ハンドル部40と、前輪50と、後輪60と、ブレーキ部70と、ハンガー部80と、を備えている。 The bicycle 10 with auxiliary power generally includes a frame 20, a drive unit 30, a handle unit 40, a front wheel 50, a rear wheel 60, a brake unit 70, and a hanger unit 80.
 フレーム20は、フレーム本体22およびフロントフォーク24を有する。フロントフォーク24は、フレーム本体22の前部に斜めの軸回りに揺動自在に装着されている。フレーム20には、さらに、サドル25、ハンドル部40およびハンガー部80を含む各部が取り付けられている。 The frame 20 has a frame body 22 and a front fork 24. The front fork 24 is attached to the front portion of the frame body 22 so as to be swingable about an oblique axis. The frame 20 is further attached with various parts including a saddle 25, a handle part 40 and a hanger part 80.
 また、フレーム本体22の後上部には、リアキャリア26が取り付けられている。リアキャリア26には、リアキャリアユニット28が装着されている。リアキャリアユニット28は、後述するモータユニット52、全体制御部28aおよび前照灯48等の電源となるバッテリ28bを着脱可能に搭載している。そして、バッテリ28bに尾灯28cが一体で取り付けられている。さらに、リアキャリアユニット28は、回生回路(図示せず)を有する。 Also, a rear carrier 26 is attached to the rear upper part of the frame body 22. A rear carrier unit 28 is attached to the rear carrier 26. The rear carrier unit 28 is detachably mounted with a battery 28b serving as a power source for a motor unit 52, an overall controller 28a, a headlamp 48, and the like, which will be described later. A tail lamp 28c is integrally attached to the battery 28b. Further, the rear carrier unit 28 has a regenerative circuit (not shown).
 全体制御部28aは、マイクロコンピュータを有し、後述する制御システム100,200を制御する機能を有する。また、全体制御部28aは、補助動力付き自転車10における回生制動制御手段として回生制動制御部を含む。さらに、全体制御部28aは、加速度算出部を含む。回生制動制御部は、後述する制御条件に基づいて、少なくとも、アシスト状態から回生状態に切り替えるための制御を指示する機能を有する。また、加速度算出部は、後述する速度センサ52cにより検出された速度に基づき、進行方向の加速度を算出する機能を有する。バッテリ28bは、たとえば、ニッケル水素電池またはリチウムイオン電池等の蓄電池を含んでいる。回生回路は、回生制動制御部において回生状態に切り替えられた場合に、モータ52aで発電した電力を、バッテリ28bに回生させるために設けられる。回生状態には、回生回路が備える回生スイッチがONにされることで行われる。 The overall control unit 28a has a microcomputer and has a function of controlling the control systems 100 and 200 described later. The overall control unit 28a includes a regenerative braking control unit as a regenerative braking control unit in the bicycle 10 with auxiliary power. Furthermore, the overall control unit 28a includes an acceleration calculation unit. The regenerative braking control unit has a function of instructing at least control for switching from the assist state to the regenerative state based on a control condition described later. The acceleration calculation unit has a function of calculating the acceleration in the traveling direction based on the speed detected by the speed sensor 52c described later. The battery 28b includes, for example, a storage battery such as a nickel metal hydride battery or a lithium ion battery. The regenerative circuit is provided for causing the battery 28b to regenerate the electric power generated by the motor 52a when the regenerative braking control unit is switched to the regenerative state. The regeneration state is performed by turning on a regeneration switch provided in the regeneration circuit.
 さらに、リアキャリアユニット28は、加速度センサ28dを搭載している(図2を参照)。加速度センサ28dは、補助動力付き自転車10の重力方向の加速度を検出するために設けられている。加速度センサ28dは、主に、補助動力付き自転車10が、上り坂あるいは下り坂を走行している状態においてブレーキ状態であるか否かを検出するために利用される。なお、加速度センサ28dに替えて、角度センサ28eを用いてもよい(図3を参照)。角度センサ28eを用いると、補助動力付き自転車10の仰俯角を検出することができる。 Furthermore, the rear carrier unit 28 is equipped with an acceleration sensor 28d (see FIG. 2). The acceleration sensor 28d is provided for detecting the acceleration in the direction of gravity of the bicycle 10 with auxiliary power. The acceleration sensor 28d is mainly used for detecting whether or not the bicycle 10 with auxiliary power is in a braking state while traveling on an uphill or downhill. Instead of the acceleration sensor 28d, an angle sensor 28e may be used (see FIG. 3). If the angle sensor 28e is used, the elevation angle of the bicycle 10 with auxiliary power can be detected.
 駆動部30は、フレーム本体22のハンガー部80に回転自在に支持されたクランク軸32aと、クランク軸32aの両端に取り付けられたギアクランク32bおよび左クランク(図示せず)と、ギアクランク32bおよび左クランクの先端に回転自在に取り付けられたペダル32cと、を有している。さらに、駆動部30は、ギアクランク32bに掛け渡されたチェーン33と、後輪60のリアハブ62に装着されたギア34と、フロントディレーラ36と、リアディレーラ38と、を有している。 The drive unit 30 includes a crankshaft 32a rotatably supported by the hanger portion 80 of the frame body 22, gear cranks 32b and left cranks (not shown) attached to both ends of the crankshaft 32a, a gear crank 32b, A pedal 32c rotatably attached to the tip of the left crank. Further, the drive unit 30 includes a chain 33 that is stretched around the gear crank 32 b, a gear 34 that is mounted on the rear hub 62 of the rear wheel 60, a front derailleur 36, and a rear derailleur 38.
 フロントディレーラ36は、ギアクランク32bに装着された、たとえば3枚のスプロケットのいずれかにチェーン33を架け渡すものである。リアディレーラ38は、リアハブ62に取り付けられた、ギア34を構成する、複数枚のスプロケットのいずれかにチェーン33を架け渡すものである。 The front derailleur 36 spans the chain 33 on one of, for example, three sprockets mounted on the gear crank 32b. The rear derailleur 38 spans the chain 33 on one of a plurality of sprockets constituting the gear 34 attached to the rear hub 62.
 ハンドル部40は、フロントフォーク24の上部に固定されたハンドルステム42と、ハンドルステム42に固定されたバーハンドル型のハンドルバー44とを有している。ハンドルバー44の両端には、右ブレーキレバー44aおよび左ブレーキレバー44bと、グリップ44cと、が装着されている。ハンドルバー44の中央部には、ハンドルステム42を跨いで表示装置46が固定され、また、ハンドルステム44の中央部の前面には、前照灯48が固定されている。 The handle portion 40 has a handle stem 42 fixed to the upper portion of the front fork 24 and a bar handle type handle bar 44 fixed to the handle stem 42. A right brake lever 44a and a left brake lever 44b, and a grip 44c are attached to both ends of the handle bar 44. A display device 46 is fixed to the center portion of the handle bar 44 across the handle stem 42, and a headlamp 48 is fixed to the front surface of the center portion of the handle stem 44.
 前輪50の中心には、前輪50の駆動補助用のモータユニット52が装着されている。モータユニット52の内部には、図2に示すように、モータ52aと、インバータ52bと、速度センサ52cとが設けられている。モータ52aは、たとえば3相ブラシレスDCモータまたは交流モータである。インバータ52bは、バッテリ28bから直流出力された電流をモータ52aのアシストモードに応じたアシスト力を発生する交流電流に変換する。また、モータ52aの回生制動力を変化させる。インバータ52bは、デューティ比によりモータ52aの出力電流を変化させることによりアシスト力および回生制動力を変化させる。速度センサ52cは、モータ52aの回転速度つまり、自転車の速度を検出するために設けられている。 At the center of the front wheel 50, a motor unit 52 for driving assistance of the front wheel 50 is mounted. Inside the motor unit 52, as shown in FIG. 2, a motor 52a, an inverter 52b, and a speed sensor 52c are provided. Motor 52a is, for example, a three-phase brushless DC motor or an AC motor. The inverter 52b converts the direct current output from the battery 28b into an alternating current that generates an assist force according to the assist mode of the motor 52a. Further, the regenerative braking force of the motor 52a is changed. The inverter 52b changes the assist force and the regenerative braking force by changing the output current of the motor 52a according to the duty ratio. The speed sensor 52c is provided for detecting the rotational speed of the motor 52a, that is, the speed of the bicycle.
 ブレーキ部70は、フロントブレーキ装置72およびリアブレーキ装置74を有する。フロントブレーキ装置72は、前輪50のフロントリム54に接触して制動するように作用する機能を有する。また、リアブレーキ装置74は、後輪60のリアリム64に接触して制動するように作用する機能を有する。 The brake unit 70 includes a front brake device 72 and a rear brake device 74. The front brake device 72 has a function of acting so as to brake by contacting the front rim 54 of the front wheel 50. Further, the rear brake device 74 has a function of acting so as to contact and brake the rear rim 64 of the rear wheel 60.
 また、ハンガー部80は、ハンガーユニット82が設けられている。ハンガーユニット82は、図2に示すように、トルクセンサ82aおよび角度センサ82bを有している。トルクセンサ82aは、クランク軸32aに作用する踏力を検出するために設けられている。また、角度センサ82bは、クランク軸32aの回転角度を検出するために設けられている。したがって、この角度センサ82bによって補助動力付き自転車10の仰俯角を検出することはできない。 The hanger unit 80 is provided with a hanger unit 82. As shown in FIG. 2, the hanger unit 82 includes a torque sensor 82a and an angle sensor 82b. The torque sensor 82a is provided for detecting a pedaling force acting on the crankshaft 32a. The angle sensor 82b is provided to detect the rotation angle of the crankshaft 32a. Therefore, the angle sensor 82b cannot detect the elevation angle of the bicycle 10 with auxiliary power.
(制御システムの構成)
 次に、本発明にかかる補助動力付き自転車10に搭載される制御システムの構成について説明する。図2は、本発明にかかる補助動力付き自転車の第1の実施の形態による制御システムの構成を示すブロック図である。図2に示すように、補助動力付き自転車10に搭載される制御システム100は、制御ユニットとしてのリアキャリアユニット28と、モータユニット52と、ハンガーユニット82と、フロントディレーラ36およびリアディレーラ38と、前照灯48と、表示装置46と、右ブレーキレバー44aおよび左ブレーキレバー44bとを備えている。これらの制御ユニットが通信可能な第1電力線90a~90gおよび第2電力線92により接続されている。図2において第1電力線90a~90gを実線で示し、第2電力線92は第1電力線90a~90gを示す線よりも太い線で示す。第1電力線90a~90gおよび第2電力線92は、2本の導線を含んで構成される。2本のうちの一方はグランドラインである。
(Control system configuration)
Next, the configuration of the control system mounted on the auxiliary power-equipped bicycle 10 according to the present invention will be described. FIG. 2 is a block diagram showing the configuration of the control system according to the first embodiment of the bicycle with auxiliary power according to the present invention. As shown in FIG. 2, the control system 100 mounted on the bicycle 10 with auxiliary power includes a rear carrier unit 28 as a control unit, a motor unit 52, a hanger unit 82, a front derailleur 36 and a rear derailleur 38, An illumination lamp 48, a display device 46, a right brake lever 44a and a left brake lever 44b are provided. These control units are connected by first power lines 90a to 90g and a second power line 92 that can communicate with each other. In FIG. 2, the first power lines 90a to 90g are indicated by solid lines, and the second power line 92 is indicated by a line thicker than the lines indicating the first power lines 90a to 90g. The first power lines 90a to 90g and the second power line 92 are configured to include two conductive wires. One of the two is a ground line.
 リアキャリアユニット28は、制御システム100の制御ユニットを制御する全体制御部28aと、バッテリ28bと、尾灯28cと、加速度センサ28dと、を有している。リアキャリアユニット28は、リアキャリア26に装着されている。全体制御部28aは、マイクロコンピュータを有するものである。全体制御部28aには、制御システム100の電源としてのバッテリ28bが着脱自在に装着されている。尾灯28cは、バッテリ28bに一体で取り付けられている。 The rear carrier unit 28 includes an overall control unit 28a that controls the control unit of the control system 100, a battery 28b, a tail lamp 28c, and an acceleration sensor 28d. The rear carrier unit 28 is attached to the rear carrier 26. The overall control unit 28a has a microcomputer. A battery 28b as a power source for the control system 100 is detachably attached to the overall control unit 28a. The tail lamp 28c is integrally attached to the battery 28b.
 リアキャリアユニット28には、モータユニット52が第2電力線92を介して接続されている。第2電力線92は、電圧源からの電源電流を流せる電力線である。第1電力線90a~90gは、電圧源からの電源電流を流せる電力線である。 A motor unit 52 is connected to the rear carrier unit 28 via a second power line 92. The second power line 92 is a power line through which a power source current from a voltage source can flow. The first power lines 90a to 90g are power lines through which a power source current from a voltage source can flow.
 第1電力線90a~90gおよび第2電力線92には、それぞれの制御ユニットを制御する制御信号が重畳された電源電流が流れている。 In the first power lines 90a to 90g and the second power line 92, a power source current on which a control signal for controlling each control unit is superimposed flows.
 また、リアキャリアユニット28には、ハンガーユニット82が第1電力線90aを介して接続されている。ハンガーユニット82は、前述したようにトルクセンサ82aと、角度センサ82bと、を有している。 The hanger unit 82 is connected to the rear carrier unit 28 via the first power line 90a. As described above, the hanger unit 82 includes the torque sensor 82a and the angle sensor 82b.
 ハンガーユニット82には、前照灯48、フロントディレーラ36、およびリアディレーラ38が第1電力線90b、第1電力線90gおよび第1電力線90cを介して各別に接続されている。前照灯48は、例えばLED(発光素子)を用いた省電力形のものであり、ハンドルバー44の中央部の前面に装着されている。 The hanger unit 82 is connected to the headlamp 48, the front derailleur 36, and the rear derailleur 38 separately via the first power line 90b, the first power line 90g, and the first power line 90c. The headlamp 48 is a power-saving type using, for example, an LED (light emitting element), and is mounted on the front surface of the center portion of the handle bar 44.
 フロントディレーラ36は、フロント変速モータ36aおよびフロント段数センサ36bを有している。また、フロントディレーラ36は、フロント変速モータ36aを制御するフロント制御部(図示せず)を有している。リアディレーラ38は、リア変速モータ38aおよびリア段数センサ38bを有している。また、リアディレーラ38は、リア変速モータ38aを制御するリア制御部(図示せず)を有している。このフロント段数センサ36bおよびリア段数センサ38bの出力により表示装置46にフロントディレーラ36およびリアディレーラ38の段数が各別に表示される。前照灯48には、表示装置46が第1電力線90dを介して接続されている。 The front derailleur 36 has a front transmission motor 36a and a front stage number sensor 36b. The front derailleur 36 includes a front control unit (not shown) that controls the front transmission motor 36a. The rear derailleur 38 includes a rear transmission motor 38a and a rear stage number sensor 38b. The rear derailleur 38 includes a rear control unit (not shown) that controls the rear transmission motor 38a. The outputs of the front stage number sensor 36b and the rear stage number sensor 38b display the number of stages of the front derailleur 36 and the rear derailleur 38 on the display device 46, respectively. A display device 46 is connected to the headlamp 48 via a first power line 90d.
 表示装置46には、右ブレーキレバー44aおよび左ブレーキレバー44bが第1電力線90eおよび第1電力線90fを介して各別に接続されている。 The display device 46 is connected to the right brake lever 44a and the left brake lever 44b separately via the first power line 90e and the first power line 90f.
 次に、制御システム100を用いた回生制動制御部における制御動作について説明する。 Next, the control operation in the regenerative braking control unit using the control system 100 will be described.
 全体制御部28aが回生制動制御手段として機能するとき、全体制御部28aにおける加速度算出部は、速度センサ52cにより検出された速度に基づいて進行方向の加速度を算出し、この算出された速度と重力方向の加速度を検出する加速度センサ28dからの入力信号に基づいて、モータ52aおよびバッテリ28bを、回生状態とするか否かのいずれかの状態に切り替える。したがって、進行方向の加速度は、速度センサ52cに基づいて算出されるので、進行方向の加速度を検出するためのセンサを別途設ける必要はない。 When the overall control unit 28a functions as a regenerative braking control means, the acceleration calculation unit in the overall control unit 28a calculates the acceleration in the traveling direction based on the speed detected by the speed sensor 52c, and the calculated speed and gravity Based on the input signal from the acceleration sensor 28d that detects the acceleration in the direction, the motor 52a and the battery 28b are switched to a regenerative state. Therefore, since the acceleration in the traveling direction is calculated based on the speed sensor 52c, it is not necessary to separately provide a sensor for detecting the acceleration in the traveling direction.
 全体制御部28aにおける回生制動制御部には、補助動力付き自転車10の進行方向の加速度の値および重力方向の加速度の値に応じて、回生状態に切り替えるための補助動力付き自転車10の各加速度に対する閾値が予め記憶されている。 The regenerative braking control unit in the overall control unit 28a corresponds to each acceleration of the bicycle 10 with auxiliary power for switching to the regenerative state in accordance with the acceleration value in the traveling direction and the acceleration value in the gravity direction of the bicycle 10 with auxiliary power. A threshold value is stored in advance.
 進行方向の加速度が、閾値として所定の加速度以下となり、かつ重力方向の加速度が、所定の時間以上連続して、閾値として重力方向を正とする所定の加速度以下の場合は、回生制動制御部によりブレーキ状態であると判定されることで、回生制動制御部は、モータ52aおよびバッテリ28bを回生状態に切り替える。そして、回生制動制御部は、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。なお、この所定の時間の設定は、補助動力付き自転車10がブレーキをかけたときに停止するまでの時間や凹凸のある路面を走行している状態を考慮して決定される。たとえば、時速12km/hで走行中の補助動力付き自転車10の使用者が止まる目的でブレーキをかけた場合、補助動力付き自転車10が停止するまで約0.4secかかることから、所定の時間は、その時間の半分である0.2secとして決定するように考慮される。 When the acceleration in the traveling direction is not more than a predetermined acceleration as a threshold and the acceleration in the gravitational direction is not more than a predetermined acceleration with the gravity direction being positive as a threshold continuously for a predetermined time or longer, the regenerative braking control unit When it is determined that the vehicle is in the brake state, the regenerative braking control unit switches the motor 52a and the battery 28b to the regenerative state. Then, the regenerative braking control unit causes the battery 28b to regenerate the electric power generated by the motor 52a via the regenerative circuit. The setting of the predetermined time is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied and the state where the bicycle 10 is traveling on an uneven road surface. For example, when the brake is applied for the purpose of stopping the user of the auxiliary powered bicycle 10 traveling at 12 km / h, it takes about 0.4 sec until the auxiliary powered bicycle 10 stops. It is considered to be determined as 0.2 sec which is half of the time.
 一方、回生制動制御部は、速度センサ52cにおいて検出される速度に基づいて算出される加速度と加速度センサ28dの加速度の少なくともいずれか一方が、所定の閾値より大きい値である場合は、回生制動制御部によりブレーキ状態でないと判定されるので、回生状態は動作しない。 On the other hand, the regenerative braking control unit performs regenerative braking control when at least one of the acceleration calculated based on the speed detected by the speed sensor 52c and the acceleration of the acceleration sensor 28d is greater than a predetermined threshold. Since it is determined by the unit that the brake state is not set, the regenerative state does not operate.
 たとえば、速度センサ52cにおいて検出される速度に基づいて算出される加速度と加速度センサ28dおいて検出される加速度に対して設定される各閾値としては、たとえば、以下のように設定される。 For example, the threshold values set for the acceleration calculated based on the speed detected by the speed sensor 52c and the acceleration detected by the acceleration sensor 28d are set as follows, for example.
 ブレーキ時における回生状態の開始の条件として、進行方向の加速度が-3m/s2以下とし、かつ、0.2sec以上連続して重力方向の加速度が0以下とする。なお、この0.2secは、補助動力付き自転車10がブレーキをかけたときに停止するまでの時間を考慮して決定される。また、重力方向を正方向とする。 As conditions for starting the regenerative state during braking, the acceleration in the traveling direction is −3 m / s 2 or less, and the acceleration in the gravitational direction is 0 or less continuously for 0.2 seconds or more. This 0.2 sec is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied. The gravity direction is the positive direction.
 平地でブレーキした場合、たとえば、進行方向の加速度が-5m/s2となり、かつ、0.2sec以上連続して重力方向の加速度が0となるため、回生状態が動作し、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。 When braking on flat ground, for example, the acceleration in the traveling direction is -5 m / s 2 and the acceleration in the gravitational direction is 0 continuously for 0.2 sec or more, so the regenerative state is activated and the motor 52a generates power. Electric power is regenerated to the battery 28b through a regenerative circuit.
 また、下り坂でブレーキした場合、たとえば、進行方向の加速度が-5m/s2となり、かつ、0.2sec以上連続して重力方向の加速度が-1m/s2となるため、回生状態が動作し、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。 Further, when the brake downhill, for example, acceleration is -5 m / s 2 next to the traveling direction, and the acceleration in the gravity direction is -1 m / s 2 or more consecutive 0.2 sec, regeneration state operation Then, the electric power generated by the motor 52a is regenerated to the battery 28b through the regenerative circuit.
 一方、上り坂では、たとえば、進行方向の加速度が-3m/s2となっても、重力方向の加速度が1m/s2となるため、回生状態は動作しない。 On the other hand, in the uphill, for example, acceleration in the traveling direction even when the -3m / s 2, the acceleration in the gravity direction is 1 m / s 2, regeneration state does not operate.
 以上の構成からなる補助動力付き自転車10は、従来のようにブレーキ状態を、少なくとも2個のブレーキセンサによる検知により回生状態に切り替えるのではなく、進行方向の加速度および重力方向の加速度のそれぞれの値に基づいて判定を行う。したがって、センサの数を減らしながら、ブレーキ状態において回生による充電を行うことができる。また、センサの数を減らすことで、補助動力付き自転車10において制御機器等を設置するための設置場所の選定の制約も低減され、配線も少なくなることから、補助動力付き自転車10の外観が損なわれることも回避することができる。 The auxiliary power-equipped bicycle 10 having the above-described configuration does not switch the brake state to the regenerative state by detection by at least two brake sensors as in the related art, but each value of acceleration in the traveling direction and acceleration in the gravity direction. The determination is made based on Therefore, regenerative charging can be performed in the brake state while reducing the number of sensors. In addition, by reducing the number of sensors, restrictions on selection of an installation location for installing a control device or the like in the bicycle 10 with auxiliary power are reduced, and wiring is reduced, so that the appearance of the bicycle 10 with auxiliary power is impaired. Can also be avoided.
 また、図3は、本発明にかかる補助動力付き自転車の第2の実施の形態による制御システムの構成を示すブロック図である。図3に示すように、補助動力付き自転車10に搭載される制御システム200は、リアキャリアユニット28´と、モータユニット52と、ハンガーユニット82と、フロントディレーラ36およびリアディレーラ38と、前照灯48と、表示装置46と、右ブレーキレバー44aおよび左ブレーキレバー44bとを備えている。なお、第2の実施の形態にかかる制御システム200は、リアキャリアユニット28´の構成を除き、図2に示す第1の実施の形態の制御システム100と構成が共通しているので、それらの共通している構成についての説明を省略する。 FIG. 3 is a block diagram showing the configuration of the control system according to the second embodiment of the bicycle with auxiliary power according to the present invention. As shown in FIG. 3, the control system 200 mounted on the bicycle 10 with auxiliary power includes a rear carrier unit 28 ′, a motor unit 52, a hanger unit 82, a front derailleur 36 and a rear derailleur 38, and a headlamp 48. And a display device 46, and a right brake lever 44a and a left brake lever 44b. The control system 200 according to the second embodiment has the same configuration as the control system 100 of the first embodiment shown in FIG. 2 except for the configuration of the rear carrier unit 28 ′. A description of the common configuration is omitted.
 制御システム200に備えられる制御ユニットとしてのリアキャリアユニット28´は、制御システム200の制御ユニットを制御する全体制御部28aと、バッテリ28bと、尾灯28cと、角度センサ28eと、を有している。リアキャリアユニット28´は、リアキャリア26に装着されている。全体制御部28aは、マイクロコンピュータを有するものである。全体制御部28aには、制御システム200の電源としてのバッテリ28bが着脱自在に装着されている。尾灯28cは、バッテリ28bに一体で取り付けられている。 The rear carrier unit 28 ′ as a control unit provided in the control system 200 includes an overall control unit 28 a that controls the control unit of the control system 200, a battery 28 b, a tail lamp 28 c, and an angle sensor 28 e. . The rear carrier unit 28 ′ is attached to the rear carrier 26. The overall control unit 28a has a microcomputer. A battery 28b as a power source for the control system 200 is detachably attached to the overall control unit 28a. The tail lamp 28c is integrally attached to the battery 28b.
 次に、制御システム200を用いた回生制動制御部における制御動作について説明する。 Next, the control operation in the regenerative braking control unit using the control system 200 will be described.
 全体制御部28aが回生制動制御手段として機能するとき、全体制御部28aにおける加速度算出部は、速度センサ52cにより検出された速度に基づいて進行方向(重力方向に対して垂直な方向)の加速度を算出し、この算出された速度と仰俯角を検出する角度センサ28eからの入力信号に基づいて、モータ52aおよびバッテリ28bを、回生状態とするか否かのいずれかの状態に切り替える。したがって、進行方向の加速度は、速度センサ52cに基づいて算出されるので、進行方向の加速度を検出するためのセンサを別途設ける必要はない。 When the overall control unit 28a functions as regenerative braking control means, the acceleration calculation unit in the overall control unit 28a calculates the acceleration in the traveling direction (direction perpendicular to the gravity direction) based on the speed detected by the speed sensor 52c. Based on the input signal from the angle sensor 28e that calculates and detects the calculated speed and elevation angle, the motor 52a and the battery 28b are switched to either the regenerative state or not. Therefore, since the acceleration in the traveling direction is calculated based on the speed sensor 52c, it is not necessary to separately provide a sensor for detecting the acceleration in the traveling direction.
 全体制御部28aにおける回生制動制御部には、補助動力付き自転車10の進行方向の加速度の値および仰俯角の値に応じて、回生状態に切り替えるための補助動力付き自転車10の加速度および仰俯角の角度に対する閾値が予め記憶されている。 The regenerative braking control unit in the overall control unit 28a includes the acceleration and elevation angle of the auxiliary powered bicycle 10 for switching to the regenerative state in accordance with the acceleration value in the traveling direction and the elevation angle value of the bicycle 10 with auxiliary power. A threshold value for the angle is stored in advance.
 進行方向の加速度が、閾値として所定の加速度以下となり、かつ仰俯角の角度が、所定の時間以上連続して、閾値として所定の角度以下の場合は、回生制動制御部によりブレーキ状態であると判定されることで、回生制動制御部は、モータ52aおよびバッテリ28bを回生状態に切り替える。そして、回生制動制御部は、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。なお、この所定の時間の設定は、補助動力付き自転車10がブレーキをかけたときに停止するまでの時間や凹凸のある路面を走行している状態を考慮して決定される。たとえば、時速12km/hで走行中の補助動力付き自転車10の使用者が止まる目的でブレーキをかけた場合、補助動力付き自転車10が停止するまで約0.4secかかることから、所定の時間は、その時間の半分である0.2secとして決定するように考慮される。 When the acceleration in the traveling direction is equal to or less than a predetermined acceleration as a threshold value, and the angle of the elevation angle is continuously longer than a predetermined time and equal to or less than the predetermined angle as a threshold value, it is determined that the regenerative braking control unit is in a brake state Thus, the regenerative braking control unit switches the motor 52a and the battery 28b to the regenerative state. Then, the regenerative braking control unit causes the battery 28b to regenerate the electric power generated by the motor 52a via the regenerative circuit. The setting of the predetermined time is determined in consideration of the time until the bicycle 10 with auxiliary power is stopped when the brake is applied and the state where the bicycle 10 is traveling on an uneven road surface. For example, when the brake is applied for the purpose of stopping the user of the auxiliary powered bicycle 10 traveling at 12 km / h, it takes about 0.4 sec until the auxiliary powered bicycle 10 stops. It is considered to be determined as 0.2 sec which is half of the time.
 一方、回生制動制御部は、速度センサ52cにおいて検出される速度に基づいて算出される加速度と角度センサ28eの角度の少なくともいずれか一方が、所定の閾値より大きい値である場合は、回生制動制御部によりブレーキ状態でないと判定されるので、回生状態は動作しない。 On the other hand, the regenerative braking control unit performs regenerative braking control when at least one of the acceleration calculated based on the speed detected by the speed sensor 52c and the angle of the angle sensor 28e is greater than a predetermined threshold. Since it is determined by the unit that the brake state is not set, the regenerative state does not operate.
 たとえば、速度センサ52cにおいて検出される速度に基づいて算出される加速度と角度センサ28eにおいて検出される角度に対して設定される各閾値としては、たとえば、以下のように設定される。 For example, the threshold values set for the acceleration calculated based on the speed detected by the speed sensor 52c and the angle detected by the angle sensor 28e are set as follows, for example.
 ブレーキ時における回生状態の開始の条件として、進行方向の加速度が-3m/s2以下とし、かつ、0.2sec以上連続して仰俯角を実質0°以下とした。なお、仰俯角は、進行方向が上になる方向を正とする。 As conditions for starting the regenerative state during braking, the acceleration in the traveling direction was set to −3 m / s 2 or less, and the elevation angle was set to substantially 0 ° or less continuously for 0.2 seconds or more. The elevation angle is positive when the traveling direction is upward.
 平地でブレーキした場合、たとえば、進行方向の加速度が-5m/s2となり、かつ、0.2sec以上連続して仰俯角が実質0°となるため、回生状態が動作し、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。 When braking on flat ground, for example, the acceleration in the traveling direction is −5 m / s 2 and the elevation angle is substantially 0 ° continuously for 0.2 sec or more, so the regenerative state is activated and the motor 52a generates power. Electric power is regenerated to the battery 28b through a regenerative circuit.
 また、下り坂でブレーキした場合、たとえば、進行方向の加速度が-5m/s2となり、かつ、0.2sec以上連続して仰俯角が-5°となるため、回生状態が動作し、モータ52aで発電した電力を、回生回路を介してバッテリ28bに回生させる。 When braking downhill, for example, the acceleration in the traveling direction is −5 m / s 2 and the elevation angle is −5 ° continuously for 0.2 sec or more, so that the regenerative state operates and the motor 52a The battery 28b regenerates the electric power generated in step 1 through the regenerative circuit.
 一方、上り坂では、たとえば、進行方向の加速度が-3m/s2となり、かつ、0.2sec以上連続して仰俯角が5°となるため、回生状態は動作しない。 On the other hand, on the uphill, for example, the acceleration in the traveling direction is −3 m / s 2 and the elevation angle is 5 ° continuously for 0.2 sec or more, so the regenerative state does not operate.
 以上の構成からなる補助動力付き自転車10は、従来のようにブレーキ状態を、少なくとも2個のブレーキセンサによる検知により回生状態に切り替えるのではなく、進行方向の加速度および仰俯角のそれぞれの値に基づいて判定を行う。したがって、センサの数を減らしながら、ブレーキ状態において回生による充電を行うことができる。また、センサの数を減らすことで、補助動力付き自転車10において制御機器等を設置するための設置場所の選定の制約も低減され、配線も少なくなることから、補助動力付き自転車10の外観が損なわれることも回避することができる。 The auxiliary power-equipped bicycle 10 configured as described above is based on the values of the acceleration in the traveling direction and the elevation angle, instead of switching the brake state to the regenerative state by detection by at least two brake sensors as in the prior art. To make a decision. Therefore, regenerative charging can be performed in the brake state while reducing the number of sensors. In addition, by reducing the number of sensors, restrictions on selection of an installation location for installing a control device or the like in the bicycle 10 with auxiliary power are reduced, and wiring is reduced, so that the appearance of the bicycle 10 with auxiliary power is impaired. Can also be avoided.
 なお、本実施の形態にかかる補助動力付き自転車では、モータユニットを前輪に装着されているが、これに限るものではなく、ハンガー部や後輪に装着されていてもよい。 In the bicycle with auxiliary power according to the present embodiment, the motor unit is mounted on the front wheel, but the present invention is not limited to this, and the motor unit may be mounted on the hanger part or the rear wheel.
 その他、この発明は、前記実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形される。 In addition, the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist.
 10 補助動力付き自転車
 20 フレーム
 22 フレーム本体
 24 フロントフォーク
 25 サドル
 26 リアキャリア
 28、28´ リアキャリアユニット
 28a 全体制御部
 28b バッテリ
 28c 尾灯
 28d 加速度センサ
 28e 角度センサ
 30 駆動部
 32a クランク軸
 32b ギアクランク
 32c ペダル
 33 チェーン
 34 ギア
 36 フロントディレーラ
 38 リアディレーラ
 40 ハンドル部
 42 ハンドルステム
 44 ハンドルバー
 44a 右ブレーキレバー
 44b 左ブレーキレバー
 44c グリップ
 46 表示装置
 48 前照灯
 50 前輪
 52 モータユニット
 52a モータ
 52b インバータ
 52c 速度センサ
 54 フロントリム
 60 後輪
 62 リアハブ
 64 リアリム
 70 ブレーキ部
 72 フロントブレーキ装置
 74 リアブレーキ装置
 80 ハンガー部
 82 ハンバーユニット
 82a トルクセンサ
 82b 角度センサ
 90a~90g 第1電力線
 92 第2電力線
 100、200 制御システム
DESCRIPTION OF SYMBOLS 10 Bicycle with auxiliary power 20 Frame 22 Frame body 24 Front fork 25 Saddle 26 Rear carrier 28, 28 'Rear carrier unit 28a Overall control unit 28b Battery 28c Taillight 28d Acceleration sensor 28e Angle sensor 30 Drive unit 32a Crankshaft 32b Gear crank 32c Pedal 33 Chain 34 Gear 36 Front derailleur 38 Rear derailleur 40 Handle part 42 Handle stem 44 Handlebar 44a Right brake lever 44b Left brake lever 44c Grip 46 Display device 48 Headlight 50 Front wheel 52 Motor unit 52a Motor 52b Inverter 52c Speed sensor 54 Front rim 60 Rear wheel 62 Rear hub 64 Rear rim 70 Brake part 72 Front brake device 74 Rear blur · The device 80 hanger portion 82 Humber unit 82a torque sensor 82b angle sensors 90a ~ 90 g first power line 92 second power line 100 and 200 control system

Claims (2)

  1.  補助力を発生するためのモータとバッテリとを備えた補助動力付き自転車であって、
     前記補助動力付き自転車の進行方向の速度を検出するため機能を有し、前記検出された速度に基づいて加速度を算出する加速度算出手段と、
     前記補助動力付き自転車の重力方向の加速度を検出する重力方向用加速度検出手段と、
     前記加速度算出手段が算出した加速度および前記重力方向用加速度検出手段が検出した加速度に基づき、前記補助動力付き自転車におけるブレーキ状態を検知し、前記モータおよび前記バッテリを、少なくともアシスト状態から回生状態に切り替える機能を有する回生制動制御手段と、
    を備える、補助動力付き自転車。
    A bicycle with auxiliary power having a motor and a battery for generating auxiliary power,
    An acceleration calculating means having a function of detecting a speed in a traveling direction of the bicycle with auxiliary power, and calculating an acceleration based on the detected speed;
    Gravity direction acceleration detecting means for detecting acceleration in the gravity direction of the bicycle with auxiliary power;
    Based on the acceleration calculated by the acceleration calculating means and the acceleration detected by the acceleration detecting means for gravity direction, the brake state in the bicycle with auxiliary power is detected, and the motor and the battery are switched at least from the assist state to the regenerative state. Regenerative braking control means having a function;
    A bicycle with auxiliary power.
  2.  補助力を発生するためのモータとバッテリとを備えた補助動力付き自転車であって、
     前記補助動力付き自転車の進行方向の速度を検出するため機能を有し、前記検出された速度に基づいて加速度を算出する加速度算出手段と、
     前記補助動力付き自転車の仰俯角を検出する仰俯角検出手段と、
     前記加速度算出手段が算出した加速度および前記仰俯角検出手段が検出した角度に基づき、前記補助動力付き自転車におけるブレーキ状態を検知し、前記モータおよび前記バッテリを、少なくともアシスト状態から回生状態に切り替える機能を有する回生制動制御手段と、
    を備える、補助動力付き自転車。
    A bicycle with auxiliary power having a motor and a battery for generating auxiliary power,
    An acceleration calculating means having a function of detecting a speed in a traveling direction of the bicycle with auxiliary power, and calculating an acceleration based on the detected speed;
    An elevation angle detection means for detecting an elevation angle of the bicycle with auxiliary power;
    Based on the acceleration calculated by the acceleration calculating means and the angle detected by the elevation angle detecting means, a function of detecting a brake state in the bicycle with auxiliary power and switching the motor and the battery from at least the assist state to the regenerative state. Having regenerative braking control means;
    A bicycle with auxiliary power.
PCT/JP2013/073835 2012-09-25 2013-09-04 Power-assisted bicycle WO2014050474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538331A JPWO2014050474A1 (en) 2012-09-25 2013-09-04 Bicycle with auxiliary power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-210634 2012-09-25
JP2012210634 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050474A1 true WO2014050474A1 (en) 2014-04-03

Family

ID=50387882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073835 WO2014050474A1 (en) 2012-09-25 2013-09-04 Power-assisted bicycle

Country Status (2)

Country Link
JP (1) JPWO2014050474A1 (en)
WO (1) WO2014050474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459782A1 (en) * 2017-09-25 2019-03-27 Taiyo Yuden Co., Ltd. Motor driving control apparatus and method and motor-assisted vehicle
JP2019108105A (en) * 2017-12-20 2019-07-04 株式会社シマノ Drive system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035575A (en) * 1996-05-24 1998-02-10 Sony Corp Travelling device
JP2012175754A (en) * 2011-02-18 2012-09-10 Mazda Motor Corp Brake system of vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169565B2 (en) * 2008-07-16 2013-03-27 日産自動車株式会社 Downhill road speed control device and downhill road speed control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035575A (en) * 1996-05-24 1998-02-10 Sony Corp Travelling device
JP2012175754A (en) * 2011-02-18 2012-09-10 Mazda Motor Corp Brake system of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459782A1 (en) * 2017-09-25 2019-03-27 Taiyo Yuden Co., Ltd. Motor driving control apparatus and method and motor-assisted vehicle
CN109552057A (en) * 2017-09-25 2019-04-02 太阳诱电株式会社 Motor drive control apparatus and Moped Scooter
TWI693169B (en) * 2017-09-25 2020-05-11 日商太陽誘電股份有限公司 Motor drive control device, electric auxiliary vehicle and energy recovery control method
US10919600B2 (en) 2017-09-25 2021-02-16 Taiyo Yuden Co., Ltd. Motor driving control apparatus and method and motor-assisted vehicle
JP2019108105A (en) * 2017-12-20 2019-07-04 株式会社シマノ Drive system
JP7376222B2 (en) 2017-12-20 2023-11-08 株式会社シマノ drive system

Also Published As

Publication number Publication date
JPWO2014050474A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5941120B2 (en) Bicycle control device
JP5842105B2 (en) Electric assist bicycle
TWI466800B (en) Bicycle kinetic energy recovery brake control device
EP3147192B1 (en) Straddle-type electric vehicle
JP5268479B2 (en) Electric assist bicycle
TWI457252B (en) Bicycle kinetic energy recovery brake control device
JP6174750B2 (en) Bicycle control device
US10967931B2 (en) Brake controller and brake system
US20120316709A1 (en) Bicycle motor control system
WO2012014396A1 (en) Electric bicycle
JP4205972B2 (en) Electric motorcycle drive device
JP2008044414A (en) Electrically assisted bicycle
TWI821264B (en) Human powered vehicle control device
JP5211181B2 (en) Electric assist bicycle
JPH04358988A (en) Motorbike
EP2739523A1 (en) Method and device for shifting gears on an electric bicycle
JP2023165966A (en) Control device and gear change system
WO2014050474A1 (en) Power-assisted bicycle
US20230034333A1 (en) Shifting control device and electric shifting system
JP7045298B2 (en) Control and speed change system
JP5537994B2 (en) Electric assist bicycle
JP2020055463A (en) Control device and transmission system
JP2019182044A (en) Power-assisted bicycle
JP2020029224A (en) Control device for man power driving vehicle and propulsion power adjustment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841209

Country of ref document: EP

Kind code of ref document: A1