WO2014050417A1 - Organic electroluminescent element, lighting device, and display device - Google Patents

Organic electroluminescent element, lighting device, and display device Download PDF

Info

Publication number
WO2014050417A1
WO2014050417A1 PCT/JP2013/073067 JP2013073067W WO2014050417A1 WO 2014050417 A1 WO2014050417 A1 WO 2014050417A1 JP 2013073067 W JP2013073067 W JP 2013073067W WO 2014050417 A1 WO2014050417 A1 WO 2014050417A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
general formula
organic
layer
Prior art date
Application number
PCT/JP2013/073067
Other languages
French (fr)
Japanese (ja)
Inventor
川邉 里美
大津 信也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020157000906A priority Critical patent/KR101788943B1/en
Priority to JP2014538299A priority patent/JP6172154B2/en
Publication of WO2014050417A1 publication Critical patent/WO2014050417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the present invention relates to an organic electroluminescence element, an illumination device provided with the organic electroluminescence device, and a display device.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and a positive electrode injected from the anode by applying an electric field.
  • This is a light emitting device that uses the emission of light (fluorescence / phosphorescence) when excitons are generated by recombining electrons injected from holes and cathodes in the light emitting layer to generate excitons. is there.
  • An organic EL element is an all-solid-state element composed of an organic material film with a thickness of only a submicron between electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next-generation flat display and lighting.
  • Non-Patent Document 1 As for the development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1). Research on materials that exhibit phosphorescence has become active (see, for example, Patent Document 1 and Non-Patent Document 2). In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of organic EL elements that utilize fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
  • the phosphorescence emission method is a method having a very high potential.
  • an organic EL device using phosphorescence emission is greatly different from an organic EL device using fluorescence emission, and controls the position of the emission center.
  • the method particularly how to recombine within the light emitting layer to stabilize the light emission, is an important technical issue in grasping the efficiency and lifetime of the device. Therefore, in recent years, a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. (For example, refer to Patent Document 2).
  • a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
  • organic EL elements are required to have high light emission efficiency and long light emission lifetime. Therefore, materials having high carrier transportability and thermally and electrically stable materials are required. Is required.
  • a short-wavelength blue light-emitting dopant that exhibits an emission maximum wavelength of 470 nm, more preferably 460 nm or less, is required. Indispensable.
  • fluorescent light-emitting dopants having anthracene, chrysene or the like in the skeleton are well known, but as described above, they are disadvantageous compared to phosphorescent light-emitting dopants in terms of light emission efficiency.
  • FIrpic is a material well known as a short wavelength phosphorescent blue light emitting dopant.
  • FIrpic is realized by using two fluorine atoms in the main ligand, phenylpyridine, and using picolinic acid as a sub-ligand, but with two fluorine atoms with high electronegativity. Due to the substitution, iridium as a central metal is easily oxidized, and the HOMO is very deep at about ⁇ 5.9 eV in a calculated value.
  • the HOMO is very deep, it is very difficult to select the material used for the anode side adjacent layer of the light emitting layer, and the hole injecting property is easily affected by slight impurity mixing or film quality change. It is also disadvantageous in terms of production aptitude.
  • a light emitting dopant having a shallow HOMO for example, less than ⁇ 4.50 eV, is used, the LUMO becomes relatively shallow and the compound becomes unstable. In addition, it is easily affected by external factors such as oxygen, and there is a problem in terms of stability of device performance.
  • the light emission maximum wavelength of the light emitting dopant having a phenylpyridine ligand substituted with a fluorine atom and an isopropyl group used in Examples in Patent Document 3 is a light emission maximum wavelength exceeding 470 nm as investigated by the present inventors. The results show that the wavelength is not long and satisfactory for use in high color temperature lighting applications and displays with a wide color gamut. Further, the above document does not describe any relationship between the luminescent dopant and the HOMO of the material used for the adjacent layer.
  • the present invention has been made in view of the above problems, and has high luminous efficiency, low driving voltage, long life, and good chromaticity, an organic electroluminescence element having good chromaticity, and an illumination device and a display device using the element It is an issue to provide.
  • an organic electroluminescence device having a plurality of organic layers including at least one light emitting layer sandwiched between an anode and a cathode and an adjacent layer adjacent to the anode side of the light emitting layer, at least one of the light emitting layers is formed in a solution.
  • at least one phosphorescent dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV is contained.
  • An organic electroluminescence device comprising a nonmetallic complex compound represented by the formula (1) and having a HOMO value of ⁇ 4.50 to ⁇ 5.10 eV.
  • R represents a substituent.
  • L represents a linking group or a simple bond.
  • Ar 1 and Ar 2 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • Ar 1 and Ar 2 are indole ring, azaindole ring, carbazole ring, azacarbazole ring or a benzene ring having a condensed aromatic heterocyclic group as a substituent. Or the organic electroluminescent element of 2.
  • R 111 and R 112 represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and the compound represented by General Formula (11) further has a substituent. (You may have it.)
  • R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring. Or, it represents a residue that forms an aromatic heterocyclic ring, and may have a substituent.
  • R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
  • 1 to A 8 each independently represent C—Rx or N, and the plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • X 1 and X 2 represent a carbon atom or a nitrogen atom
  • ring Z 1 represents a 6-membered aromatic with C ⁇ C.
  • L ′ represents a monoanionic divalent ring coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ is an integer of at least 1
  • m ′ + n ′ is 2 or 3.
  • the ring Z 2 is an organic electroluminescent device according to the 7, characterized in that a substituted or unsubstituted imidazole ring.
  • the ring Z 2 is an organic electroluminescent device according to the 7, characterized in that a substituted or unsubstituted triazole ring.
  • An illumination device comprising the organic electroluminescence element according to any one of 1 to 11 above.
  • a display device comprising the organic electroluminescence element according to any one of 1 to 11 above.
  • the present invention improves the hole injectability into the light emitting layer by defining the relationship between the HOMO of the light emitting dopant and the HOMO of the material containing the adjacent layer as in the present invention, and is further represented by the general formula (1).
  • a compound having a structure was used in the adjacent layer. Accordingly, it is possible to provide an organic electroluminescence element that achieves high luminous efficiency and long life, has a low driving voltage, and has good chromaticity, an illumination device using the element, and a display device.
  • FIG. 3 is a schematic diagram of a passive matrix type full-color display device according to a display unit A in FIG. 2. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • (A)-(e) is a schematic block diagram of an organic electroluminescent full color display apparatus.
  • the organic EL device of the present invention has a plurality of organic layers including at least one light emitting layer sandwiched between an anode and a cathode and an adjacent layer adjacent to the anode side of the light emitting layer. Then, at least one of the light emitting layers is provided with a phosphorescent light emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV in the emission spectrum in the solution. At least one kind is contained, and the adjacent layer contains a nonmetallic complex compound represented by the general formula (1) and having a HOMO value of ⁇ 4.50 to ⁇ 5.10 eV.
  • the injection property of holes into the light emitting layer is improved by making the relationship between the HOMO of the light emitting dopant and the HOMO of the material contained in the adjacent layer as in the present invention.
  • the carrier injection balance into the light emitting layer was improved, and the recombination region was separated from the vicinity of the interface between the light emitting layer and the adjacent layer.
  • the compound represented by the general formula (1) has a condensed ring structure, molecules are more easily arranged than a triarylamine derivative typified by ⁇ -NPD generally used in a hole transport layer. As a result, the carrier mobility in the layer was improved and a low driving voltage was achieved.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • an organic layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked.
  • the plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably an illumination device or a display device using these. That is, the organic EL element preferably emits white light.
  • Each layer which comprises the organic EL element of this invention is demonstrated.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • a plurality of hole transport layers may be provided. For example, a hole transport layer close to the anode side is a first hole transport layer, and a hole transport layer adjacent to the light emitting layer side is a second hole transport layer. The transport layer.
  • the compound represented by the general formula (1) is contained in a layer adjacent to the light emitting layer.
  • the adjacent layer is a layer adjacent to the anode side of the light emitting layer, specifically, a hole transport layer.
  • the hole injection layer and the electron blocking layer are also included in the hole transport layer in a broad sense, when the hole injection layer and the electron blocking layer are adjacent to the anode side, these layers are included. May have a compound represented by the general formula (1).
  • the layer represented by the general formula (1) is included in the layer adjacent to the anode side of the light emitting layer among the plurality of hole transport layers. .
  • the hole transport layer close to the anode side is the first hole transport layer and the hole transport layer adjacent to the light emitting layer side is the second hole transport layer, It has a compound represented by Formula (1).
  • the compound represented by the general formula (1) is a nonmetallic complex compound and has a HOMO value of ⁇ 4.50 to ⁇ 5.10 eV.
  • Gaussian 03 As the value of HOMO in the present invention, Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004.), which is a molecular orbital calculation software manufactured by Gaussian, USA. This is the value obtained.
  • the compound represented by the general formula (1) of the present invention, the host compound, the hole transport material, and the electron transport material use B3LYP / 6-31G * as a keyword, and the phosphorescent dopant compound uses B3LYP / LanL2DZ.
  • the HOMO value is calculated by optimizing the structure of the target molecular structure (eV unit conversion value). It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
  • the HOMO value of the compound represented by the general formula (1) of the present invention is ⁇ 4.50 to ⁇ 5.10 eV.
  • the reason for setting the HOMO value in the above range is that when the HOMO value is deeper than ⁇ 5.10 eV, hole injection into the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. On the other hand, if it is shallower than ⁇ 4.50 eV, the hole trapping property of the dopant in the light emitting layer is strong, so that holes are likely to accumulate at the light emitting layer / hole transporting layer interface, resulting in a decrease in efficiency and life.
  • the HOMO value is preferably ⁇ 4.70 to ⁇ 5.10 eV.
  • R represents a substituent.
  • substituents include a hydrogen atom, an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, (t) butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group.
  • aryl group for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group Etc.
  • heterocyclic groups eg, epoxy ring, aziridine ring
  • substituents may be further substituted with the above-mentioned substituents, or they may be condensed with each other to further form a ring.
  • an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a heterocyclic group, and a cycloalkyl group are preferable.
  • L represents a linking group or a simple bond
  • examples of the linking group include an oxygen atom, a nitrogen atom, a sulfur atom, an amide group, an ester group, a carbonyl group, a sulfonyl group, an alkylene group (for example, a methylene group, an ethylene group, etc.)
  • examples include an arylene group (for example, a phenylene group), a heteroarylene group, or a group obtained by combining these.
  • an oxygen atom, an alkylene group, and an arylene group are preferable.
  • a mere bond is a bond that directly bonds the connecting substituents together.
  • Ar 1 and Ar 2 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, Examples thereof include a p-terphenyl ring, an acenaphthene ring, a coronene ring, a fluorene ring, a fluoranthrene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyranthrene ring, and an anthraanthrene ring.
  • aromatic heterocycle for example, silole ring, furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, Pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoline ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (carbon constituting carbazole ring) Any one or more of the carbon atoms constituting the dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, be
  • Ar 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring
  • Ar 2 represents a non-condensed aromatic hydrocarbon ring having a substituent, a non-fused aromatic heterocyclic ring having a substituent, or a condensed aromatic
  • L represents a single bond
  • Ar 1 and Ar 2 each represent a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle.
  • Ar 1 and Ar 2 are an indole ring, an azaindole ring, a carbazole ring, an azacarbazole ring or a benzene ring having a condensed aromatic heterocyclic group as a substituent.
  • R 111 and R 112 represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and the compound represented by the general formula (11) further has a substituent. You may do it.
  • R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene or carbazole.
  • R 111, R 112 in formula (12) to (14) has the same meaning as R 111, R 112 in formula (11).
  • R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene, or carbazole.
  • R 211 and R 212 each represents an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • Rings Z 1 to Z 3 represent a residue that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
  • the alkyl group, aromatic hydrocarbon ring group or aromatic heterocyclic group in general formulas (21) and (22) has the same meaning as described for R, Ar 1 and Ar 2 in general formula (1).
  • the substituents for the rings Z 1 to Z 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms, or Represents an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • the substituent of the ring Z 2 may form a condensed ring together with the ring to which the substituent is bonded.
  • rings Z 1 to Z 3 are aromatic hydrocarbon rings, more preferably benzene rings.
  • the rings Z 1 to Z 3 are all benzene rings.
  • R 211 and R 212 are preferably an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and more preferably a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, or a quinoline ring.
  • R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
  • R 311 and R 312 are preferably any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and any of an aromatic hydrocarbon ring group or an aromatic heterocyclic group More preferably.
  • a substituent containing an oxygen atom or a sulfur atom is preferable.
  • the aromatic hydrocarbon ring group or aromatic heterocyclic group in R 311 and R 312 has the same meaning as described for R, Ar 1 and Ar 2 in the general formula (1).
  • a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
  • a 1 to A 8 each independently represent C—Rx or N, and the plurality of Rx may be the same or different.
  • Rx each independently represents a hydrogen atom or a substituent. As a substituent, it is synonymous with the substituent quoted by R of General formula (1).
  • any one or more of A 1 , A 2 , A 4 is preferably C—Rx, and more preferably A 1 or A preferably any one or more of 2 is C-Rx, in particular a 1 may be mentioned as more preferred form to be a C-Rx.
  • Rx is an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a diarylamino group. It is preferably any one, and further preferably any one of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. It is more preferably any of a cyclic group, and particularly preferably an aromatic heterocyclic group.
  • a substituent containing an oxygen atom or a sulfur atom is preferable because it has a high charge transporting ability and high durability against charges, and an aromatic heterocyclic group is preferable because of high thermal stability.
  • a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
  • the substituent represented by Rx is preferably further substituted, and the substituent is any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, and a diarylamino group. And more preferably an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic ring Particularly preferred is any of the groups.
  • any one or more of the plurality of Rx, R 311 and R 312 in the general formula (31) is a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group.
  • hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives.
  • Fluorenone derivatives hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • a hole transport layer having a high p property doped with impurities can be used.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or a plurality of layers.
  • An electron transport material (including a hole blocking material and an electron injection material) used for the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. Can be selected from any conventionally known compounds and used alone or in combination.
  • electron transport materials examples include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, And azacarbazole derivatives including carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, carboline derivatives, and the like.
  • the azacarbazole derivative refers to one in which one or more carbon atoms constituting the carbazole ring are replaced with a nitrogen atom.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having the terminal substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the electron transport layer is made of an electron transport material such as a vacuum deposition method, a wet method (also referred to as a wet process, such as a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, or a spraying method.
  • the film is preferably formed by thinning by a coating method, curtain coating method, LB method (Langmuir Brodgett method, etc.).
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5000 nm, preferably 5 nm to 200 nm.
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • you may dope and use n-type dopants, such as metal compounds, such as a metal complex and a metal halide.
  • Examples of conventionally known compounds (electron transport materials) that are preferably used for forming an electron transport layer include, for example, compounds of ET-1-ET-43 described in JP2012-164731A, but are not limited thereto. Not.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. It may be an interface with an adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 5 nm to 100 nm.
  • a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method,
  • the film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like.
  • a light-emitting dopant phosphorescent light-emitting dopant (also referred to as phosphorescent dopant, phosphorescent light-emitting dopant, phosphorescent light-emitting dopant group) or fluorescent dopant) compound and host Compound.
  • phosphorescent light-emitting dopant also referred to as phosphorescent dopant, phosphorescent light-emitting dopant, phosphorescent light-emitting dopant group
  • fluorescent dopant a light-emitting dopant
  • Luminescent dopant compound A light-emitting dopant compound (also referred to as a light-emitting dopant or a light-emitting dopant compound) will be described.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant compound, a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like
  • a phosphorescent light-emitting dopant compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. 1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emission dopant should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent. .
  • the energy transfer type in which light emission from the phosphorescent light-emitting dopant is obtained by transferring to the light dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent light-emitting dopant, and phosphorescence
  • the excited state energy of the phosphorescent light emitting dopant is lower than the excited state energy of the host compound.
  • the present inventors have found that at least one of the light emitting layers of the organic EL element is on the shortest wavelength side in the emission spectrum in the solution.
  • Inclusion of at least one phosphorescent light-emitting dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of ⁇ 4.50 to ⁇ 5.50 eV improves the light emission efficiency, lifetime, and driving voltage of the organic EL device, It was clarified that the color gamut of the element can be improved.
  • At least one of the phosphorescent dopants used in the present invention has an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of ⁇ 4 in the emission spectrum of the solution in the region of 400 to 700 nm.
  • the phosphorescent emission dopant used in the present invention has an emission maximum wavelength (peak wavelength) of emission at the shortest wavelength side of 470 nm or less.
  • peak wavelength peak wavelength
  • the emission maximum wavelength of the phosphorescent light emitting dopant is 470 nm or less.
  • the emission spectrum in the solution can be obtained from, for example, a fluorescence spectrum obtained by irradiating a solution obtained by dissolving a dopant in a nonpolar solvent with excitation light.
  • a dopant was dissolved in 2-methyltetrahydrofuran, and a fluorescence spectrum in the region of 400 to 700 nm was measured using Hitachi F-4500.
  • the HOMO value of the phosphorescent light-emitting dopant used in the present invention is ⁇ 4.50 to ⁇ 5.50 eV.
  • the value of HOMO in the phosphorescent light emitting dopant can be obtained by the calculation method described in the hole transport layer.
  • the reason why the HOMO value is in the above range is that when the HOMO value is deeper than ⁇ 5.50 eV, the hole injection property from the hole transport layer to the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. It becomes.
  • the HOMO value is shallower than ⁇ 4.50 eV
  • the LUMO of the dopant becomes shallow or the compound becomes unstable in order to make a blue phosphorescent light-emitting dopant whose emission maximum wavelength is 470 nm or less.
  • a preferred phosphorescent light-emitting dopant is a compound represented by the following general formula (41).
  • M represents Ir, Pt, Rh, Ru, Ag or Cu
  • X 1 and X 2 represent a carbon atom or a nitrogen atom
  • the ring Z 1 is a 6-membered aromatic together with C ⁇ C. hydrocarbon ring or an aromatic 5- or 6-membered heterocyclic ring
  • the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
  • Examples of the 6-membered aromatic hydrocarbon ring of the ring Z 1 include a benzene ring.
  • Examples of the 5-membered or 6-membered aromatic heterocycle include furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, An imidazole ring, a pyrazole ring, a thiazole ring, etc. are mentioned.
  • Ring Z 1 and ring Z 2 may have a substituent, and those exemplified for R in formula (1) can be used.
  • L ′ is one or more of monoanionic bidentate ligands coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ is an integer of at least 1
  • m ′ + N ′ is 2 or
  • ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring
  • ring Z 2 is a substituted or unsubstituted imidazole ring, substituted or unsubstituted pyrazole ring, or substituted or unsubstituted triazole ring. It is preferable that it represents.
  • Preferred as the compound represented by the general formula (41) are the compounds represented by the following general formulas (42), (43) and (44).
  • R 1 represents an electron-withdrawing group
  • R 2 represents an electron-donating group or F.
  • X 1 and X 2 represents a carbon atom or a nitrogen atom
  • the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
  • the electron withdrawing group include a keto group such as a halogen atom, a cyano group, a nitro group, a phenyl group, and an acyl group
  • examples of the electron donating group include an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
  • M, L ′, m ′, and n ′ are synonymous with the general formula (41).
  • R 3 , R 4 and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring.
  • Ring Z 1 represents a 6-membered aromatic hydrocarbon ring together with C ⁇ C, or a 5-membered or 6-membered aromatic heterocycle.
  • the substituents for R3, R4, and R5 represent the same groups as the substituents represented by R in the general formula (1).
  • X 1 to X 4 each represent —CR 6 or a nitrogen atom. When X 3 and X 4 are —CR 6 , they may form a ring.
  • Ring Z 3 represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle, and ring Z 4 represents a 5-membered heterocycle together with X 1 -X 2 .
  • R 6 represents a carbon atom or a nitrogen atom.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like, and compounds having a high fluorescence quantum yield such as laser dyes.
  • the light emitting dopant may be used in combination of a plurality of types of compounds, or may be a combination of phosphorescent dopants having different structures or a combination of a phosphorescent dopant and a fluorescent dopant.
  • Light emitting host compound also referred to as light emitting host or host compound
  • Specific examples of the known light-emitting host include compounds described in the following documents. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No.
  • the injection layer is a layer provided between the electrode and the organic layer for reducing the driving voltage and improving the light emission luminance as required.
  • the organic EL element and its industrialization front line June 30, 1998 Chapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “TS Co., Ltd.”) is described in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • Representative phthalocyanine buffer layer oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) )
  • Orthometalated complex layers represented by iridium complexes and the like.
  • the details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide And an oxide buffer layer.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • the materials used for the anode buffer layer and the cathode buffer layer can be used in combination with other materials. For example, they can be mixed in the hole transport layer or the electron transport layer.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (issued by NTT Corporation on November 30, 1998)” on page 237.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer contains carbazole derivatives, azacarbazole derivatives (where azacarbazole derivatives are those in which one or more carbon atoms constituting the carbazole ring are replaced by nitrogen atoms), pyridine derivatives, and the like. It is preferable to contain a nitrogen compound. Further, in the present invention, when a plurality of light emitting layers having different emission colors are provided, the light emitting layer having the shortest wavelength of the light emission maximum wavelength (shortest wave layer) is closest to the anode among all the light emitting layers. preferable. In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the shortest wave layer.
  • the thickness of the hole blocking layer and electron blocking layer that can be used in the present invention is preferably 3 nm to 100 nm, and more preferably 3 nm to 30 nm.
  • an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • a material having a low work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound and a mixture thereof as an electrode material
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, and an anode is manufactured.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer, which is a device material, is formed thereon.
  • the thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
  • Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. From the viewpoint of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
  • liquid medium for dissolving or dispersing the organic EL material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode.
  • the cathode, electron injection layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order in the reverse order.
  • the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • a sealing means used for this invention the method of adhere
  • a sealing member it should just be arrange
  • sandblasting, chemical etching, or the like is used.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. .
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • by combining these means it is possible to obtain an element having higher luminance or durability.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • the luminance in a specific direction can be increased.
  • the microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored.
  • Other details of the “sheet” and the like can be the same as those described in publicly known documents such as Japanese Patent Application Laid-Open No. 2012-164731 and Japanese Patent Application Laid-Open No. 2012-156299.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention will be described.
  • the display device of the present invention includes the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited.
  • the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
  • the configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown to the one aspect
  • the multicolor display device can be used as a display device, a display, and various light emission sources. In display devices and displays, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile.
  • it may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions (details are shown in the figure). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data. Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device according to the display unit A of FIG.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the lighting device of the present invention includes the organic EL element of the present invention.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc.
  • the thing containing the light emission maximum wavelength may be used.
  • the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light emitting dopants.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • FIG. 1 One Embodiment of Lighting Device of the Present Invention.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • LC0629B an epoxy-based photocurable adhesive
  • FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 6 is a cross-sectional view of the lighting device.
  • reference numeral 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode (anode).
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while a hole-transporting material 2 and a host compound 11-12 (same as compound (1) described in WO2011 / 122132) are mounted on a molybdenum resistance heating boat.
  • a hole-transporting material 2 and a host compound 11-12 (same as compound (1) described in WO2011 / 122132) are mounted on a molybdenum resistance heating boat.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing 11-12 was heated by heating, and the film thickness was formed on the first hole transport layer at a deposition rate of 0.1 nm / second.
  • a 20 nm second hole transport layer was provided.
  • the second hole transport is carried out by energizing and heating the heating boat containing 11-12 as a host compound and compound (BD) as a dopant compound, respectively, at a deposition rate of 0.1 nm / second and 0.025 nm / second, respectively.
  • a light-emitting layer having a thickness of 30 nm was provided by co-evaporation on the layer.
  • the heating boat containing ET-8 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Organic EL element 1-15 was produced in the same manner as in the production of organic EL element 1-4, except that the host of the light emitting layer was changed to host compound (H-1).
  • the organic EL elements 1-4 and 1-7 to 1-15 of the present invention are higher than the organic EL elements 1-1 to 1-3, 1-5, and 1-6 of the comparative example, respectively. It can be seen that the light emitting efficiency and long life are exhibited, the driving voltage is low, and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
  • the obtained organic EL elements 2-1 to 2-12 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving.
  • the voltage was evaluated and expressed as a relative value where the organic EL element 2-1 was 100.
  • the organic EL elements 2-5 and 2-8 to 2-12 of the present invention are higher than the organic EL elements 2-1 to 2-4, 2-6, and 2-7 of the comparative examples, respectively. It can be seen that the light emitting efficiency and long life are exhibited, the driving voltage is low, and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improving by making the HOMO level of the material contained in a light emitting dopant and an adjacent layer into the relationship of this invention.
  • Organic EL element 3-16 was produced in the same manner as in the production of the organic EL element 3-5, except that the host of the light emitting layer was changed to the host compound (H-1).
  • the obtained organic EL devices 3-1 to 3-16 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving. The voltage was evaluated and expressed as a relative value where the organic EL element 3-1 was 100.
  • the organic EL elements 3-5 and 3-8 to 3-16 of the present invention are higher than the organic EL elements 3-1 to 3-4, 3-6, and 3-7 of the comparative example, respectively. It can be seen that the luminous efficiency and long life are exhibited, and the driving voltage is low and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
  • the organic EL device 4 was prepared in the same manner as described above except that the dopant compound of the light emitting layer and the compound of the second hole transport layer were changed to the compounds shown in Table 4. 1 to 4-19 were produced.
  • the obtained organic EL elements 4-1 to 4-19 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving.
  • the voltage was evaluated and expressed as a relative value where the organic EL element 4-1 was 100.
  • the organic EL elements 4-12 to 4-19 of the present invention show higher luminous efficiency and longer life than the organic EL elements 4-1 to 4-11 of the comparative examples, respectively, and the driving voltage is low. It can be seen that the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
  • Preparation of white light-emitting organic EL element 5-1 A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm.
  • the supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, while 200 mg of ⁇ -NPD is placed in a molybdenum resistance heating boat as a hole transport material and 11 mg as a hole transport material 2 is placed in a molybdenum resistance heating boat.
  • each of the heating boats containing ⁇ -NPD was separately energized and deposited on the transparent support substrate at a deposition rate of 0.1 nm / sec.
  • a first hole transport layer was provided.
  • the heating boat containing 11-12 was energized and heated, and a second hole transport layer having a film thickness of 5 nm was provided on the first hole transport layer at a deposition rate of 0.05 nm / second.
  • the heating boat containing the host compound (H-1) as the host compound and DP-1 and D-10 as the dopant compounds was energized and heated, and the respective deposition rates were 100: 5: 0.6.
  • a light emitting layer having a thickness of 30 nm was provided.
  • the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • FIG. 7 shows a schematic configuration diagram of an organic EL full-color display device.
  • a hole injection layer composition having the following composition is ejected and injected on the ITO transparent electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 200 seconds, 60 A 40-nm-thick hole injection layer 204 was provided by a drying process at 10 ° C. for 10 minutes (see FIG. 7C).
  • a blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes.
  • light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 7D).
  • an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) with a thickness of 20 nm, and further lithium fluoride is deposited to have a thickness of 0.6 nm.
  • a cathode buffer layer (not shown) was provided, Al was deposited, and a cathode 206 having a thickness of 130 nm was provided to produce an organic EL device (see FIG. 7E). It was found that the produced organic EL elements each emitted blue, green, and red light when a voltage was applied to the electrodes, and could be used as a full-color display device.
  • Host compound (H-1) 0.7 parts by mass Host DP-1 0.04 parts by mass
  • Host compound (H-1) 0.7 parts by mass D-10 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

An organic electroluminescent element comprising multiple organic layers including one or more light-emitting layers that are sandwiched between an anode and a cathode and an adjacent layer that is adjacent to the anode-side of the light-emitting layers, said organic electroluminescent element being characterized in that at least one of the light emitting layers contains at least one phosphorescent light-emissive dopant that has an emission maximum wavelength on the shortest wavelength side of 470 nm or less in the emission spectra in a solution and also has an HOMO value of -4.50 to -5.50 eV, and the adjacent layer contains a compound that is not a metal complex, is represented by general formula (1) and has a HOMO value of -4.50 to -5.10 eV.

Description

有機エレクトロルミネッセンス素子、照明装置および表示装置Organic electroluminescence element, lighting device and display device
 本発明は、有機エレクトロルミネッセンス素子、それが具備された照明装置および表示装置に関する。 The present invention relates to an organic electroluminescence element, an illumination device provided with the organic electroluminescence device, and a display device.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)は、発光する化合物を含有する発光層を、陰極と陽極とで挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極と電極の間を厚さわずかサブミクロン程度の有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a configuration in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and a positive electrode injected from the anode by applying an electric field. This is a light emitting device that uses the emission of light (fluorescence / phosphorescence) when excitons are generated by recombining electrons injected from holes and cathodes in the light emitting layer to generate excitons. is there. An organic EL element is an all-solid-state element composed of an organic material film with a thickness of only a submicron between electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next-generation flat display and lighting.
 実用化に向けた有機EL素子の開発としては、プリンストン大学より、励起三重項からのリン光発光を用いる有機EL素子の報告がされており(例えば、非特許文献1参照)、以来、室温でリン光を示す材料の研究が活発になってきている(例えば、特許文献1、非特許文献2参照)。
 さらに、リン光発光を利用する有機EL素子は、以前の蛍光発光を利用する有機EL素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。例えば、イリジウム錯体系等重金属錯体を中心に多くの化合物について合成検討なされている(例えば、非特許文献3参照)。
As for the development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1). Research on materials that exhibit phosphorescence has become active (see, for example, Patent Document 1 and Non-Patent Document 2).
In addition, organic EL elements that utilize phosphorescence emission can in principle achieve light emission efficiency that is approximately four times that of organic EL elements that utilize fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world. For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see Non-Patent Document 3, for example).
 このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捉える上で重要な技術的な課題となっている。
 そこで近年、発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層と発光層の陰極側に位置する電子輸送層とを備えた多層積層型の素子が良く知られている(例えば、特許文献2参照)。また、発光層にはホスト化合物とドーパントとしてのリン光発光性化合物とを用いた混合層が多く用いられている。
 また、ディスプレイや、照明への利用の観点から、有機EL素子には、高い発光効率、長い発光寿命が求められているため、高いキャリア輸送性を有する材料や熱的、電気的に安定な材料が求められている。
As described above, the phosphorescence emission method is a method having a very high potential. However, an organic EL device using phosphorescence emission is greatly different from an organic EL device using fluorescence emission, and controls the position of the emission center. The method, particularly how to recombine within the light emitting layer to stabilize the light emission, is an important technical issue in grasping the efficiency and lifetime of the device.
Therefore, in recent years, a multi-layered element having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer is well known. (For example, refer to Patent Document 2). In addition, a mixed layer using a host compound and a phosphorescent compound as a dopant is often used for the light emitting layer.
In addition, from the viewpoint of use in displays and lighting, organic EL elements are required to have high light emission efficiency and long light emission lifetime. Therefore, materials having high carrier transportability and thermally and electrically stable materials are required. Is required.
 さらに近年は、色温度の高い照明光源や、色域の広いディスプレイが求められており、これらを達成するためには470nm、より好ましくは460nm以下の発光極大波長を示す短波長の青色発光ドーパントが必要不可欠である。
短波長の青色発光ドーパントとしてはアントラセンやクリセン等を骨格に有する蛍光発光性の発光ドーパントが良く知られているが、上述したように発光効率の点からリン光発光ドーパントに比較し不利である。
 一方、短波長のリン光性青色発光ドーパントとして良く知られている材料にFIrpicがある。FIrpicは主配位子のフェニルピリジンに2つのフッ素が置換をすること、および副配位子としてピコリン酸を用いることにより短波化が実現されているが、電気陰性度の大きいフッ素原子2個で置換しているために中心金属のイリジウムが酸化されやすい状態になり、HOMOが計算値で-5.9eV程度と非常に深くなっている。
Furthermore, in recent years, an illumination light source with a high color temperature and a display with a wide color gamut have been demanded. To achieve these, a short-wavelength blue light-emitting dopant that exhibits an emission maximum wavelength of 470 nm, more preferably 460 nm or less, is required. Indispensable.
As short-wavelength blue light-emitting dopants, fluorescent light-emitting dopants having anthracene, chrysene or the like in the skeleton are well known, but as described above, they are disadvantageous compared to phosphorescent light-emitting dopants in terms of light emission efficiency.
On the other hand, FIrpic is a material well known as a short wavelength phosphorescent blue light emitting dopant. FIrpic is realized by using two fluorine atoms in the main ligand, phenylpyridine, and using picolinic acid as a sub-ligand, but with two fluorine atoms with high electronegativity. Due to the substitution, iridium as a central metal is easily oxidized, and the HOMO is very deep at about −5.9 eV in a calculated value.
 そのため、陽極側から発光層への正孔注入がしにくくなり、正孔と電子の注入のバランスが悪くなり、発光層内での再結合確率の低下や駆動電圧の上昇という課題が発生する。
また、キャリアの注入バランスが崩れることで再結合領域が輸送層界面近傍の狭い領域に限定されやすくなるため、発光層から隣接する輸送層に励起子の漏れが生じてしまう。このため、発光効率の低下や、材料の劣化に起因する発光寿命低下の課題が発生する。さらに、HOMOが非常に深いために特に発光層の陽極側隣接層に用いる材料選択が非常に難しく、さらにわずかな不純物の混入や膜質の変化等で正孔注入性が影響を受けやすくなるため、生産適性の点でも不利である。その一方で、HOMOが浅い、例えば-4.50eVよりも浅い発光ドーパントを用いた場合には、相対的にLUMOが浅くなるため化合物が不安定になる。また酸素等の外因の影響を受けやすくなり、素子性能の安定性という点で課題がある。
Therefore, it becomes difficult to inject holes from the anode side into the light emitting layer, the balance between hole and electron injection is deteriorated, and problems such as a decrease in recombination probability and an increase in driving voltage occur in the light emitting layer.
Further, since the carrier injection balance is lost, the recombination region is easily limited to a narrow region near the transport layer interface, and exciton leakage occurs from the light emitting layer to the adjacent transport layer. For this reason, the subject of the light emission efficiency fall and the light emission lifetime fall resulting from deterioration of a material generate | occur | produces. Furthermore, since the HOMO is very deep, it is very difficult to select the material used for the anode side adjacent layer of the light emitting layer, and the hole injecting property is easily affected by slight impurity mixing or film quality change. It is also disadvantageous in terms of production aptitude. On the other hand, when a light emitting dopant having a shallow HOMO, for example, less than −4.50 eV, is used, the LUMO becomes relatively shallow and the compound becomes unstable. In addition, it is easily affected by external factors such as oxygen, and there is a problem in terms of stability of device performance.
 上記課題に対して、例えば特許文献3においては、正孔輸送層に正孔注入・輸送性を改良したカルバゾール誘導体を使用する事によって、高効率の素子、長寿命を達成している。しかしながら特許文献3における実施例で用いられているフッ素原子とイソプロピル基で置換されたフェニルピリジン配位子を有する発光ドーパントの発光極大波長は、本発明者が検討したところ470nmを超える発光極大波長を示し、高色温度の照明用途や色域の広いディスプレイに用いるには波長が長く満足出来るレベルではないことが分かった。また上記文献には発光ドーパントと隣接層に用いる材料のHOMOの関係については一切記載がない。 In response to the above problem, for example, in Patent Document 3, a high-efficiency element and a long lifetime are achieved by using a carbazole derivative with improved hole injection / transport properties in the hole transport layer. However, the light emission maximum wavelength of the light emitting dopant having a phenylpyridine ligand substituted with a fluorine atom and an isopropyl group used in Examples in Patent Document 3 is a light emission maximum wavelength exceeding 470 nm as investigated by the present inventors. The results show that the wavelength is not long and satisfactory for use in high color temperature lighting applications and displays with a wide color gamut. Further, the above document does not describe any relationship between the luminescent dopant and the HOMO of the material used for the adjacent layer.
米国特許6,097,147号明細書US Pat. No. 6,097,147 特開2005-112765号公報JP 2005-112765 A 国際公開第2011/122132号International Publication No. 2011/122132
 このように従来においては、有機EL素子材料に関して様々な化合物が開示されており、低駆動電圧で発光効率が高く長寿命である有機EL素子の開発が試みられている。しかしながら、これらの性能を従来よりも増してさらに向上させた有機EL素子の開発が望まれている。また、高色温度の照明用途や色域の広いディスプレイ用途に適した(すなわち、色度が良好な)有機EL素子の開発が望まれている。 Thus, conventionally, various compounds relating to organic EL element materials have been disclosed, and attempts have been made to develop organic EL elements having low driving voltage, high luminous efficiency and long life. However, it is desired to develop an organic EL device that further improves these performances compared to the conventional one. In addition, it is desired to develop an organic EL element suitable for illumination use at a high color temperature and display application having a wide color gamut (that is, having good chromaticity).
 本発明は、上記課題に鑑みてなされたもので、発光効率が高く、低駆動電圧、長寿命であり、かつ色度が良好な有機エレクトロルミネッセンス素子、該素子を用いた照明装置、および表示装置を提供することを課題とする。 The present invention has been made in view of the above problems, and has high luminous efficiency, low driving voltage, long life, and good chromaticity, an organic electroluminescence element having good chromaticity, and an illumination device and a display device using the element It is an issue to provide.
 本発明に係る上記課題は、以下の手段により解決される。
1.陽極と陰極に挟まれた少なくとも1層の発光層と該発光層の陽極側に隣接した隣接層を含む複数の有機層を有する有機エレクトロルミネッセンス素子において、該発光層の少なくとも1層に、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVのリン光性発光ドーパントを少なくとも1種含有し、該隣接層に、下記一般式(1)で表される非金属錯体化合物であって、HOMO値が-4.50~-5.10eVである化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
The above-mentioned problem according to the present invention is solved by the following means.
1. In an organic electroluminescence device having a plurality of organic layers including at least one light emitting layer sandwiched between an anode and a cathode and an adjacent layer adjacent to the anode side of the light emitting layer, at least one of the light emitting layers is formed in a solution. In the emission spectrum, at least one phosphorescent dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4.50 to −5.50 eV is contained. An organic electroluminescence device comprising a nonmetallic complex compound represented by the formula (1) and having a HOMO value of −4.50 to −5.10 eV.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Rは、置換基を表す。Lは、連結基または単なる結合手を表す。ArおよびArは芳香族炭化水素環または芳香族複素環を表す。) (In General Formula (1), R represents a substituent. L represents a linking group or a simple bond. Ar 1 and Ar 2 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring.)
2.前記一般式(1)において、Lが単結合を表し、ArおよびArが6員の芳香族炭化水素環または6員の芳香族複素環を表すことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic according to 1 above, wherein in the general formula (1), L represents a single bond, and Ar 1 and Ar 2 represent a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocyclic ring. Electroluminescence element.
3.前記一般式(1)において、ArおよびArがインドール環、アザインドール環、カルバゾール環、アザカルバゾール環または縮合芳香族複素環基を置換基として有するベンゼン環であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。 3. In the general formula (1), Ar 1 and Ar 2 are indole ring, azaindole ring, carbazole ring, azacarbazole ring or a benzene ring having a condensed aromatic heterocyclic group as a substituent. Or the organic electroluminescent element of 2.
4.前記一般式(1)で表される化合物が、下記一般式(11)で表される化合物であることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 4). 4. The organic electroluminescence device as described in any one of 1 to 3 above, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(11)において、R111およびR112は水素原子、アルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(11)で表される化合物はさらに置換基を有していてもよい。) (In General Formula (11), R 111 and R 112 represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and the compound represented by General Formula (11) further has a substituent. (You may have it.)
5.前記一般式(1)で表される化合物が、下記一般式(21)または下記一般式(22)で表される化合物であることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 5. 4. The compound according to any one of 1 to 3 above, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (21) or the following general formula (22): Organic electroluminescence device.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(一般式(21)および一般式(22)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。) (In General Formula (21) and General Formula (22), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring. Or, it represents a residue that forms an aromatic heterocyclic ring, and may have a substituent.)
6.前記一般式(1)で表される化合物が、下記一般式(31)で表される化合物であることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 6). 4. The organic electroluminescence device according to any one of 1 to 3, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (31).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(31)において、R311およびR312は水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていても良い。Rxは各々独立に水素原子または置換基を表す。) (In General Formula (31), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group. 1 to A 8 each independently represent C—Rx or N, and the plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
7.前記リン光性発光ドーパントが、下記一般式(41)で表される化合物であることを特徴とする前記1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 7). 7. The organic electroluminescent device according to any one of 1 to 6, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (41).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(一般式(41)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。L'はMに配位したモノアニオン性の二座配位子の内の1つまたは複数であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。) (In the general formula (41), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 1 represents a 6-membered aromatic with C═C. Represents a 5-membered aromatic ring, or a 5- or 6-membered aromatic heterocyclic ring, wherein ring Z 2 represents a 5-membered heterocyclic ring together with X 1 -X 2. L ′ represents a monoanionic divalent ring coordinated to M One or more of the bidentate ligands, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
8.前記一般式(41)で表される化合物において、環Zは、置換または無置換のイミダゾール環を表すことを特徴とする前記7に記載の有機エレクトロルミネッセンス素子。 8). In the compound represented by the general formula (41), the ring Z 2 is an organic electroluminescent device according to the 7, characterized in that a substituted or unsubstituted imidazole ring.
9.前記一般式(41)で表される化合物において、環Zは、置換または無置換のピラゾール環を表すことを特徴とする前記7に記載の有機エレクトロルミネッセンス素子。 9. 8. The organic electroluminescence device as described in 7 above, wherein in the compound represented by the general formula (41), the ring Z 2 represents a substituted or unsubstituted pyrazole ring.
10.前記一般式(41)で表される化合物において、環Zは、置換または無置換のトリアゾール環を表すことを特徴とする前記7に記載の有機エレクトロルミネッセンス素子。 10. In the compound represented by the general formula (41), the ring Z 2 is an organic electroluminescent device according to the 7, characterized in that a substituted or unsubstituted triazole ring.
11.発光色が白色であることを特徴とする前記1~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。 11. 11. The organic electroluminescence device as described in any one of 1 to 10 above, wherein the emission color is white.
12.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 12 12. An illumination device comprising the organic electroluminescence element according to any one of 1 to 11 above.
13.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 13. 12. A display device comprising the organic electroluminescence element according to any one of 1 to 11 above.
 本発明は、発光ドーパントのHOMOと隣接層含有材料のHOMOの関係を本発明のように規定することによって発光層への正孔の注入性を改良し、さらに一般式(1)で表される構造を有する化合物を隣接層に用いた。これにより、高い発光効率と長寿命を実現し、かつ駆動電圧が低く、色度が良好な有機エレクトロルミネッセンス素子、該素子を用いた照明装置、および表示装置を提供することができる。 The present invention improves the hole injectability into the light emitting layer by defining the relationship between the HOMO of the light emitting dopant and the HOMO of the material containing the adjacent layer as in the present invention, and is further represented by the general formula (1). A compound having a structure was used in the adjacent layer. Accordingly, it is possible to provide an organic electroluminescence element that achieves high luminous efficiency and long life, has a low driving voltage, and has good chromaticity, an illumination device using the element, and a display device.
有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 図1における表示部Aの模式図である。It is a schematic diagram of the display part A in FIG. 画素の模式図である。It is a schematic diagram of a pixel. 図2の表示部Aに係るパッシブマトリクス方式フルカラー表示装置の模式図である。FIG. 3 is a schematic diagram of a passive matrix type full-color display device according to a display unit A in FIG. 2. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の模式図である。It is a schematic diagram of an illuminating device. (a)~(e)は有機ELフルカラー表示装置の概略構成図である。(A)-(e) is a schematic block diagram of an organic electroluminescent full color display apparatus.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 《有機EL素子》
 本発明の有機EL素子は、陽極と陰極に挟まれた少なくとも1層の発光層と該発光層の陽極側に隣接した隣接層を含む複数の有機層を有するものである。そして、該発光層の少なくとも1層に、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVのリン光性発光ドーパントを少なくとも1種含有し、該隣接層に、一般式(1)で表される非金属錯体化合物であって、HOMO値が-4.50~-5.10eVである化合物を含有する。
<< Organic EL element >>
The organic EL device of the present invention has a plurality of organic layers including at least one light emitting layer sandwiched between an anode and a cathode and an adjacent layer adjacent to the anode side of the light emitting layer. Then, at least one of the light emitting layers is provided with a phosphorescent light emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4.50 to −5.50 eV in the emission spectrum in the solution. At least one kind is contained, and the adjacent layer contains a nonmetallic complex compound represented by the general formula (1) and having a HOMO value of −4.50 to −5.10 eV.
 本発明においては前述の課題を鑑み、発光ドーパントのHOMOと隣接層に含有される材料のHOMOの関係を本発明のようにすることによって発光層への正孔の注入性を改良し、さらに一般式(1)で表される構造を有する化合物を隣接層に用いることによって、発光層へのキャリアの注入バランスを改善し再結合領域を発光層と隣接層の界面近傍から離した。これによって、高い発光効率と長寿命を両立し、高色温度の照明用途や色域の広いディスプレイ用途に適した有機エレクトロルミネッセンス素子を得ることができた。
 また、一般式(1)で表される化合物が縮環構造を有することで、一般的に正孔輸送層に用いられるα-NPDに代表されるトリアリールアミン誘導体よりも分子同士が配列しやすくなり、結果、層内でのキャリア移動度が向上し、低駆動電圧を達成できた。
In the present invention, in view of the above-mentioned problems, the injection property of holes into the light emitting layer is improved by making the relationship between the HOMO of the light emitting dopant and the HOMO of the material contained in the adjacent layer as in the present invention. By using the compound having the structure represented by the formula (1) in the adjacent layer, the carrier injection balance into the light emitting layer was improved, and the recombination region was separated from the vicinity of the interface between the light emitting layer and the adjacent layer. As a result, it was possible to obtain an organic electroluminescence device suitable for high color temperature illumination applications and display applications with a wide color gamut, which has both high luminous efficiency and long life.
In addition, since the compound represented by the general formula (1) has a condensed ring structure, molecules are more easily arranged than a triarylamine derivative typified by α-NPD generally used in a hole transport layer. As a result, the carrier mobility in the layer was improved and a low driving voltage was achieved.
《有機EL素子の構成層》
 有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 なお、阻止層としては正孔阻止層の他に、電子阻止層を用いることもできる。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
(I) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iii) Anode / hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (iv) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode In addition to the hole blocking layer, an electron blocking layer can be used as the blocking layer.
 複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極および陰極を除く発光層を含む有機層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、さらに中間層は電荷発生層を含んでいてもよい。
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置あるいは表示装置であることが好ましい。すなわち、有機EL素子は白色に発光することが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
When a plurality of light emitting layers are included, a non-light emitting intermediate layer may be provided between the light emitting layers. In addition, among the above layer structures, an organic layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked. The plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
The organic EL element of the present invention is preferably a white light emitting layer, and is preferably an illumination device or a display device using these. That is, the organic EL element preferably emits white light.
Each layer which comprises the organic EL element of this invention is demonstrated.
《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。本発明では、正孔輸送層を複数設けてもよく、例えば、陽極側に近い正孔輸送層を第一正孔輸送層とし、発光層側に隣接する正孔輸送層を、第二正孔輸送層とする。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. In the present invention, a plurality of hole transport layers may be provided. For example, a hole transport layer close to the anode side is a first hole transport layer, and a hole transport layer adjacent to the light emitting layer side is a second hole transport layer. The transport layer.
 本発明では、発光層の隣接層に一般式(1)で表される化合物を含有することを特徴とする。ここで、隣接層とは、発光層の陽極側に隣接した層であり、具体的には正孔輸送層のことである。ただし、前記したように、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれるため、正孔注入層、電子阻止層が陽極側に隣接している場合は、これらの層に一般式(1)で表される化合物を有していてもよい。なお、前記したように、正孔輸送層を複数設けた場合には、複数の正孔輸送層のうち、発光層の陽極側に隣接した層に一般式(1)で表される化合物を有する。例えば、陽極側に近い正孔輸送層を第一正孔輸送層とし、発光層側に隣接する正孔輸送層を第二正孔輸送層とした場合には、第二正孔輸送層に一般式(1)で表される化合物を有する。 In the present invention, the compound represented by the general formula (1) is contained in a layer adjacent to the light emitting layer. Here, the adjacent layer is a layer adjacent to the anode side of the light emitting layer, specifically, a hole transport layer. However, as described above, since the hole injection layer and the electron blocking layer are also included in the hole transport layer in a broad sense, when the hole injection layer and the electron blocking layer are adjacent to the anode side, these layers are included. May have a compound represented by the general formula (1). As described above, when a plurality of hole transport layers are provided, the layer represented by the general formula (1) is included in the layer adjacent to the anode side of the light emitting layer among the plurality of hole transport layers. . For example, when the hole transport layer close to the anode side is the first hole transport layer and the hole transport layer adjacent to the light emitting layer side is the second hole transport layer, It has a compound represented by Formula (1).
<一般式(1)で表される化合物>
 次に、一般式(1)で表される化合物について説明する。
 一般式(1)で表される化合物は、非金属錯体化合物であって、HOMO値が-4.50~-5.10eVである。
<Compound represented by the general formula (1)>
Next, the compound represented by the general formula (1) will be described.
The compound represented by the general formula (1) is a nonmetallic complex compound and has a HOMO value of −4.50 to −5.10 eV.
 本発明でいうHOMOの値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03(Gaussian03、Revision D02,M.J.Frisch,et al, Gaussian, Inc., Wallingford CT, 2004. )を用いて求めた値である。 As the value of HOMO in the present invention, Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, 2004.), which is a molecular orbital calculation software manufactured by Gaussian, USA. This is the value obtained.
 本発明の一般式(1)で表される化合物、ホスト化合物、正孔輸送材料、電子輸送材料はキーワードとしてB3LYP/6-31G*を用い、リン光発光性ドーパント化合物はB3LYP/LanL2DZを用いて、対象とする分子構造の構造最適化を行うことによりHOMO値を算出する(eV単位換算値)。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いことが知られている。 The compound represented by the general formula (1) of the present invention, the host compound, the hole transport material, and the electron transport material use B3LYP / 6-31G * as a keyword, and the phosphorescent dopant compound uses B3LYP / LanL2DZ. The HOMO value is calculated by optimizing the structure of the target molecular structure (eV unit conversion value). It is known that the correlation between the calculated value obtained by this method and the experimental value is high as a background to the effectiveness of this calculated value.
 本発明の一般式(1)で表される化合物のHOMO値は、-4.50~-5.10eVである。
 HOMOの値を上記範囲としたのは、HOMOの値が-5.10eVよりも深いと、発光層への正孔注入が著しく減少するため、効率・寿命が劣化する結果となる。一方、-4.50eVよりも浅いと、発光層のドーパントのホールトラップ性が強いために発光層/正孔輸送層界面にホールが溜まり易く、同じく効率・寿命が低下する結果となるためである。HOMO値は、好ましくは-4.70~-5.10eVである。
The HOMO value of the compound represented by the general formula (1) of the present invention is −4.50 to −5.10 eV.
The reason for setting the HOMO value in the above range is that when the HOMO value is deeper than −5.10 eV, hole injection into the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. On the other hand, if it is shallower than −4.50 eV, the hole trapping property of the dopant in the light emitting layer is strong, so that holes are likely to accumulate at the light emitting layer / hole transporting layer interface, resulting in a decrease in efficiency and life. . The HOMO value is preferably −4.70 to −5.10 eV.
<一般式(1)> <General formula (1)>
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)において、Rは、置換基を表す。
 置換基としては、例えば、水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、(t)ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、プロパルギル基等)、芳香族炭化水素環基(アリール基ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等)、芳香族複素環基(ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、インドロインドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基またはアリールスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基)、アニリノ基、ジアリールアミノ基(例えば、ジフェニルアミノ基、ジナフチルアミノ基、フェニルナフチルアミノ基等)、ナフチルアミノ基、2-ピリジルアミノ基等)、ニトロ基、シアノ基、ヒドロキシル基、メルカプト基、アルキルシリル基またはアリールシリル基(例えば、トリメチルシリル基、トリエチルシリル基、(t)ブチルジメチルシリル基、トリイソプロピルシリル基、(t)ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基、2-ピリジルシリル基等)、アルキルホスフィノ基またはアリールホスフィノ基(ジメチルホスフィノ基、ジエチルホスフィノ基、ジシクロヘキシルホスフィノ基、メチルフェニルホスフィノ基、ジフェニルホスフィノ基、ジナフチルホスフィノ基、ジ(2-ピリジル)ホスホスフィノ基)、アルキルホスホリル基またはアリールホスホリル基(ジメチルホスホリル基、ジエチルホスホリル基、ジシクロヘキシルホスホリル基、メチルフェニルホスホリル基、ジフェニルホスホリル基、ジナフチルホスホリル基、ジ(2-ピリジル)ホスホリル基)、アルキルチオホスホリル基またはアリールチオホスホリル基(ジメチルチオホスホリル基、ジエチルチオホスホリル基、ジシクロヘキシルチオホスホリル基、メチルフェニルチオホスホリル基、ジフェニルチオホスホリル基、ジナフチルチオホスホリル基、ジ(2-ピリジル)チオホスホリル基)から選ばれる何れかの基を表す。なお、これらの置換基はさらに上記の置換基によって置換されていてもよいし、また、それらが互いに縮合してさらに環を形成してもよい。
 さらに、好ましくはアルキル基、芳香族炭化水素環基、芳香族複素環基、複素環基、シクロアルキル基である。
In general formula (1), R represents a substituent.
Examples of the substituent include a hydrogen atom, an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, (t) butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group. , Pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, propargyl group, etc.), aromatic hydrocarbon ring group ( Also referred to as aryl group, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group Etc.), heterocyclic groups (eg, epoxy ring, aziridine ring) Thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring Piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, Thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2,2] -octane ring), aromatic heterocyclic group (pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimilyl group) Zolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzooxazolyl group , Thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, indoloindolyl group, carbazolyl group, carbolinyl group, diaza A carbazolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a quinoxalinyl group, a pyridazinyl group, a triazinyl group, a quinazolinyl group, a phthalazinyl group, etc.), a halogen atom (for example, , Chlorine atom, bromine atom, iodine atom Fluorine atom, etc.), alkoxyl group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxyl group (eg, cyclopentyloxy group, cyclohexyloxy) Group), aryloxy group (for example, phenoxy group, naphthyloxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (Eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyl) Oxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethyl) Aminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), ureido group ( For example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylurea Group, naphthylureido group, 2-pyridylaminoureido group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecyl) Carbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group) Etc.), amide groups (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, Chlohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethyl group) Aminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl Group), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexyls) Rufinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group or arylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group) Cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group) , Cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group), anilino group, diarylamino group (for example, diphenylamino group, dinaphthylamino group, phenylnaphthyl group) Ruamino group, etc.), naphthylamino group, 2-pyridylamino group, etc.), nitro group, cyano group, hydroxyl group, mercapto group, alkylsilyl group or arylsilyl group (for example, trimethylsilyl group, triethylsilyl group, (t) butyldimethyl) Silyl group, triisopropylsilyl group, (t) butyldiphenylsilyl group, triphenylsilyl group, trinaphthylsilyl group, 2-pyridylsilyl group, etc., alkylphosphino group or arylphosphino group (dimethylphosphino group, diethyl) Phosphino group, dicyclohexylphosphino group, methylphenylphosphino group, diphenylphosphino group, dinaphthylphosphino group, di (2-pyridyl) phosphosphino group), alkylphosphoryl group or arylphosphoryl group (dimethylphosphoryl group, diphenylphosphino group) Tyl phosphoryl group, dicyclohexyl phosphoryl group, methylphenyl phosphoryl group, diphenyl phosphoryl group, dinaphthyl phosphoryl group, di (2-pyridyl) phosphoryl group), alkylthiophosphoryl group or arylthiophosphoryl group (dimethylthiophosphoryl group, diethylthiophosphoryl group) And a dicyclohexylthiophosphoryl group, a methylphenylthiophosphoryl group, a diphenylthiophosphoryl group, a dinaphthylthiophosphoryl group, and a di (2-pyridyl) thiophosphoryl group). These substituents may be further substituted with the above-mentioned substituents, or they may be condensed with each other to further form a ring.
Furthermore, an alkyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a heterocyclic group, and a cycloalkyl group are preferable.
 Lは連結基または単なる結合手を表し、連結基としては、酸素原子、窒素原子、硫黄原子、アミド基、エステル基、カルボニル基、スルホニル基、アルキレン基(例えば、メチレン基、エチレン基等)、アリーレン基(例えば、フェニレン基等)またはヘテロアリーレン基、またはこれらを組み合わせた基等が挙げられる。これらの連結基のうち、酸素原子、アルキレン基、アリーレン基が好ましい。単なる結合手とは、連結する置換基同士を直接結合する結合手である。 L represents a linking group or a simple bond, and examples of the linking group include an oxygen atom, a nitrogen atom, a sulfur atom, an amide group, an ester group, a carbonyl group, a sulfonyl group, an alkylene group (for example, a methylene group, an ethylene group, etc.) Examples include an arylene group (for example, a phenylene group), a heteroarylene group, or a group obtained by combining these. Of these linking groups, an oxygen atom, an alkylene group, and an arylene group are preferable. A mere bond is a bond that directly bonds the connecting substituents together.
 ArおよびArは芳香族炭化水素環または芳香族複素環を表す。
 芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環、アンスラアントレン環等が挙げられる。
Ar 1 and Ar 2 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
Examples of the aromatic hydrocarbon ring include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, Examples thereof include a p-terphenyl ring, an acenaphthene ring, a coronene ring, a fluorene ring, a fluoranthrene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyranthrene ring, and an anthraanthrene ring.
 芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノリン環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される1価の基が挙げられる。
 ArおよびArで表される芳香族炭化水素環、芳香族複素環は、前記Rで挙げた置換基で置換されていてもよい。
As the aromatic heterocycle, for example, silole ring, furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, Pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoline ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (carbon constituting carbazole ring) Any one or more of the carbon atoms constituting the dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring is a nitrogen atom. Replace Ring, benzodifuran ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrine ring, triphenodithiazine ring, triphenodioxazine Ring, phenanthrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxy And monovalent groups derived from a satiin ring, a dibenzocarbazole ring, an indolocarbazole ring, a dithienobenzene ring, and the like.
The aromatic hydrocarbon ring and aromatic heterocyclic ring represented by Ar 1 and Ar 2 may be substituted with the substituents mentioned for R.
 好ましくは、Arは芳香族炭化水素環または芳香族複素環を表わし、Arは置換基を有する非縮合の芳香族炭化水素環、置換基を有する非縮合の芳香族複素環、または縮合芳香族炭化水素環または縮合芳香族複素環を表すものである。
 さらに、Lが単結合を表し、ArおよびArが6員の芳香族炭化水素環または6員の芳香族複素環を表すことが好ましい。
 また、ArおよびArがインドール環、アザインドール環、カルバゾール環、アザカルバゾール環または縮合芳香族複素環基を置換基として有するベンゼン環であることが、さらに好ましい。
Preferably, Ar 1 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and Ar 2 represents a non-condensed aromatic hydrocarbon ring having a substituent, a non-fused aromatic heterocyclic ring having a substituent, or a condensed aromatic Represents an aromatic hydrocarbon ring or a condensed aromatic heterocyclic ring.
Furthermore, it is preferable that L represents a single bond, and Ar 1 and Ar 2 each represent a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle.
More preferably, Ar 1 and Ar 2 are an indole ring, an azaindole ring, a carbazole ring, an azacarbazole ring or a benzene ring having a condensed aromatic heterocyclic group as a substituent.
 一般式(1)で表される化合物として、下記一般式(11)、下記一般式(21)、(22)、下記一般式(31)で表される化合物が好ましい。 As the compound represented by the general formula (1), compounds represented by the following general formula (11), the following general formulas (21) and (22), and the following general formula (31) are preferable.
<一般式(11)> <General formula (11)>
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(11)において、R111およびR112は水素原子、アルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(11)で表される化合物はさらに置換基を有していてもよい。 In the general formula (11), R 111 and R 112 represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and the compound represented by the general formula (11) further has a substituent. You may do it.
 一般式(11)においてR111、R112で表されるアルキル基、芳香族炭化水素環基あるいは芳香族複素環基としては、一般式(1)のR、Ar、Arで説明したものと同義である。
 また、一般式(11)で表される化合物が有してもよい置換基としては、好ましくは、一般式(1)のRで示した置換基が挙げられる。
As the alkyl group, aromatic hydrocarbon ring group or aromatic heterocyclic group represented by R 111 or R 112 in the general formula (11), those described for R, Ar 1 and Ar 2 in the general formula (1) It is synonymous with.
Moreover, as a substituent which the compound represented by General formula (11) may have, Preferably, the substituent shown by R of General formula (1) is mentioned.
 一般式(11)においては、R111、R112が、フェニル基、ジベンゾフラン、ジベンゾチオフェンまたはカルバゾールであることがより好ましい。 In the general formula (11), R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene or carbazole.
 一般式(11)で表される化合物として、下記一般式(12)~(14)で表される化合物が好ましい。 As the compound represented by the general formula (11), compounds represented by the following general formulas (12) to (14) are preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(12)~(14)のR111、R112は、一般式(11)のR111、R112と同義である。
 一般式(12)~(14)において、R111、R112が、フェニル基、ジベンゾフラン、ジベンゾチオフェン、またはカルバゾールであることがより好ましい。
R 111, R 112 in formula (12) to (14) has the same meaning as R 111, R 112 in formula (11).
In the general formulas (12) to (14), R 111 and R 112 are more preferably a phenyl group, dibenzofuran, dibenzothiophene, or carbazole.
 以下に、一般式(11)~(14)で表される化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。 Specific examples of the compounds represented by the general formulas (11) to (14) are given below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<一般式(21)、(22)> <General formula (21), (22)>
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(21)および一般式(22)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。 In General Formula (21) and General Formula (22), R 211 and R 212 each represents an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent a residue that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may have a substituent.
 一般式(21)、(22)におけるアルキル基、芳香族炭化水素環基あるいは芳香族複素環基としては、一般式(1)のR、Ar、Arで説明したものと同義である。
 環Z~Zの置換基としては、それぞれ独立に、水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~12の芳香族炭化水素環基または、炭素数3~11の芳香族複素環基を示す。環Zの置換基は、置換基が結合する環とともに、縮合環を形成してもよい。好ましくは、環Z~Zが芳香族炭化水素環で、より好ましくはベンゼン環である。さらに好ましくは、環Z~Zが、すべてベンゼン環である。
 R211およびR212は、好ましくは芳香族炭化水素環基または芳香族複素環基で、より好ましくは、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、キノリン環である。
The alkyl group, aromatic hydrocarbon ring group or aromatic heterocyclic group in general formulas (21) and (22) has the same meaning as described for R, Ar 1 and Ar 2 in general formula (1).
The substituents for the rings Z 1 to Z 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms, or Represents an aromatic heterocyclic group having 3 to 11 carbon atoms. The substituent of the ring Z 2 may form a condensed ring together with the ring to which the substituent is bonded. Preferably, rings Z 1 to Z 3 are aromatic hydrocarbon rings, more preferably benzene rings. More preferably, the rings Z 1 to Z 3 are all benzene rings.
R 211 and R 212 are preferably an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and more preferably a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, or a quinoline ring.
 下記に、一般式(21)または一般式(22)で表される化合物の好ましい具体例を示すが、これらに限定されるものではない。 Preferred examples of the compound represented by the general formula (21) or the general formula (22) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<一般式(31)> <General formula (31)>
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(31)において、R311およびR312は、水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。
 R311およびR312は、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることが好ましく、芳香族炭化水素環基または芳香族複素環基のいずれかであることがより好ましい。中でも酸素原子または硫黄原子を含む置換基であることが好ましい。
 R311およびR312における、芳香族炭化水素環基または芳香族複素環基としては、前記した一般式(1)のR、Ar、Arで説明したものと同義である。特にジベンゾフリル基、ジベンゾチエニル基等が最も好ましい置換基として挙げられる。
In General Formula (31), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group.
R 311 and R 312 are preferably any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and any of an aromatic hydrocarbon ring group or an aromatic heterocyclic group More preferably. Among these, a substituent containing an oxygen atom or a sulfur atom is preferable.
The aromatic hydrocarbon ring group or aromatic heterocyclic group in R 311 and R 312 has the same meaning as described for R, Ar 1 and Ar 2 in the general formula (1). In particular, a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
 A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていても良い。Rxは各々独立に水素原子または置換基を表す。
 置換基としては、一般式(1)のRで挙げた置換基と同義である。
A 1 to A 8 each independently represent C—Rx or N, and the plurality of Rx may be the same or different. Rx each independently represents a hydrogen atom or a substituent.
As a substituent, it is synonymous with the substituent quoted by R of General formula (1).
 各々独立した複数のRxのうち、1つ以上が置換基であることが好ましく、さらに1つまたは2つが置換基であることがより好ましい。
 複数のRxのうち1つ以上のRxが各々独立に置換基を表す場合、A、A、Aのいずれか1つ以上がC-Rxであることが好ましく、さらにはAまたはAのいずれか1つ以上がC-Rxであることが好ましく、特にAがC-Rxであることがより好ましい形態として挙げられる。
Of the plurality of independent Rx's, one or more are preferably substituents, and more preferably one or two are substituents.
When one or more Rxs out of a plurality of Rx each independently represent a substituent, any one or more of A 1 , A 2 , A 4 is preferably C—Rx, and more preferably A 1 or A preferably any one or more of 2 is C-Rx, in particular a 1 may be mentioned as more preferred form to be a C-Rx.
 各々独立した複数のRxのうち1つ以上のRxが各々独立に置換基を表す場合、Rxはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基のいずれかであることが好ましく、さらにはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることが好ましく、中でも芳香族炭化水素環基または芳香族複素環基のいずれかであることがより好ましく、芳香族複素環基であることが特に好ましい。中でも酸素原子または硫黄原子を含む置換基である場合には、高い電荷輸送能を有し電荷に対する耐久性が高いため好ましく、芳香族複素環基である場合には熱的安定性も高いため好ましい。特にジベンゾフリル基、ジベンゾチエニル基等が最も好ましい置換基として挙げられる。 In the case where one or more Rx's in the plurality of independent Rx's each independently represent a substituent, Rx is an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a diarylamino group. It is preferably any one, and further preferably any one of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic group. It is more preferably any of a cyclic group, and particularly preferably an aromatic heterocyclic group. Among them, a substituent containing an oxygen atom or a sulfur atom is preferable because it has a high charge transporting ability and high durability against charges, and an aromatic heterocyclic group is preferable because of high thermal stability. . In particular, a dibenzofuryl group, a dibenzothienyl group, etc. are mentioned as the most preferable substituents.
 また、Rxで表される置換基はさらに置換されていることが好ましく、置換基としてはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基のいずれかであることが好ましく、さらにはアリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基のいずれかであることがより好ましく、中でも芳香族炭化水素環基または芳香族複素環基のいずれかであることが特に好ましい。 The substituent represented by Rx is preferably further substituted, and the substituent is any of an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, and a diarylamino group. And more preferably an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and among them, an aromatic hydrocarbon ring group or an aromatic heterocyclic ring Particularly preferred is any of the groups.
 本発明において、一般式(31)における複数のRx、R311およびR312のうち何れか1つ以上は、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、インドロインドリル基、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基、アリールシリル基、アリールホスホリル基から選ばれる何れかの基であることが好ましい。 In the present invention, any one or more of the plurality of Rx, R 311 and R 312 in the general formula (31) is a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group. Group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, It is preferably any group selected from an indoloindolyl group, a quinoxalinyl group, a pyridazinyl group, a triazinyl group, a quinazolinyl group, a phthalazinyl group, an arylsilyl group, and an arylphosphoryl group.
 下記に、一般式(31)で表される化合物の好ましい具体例を示すが、これらに限定されるものではない。 The preferred specific examples of the compound represented by the general formula (31) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 本発明の一般式(1)で表わされる化合物以外に、本発明の効果を損なわない範囲で、公知の正孔輸送材料を複数種併用してもよい。
 正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
In addition to the compound represented by the general formula (1) of the present invention, a plurality of known hole transport materials may be used in combination as long as the effects of the present invention are not impaired.
Examples of hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives. Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物およびスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadri N; N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and further described in US Pat. No. 5,061,569 Having four condensed aromatic rings in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8688 are linked in a starburst type ( MTDATA) and the like.
 さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、銅フタロシアニンやトリス(2-フェニルピリジン)イリジウム錯体等に代表されるシクロメタル化錯体やオルトメタル化錯体等も正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. In addition, cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。
Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm.
<電子輸送層>
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設けることができる。電子輸送層に用いられる電子輸送材料(正孔阻止材料、電子注入材料も含む)としては陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択して、単独または組み合わせて用いることが可能である。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers. An electron transport material (including a hole blocking material and an electron injection material) used for the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. Can be selected from any conventionally known compounds and used alone or in combination.
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、を含むアザカルバゾール誘導体等が挙げられる。
 ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す。
 さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
 これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
Examples of conventionally known materials used for the electron transport layer (hereinafter referred to as electron transport materials) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, And azacarbazole derivatives including carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, carboline derivatives, and the like.
Here, the azacarbazole derivative refers to one in which one or more carbon atoms constituting the carbazole ring are replaced with a nitrogen atom.
Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
 また、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
In addition, metal-free or metal phthalocyanine, or those having the terminal substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
Further, similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
 電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により、薄膜化することにより形成することが好ましい。 The electron transport layer is made of an electron transport material such as a vacuum deposition method, a wet method (also referred to as a wet process, such as a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, or a spraying method. The film is preferably formed by thinning by a coating method, curtain coating method, LB method (Langmuir Brodgett method, etc.).
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5000nm程度、好ましくは5nm~200nmである。この電子輸送層は上記材料の一種または二種以上からなる一層構造であってもよい。
 また、金属錯体やハロゲン化金属等、金属化合物等のn型ドーパントをドープして用いてもよい。
The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5000 nm, preferably 5 nm to 200 nm. This electron transport layer may have a single layer structure composed of one or more of the above materials.
Moreover, you may dope and use n-type dopants, such as metal compounds, such as a metal complex and a metal halide.
 電子輸送層の形成に好ましく用いられる従来公知の化合物(電子輸送材料)としては、例えば、特開2012-164731号公報に記載のET-1-ET-43の化合物が挙げられるが、これらに限定されない。 Examples of conventionally known compounds (electron transport materials) that are preferably used for forming an electron transport layer include, for example, compounds of ET-1-ET-43 described in JP2012-164731A, but are not limited thereto. Not.
<発光層>
 発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子および正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、さらに好ましくは2nm~200nmの範囲に調整され、特に好ましくは、5nm~100nmの範囲である。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. It may be an interface with an adjacent layer.
The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 5 nm to 100 nm.
 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により製膜して形成することができる。 For the production of the light emitting layer, a light emitting dopant or host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, The film can be formed by an inkjet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like.
 本発明の有機EL素子の発光層には、発光性ドーパント(リン光性発光ドーパント(リン光ドーパント、リン光発光性ドーパント、リン光発光性ドーパント基ともいう)や蛍光ドーパント等)化合物と、ホスト化合物とを含有する。 In the light-emitting layer of the organic EL device of the present invention, a light-emitting dopant (phosphorescent light-emitting dopant (also referred to as phosphorescent dopant, phosphorescent light-emitting dopant, phosphorescent light-emitting dopant group) or fluorescent dopant) compound and host Compound.
 (発光性ドーパント化合物)
 発光性ドーパント化合物(発光ドーパント、発光ドーパント化合物ともいう)について説明する。
 発光性ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光性ドーパント化合物、リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。
(Luminescent dopant compound)
A light-emitting dopant compound (also referred to as a light-emitting dopant or a light-emitting dopant compound) will be described.
As the light-emitting dopant, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent dopant compound, a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like) is used. it can.
 (リン光性発光ドーパント)
 リン光性発光ドーパントについて説明する。
 リン光性発光ドーパント化合物は、励起三重項からの発光が観測される化合物である。具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、リン光性発光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
(Phosphorescent dopant)
The phosphorescent light emitting dopant will be described.
A phosphorescent light-emitting dopant compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. 1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emission dopant should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent. .
 リン光性発光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光性発光ドーパントからの発光を得るというエネルギー移動型、もう1つはリン光ドーパントがキャリアトラップとなり、リン光性発光ドーパント上でキャリアの再結合が起こり、リン光性発光ドーパント化合物からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光性発光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent light emitting dopant in principle. One is that the recombination of carriers occurs on the host compound to which carriers are transported, and an excited state of the light emitting host compound is generated. The energy transfer type, in which light emission from the phosphorescent light-emitting dopant is obtained by transferring to the light dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent light-emitting dopant, and phosphorescence In any case, the excited state energy of the phosphorescent light emitting dopant is lower than the excited state energy of the host compound. .
 ここで、本発明者らは、上記本発明の目的を達成するために鋭意研究を重ねた結果、有機EL素子の発光層の少なくとも1層に、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つ、HOMO値が-4.50~-5.50eVのリン光性発光ドーパントを少なくとも1種含有させることで、有機EL素子の発光効率、寿命および駆動電圧の向上、素子の色域を向上させられることを明らかにした。
 よって、本発明に用いるリン光性発光ドーパントは、少なくとも1種が、400~700nmの領域の溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つ、HOMO値が-4.50~-5.50eVの化合物である。
Here, as a result of intensive studies to achieve the object of the present invention, the present inventors have found that at least one of the light emitting layers of the organic EL element is on the shortest wavelength side in the emission spectrum in the solution. Inclusion of at least one phosphorescent light-emitting dopant having an emission maximum wavelength of 470 nm or less and a HOMO value of −4.50 to −5.50 eV improves the light emission efficiency, lifetime, and driving voltage of the organic EL device, It was clarified that the color gamut of the element can be improved.
Therefore, at least one of the phosphorescent dopants used in the present invention has an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4 in the emission spectrum of the solution in the region of 400 to 700 nm. A compound of .50 to −5.50 eV.
 本発明に用いるリン光性発光ドーパントは、溶液中の発光スペクトルにおいて、複数の発光ピークがある場合、最も短波側にある発光の発光極大波長(ピーク波長)を470nm以下とする。
 発光極大波長が470nmを超えると、高色温度の照明用途や色域の広いディスプレイに用いるのに不向きとなる。したがって、リン光性発光ドーパントの発光極大波長は、470nm以下とする。
 溶液中の発光スペクトルは、例えば、無極性溶媒にドーパントを溶解した溶液に励起光を照射することにより得られる蛍光スペクトルから求めることができる。本発明では、2-メチルテトラヒドロフランにドーパントを溶解し、日立製F-4500を用いて、400~700nmの領域の蛍光スペクトル測定を行った。
When there are a plurality of emission peaks in the emission spectrum in the solution, the phosphorescent emission dopant used in the present invention has an emission maximum wavelength (peak wavelength) of emission at the shortest wavelength side of 470 nm or less.
When the emission maximum wavelength exceeds 470 nm, it is unsuitable for use in high color temperature illumination applications or displays with a wide color gamut. Therefore, the emission maximum wavelength of the phosphorescent light emitting dopant is 470 nm or less.
The emission spectrum in the solution can be obtained from, for example, a fluorescence spectrum obtained by irradiating a solution obtained by dissolving a dopant in a nonpolar solvent with excitation light. In the present invention, a dopant was dissolved in 2-methyltetrahydrofuran, and a fluorescence spectrum in the region of 400 to 700 nm was measured using Hitachi F-4500.
 本発明に用いるリン光性発光ドーパントのHOMO値は、-4.50~-5.50eVである。リン光性発光ドーパントでのHOMOの値は、正孔輸送層で説明した計算方法で求めることができる。
 HOMOの値を上記範囲としたのは、HOMO値が-5.50eVよりも深いと、正孔輸送層から、発光層への正孔注入性が著しく減少するため、効率・寿命が劣化する結果となる。一方、HOMO値が-4.50eVよりも浅いと、発光極大波長を470nm以下の青色のリン光性発光ドーパントにするには、ドーパントのLUMOが浅くなったり、化合物が不安定になるためである。
The HOMO value of the phosphorescent light-emitting dopant used in the present invention is −4.50 to −5.50 eV. The value of HOMO in the phosphorescent light emitting dopant can be obtained by the calculation method described in the hole transport layer.
The reason why the HOMO value is in the above range is that when the HOMO value is deeper than −5.50 eV, the hole injection property from the hole transport layer to the light emitting layer is remarkably reduced, resulting in deterioration of efficiency and lifetime. It becomes. On the other hand, if the HOMO value is shallower than −4.50 eV, the LUMO of the dopant becomes shallow or the compound becomes unstable in order to make a blue phosphorescent light-emitting dopant whose emission maximum wavelength is 470 nm or less. .
 本発明において、好ましいリン光性発光ドーパントは、下記の一般式(41)で表される化合物である。 In the present invention, a preferred phosphorescent light-emitting dopant is a compound represented by the following general formula (41).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 一般式(41)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。 In the general formula (41), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and the ring Z 1 is a 6-membered aromatic together with C═C. hydrocarbon ring or an aromatic 5- or 6-membered heterocyclic ring, the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2.
 環Zの6員の芳香族炭化水素環としては、例えばベンゼン環が挙げられる。5員または6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられる。環Z、環Zは置換基を有してもよく、一般式(1)のRで挙げたものを用いることが出来る。
 L'はMに配位したモノアニオン性の二座配位子の内の1つまたは複数であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。
Examples of the 6-membered aromatic hydrocarbon ring of the ring Z 1 include a benzene ring. Examples of the 5-membered or 6-membered aromatic heterocycle include furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, An imidazole ring, a pyrazole ring, a thiazole ring, etc. are mentioned. Ring Z 1 and ring Z 2 may have a substituent, and those exemplified for R in formula (1) can be used.
L ′ is one or more of monoanionic bidentate ligands coordinated to M, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, m ′ + N ′ is 2 or 3.
 ここで、環Zは、置換または無置換のベンゼン環またはピリジン環、環Zは、置換または無置換のイミダゾール環、置換または無置換のピラゾール環、あるいは、置換または無置換のトリアゾール環を表すものであることが好ましい。 Here, ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring, ring Z 2 is a substituted or unsubstituted imidazole ring, substituted or unsubstituted pyrazole ring, or substituted or unsubstituted triazole ring. It is preferable that it represents.
 一般式(41)で表される化合物として好ましいものは、下記一般式(42)、(43)、(44)で表される化合物である。 Preferred as the compound represented by the general formula (41) are the compounds represented by the following general formulas (42), (43) and (44).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 一般式(42)において、M、L’、m’、n'は、一般式(41)と同義である。Rは電子吸引基を表わし、Rは電子供与基またはFを表す。XおよびXは炭素原子または窒素原子を表し、環ZはX-Xと共に5員の複素環を表す。電子吸引基としては、ハロゲン原子、シアノ基、ニトロ基、フェニル基、アシル基等のケト基が挙げられ、電子供与基としては、アルキル基、水酸基、アルコキシ基、アミノ基等が挙げられる。 In the general formula (42), M, L ′, m ′, and n ′ are synonymous with the general formula (41). R 1 represents an electron-withdrawing group, and R 2 represents an electron-donating group or F. X 1 and X 2 represents a carbon atom or a nitrogen atom, the ring Z 2 represents a heterocyclic 5-membered together with X 1 -X 2. Examples of the electron withdrawing group include a keto group such as a halogen atom, a cyano group, a nitro group, a phenyl group, and an acyl group, and examples of the electron donating group include an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 一般式(43)において、M、L’、m’、n'は、一般式(41)と同義である。R、R、Rは、水素原子、置換基を表わし、RとRは環を形成してもよい。環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表す。
 R3、R4、R5の置換基としては、一般式(1)のRで示した置換基と同義の基を表す。
In the general formula (43), M, L ′, m ′, and n ′ are synonymous with the general formula (41). R 3 , R 4 and R 5 each represent a hydrogen atom or a substituent, and R 4 and R 5 may form a ring. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring together with C═C, or a 5-membered or 6-membered aromatic heterocycle.
The substituents for R3, R4, and R5 represent the same groups as the substituents represented by R in the general formula (1).
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 一般式(44)において、M、L’、m’、n'は、一般式(41)と同義である。X~Xは、-CRまたは窒素原子を表し、XとXが-CRの場合、環を形成してもよい。環Zは、6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。Rは炭素原子または窒素原子を表す。 In the general formula (44), M, L ′, m ′, and n ′ have the same meaning as in the general formula (41). X 1 to X 4 each represent —CR 6 or a nitrogen atom. When X 3 and X 4 are —CR 6 , they may form a ring. Ring Z 3 represents a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle, and ring Z 4 represents a 5-membered heterocycle together with X 1 -X 2 . R 6 represents a carbon atom or a nitrogen atom.
 以下、一般式(41)~(44)の具体例を挙げるが、本発明はこれらに限定されない。 Specific examples of the general formulas (41) to (44) are given below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 本発明に関わるリン光性発光ドーパント以外に、以下の特許公報に記載されている化合物等を併用してもよい。
 例えば、国際公開第00/70655号、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等である。
In addition to the phosphorescent light-emitting dopant related to the present invention, compounds described in the following patent publications may be used in combination.
For example, International Publication No. 00/70655, JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International publication No. 02/15645, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No. 117978, Japanese Patent Laid-Open No. 2002-33858 Publication No. 2002-170684 Publication No. 2002-352960 Publication No. WO 01/93642 Publication No. 2002-50483 Publication No. 2002-1000047 Publication No. 2002-173684 Publication JP-A-2002-359082, JP-A-2002-17584, JP-A-2002-363552, JP-A-2002-184582, JP-A-2003-7469, JP-A-2002-525808, JP 2003-7471, JP-A 2002-525833, JP-A 2003-31366, JP-A 2002-226495, JP-A 2002-234894, JP-A 2002-23576, JP-A 2002 -241751 and JP-A-2001-319779 Japanese Patent Laid-Open No. 2001-319780, Japanese Patent Laid-Open No. 2002-62824, Japanese Patent Laid-Open No. 2002-1000047, Japanese Patent Laid-Open No. 2002-203679, Japanese Patent Laid-Open No. 2002-343572, Japanese Patent Laid-Open No. 2002-203678, etc. It is.
(蛍光ドーパント(蛍光性化合物ともいう))
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
 また発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
(Fluorescent dopant (also called fluorescent compound))
Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like, and compounds having a high fluorescence quantum yield such as laser dyes.
The light emitting dopant may be used in combination of a plurality of types of compounds, or may be a combination of phosphorescent dopants having different structures or a combination of a phosphorescent dopant and a fluorescent dopant.
<発光ホスト化合物(発光ホスト、ホスト化合物ともいう>
 公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 なお、本発明の有機EL素子の発光層の発光ホストとして用いられる具体例としては、例えば、特開2012-164731号公報に記載のOC-1~OC32の化合物が挙げられるが、これらに限定されない。
<Light emitting host compound (also referred to as light emitting host or host compound)>
Specific examples of the known light-emitting host include compounds described in the following documents.
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
Specific examples of the light emitting host used in the light emitting layer of the organic EL device of the present invention include, but are not limited to, compounds OC-1 to OC32 described in JP2012-164731A. .
<注入層:正孔注入層(陽極バッファー層)、電子注入層(陰極バッファー層)>
 注入層とは、必要に応じて、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<Injection layer: hole injection layer (anode buffer layer), electron injection layer (cathode buffer layer)>
The injection layer is a layer provided between the electrode and the organic layer for reducing the driving voltage and improving the light emission luminance as required. “The organic EL element and its industrialization front line (November 30, 1998 Chapter 2 “Electrode Materials” (pages 123 to 166) of Volume 2 of “TS Co., Ltd.”) is described in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer). )
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Representative phthalocyanine buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) ) Orthometalated complex layers represented by iridium complexes and the like.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化ナトリウムやフッ化カリウム等に代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 また、陽極バッファー層および陰極バッファー層に用いられる材料は、他の材料と併用して用いることも可能であり、例えば正孔輸送層や電子輸送層中に混合して用いることも可能である。
The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide And an oxide buffer layer. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
In addition, the materials used for the anode buffer layer and the cathode buffer layer can be used in combination with other materials. For example, they can be mixed in the hole transport layer or the electron transport layer.
<阻止層:正孔阻止層、電子阻止層>
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、および「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述の電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (issued by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer concerning this invention as needed.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、カルバゾール誘導体、アザカルバゾール誘導体(ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す)、ピリジン誘導体等、含窒素化合物を含有することが好ましい。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層(最短波層)が、全発光層中、最も陽極に近いことが好ましい。そしてこのような場合、該最短波層とこの最短波層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
 本発明に用いることができる正孔阻止層、電子阻止層の膜厚としては、好ましくは3nm~100nmであり、さらに好ましくは3nm~30nmである。
The hole blocking layer contains carbazole derivatives, azacarbazole derivatives (where azacarbazole derivatives are those in which one or more carbon atoms constituting the carbazole ring are replaced by nitrogen atoms), pyridine derivatives, and the like. It is preferable to contain a nitrogen compound.
Further, in the present invention, when a plurality of light emitting layers having different emission colors are provided, the light emitting layer having the shortest wavelength of the light emission maximum wavelength (shortest wave layer) is closest to the anode among all the light emitting layers. preferable. In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the shortest wave layer.
The thickness of the hole blocking layer and electron blocking layer that can be used in the present invention is preferably 3 nm to 100 nm, and more preferably 3 nm to 30 nm.
<陽極>
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
<Anode>
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
 <陰極>
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
<Cathode>
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
 好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent.
Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)/陰極からなる素子の製造方法について説明する。
<< Method for Manufacturing Organic EL Element >>
As an example of the manufacturing method of the organic EL element, from anode / hole injection layer (anode buffer layer) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer (cathode buffer layer) / cathode A method for manufacturing the device will be described.
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように形成させ、陽極を作製する。
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等の有機化合物を含有する薄膜を形成させる。
 薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等により成膜して形成することができる。
First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm, and an anode is manufactured.
Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer, which is a device material, is formed thereon.
As a method for forming the thin film, for example, the thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等があるが、精密な薄膜が形成可能で、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。 Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. From the viewpoint of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film formation methods may be applied for each layer.
 本発明に用いることができる有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic EL material that can be used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、順序を逆にして、陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
Alternatively, the cathode, electron injection layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order in the reverse order.
The organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. .
《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。
 これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。
In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
《Condensing sheet》
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it is smaller than this, the effect of diffraction is generated and colored.
 なお、前記した「有機EL素子を構成する各層」についての本発明の特徴的部分以外や、「支持基板」、「封止」、「保護膜、保護板」、「光取り出し」、「集光シート」等についてのその他の詳細については、例えば、特開2012-164731号公報、特開2012-156299号公報等の公知文献に記載のものと同様とすることができる。 In addition, the “supporting substrate”, “sealing”, “protective film, protective plate”, “light extraction”, “light condensing” other than the characteristic portions of the present invention regarding the “each layer constituting the organic EL element” described above. Other details of the “sheet” and the like can be the same as those described in publicly known documents such as Japanese Patent Application Laid-Open No. 2012-164731 and Japanese Patent Application Laid-Open No. 2012-156299.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を備えたものである。
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
<Display device>
The display device of the present invention will be described. The display device of the present invention includes the organic EL element of the present invention.
Although the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
In the case of patterning only the light emitting layer, the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
The configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
Moreover, the manufacturing method of an organic EL element is as having shown to the one aspect | mode of manufacture of the organic EL element of said invention.
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the anode as + and the cathode as-polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
The multicolor display device can be used as a display device, a display, and various light emission sources. In display devices and displays, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図2は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5およびデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
FIG. 2 is a schematic diagram of the display unit A.
The display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
In the figure, the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5および複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions (details are shown in the figure). Not)
When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。
 図3は画素の模式図である。
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
Next, the light emission process of the pixel will be described.
FIG. 3 is a schematic diagram of a pixel.
The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。
 しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。
 順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
When the scanning signal is moved to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off.
However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図4は図2の表示部Aに係るパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
FIG. 4 is a schematic view of a passive matrix display device according to the display unit A of FIG. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
In the passive matrix system, the pixel 3 has no active element, and the manufacturing cost can be reduced.
《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は、本発明の有機EL素子を備えたものである。
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
《Lighting device》
The lighting device of the present invention will be described. The lighting device of the present invention includes the organic EL element of the present invention.
The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The purpose of use of the organic EL element having such a resonator structure is as follows. The light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。
 複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
The organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
In addition, the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light emitting dopants.
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
It is only necessary to provide a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and simply arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極(陽極)付きガラス基板を示す。
 なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
<< One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material. LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
FIG. 6 is a cross-sectional view of the lighting device. In FIG. 6, reference numeral 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode (anode).
The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。
 また、実施例に用いる化合物の構造を以下に示す。なお、その他の化合物については、本件明細書中に記載のものである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Moreover, the structure of the compound used for an Example is shown below. In addition, about another compound, it is a thing as described in this specification.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
《有機EL素子1-1の作製》
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Production of Organic EL Element 1-1 >>
A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm × 100 mm × 1.1 mm. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、H.C. スタルク社製、CLEVIO P VP AI 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。 A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, manufactured by HC Starck, CLVIO P VP AI 4083) to 70% with pure water on the transparent support substrate. After forming a thin film by spin coating at 3000 rpm for 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料2およびホスト化合物として11-12(WO2011/122132に記載の化合物(1)と同一。以下、11-12と記載する。)を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてET-8を200mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物として 化合物(BD)を100mg入れ、真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while a hole-transporting material 2 and a host compound 11-12 (same as compound (1) described in WO2011 / 122132) are mounted on a molybdenum resistance heating boat. 200 mg of ET-8 as an electron transport material in another molybdenum resistance heating boat, and compound (BD) as a dopant compound in another molybdenum resistance heating boat. 100 mg was placed and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、11-12の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1正孔輸送層上に膜厚20nmの第2正孔輸送層を設けた。
 さらに、ホスト化合物として11-12とドーパント化合物として化合物(BD)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒で前記第2正孔輸送層上に共蒸着して膜厚30nmの発光層を設けた。
Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing 11-12 was heated by heating, and the film thickness was formed on the first hole transport layer at a deposition rate of 0.1 nm / second. A 20 nm second hole transport layer was provided.
Further, the second hole transport is carried out by energizing and heating the heating boat containing 11-12 as a host compound and compound (BD) as a dopant compound, respectively, at a deposition rate of 0.1 nm / second and 0.025 nm / second, respectively. A light-emitting layer having a thickness of 30 nm was provided by co-evaporation on the layer.
 さらにET-8入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。
 なお、蒸着時の基板温度は室温であった。
Further, the heating boat containing ET-8 was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続き、フッ化リチウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、さらにアルミニウムを蒸着して膜厚110nmの陰極を形成し、比較の有機EL素子1-1を作製した。 Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, a comparative organic EL element 1-1 was produced.
《有機EL素子1-2~1-14の作製》
 有機EL素子1-1の作成において、発光層のドーパント化合物および、第2正孔輸送層の化合物11-12を、表1に記載の化合物に変更する以外は、同様な方法で有機EL素子1-2~1-14を作製した。
<< Preparation of organic EL elements 1-2 to 1-14 >>
In the production of the organic EL device 1-1, the organic EL device 1 was prepared in the same manner except that the dopant compound of the light emitting layer and the compound 11-12 of the second hole transport layer were changed to the compounds shown in Table 1. -2 to 1-14 were produced.
《有機EL素子1-15の作製》
 有機EL素子1-4の作成において、発光層のホストをホスト化合物(H-1)に変更する以外は、同様な方法で有機EL素子1-15を作製した。
<< Production of Organic EL Element 1-15 >>
Organic EL element 1-15 was produced in the same manner as in the production of organic EL element 1-4, except that the host of the light emitting layer was changed to host compound (H-1).
《有機EL素子1-1~1-15の評価》
 得られた有機EL素子1-1~1-15を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して硬化させて封止し、図5および図6に示すような照明装置を作製して評価した。
 このようにして作製した各サンプルについて下記の評価を行った。評価結果を表1に示す。
<< Evaluation of Organic EL Elements 1-1 to 1-15 >>
When evaluating the obtained organic EL elements 1-1 to 1-15, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and a lighting device as shown in FIGS. 5 and 6 was produced and evaluated.
The following evaluation was performed for each sample thus prepared. The evaluation results are shown in Table 1.
(1)外部取り出し量子効率(単に、効率ともいう)
 有機EL素子を室温(約23~25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いて行い、外部取り出し量子効率は有機EL素子1-1を100とする相対値で表した。
 値が大きいほど、効率が高く好ましい。
(1) External extraction quantum efficiency (also simply referred to as efficiency)
By lighting the organic EL element under a constant current condition of room temperature (about 23 to 25 ° C.) and 2.5 mA / cm 2 , and measuring the emission luminance (L) [cd / m 2 ] immediately after the start of lighting, The external extraction quantum efficiency (η) was calculated.
Here, the measurement of emission luminance was performed using CS-1000 (manufactured by Konica Minolta Sensing), and the external extraction quantum efficiency was expressed as a relative value where the organic EL element 1-1 was 100.
Larger values are preferred because of higher efficiency.
(2)半減寿命
 下記に示す測定法に従って、半減寿命の評価を行った。
 各有機EL素子を初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを半減寿命の尺度とした。
 なお、半減寿命は有機EL素子1-1を100とする相対値で表した。
 値が大きいほど、長寿命で好ましい。
(2) Half-life The half-life was evaluated according to the measurement method shown below.
Each organic EL device driven with a constant current at a current giving an initial luminance 1000 cd / m 2, obtains the time to be 1/2 (500cd / m 2) of the initial luminance, which was used as a measure of the half-life.
The half life was expressed as a relative value with the organic EL element 1-1 as 100.
Larger values are preferred for longer life.
(3)駆動電圧
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmの定電流条件下により駆動した時の電圧を各々測定し有機EL素子1-1を100とする相対値で表した。
 値が小さいほど、駆動電圧が低く好ましい。
(3) Drive voltage The voltage when the organic EL element is driven at room temperature (about 23 ° C. to 25 ° C.) and a constant current of 2.5 mA / cm 2 is measured, and the organic EL element 1-1 is set to 100. Expressed as a relative value.
The smaller the value, the lower the drive voltage and the better.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 表1から、本発明の有機EL素子1-4、1-7~1-15は、比較例の有機EL素子1-1~1-3、1-5、1-6に対して、各々高い発光効率および長寿命を示し、駆動電圧が低く、素子としての特性が向上していることが分かる。また、発光ドーパントと隣接層含有材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 1, the organic EL elements 1-4 and 1-7 to 1-15 of the present invention are higher than the organic EL elements 1-1 to 1-3, 1-5, and 1-6 of the comparative example, respectively. It can be seen that the light emitting efficiency and long life are exhibited, the driving voltage is low, and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
《有機EL素子2-1~2-11の作製》
 実施例1の有機EL素子1-1において、発光層のドーパント化合物および、第2正孔輸送層の化合物11-12を、表2に記載の化合物に変更する以外は、同様な方法で有機EL素子2-1~2-11を作製した。
<< Preparation of organic EL elements 2-1 to 2-11 >>
In the organic EL device 1-1 of Example 1, the organic EL device was prepared in the same manner except that the dopant compound in the light emitting layer and the compound 11-12 in the second hole transport layer were changed to the compounds shown in Table 2. Elements 2-1 to 2-11 were produced.
《有機EL素子2-12の作製》
 有機EL素子2-5の作成において、発光層のホストをホスト化合物(H-1)に変更する以外は、同様な方法で有機EL素子2-12を作製した。
<< Preparation of organic EL element 2-12 >>
An organic EL element 2-12 was produced in the same manner as in the production of the organic EL element 2-5, except that the host of the light emitting layer was changed to the host compound (H-1).
 得られた有機EL素子2-1~2-12は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、効率ともいう)、(2)半減寿命、および(3)駆動電圧の評価を行い、各々有機EL素子2-1を100とする相対値で表わした。 The obtained organic EL elements 2-1 to 2-12 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving. The voltage was evaluated and expressed as a relative value where the organic EL element 2-1 was 100.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表2から、本発明の有機EL素子2-5、2-8~2-12は、比較例の有機EL素子2-1~2-4、2-6、2-7に対して、各々高い発光効率および長寿命を示し、駆動電圧が低く、素子としての特性が向上していることが分かる。また、発光ドーパントと隣接層に含有される材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 2, the organic EL elements 2-5 and 2-8 to 2-12 of the present invention are higher than the organic EL elements 2-1 to 2-4, 2-6, and 2-7 of the comparative examples, respectively. It can be seen that the light emitting efficiency and long life are exhibited, the driving voltage is low, and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improving by making the HOMO level of the material contained in a light emitting dopant and an adjacent layer into the relationship of this invention.
《有機EL素子3-1~3-15の作製》
 実施例1の有機EL素子1-1において、発光層のドーパント化合物および、第2正孔輸送層の化合物を、表3に記載の化合物に変更する以外は、同様な方法で有機EL素子3-1~3-15を作製した。
<< Preparation of organic EL elements 3-1 to 3-15 >>
In the organic EL device 1-1 of Example 1, the organic EL device 3 was prepared in the same manner except that the dopant compound of the light emitting layer and the compound of the second hole transport layer were changed to the compounds shown in Table 3. 1 to 3-15 were produced.
《有機EL素子3-16の作製》
 有機EL素子3-5の作成において、発光層のホストをホスト化合物(H-1)に変更する以外は、同様な方法で有機EL素子3-16を作製した。
 得られた有機EL素子3-1~3-16は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、効率ともいう)、(2)半減寿命、および(3)駆動電圧の評価を行い、各々有機EL素子3-1を100とする相対値で表わした。
<< Preparation of organic EL element 3-16 >>
An organic EL element 3-16 was produced in the same manner as in the production of the organic EL element 3-5, except that the host of the light emitting layer was changed to the host compound (H-1).
The obtained organic EL devices 3-1 to 3-16 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving. The voltage was evaluated and expressed as a relative value where the organic EL element 3-1 was 100.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 表3から、本発明の有機EL素子3-5、3-8~3-16は、比較例の有機EL素子3-1~3-4、3-6、3-7に対して、各々高い発光効率および長寿命を示し、駆動電圧が低く素子としての特性が向上していることが分かる。また、発光ドーパントと隣接層含有材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 3, the organic EL elements 3-5 and 3-8 to 3-16 of the present invention are higher than the organic EL elements 3-1 to 3-4, 3-6, and 3-7 of the comparative example, respectively. It can be seen that the luminous efficiency and long life are exhibited, and the driving voltage is low and the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
 実施例1の有機EL素子1-1において、発光層のドーパント化合物および、第2正孔輸送層の化合物を、表4に記載の化合物に変更する以外は、同様な方法で有機EL素子4-1~4-19を作製した。
 得られた有機EL素子4-1~4-19は、実施例1と同様な方法で、(1)外部取り出し量子効率(単に、効率ともいう)、(2)半減寿命、および(3)駆動電圧の評価を行い、各々有機EL素子4-1を100とする相対値で表わした。
In the organic EL device 1-1 of Example 1, the organic EL device 4 was prepared in the same manner as described above except that the dopant compound of the light emitting layer and the compound of the second hole transport layer were changed to the compounds shown in Table 4. 1 to 4-19 were produced.
The obtained organic EL elements 4-1 to 4-19 were subjected to the same method as in Example 1, (1) external extraction quantum efficiency (also simply referred to as efficiency), (2) half-life, and (3) driving. The voltage was evaluated and expressed as a relative value where the organic EL element 4-1 was 100.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 表4から、本発明の有機EL素子4-12~4-19は、比較例の有機EL素子4-1~4-11に対して、各々高い発光効率および長寿命を示し、駆動電圧が低く、素子としての特性が向上していることが分かる。また、発光ドーパントと隣接層含有材料のHOMOレベルを、本発明の関係にすることで、素子特性が向上していることが分かる。 From Table 4, the organic EL elements 4-12 to 4-19 of the present invention show higher luminous efficiency and longer life than the organic EL elements 4-1 to 4-11 of the comparative examples, respectively, and the driving voltage is low. It can be seen that the characteristics as an element are improved. Moreover, it turns out that element characteristics are improved by making the HOMO level of the light-emitting dopant and the adjacent layer-containing material into the relationship of the present invention.
《白色発光有機EL素子5-1の作製》
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Preparation of white light-emitting organic EL element 5-1 >>
A transparent substrate provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm × 100 mm × 1.1 mm. The supporting substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料としてα-NPDを200mg入れ、モリブデン製抵抗加熱ボートに正孔輸送材料2として11-12を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてホスト化合物(H-1)を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてET-8を200mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物としてDP-1を100mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物としてD-10を100mg入れ真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, while 200 mg of α-NPD is placed in a molybdenum resistance heating boat as a hole transport material and 11 mg as a hole transport material 2 is placed in a molybdenum resistance heating boat. 200 mg of -12, 200 mg of the host compound (H-1) as a host compound in another molybdenum resistance heating boat, 200 mg of ET-8 as an electron transport material in another molybdenum resistance heating boat, another molybdenum 100 mg of DP-1 as a dopant compound was put into a resistance heating boat made of 100 mg, and 100 mg of D-10 as a dopant compound was put into another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートをそれぞれ別々に通電して、蒸着速度0.1nm/秒で透明支持基板に蒸着し膜厚20nmの第1正孔輸送層を設けた。
 さらに、11-12の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.05nm/秒で前記第1正孔輸送層上に膜厚5nmの第2正孔輸送層を設けた。
Next, after reducing the vacuum chamber to 4 × 10 −4 Pa, each of the heating boats containing α-NPD was separately energized and deposited on the transparent support substrate at a deposition rate of 0.1 nm / sec. A first hole transport layer was provided.
Further, the heating boat containing 11-12 was energized and heated, and a second hole transport layer having a film thickness of 5 nm was provided on the first hole transport layer at a deposition rate of 0.05 nm / second.
 さらに、ホスト化合物としてホスト化合物(H-1)とドーパント化合物として、DP-1、D-10の入った前記加熱ボートに通電して加熱し、それぞれの蒸着速度が100:5:0.6になるように調整し、膜厚30nmの発光層を設けた。
 さらにET-8の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。
 なお、蒸着時の基板温度は室温であった。
Further, the heating boat containing the host compound (H-1) as the host compound and DP-1 and D-10 as the dopant compounds was energized and heated, and the respective deposition rates were 100: 5: 0.6. Thus, a light emitting layer having a thickness of 30 nm was provided.
Further, the heating boat containing ET-8 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 30 nm.
In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続き、フッ化リチウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、さらにアルミニウムを蒸着して膜厚110nmの陰極を形成し、有機EL素子5-1を作製した。
 作製した有機EL素子5-1に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが分かった。
Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, an organic EL element 5-1 was produced.
When the produced organic EL element 5-1 was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
《有機EL素子5-2~5-9の作製》
 有機EL素子5-1の作製において、第2正孔輸送層に用いる11-12、発光層に用いるドーパント化合物DP-1を、表5に示す化合物に変更した以外は同様にして、有機EL素子5-2~5-9を各々作製した。作製した有機EL素子5-2~5-9に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが分かった。
<< Production of organic EL elements 5-2 to 5-9 >>
In the production of the organic EL element 5-1, the organic EL element was similarly obtained except that the compound 11-11 used for the second hole transport layer and the dopant compound DP-1 used for the light emitting layer were changed to the compounds shown in Table 5. Each of 5-2 to 5-9 was prepared. When the produced organic EL elements 5-2 to 5-9 were energized, almost white light was obtained, and it was found that they could be used as a lighting device.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
《有機ELフルカラー表示装置の作製》
 図7は、有機ELフルカラー表示装置の概略構成図を示す。
 ガラス基板201上に、陽極としてITO透明電極202を100nm成膜した基板(NHテクノグラス社製NA45)に100μmのピッチでパターニングを行った後(図7(a)参照)、このガラス基板201上であってITO透明電極202の間に非感光性ポリイミドの隔壁203(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成した(図7(b)参照)。
<< Production of organic EL full-color display device >>
FIG. 7 shows a schematic configuration diagram of an organic EL full-color display device.
After patterning at a pitch of 100 μm on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) having a 100 nm thick ITO transparent electrode 202 as an anode on a glass substrate 201 (see FIG. 7A), on this glass substrate 201 Then, a non-photosensitive polyimide partition wall 203 (width 20 μm, thickness 2.0 μm) was formed between the ITO transparent electrodes 202 by photolithography (see FIG. 7B).
 ITO透明電極202上であって隔壁203同士の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製;MJ800C)を用いて吐出注入し、紫外光を200秒間照射し、60℃、10分間の乾燥処理により、膜厚40nmの正孔注入層204を設けた(図7(c)参照)。 A hole injection layer composition having the following composition is ejected and injected on the ITO transparent electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 200 seconds, 60 A 40-nm-thick hole injection layer 204 was provided by a drying process at 10 ° C. for 10 minutes (see FIG. 7C).
 この正孔注入層204上に、各々下記組成の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、60℃、10分間乾燥処理し、各色の発光層205B,205G,205Rを設けた(図7(d)参照)。
 次に、各発光層205B,205G,205Rを覆うように電子輸送材料を蒸着して膜厚20nmの電子輸送層(図示略)を設け、更にフッ化リチウムを蒸着して膜厚0.6nmの陰極バッファー層(図示略)を設け、Alを蒸着して膜厚130nmの陰極206を設けて有機EL素子を作製した(図7(e)参照)。
 作製した有機EL素子はそれぞれ電極に電圧を印加することにより青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることがわかった。
A blue light-emitting layer composition, a green light-emitting layer composition, and a red light-emitting layer composition having the following compositions are similarly ejected and injected onto the hole injection layer 204 using an inkjet head, and dried at 60 ° C. for 10 minutes. In addition, light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 7D).
Next, an electron transport material is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R to provide an electron transport layer (not shown) with a thickness of 20 nm, and further lithium fluoride is deposited to have a thickness of 0.6 nm. A cathode buffer layer (not shown) was provided, Al was deposited, and a cathode 206 having a thickness of 130 nm was provided to produce an organic EL device (see FIG. 7E).
It was found that the produced organic EL elements each emitted blue, green, and red light when a voltage was applied to the electrodes, and could be used as a full-color display device.
(正孔注入層組成物)
11-12 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Hole injection layer composition)
11-12 20 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
(青色発光層組成物)
ホスト化合物(H-1)  0.7質量部  ホスト
DP-1        0.04質量部 ドーパント
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Blue light emitting layer composition)
Host compound (H-1) 0.7 parts by mass Host DP-1 0.04 parts by mass Dopant cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
(緑色発光層組成物)
ホスト化合物(H-1)  0.7質量部
D-1 0.04質量部     
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Green light emitting layer composition)
Host compound (H-1) 0.7 parts by mass D-1 0.04 parts by mass
Cyclohexylbenzene 50 parts by mass Isopropyl biphenyl 50 parts by mass
(赤色発光層組成物)
ホスト化合物 (H-1)  0.7質量部
D-10 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(Red light emitting layer composition)
Host compound (H-1) 0.7 parts by mass D-10 0.04 parts by mass Cyclohexylbenzene 50 parts by mass Isopropylbiphenyl 50 parts by mass
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサ
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 201 ガラス基板
 202 ITO透明電極
 203 隔壁
 204 正孔注入層
 205B、205G、205R 発光層
 206 陰極
 A 表示部
 B 制御部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water collection Agent 201 Glass substrate 202 ITO transparent electrode 203 Partition wall 204 Hole injection layer 205B, 205G, 205R Light emitting layer 206 Cathode A Display unit B Control unit

Claims (13)

  1.  陽極と陰極に挟まれた少なくとも1層の発光層と該発光層の陽極側に隣接した隣接層を含む複数の有機層を有する有機エレクトロルミネッセンス素子において、
     該発光層の少なくとも1層に、溶液中の発光スペクトルにおいて、最も短波側にある発光極大波長が470nm以下、且つHOMO値が-4.50~-5.50eVのリン光性発光ドーパントを少なくとも1種含有し、
     該隣接層に、下記一般式(1)で表される非金属錯体化合物であって、HOMO値が-4.50~-5.10eVである化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Rは、置換基を表す。Lは、連結基または単なる結合手を表す。ArおよびArは芳香族炭化水素環または芳香族複素環を表す。)
    In an organic electroluminescence device having a plurality of organic layers including at least one light emitting layer sandwiched between an anode and a cathode and an adjacent layer adjacent to the anode side of the light emitting layer,
    At least one phosphorescent light emitting dopant having an emission maximum wavelength on the shortest wavelength side of 470 nm or less and a HOMO value of −4.50 to −5.50 eV in at least one of the light emitting layers in the emission spectrum in the solution. Containing seeds,
    The adjacent layer contains a non-metallic complex compound represented by the following general formula (1) having a HOMO value of −4.50 to −5.10 eV: .
    Figure JPOXMLDOC01-appb-C000001
    (In General Formula (1), R represents a substituent. L represents a linking group or a simple bond. Ar 1 and Ar 2 represent an aromatic hydrocarbon ring or an aromatic heterocyclic ring.)
  2.  前記一般式(1)において、Lが単結合を表し、ArおよびArが6員の芳香族炭化水素環または6員の芳香族複素環を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 The general formula (1), wherein L represents a single bond, and Ar 1 and Ar 2 represent a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocyclic ring. Organic electroluminescence device.
  3.  前記一般式(1)において、ArおよびArがインドール環、アザインドール環、カルバゾール環、アザカルバゾール環または縮合芳香族複素環基を置換基として有するベンゼン環であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。 The general formula (1), wherein Ar 1 and Ar 2 are indole ring, azaindole ring, carbazole ring, azacarbazole ring or a benzene ring having a condensed aromatic heterocyclic group as a substituent. 3. The organic electroluminescence device according to 1 or 2.
  4.  前記一般式(1)で表される化合物が、下記一般式(11)で表される化合物であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(11)において、R111およびR112は水素原子、アルキル基、芳香族炭化水素環基または芳香族複素環基を表し、一般式(11)で表される化合物はさらに置換基を有していてもよい。)
    The organic electroluminescence device according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (11).
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (11), R 111 and R 112 represent a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and the compound represented by General Formula (11) further has a substituent. (You may have it.)
  5.  前記一般式(1)で表される化合物が、下記一般式(21)または下記一般式(22)で表される化合物であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(21)および一般式(22)において、R211およびR212はアルキル基、芳香族炭化水素環基または芳香族複素環基を表す。環Z~Zは芳香族炭化水素環または芳香族複素環を形成する残基を表し、置換基を有していてもよい。)
    The compound represented by the general formula (1) is a compound represented by the following general formula (21) or the following general formula (22). Organic electroluminescence element.
    Figure JPOXMLDOC01-appb-C000003
    (In General Formula (21) and General Formula (22), R 211 and R 212 represent an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group. Rings Z 1 to Z 3 represent an aromatic hydrocarbon ring. Or, it represents a residue that forms an aromatic heterocyclic ring, and may have a substituent.)
  6.  前記一般式(1)で表される化合物が、下記一般式(31)で表される化合物であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(31)において、R311およびR312は水素原子、アリールシリル基、アリールホスホリル基、芳香族炭化水素環基、芳香族複素環基、ジアリールアミノ基、または、アルキル基を表す。A~Aは各々独立にC-RxまたはNを表し、複数のRxはそれぞれ同じであっても異なっていても良い。Rxは各々独立に水素原子または置換基を表す。)
    The organic electroluminescence device according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (31).
    Figure JPOXMLDOC01-appb-C000004
    (In General Formula (31), R 311 and R 312 each represent a hydrogen atom, an arylsilyl group, an arylphosphoryl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a diarylamino group, or an alkyl group. 1 to A 8 each independently represent C—Rx or N, and the plurality of Rxs may be the same or different, and Rx each independently represents a hydrogen atom or a substituent.
  7.  前記リン光性発光ドーパントが、下記一般式(41)で表される化合物であることを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(41)において、MはIr、Pt、Rh、Ru、AgまたはCuを表し、XおよびXは炭素原子または窒素原子を表し、環ZはC=Cと共に6員の芳香族炭化水素環、または5員または6員の芳香族複素環を表し、環ZはX-Xと共に5員の複素環を表す。L'はMに配位したモノアニオン性の二座配位子の内の1つまたは複数であり、m’は0~2の整数を表し、n’は少なくとも1の整数であり、m’+n’は2または3である。)
    The organic electroluminescence device according to any one of claims 1 to 6, wherein the phosphorescent light-emitting dopant is a compound represented by the following general formula (41).
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (41), M represents Ir, Pt, Rh, Ru, Ag or Cu, X 1 and X 2 represent a carbon atom or a nitrogen atom, and ring Z 1 represents a 6-membered aromatic with C═C. Represents a 5-membered aromatic ring, or a 5- or 6-membered aromatic heterocyclic ring, wherein ring Z 2 represents a 5-membered heterocyclic ring together with X 1 -X 2. L ′ represents a monoanionic divalent ring coordinated to M One or more of the bidentate ligands, m ′ represents an integer of 0 to 2, n ′ is an integer of at least 1, and m ′ + n ′ is 2 or 3.)
  8.  前記一般式(41)で表される化合物において、
     環Zは、置換または無置換のイミダゾール環を表すことを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
    In the compound represented by the general formula (41),
    Ring Z 2 is an organic electroluminescent device according to claim 7, characterized in that a substituted or unsubstituted imidazole ring.
  9.  前記一般式(41)で表される化合物において、
     環Zは、置換または無置換のピラゾール環を表すことを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
    In the compound represented by the general formula (41),
    Ring Z 2 is an organic electroluminescent device according to claim 7, characterized in that a substituted or unsubstituted pyrazole ring.
  10.  前記一般式(41)で表される化合物において、
     環Zは、置換または無置換のトリアゾール環を表すことを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
    In the compound represented by the general formula (41),
    Ring Z 2 is an organic electroluminescent device according to claim 7, characterized in that a substituted or unsubstituted triazole ring.
  11.  発光色が白色であることを特徴とする請求項1~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 10, wherein the emission color is white.
  12.  請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 11.
PCT/JP2013/073067 2012-09-25 2013-08-28 Organic electroluminescent element, lighting device, and display device WO2014050417A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157000906A KR101788943B1 (en) 2012-09-25 2013-08-28 Organic electroluminescent element, lighting device, and display device
JP2014538299A JP6172154B2 (en) 2012-09-25 2013-08-28 Organic electroluminescence element, lighting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-211534 2012-09-25
JP2012211534 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050417A1 true WO2014050417A1 (en) 2014-04-03

Family

ID=50387826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073067 WO2014050417A1 (en) 2012-09-25 2013-08-28 Organic electroluminescent element, lighting device, and display device

Country Status (3)

Country Link
JP (1) JP6172154B2 (en)
KR (1) KR101788943B1 (en)
WO (1) WO2014050417A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052224A1 (en) * 2018-08-10 2020-02-13 Samsung Display Co., Ltd. Organic electroluminescence device and condensed cyclic compound for organic electroluminescence device
WO2022230844A1 (en) * 2021-04-26 2022-11-03 出光興産株式会社 Organic electroluminescent element, organic electroluminescent display apparatus, and electronic device
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048101A1 (en) * 2002-03-29 2004-03-11 Thompson Mark E. Organic light emitting devices with electron blocking layers
JP2006128636A (en) * 2004-09-29 2006-05-18 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2007059687A (en) * 2005-08-25 2007-03-08 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and illuminator
JP2008016827A (en) * 2006-06-08 2008-01-24 Konica Minolta Holdings Inc Organic electroluminescent element, display unit, and illuminating unit
WO2011055933A2 (en) * 2009-11-03 2011-05-12 제일모직 주식회사 Composition for an organic photoelectric device, organic photoelectric device using same, and display device comprising same
WO2012035853A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Nitrogenated aromatic compound, organic semiconductor material, and organic electronic device
JP2012175025A (en) * 2011-02-24 2012-09-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055818B2 (en) * 2006-04-19 2012-10-24 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048101A1 (en) * 2002-03-29 2004-03-11 Thompson Mark E. Organic light emitting devices with electron blocking layers
JP2006128636A (en) * 2004-09-29 2006-05-18 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2007059687A (en) * 2005-08-25 2007-03-08 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and illuminator
JP2008016827A (en) * 2006-06-08 2008-01-24 Konica Minolta Holdings Inc Organic electroluminescent element, display unit, and illuminating unit
WO2011055933A2 (en) * 2009-11-03 2011-05-12 제일모직 주식회사 Composition for an organic photoelectric device, organic photoelectric device using same, and display device comprising same
WO2012035853A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Nitrogenated aromatic compound, organic semiconductor material, and organic electronic device
JP2012175025A (en) * 2011-02-24 2012-09-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200052224A1 (en) * 2018-08-10 2020-02-13 Samsung Display Co., Ltd. Organic electroluminescence device and condensed cyclic compound for organic electroluminescence device
CN110818717A (en) * 2018-08-10 2020-02-21 三星显示有限公司 Organic electroluminescent device and condensed cyclic compound for organic electroluminescent device
CN110818717B (en) * 2018-08-10 2024-03-26 三星显示有限公司 Organic electroluminescent device and condensed cyclic compound for organic electroluminescent device
WO2022230844A1 (en) * 2021-04-26 2022-11-03 出光興産株式会社 Organic electroluminescent element, organic electroluminescent display apparatus, and electronic device
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS

Also Published As

Publication number Publication date
KR20150030723A (en) 2015-03-20
KR101788943B1 (en) 2017-10-20
JPWO2014050417A1 (en) 2016-08-22
JP6172154B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5585382B2 (en) Organic electroluminescence element, lighting device and display device
JP5742586B2 (en) Organic electroluminescence element, lighting device and display device
JP5659478B2 (en) Organic electroluminescence element, lighting device and display device
JP5857754B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP6319097B2 (en) Organic electroluminescence element, display device and lighting device
JP5812014B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP6295959B2 (en) Organic electroluminescence element, lighting device and display device
JP6056763B2 (en) Organic electroluminescence device
JP2014096595A (en) Organic electroluminescent element, novel compound, lighting device, and display device
JP5708176B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5569531B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP2014045101A (en) Organic electroluminescent element, lighting device, and display device
JP5987830B2 (en) Organic electroluminescence device
JP5919726B2 (en) Organic electroluminescence device
JP6098518B2 (en) Organic electroluminescence device
JP5817469B2 (en) Organic electroluminescence device
JP5987281B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP6172154B2 (en) Organic electroluminescence element, lighting device and display device
JPWO2013031662A1 (en) Organic electroluminescence element, lighting device and display device
JP6102740B2 (en) Organic electroluminescence element, lighting device and display device
JP5790322B2 (en) Organic electroluminescence device
JP6070758B2 (en) Organic electroluminescence element, lighting device and display device
JP2016048796A (en) Organic electroluminescent element, display device including the same, and luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538299

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157000906

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841287

Country of ref document: EP

Kind code of ref document: A1