WO2014049965A1 - Circuit module using mounting board - Google Patents

Circuit module using mounting board Download PDF

Info

Publication number
WO2014049965A1
WO2014049965A1 PCT/JP2013/005100 JP2013005100W WO2014049965A1 WO 2014049965 A1 WO2014049965 A1 WO 2014049965A1 JP 2013005100 W JP2013005100 W JP 2013005100W WO 2014049965 A1 WO2014049965 A1 WO 2014049965A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor package
resin
mounting substrate
substrate
circuit module
Prior art date
Application number
PCT/JP2013/005100
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 加藤
中村 岳史
俊道 成瀬
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014049965A1 publication Critical patent/WO2014049965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Definitions

  • the present invention relates to a circuit module using a mounting board.
  • FIG. 5 illustrates the structure.
  • FIG. 5A shows a circuit module 3 in which a general semiconductor package 1 is mounted on a mounting substrate 2.
  • This semiconductor package 1 is a surface mount type flat package, and a semiconductor chip 5 is provided on a substrate 4, and an electrode of the substrate 4 and an electrode of the semiconductor chip are electrically connected.
  • the surface of the substrate 4 is sealed with an insulating resin 6 including the semiconductor chip 5. Further, the semiconductor package 1 is provided on the mounting substrate 2.
  • a back electrode 7 is provided on the back side of the substrate 4 and is electrically connected to the conductive pattern of the mounting substrate 2 via solder.
  • an underfill 8 is provided between the substrate 4 and the mounting substrate 2.
  • the substrate 4 and the mounting substrate 2 is about 30 ⁇ m, and in order to permeate the gap, a resin with low viscosity is used for the underfill.
  • FIG. 5B is a plan view of the circuit module 3 described above. As described at the beginning of the sentence, the semiconductor chip 5 has a high function and a large current to be handled. In addition, the size of semiconductor packages is becoming smaller.
  • the semiconductor package 1A that has a plane size of 2 cm ⁇ 2 cm and consumes Q watts of power will increase the function of the semiconductor chip in the following year, and the power of 1 cm ⁇ 1 cm will be 2 ⁇ Q watts of power.
  • the semiconductor chip 1B is required.
  • the sealing resin 6 is an insulating material, it has a high thermal resistance, and the substrate 4 itself is made of the same material, so that the thermal resistance is high. Therefore, the semiconductor package 1B that has become smaller is required to take measures against heat dissipation.
  • a metal plate is attached as an electrode on the back of the chip, a thermal via is provided under the island, and heat dissipation measures are taken.
  • the present invention is a circuit module including a semiconductor package having a hexahedron and having an external connection electrode on the back surface, and a mounting substrate on which the semiconductor package is electrically connected and is in contact with a side surface of the semiconductor package.
  • the problem is solved by providing a side resin provided around the semiconductor package from the side surface and filled with a filler, and radiating the heat of the semiconductor package to the outside through the mounting substrate with a simple potting structure. is there.
  • the heat of the semiconductor package accumulates in this resin and is transmitted to the mounting board side at the same time.
  • the expansion of the heat radiation path is effective in the contact area, and the heat storage capacity of the transferred heat is effective in the volume of the resin.
  • the resin since the resin is in contact with the side surface of the semiconductor package and further in contact with the mounting substrate, heat can be transferred from the semiconductor package to the mounting substrate side.
  • the present invention is characterized by the resin 20 in the circuit module 3 and is characterized in that the heat of the semiconductor package 1 is dissipated by the insulating resin 20.
  • the semiconductor package 1 is not disposed on the back surface of the semiconductor package (the back surface of the semiconductor package 1 facing the mounting substrate 2), and the side surface of the semiconductor package 1 and the resin 20 are in contact with each other, thereby taking in the heat of the semiconductor package 1.
  • the coating-type insulating resin 20 is provided so as to contact the surface of the mounting substrate 2 and transmit heat to the mounting substrate 2 side.
  • this resin is referred to as a side resin 20. As shown in FIG.
  • the side resin 20 is mixed with a material having excellent thermal conductivity, for example, a filler made of metal, metal oxide, metal alloy, or oxide of this alloy.
  • a filler made of metal, metal oxide, metal alloy, or oxide of this alloy.
  • an insulating material such as a metal oxide or an oxide of an alloy is preferable.
  • the filling rate is as high as 80% or more and 95% or less, and its viscosity is large.
  • the underfill 8 described with reference to FIG. 5 generally has a filling rate of about 70 to 80% in terms of MAX.
  • a capillary tube in the gap between the mounting substrate 2 and the semiconductor package 1.
  • the purpose of this underfill is, for example, by setting the thermal expansion coefficient ⁇ (about 40 ppm) of the epoxy resin, which is an underfill material, to the same level as that of the substrate 4 or ⁇ between the mounting substrate 2 and the substrate 4. It is to improve the reliability of the connection part.
  • the underfill 8 may slightly cover the side surface of the semiconductor package 1, particularly the lower side surface.
  • the underfill 8 is substantially integrated with the same material in the entire gap between the back surface of the semiconductor package 1 and the mounting substrate 2. Therefore, it can be clearly distinguished from the side resin 8.
  • underfill and side resin are used in different ways.
  • heat radiation is taken into consideration, and for example, heat radiation parts such as heat radiation fins and metal plates are attached.
  • this heat dissipation component is adopted, the overall structure becomes complicated, because the structure of the package itself is changed to make it easier to attach the heat dissipation component, and the heat of the semiconductor package is efficiently released to the outside. It took time and was troublesome to wear, resulting in problems such as cost.
  • the side resin 20 only needs to be applied to the mounting substrate 2 corresponding to the region extending from the side surface of the semiconductor package 1 to the outside thereof, so that the countermeasure can be easily taken and the cost can be reduced.
  • the side resin 20 can be said to be a very meaningful measure because it can be dissipated while maintaining its thinness.
  • FIG. 1A is a diagram in which the semiconductor package 1 is provided on the mounting substrate 2 and the side resin 20 is provided.
  • the semiconductor package 1 is not particularly limited, but a surface mount type package is preferable in consideration of structural points such as a contact area on a side surface and inconvenience due to jumping out of a lead.
  • it is made by the MAP method (Matrix Array Packaging method), and can be manufactured by a lead frame type, a substrate type, and further a half-etching type.
  • the semiconductor package 1 is a hexahedron having four side surfaces disposed between the upper surface, the rear surface, and the upper and lower surfaces, and the external connection electrodes are disposed on the rear surface.
  • the semiconductor package 1 formed by MAP will be described.
  • the substrate type a large-sized substrate in which the conductive patterns of the units are arranged vertically and horizontally is prepared, and the semiconductor chip 5 is provided thereon.
  • the substrate 4 a printed circuit board made of resin or a ceramic substrate is adopted, and the surface of the substrate 4 has a first conductive pattern 21 for each unit.
  • the first conductive pattern 21 is mainly composed of bonding pads, islands, and wiring. If the first conductive pattern 21 is a multilayer substrate, a conductive pattern is provided in each layer as necessary. In addition, a through hole or the like is provided in order to realize electrical connection from the front to the back.
  • a second conductive pattern 22 is provided on the back surface of the substrate 4 and includes, for example, external connection electrodes and rewiring for rearranging the external connection electrodes as necessary.
  • the substrate 4 is illustrated in a two-layer structure, the number of layers may be four layers, six layers,.
  • the core layer is made of an insulating material.
  • heat dissipation is taken into consideration, and a core metal substrate in which a metal foil, for example, a Cu foil is embedded in the core layer can also be used.
  • the semiconductor chip 5 is electrically connected to the island, but an insulating layer formed on the outermost surface, for example, a solder resist PSR, may be provided, and may be directly fixed thereon with an adhesive. Then, the electrode of the semiconductor chip 5 and the bonding pad 21 of the substrate 4 are electrically connected. For example, if the face is up, a thin metal wire is used. If the face is down, the electrode of the semiconductor chip and the bonding pad are connected by solder balls or bumps. Further, the surface of the substrate 4 is sealed with a sealing resin 6 so as to cover a large number of these semiconductor chips 5 arranged vertically and horizontally. Each unit is fully cut by a dicing apparatus, and a hexahedral semiconductor package 1 is produced.
  • a solder resist PSR solder resist
  • one or more layers of the substrate 4 in FIG. 1 are laminated on both surfaces of a core layer made of an insulating resin while a conductive pattern is insulated. Both the upper side and the lower side are provided with the first layer conductive pattern on the core layer, and when the second insulating layer is subsequently coated, the second layer conductive pattern is further provided. Are repeated to form two layers, four layers, six layers, eight layers, and so on. That is, the substrate is an even layer.
  • the first insulating layer, the first conductive pattern, the second insulating layer, the second conductive pattern, and the insulating layer and the conductive pattern are repeatedly stacked.
  • the first insulating layer and the uppermost insulating layer on the back surface are called as coreless substrates because the electrodes are exposed and the core layer is generally omitted. Since there is no core layer, the thickness of the substrate can be reduced accordingly.
  • the lead frame type uses an island and electrodes (leads) located around it as a unit, and prepares a lead frame prepared by arranging them vertically and horizontally. Since the lead frame has many openings, a sheet is pasted on the back surface of the lead frame to make it look like a substrate, and then the elements are mounted and electrically connected. Thereafter, the units arranged vertically and horizontally are collectively sealed with a sealing resin. Then, the sheet is peeled off, and the lead frame exposed from the back surface of the sealing resin is processed by etching or grinding to separate it into islands and leads constituting the lead frame, and then full cut by the same method as MAP.
  • the copper foil is formed by half-etching, unit patterns such as electrodes are formed vertically and horizontally, and the copper foil remaining on the back surface is used as the role of the sheet. Similarly, the elements are mounted, electrically connected, and collectively sealed, and then the copper foil remaining on the back surface is etched back, and other than the electrodes are removed and electrically separated.
  • the hexahedron is formed by full cutting.
  • Both packages have a hexahedron consisting of four sides connecting the periphery of the upper surface and the back surface and the upper surface and the back surface in order to make a full cut with a dicing machine.
  • the thickness of the semiconductor and the thickness of the substrate have been reduced, and the package can be made thinner.
  • BGA and the like have this structure and are frequently used in mobile phones, portable computers, digital cameras, and the like.
  • SIP System in Package
  • a three-dimensional type in which many chips are stacked and a plain type in which chips are arranged in a plane are adopted, and a large-capacity memory and a large-scale circuit are used.
  • An embedded system IC is realized.
  • the mounting substrate 2 on which the semiconductor package 1 is mounted is incorporated into a set of, for example, a portable device, and is generally a printed substrate having a pattern of one or more layers.
  • This printed circuit board is mounted including passive elements such as a chip capacitor and a chip resistor, and an electronic circuit in the set is realized.
  • the feature of the present invention resides in that a side resin 20 is provided on the side surface of the semiconductor package 1 as shown in FIG.
  • the resin material is an epoxy resin, acrylic, silicone, urethane or the like, and a filler is mixed therein.
  • the filling rate is set to about 80% or more and about 95%, and in the state before curing, the viscosity is set to be larger than that from underfill.
  • the filler size is such that the average length (crushed filler) or diameter (granular filler) is about X or larger than X.
  • the side resin 20 is prevented from entering between the mounting board 2 and the board 4 by being mixed. Further, in order to obtain the above-described filling rate, the gaps between the large fillers are also filled with small size fillers.
  • the gap X is set to a value selected between 30 ⁇ m and 50 ⁇ m, for example, the maximum particle size ( ⁇ X ⁇ m ⁇ (1.1 to 1.3) )) Selected.
  • the external electrodes (back surface electrodes) are arranged in a grid pattern in the vertical and horizontal directions, or are arranged in a ring shape in multiple layers.
  • the outermost external connection electrode and the side resin 20 come into contact with each other when the back surface is viewed in a plan view.
  • This is the same for packages other than BGA.
  • it is practically impossible to select only a specific filler as a filler, and generally shows a Maxwell distribution. Therefore, since a small filler is also mixed, in some cases, the possibility of slightly entering the gap cannot be denied.
  • the underfill penetrates to the back of the package corresponding to the center of the substrate 4 in plan view. Eventually, the underfill and side resin that permeate the entire back surface of the semiconductor package 1 are clearly distinguished.
  • the side resin 20 containing filler has a large filler mixing rate and a large particle size, so that the thermal conductivity is larger than that of the underfill. Further, as shown in FIG. 1B, since it is applied around the semiconductor package 1 with its width Z3 and height h, it is applied in a large volume and its heat capacity increases. Therefore, the heat generated in the semiconductor package 1 is transferred to the side resin as shown by the thick arrows, is stored, and is radiated to the mounting substrate 2 in parallel.
  • FIG. 1 (B) and 1 (C) illustrate how to apply the side resin 20, and an area struck by fine points is a portion where the side resin 20 is provided.
  • (B) is a case where the entire circumference is covered
  • FIG. 1 (C) is an example in which an open portion is provided at the center of each side and the side resin 20 is covered including four corners.
  • the height (thickness) of the side surface of the package is Z1
  • the height (thickness) where the side resin 20 is applied is Z2. Because it is potting, it is only necessary to be able to paint the whole area in the height direction of the side of the package, but it is not so easy. Therefore, Z2 ⁇ (Z1 + X) ⁇ (about 0.8 to 1.0) It seems to be appropriate to apply within a certain range. For example, if the thickness of the package is 0.3 mm to 1 mm, it can be calculated automatically.
  • the width Z3 of the side resin 20 applied in a ring shape should be large, preferably Z3 ⁇ Z2 Is good. By doing so, the path through which heat is transferred from the side surface of the semiconductor package 1 to the mounting substrate 2 side via the side resin 20 is increased, and there is an advantage that the heat dissipation effect is further increased.
  • the angle between the inclined surface of the side resin and the mounting substrate may be about 45 degrees to 30 degrees, and Z3 may be enlarged.
  • FIG. 1C shows the side resin 20 provided with an opening 23.
  • the area surrounded by the side resin 20 has no underfill, and when it becomes a space, gas accumulates in the space, so that gas escape is made.
  • the number and position of the opening parts 23 are not particularly limited.
  • the underfill when an underfill having a lower filler content than the side resin is provided inside, the underfill may be hardened first, and the trapped gas escapes in the gap of the underfill.
  • the back surface of the semiconductor package 1 is rectangular, and its four corners are portions where stress is concentrated. This is because stress is inevitably concentrated at the corners due to the difference in the thermal expansion coefficient ⁇ between the semiconductor package 1 and the mounting substrate 2, and the solder balls near the corners are liable to crack.
  • the side resin 20 covers the side surfaces constituting the corners of the back surface of the semiconductor package 1, the stress can be counteracted.
  • reference numeral 24 denotes a large-sized substrate having element arrangement regions arranged in a matrix and is collectively sealed and separated by a dicer as indicated by reference numeral 25. Can be easily manufactured.
  • the side resin 20 has a fluidity even though the viscosity is high, the side resin 20 always flows, and the filler and the side surface of the package 1 may be in contact with each other, or there may be some gaps. . Therefore, the curved surface may be pressed using a flat pressing jig before the side resin 20 is cured. If it does so, an inside filler will contact
  • the surface of the side resin 20 is a curved surface, but since this pressing jig is used, at least a part of the inclined surface is a flat inclined surface.
  • a third conductive pattern (connection electrode) 31 made of copper foil is formed on the mounting substrate 2 for electrical connection with a circuit element to be mounted. Therefore, at the time of pattern formation (for example, during etching), the heat dissipating metal 30 can be simultaneously formed in a ring shape outside the arrangement region of the semiconductor package 1. Since the back surface of the heat radiating metal 30 is firmly fixed to the surface of the mounting substrate 2, the heat conduction to the mounting substrate 2 side can be further improved.
  • FIG. 2B a slight gap is provided from the outer periphery of the arrangement region, and the heat dissipating metal 30 is provided around the outer periphery.
  • a heat radiating metal 30 made of a metal material having excellent thermal conductivity is provided between the lower side of the side resin 20 and the mounting substrate 2.
  • the width of this metal is formed with almost the same width throughout, and its value is Z4 ⁇ Z2 Is preferred. However, since it is a metal, it is narrow and effective. As described above, Z4 is efficient up to a width where the angle between the inclined surface of the side resin and the mounting substrate is about 45 degrees at the maximum. This point will be described later again with reference to FIG.
  • the material of the heat radiating metal 30 is preferably the same material of Cu. Furthermore, in general, pads that require electrical connection are coated with Au, Ag, Pd, or the like on their surfaces, so that the heat-dissipating metal may be plated with these. In particular, recently, Ni and Au are plated from the lower layer.
  • Ni and Pd have a higher hardness than Au, and in a sense, it is somewhat difficult for a filler to bite in from the surface. In other words, the structure is close to point contact even if contact is made.
  • the filler is slightly different from Ni or Pd. You can bite inside. If it does so, the part which digs in will be in surface contact, and heat conduction will also improve.
  • This structure can be realized by pressing the side resin with a pressing jig as described above in order to bite the filler in the side resin 20. Since the filling rate of the filler is high, the filler on the mounting substrate 2 side can be pushed in by pressing with a pressing jig.
  • the heat dissipation metal 30 has the effect of a seal ring incorporated into the semiconductor IC and traps moisture and harmful gas, so that the connection reliability between the semiconductor package 1 and the mounting substrate 2 can be maintained.
  • the heat dissipation metal has four rounded corners. This is because the side resin 20 becomes hard when cured, stress is applied to the corners of the heat dissipation metal, and peeling from the mounting substrate 2 or peeling from the side resin 20 may occur.
  • FIG. 2 (C) is similar to FIG. 1 (C), in which a heat radiating metal 30 is provided on each of the four side resins 20.
  • both FIG. (B) and (C) are arrange
  • the GND pattern on the mounting board side may be rearranged and connected to the heat radiating metal 30 as shown in the figure.
  • the GND terminal 32 is also provided on the third conductive pattern 31 side corresponding to the GND terminal of the semiconductor package 1, that is, inside the arrangement region, it may be formed integrally with this terminal via wiring. .
  • FIG. 3 employs screwing (clamping means).
  • a heat radiating plate 42 is provided on the back side or the front side of the mounting substrate 2, and the heat radiating plate 42 is attached to the mounting substrate 2 with screws 40 and nuts 41. As shown in the figure, since the entire head of the screw is covered with the side resin 20, heat is released to the mounting substrate 2 and the outside through the side resin 20, the screw, and the heat dissipation metal 42.
  • FIG. 3B illustrates the case where the electrodes 43A and 43B are provided on the front and back of the mounting substrate 2.
  • FIG. The electrode 43A, the mounting substrate 2, the electrode 43B, and the heat sink 42 are fixed with screws 40 and nuts 41 from above.
  • a heat sink may be arrange
  • FIG. 3C This is a thermal via disposed between the electrodes 43A and 43B.
  • the electrodes 43A and 43B are ring-shaped metal having a specified width as described above, or use pads, and in a plan view, the electrodes 43A and 43B are circles, ellipses, or rectangles having a predetermined size.
  • an enlarged area extending from the pad to the open space is formed using the open space on the front and back sides, this becomes a substitute for the heat radiating fin, and the heat radiating effect can be improved. This will be described in detail later with reference to FIG.
  • the semiconductor chip has been described face up, but may be face down.
  • FIG. 4A shows a structure in which the chip 5 of the semiconductor package is face-down, and the back surface of the semiconductor chip 5 faces upward. Therefore, the chip back surface may be exposed from the sealing resin 6, and the side resin 20 may be extended to the side surface of the semiconductor package 1 and the chip back surface 5 on the top surface of the package.
  • the side resin 20 may be in contact with at least a part of the back surface of the chip, but preferably the entire surface of the package 1 is preferable. In this case, the side resin 20 is eventually covered over the entire semiconductor package. Since the side resin is piled up on the front side, it is a little thicker, but it is negligible when compared with the radiating fin. Moreover, if the side resin 20 coated on the front side of the package 1 is pressed with the above-described pressing jig, the surface thereof is flattened, and attachment is easy.
  • FIG. 4B shows the structure shown in FIG. 4A with the radiation fins 40 attached.
  • a heat radiating fin is provided on the side resin 20, and the bottom is radiated by the side resin.
  • the one-dot chain line is the semiconductor chip 5, the rectangle indicated by the dotted line is the semiconductor package 1, and the hatched portion is the heat dissipation metal 30.
  • various elements such as an active element A or a passive element CR including wiring W, a pad P, other ICs and Trs, and the like are provided.
  • an empty space may be provided. In that case, the heat radiation effect can be further enhanced by providing the heat radiation expansion metal 30A integrally with the heat radiation metal 30 in this empty space.
  • the outer shape of the heat dissipating metal 30 has a certain width Z4 and is formed in a ring shape, but the outer shape is substantially rectangular. Therefore, if there is an empty space more than the width of Z4, it may be expanded. For example, if there is a space having a width Z4 or more in the outer shape of the heat radiating metal 30, particularly the outer portion perpendicular to the four sides, the heat radiating expansion metal 30A may be formed in that portion.
  • FIG. 6 in the outer shape of the heat dissipating metal, since there is a free space of Z4 or more on the lower long side and the short right side here, two heat dissipating expansion metals 30A and 30B are provided (one set). Is also good). Note that a heat radiation electrode may be provided on the back side of the mounting substrate 2 corresponding to the heat radiation expansion metal so that heat can be released to the back side through the through hole TH indicated by a cross.
  • the through hole may be formed in a wide area like TH1 or finely provided like TH2.
  • the upper right corner of the semiconductor package 1 is a point P, a dotted line is drawn from the point P toward the substrate 4, and the angle between the dotted line and the substrate surface is defined as ⁇ .
  • the side resin 20 is a curved line portion, which indicates that it is quite viscous.
  • the tip of the side resin 20 that gets wet is from ⁇ 1 of 45 degrees to ⁇ 2 of 30 degrees.
  • the heat radiating metal 30 should be completely included in the side resin 20.
  • at least the tip of the heat dissipation metal is positioned between the point immediately below point P and the point T1 (or point T2). In this case, it is possible to immediately transmit to the heat dissipating metal and to transmit heat to the mounting substrate 2 side.
  • the substrate 4 is a core metal substrate in which a copper foil is sandwiched between core layers.
  • This is a substrate whose core layer is different from an insulating resin and has excellent heat conduction.
  • heat conduction can be further improved by thermally coupling the heat dissipation metal 30 to the copper foil of the core layer.
  • the heat dissipation metal 30 can be directly coupled to the core layer.
  • the mounting substrate side is rough in terms of space, and a space for providing the side resin can be secured, so that the structure is very simple and advantageous in terms of cost.

Abstract

A semiconductor package (1) is mounted on a mounting board (2). However, increases in the performance and capacity of a built-in semiconductor chip (5), and progress in miniaturization of the semiconductor package led to heat from the semiconductor package itself intensifying, resulting in a problem of temperature increases. The present invention is a circuit module (3) having: a semiconductor package (1) that is formed in hexahedron shape, and has externally-connected electrodes on the back surface; and a mounting board (2) to which the semiconductor package (1) is electrically connected and mounted. Furthermore, the circuit module (3) is provided with a side resin (20) that is in contact with the sides of the semiconductor package (1), is disposed at the periphery of the semiconductor package (1) from the sides, and is filled with a filler, enabling heat from the semiconductor package (1) to be dissipated externally with a simple potting structure.

Description

実装基板を用いた回路モジュールCircuit module using mounting board
 本発明は、実装基板を用いた回路モジュールに関する。 The present invention relates to a circuit module using a mounting board.
 最近の地球規模の環境問題から、電力の削減が求められ、様々な対策が施されている。 [Recent global environmental problems require reduction of power and various countermeasures have been taken.
 その中で、エアコン、洗濯機、冷蔵庫等では、電源の高効率化が考慮され、この電源回路に用いられるパワー半導体素子は、より放熱構造の優れた構造が求められている。これは、放熱フィンが取り付けられ、より複雑で厚みも厚くサイズが大きくなっている。 Among them, in air conditioners, washing machines, refrigerators, etc., higher power efficiency is considered, and power semiconductor elements used in this power supply circuit are required to have a more excellent heat dissipation structure. In this case, a heat radiating fin is attached, which is more complicated, thicker and larger in size.
 一方、最近では、電子携帯機器が身の回りに沢山あり、ポケットから取り出した携帯電話で色々な情報が取れる時代に成ってきた。しかも名刺1枚程度のサイズから2枚程度のサイズで、厚さも極めて薄くなってきた。 On the other hand, recently, there are many electronic portable devices around us, and it is now in an era where various information can be obtained with a mobile phone taken out of a pocket. Moreover, the thickness has been extremely reduced from the size of about one business card to about two.
 この小型軽量化を実現させた要因は沢山あるが、一つ目として、IC等の半導体デバイスが高機能に成ってきたことがその要因である。 There are many factors that have realized this reduction in size and weight, but the first is that semiconductor devices such as ICs have become highly functional.
 例えば、図5は、その構造について説明したものである。図5(A)は、一般的な半導体パッケージ1が実装基板2に実装された回路モジュール3を示している。 For example, FIG. 5 illustrates the structure. FIG. 5A shows a circuit module 3 in which a general semiconductor package 1 is mounted on a mounting substrate 2.
 この半導体パッケージ1は、面実装タイプのフラットパッケージで、基板4に半導体チップ5が設けられ、基板4の電極と半導体チップの電極は、電気的に接続されている。また基板4の表面は、半導体チップ5を含め絶縁樹脂6で封止されている。更に、この半導体パッケージ1は、実装基板2に設けられる。 This semiconductor package 1 is a surface mount type flat package, and a semiconductor chip 5 is provided on a substrate 4, and an electrode of the substrate 4 and an electrode of the semiconductor chip are electrically connected. The surface of the substrate 4 is sealed with an insulating resin 6 including the semiconductor chip 5. Further, the semiconductor package 1 is provided on the mounting substrate 2.
 基板4の裏側には、裏面電極7があり、実装基板2の導電パターンと半田を介して電気的に接続されている。また半田の信頼性が考慮されて、基板4と実装基板2との間には、アンダーフィル8が設けられている。例えば、基板4と実装基板2との間は、30μm程度で、その隙間に浸透させるため、アンダーフィルは、粘性の低い樹脂が用いられている。 A back electrode 7 is provided on the back side of the substrate 4 and is electrically connected to the conductive pattern of the mounting substrate 2 via solder. In consideration of solder reliability, an underfill 8 is provided between the substrate 4 and the mounting substrate 2. For example, between the substrate 4 and the mounting substrate 2 is about 30 μm, and in order to permeate the gap, a resin with low viscosity is used for the underfill.
特開2008-22016号JP 2008-22016
 図5(B)は、前述した回路モジュール3を平面的に見た図である。文頭でも述べたように、半導体チップ5は、高機能で、扱う電流も大きくなっている。しかも半導体パッケージのサイズも小さくなってきている。 FIG. 5B is a plan view of the circuit module 3 described above. As described at the beginning of the sentence, the semiconductor chip 5 has a high function and a large current to be handled. In addition, the size of semiconductor packages is becoming smaller.
 極端な話、例えば、平面サイズが2cm×2cmで、Qワットの電力を消費する半導体パッケージ1Aが、翌年には、半導体チップの機能が高められ、1cm×1cmで、2×Qワットの電力の半導体チップ1Bが要求される。 In an extreme case, for example, the semiconductor package 1A that has a plane size of 2 cm × 2 cm and consumes Q watts of power will increase the function of the semiconductor chip in the following year, and the power of 1 cm × 1 cm will be 2 × Q watts of power. The semiconductor chip 1B is required.
 しかし、封止樹脂6は、絶縁材料であるため熱抵抗が高く、しかも基板4自体も、同様な材料からなるため、熱抵抗が高い。よって小さくなった半導体パッケージ1Bは、より放熱対策が求められる。 However, since the sealing resin 6 is an insulating material, it has a high thermal resistance, and the substrate 4 itself is made of the same material, so that the thermal resistance is high. Therefore, the semiconductor package 1B that has become smaller is required to take measures against heat dissipation.
 例えば、フェイスダウン型パワーモジュール等では、チップ裏面に電極として金属板を貼り付けたり、アイランドの下にサーマルビアを設けたり、放熱対策を施している。 For example, in face-down type power modules, a metal plate is attached as an electrode on the back of the chip, a thermal via is provided under the island, and heat dissipation measures are taken.
 今までに述べた全てのパッケージは、前述した軽薄短小、高電力化の流れであり、この半導体パッケージに、安価な対策で、熱が外部に流れ、半導体チップの高温化を防止する対策が求められている。 All the packages described so far have the light, thin, small and high power flow described above, and this semiconductor package requires measures to prevent heat from flowing to the outside and prevent the semiconductor chip from becoming hot as a cheap measure. It has been.
 本発明は、6面体で成り、裏面に外部接続電極を有する半導体パッケージと、前記半導体パッケージが電気的に接続されて実装された実装基板とを有する回路モジュールで、前記半導体パッケージの側面と接触し、前記側面から前記半導体パッケージの周囲に設けられ、中にフィラーが充填されたサイドレジンを設け、簡単なポッティング構造で半導体パッケージの熱を実装基板を介して外部に放熱することで解決するものである。 The present invention is a circuit module including a semiconductor package having a hexahedron and having an external connection electrode on the back surface, and a mounting substrate on which the semiconductor package is electrically connected and is in contact with a side surface of the semiconductor package. The problem is solved by providing a side resin provided around the semiconductor package from the side surface and filled with a filler, and radiating the heat of the semiconductor package to the outside through the mounting substrate with a simple potting structure. is there.
 フィラーの入った樹脂で半導体パッケージを囲むことで、半導体パッケージの熱は、この樹脂に溜まると同時に、実装基板側へ伝わる。放熱経路の拡大は、接触面積で効き、移動した熱の蓄熱容量は、樹脂の体積で効く。特に、樹脂は、半導体パッケージの側面と接触し、更には実装基板と接触していることから、熱は、半導体パッケージから実装基板側へ伝えることができる。 囲 む By enclosing the semiconductor package with a resin containing filler, the heat of the semiconductor package accumulates in this resin and is transmitted to the mounting board side at the same time. The expansion of the heat radiation path is effective in the contact area, and the heat storage capacity of the transferred heat is effective in the volume of the resin. In particular, since the resin is in contact with the side surface of the semiconductor package and further in contact with the mounting substrate, heat can be transferred from the semiconductor package to the mounting substrate side.
本発明の実施の形態である、実装基板を用いた回路モジュールの図である。It is a figure of the circuit module using the mounting board | substrate which is embodiment of this invention. 本発明の実施の形態である、実装基板を用いた回路モジュールの図である。It is a figure of the circuit module using the mounting board | substrate which is embodiment of this invention. 本発明の実施の形態である、実装基板を用いた回路モジュールの図である。It is a figure of the circuit module using the mounting board | substrate which is embodiment of this invention. 本発明の実施の形態である、実装基板を用いた回路モジュールの図である。It is a figure of the circuit module using the mounting board | substrate which is embodiment of this invention. 従来の実装基板を用いた回路モジュールの図である。It is a figure of the circuit module using the conventional mounting board | substrate. 本発明の実施形態である、回路モジュールの図である。It is a figure of the circuit module which is embodiment of this invention. 本発明の実施形態である、回路モジュールの図である。It is a figure of the circuit module which is embodiment of this invention.
 本発明は、回路モジュール3に於いて、樹脂20に特徴があり、この絶縁性樹脂20により半導体パッケージ1の熱を放熱させる事に特徴がある。好ましくは、半導体パッケージの裏面(実装基板2と対向する半導体パッケージ1の裏面)には、配置されず、半導体パッケージ1の側面とこの樹脂20が接触することで、半導体パッケージ1の熱を取り込み、同時に、実装基板2面と接触して、実装基板2側に熱を伝えるように設けられた塗布型の絶縁性樹脂20に特徴を有する。尚、以降は、この樹脂をサイドレジン20と呼ぶ。このサイドレジン20は、図1の様に、熱伝導性の優れた材料、一例として、金属、金属酸化物、金属の合金、またはこの合金の酸化物などからなるフィラーが混入されている。特に、電極または配線などの短絡が考慮されて、絶縁性を示す物質、例えば金属酸化物、合金の酸化物などが好ましい。またその充填率は、80%以上95%以下と高く、その粘性も大きい。 The present invention is characterized by the resin 20 in the circuit module 3 and is characterized in that the heat of the semiconductor package 1 is dissipated by the insulating resin 20. Preferably, the semiconductor package 1 is not disposed on the back surface of the semiconductor package (the back surface of the semiconductor package 1 facing the mounting substrate 2), and the side surface of the semiconductor package 1 and the resin 20 are in contact with each other, thereby taking in the heat of the semiconductor package 1. At the same time, the coating-type insulating resin 20 is provided so as to contact the surface of the mounting substrate 2 and transmit heat to the mounting substrate 2 side. Hereinafter, this resin is referred to as a side resin 20. As shown in FIG. 1, the side resin 20 is mixed with a material having excellent thermal conductivity, for example, a filler made of metal, metal oxide, metal alloy, or oxide of this alloy. In particular, in consideration of a short circuit of an electrode or a wiring, an insulating material such as a metal oxide or an oxide of an alloy is preferable. Moreover, the filling rate is as high as 80% or more and 95% or less, and its viscosity is large.
 ここで、アンダーフィル8とサイドレジン20を区別するため、以下にアンダーフィル8の説明をする。 Here, in order to distinguish the underfill 8 from the side resin 20, the underfill 8 will be described below.
 図5で説明したアンダーフィル8は、一般には、充填率がMAXで70~80%程度で、樹脂と溶剤の選択により、硬化前では、実装基板2と半導体パッケージ1との隙間には、毛細管現象により、半導体パッケージ1裏面全域にスーッと入っていく、粘度の低い樹脂である。このアンダーフィルの目的は、例えばアンダーフィルの材料であるエポキシ樹脂の熱膨張係数α(40ppm程度)を、基板4と同程度、または実装基板2と基板4の間のαにする事で、半田接続部の信頼性を向上させる事にある。これは、実装基板2と半導体パッケージ1を半田で接続した時、その半田に加わる応力を緩和できる特徴がある。例えば、熱膨張係数の違いにより、両者のずれの力を、間で減少させるものである。特に狭い隙間にボイドも無く浸透させるため、フィラー粒径が小さい。しかしながら、このフィラー粒径が小さいと、フィラー全体の表面積が広がり、ここには樹脂が被覆されるため、熱伝導路に対して相対的に樹脂の存在の比率が多くなり、熱抵抗を小さくする事は、あまり期待できない。また図5の様に、アンダーフィル8は、若干、半導体パッケージ1の側面、特に下方の側面を覆う場合があるが、実質半導体パッケージ1の裏面全域と実装基板2の隙間に、同一材料で一体で充填されるため、サイドレジン8とはっきりと区別できる。 The underfill 8 described with reference to FIG. 5 generally has a filling rate of about 70 to 80% in terms of MAX. Depending on the choice of resin and solvent, before curing, there is a capillary tube in the gap between the mounting substrate 2 and the semiconductor package 1. This is a low-viscosity resin that smoothly enters the entire back surface of the semiconductor package 1 due to the phenomenon. The purpose of this underfill is, for example, by setting the thermal expansion coefficient α (about 40 ppm) of the epoxy resin, which is an underfill material, to the same level as that of the substrate 4 or α between the mounting substrate 2 and the substrate 4. It is to improve the reliability of the connection part. This is characterized in that when the mounting substrate 2 and the semiconductor package 1 are connected by solder, stress applied to the solder can be relieved. For example, due to the difference in thermal expansion coefficient, the displacement force between them is reduced between them. In particular, the filler particle size is small because it penetrates into narrow gaps without voids. However, if the filler particle size is small, the surface area of the entire filler is widened, and the resin is coated here, so that the ratio of the presence of the resin relative to the heat conduction path increases and the thermal resistance is reduced. I can't expect much. As shown in FIG. 5, the underfill 8 may slightly cover the side surface of the semiconductor package 1, particularly the lower side surface. However, the underfill 8 is substantially integrated with the same material in the entire gap between the back surface of the semiconductor package 1 and the mounting substrate 2. Therefore, it can be clearly distinguished from the side resin 8.
 この様に、アンダーフィルとサイドレジンとは、使われ方に大きく違いがある。 As you can see, underfill and side resin are used in different ways.
 更には、従来のパッケージでは、放熱が考慮され、例えば放熱フィン、金属板等の放熱部品が取り付けられる。この放熱部品を採用する場合、パッケージ自体の構造を変えて放熱部品を取り付け易くしたりするため、また半導体パッケージの熱を効率良く外部に放出するため、全体の構造が複雑となり、その開発期間も時間を要したり、装着性も手間がかかり、結局はコスト等の問題が有った。しかし、サイドレジン20は、半導体パッケージ1の側面からその外側に渡る領域に対応した実装基板2に、塗るだけで良く、簡単にその対策がとれ、そのコストも低下させることが可能である。 Furthermore, in the conventional package, heat radiation is taken into consideration, and for example, heat radiation parts such as heat radiation fins and metal plates are attached. When this heat dissipation component is adopted, the overall structure becomes complicated, because the structure of the package itself is changed to make it easier to attach the heat dissipation component, and the heat of the semiconductor package is efficiently released to the outside. It took time and was troublesome to wear, resulting in problems such as cost. However, the side resin 20 only needs to be applied to the mounting substrate 2 corresponding to the region extending from the side surface of the semiconductor package 1 to the outside thereof, so that the countermeasure can be easily taken and the cost can be reduced.
 しかも放熱フィンを取り付けた半導体パッケージを携帯電話に採用すると、携帯電話の薄型化が難しくなり、携帯機器に於いては解決策とならない。モジュールとして薄型を維持しつつ、半導体パッケージ1の熱を外部に放出しなければならない。この点では、サイドレジン20は、薄さを維持しつつ、放熱も可能となるため、大変意味のある方策と言える。 Moreover, if a semiconductor package with a heat radiating fin is used in a mobile phone, it becomes difficult to make the mobile phone thinner, and this is not a solution for mobile devices. The heat of the semiconductor package 1 must be released to the outside while keeping the module thin. In this respect, the side resin 20 can be said to be a very meaningful measure because it can be dissipated while maintaining its thinness.
 では、具体的に本発明の説明をしていく。図1(A)は、半導体パッケージ1が実装基板2に設けられ、サイドレジン20が設けられた図である。 Now, the present invention will be specifically described. FIG. 1A is a diagram in which the semiconductor package 1 is provided on the mounting substrate 2 and the side resin 20 is provided.
 まず、半導体パッケージ1は、特に限定しないが、側面の接触面積、リードの飛び出による不都合さ等の構造的な点が考慮され、面実装型のパッケージが好ましい。ここでは、MAP法(Matrix Array Packaging method)で作られたもので、リードフレーム型、基板型、更にはハーフエッチング型で製造する事ができる。半導体チップ5は、フェイスアップ型、フェイスダウン型が採用される。簡単に説明すれば、マトリックス状に並んだ複数の実装エリアに半導体チップ1をそれぞれ実装し、一括モールドしたら、ダイシング装置で封止樹脂から基板4までフルカットするものである。よって半導体パッケージ1は、上面、裏面、上面と下面の間に配置された4側面からなる6面体でなり、裏面に、外部接続電極が配置されている。 First, the semiconductor package 1 is not particularly limited, but a surface mount type package is preferable in consideration of structural points such as a contact area on a side surface and inconvenience due to jumping out of a lead. Here, it is made by the MAP method (Matrix Array Packaging method), and can be manufactured by a lead frame type, a substrate type, and further a half-etching type. As the semiconductor chip 5, a face-up type or a face-down type is adopted. Briefly, when the semiconductor chip 1 is mounted in each of a plurality of mounting areas arranged in a matrix and is collectively molded, the dicing machine performs a full cut from the sealing resin to the substrate 4. Therefore, the semiconductor package 1 is a hexahedron having four side surfaces disposed between the upper surface, the rear surface, and the upper and lower surfaces, and the external connection electrodes are disposed on the rear surface.
 MAPで形成された半導体パッケージ1について説明する。 The semiconductor package 1 formed by MAP will be described.
 まず基板型の場合、ユニットの導電パターンが縦横に並んだ大判の基板を用意し、この上に夫々半導体チップ5が設けられる。基板4は、樹脂からなるプリント基板、セラミック基板が採用され、基板4の表面には、ユニット毎に第1の導電パターン21がある。この第1の導電パターン21は、ボンディングパッド、アイランドおよび配線が主たる構成要素で、多層基板であれば、夫々の層に導電パターンが必要によって設けられる。また表から裏に渡る電気的接続を実現するため、スルーホール等が設けられる。そして基板4の裏面には、第2の導電パターン22が設けられ、例えば、外部接続電極や、必要によってこの外部接続電極を再配置する再配線等から構成される。尚、基板4は、2層構造で図示されているが、4層、6層・・・と複数の層数で良い。尚、この基板は、コア層が絶縁材料からなるが、最近では放熱性が考慮され、コア層の中に金属箔、例えばCu箔が埋め込まれたコアメタル基板も採用可能である。 First, in the case of the substrate type, a large-sized substrate in which the conductive patterns of the units are arranged vertically and horizontally is prepared, and the semiconductor chip 5 is provided thereon. As the substrate 4, a printed circuit board made of resin or a ceramic substrate is adopted, and the surface of the substrate 4 has a first conductive pattern 21 for each unit. The first conductive pattern 21 is mainly composed of bonding pads, islands, and wiring. If the first conductive pattern 21 is a multilayer substrate, a conductive pattern is provided in each layer as necessary. In addition, a through hole or the like is provided in order to realize electrical connection from the front to the back. A second conductive pattern 22 is provided on the back surface of the substrate 4 and includes, for example, external connection electrodes and rewiring for rearranging the external connection electrodes as necessary. Although the substrate 4 is illustrated in a two-layer structure, the number of layers may be four layers, six layers,. In this substrate, the core layer is made of an insulating material. However, recently, heat dissipation is taken into consideration, and a core metal substrate in which a metal foil, for example, a Cu foil is embedded in the core layer can also be used.
 ここではアイランドに半導体チップ5が電気的に接続されて設けられているが、最表面に形成される絶縁層、例えばソルダーレジストPSRが設けられ、その上に接着剤によって直接固着されても良い。そして半導体チップ5の電極と基板4のボンディングパッド21とが電気的に接続される。例えば、フェイスアップであれば、金属細線が用いられ、フェイスダウンであれば、半導体チップの電極とボンディングパッドが、半田ボールまたはバンプ等で接続される。更に、基板4の表面は、これら縦横に並んだ沢山の半導体チップ5を一括して覆うように封止樹脂6で封止されている。そしてユニット毎にダイシング装置でフルカットされ、6面体の半導体パッケージ1が作られる。 Here, the semiconductor chip 5 is electrically connected to the island, but an insulating layer formed on the outermost surface, for example, a solder resist PSR, may be provided, and may be directly fixed thereon with an adhesive. Then, the electrode of the semiconductor chip 5 and the bonding pad 21 of the substrate 4 are electrically connected. For example, if the face is up, a thin metal wire is used. If the face is down, the electrode of the semiconductor chip and the bonding pad are connected by solder balls or bumps. Further, the surface of the substrate 4 is sealed with a sealing resin 6 so as to cover a large number of these semiconductor chips 5 arranged vertically and horizontally. Each unit is fully cut by a dicing apparatus, and a hexahedral semiconductor package 1 is produced.
 尚、図1の基板4は、絶縁性樹脂からなるコア層の両面に、導電パターンが絶縁処理されながら1層以上積層されている。上側も下側も、コア層の上に、第1層目の導電パターンが設けられ、続いて第2層目の絶縁層が被覆されたら、更に第2層目の導電パターンが設けられ、これらが繰り返されて、2層、4層、6層、8層・・・となる。つまり偶数層の基板となる。 Note that one or more layers of the substrate 4 in FIG. 1 are laminated on both surfaces of a core layer made of an insulating resin while a conductive pattern is insulated. Both the upper side and the lower side are provided with the first layer conductive pattern on the core layer, and when the second insulating layer is subsequently coated, the second layer conductive pattern is further provided. Are repeated to form two layers, four layers, six layers, eight layers, and so on. That is, the substrate is an even layer.
 しかし最近では、コア層が省略された基板もある。つまり、下から、第1層目の絶縁層、第1層目の導電パターン、第2層目の絶縁層、第2層目の導電パターンと、絶縁層と導電パターンが繰り返し積層されたもので、裏面となる第1層目の絶縁層および最上層の絶縁層は、それぞれ電極が露出されもので、一般には、コア層が省略されたものであるため、コアレス基板と呼んでいる。これはコア層が無いため、その分、基板の厚みを薄くできるものである。 However, recently, there is a substrate in which the core layer is omitted. That is, from the bottom, the first insulating layer, the first conductive pattern, the second insulating layer, the second conductive pattern, and the insulating layer and the conductive pattern are repeatedly stacked. The first insulating layer and the uppermost insulating layer on the back surface are called as coreless substrates because the electrodes are exposed and the core layer is generally omitted. Since there is no core layer, the thickness of the substrate can be reduced accordingly.
 リードフレーム型は、アイランドとその周囲に位置する電極(リード)をユニットとし、これを縦横に並んで用意されたリードフレームを用意する。リードフレームは、開口部が沢山あるため、このリードフレームの裏面にシートを貼りあわせ、あたかも基板の如き形状にしてから、素子の実装、電気的接続を行う。その後、縦横に並んだユニットは、封止樹脂で一括封止される。そしてシートを剥がし、封止樹脂の裏面から露出するリードフレームをエッチングや研削で処理し、リードフレームを構成するアイランドやリードに分離し、その後、MAPと同様な方法でフルカットする。 The lead frame type uses an island and electrodes (leads) located around it as a unit, and prepares a lead frame prepared by arranging them vertically and horizontally. Since the lead frame has many openings, a sheet is pasted on the back surface of the lead frame to make it look like a substrate, and then the elements are mounted and electrically connected. Thereafter, the units arranged vertically and horizontally are collectively sealed with a sealing resin. Then, the sheet is peeled off, and the lead frame exposed from the back surface of the sealing resin is processed by etching or grinding to separate it into islands and leads constituting the lead frame, and then full cut by the same method as MAP.
 その結果、裏面に、封止樹脂からアイランドやリードが露出した前記6面体のパッケージができる。 As a result, the hexahedral package in which islands and leads are exposed from the sealing resin on the back surface can be obtained.
 ハーフエッチング型は、銅箔がハーフエッチングで形成され、電極などのユニットパターンを縦横に形成し、裏面に残る銅箔を、前記シートの役目として使うものである。同様に、素子の実装、電気的接続、一括封止を行い、その後、裏面に残った銅箔をエッチバックし、電極以外を取り除いて電気的に分離する。そしてフルカットをする事で前記6面体を形成する。 In the half-etching type, the copper foil is formed by half-etching, unit patterns such as electrodes are formed vertically and horizontally, and the copper foil remaining on the back surface is used as the role of the sheet. Similarly, the elements are mounted, electrically connected, and collectively sealed, and then the copper foil remaining on the back surface is etched back, and other than the electrodes are removed and electrically separated. The hexahedron is formed by full cutting.
 どちらのパッケージであっても、ダイシング装置でフルカットするため、上面、裏面、そして上面と裏面の周囲をつなぐ4つの側面から成る6面体となる。これら6面体のパッケージは、半導体の厚み、基板の厚みが薄くなってきており、パッケージとして薄くできる。例えば、BGAなどは、この構造であり、携帯電話、携帯用のコンピュータ、デジタルカメラなどで多用されている。また最近は、SIP(System in Package)と称し、チップが何枚もスタックされた3次元型、チップが平面的に配置されたプレーン型が採用され、大規模容量のメモリ、大規模な回路が組み込まれたシステムICが実現されている。 Both packages have a hexahedron consisting of four sides connecting the periphery of the upper surface and the back surface and the upper surface and the back surface in order to make a full cut with a dicing machine. In these hexahedral packages, the thickness of the semiconductor and the thickness of the substrate have been reduced, and the package can be made thinner. For example, BGA and the like have this structure and are frequently used in mobile phones, portable computers, digital cameras, and the like. Recently, it is called SIP (System in Package), and a three-dimensional type in which many chips are stacked and a plain type in which chips are arranged in a plane are adopted, and a large-capacity memory and a large-scale circuit are used. An embedded system IC is realized.
 一方、この半導体パッケージ1を実装する実装基板2は、例えば、携帯機器などのセットに組み込まれるもので、一般には、1層以上のパターンを有するプリント基板である。このプリント基板は、チップコンデンサ、チップ抵抗などの受動素子も含め、実装されて、セット内の電子回路が実現されている。 On the other hand, the mounting substrate 2 on which the semiconductor package 1 is mounted is incorporated into a set of, for example, a portable device, and is generally a printed substrate having a pattern of one or more layers. This printed circuit board is mounted including passive elements such as a chip capacitor and a chip resistor, and an electronic circuit in the set is realized.
 本発明の特徴は、図1(A)に示すように、半導体パッケージ1の側面にサイドレジン20を設けることにある。樹脂材料は、エポキシ樹脂、アクリル、シリコーン、ウレタンなどであり、その中にフィラーが混入されている。また、その充填率を80%以上、95%程度とし、硬化前の状態では、アンダーフィルから比べると、粘度が大きく設定されている。例えば実装基板2と基板4との間隔をXとした場合、そのフィラーサイズは、その長さ(破砕フィラー)または直径(粒型フィラー)の平均がX程度、またはXよりも大きいサイズのフィラーが混入され、実装基板2と基板4との間に、サイドレジン20が侵入しないようにしてある。また前述した充填率にするため、大きなフィラーの間の隙間には、小さなサイズのフィラーも充填されている。 The feature of the present invention resides in that a side resin 20 is provided on the side surface of the semiconductor package 1 as shown in FIG. The resin material is an epoxy resin, acrylic, silicone, urethane or the like, and a filler is mixed therein. Moreover, the filling rate is set to about 80% or more and about 95%, and in the state before curing, the viscosity is set to be larger than that from underfill. For example, when the interval between the mounting substrate 2 and the substrate 4 is X, the filler size is such that the average length (crushed filler) or diameter (granular filler) is about X or larger than X. The side resin 20 is prevented from entering between the mounting board 2 and the board 4 by being mixed. Further, in order to obtain the above-described filling rate, the gaps between the large fillers are also filled with small size fillers.
 特に、隙間Xが、例えば30μm~50μmの間で選択された値とした時、それと同等か、1~2割程度大きなサイズが、最大粒径(φ≒Xμm×(1.1~1.3))として選択される。そうすることで、大きなサイズのフィラーは、隙間Xに浸入できず、結局サイドレジン20は、隙間に浸入しづらくなる。 In particular, when the gap X is set to a value selected between 30 μm and 50 μm, for example, the maximum particle size (φ≈X μm × (1.1 to 1.3) )) Selected. By doing so, a filler of a large size cannot enter the gap X, and the side resin 20 hardly enters the gap after all.
 この浸入の程度について説明する。パッケージ1がBGAの場合、外部電極(裏面電極)は、縦横に格子状に並ぶか、リング状に何重にも並んで形状をなす。この場合で考えれば、裏面を平面視で見て、最外の外部接続電極とサイドレジン20が接触する程度まで浸入する事は、浸入しないものと仮定する。尚、この点に関しては、BGA以外のパッケージでも同様である。またフィラーは、特定のフィラーだけを選別する事は、実質不可能であり、一般には、Maxwell分布を示す。そのため、小さなフィラーも混入されている事から、場合によっては、隙間に若干浸入する可能性は否定できない。 Explain the extent of this intrusion. When the package 1 is a BGA, the external electrodes (back surface electrodes) are arranged in a grid pattern in the vertical and horizontal directions, or are arranged in a ring shape in multiple layers. In this case, it is assumed that it is not intruding that the outermost external connection electrode and the side resin 20 come into contact with each other when the back surface is viewed in a plan view. This is the same for packages other than BGA. Moreover, it is practically impossible to select only a specific filler as a filler, and generally shows a Maxwell distribution. Therefore, since a small filler is also mixed, in some cases, the possibility of slightly entering the gap cannot be denied.
 一方、アンダーフィルは、平面的に見て、基板4の中央に相当するパッケージの裏まで浸透する。結局は、半導体パッケージ1の裏面全域に浸透するアンダーフィルとサイドレジンは、はっきりと区別される。 On the other hand, the underfill penetrates to the back of the package corresponding to the center of the substrate 4 in plan view. Eventually, the underfill and side resin that permeate the entire back surface of the semiconductor package 1 are clearly distinguished.
 アンダーフィルに、サイドレジンの様に、大きなサイズのフィラーが混入されると、粘度が大きくなって流動性が悪くなり、浸透が難しかったり、硬化の後、熱膨張により、電極22と実装基板2側の電極とを乖離したり、またフィラーが隣り合う外部接続電極22との間、更には、実装基板側の電極をまたぎ、耐電圧劣化の原因となったりするため、このような大きなサイズは採用が難しい。 When a filler of a large size, such as a side resin, is mixed into the underfill, the viscosity increases and fluidity deteriorates, penetration is difficult, or after curing, the electrode 22 and the mounting substrate 2 are caused by thermal expansion. This large size may cause a breakdown of the withstand voltage due to the separation of the electrode on the side or between the external connection electrode 22 adjacent to the filler and the electrode on the side of the mounting board. Hiring is difficult.
 このフィラー入りのサイドレジン20は、フィラーの混入率が大きく、また粒径も大きくなることで、熱伝導性がアンダーフィルよりも大きくなる。また図1(B)の如く、半導体パッケージ1の周囲に、その幅Z3、高さhを持って塗布されるため、体積も多く塗布され、その熱容量も大きくなる。よって半導体パッケージ1に発生した熱は、太い矢印で示したように、サイドレジンに伝わり、蓄熱され、並行して実装基板2に放熱される。 The side resin 20 containing filler has a large filler mixing rate and a large particle size, so that the thermal conductivity is larger than that of the underfill. Further, as shown in FIG. 1B, since it is applied around the semiconductor package 1 with its width Z3 and height h, it is applied in a large volume and its heat capacity increases. Therefore, the heat generated in the semiconductor package 1 is transferred to the side resin as shown by the thick arrows, is stored, and is radiated to the mounting substrate 2 in parallel.
 図1(B)、(C)は、サイドレジン20の塗布の仕方を説明するもので、細かな点で打たれたエリアが、サイドレジン20が設けられた部分である。(B)は、全周ぐるりと覆った場合であり、図1(C)は、各側辺の中央に開放部が設けられ、4つのコーナーを含めてサイドレジン20で覆ったものである。 1 (B) and 1 (C) illustrate how to apply the side resin 20, and an area struck by fine points is a portion where the side resin 20 is provided. (B) is a case where the entire circumference is covered, and FIG. 1 (C) is an example in which an open portion is provided at the center of each side and the side resin 20 is covered including four corners.
 例えば、パッケージ側面の高さ(厚み)をZ1とし、サイドレジン20の塗られた所の高さ(厚み)をZ2とする。ポッティングであるため、パッケージの側面の高さ方向に於いて、全域を塗ることができれば良いが、なかなかそうもいかない。
よって
Z2≒(Z1+X)×(0.8~1.0程度)
程度の範囲で塗るのが適当と思われる。例えば、パッケージの厚みが、0.3mm~1mmだとすれば、自ずと算出できる。
For example, the height (thickness) of the side surface of the package is Z1, and the height (thickness) where the side resin 20 is applied is Z2. Because it is potting, it is only necessary to be able to paint the whole area in the height direction of the side of the package, but it is not so easy.
Therefore, Z2≈ (Z1 + X) × (about 0.8 to 1.0)
It seems to be appropriate to apply within a certain range. For example, if the thickness of the package is 0.3 mm to 1 mm, it can be calculated automatically.
 その時、リング状に塗られたサイドレジン20の幅Z3は、大きいほうがよく、好ましくは、
Z3≧Z2
が良い。こうすれば、半導体パッケージ1側面からサイドレジン20を介して実装基板2側へ熱の伝わる経路が大きくなるため、放熱効果がより大きくなるメリットがある。特にサイドレジンの傾斜面と実装基板との角度を45度から30度程度までとし、Z3を拡大することも良い。
At that time, the width Z3 of the side resin 20 applied in a ring shape should be large, preferably
Z3 ≧ Z2
Is good. By doing so, the path through which heat is transferred from the side surface of the semiconductor package 1 to the mounting substrate 2 side via the side resin 20 is increased, and there is an advantage that the heat dissipation effect is further increased. In particular, the angle between the inclined surface of the side resin and the mounting substrate may be about 45 degrees to 30 degrees, and Z3 may be enlarged.
 図1(C)は、サイドレジン20に開放部23が設けられるものである。図1(B)に於いて、サイドレジン20で囲まれたエリアには、アンダーフィルが無く、空間となったとき、その空間にはガスがたまるからで、ガスの逃げを作っている。開放部23の数や位置は特に限定されない。 FIG. 1C shows the side resin 20 provided with an opening 23. In FIG. 1 (B), the area surrounded by the side resin 20 has no underfill, and when it becomes a space, gas accumulates in the space, so that gas escape is made. The number and position of the opening parts 23 are not particularly limited.
 また中に、前記サイドレジンよりもフィラー含有率の低いアンダーフィルが設けられた場合、先にアンダーフィルは硬化されることもあり、アンダーフィルの隙間にトラップされたガスの逃げを作っている。 In addition, when an underfill having a lower filler content than the side resin is provided inside, the underfill may be hardened first, and the trapped gas escapes in the gap of the underfill.
 更には、半導体パッケージ1の裏面は、矩形であり、その4つの角部は、応力が集中する部分である。これは、半導体パッケージ1と実装基板2の熱膨張係数αの違いから、どうしても角部に応力が集中し、角部の近傍の半田ボールはクラックが発生しやすい。しかしこのサイドレジン20が半導体パッケージ1の裏面の角部を構成する側面を覆うため、その応力に対抗させることができる。 Furthermore, the back surface of the semiconductor package 1 is rectangular, and its four corners are portions where stress is concentrated. This is because stress is inevitably concentrated at the corners due to the difference in the thermal expansion coefficient α between the semiconductor package 1 and the mounting substrate 2, and the solder balls near the corners are liable to crack. However, since the side resin 20 covers the side surfaces constituting the corners of the back surface of the semiconductor package 1, the stress can be counteracted.
 更に、側面の接触面積を大きくする上で、図1(D)の様に、パッケージ1の上面から下方に向うにつれ、外側に向かう傾斜面を形成すると、側面の面積が拡大され、効果が大である。これは、図1(E)を参照して、符号24は、マトリックス状に並んだ素子配置領域を有する大判の基板を一括封止したもので、それを符号25で示すようなダイサーで分離すれば、容易に製造できる。 Further, in order to increase the contact area of the side surface, as shown in FIG. 1 (D), when the inclined surface is formed outwardly from the upper surface of the package 1, the area of the side surface is enlarged and the effect is large. It is. Referring to FIG. 1 (E), reference numeral 24 denotes a large-sized substrate having element arrangement regions arranged in a matrix and is collectively sealed and separated by a dicer as indicated by reference numeral 25. Can be easily manufactured.
 尚、サイドレジン20は、粘度が高いとはいえ、流動性があるため、どうしても流れて、中のフィラーとパッケージ1の側面は、接触しているものもあれば、若干隙間があるものもある。よってサイドレジン20の硬化前に、湾曲した面を、平らな押圧冶具を使って押圧しても良い。そうすれば、中のフィラーが側面に当接し、熱抵抗を減少させることができる。図1(A)は、サイドレジン20の表面が湾曲面を描いているが、この押圧冶具を使うため、傾斜面の少なくとも一部は、フラットな面の傾斜面と成る。 Although the side resin 20 has a fluidity even though the viscosity is high, the side resin 20 always flows, and the filler and the side surface of the package 1 may be in contact with each other, or there may be some gaps. . Therefore, the curved surface may be pressed using a flat pressing jig before the side resin 20 is cured. If it does so, an inside filler will contact | abut to a side surface and heat resistance can be reduced. In FIG. 1A, the surface of the side resin 20 is a curved surface, but since this pressing jig is used, at least a part of the inclined surface is a flat inclined surface.
 続いて、図2を用いて、図1の構造に、更に改良を加えた構造を説明する。違いは、実装基板2側に設けた放熱メタル30である。 Subsequently, a structure obtained by further improving the structure of FIG. 1 will be described with reference to FIG. The difference is the heat dissipating metal 30 provided on the mounting substrate 2 side.
 実装基板2には、図1と同様に、実装される回路素子との電気的接続のため、銅箔による第3の導電パターン(接続電極)31が形成されている。そのため、パターン形成時、(例えばエッチングの際に)、半導体パッケージ1の配置領域の外側に、リング状に放熱メタル30を同時に形成できる。この放熱メタル30の裏面は、実装基板2の表面に、ベタで固着されるため、更に実装基板2側への熱伝導を改善することができる。 As in FIG. 1, a third conductive pattern (connection electrode) 31 made of copper foil is formed on the mounting substrate 2 for electrical connection with a circuit element to be mounted. Therefore, at the time of pattern formation (for example, during etching), the heat dissipating metal 30 can be simultaneously formed in a ring shape outside the arrangement region of the semiconductor package 1. Since the back surface of the heat radiating metal 30 is firmly fixed to the surface of the mounting substrate 2, the heat conduction to the mounting substrate 2 side can be further improved.
 図2(B)は、配置領域の外周から若干の隙間を設け、外周をぐるりと放熱メタル30を設けたものである。図1と異なり、サイドレジン20の下側と実装基板2との間に、熱導電性の優れた金属材料から成る放熱メタル30が設けられるため、更に、半導体パッケージ1の熱を外部(例えば実装基板2側)に伝えることができる。このメタルの幅は、全域ほぼ同じ幅で形成され、その値は、
Z4≧Z2
が好ましい。しかし、金属であるため、狭くてその効果はある。また前述した様に、Z4は、最大でも、サイドレジンの傾斜面と実装基板との角度が45度程度の幅までが効率的である。この点に関しては、図7を使って再度後述する。
In FIG. 2B, a slight gap is provided from the outer periphery of the arrangement region, and the heat dissipating metal 30 is provided around the outer periphery. Unlike FIG. 1, a heat radiating metal 30 made of a metal material having excellent thermal conductivity is provided between the lower side of the side resin 20 and the mounting substrate 2. To the substrate 2 side). The width of this metal is formed with almost the same width throughout, and its value is
Z4 ≧ Z2
Is preferred. However, since it is a metal, it is narrow and effective. As described above, Z4 is efficient up to a width where the angle between the inclined surface of the side resin and the mounting substrate is about 45 degrees at the maximum. This point will be described later again with reference to FIG.
 またプリント基板には、Cuのパターンが形成されているのが一般的であるため、放熱メタル30の材料は、同じCuを主材料とするものが良い。更に、一般的に、電気的接続が必要なパッドは、表面がAu、AgまたはPd等で被覆されるため、放熱メタルにもこれらのメッキが施されても良い。特に、最近では、下層からNi、Auのメッキ処理が施されている。 Since the printed circuit board generally has a Cu pattern, the material of the heat radiating metal 30 is preferably the same material of Cu. Furthermore, in general, pads that require electrical connection are coated with Au, Ag, Pd, or the like on their surfaces, so that the heat-dissipating metal may be plated with these. In particular, recently, Ni and Au are plated from the lower layer.
 これら表面の金属は、フィラーの接触を考える意味でも重要である。例えば、NiやPdは、Auなどから比べるとその硬度が高く、ある意味、フィラーは、表面から中に食い込むことがやや難しい。つまり接触させても点接触に近い構造である。しかし放熱メタルの最表面をNiまたはPdよりも柔らかい金属、例えば、Au、Ag、はAl、SnまたはZnで覆うか、またはそのままCuとすれば、NiやPdとは異なり、フィラーは、若干ではあるが中に食い込むことができる。そうすれば、食い込んだ部分は面接触となり、熱伝導も向上する。この構造にするには、サイドレジン20の中のフィラーを食い込ませるため、前述したような押圧冶具でサイドレジンを押圧させる事で実現が可能である。これは、フィラーの充填率が高いため、押圧冶具で押圧すれば、実装基板2側のフィラーを押し込む事が可能である。 These metal surfaces are also important in terms of filler contact. For example, Ni and Pd have a higher hardness than Au, and in a sense, it is somewhat difficult for a filler to bite in from the surface. In other words, the structure is close to point contact even if contact is made. However, if the outermost surface of the heat-dissipating metal is covered with a metal softer than Ni or Pd, such as Au, Ag, or Al, Sn or Zn, or is made Cu as it is, the filler is slightly different from Ni or Pd. You can bite inside. If it does so, the part which digs in will be in surface contact, and heat conduction will also improve. This structure can be realized by pressing the side resin with a pressing jig as described above in order to bite the filler in the side resin 20. Since the filling rate of the filler is high, the filler on the mounting substrate 2 side can be pushed in by pressing with a pressing jig.
 更に、放熱メタル30は、半導体ICに取り入れられるシールリングの効能を有し、湿気や有害ガスをトラップするため、半導体パッケージ1と実装基板2との接続信頼性を維持させることもできる。 Furthermore, the heat dissipation metal 30 has the effect of a seal ring incorporated into the semiconductor IC and traps moisture and harmful gas, so that the connection reliability between the semiconductor package 1 and the mounting substrate 2 can be maintained.
 また、放熱メタルは、4つの角部を丸くしている。サイドレジン20は、硬化すると硬くなり、放熱メタルの角部に応力が加わり、実装基板2から剥離、またはサイドレジン20との剥離が発生する恐れがあるからである。 Also, the heat dissipation metal has four rounded corners. This is because the side resin 20 becomes hard when cured, stress is applied to the corners of the heat dissipation metal, and peeling from the mounting substrate 2 or peeling from the side resin 20 may occur.
 図2(C)は、図1(C)と同様で、4つのサイドレジン20の夫々に放熱メタル30が設けられたものである。尚、図(B)、(C)ともに、端子の近傍に配置されるため、GNDに接地された方が良い場合がある。特に、GND接地の場合、実装基板側のGNDパターンを再配置して図の様な放熱メタル30と接続しても良い。また半導体パッケージ1のGND端子に相当する第3の導電パターン31側、つまり配置領域の内側にも、GND端子32が設けられているので、この端子と配線を介して一体で形成しても良い。 FIG. 2 (C) is similar to FIG. 1 (C), in which a heat radiating metal 30 is provided on each of the four side resins 20. In addition, since both FIG. (B) and (C) are arrange | positioned in the vicinity of a terminal, it may be better to be grounded to GND. In particular, in the case of GND grounding, the GND pattern on the mounting board side may be rearranged and connected to the heat radiating metal 30 as shown in the figure. Further, since the GND terminal 32 is also provided on the third conductive pattern 31 side corresponding to the GND terminal of the semiconductor package 1, that is, inside the arrangement region, it may be formed integrally with this terminal via wiring. .
 例えば組立作業の中で、サージが放熱メタル30に加わっても、そのサージかGNDに落とせるからである。 For example, even if a surge is applied to the heat dissipating metal 30 during assembly work, it can be dropped to the surge or GND.
 図3は、ネジ止め(挟持手段)を採用したものである。 FIG. 3 employs screwing (clamping means).
 図3(A)は、実装基板2の裏側、または表側に放熱板42が設けられ、ネジ40とナット41で、放熱板42が実装基板2に取り付けられている。図の様に、ネジの頭全体がサイドレジン20で覆われているため、熱は、サイドレジン20、ネジ、放熱メタル42を介して実装基板2や外部へ放出される。 3A, a heat radiating plate 42 is provided on the back side or the front side of the mounting substrate 2, and the heat radiating plate 42 is attached to the mounting substrate 2 with screws 40 and nuts 41. As shown in the figure, since the entire head of the screw is covered with the side resin 20, heat is released to the mounting substrate 2 and the outside through the side resin 20, the screw, and the heat dissipation metal 42.
 図3(B)は、実装基板2の表と裏に、電極43A、43Bが設けられて場合を説明している。上から電極43A、実装基板2、電極43B、放熱板42をネジ40とナット41とで固定している。尚、放熱板は、(A)、(B)ともに、実装基板の表側に配置されても良い。また厚さは、半導体パッケージ1の厚みよりも薄くなければ、薄型モジュールとして意味がなくなるが、ユーザーの要求により厚くしても良い。 FIG. 3B illustrates the case where the electrodes 43A and 43B are provided on the front and back of the mounting substrate 2. FIG. The electrode 43A, the mounting substrate 2, the electrode 43B, and the heat sink 42 are fixed with screws 40 and nuts 41 from above. In addition, a heat sink may be arrange | positioned in the front side of a mounting board | substrate both (A) and (B). Further, if the thickness is not thinner than the thickness of the semiconductor package 1, it is meaningless as a thin module, but it may be thicker according to the user's request.
 続いて、図3(C)を説明する。これは、電極43Aと43Bの間にサーマルビアが配置されたものである。また電極43A、43Bは、前述したように幅の特定されたリング状メタルだったり、あるいはパッドを利用したものであり、平面視では、サイズの決まった円、楕円または矩形である。しかし表裏の開きスペースを利用して、パッドから開きスペースに広がった拡大領域を形成すれば、これが放熱フィンの代わりになり、放熱効果を向上させる事ができる。ここの説明は、この後、図6で詳述する。 Subsequently, FIG. 3C will be described. This is a thermal via disposed between the electrodes 43A and 43B. Further, the electrodes 43A and 43B are ring-shaped metal having a specified width as described above, or use pads, and in a plan view, the electrodes 43A and 43B are circles, ellipses, or rectangles having a predetermined size. However, if an enlarged area extending from the pad to the open space is formed using the open space on the front and back sides, this becomes a substitute for the heat radiating fin, and the heat radiating effect can be improved. This will be described in detail later with reference to FIG.
 尚、この3つの例を組み合わせて構成させても良い。 Note that these three examples may be combined.
 以上、半導体チップは、フェイスアップで説明したが、フェイスダウンでも良い。 As described above, the semiconductor chip has been described face up, but may be face down.
 図4(A)は、半導体パッケージのチップ5がフェイスダウンの構造であり、半導体チップ5の裏面は上を向いている。よって封止樹脂6からチップ裏面を露出させ、半導体パッケージ1の側面と、パッケージの上面のチップ裏面5までサイドレジン20を延在させても良い。サイドレジン20は、チップ裏面の少なくとも一部がコンタクトしていれば良いが、好ましくは、パッケージ1の表面全域が好ましい。この場合、結局は、半導体パッケージ全域にサイドレジン20を覆う事になる。表側にもサイドレジンが盛られるため、ほんの少し厚くはなるが、放熱フィンと比べたら、無視できる値である。またパッケージ1の表側に塗られたサイドレジン20を前述した押圧冶具で押圧すれば、その表面が平坦化され、取り付けが容易である。 FIG. 4A shows a structure in which the chip 5 of the semiconductor package is face-down, and the back surface of the semiconductor chip 5 faces upward. Therefore, the chip back surface may be exposed from the sealing resin 6, and the side resin 20 may be extended to the side surface of the semiconductor package 1 and the chip back surface 5 on the top surface of the package. The side resin 20 may be in contact with at least a part of the back surface of the chip, but preferably the entire surface of the package 1 is preferable. In this case, the side resin 20 is eventually covered over the entire semiconductor package. Since the side resin is piled up on the front side, it is a little thicker, but it is negligible when compared with the radiating fin. Moreover, if the side resin 20 coated on the front side of the package 1 is pressed with the above-described pressing jig, the surface thereof is flattened, and attachment is easy.
 また図4(B)は、図4(A)の構造に放熱フィン40を取り付けたものである。この構造では、サイドレジン20の上に、放熱フィンが設けられ、下は、サイドレジンで放熱される。 FIG. 4B shows the structure shown in FIG. 4A with the radiation fins 40 attached. In this structure, a heat radiating fin is provided on the side resin 20, and the bottom is radiated by the side resin.
 続いて図6を用いて放熱メタル30について、その平面的なパターンの応用について説明する。一点鎖線は、半導体チップ5、点線で示す矩形は半導体パッケージ1、点でハッチングした部分が放熱メタル30である。更に実装基板2側には、電子回路が構成される事から、配線W、パッドP、他のICやTrなどからなる能動素子Aまたは受動素子CRなど色々と設けられている。実装基板のサイズとその上の回路素子の実装密度によるが、空きスペースが設けられる場合がある。その場合、この空きスペースに放熱メタル30と一体で、放熱拡張メタル30Aを設けることで、より放熱効果を高める事ができる。 Subsequently, application of the planar pattern of the heat radiating metal 30 will be described with reference to FIG. The one-dot chain line is the semiconductor chip 5, the rectangle indicated by the dotted line is the semiconductor package 1, and the hatched portion is the heat dissipation metal 30. Further, since an electronic circuit is configured on the mounting substrate 2 side, various elements such as an active element A or a passive element CR including wiring W, a pad P, other ICs and Trs, and the like are provided. Depending on the size of the mounting substrate and the mounting density of the circuit elements thereon, an empty space may be provided. In that case, the heat radiation effect can be further enhanced by providing the heat radiation expansion metal 30A integrally with the heat radiation metal 30 in this empty space.
 例えば、放熱メタル30の外形は、一定の幅Z4を持ち、リング状に形成されているが、その外形は、実質矩形である。よってこのZ4の幅以上の空きスペースがあれば、拡張しても良い。例えば放熱メタル30の外形、特に4辺夫々の辺と直行する外側の部分に、幅Z4以上のスペースがあれば、その部分に放熱拡張メタル30Aを形成しても良い。 For example, the outer shape of the heat dissipating metal 30 has a certain width Z4 and is formed in a ring shape, but the outer shape is substantially rectangular. Therefore, if there is an empty space more than the width of Z4, it may be expanded. For example, if there is a space having a width Z4 or more in the outer shape of the heat radiating metal 30, particularly the outer portion perpendicular to the four sides, the heat radiating expansion metal 30A may be formed in that portion.
 図6では、放熱メタルの外形に於いて、ここでは下の長辺と右側の短辺に、Z4以上の空きスペースがあるため、二つの放熱拡張メタル30A、30Bを設けた(1つにしても良い)。尚、この放熱拡張メタルに対応する実装基板2の裏側にも放熱用の電極を設け、バツ印で示したスルーホールTHで、熱を裏面側にも放出できるようにしても良い。 In FIG. 6, in the outer shape of the heat dissipating metal, since there is a free space of Z4 or more on the lower long side and the short right side here, two heat dissipating expansion metals 30A and 30B are provided (one set). Is also good). Note that a heat radiation electrode may be provided on the back side of the mounting substrate 2 corresponding to the heat radiation expansion metal so that heat can be released to the back side through the through hole TH indicated by a cross.
 尚、スルーホールは、TH1の様に広域に形成しても良いし、TH2の様に細かく設けても良い。 Note that the through hole may be formed in a wide area like TH1 or finely provided like TH2.
 続いて、図7を参照しながら、放熱メタル30の位置について説明する。 Subsequently, the position of the heat dissipation metal 30 will be described with reference to FIG.
 半導体パッケージ1の右上コーナーを点Pとし、点Pから基板4に向かい点線を描き、点線と基板表面との間の角度をαと規定して描いてある。 The upper right corner of the semiconductor package 1 is a point P, a dotted line is drawn from the point P toward the substrate 4, and the angle between the dotted line and the substrate surface is defined as α.
 図7では、サイドレジン20は、湾曲した線の部分で、これは、かなり粘性がある事を示している。 In FIG. 7, the side resin 20 is a curved line portion, which indicates that it is quite viscous.
 しかしサイドレジンの粘度、フィラーの混入率を考えると、サイドレジン20の濡れる先端は、45度のα1から30度のα2程度までである。 However, considering the viscosity of the side resin and the mixing ratio of the filler, the tip of the side resin 20 that gets wet is from α1 of 45 degrees to α2 of 30 degrees.
 本来、放熱メタル30は、このサイドレジン20に完全に包含されるべきである。しかしながら、サイドレジン20の熱抵抗の低さを考えると、放熱メタルの半導体パッケージ側の先端は、点Pの真下から点T1(または点T2)の間に、少なくとも前記放熱メタルの先端が位置すれば、即座に放熱メタルに伝わり、実装基板2側に熱を伝える事が可能である。 Originally, the heat radiating metal 30 should be completely included in the side resin 20. However, considering the low thermal resistance of the side resin 20, at least the tip of the heat dissipation metal is positioned between the point immediately below point P and the point T1 (or point T2). In this case, it is possible to immediately transmit to the heat dissipating metal and to transmit heat to the mounting substrate 2 side.
 また図7では、基板4は、コア層の中に銅箔が挟まれたコアメタル基板を示した。これはコア層が絶縁樹脂と違い、更に熱伝導に優れた基板である。このコアメタル基板であれば、放熱メタル30をコア層の銅箔に熱的に結合させる事で更に熱伝導を向上できる。 In FIG. 7, the substrate 4 is a core metal substrate in which a copper foil is sandwiched between core layers. This is a substrate whose core layer is different from an insulating resin and has excellent heat conduction. With this core metal substrate, heat conduction can be further improved by thermally coupling the heat dissipation metal 30 to the copper foil of the core layer.
 具体的には、コンタクト孔を形成し、メッキでコンタクト孔と放熱メタルを形成すれば、放熱メタル30は、ダイレクトにコア層に結合できる。 Specifically, if the contact hole is formed and the contact hole and the heat dissipation metal are formed by plating, the heat dissipation metal 30 can be directly coupled to the core layer.
 以上、簡単な手法、例えばポッティング法を採用し、半導体パッケージの周囲にぐるりとサイドレジンを塗布する事で、半導体パッケージの熱を実装基板側へ伝えることが可能となる。全てではないが、実装基板側は、スペース的にラフであり、サイドレジンを設けるスペースを確保できるので、非常に簡単でコスト的にも有利な構造である。 As described above, it is possible to transfer the heat of the semiconductor package to the mounting substrate side by applying a simple method, for example, a potting method, and applying a side resin around the semiconductor package. Although not all, the mounting substrate side is rough in terms of space, and a space for providing the side resin can be secured, so that the structure is very simple and advantageous in terms of cost.
 1:半導体パッケージ
 2:実装基板
 3:回路モジュール
 4:パッケージ側の基板
 5:半導体チップ
 6:封止樹脂
 20:サイドレジン
 21:第1の導電パターン
 22:第2の導電パターン
 30:放熱メタル
1: Semiconductor package 2: Mounting substrate 3: Circuit module 4: Package-side substrate 5: Semiconductor chip 6: Sealing resin 20: Side resin 21: First conductive pattern 22: Second conductive pattern 30: Heat dissipation metal

Claims (6)

  1.  上面、前記上面と対向して成る裏面、前記上面と前記裏面の間に配置される4つの側面から成る6面体で成り、裏面に外部接続電極を有する半導体パッケージと、
     前記半導体パッケージの外部接続電極と対応して表面に接続電極を有し、前記接続電極の上に前記半導体パッケージが設けられ、電気的に接続された実装基板とを有する回路モジュールに於いて、
     前記半導体パッケージの側面と接触し、前記側面から前記半導体パッケージの周囲に対応する前記実装基板に設けられ、中にフィラーが充填されたサイドレジンとを有する事を特徴とした回路モジュール。
    A semiconductor package comprising a top surface, a back surface facing the top surface, a hexahedron having four side surfaces disposed between the top surface and the back surface, and having an external connection electrode on the back surface;
    In a circuit module having a connection electrode on the surface corresponding to the external connection electrode of the semiconductor package, the semiconductor package being provided on the connection electrode, and an electrically connected mounting substrate.
    A circuit module comprising: a side resin which is in contact with a side surface of the semiconductor package and which is provided on the mounting substrate corresponding to the periphery of the semiconductor package from the side surface and which is filled with a filler.
  2.  前記サイドレジンのフィラーは、大小のフィラーを有し、大きいフィラーは、前記半導体パッケージ裏面と前記実装基板との間を浸入できないサイズである請求項1に記載の回路モジュール。 2. The circuit module according to claim 1, wherein the filler of the side resin has a large and small filler, and the large filler has a size that cannot enter between the back surface of the semiconductor package and the mounting substrate.
  3.  前記サイドレジンのフィラーの含有量は、80%~95%程度である請求項2に記載の回路モジュール。 The circuit module according to claim 2, wherein the content of the side resin filler is about 80% to 95%.
  4.  前記サイドレジンと前記半導体パッケージ側面との接触面積よりも、前記サイドレジンと前記実装基板との接触面積の方が大である請求項2に記載の回路モジュール。 3. The circuit module according to claim 2, wherein a contact area between the side resin and the mounting substrate is larger than a contact area between the side resin and a side surface of the semiconductor package.
  5.  前記サイドレジンと前記実装基板との当接領域に於いて、前記半導体パッケージの周囲に相当する実装基板側に放熱メタルが設けられる請求項1に記載の回路モジユール。 2. The circuit module according to claim 1, wherein a heat dissipating metal is provided on the mounting substrate side corresponding to the periphery of the semiconductor package in a contact region between the side resin and the mounting substrate.
  6.  前記半導体パッケージに封止された半導体チップは、フェイスダウンで実装され、前記半導体パッケージを構成する封止樹脂から裏面が露出し、前記サイドレジンは、前記裏面にも設けられる請求項1に記載の回路モジュール。 The semiconductor chip sealed in the semiconductor package is mounted face down, a back surface is exposed from a sealing resin constituting the semiconductor package, and the side resin is also provided on the back surface. Circuit module.
PCT/JP2013/005100 2012-09-27 2013-08-29 Circuit module using mounting board WO2014049965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012215103 2012-09-27
JP2012-215103 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014049965A1 true WO2014049965A1 (en) 2014-04-03

Family

ID=50387414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005100 WO2014049965A1 (en) 2012-09-27 2013-08-29 Circuit module using mounting board

Country Status (1)

Country Link
WO (1) WO2014049965A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039945A (en) * 2002-07-05 2004-02-05 Murata Mfg Co Ltd Electron device and its manufacturing method
JP2012129335A (en) * 2010-12-15 2012-07-05 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
JP2012182395A (en) * 2011-03-02 2012-09-20 Taiyo Yuden Co Ltd Electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039945A (en) * 2002-07-05 2004-02-05 Murata Mfg Co Ltd Electron device and its manufacturing method
JP2012129335A (en) * 2010-12-15 2012-07-05 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
JP2012182395A (en) * 2011-03-02 2012-09-20 Taiyo Yuden Co Ltd Electronic device

Similar Documents

Publication Publication Date Title
US10163754B2 (en) Lid design for heat dissipation enhancement of die package
US9142478B2 (en) Semiconductor package stack having a heat slug
KR100698526B1 (en) Substrate having heat spreading layer and semiconductor package using the same
US20130093073A1 (en) High thermal performance 3d package on package structure
US20100084761A1 (en) Semiconductor device and fabrication method of the same
US7772692B2 (en) Semiconductor device with cooling member
US7608923B2 (en) Electronic device with flexible heat spreader
KR20150054551A (en) Semiconductor chip and semiconductor package comprising the same
US20060113663A1 (en) Heat stud for stacked chip package
KR102392202B1 (en) Semiconductor packages having heat spreaders and methods for fabricating the same
US20070045804A1 (en) Printed circuit board for thermal dissipation and electronic device using the same
US10096534B2 (en) Thermal performance of logic chip in a package-on-package structure
TW201415587A (en) Thermal management structure of semiconduvtor device and methods for forming the same
US8040682B2 (en) Semiconductor device
US7714451B2 (en) Semiconductor package system with thermal die bonding
CN213752684U (en) Stacked silicon package with vertical thermal management
US7388286B2 (en) Semiconductor package having enhanced heat dissipation and method of fabricating the same
US7723843B2 (en) Multi-package module and electronic device using the same
JP2011035352A (en) Semiconductor device
JP2007281201A (en) Semiconductor device
US20210134702A1 (en) Electronic device having a chip package module
US20060055029A1 (en) Integrated heatspreader for use in wire bonded ball grid array semiconductor packages
JP2000156460A (en) Semiconductor device
WO2014049965A1 (en) Circuit module using mounting board
KR101046378B1 (en) Semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP