WO2014048858A2 - Crystal structure i - Google Patents

Crystal structure i Download PDF

Info

Publication number
WO2014048858A2
WO2014048858A2 PCT/EP2013/069646 EP2013069646W WO2014048858A2 WO 2014048858 A2 WO2014048858 A2 WO 2014048858A2 EP 2013069646 W EP2013069646 W EP 2013069646W WO 2014048858 A2 WO2014048858 A2 WO 2014048858A2
Authority
WO
WIPO (PCT)
Prior art keywords
sln
atpase
atom
serca
coordinates
Prior art date
Application number
PCT/EP2013/069646
Other languages
French (fr)
Other versions
WO2014048858A3 (en
Inventor
Maike BUBLITZ
Poul Nissen
John Bondo Hansen
Morten Jeppe Buch PEDERSEN
Anne-Marie Lund WINTHER
Original Assignee
Pcovery Aps
Aarhus Universitet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pcovery Aps, Aarhus Universitet filed Critical Pcovery Aps
Publication of WO2014048858A2 publication Critical patent/WO2014048858A2/en
Publication of WO2014048858A3 publication Critical patent/WO2014048858A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2299/00Coordinates from 3D structures of peptides, e.g. proteins or enzymes

Definitions

  • the present invention relates to protein crystal structures and their use in identifying protein binding partners and in protein structure determination.
  • it relates to the crystal structure of the SERCAIa ATPase in complex with the regulatory protein, sarcolipin (SLN).
  • SR sarcoplasmic reticulum
  • Relaxation is initiated by Ca 2+ efflux through the Na+/ Ca + -exchanger (NCX) and Ca 2+ resorption to the SR by the SR Ca 2+ ATPase (SERCA), while reaching a low basal level of Ca 2+ is achieved by plasma membrane Ca 2+ -ATPases.
  • NCX Na+/ Ca + -exchanger
  • SERCA SR Ca 2+ ATPase
  • the concentration of the cytosolic Ca 2+ levels and the duration of the Ca 2+ increase are tightly coupled to the contractile properties, which allows for a rapid beat-to-beat control in the heart. Indeed, perturbations of this highly regulated Ca 2+ cycling are a hallmark of human heart failure. Thus, therapeutic approaches that target the Ca 2+ -ATPase and its regulators are highly desirable.
  • SERCA is a protein that is involved in determining not only the amount of Ca 2+ available for contraction, but also controlling to a large extent the speed of relaxation.
  • Various crystal structures are available for the SERCA Ca 2+ -ATPase protein. From these, it is known that the 110 kDa single polypeptide chain folds into a bundle of ten transmembrane segments (M1 through M10) that together form the ion transport domain and the three cytoplasmic domains, A, P, and N (Toyshima et al., 2000) which mediate ATP hydrolysis via phosphorylation and dephosphorylation.
  • the protein undergoes large conformational changes during the Ca 2+ transport cycle (Laursen, et al., 2009; Olesen, et al., 2007; Olesen, et al., 2004; Toyoshima, et al., 2000).
  • the E1 state binds to Ca + and ATP to form the ADP sensitive E1 P phospho-enzyme, which occludes two Ca 2+ ions at intramembraneous sites I and II.
  • Conversion to the ADP insensitive E2P conformation exposes a luminal exit pathway, where Ca 2+ is exchanged for luminal H + . This H + occlusion is accompanied by dephosphorylation and release of inorganic phosphate which leads to the E2 state.
  • SLN sarcolipin
  • the proteins bind to the ATPase at resting Ca 2+ concentrations (0.1 ⁇ range), and lower its apparent Ca 2+ affinity, i.e. modulate a threshold Ca 2+ concentration where SERCA becomes active (Asahi et al., 2002; Odermatt et al., 1998; Simmerman et al., 1996; Tada and Kadoma, 1989).
  • Phosphorylation of both SLN and PLB in response to beta-adrenergic stimulation is believed to be the main cellular mechanism of regulation, with the ATPase being inhibited by the non-phosphorylated peptides (Wegener et al., 1998, Gramolini et al., 2006, Bhupathy et al., 2009).
  • SERCAIa inhibitory interaction of PLN with SERCA isoform 1
  • M4 transmembrane helix 4
  • N27C in PLN
  • V89C M4
  • V49C V49C
  • PSN V89C
  • PSN V49C
  • ii definition of the face of the PLN transmembrane helix that interacts with SERCA
  • iii cross-linking between Lys-3 of PLN and Lys-397 and Lys-400 of SERCA2a .
  • the modeling was done using the crystal structure of SERCAIa in the absence of Ca 2+ , into which an atomic model of PLN was built (Toyoshima et al., 2003).
  • the inventors have now solved the first structure of the SERCA Ca 2+ ATPase in complex with the regulatory protein, SLN.
  • the structure provides new insight into the regulation of SERCA Ca 2+ ATPase by SLN and identifies the precise binding site for SLN.
  • the atomic coordinates of the complex may be utilised and manipulated in many different ways with wide ranging applications including the fitting of binding partners, homology modeling and structure solution, analysis of ligand interactions and drug discovery.
  • the structure reveals that the Ca 2+ -ATPase adopts a novel conformation when in complex with SLN, therefore providing a novel platform for virtual screening of binding partners.
  • a first aspect of the invention provides the use of a three-dimensional structural representation of at least part of the SERCA Ca 2+ ATPase/SLN complex as defined by the coordinates listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, in a method for selecting or designing one or more binding partners of a Ca 2+ ATPase and/or SLN.
  • coordinate we include the information of the three dimensional organisation of the atoms contributing to a protein structure.
  • a 'three dimensional structural representation we include a computer generated representation or a physical representation. Typically, in all aspects of the invention which feature a structural representation, the representation is computer generated.
  • Computer representations can be generated or displayed by commercially available software programs. Examples of software programs include but are not limited to QUANTA (Accelrys .COPYRIGHT.2001 , 2002), O (Jones et al., Acta Crystallogr. A47, pp. 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)), which are incorporated herein by reference.
  • representations include any of a wire-frame model, a chicken-wire model, a ball-and-stick model, a space-filling model, a stick model, a ribbon model, a snake model, an arrow and cylinder model, an electron density map or a molecular surface model.
  • Certain software programs may also imbue these three dimensional representations with physico-chemical attributes which are known from the chemical composition of the molecule, such as residue charge, hydrophobicity, torsional and rotational degrees of freedom for the residue or segment, etc. Examples of software programs for calculating chemical energies are described below.
  • the coordinates of the SERCA Ca 2+ ATPase/SLN complex used in the invention are those listed in Table (i). However, it is appreciated that it is not necessary to have recourse to the original coordinates listed in Table (i), and that any equivalent geometric representation derived from or obtained by reference to the original coordinates may be used. Thus, for the avoidance of doubt, by 'the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i)', we include any equivalent representation wherein the original coordinates have been reparameterised in some way. For example, the coordinates in Table (i) may undergo any mathematical transformation known in the art, such as a geometric transformation, and the resulting transformed coordinates can be used.
  • the coordinates of Table (i) may be transposed to a different origin and/or axes or may be rotated about an axis. Furthermore, it is possible to use the coordinates to calculate the psi and phi backbone torsion angles (as displayed on a Ramachandran plot) and the chi sidechain torsion angles for each residue in the protein. These angles together with the corresponding bond lengths, enable the construction of a geometric representation of the protein which may be used based on the parameters of psi, phi and chi angles and bond lengths.
  • the coordinates used are typically those in Table (i)
  • 'selected coordinates' we include at least 5, 10 or 20 non-hydrogen protein atoms of the SERCA Ca 2+ ATPase/SLN complex structure, more preferably at least 50, 100, 200, 300, 400, 500, 600, 700, 800 or 900 atoms and even more preferably at least 1000, 1 00, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100 or 2200 non- hydrogen atoms.
  • the selected coordinates pertain to at least 5, 10, 20 or 30 different amino acid residues (i.e.
  • the selected coordinates may include one or more ligand atoms as set out in Table (i).
  • the selected coordinates may exclude one or more atoms of the ligand. It will also be appreciated that the selected coordinates may pertain to atoms of only the SERCA Ca 2+ ATPase, or that the selected coordinates may pertain to atoms of only SLN, or that the selected coordinates may pertain to atoms of both SERCA Ca 2+ ATPase and SLN.
  • the selected coordinates may comprise atoms of one or more amino acid residues that contribute to the main chain or side chain atoms of a binding region of the SERCA Ca 2+ ATPase.
  • amino acid residues contributing to the SLN binding region include amino acid residues in helix M2, M6, M9 and the top of helix M4.
  • the selected coordinates may comprise atoms of one or more amino acid residues selected from one or more of helices M2, M6, M9 and M4 of the SERCA Ca 2+ ATPase, corresponding to amino acid residues M2: residues 86-122, M4: residues 288-328, M6: residues 789-809, M9: residues 931-960 according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8.
  • the SLN binding region includes amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8.
  • the selected coordinates may comprise one or more atoms from any one or more (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or 33 amino acid residues) of amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala 100, Ile 03, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957, according to the numbering of the SERCA Ca 2+ ATPase
  • the selected coordinates may comprise atoms of one or more amino acid residues of the SLN binding pocket of SERCA Ca 2+ ATPase which includes Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8.
  • SERCA Ca 2+ ATPase which includes Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, according to the numbering of the SERCA Ca 2+ ATPas
  • residues are those residues of SERCA Ca 2+ ATPase that together with residues of SLN (residues 1-11) form a pocket that represents a potential binding site.
  • the selected coordinates may comprise one or more atoms from any one or more (e.g.
  • the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca 2+ ATPase binding site of SLN, which includes amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10 and Asn11 according to the numbering of SLN as set out in Figure 8.
  • the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10 and Asn 1 , according to the numbering of SLN as set out in Figure 8 (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 of said amino acid residues).
  • the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca 2+ ATPase/SLN complex within the SERCA Ca 2+ ATPase-SLN interaction site, which includes amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr 22, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of SERCA Ca 2+ ATPase according to the numbering of the SERCA Ca 2+ ATP
  • the selected coordinates may comprise one or more atoms from any one or more of the above amino acid residues (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 or 15 or 20 or 25 or 30 or 35 or 40 or 45 or 50 or 55 or 60 of said amino acid residues).
  • the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca 2+ ATPase intramembranous Ca2+ binding sites, of which there are two: Site I and Site II.
  • Site I involves the side chains of residues Asn 768, Glu 771 , Asp 800 and Glu 908; and
  • Site II involves the side chains of residues Asn 796, Asp 800, Gly 309, Val 304, Ala 305 and lie 307 according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8.
  • the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Asn 768, Glu 771 , Asp 800 and Glu 908, according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8 (e.g. 1 or 2 or 3 of said amino acid residues), and/or one or more atoms from any one or more of amino acid residues Asn 796, Asp 800, Gly 309, Val 304, Ala 305 and lie 307, according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8 (e.g. at least 1 , 2, 3, 4, 5 or 6 of said amino acid residues).
  • the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca 2+ ATPase Mg 2+ binding site which involves residues Asp 800 and Glu 309 according to the numbering of the SERCA Ca + ATPase as set out in Figure 8.
  • the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Asp 800 and Glu 309, according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8 (e.g. 1 or 2 of said amino acid residues). It is appreciated that the selected coordinates may comprise any atoms of particular interest including atoms from amino acid residues mentioned in any one or more of the above examples, or as listed in Example 1 below.
  • the selected coordinates may correspond to atoms from a particular structural region (e.g. helix and/or loop) of the SERCA Ca 2+ ATPase.
  • the selected coordinates may correspond to atoms from one or more amino acid residues of the three cytoplasmic domains, designated P, N and A.
  • the selected coordinates may correspond to atoms from one or more amino acid residues of one or more of the ten transmembrane helices, designated M1-M10.
  • the selected coordinates include at least 2% or 5% C-a atoms, and more preferably at least 10% C-a atoms.
  • the selected coordinates include at least 10% and more preferably at least 20% or 30% backbone atoms selected from any combination of the nitrogen, C-a, carbonyl C and carbonyl oxygen atoms.
  • the coordinates of the SERCA Ca 2+ ATPase used in the invention may be optionally varied and a subset of the coordinates or the varied coordinates may be selected (and constitute selected coordinates). Indeed, such variation may be necessary in various aspects of the invention, for example in the modelling of protein structures and in the fitting of various binding partners to a Ca 2+ ATPase (e.g. SERCA Ca 2+ ATPase) structure.
  • a Ca 2+ ATPase e.g. SERCA Ca 2+ ATPase
  • Protein structure variability and similarity is routinely expressed and measured by the root mean square deviation (rmsd), which measures the difference in positioning in space between two sets of atoms.
  • the rmsd measures distance between equivalent atoms after their optimal superposition.
  • the rmsd can be calculated over all atoms, over residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues), main chain atoms only (i.e. the nitrogen-carbon-oxygen-carbon backbone atoms of the protein amino acid residues), side chain atoms only or over C-a atoms only.
  • the least-squares algorithms used to calculate rmsd are well known in the art and include those described by Rossman and Argos (J Biol Chem, (1975) 250:7525), Kabsch (Acta Cryst (1976) A92:922; Acta Cryst (1978) A34:827-828), Hendrickson (Acta Cryst (1979) A35: 158), McLachan (J Mol Biol (1979) 128:49) and Kearsley (Acta Cryst (1989) A45:208).
  • the user can define the residues in the two proteins that are to be paired for the purpose of the calculation.
  • the pairing of residues can be determined by generating a sequence alignment of the two proteins as is well known in the art.
  • the atomic coordinates can then be superimposed according to this alignment and an rmsd value calculated.
  • the program Sequoia (Bruns et al (1999) J Mol Biol 288(3):427-439) performs the alignment of homologous protein sequences, and the superposition of homologous protein atomic coordinates. Once aligned, the rmsd can be calculated using programs detailed above. When the sequences are identical or highly similar, the structural alignment of proteins can be done manually or automatically as outlined above. Another approach would be to generate a superposition of protein atomic coordinates without considering the sequence.
  • Rmsd values have been calculated on C alpha atoms in the complete structure (residues 1-79, 86-883 and 887-994) and within the SLN binding site (i.e. residues Phe88, Phe92, Val93, Leu96, Ile97, AlalOO, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr122, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957) as discussed below.
  • the coordinates or selected coordinates of Table (i) may be optionally varied within an rmsd of residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein) of not more than 4.95 A.
  • the coordinates or selected coordinates are varied within an rmsd of residue backbone atoms of not more than 4.9 A, 4.8 A 4.7 A, 4.6 A, 4.5 A, 4.4 A, 4.3 A, 4.2 A, 4.1 A, 4.0 A, 3.9 A, 3.8 A, 3.7 A, 3.6 A, 3.5 A, 3.4 A, 3.3 A, 3.2 A, 3.1 A, 3.0 A, 2.9 A, 2.8 A, 2.7 A, 2.6 A, 2.5 A, 2.4 A, 2.3 A, 2.1 A, 2.0 A, 1.9 A, 1.8 A, 1.7 A, 1.6 A, 1.5 A, 1.4 A, 1.3 A, 1.2 A, 1.1 A, 1.0 A, 0.9 A or 0.8 A and more preferably not more than 0.7 A, 0.6 A, 0.5 A, 0.4 A, 0.3 A, 0.2 A or 0.1 A.
  • the selected coordinates correspond to all or some of the atoms of the SERCA Ca 2+ ATPase, and none of the atoms of SLN, that they are optionally varied within an rmsd of residue backbone atoms of these values.
  • the rmsd value for PDB: 1T5S is 3.581 and the rmsd value for PDB: 2AGV is 5.836 A.
  • the coordinates or selected coordinates used in the invention are optionally varied within the SLN binding site, they are varied within an rmsd of residue backbone atoms of not more than 3.58 A (such as not more than 3.5 A, 3.4 A, 3.3 A, 3.2 A, 3.1 A, 3.0 A, 2.9 A, 2.8 A,
  • Rmsd values were calculated on C alpha atoms in the complete structure (SLN residues 5-8, 10-13, 15-21 and 23-29) and gave an rmsd value of 1.898 A.
  • the coordinates or selected coordinates of Table (i) may be optionally varied within an rmsd of C alpha atoms of not more than 1.89 A.
  • the coordinates or selected coordinates are varied within an rmsd of C alpha atoms of not more than 1.8 A, 1.7 A, 1.6 A, 1.5 A, 1.4 A, 1.3 A, 1.2 A, 1.1 A, 1.0 A, 0.9 A or 0.8 A and more preferably not more than 0.7 A, 0.6 A, 0.5 A, 0.4 A, 0.3 A, 0.2 A or 0.1 A. It is particularly preferred that when the selected coordinates correspond to all or some of the atoms of the SLN, and none of the atoms of SERCA Ca 2+ ATPase, that they are optionally varied within an rmsd of C alpha atoms of these values.
  • the coordinates of the SERCA Ca 2+ ATPase/SLN complex of Table (i) optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof may be used in the provision, design, modification or analysis of binding partners of Ca 2+ ATPase and/or SLN.
  • the binding partners may be binding partners of Ca 2+ ATPase, binding partners of SLN, or binding partners of both Ca 2+ ATPase and SLN (i.e. the binding partner may bind to both Ca 2+ ATPase and SLN when the two protein are in complex with one another).
  • the binding partners may be binding partners of Ca 2+ ATPase, binding partners of SLN, or binding partners of both Ca 2+ ATPase and SLN (i.e. the binding partner may bind to both Ca 2+ ATPase and SLN when the two protein are in complex with one another).
  • Such a use will be important in drug
  • Ca 2+ ATPase we include any Ca 2+ ATPase which has at least 75% sequence identity with rabbit SERCA Ca + ATPase as well as Ca 2+ ATPases (eg SERCA Ca 2+ ATPases) from other species (eg animal species) and mutants thereof.
  • the Ca 2+ ATPase has at least 80% amino acid sequence identity to rabbit SERCA Ca 2+ ATPase, and more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity.
  • the Ca 2+ ATPase is a SERCA Ca 2+ ATPase.
  • SLN we include any SLN which has at least 75% sequence identity with rabbit SLN as well as SLN from other species (eg animal species) and mutants thereof.
  • the SLN has at least 80% amino acid sequence identity to rabbit SLN, and more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity.
  • binding partner we mean any molecule that binds to a Ca 2+ ATPase, or which binds to a SLN, or which binds to a Ca 2+ ATPase/SLN complex.
  • the molecule binds selectively to the Ca 2+ ATPase and/or SLN.
  • the binding partner has a K d value (dissociation constant) which is at least five or ten times lower (i.e. higher affinity) than for at least one other Ca 2+ ATPase and/or SLN, and preferably more than 100 or 500 times lower.
  • the binding partner is for a Ca 2+ ATPase
  • the binding partner has a Kd value which is lower than for at least one other Ca 2+ ATPase by the specified degree
  • the binding partner binds to both Ca 2+ ATPase and SLN in a complex
  • the binding partner has a Kd value which is lower than for at least one other Ca 2+ ATPase/SLN complex which complex contains a different Ca 2+ ATPase and a different SLN.
  • the binding partner of a Ca 2+ ATPase and/or SLN has a Kd value more than 1000 or 5000 times lower than for at least one other Ca 2+ ATPase and/or SLN.
  • the binding partner typically has a K d value which is at least 10 times or 50 times or 100 times lower than for at least one other Ca 2+ ATPase and/or SLN.
  • the binding partner typically has a Kd value which is at least 500 or 1000 times lower than for at least one other Ca 2+ ATPase and/or SLN. Kd values can be determined readily using methods well known in the art and as described, for example, below.
  • the concentration of free ligand and bound ligand at equilibrium must be known. Typically, this can be done by using a radio- labelled or fluorescently labelled ligand which is incubated with the receptor (present in whole cells or homogenised membranes) until equilibrium is reached. The amount of free ligand vs bound ligand must then be determined by separating the signal from bound vs free ligand. In the case of a radioligand this can be done by centrifugation or filtration to separate bound ligand present on whole cells or membranes from free ligand in solution. Alternatively a scintillation proximity assay is used. In this assay the receptor (in membranes) is bound to a bead containing scintillant and a signal is only detected by the proximity of the radioligand bound to the receptor immobilised on the bead.
  • the binding partner may be any of a polypeptide; an anticalin; a peptide; an antibody; a chimeric antibody; a single chain antibody; an aptamer; a darpin; a Fab, F(ab')2, Fv, ScFv or dAb antibody fragment; a small molecule; a natural product; an affibody; a peptidomimetic; a nucleic acid; a peptide nucleic acid molecule; a lipid; a carbohydrate (eg saccharide); a protein based on a modular framework including ankyrin repeat proteins, armadillo repeat proteins, leucine rich proteins, tetrariopeptide repeat proteins or Designed Ankyrin Repeat Proteins (DARPins); a protein based on lipocalin or fibronectin domains or Affilin scaffolds based on either human gamma crystalline or human ubiquitin; a G protein; an RGS protein; an arrestin; a
  • the coordinates of the invention will also be useful in the analysis of solvent and ion interactions with a Ca 2+ ATPase, which are important factors in drug design.
  • the binding partner may be a solvent molecule, for example water or acetonitrile, or an ion, for example a sodium ion or a protein.
  • the binding partner is a small molecule with a molecule weight less than 5000 daltons, for example less than 4000, 3000, 2000 or 1000 daltons, or with a molecule weight less than 500 daltons, for example less than 450 daltons, 400 daltons, 350 daltons, 300 daltons, 250 daltons, 200 daltons, 150 daltons, 100 daltons, 50 daltons or 10 daltons.
  • the binding partner causes a change (i.e a modulation) in the level of biological activity of the Ca 2+ ATPase and/or SLN, and therefore may have the potential to be a candidate drug.
  • the binding partner may be a modulator of Ca 2+ ATPase activity and/or SLN activity.
  • the binding partner may be a modulator of Ca 2+ ATPase activity, a modulator of SLN activity, or a modulator of the activity of the Ca 2+ ATPase/SLN complex.
  • the activity that is modulated may be any one or more biological activities of Ca 2+ ATPase or SLN or the Ca 2+ ATPase/SLN complex, including binding activities, enzymatic activities and cell signalling activities.
  • the major determinant of SERCA Ca 2+ ATPase activity at physiological Ca 2+ is its affinity for transported Ca 2+ ions regulated by SLN and PLB, and so in a particularly preferred embodiment, the binding partner is a modulator of the SERCA Ca 2+ ATPase/SLN interaction or of the SERCA Ca 2+ ATPase/PLB interaction, and therefore also a modulator of SERCA Ca 2+ ATPase activity.
  • a modulator we include the meaning of an agent that increases a given activity or an agent that decreases a given activity.
  • a modulator would include an inhibitor or activator of a given activity (e.g. in the binding of SLN or PLB to a Ca ATPase, the modulator may act to either strengthen or diminish the interaction).
  • the binding partner may bind to an orthosteric site or to an allosteric site of either protein.
  • a second aspect of the invention provides a method for selecting or designing one or more binding partners of a Ca 2+ ATPase and/or SLN, the method comprising using molecular modelling means to select or design one or more binding partners of a Ca 2+ ATPase and/or SLN, wherein the three-dimensional structural representation of at least part of the SERCA Ca 2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, is compared with a three-dimensional structural representation of one or more candidate binding partners, and one or more binding partners that are predicted to interact with the Ca 2+ ATPase and/or SLN are selected or designed.
  • the binding partner structural representation may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a structural representation of the binding partner.
  • binding partners that bind to a Ca 2+ ATPase and/or SLN generally involves consideration of two factors.
  • the binding partner must be capable of physically and structurally associating with parts or all of a binding region (e.g. ligand binding site or an allosteric binding site).
  • a binding region e.g. ligand binding site or an allosteric binding site.
  • Non- covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions.
  • the binding partner must be able to assume a conformation that allows it to associate with the binding region directly. Although certain portions of the binding partner will not directly participate in these associations, those portions of the binding partner may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency.
  • Such conformational requirements include the overall three-dimensional structure and orientation of the binding partner in relation to all or a portion of the binding region, or the spacing between functional groups of a binding partner comprising several binding partners that directly interact with the protein or protein complex. This is particularly relevant where the binding partner is a protein.
  • selected coordinates which represent a binding region of the SERCA Ca 2+ ATPase, or a binding region of SLN, or a binding region of the SERCA Ca 2+ ATPase/SLN complex (eg one that spans across both proteins) may be used.
  • atoms from one or more amino acid residues contributing to the SLN binding region of SERCA Ca 2+ ATPase including amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 may be used, and/or atoms from one or more amino acid residues of the SLN binding pocket of SERCA Ca 2+ ATPase, including Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr
  • the one or more binding partners are predicted to bind to the SERCA Ca 2+ ATPase/SLN interaction site. In this way, it is believed that the one or more binding partners may be modulators of the SERCA Ca 2+ ATPase/SLN interaction, and thus modulators of Ca 2+ ATPase activity.
  • SERCA Ca 2+ ATPase/SLN interaction site we include amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr122, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of SERCA Ca 2+ ATPase according to the numbering of the SERCA Ca 2+ ATPase as set out in Figure 8 and amino acids residues Met1 , Arg3, Ser4, Thr5, Glu7, Leu8, Le
  • the selected coordinates may correspond to atoms from one or more of these amino acid residues.
  • Selected coordinates representing an extracellular face would be useful to select or design for binding partners such as antibodies, and selected coordinates representing an intracellular face would be useful to select or design for agents which modulate (e.g. increase or decrease or prevent) binding to natural binding partners such as SLN and PLB.
  • Additional preferences for the selected coordinates, including the Ca 2+ and Mg 2+ binding sites, are as defined above with respect to the first aspect of the invention. It will be appreciated that any of these particular binding regions may be used to identifying binding partners and potential modulators.
  • binding partners can generally be achieved in two ways, either by the step wise assembly of a binding partner or by the de novo synthesis of a binding partner. As is described in more detail below, binding partners can also be identified by virtual screening.
  • the process begins by visual inspection of, for example, any of the binding regions on a computer representation of the SERCA Ca 2+ ATPase/SLN complex as defined by the coordinates in Table (i), optionally varied within a rmsd of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
  • Selected binding partners, or fragments or moieties thereof may then be positioned in a variety of orientations, or docked, within the binding region. Docking may be accomplished using software such as QUANTA and Sybyl (Tripos Associates, St. Louis, Mo.), followed by, or performed simultaneously with, energy minimization, rigid-body minimization (Gshwend, supra) and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.
  • Specialized computer programs may also assist in the process of selecting binding partners or fragments or moieties thereof. These include: 1. GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK. 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method.” Proteins: Structure, Function and Genetics, 1 1 , pp. 29-34 (1991)). MCSS is available from Molecular Simulations, San Diego, Calif. 3. AUTODOCK (D.
  • DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161 , pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif. Once suitable binding partners or fragments have been selected, they may be assembled into a single compound or complex.
  • Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of the SERCA Ca 2+ ATPase and/or SLN. This would be followed by manual model building using software such as QUANTA or Sybyl.
  • CAVEAT P. A. Bartlett et al., "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", in "Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc, 78, pp. 182-196 (1989); G. Lauri and P. A. Bartlett, "CAVEAT: a Program to Facilitate the Design of Organic Molecules", J. Comput. Aided Mol. Des., 8, pp. 51-66 (1994)).
  • CAVEAT is available from the University of California, Berkeley, Calif; 2.
  • 3D Database systems such as ISIS (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Y. C. Martin, “3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992); and 3. HOOK (M. B. Eisen et al., “HOOK: A Program for Finding Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a Macromolecule Binding Site", Proteins: Struct., Funct., Genet, 19, pp. 199-221 (1994). HOOK is available from Molecular Simulations, San Diego, Calif.
  • the invention includes a method of a method for selecting or designing one or more binding partners of a Ca 2+ ATPase and/or SLN comprising the steps of: (a) providing a structural representation of a SERCA Ca 2+ ATPase and/or SLN binding region as defined by the coordinates of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof (b) using computational means to dock a three dimensional structural representation of a first binding partner in part of the binding region; (c) docking at least a second binding partner in another part of the binding region; (d) quantifying the interaction energy between the first or second binding partner and part of the binding region; (e) repeating steps (b) to (d) with another first and second binding partner, selecting a first and a second binding partner based on the quantified interaction energy of all of said first and second binding partners; (f) optionally, visually inspecting the relationship of the first and second binding partner to each other in relation to
  • binding partners may be designed as a whole or "de novo" using either an empty binding region or optionally including some portion(s) of a known binding partner(s).
  • de novo ligand design methods including: 1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Molecular Simulations Incorporated, San Diego, Calif; 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)).
  • LEGEND is available from Molecular Simulations Incorporated, San Diego, Calif; 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.); and 4. SPROUT (V. Gillet et al., "SPROUT: A Program for Structure Generation)", J. Comput. Aided Mol. Design, 7, pp. 127-153 (1993)). SPROUT is available from the University of Leeds, UK.
  • binding partners In addition to the methods described above in relation to the design of binding partners, other computer-based methods are available to select for binding partners that interact with Ca 2+ ATPase and/or SLN.
  • the invention involves the computational screening of small molecule databases for binding partners that can bind in whole, or in part, to Ca 2+ ATPase and/or SLN.
  • the quality of fit of such binding partners to a binding region of Ca 2+ ATPase and/or SLN as defined by the coordinates of the SERCA Ca 2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, may be judged either by shape complementarity or by estimated interaction energy (E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992)).
  • selection may involve using a computer for selecting an orientation of a binding partner with a favourable shape complementarity in a binding region comprising the steps of: (a) providing the coordinates of the SERCA Ca ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof and a three-dimensional structural representation of one or more candidate binding partners; (b) employing computational means to dock a first binding partner in the binding region; (c) quantitating the contact score of the binding partner in different orientations; and (d) selecting an orientation with the highest contact score.
  • the docking may be facilitated by the contact score.
  • the method may further comprise the step of generating a three-dimensional structural representation of the binding region and binding partner bound therein prior to step (b).
  • the method may further comprise the steps of: (e) repeating steps (b) through (d) with a second binding partner; and (f) selecting at least one of the first or second binding partner that has a higher contact score based on the quantitated contact score of the first or second binding partner.
  • selection may involve using a computer for selecting an orientation of a binding partner that interacts favourably with a binding region comprising; a) providing the coordinates of the SERCA Ca 2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof; b) employing computational means to dock a first binding partner in the binding region; c) quantitating the interaction energy between the binding partner and all or part of a binding region for different orientations of the binding partner; and d) selecting the orientation of the binding partner with the most favorable interaction energy.
  • the docking may be facilitated by the quantitated interaction energy and energy minimization with or without molecular dynamics simulations may be performed simultaneously with or following step (b).
  • the method may further comprise the steps of: (e) repeating steps (b) through (d) with a second binding partner; and (f) selecting at least one of the first or second binding partner that interacts more favourably with a binding region based on the quantitated interaction energy of the first or second binding partner.
  • selection may involve screening a binding partner to associate at a deformation energy of binding of less than -7 kcal/mol with a binding region of a Ca 2+ ATPase and/or SLN, comprising: (a) coordinates of the SERCA Ca 2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, and employing computational means which utilise coordinates to dock the binding partner into a binding region; (b) quantifying the deformation energy of binding between the binding partner and the binding region; and (d) selecting a binding partner that associates with a Ca 2+ ATPase and/or SLN binding region at a deformation energy of binding of less than -7 kcal/mol.
  • the one or more binding partners are predicted to bind to at least one amino acid in a given binding region (e.g. SERCA Ca 2+ ATPase/SLN interaction site), such as at least 2, 3, 4 or 5 amino acid residues.
  • a given binding region e.g. SERCA Ca 2+ ATPase/SLN interaction site
  • the one or more binding partners that are selected or designed according to the invention are ones that favourably interact with a Ca 2+ ATPase and/or SLN.
  • the one or more binding partners may be structurally complementary to a binding region of SERCA Ca 2+ ATPase and/or SLN, and interact with a binding region substantially free of steric interference.
  • the one or more binding partners may accommodate a three-dimensional cavity in SERCA Ca 2+ ATPase and/or SLN without interfering in the structure of SERCA Ca 2+ ATPase and/or SLN.
  • Complementarity indicates that the binding partner interacts with a binding region in an energy favourable way.
  • Favourable interactions include any non-covalent attractive forces that may exist between chemical structures such as hydrophobic or van-der-Waals interactions and polar interactions such as hydrogen bonding, salt-bridges etc.
  • Unfavourable interactions such as hydrophobic- hydrophilic interactions should be avoided but may be accepted if they are weaker than the sum of the attractive forces.
  • the binding strength or a potential binding partner may be assessed by comparing favourable and unfavourable interactions, for example on a computer screen or by using computational methods implemented in commercial computer programs.
  • the invention provides a method of identifying a binding partner of a Ca + ATPase and/or SLN (e.g.
  • a modulator of a Ca 2+ ATPase/SLN interaction comprising: providing a three-dimensional structural representation of at least part of the SERCA Ca 2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
  • binding partners that are structurally complementary to the three-dimensional structural representation of at least part of the SERCA Ca 2+ ATPase/SLN complex.
  • the invention provides a method of identifying a binding partner of a Ca 2+ ATPase and/or SLN (e.g. a modulator of a Ca 2+ ATPase/SLN interaction) comprising:
  • binding partners that can bind to at least one amino acid residue of a binding region of SERCA Ca 2+ ATPase and/or SLN without steric interference.
  • the invention also provides a computer-assisted method for identifying one or more binding partners of a Ca 2+ ATPase and/or SLN (e.g. a modulator of a Ca 2+ ATPase/SLN interaction) using a programmed computer processor, a data storage system, a data input device and a data output device, the method comprising:
  • the invention further provides a computer-assisted method for identifying one or more binding partners of a Ca 2+ ATPase and/or SLN (e.g. a modulator of a Ca 2+ ATPase/SLN interaction) using a programmed computer processor, a data storage system, a data input device and a data output device, the method comprising:
  • the method makes use of selected coordinates that correspond to a particular binding region of SERCA Ca 2+ ATPase and/or SLN as described above.
  • the invention provides a method for identifying one or more binding partners of a Ca 2+ ATPase and/or SLN (e.g. a modulator of a Ca 2+ ATPase/SLN interaction), the method comprising:
  • selecting one or more candidate binding partners using atomic coordinates in conjunction with computer modelling wherein said coordinates are the coordinates as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, by docking one or more candidate binding partners into a binding region of SERCA Ca 2+ ATPase and/or SLN by computer modelling and selecting one or more candidate binding partners capable of binding to at least one amino acid in the binding region;
  • the method comprises assessing whether the one or more candidate binding partners modulate an activity of the Ca 2+ ATPase and/or SLN, such that the interaction between the Ca 2+ ATPase and SLN.
  • Preferences for the binding region of the SERCA Ca 2+ ATPase and/or SLN include those defined above, such as a binding region of the SERCA Ca 2+ ATPase, or a binding region of SLN, or a binding region of the SERCA Ca 2+ ATPase/SLN complex (eg one that spans across both proteins).
  • the one or more binding partners bind to the SERCA Ca 2+ ATPase/SLN interaction site.
  • a third aspect of the invention provides a method for selecting or designing one or more binding partners of a Ca 2+ ATPase having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SERCA Ca 2+ ATPase that is defined by residues including Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of rabbit SERCA Ca 2+ ATPase, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said Ca 2+ ATPase, wherein
  • the binding partner selected is one that is able to interact with at least one of the amino acids that define the binding pocket (Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957), such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or all 33 of said amino acid residues.
  • amino acids that define the binding pocket Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp
  • a fourth aspect of the invention provides a method for selecting or designing one or more binding partners of a SLN having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SLN that is defined by residues including Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 of rabbit SLN, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said SLN, wherein a three- dimensional structural representation of one or more candidate binding partners are compared with a three-dimensional structural representation of the said binding pocket, and one or more candidate binding partners that are predicted to interact with the said binding pocket, are selected.
  • the binding partner selected is one that is able to interact with at least one of amino acids that define the binding pocket (Met1, Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11), such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or all 11 of said amino acid residues.
  • a Ca 2+ ATPase having a binding pocket in the position structurally equivalent to the defined binding pocket we include the meaning of a protein identifiable as that of a Ca 2+ ATPase, and further having a predicted or determined three-dimensional structure that includes a binding pocket defined by Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 according to the numbering of the rabbit SERCA Ca 2+ ATPase in Figure 8.
  • An amino acid sequence may be identifiable as that of a Ca 2+ ATPase by reference to sequence identity or similarities
  • SLN having a binding pocket in the position structurally equivalent to the defined binding pocket
  • a protein identifiable as that of a SLN we include the meaning of a protein identifiable as that of a SLN, and further having a predicted or determined three-dimensional structure that includes a binding pocket defined by Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 according to the numbering of the rabbit SLN in Figure 8.
  • An amino acid sequence may be identifiable as that of a SLN by reference to sequence identity or similarities of three dimensional structure with known SLN, as known to those skilled in the art.
  • the three- dimensional structural representations of the defined binding pockets may be any suitable three-dimensional structural representation.
  • it may be a three- dimensional structural representation represented by the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof. It is preferred if the selected coordinates are from one or more amino acid residues that define a binding region of SERCA Ca 2+ ATPase and/or SLN, including those mentioned above.
  • the three-dimensional structural representations of the defined binding pockets may be a three-dimensional structural representation modelled on such coordinates. The structural representation may then be compared with structural representations of one or more candidate binding partners and those binding partners that are predicted to interact with the binding pocket are selected. Any suitable molecular modelling means may be employed in this selection, including those outlined above.
  • the binding partner may be a library of binding partners.
  • the library may be a peptide or protein library produced, for example, by ribosome display or an antibody library prepared either in vivo, ex vivo or in vitro. Methodologies for preparing and screening such libraries are known in the art.
  • Determination of the three-dimensional structure of the SERCA Ca 2+ ATPase/SLN complex provides important information about the binding sites of SERCA Ca 2+ ATPases and SLN, particularly when comparisons are made with other Ca 2+ ATPases. This information may then be used for rational design and modification of Ca 2+ ATPase and/or SLN binding partners, e.g. by computational techniques which identify possible binding ligands for the binding sites, by enabling linked-fragment approaches to drug design, and by enabling the identification and location of bound ligands using X-ray crystallographic analysis. These techniques are discussed in more detail below.
  • the aspects of the invention described herein which utilize the SERCA Ca 2+ ATPase/SLN structure in silico may be equally applied to both the coordinates of the SERCA Ca ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, and to structural coordinates modelled on said coordinates, for example using the methods described below.
  • a new set of structural coordinates for example of a related Ca 2* ATPase
  • such a structure may be used, for example, in a computer-based method of rational drug design as described herein.
  • the availability of the structure of the SERCA Ca 2+ ATPase/SLN complex will allow the generation of highly predictive pharmacophore models for virtual library screening or ligand design.
  • a fifth aspect of the invention provides a method for the analysis of the interaction of one or more binding partners with a Ca 2+ ATPase and/or SLN, comprising:
  • ATPase/SLN complex as defined by the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
  • This method of the invention is generally applicable for the analysis of known binding partners of SERCA Ca 2+ and/or SLN, the development or discovery of binding partners of SERCA Ca 2+ and/or SLN, the modification of binding partners of SERCA Ca 2+ and/or SLN e.g. to improve or modify one or more of their properties, and the like.
  • atoms from amino acid residues contributing to the SLN binding region of SERCA Ca 2+ ATPase including amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111, Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 may be used, and/or atoms from one or more amino acid residues of the SLN binding pocket of SERCA Ca 2+ ATPase, including Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321
  • SERCA Ca 2+ ATPase and/or SLN may interact with different parts of a binding region of SERCA Ca 2+ ATPase and/or SLN
  • the structure of the SERCA Ca 2+ ATPase/SLN complex allows the identification of a number of particular sites which are likely to be involved in many of the interactions of SERCA Ca 2+ ATPase/SLN with a drug candidate. Additional preferred selected coordinates are as described as above with respect to the first and second aspects of the invention.
  • the binding partner structural representation may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a structural representation of the binding partner for fitting to the SERCA Ca 2+ ATPase/SLN structure of the invention.
  • fitting is meant determining by automatic, or semi-automatic means, interactions between one or more atoms of a candidate binding partner and at least one atom of the SERCA Ca 2+ ATPase/SLN structure of the invention, and calculating the extent to which such interactions are stable. Interactions include attraction and repulsion, brought about by charge, steric, lipophilic, considerations and the like. Charge and steric interactions of this type can be modelled computationally. An example of such computation would be via a force field such as Amber (Cornell et a/.
  • the interaction of a binding partner with the SERCA Ca 2+ ATPase/SLN structure of the invention can be examined through the use of computer modelling using a docking program such as GOLD (Jones et al., J. Mol. Biol., 245, 43-53 (1995), Jones et al., J. Mol. Biol., 267, 727-748 (1997)), GRAMM (Vakser, I.A., Proteins , Suppl., 1 :226-230 (1997)), DOCK (Kuntz et al, (1982) J. Mol.
  • GOLD Jones et al., J. Mol. Biol., 245, 43-53 (1995), Jones et al., J. Mol. Biol., 267, 727-748 (1997)
  • GRAMM Vakser, I.A., Proteins , Suppl., 1 :226-230 (1997)
  • DOCK Korean et al, (1982) J. Mol.
  • the invention includes a method for the analysis of the interaction of one or more binding partners with a Ca 2+ ATPase and/or SLN comprising (a) constructing a computer representation of a binding region of a Ca 2+ ATPase and/or SLN as defined by the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof (b) selecting a binding partner to be evaluated by a method selected from the group consisting of assembling said binding partner; selecting a binding partner from a small molecule database; de novo ligand design of the binding partner; and modifying a known agonist or inhibitor, or a portion thereof, of a Ca 2+ ATPase and/or SLN or homologue thereof; (c) employing computational means to dock said binding partner to be evaluated in a binding region in order to provide an energy-minimized configuration of the binding partner in
  • Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the a Ca 2+ ATPase and/or SLN structure and a binding partner.
  • a binding partner may be formed by linking the respective small molecular fragments into a single binding partner, which maintains the relative positions and orientations of the respective small molecular fragments at the binding sites.
  • the single larger binding partner may be formed as a real molecule or by computer modelling. Detailed structural information can then be obtained about the binding of the binding partner to a Ca 2+ ATPase and/or SLN, and in the light of this information adjustments can be made to the structure or functionality of the binding partner, e.g. to alter its interaction with a Ca 2+ ATPase and/or SLN. The above steps may be repeated and re- repeated as necessary.
  • the three dimensional structural representation of the one or more binding partners of any of the above aspects of the invention may be obtained by: providing structural representations of a plurality of molecular fragments; fitting the structural representation of each of the molecular fragments to the coordinates of the structural representation of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and assembling the representations of the molecular fragments into one or more representations of single molecules to provide the three-dimensional structural representation of one or more candidate binding partners.
  • the binding partner or molecule fragment is fitted to at least 5 or 10 non- hydrogen atoms of the SERCA Ca 2+ ATPase/SLN structure, preferably at least 20, 30, 40, 50, 60, 70, 80 or 90 non-hydrogen atoms and more preferably at least 100, 150, 200, 250, 300, 350, 400, 450, or 500 atoms and even more preferably at least 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100 or 2200 non-hydrogen atoms.
  • the invention includes screening methods to identify drugs or lead compounds of use in treating a disease or condition. For example, large numbers of binding partners, for example in a chemical database, can be screened for their ability to bind to a Ca' ATPase and/or SLN.
  • the binding partner may be a druglike compound or lead compound for the development of a drug-like compound.
  • a drug-like compound is well known to those skilled in the art, and may include the meaning of a compound that has characteristics that may make it suitable for use in medicine, for example as the active ingredient in a medicament.
  • a drug-like compound may be a molecule that may be synthesised by the techniques of organic chemistry, less preferably by techniques of molecular biology or biochemistry, and is preferably a small molecule, which may be of less than 5000 daltons (such as less than 500 daltons) and which may be water-soluble.
  • a drug-like compound may additionally exhibit features of selective interaction with a particular protein or proteins and be bioavailable and/or able to penetrate target cellular membranes or the blood.brain barrier, but it will be appreciated that these features are not essential.
  • lead compound is similarly well known to those skilled in the art, and may include the meaning that the compound, whilst not itself suitable for use as a drug (for example because it is only weakly potent against its intended target, non-selective in its action, unstable, poorly soluble, difficult to synthesise or has poor bioavailability) may provide a starting-point for the design of other compounds that may have more desirable characteristics.
  • the methods further comprise modifying the structural representation of the binding partner so as to increase or decrease their interaction with the Ca 2+ ATPase and/or SLN.
  • the efficiency with which that binding partner may bind to a Ca 2+ ATPase and/or SLN may be tested and optimised, for example by computational evaluation.
  • a binding partner designed or selected as binding to a Ca 2+ ATPase and/or SLN may be further computationally optimised so that in its bound state it would preferably lack repulsive electrostatic interaction with the target Ca 2+ ATPase and/or SLN and with the surrounding water molecules.
  • Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions.
  • the extent to which a given binding partner can modulate the Ca 2+ ATPase/SLN interaction may be increased or decreased.
  • binding partners demonstrate a relatively small difference in energy between the bound and free states (i.e., a small deformation energy of binding).
  • binding partners may be designed with a deformation energy of binding of not greater than about 10 kcal/mole, more preferably, not greater than 7 kcal/mole.
  • Binding partners may interact with the binding region in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free binding partner and the average energy of the conformations observed when the binding partner binds to the protein.
  • modifying the structural representation we include, for example, adding molecular scaffolding, adding or varying functional groups, or connecting the molecule with other molecules (e.g. using a fragment linking approach) such that the chemical structure of the binding partner is changed while its original binding to Ca 2+ ATPase and/or SLN capability is increased or decreased.
  • optimisation is regularly undertaken during drug development programmes to e.g. enhance potency, promote pharmacological acceptability, increase chemical stability etc. of lead compounds.
  • modifications include substitutions or removal of groups containing residues which interact with the amino acid side chain groups of the SERCA Ca 2+ ATPase/SLN structure of the invention.
  • the replacements may include the addition or removal of groups in order to decrease or increase the charge of a group in a binding partner, the replacement of a charge group with a group of the opposite charge, or the replacement of a hydrophobic group with a hydrophilic group or vice versa. It will be understood that these are only examples of the type of substitutions considered by medicinal chemists in the development of new pharmaceutical compounds and other modifications may be made, depending upon the nature of the starting binding partner and its activity.
  • the potential binding effect of a binding partner on a Ca 2+ ATPase and/or SLN may be analysed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given entity suggests insufficient interaction and association between it and the Ca 2+ ATPase and/or SLN, testing of the entity is obviated. However, if computer modelling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to a Ca 2+ ATPase and/or SLN. In this manner, synthesis of inoperative compounds may be avoided.
  • the methods further comprise the steps of obtaining or synthesising the one or more binding partners of a Ca 2+ ATPase and/or SLN; and optionally contacting the one or more binding partners with a Ca 2+ ATPase and/or SLN to determine the ability of the one or more binding partners to interact with the Ca + ATPase and/or SLN.
  • Various methods may be used to determine binding between a Ca 2+ ATPase and/or SLN and a binding partner including, for example, enzyme linked immunosorbent assays (ELISA), surface plasmon resonance assays, chip-based assays, immunocytofluorescence, yeast two-hybrid technology and phage display which are common practice in the art and are described, for example, in Plant et al (1995) Analyt Biochem, 226(2), 342-348. and Sambrook ef al (2001) Molecular Cloning A Laboratory Manual. Third Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • ELISA enzyme linked immunosorbent assays
  • surface plasmon resonance assays chip-based assays
  • immunocytofluorescence yeast two-hybrid technology
  • yeast two-hybrid technology yeast two-hybrid technology
  • FRET Fluorescence Energy Resonance Transfer
  • the methods of the invention further comprise the steps of obtaining or synthesising the one or more binding partners of a Ca 2+ ATPase and/or SLN; forming one or more complexes of the Ca 2+ ATPase and/or SLN and the one or more binding partners; and analysing the one or more complexes by X-ray crystallography to determine the ability of the one or more binding partners to interact with Ca 2+ ATPase and/or SLN.
  • Iterative drug design is a method for optimizing associations between a protein and a binding partner by determining and evaluating the three-dimensional structures of successive sets of protein/compound complexes.
  • iterative drug design crystals of a series of proteins or protein complexes are obtained and then the three-dimensional structures of each crystal are solved.
  • Such an approach provides insight into the association between the proteins and binding partners of each complex. This is accomplished by selecting candidate binding partners, obtaining crystals of this new protein/binding partner complex, solving the three- dimensional structure of the complex, and comparing the associations between the new protein/binding partner complex and previously solved protein/binding partner complexes.
  • association By observing how changes in the binding partner affected the protein/ binding partner associations, these associations may be optimized.
  • iterative drug design is carried out by forming successive protein- binding partner complexes and then crystallizing each new complex. High throughput crystallization assays may be used to find a new crystallization condition or to optimize the original protein or complex crystallization condition for the new complex. Alternatively, a pre-formed protein crystal may be soaked in the presence of a binding partner, thereby forming a protein/ binding partner complex and obviating the need to crystallize each individual protein/ binding partner complex.
  • the ability of a binding partner to modify a function of Ca 2+ ATPase and/or SLN may also be tested.
  • the ability of a binding partner to modulate Ca 2+ ATPase function e.g. by modulating the Ca 2+ ATPase/SLN interaction
  • the interaction of one or more binding partners with Ca 2+ ATPase and/or SLN may be analysed directly by X-ray crystallography experiments, wherein the coordinates of the structural representation of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, are used to analyse the a crystal complex of the Ca 2+ ATPase and/or SLN and binding partner.
  • This can provide high resolution information of the interaction and can also provide insights into a mechanism by which a binding partner exerts an agonistic or antagonistic function.
  • a fifth aspect of the invention provides a method for the analysis of the interaction of one or more binding partners with a Ca 2+ ATPase and/or SLN, comprising: obtaining or synthesising one or more binding partners;
  • Preferences for the selected coordinates in this and all subsequent aspects of the invention are as defined above with respect to the first aspect of the invention.
  • the analysis of such structures may employ X-ray crystallographic diffraction data from the complex and the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to generate a difference Fourier electron density map of the complex.
  • the difference Fourier electron density map may then be analysed.
  • the one or more crystallised complexes are formed by soaking a crystal of a Ca 2+ ATPase and/or SLN with the binding partner to form a complex.
  • the complexes may be obtained by cocrystallising the Ca 2+ ATPase and/or SLN with the binding partner.
  • a purified Ca 2+ ATPase protein sample is incubated over a period of time (usually >1 hr) with a potential binding partner and the complex can then be screened for crystallization conditions.
  • protein crystals containing a first binding partner can be back-soaked to remove this binding partner by placing the crystals into a stabilising solution in which the binding partner is not present.
  • the resultant crystals can then be transferred into a second solution containing a second binding partner and used to produce an X-ray diffraction pattern of Ca 2+ ATPase and/or SLN complexed with the second binding partner.
  • the complexes can be analysed using X-ray diffraction methods, e.g. according to the approach described by Greer et al.,(J of Medicinal Chemistry, Vol. 37, (1994), 1035- 1054), and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked or co-crystallized Ca 2+ ATPase and/or SLN and the solved structure of uncomplexed (i.e. without binding partner) Ca 2+ ATPase and/or SLN.
  • Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.). For map visualization and model building programs such as "O” (Jones et al., Acta Crystallographica, A47, (1991), 110-119) can be used.
  • This information may thus be used to optimise known classes of Ca 2+ ATPase and/or SLN binding partners and to design and synthesize novel classes of Ca 2+ ATPase and/or SLN binding partners, particularly those which modulate Ca 2+ ATPase function (e.g. by modulating the Ca 2+ ATPase/SLN interaction), and to design drugs with modified Ca 2+ ATPase and/or SLN interactions.
  • the structure of a binding partner bound to a Ca 2+ ATPase and/or SLN may be determined by experiment.
  • determination of the SERCA Ca + ATPase/SLN structure also allows difference Fourier electron density maps of binding partner complexes with SERCA Ca 2+ ATPase and/or SLN to be produced, determination of the binding position of the binding partner and hence may greatly assist the process of rational drug design.
  • a sixth aspect of the invention provides a method for predicting the three dimensional structure of a binding partner of unknown structure, or part thereof, which binds to a Ca 2+ ATPase and/or SLN, comprising:
  • the X-ray diffraction pattern is obtained from a crystal formed by soaking a crystal of a Ca 2+ ATPase and/or SLN with the binding partner to form a complex.
  • the X-ray diffraction pattern is obtained from a crystal formed by cocrystallising a Ca 2+ ATPase and/or SLN with the binding partner as described above.
  • protein crystals containing a first binding partner can be back-soaked to remove this binding partner and the resultant crystals transferred into a second solution containing a second binding partner as described above.
  • a mixture of compounds may be soaked or co-crystallized with a Ca 2+ ATPase and/or SLN crystal (i.e. a crystal of a Ca 2+ ATPase or of a SLN or of a Ca 2+ ATPase/SLN complex), wherein only one or some of the compounds may be expected to bind to the Ca 2+ ATPase and/or SLN.
  • the mixture of compounds may comprise a ligand known to bind to a Ca 2+ ATPase and/or SLN. As well as the structure of the complex, the identity of the complexing compound(s) is/are then determined.
  • a seventh aspect of the invention provides a method for producing a binding partner of a Ca 2+ ATPase and/or SLN comprising: identifying a binding partner according to the methods of any of the aspects of invention described above, and synthesising the binding partner.
  • the binding partner may be synthesised using any suitable technique known in the art including, for example, the techniques of synthetic chemistry, organic chemistry and molecular biology.
  • the binding partner in an in vivo or in vitro biological system in order to determine its binding and/or activity and/or its effectiveness.
  • its binding to a Ca 2+ ATPase and/or SLN may be assessed using any suitable binding assay known in the art including the examples described above.
  • is ability to modulate the interaction between Ca 2+ ATPase and SLN may be assessed.
  • its effect on Ca 2+ ATPase or SLN function in an in vivo or in vitro assay may be tested.
  • the effect of the binding partner on Ca 2+ ATPase activity may be determined.
  • Several techniques are available in the art to detect and measure ATPase activity which would be suitable for use in the present invention. Many of these are available in kits both for determining expression in vitro and in vivo.
  • An eighth aspect of the invention provides a binding partner produced by the method of the seventh aspect of the invention.
  • the invention includes a method for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) providing a binding partner according to the eighth aspect of the invention and (b) preparing a medicament, pharmaceutical composition or drug containing the binding partner.
  • the medicaments may be used to treat any disorder or condition ameliorated by modulation of Ca 2+ ATPase or SLN.
  • a ninth aspect of the invention provides a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
  • the coordinates of the SERCA Ca 2+ ATPase/SLN structure are used to predict a three dimensional representation of a target protein of unknown structure, or part thereof, by modelling.
  • modelling we include the meaning of the prediction of structures using computer-assisted or other de novo prediction of structure, based upon manipulation of the coordinate data from Table (i) or selected coordinates thereof.
  • the target protein may be any protein that shares sufficient sequence identity to either the rabbit SERCA Ca 2+ ATPase or the rabbit SLN such that its structure can be modelled by using the coordinates of Table (i). It will be appreciated that if a structural representation of only a part of the target protein is being modelled, for example a particular domain, the target protein only has to share sufficient sequence identity to the SERCA Ca 2+ ATPase or the rabbit SLN over that part.
  • the target protein shares at least 20% amino acid sequence identity with the rabbit SERCA Ca 2+ ATPase or the rabbit SLN sequence provided in Figure 8, and more preferably at least 30%, 40%, 50%, 60%, 70%, 80% or 90% sequence identity, and yet more preferably at least 95% or 99% sequence identity.
  • the target protein may be a rabbit SERCA Ca 2+ ATPase analogue or homologue or a rabbit SLN analogue or homologue.
  • Analogues are defined as proteins with similar three-dimensional structures and/or functions with little evidence of a common ancestor at a sequence level.
  • Homologues are proteins with evidence of a common ancestor, i.e. likely to be the result of evolutionary divergence and are divided into remote, medium and close sub-divisions based on the degree (usually expressed as a percentage) of sequence identity.
  • a rabbit SERCA Ca 2+ ATPase homologue we include a protein with at least 20%, 25%, 30%, 35%, 40%, 45% or at least 50% amino acid sequence identity with the sequence of SERCA Ca 2+ ATPase provided in Figure 8, preferably at least 55%, 60%, 65%, 70%, 75% or 80% amino acid sequence identity and more preferably 85%, 90%, 95% or 99% amino acid sequence identity.
  • SLN homologue By a rabbit SLN homologue, we include a protein with at least 20%, 25%, 30%, 35%, 40%, 45% or at least 50% amino acid sequence identity with the sequence of SLN provided in Figure 8, preferably at least 55%, 60%, 65%, 70%, 75% or 80% amino acid sequence identity and more preferably 85%, 90%, 95% or 99% amino acid sequence identity.
  • Sequence identity may be measured using any suitable method known in the art, for example by the use of algorithms such as BLAST or PSI-BLAST (Altschul et al, NAR (1997), 25, 3389-3402) or methods based on Hidden Markov Models (Eddy S et al, J Comput Biol (1995) Spring 2 (1) 9-23).
  • the percent sequence identity between two polypeptides may be determined using any suitable computer program, for example the GAP program of the University of Wisconsin Genetic Computing Group and it will be appreciated that percent identity is calculated in relation to polypeptides whose sequence has been aligned optimally. The alignment may alternatively be carried out using the Clustal W program (Thompson et a/., 1994).
  • the parameters used may be as follows: Fast pairwise alignment parameters: K-tuple(word) size; 1 , window size; 5, gap penalty; 3, number of top diagonals; 5. Scoring method: x percent. Multiple alignment parameters: gap open penalty; 10, gap extension penalty; 0.05. Scoring matrix: BLOSUM. Other programs include BESTFIT or FASTA in the Wisconsin Genetics Software Package Release 7.0.
  • the region of homology preferably covers at least 500 amino acids, such as 600 amino acids and more preferably 700 or 800 amino acids.
  • the target protein is an integral membrane protein.
  • integral membrane protein we mean a protein that is permanently integrated into the membrane and can only be removed using detergents, non-polar solvents or denaturing agents that physically disrupt the lipid bilayer. Examples include receptors such as GPCRs, the T- cell receptor complex and growth factor receptors; transmembrane ion channels such as ligand-gated and voltage gated channels; transmembrane transporters such as neurotransmitter transporters; enzymes; carrier proteins; and ion pumps.
  • amino acid sequences (and the nucleotide sequences of the cDNAs which encode them) of many membrane proteins are readily available, for example by reference to GenBank. It should be noted, also, that because the sequence of the human genome is substantially complete, the amino acid sequences of human membrane proteins can be deduced therefrom.
  • the target protein is a Ca 2+ ATPase, or sarcolipin, or variants thereof.
  • the target protein may be a Ca 2+ ATPase or sarcolipin from a species (eg animal species) other than rabbit, such as a human Ca 2+ ATPase or sarcolipin.
  • the target protein may be derived from any source, it is particularly preferred if it is from a eukaryotic source. It is particularly preferred if it is derived from a vertebrate source such as a mammal. It is particularly preferred if the target protein is derived from rat, mouse, rabbit or dog or non-human primate or man.
  • modelling a structural representation of a target is done by homology modelling whereby homologous regions between the target protein and either the Ca 2+ ATPase or SLN are matched and the coordinate data of the SERCA Ca ATPase/SLN used to predict a structural representation of the target protein.
  • homologous regions describes amino acid residues in two sequences that are identical or have similar (e.g. aliphatic, aromatic, polar, negatively charged, or positively charged) side-chain chemical groups. Identical and similar residues in homologous regions are sometimes described as being respectively “invariant” and “conserved” by those skilled in the art.
  • the method involves comparing the amino acid sequences of the SERCA Ca 2+ ATPase or SLN with a target protein by aligning the amino acid sequences. Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.
  • Homology between amino acid sequences can be determined using commercially available algorithms known in the art.
  • the programs BLAST, gapped BLAST, BLASTN, PSI-BLAST, BLAST 2 and WU- BLAST can be used to align homologous regions of two, or more, amino acid sequences. These may be used with default parameters to determine the degree of homology between the amino acid sequence of the Ca 2+ ATPase or SLN, and other target proteins which are to be modelled.
  • Preferred for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software.
  • WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp ://blast.
  • the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired.
  • the default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized.
  • the structures of the conserved amino acids in the structural representation of the Ca 2+ ATPase or SLN may be transferred to the corresponding amino acids of the target protein.
  • a tyrosine in the amino acid sequence of Ca 2+ ATPase may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of the target protein.
  • the structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics.
  • the final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization.
  • the predicted three dimensional structural representation will be one in which favourable interactions are formed within the target protein and/or so that a low energy conformation is formed ("High resolution structure prediction and the crystallographic phase problem" Qian et al (2007) Nature 450; 259-264; "State of the art in studying protein folding and protein structure production using molecular dynamics methods" Lee ef al (2001) J of Mol Graph & Modelling 19(1 ): 146-149).
  • homologous amino acid sequences it is appreciated that some proteins have low sequence identity and at the same time are very similar in structure. Therefore, where at least part of the structure of the target protein is known, homologous regions can also be identified by comparing structures directly.
  • homology modelling is performed using computer programs, for example SWISS-MODEL available through the Swiss Institute for Bioinformatics in Geneva, Switzerland; WHATIF available on EMBL servers; Schnare et al. (1996) J. Mol. Biol, 256: 701-719; Blundell et al. (1987) Nature 326: 347-352; Fetrow and Bryant (1993) Bio/Technology 11:479-484; Greer (1991) Methods in Enzymology 202: 239-252; and Johnson et al (1994) Crit. Rev. Biochem. Mol Biol. 29:1-68.
  • An example of homology modelling is described in Szklarz G. D (1997) Life Sci. 61 : 2507-2520.
  • the method further comprises aligning the amino acid sequence of the target protein of unknown structure with the amino acid sequence of SERCA Ca 2+ ATPase or SLN as listed in Figure 8, to match homologous regions of the amino acid sequences prior to predicting the structural representation, and wherein modelling the structural representation comprises modelling the structural representation of the matched homologous regions of the target protein on the corresponding regions of the SERCA Ca 2+ ATPase or SLN to obtain a three dimensional structural representation for the target protein that substantially preserves the structural representation of the matched homologous regions.
  • the invention therefore provides a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
  • the coordinate data of the SERCA Ca 2+ ATPase/SLN structure can also be used to predict the crystal structure of target proteins where X-ray diffraction data or NMR spectroscopic data of the protein has been generated and requires interpretation in order to provide a structure.
  • a tenth aspect of the invention provides a method of predicting the three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising: providing the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and either (a) positioning the coordinates in the crystal unit cell of the protein so as to predict its structural representation, or (b) assigning NMR spectra peaks of the protein by manipulating the coordinates.
  • the coordinate data of Table (i) may be used to interpret that data to predict a likely structure using techniques well known in the art including phasing, in the case of X-ray crystallography, and assisting peak assignments in the case of NMR spectra.
  • a three dimensional structural representation of any part of any target protein that is sufficiently similar to any portion of the SERCA Ca 2+ ATPase or SLN can be predicted by this method.
  • the target protein or part thereof has at least 20% amino acid sequence identity with any portion of SERCA Ca 2+ ATPase or SLN, such as at least 30% amino acid sequence identity or at least 40% or 50% or 60% or 70% or 80% or 90% sequence identity.
  • the coordinates may be used to predict the three- dimensional representations of other crystal forms of SERCA Ca 2+ ATPase or SLN, other SERCA Ca 2+ ATPases or SLNs and mutants or co-complexes thereof.
  • Other suitable target proteins are as defined with respect to the tenth aspect of the invention.
  • Molecular replacement enables the solution of the crystallographic phase problem by providing initial estimates of the phases of the new structure from a previously known structure, as opposed to the other major methods for solving the phase problem, i.e. experimental methods (which measure the phase from isomorphous or anomalous differences) or direct methods (which use mathematical relationships between reflection triplets and quartets to bootstrap a phase set for all reflections from phases for a small or random 'seed' set of reflections.)
  • experimental methods which measure the phase from isomorphous or anomalous differences
  • direct methods which use mathematical relationships between reflection triplets and quartets to bootstrap a phase set for all reflections from phases for a small or random 'seed' set of reflections.
  • the invention involves generating a preliminary model of a target protein whose structure coordinates are unknown, by orienting and positioning the relevant portion of the SERCA Ca 2+ ATPase/SLN structure according to Table (i) within the unit cell of a crystal of the target protein so as best to account for the observed X-ray diffraction pattern of the crystal of the target protein. Phases can be calculated from this model and combined with the observed X-ray diffraction pattern amplitudes to generate an electron density map of the target protein's structure. This, in turn, can be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structural representation of the target protein (E.
  • the invention includes a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
  • the X-ray diffraction pattern of the target protein is provided by crystallising the target protein unknown structure; and generating an X-ray diffraction pattern from the crystallised target protein.
  • the invention also provides a method of predicting a three dimensional structural representation of a target protein of unknown structure comprising the steps of (a) crystallising the target protein; (b) generating an X- ray diffraction pattern from the crystallised target protein; (c) applying the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to the X-ray diffraction pattern to generate a three-dimensional electron density map of the target protein, or part thereof; and (d) predicting a three dimensional structural representation of the target protein from the three-dimensional electron density map.
  • Examples of computer programs known in the art for performing molecular replacement include CNX (Brunger AT.; Adams P. D.; Rice L. M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelrys San Diego, CA), MOLREP (A.Vagin, A.Teplyakov, MOLREP: an automated program for molecular replacement, J Appl Cryst (1997) 30, 1022-1025, part of the CCP4 suite), AMoRe (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst A50, 157- 163), or PHASER (part of the CCP4 suite).
  • Preferred selected coordinates of the SERCA Ca 2+ ATPase/SLN complex are as defined above with respect to the first aspect of the invention.
  • the invention may also be used to assign peaks of NMR spectra of target proteins, by manipulation of the data of Table (i) (J Magn Reson (2002) 157(1): 1 9-23).
  • the invention also provides systems, particularly a computer system, intended to generate structures and/or perform optimisation of binding partner which interact with SERCA Ca 2+ ATPase and/or SLN, homologues or analogues of SERCA Ca 2+ ATPase and/or SLN, complexes of binding partners with SERCA Ca 2+ ATPase and/or SLN, or complexes of binding partners with homologues or analogues of SERCA Ca 2+ ATPase/SLN.
  • an eleventh aspect of the invention provides a computer system, intended to generate three dimensional structural representations of SERCA Ca 2+ ATPase and/or SLN, homologues or analogues of SERCA Ca 2+ ATPase and/or SLN, complexes of binding partners with SERCA Ca 2+ ATPase and/or SLN, or complexes of binding partners with homologues or analogues of SERCA Ca 2+ ATPase, or, to analyse or optimise binding of binding partners to SERCA Ca 2+ ATPase and/or SLN, or homologues or analogues or complexes thereof, the system containing computer-readable data comprising one or more of:
  • the computer system may comprise: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer- readable data storage medium for processing said computer-readable data and thereby generating structures and/or analyse or optimise binding and/or performing rational drug design.
  • the computer system may further comprise a display coupled to the central- processing unit for displaying structural representations.
  • the invention also provides such systems containing atomic coordinate data of target proteins of unknown structure wherein such data has been generated according to the methods of the invention described herein based on the starting data provided in Table (i) optionally varied by a root mean square deviation of residue backbone atoms of not more than 4.8A, or selected coordinates thereof.
  • Such data is useful for a number of purposes, including the generation of structures to analyse the mechanisms of action of binding partners and/or to perform rational drug design of binding partners which interact with Ca 2+ ATPases and/or SLN (e.g. binding partners that can modulate the Ca 2+ ATPase/SLN interaction).
  • a twelfth aspect of the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data comprises one or more of (a) the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
  • the invention also includes a computer-readable storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; which data, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure (eg a target protein of unknown structure), using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
  • a computer-readable storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca 2+ ATP
  • the invention also provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, e.g.
  • the computer-readable storage media of the invention may comprise a data storage material encoded with any of the data generated by carrying out any of the methods of the invention relating to structure solution and selection/design of binding partners to SERCA Ca ATPase and/or SLN and drug design.
  • the data is stored in PDB or CIF format, as commonly used by the person skilled in the art.
  • the PDB and CIF formats are organized according to the instructions and guidelines given by the Research Collaboratory for Structural Bioinformatics.
  • the data may include information on any one or more of the identity of one or more binding partners identified or selected or designed by the methods of the invention, the structure of said binding partners, details of the site of interaction, and details of how the binding partners interact with the Ca 2+ ATPase and/or SLN.
  • the invention also includes a method of preparing the computer-readable storage media of the invention comprising encoding a data storage material with the computer-readable data.
  • computer readable media refers to any medium or media, which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.
  • the atomic coordinate data of the invention can be routinely accessed to model SERCA Ca 2+ ATPase and/or SLN or selected coordinates thereof.
  • RASMOL Syle et al., TIBS, Vol. 20, (1995), 374
  • TIBS TIBS, Vol. 20, (1995), 374
  • a computer system refers to the hardware means, software means and data storage means used to analyse the atomic coordinate data of the invention.
  • the minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualize structure data.
  • the data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows XP or IBM OS/2 operating systems.
  • a thirteenth aspect of the invention provides a method for providing data for generating three dimensional structural representations of SERCA Ca 2+ ATPase and/or SLN, homologues or analogues of SERCA Ca 2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca 2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca 2+ ATPase and/or SLN homologues or analogues, or for optimising binding of binding partners to said SERCA Ca 2+ ATPase and/or SLN, or to homologues or analogues or complexes thereof, the method comprising:
  • the computer-readable data received from said remote device particularly when in the form of the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, may be used in the methods of the invention described herein, e.g. for the analysis of a binding partner interaction with the SERCA Ca 2+ ATPase and/or SLN
  • the remote device may comprise e.g. a computer system or computer readable media of one of the previous aspects of the invention.
  • the device may be in a different country or jurisdiction from where the computer-readable data is received.
  • the communication may be via the internet, intranet, e-mail etc, transmitted through wires or by wireless means such as by terrestrial radio or by satellite.
  • the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibers.
  • a fourteenth aspect of the invention provides a method of obtaining a three dimensional structural representation of a crystal of a complex of SERCA Ca 2+ ATPase and SLN, which method comprises providing the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and generating a three- dimensional structural representation of said coordinates.
  • the structural representation may be a physical representation or a computer generated representation.
  • representations include, for example, any of a wire-frame model, a chicken-wire model, a ball-and- stick model, a space-filling model, a stick model, a ribbon model, a snake model, an arrow and cylinder model, an electron density map or a molecular surface model.
  • Computer representations can be generated or displayed by commercially available software programs including for example QUANTA (Accelrys .COPYRIGHT.2001 , 2002), O (Jones et al., Acta Crystallogr. A47, pp. 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)).
  • QUANTA Accelrys .COPYRIGHT.2001 , 2002
  • O Japanese et al., Acta Crystallogr. A47, pp. 110-119 (1991)
  • RIBBONS Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)
  • the computer used to generate the representation comprises (i) a computer- readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprise the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and (ii) instructions for processing the computer-readable data into a three- dimensional structural representation.
  • the computer may further comprise a display for displaying said three-dimensional representation.
  • a fifteenth aspect of the invention provides a method of predicting one or more sites of interaction of SERCA Ca 2+ ATPase and/or SLN, or homologues thereof, the method comprising:
  • a binding region of a SERCA Ca ATPase or a SLN for a particular binding partner can be predicted by modelling where the structure of the binding partner is known.
  • the fitting and docking methods described above would be used. This method may be used, for example, to predict the site of interaction of a SERCA Ca 2+ ATPase or a SLN of known structure.
  • a sixteenth aspect of the invention provides a method of predicting the location of internal and/or external parts of the structure of SERCA Ca 2+ ATPase and/or SLN, or homologues thereof, the method comprising:
  • a seventeenth aspect of the invention provides a method of producing a protein with a binding region that has substrate specificity substantially identical to that of SERCA Ca 2+ ATPase, the method comprising
  • An eighteenth aspect of the invention provides a method of producing a protein with a binding region that has substrate specificity substantially identical to that of SLN, the method comprising
  • all 1 1 amino acids in the target portion which correspond to amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn1 1 of the SLN are, if different, replaced.
  • amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn1 1 of the SLN are, if different, replaced.
  • only 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues may be replaced.
  • an amino acid residue that corresponds to we include an amino acid residue that aligns to the given SERCA Ca 2+ ATPase or SLN when the SERCA Ca 2+ ATPase or SLN, and target protein are aligned using e.g. MacVector and CLUSTALW.
  • a binding site of a particular protein may be engineered using well known molecular biology techniques to contain any one or more of these residues to give it the same substrate specificity.
  • This technique is well known in the art and is described in, for example, Ikuta et al (J Biol Chem (2001) 276, 27548- 27554) where the authors modified the active site of cdk2, for which they could obtain structural data, to resemble that of cdk4, for which no X-ray structure was available.
  • Preferences for the target protein are as defined above with respect to the ninth aspect of the invention.
  • a nineteenth aspect of the invention provides a mutant SERCA Ca 2+ ATPase or homologue thereof, wherein any one or more of amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957, according to the numbering of the rabbit SERCA Ca 2+ ATPase in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
  • a twentieth aspect of the invention provides a mutant SLN or homologue thereof, wherein any one or more of amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 , according to the numbering of the rabbit SLN in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
  • the mutant SERCA Ca 2+ ATPase of the invention is one which has at least 20% amino acid sequence identity when compared to the given rabbit SERCA Ca 2+ ATPase, as determined using MacVector and CLUSTALW.
  • the mutant SERCA Ca 2+ ATPase has at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% or 99% amino acid sequence identity.
  • the mutant SLN of the invention is one which has at least 20% amino acid sequence identity when compared to the given rabbit SLN, as determined using MacVector and CLUSTALW.
  • the mutant SLN has at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% or 99% amino acid sequence identity.
  • the mutant SERCA Ca 2+ ATPase or mutant SLN may be a mutant of any mutant SERCA Ca 2+ ATPase or mutant SLN, respectively, provided that it is mutated at one or more of the amino acid positions as stated by reference to the given rabbit SERCA Ca 2+ ATPase or SLN amino acid sequence.
  • the invention includes a mutant rabbit SERCA Ca 2+ ATPase or a mutant rabbit SLN in which, compared to its parent, one or more of these amino acid residues have been replaced by another amino acid residue.
  • the invention also includes mutant SERCA Ca 2+ ATPases or SLNs from other sources (eg from another animal species such as a human) in which one or more corresponding amino acids in the parent receptor are replaced by another amino acid residue.
  • the parent may be a Ca 2+ ATPase or SLN which has a naturally-occurring sequence, or it may be a truncated form or it may be a fusion, either to the naturally-occurring protein or to a fragment thereof, or it may contain mutations compared to the naturally-occurring sequence, providing that it retains ATPase ability.
  • the mutant SERCA Ca + ATPase of the invention has a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or 33 mutations as described above.
  • the mutant SLN of the invention has a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 mutations as described above.
  • an amino acid residue that corresponds to we include an amino acid residue that aligns to the given SERCA Ca 2+ ATPase or SLN when the SERCA Ca 2+ ATPase or SLN, and target protein are aligned using e.g. MacVector and CLUSTALW.
  • Residues in proteins can be mutated using standard molecular biology techniques as are well known in the art.
  • a twenty-first aspect of the invention provides a method of assessing the conformational state of a structure for SERCA Ca 2+ ATPase, comprising:
  • comparing the results of the analysis with the results of an analysis of coordinates of proteins of known conformational states may be compared for similarity by statistical and/or topological analyses (suitable analyses are known in the art and include, for example those described in Grindley ef a/ (1993) J Mol Biol Vol 229: 707-721 and Holm & Sander (1997) Nucl Acids Res Vol 25: 231-234). Highly similar scores would indicate a shared conformational and therefore functional state eg the open E1 state in this case.
  • One example of statistical analysis is multivariate analysis which is well known in the art and can be done using techniques including principal components analysis, hierarchical cluster analysis, genetic algorithms and neural networks.
  • the conformational state of the coordinate set analysed may be classified as any of E1 , E1 P, E2 and E2P (Laursen, et al., 2009; Olesen, et al., 2007; Olesen, et al., 2004; Toyoshima, et al., 2000).
  • E1 refers to the pre-catalytic E1-apo state
  • E1 P refers to the high energy ATP and Ca 2+ bound phospho enzyme E1 P
  • E2P refers to the low energy conformation E2P
  • E2 refers to the proton occluded E2 state.
  • a twenty-second aspect of the invention provides a crystal comprising a Ca 2+ ATPase/SLN complex.
  • the crystal may comprise rabbit SERCA Ca 2+ ATPase and rabbit SLN, or homologues thereof as described above. It is preferred if the crystal comprises Ca 2+ ATPase and/or a SLN that has at least 75% sequence identity with the respective sequences of the SERCA Ca 2+ ATPase and SLN provided in Figure 8, such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity.
  • the crystal has the structure defined by the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
  • the invention also includes a crystal comprising a Ca ATPase/SLN complex and further comprising a binding partner (eg of Ca 2+ ATPase and/or SLN).
  • a binding partner eg of Ca 2+ ATPase and/or SLN.
  • the invention includes a co-crystal.
  • the structure of the Ca 2+ ATPase/SLN complex is as defined by the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
  • crystal refers to an ordered state of matter. Proteins, by their nature are difficult to purify to homogeneity. Even highly purified proteins may be chronically heterogeneous due to modifications, structural flexibility, the binding of ligands or a host of other effects. In addition, proteins are crystallized from generally complex solutions that may include not only the target molecule but also buffers, salts, precipitating agents, water and any number of small binding proteins. It is important to note that protein crystals are composed not only of protein, but also of a large percentage of solvents molecules, in particular water. These contents may vary from 30 to even 90%. Protein crystals may accumulate greater quantities and a diverse range of impurities which cannot be listed here or anticipated in detail.
  • Crystals diffract better than others. Crystals vary in size from a barely observable micron to 1 or more 20 millimetres. Crystals useful for X- ray analysis are typically single, 0.05 mm or larger, and free of cracks and other defects.
  • the protein crystal diffraction pattern determines the level of detail (resolution) that can be obtained on the three-dimensional structure of a protein.
  • the quality of a three dimensional structure is evaluated by the resolution obtained, which is an expression for the minimum spacing observed in differentiation.
  • the resolution obtained is an expression for the minimum spacing observed in differentiation.
  • the overall shape of molecular parts is resolved, such as a-helices that are seen as rods with strong intensity.
  • the main chain is visible (usually with some ambiguities).
  • the side chains are partly resolved.
  • the side chains are well resolved.
  • the atoms are located within about 0.4 A meaning that the lengths of hydrogen bonds calculated from a PDB file (for example, by RasMol) have at least this uncertainty.
  • the normal limit of protein crystallography is around 1 A or slightly less, where atoms are located at below ⁇ 0.1 A..
  • the crystals of the invention have a resolution of less than 6 A, preferably less than 5 A or 4 A, and most preferably around 3.6 A or less (eg less than 3.5, 3.4, 3.3, 3.2, 3.1 , 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1 , 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1 or 1.0A) to allow a sufficiently detailed model for selecting potential binding molecules e.g. modulators of the Ca2+-ATPase Sarcolipin complex.
  • the crystals of the invention have a resolution of around 3.2A or of around 3.1 A.
  • the invention also includes a use of the crystals of the invention for determination of three-dimensional structures of Ca 2+ ATPases or SLN or homologues thereof.
  • the crystals may be used in the methods of determining three-dimensional structure described above.
  • the crystal may contain one or more non-protein compounds such as ATP, ATP analogues, and/or ions (e.g. cations) which may have been added after the protein purification process and before crystallisation.
  • crystals may be submerged in a solution comprising the indicated compounds prior to crystallisation.
  • the compounds may be one or more binding partners of Ca 2+ ATPase and/or SLN.
  • a twenty-third aspect of the invention provides a method of making a crystal comprising a Ca 2+ ATPase/SLN complex, the method comprising: providing a purified Ca + ATPase/SLN complex; and crystallising the complex by using the hanging drop vapour diffusion technique, using a precipitant solution comprising 15-25% (w/v) PEG6000, 100- 200 mM magnesium sulphate, 4-6% glycerol and 5-7% 2-methyl-2,4-pentandiol (MPD).
  • a precipitant solution comprising 15-25% (w/v) PEG6000, 100- 200 mM magnesium sulphate, 4-6% glycerol and 5-7% 2-methyl-2,4-pentandiol (MPD).
  • the precipitant solution comprises about 19.5% (w/v) PEG6000, about 150 mM magnesium sulphate, about 5% glycerol and about 6% 2- methyl-2,4-pentandiol (MPD).
  • the crystal made by the method may include one or more binding partners of Ca 2+ ATPase and/or SLN.
  • the method of this aspect of the invention may be a method of making a co-crystal.
  • the one or more binding partners may be added to the purified Ca 2+ ATPase/SLN complex, and the complex/binding partner crystallised, or a crystal of the Ca 2+ ATPase/SLN complex may be submerged in a solution containing the one or more binding partners.
  • the invention includes a crystal or co-crystal obtainable or obtained by the method of the twenty-third aspect of the invention.
  • the invention includes the use of the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof to solve the structure of target proteins of unknown structure.
  • the invention includes the use of the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof to identify binding partners of a Ca 2+ ATPase and/or SLN.
  • the invention includes the use of the coordinates of the SERCA Ca 2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof in methods of drug design where the drugs are aimed at modifying the activity of Ca 2+ ATPase and/or SLN (e.g. modulate the Ca + ATPase/SLN interaction).
  • FIG. 1 Structure of the SERCA-SLN complex.
  • A Overall cartoon model of the SERCA-SLN complex showing the SLN binding site between transmembrane helices M2, M6, and M9 of SERCA. Mg 2+ is shown as magenta spheres, K + as purple sphere, the beta- and gamma phosphates of AMPPCP and the Ca 2+ binding site residues are shown as ball-and-stick.
  • B Comparison of E1-SLN structure (middle) with representatives of the E2 (left, PDB ID 2C8K, stabilized by thapsigargin and AMPPCP) and [Ca 2 ]E1 P (right, PDB ID 1T5S, stabilized by Ca 2+ and AMPPCP) conformations.
  • the arrangement of the cytoplasmic domains of the SERCA-SLN structure is E1-like, whereas transmembrane helices M1 - M4 adopt a unique configuration.
  • the asterisk marks contacts between the N- and A-domains which are characteristic for [Ca 2 ]E1 P states but absent in SERCA- SLN.
  • FIG. 2 SERCA-SLN interactions.
  • A Omit map showing the transmembrane a-helix formed by SLN.
  • Green mesh unbiased Fo-Fc difference density calculated at 50-3.1 A resolution and contoured at 2.8 ⁇ , after simulated annealing refinement omitting the SLN model.
  • the bulky side chain density of Phe12 (asterisk) served as hallmark residue to assign the SLN sequence. Both the very N- and C-terminal residues are poorly defined.
  • B close-up view of the polar interactions between the SLN N-terminal region and SERCA.
  • C close-up view of hydrophobic contacts between the C-terminal region of SLN and SERCA.
  • FIG. 3 Ca 2+ access channel and binding sites.
  • A Overall surface view of the SERCA-SLN complex, showing the wide open funnel leading towards the Ca2+ binding sites (circle). The 'M1 kink' is depressed into the membrane, indicating a distorted membrane interface (dotted line).
  • B cross-section through the continuous ion entry funnel. Yellow surface representation indicate conserved residues. The residues forming Ca 2+ binding sites I and II (dotted circles) are projected on the cross-section plane in ball- and-stick represenation (Asn 796 omitted for clarity).
  • C, D the 'M1 sliding door' mechanism, depicted by the 'downward' movement of M1 relative to M3. The structures were superposed on M3.
  • E2-Tg (PDB ID 2C8K, (C) is shown in green
  • [Ca 2 ]E1- AMPPCP (PDB ID 1T5S, (D) is shown in blue.
  • SLN bound SERCA is colored as in (A) Both in the E2 and the [Ca 2 ]E1 P states L61 and Gly257 form a 'pivot point' that anchors the M1 kink to M3, occluding the ion binding sites, while L65 shields the gating residue Glu309. In SLN-bound SERCA, the M1 kink is translocated more than 10 A into the membrane, leaving E309 unshielded.
  • E, F, G Structures of the proton/Ca 2+ binding sites.
  • E the Ca 2+ -free and protonated E2 state: both binding sites are distorted
  • E1-SLN state site II residues are involved in Mg 2+ binding, competing for high-affinity Ca 2+ binding geometry. Site I is accessible for Ca 2+ binding with only minor rearrangements.
  • G the [Ca 2 ]E1 P state with the two occupied Ca 2+ sites bound at high affinity.
  • FIG. 4 Model of the regulation mechanism by SLN.
  • Superposed SLN is shown in light cyan color, key residues are highlighted in yellow.
  • the binding mode of SLN appears compatible with the E2 state, with Leu321 in close contact to the SLN helix, in support of a mutational effect on PLB binding.
  • tight SLN binding would be incompatible with the [Ca 2 ]E1 P conformation, where the groove is constricted by SERCA residues L96, Q108 and W107.
  • Figure 5 Transmembrane heliix arrangements. Left: superposition of E2-Tg (green) with SERCA-SLN; right: superposition of E1Ca2-AMPPCP (blue, Ca2+ in cyan) with SERCA- SLN. SERCA-SLN colouring as in Fig.1.
  • Figure 6 Sequence alignment of rabbit and human phospholamban and sarcolipin from human and rabbit. The figure was created with Jalview using the program Muscle for the sequence alignment. From NMR studies (Lamberth, S. et al.) Helvetica Chimica Acta 83, 2141-2152 (2000). and modeling (Toyoshima, C. et al. Proc. Natl Acad.
  • PLB consists of three subdomains: an a-helical cytoplasmic subdomain la (residues 1-20) a hinge region (residues 20-30) and a transmembrane alpha helix (residues 31-52).
  • Figure 7 Positive Fo-Fc difference density signal in the nucleotide binding site.
  • Figure 8 Amino acid sequences of (A) SERCA Ca 2+ ATPase and (B) SLN as present in crystallised structure.
  • FIG. 9 Comparison of the electrostatic surface potential of SERCA in different states. Left: E2-Tg (PDB ID 2C8K); middle: E1-SLN, right: [Ca2]E1-AMPPCP (PDB ID 1T5S). The E1-SLN state has the most prominent patch of negative surface potential around the cation entry funnel (circle). Surface electrostatics were generated with Pymol (www.pymol.org). Structures are structurally aligned on the M8-M10 segment.
  • Figure 10 Ca2+- binding pocket in various solved structures of the SERCA Ca 2+ - ATPase.
  • Figure 11 Electron density map of sarcolipin in the SERCA sln complex.
  • Figure 12 Comparison of SLN and PLB. a, Helical wheel representation of the transmembrane segments of SLN and PLB. The hydrophobic side of SLN facing SERCA is indicated by a black arc. The distribution of hydrophobic (brown) and polar (green) amino acids is similar.
  • SLN possesses two acidic (red) and three basic (blue) residues on the side opposite the SERCA-interface, whereas PLB only has one basic residue (Arg25, blue), b, PLB gain-of-function and loss-of-function mutations described earlier from alanine scanning experiments (Kimura et al, 1997) were plotted on the SLN structure.
  • Loss-of function mutations red, orange for weak effect
  • gain-of-function mutations blue
  • cytosolic Ca 2+ Contraction and relaxation of muscle cells are controlled by the successive rise and fall of cytosolic Ca 2+ , which in the heart is tightly coupled with contractile properties and heart beat frequency. Release of sequestered Ca 2+ from the sarcoplasmic reticulum (SR) store initiates contraction while a rapid removal of the cytosolic Ca 2+ leads to relaxation. Re- sequestration of Ca 2+ into the SR lumen is the main mechanism of Ca 2+ removal and is catalyzed by the SR Ca 2+ -ATPase (SERCA), which therefore plays a key role in muscle and cardiovascular physiology.
  • SR sarcoplasmic reticulum
  • a major determinant of SERCA activity is its apparent Ca 2+ affinity, which is regulated by two small and homologous membrane proteins called phospholamban (PLB) and sarcolipin (SLN) 1,2 .
  • PLB phospholamban
  • SSN sarcolipin
  • Detailed structural information explaining how these regulatory proteins reduce the apparent Ca 2+ -affinity has however been missing, and the structural features that characterize a proper, cytoplasmic entry pathway for Ca + leading to the intramembraneous binding sites of SERCA have remained unknown.
  • the regulatory SLN traps the Ca 2+ -ATPase in an open E1 state with cytoplasmic exposure of the Ca 2+ sites through a pathway further stabilized by Mg 2+ .
  • the structure suggests a mechanism for selective Ca 2+ loading and activation of SERCA and provides novel insight on SLN/PLB inhibition by an E1 intermediate state stabilization.
  • SLN is primarily expressed in skeletal muscle, whereas PLB expression predominates in heart, although significant levels of SLN expression are also observed in cardiac atrial muscle 3 .
  • Both SLN and PLB are believed to bind to, and regulate SERCA in a similar fashion. Binding of SLN or PLB to SERCA lowers the apparent Ca 2+ affinity thus modulating the threshold Ca 2+ concentration at which SERCA gains transport activity 2,4"7 .
  • Phosphorylation of SLN and PLB in response to beta-adrenergic stimulation is a main cellular pathway of regulation of heart activity, as SERCA is inhibited by the non- phosphorylated proteins at resting Ca 2+ conditions 7"8 (typically in the 0.1 ⁇ range).
  • the E1 state binds Ca + and ATP to form the ADP sensitive E1 P phospho-enzyme, which occludes two Ca 2+ ions at intramembraneous sites I and II.
  • Conversion to the ADP insensitive E2P conformation exposes a luminal exit pathway, where Ca 2+ is exchanged for luminal protons.
  • Dephosphorylation accompanies proton occlusion, and release of inorganic phosphate leads to the E2 state.
  • An open question remains, however, on how the E2 to [Ca 2 ]E1 P transition occurs; a structure of a physiologically relevant, ion exchanging E1 intermediate state is missing.
  • the crystal structure is significantly different from the Ca 2+ - free E2 state (RMSD -6.6 A, E2 representing thapsigargin-bound E2 forms) and despite being a Ca + -free state it resembles much closer the Ca + -occluded E1 P states (RMSD -4.9 A, [Ca 2 ]E1 P representing calcium-occluded AMPPCP and ADP-AIF 4 " forms and the AMPPNP phosphorylated enzyme).
  • the SLN complex represents a genuine E1 intermediate between the proton-occluded E2 and the Ca 2+ - occluded E1P states - in functional analogy to the E2P state that allows Ca 2+ /H + exchange of ions on the luminal side 12,13 .
  • the positions of the P- and the N-domain relative to the transmembrane domain are clearly E1 -like, whereas the A-domain is at the trajectory from the E2 to the [Ca 2 ]E1P position (approx. 100° and -15° rotation, respectively).
  • Characteristic contacts between the A- and the N-domain of the [Ca 2 ]E1 P states e.g.
  • Arg134, Ser136, Arg139, Thr171 , and Lys218 interacting with Asp426, Asn469, Glu435, Glu486, and Asp422, respectively) have not yet formed in the SLN bound state (Fig. 1b), and compared to the [Ca 2 ]E1 P states, the N-domain is in a slightly outward rotated position ( ⁇ 17°) relative to the phosphorylation site of the P-domain.
  • the side chain conformation of the Asp351 phosphorylation site is still E2-like, i.e. interacting with Lys684 and Thr701 , and not pointing towards the N-domain introducing the adenine binding pocket.
  • the SLN molecule is traced in its complete 31 amino acid length, although N-and C- terminal residues are rather poorly defined in the electron density maps (Fig. 2a).
  • the assignment of the SLN sequence is validated by the overall quality of fit to the electron density maps.
  • Most of the observed SERCA-SLN contacts (4 A distance criterion) involve highly conserved amino-acid residues (Table 1), and the binding site is in accordance with previous observations and models based on mutational studies for both SLN and PLB 4,5,14"16 .
  • the SERCA-M4 segment bends at the unwound region of the ion binding cavity within the membrane and it crosses diagonally over the N-terminal end of SLN at the cytoplasmic interface.
  • intermolecular contacts show however only few, intimate interactions: three hydrogen bonds (SLN-Thr5 to Trp932 of SERCA M9, and SLN-Asn11 to Thr805 and the main chain carbonyl of Gly801 of M6, Fig. 2b), and a hydrophobic cluster of SLN-Val19 and Ile22 to Leu953 of M9 (Fig. 2c; Table 2).
  • SLN release in response to conformational changes of SERCA therefore seems only moderately restricted.
  • a suggestion that the C-terminal YQY motif stacks with aromatic residues of SERCA in the M1-M2 luminal loop 5 is not directly supported, although we note that this SLN motif is rather disordered in our structure.
  • SLN is homologous to the membrane-spanning, C-terminal segment of phospholamban (PLB). Since mutations in SERCA that affect interactions with PLB also affect SLN binding and equivalent mutations of PLB and SLN reduce functional interactions with SERCA similarly, it is expected that PLB and SLN use analogous mechanisms for SERCA interactions. Indeed, the interactions we observe between SLN and SERCA agree with crosslinking studies to PLB by Chen et al.
  • Glu309 is typically associated with a key role in Ca 2+ binding and release 12,13,18,19 .
  • the conserved pair of the hydrophobic Leu61 (M1) and small Gly257 (M3) has been described as a 'pivot point' for the kink, and the conserved Leu65 as a 'gate-lock' residue, restricting Glu309 mobility as required for Ca 2+ occlusion 20 .
  • the Leu61-Gly257 pair is separated: Leu61 now opposes Ala303 (M4) and Leu65 packs against Val300 (both also conserved).
  • the M1 kink is therefore translocated from “above” to "below” the unwound, central part of M4 around the conserved Pro308 and Glu309, i.e. diving deeply into the membrane.
  • the consequence is a large distortion of the membrane interface, through which Glu309 and other Ca 2+ binding residues become accessible from the cytoplasmic environment (Fig. 3a-e).
  • the two intramembraneous Ca 2+ sites I and II are also involved in the counter-transport of 2-3 protons.
  • Site I involves the side chains of residues Asn768, Glu771 , Asp800, and Glu908, and site II comprises those of Asn796, Asp800, Glu309 and the main chain carbonyl oxygens of Val304, Ala305 and Ile307 (Fig. 3 e-g).
  • Kinetic evidence points to a sequential and cooperative mechanism of Ca 2+ binding to SERCA, where binding of the first Ca + ion leads to an increased affinity for the second 22 .
  • single mutations at site I prevent binding of Ca 2+ to both sites I and II, while single mutations at site II only interfere with site II 23 .
  • Mg + ions bound at low affinity stabilize a deprotonated, open structure of site II with exposed carbonyl groups of the unwound part of M4 and deprotonated side chains of Glu309 and Asp800. It grants access for cytoplasmic Ca 2+ to reach site I through site II. Ca 2+ binding at site I is likely to engage Asp800, thus distorting the Mg 2+ sites and preparing also site II for Ca 2+ binding as a basis for cooperativity.
  • SLN and PLB activity is regulated by their expression level and phosphorylation status 2,4,6,7 .
  • Both SLN and PLB have been proposed to exist in biological membranes in monomeric and multimeric free forms and as monomeric and dimeric SERCA-bound forms 25 .
  • the mutations clearly cluster on opposite sides of the helix: loss- of-function mutations at the PLB-SERCA-interface, and gain-of-function mutations (presumably impaired PLB pentamerization leading to more active monomer) at the outside.
  • SERCA can interact at least in part with PLB pentamers 27 .
  • SLN is also phosphorylated by CaMKII at Thr5.
  • Thr5Glu a block in CaMKII activity in SLN overexpressing myocytes completely eliminates beta-adrenergic responses 8 .
  • Thr5 faces Trp932 of SERCA at approx.
  • E1-SLN form of SERCA candidates as a genuine intermediate of the catalytic cycle, required for Ca 2+ loading and therefore essential for the transport of ions across the SR membrane.
  • SLN and PLB reduce the apparent affinity for Ca 2+ by stabilization of this probably otherwise dynamic intermediate, which is also stabilized by Mg 2+ .
  • Many P-type ATPases are regulated by autoinhibitory extensions/domains, such as the plasma-membrane Ca 2+ ATPases (PMCAs), which are activated by Ca 2+ - calmodulin binding to the autoinhibitory element in a Ca 2+ dependent way 28,29 .
  • PMCAs plasma-membrane Ca 2+ ATPases
  • a conserved groove of the cytoplasmic domains that is linked to autoinhibition of PMCA 29 represents the extension of the SLN/PLB binding site observed here. Additionally, it overlaps also with a conserved site of interaction of heavy-metal binding domains mapped to the heavy-metal transporting P1 B-ATPase 30,31 . This groove is conserved for different P-type ion pumps as a core feature of ATPase coupled conformational changes; maximally exposed in E2 states and buried in E1 P states. It implicates this conserved surface in different mechanisms of binding, inhibition or regulation of P-type ATPases, and hints at therapeutic potential for ion pump targeting.
  • the SERCA1a-SLN complex was obtained from rabbit hind leg muscle. Solubilization and purification were performed with the detergent octaethylene glycol monododecyl ether (C 12 E 8 ) and crystals were obtained using PEG6000 as the precipitant and with approx. 75 mM MgS0 4 in the crystallization drop. Crystals were cryoprotected by addition of 20% glycerol in crystallization buffer. Crystallographic data were collected at the beam lines 911-3 at MaxLab in Lund, Sweden and X06SA of the Swiss Light Source (SLS) in Villigen, Switzerland. Phases were determined by molecular replacement using individual domains of SERCA E2 (pdb:2AGV) as structural search models. Refinement using data extending to 3.1 A resolution produced a model with a crystallographic R- factor of 19.1 % and a free R-factor of 24.6 %.
  • SERCA 1a isoform was prepared from sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. The membranes were further extracted and purified with low concentration of deoxycholate according to established procedures 32 . The membrane preparation was washed in 100 mM MOPS-Tris pH 6.8 (3-[N-morpholino]propanesulfonic acid titrated by tris[hydroxymethyl]aminomethane) and 80 mM KCI followed by a centrifugation at 40,000 rpm for 35 minutes at 4° C (TLS-55 rotor).
  • the purified membranes were incubated for 80 minutes with 1% DMSO, 100 mM MOPS-KOH pH 6.8, 20% glycerol, 80 mM KCI, 3 mM MgCI 2 , 3.9 mM EGTA, and SERCA and SLN were solubilized with 35 mM octaethyleneglycol dodecylether (C 2 E 8 ) for 10 minutes followed by centrifugation (TLA-55 rotor, 50,000 rpm, 35 minutes, 4° C). The protein concentration was 12 mg/ml of the final supernatant and 1 mM AMPPCP was added.
  • Crystallization was obtained by vapour diffusion using hanging drops equilibrated at 23°C from 1 + 1 ⁇ of protein and crystallization buffer (19.5% (w/v) PEG6000, 5% glycerol, 150 mM MgS0 4 and 6% MPD). Under these conditions the equilibrated drops maintain an approximately 2 ⁇ volume. Single crystals appeared after few days and grew within a week to a final size of 250 x 250 x 50 microns. Experiments initially aimed for cocrystallization with inhibitory compounds, which however were not bound in the E1-SLN crystal structure presented here, and crystallization was later reproduced without inhibitors.
  • Crystals were cryo-protected by addition of 1 ⁇ of cryobuffer (20% glycerol, 19.5% PEG6000, 150 mM MgS04 and 6% MPD) to a 2 ⁇ drop. Crystals were mounted in litho-loops and flash- cooled in liquid nitrogen.
  • cryobuffer 20% glycerol, 19.5% PEG6000, 150 mM MgS04 and 6% MPD
  • various strategies can be followed to identify and generate selective modulators of the Ca 2+ -ATPsae sarcolipin interaction based on the structural information described herein.
  • Potential modulators can be identified through virtual screening of chemical databases. Virtual screening are performed with different database docking programs (for instance Dock, FlexX, Gold, Flo, Fred, Glide, LigFit, MOE or MVP, but not limited to these) and used with different scoring functions (e.g. Warren et al, 2005; Jain, 2006; Seifert et a/, 2007).
  • the scoring functions may include, but are not limited to force-field scoring functions (affinities estimated by summing Van der Waals and electrostatic interactions of all atoms in the complex between the Ca 2+ - ATPase and Sarcolipin and the ligand), empirical scoring functions (counting the number of various interactions, for instance number of hydrogen bonds, hydrophobic- hydrophobic contacts and hydrophilic-hydrophobic contacts, between the complex and the ligand), and knowledge based scoring functions (with basis on statistical findings of intermolecular contacts involving certain types of atoms or functional groups). Scoring functions involving terms from any of the two of the mentioned scoring functions may also be combined into a single function used in database virtual screening of chemical libraries.
  • Identified potential modulators are confirmed by in vitro and in vivo experiments before further developments.
  • the binding of modulators may further be confirmed by x-ray experiments. Even when inhibitory activity is confirmed further drug development may be required before a compound suitable as a drug is identified.
  • potential modulators of a Ca 2+ -ATPase/Sarcolipin complex can be identified.
  • Such methods are preferable performed using computers, whereby the atomic coordinates are introduced into the computer, allowing generation of a model on the computer screen which allows visual selection of binding molecules.
  • Table (i) shows the x, y and z coordinates by amino acid residue of each non-hydrogen atom in the polypeptide structure for SLN bound SERCAI a.
  • the third column indicates whether the atom is from an amino acid residue of one of SERCAI a or SLN (differentiated by A and B, respectively, in fourth column), a diphosphate (ACP), a potassium ion (K), water (HOH), or a magnesium ion (MG).
  • ACP diphosphate
  • K potassium ion
  • HH water
  • MG magnesium ion
  • Crystallographic data were collected at the beam lines 911 -3 at MaxLab in Lund, Sweden and X06SA of the Swiss Light Source (SLS) in Villigen, Switzerland. The data were collected at 100 K and a wavelength of 0.97935 A. XDS was used for dataprocessing 33 and phases were determined by molecular replacement using individual domains of SERCA (pdb:2AGV and 3N5K) as search models 34 . Sarcolipin was originally traced as a poly-alanine model.
  • AMPPCP 9 ( ⁇ , ⁇ -phosphates)
  • CC* percentage of correlation between intensities from random half-datasets 46

Abstract

The present invention provides the use of a three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 Å, or selected coordinates thereof, in a method for selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN.

Description

CRYSTAL STRUCTURE I
The present invention relates to protein crystal structures and their use in identifying protein binding partners and in protein structure determination. In particular, it relates to the crystal structure of the SERCAIa ATPase in complex with the regulatory protein, sarcolipin (SLN).
The listing or discussion of an apparently prior-published document in this specification should not necessarily be taken as an acknowledgement that the document is part of the state of the art or is common general knowledge.
Contraction and relaxation of muscle cells depends upon cytoplasmic Ca2+ levels being tightly controlled. Voltage-dependent Ca2+-channels in myocytes mediate Ca2+ influx from the extracellular space to stimulate the opening of ryanodine receptors, which in turn release Ca2+ from the sarcoplasmic reticulum (SR) store, thereby triggering muscle contraction. Relaxation is initiated by Ca2+ efflux through the Na+/ Ca +-exchanger (NCX) and Ca2+ resorption to the SR by the SR Ca2+ ATPase (SERCA), while reaching a low basal level of Ca2+ is achieved by plasma membrane Ca2+-ATPases. The concentration of the cytosolic Ca2+ levels and the duration of the Ca2+ increase are tightly coupled to the contractile properties, which allows for a rapid beat-to-beat control in the heart. Indeed, perturbations of this highly regulated Ca2+ cycling are a hallmark of human heart failure. Thus, therapeutic approaches that target the Ca2+-ATPase and its regulators are highly desirable.
SERCA is a protein that is involved in determining not only the amount of Ca2+ available for contraction, but also controlling to a large extent the speed of relaxation. Various crystal structures are available for the SERCA Ca2+-ATPase protein. From these, it is known that the 110 kDa single polypeptide chain folds into a bundle of ten transmembrane segments (M1 through M10) that together form the ion transport domain and the three cytoplasmic domains, A, P, and N (Toyshima et al., 2000) which mediate ATP hydrolysis via phosphorylation and dephosphorylation. Also, the protein undergoes large conformational changes during the Ca2+ transport cycle (Laursen, et al., 2009; Olesen, et al., 2007; Olesen, et al., 2004; Toyoshima, et al., 2000). The E1 state binds to Ca + and ATP to form the ADP sensitive E1 P phospho-enzyme, which occludes two Ca2+ ions at intramembraneous sites I and II. Conversion to the ADP insensitive E2P conformation exposes a luminal exit pathway, where Ca2+ is exchanged for luminal H+. This H+ occlusion is accompanied by dephosphorylation and release of inorganic phosphate which leads to the E2 state.
Under physiological conditions, a major determinant of SERCA activity is its apparent Ca2+ affinity, which is regulated by small homologous membrane proteins called phospholamban (PLB) and sarcolipin (SLN) (James et al, 1989; Odermatt et al, 1989). In humans, SLN is primarily expressed in skeletal muscle, whereas PLB expression predominates in the heart. However, significant levels of SLN expression are observed in cardiac atrial muscle, indicating that SLN also plays an important role in heart physiology (Babu et al., 2007). Both proteins are believed to bind to and regulate SERCA in a similar fashion. The proteins bind to the ATPase at resting Ca2+ concentrations (0.1 μΜ range), and lower its apparent Ca2+ affinity, i.e. modulate a threshold Ca2+ concentration where SERCA becomes active (Asahi et al., 2002; Odermatt et al., 1998; Simmerman et al., 1996; Tada and Kadoma, 1989). Phosphorylation of both SLN and PLB in response to beta-adrenergic stimulation is believed to be the main cellular mechanism of regulation, with the ATPase being inhibited by the non-phosphorylated peptides (Wegener et al., 1998, Gramolini et al., 2006, Bhupathy et al., 2009). The structures of SLN and PLB and their interaction with SERCA have previously been studied by NMR (Buffy et al, 2006; Zamoon et al, 2005; Lambeth et al, 2000), but a complex structure of either of the regulators bound to SERCA has so far only been observed for PLB at low-resolution by electron microscopy (Young et al, 2001). As a result, the only suggestions about the placement of SLN and PLB on SERCA are those based on computerised modelling. For example, the inhibitory interaction of PLN with SERCA isoform 1 (SERCAIa) was modelled on the basis of several constraints which included: (i) spontaneous formation of SS-bridges between mutants L321C in transmembrane helix 4 (M4) of SERCAIa and N27C in PLN, and between V89C (M4) and V49C (PLN); (ii) definition of the face of the PLN transmembrane helix that interacts with SERCA; and (iii) cross-linking between Lys-3 of PLN and Lys-397 and Lys-400 of SERCA2a . The modeling was done using the crystal structure of SERCAIa in the absence of Ca2+, into which an atomic model of PLN was built (Toyoshima et al., 2003).
The inventors have now solved the first structure of the SERCA Ca2+ ATPase in complex with the regulatory protein, SLN. The structure provides new insight into the regulation of SERCA Ca2+ ATPase by SLN and identifies the precise binding site for SLN. The atomic coordinates of the complex may be utilised and manipulated in many different ways with wide ranging applications including the fitting of binding partners, homology modeling and structure solution, analysis of ligand interactions and drug discovery. In particular, the structure reveals that the Ca2+-ATPase adopts a novel conformation when in complex with SLN, therefore providing a novel platform for virtual screening of binding partners.
Accordingly, a first aspect of the invention provides the use of a three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as defined by the coordinates listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, in a method for selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN.
By the term "coordinate" we include the information of the three dimensional organisation of the atoms contributing to a protein structure.
By a 'three dimensional structural representation' we include a computer generated representation or a physical representation. Typically, in all aspects of the invention which feature a structural representation, the representation is computer generated. Computer representations can be generated or displayed by commercially available software programs. Examples of software programs include but are not limited to QUANTA (Accelrys .COPYRIGHT.2001 , 2002), O (Jones et al., Acta Crystallogr. A47, pp. 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)), which are incorporated herein by reference. Examples of representations include any of a wire-frame model, a chicken-wire model, a ball-and-stick model, a space-filling model, a stick model, a ribbon model, a snake model, an arrow and cylinder model, an electron density map or a molecular surface model. Certain software programs may also imbue these three dimensional representations with physico-chemical attributes which are known from the chemical composition of the molecule, such as residue charge, hydrophobicity, torsional and rotational degrees of freedom for the residue or segment, etc. Examples of software programs for calculating chemical energies are described below.
Typically, the coordinates of the SERCA Ca2+ ATPase/SLN complex used in the invention are those listed in Table (i). However, it is appreciated that it is not necessary to have recourse to the original coordinates listed in Table (i), and that any equivalent geometric representation derived from or obtained by reference to the original coordinates may be used. Thus, for the avoidance of doubt, by 'the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i)', we include any equivalent representation wherein the original coordinates have been reparameterised in some way. For example, the coordinates in Table (i) may undergo any mathematical transformation known in the art, such as a geometric transformation, and the resulting transformed coordinates can be used. For example, the coordinates of Table (i) may be transposed to a different origin and/or axes or may be rotated about an axis. Furthermore, it is possible to use the coordinates to calculate the psi and phi backbone torsion angles (as displayed on a Ramachandran plot) and the chi sidechain torsion angles for each residue in the protein. These angles together with the corresponding bond lengths, enable the construction of a geometric representation of the protein which may be used based on the parameters of psi, phi and chi angles and bond lengths. Thus while the coordinates used are typically those in Table (i), the inventors recognise that any equivalent geometric representation of the SERCA Ca2+ ATPase/SLN complex structure, based on the coordinates listed in Table (i), may be used.
Additionally, it is appreciated that changing the number and/or positions of the ligand molecule of the Tables does not generally affect the usefulness of the coordinates in the aspects of the invention. Thus, it is also within the scope of the invention if the number and/or positions of ligand molecules of the coordinates of Table (i) is varied.
It will be appreciated that in all aspects of the invention which utilise the coordinates of the SERCA Ca2+ ATPase/SLN complex structure, it is not necessary to utilise all the coordinates of Table (i), but merely a portion of them, e.g. a set of coordinates representing atoms of particular interest in relation to a particular use. Such a portion of coordinates is referred to herein as 'selected coordinates'. For example, when selecting or designing one or more binding partners of a Ca2+ ATPase, it may be desirable only to select those coordinates corresponding to atoms from the SERCA Ca2+ ATPase, and when selecting or designing one or more binding partners of SLN, it may be desirable only to select those coordinates corresponding to atoms from SLN. Also, when selecting or designing binding partners that modulate the Ca2+ ATPase/SLN interaction, it may be convenient to select coordinates corresponding to only those atoms from one or more amino acid residues of SERCA Ca2+ ATPase and/or SLN within the SERCA Ca2+ ATPase/SLN interaction site. Further detail on which coordinates may be selected is provided below.
By 'selected coordinates', we include at least 5, 10 or 20 non-hydrogen protein atoms of the SERCA Ca2+ ATPase/SLN complex structure, more preferably at least 50, 100, 200, 300, 400, 500, 600, 700, 800 or 900 atoms and even more preferably at least 1000, 1 00, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100 or 2200 non- hydrogen atoms. Preferably the selected coordinates pertain to at least 5, 10, 20 or 30 different amino acid residues (i.e. at least one atom from 5, 10, 20 or 30 different residues may be present), more preferably at least 40, 50, 60, 70, 80 or 90 residues, and even more preferably at least 100, 150, 200, 250 or 300 residues. Optionally, the selected coordinates may include one or more ligand atoms as set out in Table (i). Alternatively, the selected coordinates may exclude one or more atoms of the ligand. It will also be appreciated that the selected coordinates may pertain to atoms of only the SERCA Ca2+ ATPase, or that the selected coordinates may pertain to atoms of only SLN, or that the selected coordinates may pertain to atoms of both SERCA Ca2+ ATPase and SLN.
In one example, the selected coordinates may comprise atoms of one or more amino acid residues that contribute to the main chain or side chain atoms of a binding region of the SERCA Ca2+ ATPase.
For example, amino acid residues contributing to the SLN binding region include amino acid residues in helix M2, M6, M9 and the top of helix M4. Thus, the selected coordinates may comprise atoms of one or more amino acid residues selected from one or more of helices M2, M6, M9 and M4 of the SERCA Ca2+ ATPase, corresponding to amino acid residues M2: residues 86-122, M4: residues 288-328, M6: residues 789-809, M9: residues 931-960 according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8. More specifically, the SLN binding region includes amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8. These residues are those residues of SERCA Ca2+ ATPase that are believed to interact with SLN. Thus the selected coordinates may comprise one or more atoms from any one or more (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or 33 amino acid residues) of amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala 100, Ile 03, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8. Typically, coordinates of all of the atoms of the side chain of the one or more amino acid residues are selected.
In a further example, the selected coordinates may comprise atoms of one or more amino acid residues of the SLN binding pocket of SERCA Ca2+ ATPase which includes Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8. These residues are those residues of SERCA Ca2+ ATPase that together with residues of SLN (residues 1-11) form a pocket that represents a potential binding site. Thus the selected coordinates may comprise one or more atoms from any one or more (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18 or 19 amino acid residues) of amino acid residues Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8.
In a further example, the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca2+ ATPase binding site of SLN, which includes amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10 and Asn11 according to the numbering of SLN as set out in Figure 8. Thus the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10 and Asn 1 , according to the numbering of SLN as set out in Figure 8 (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 of said amino acid residues).
In a yet further example, the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca2+ ATPase/SLN complex within the SERCA Ca2+ ATPase-SLN interaction site, which includes amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr 22, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of SERCA Ca2+ ATPase according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8 and amino acids residues Met1 , Arg3, Ser4, Thr5, Glu7, Leu8, Leu10, Asn11 , Phe12, Val14, Val15, Leu16, Thr18, Val19, Leu21 , Ile22, Trp23, Leu25, Val26, and Tyr29 according to the numbering of SLN as set out in Figure 8. Thus the selected coordinates may comprise one or more atoms from any one or more of the above amino acid residues (e.g. at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 or 15 or 20 or 25 or 30 or 35 or 40 or 45 or 50 or 55 or 60 of said amino acid residues).
In another example, the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca2+ ATPase intramembranous Ca2+ binding sites, of which there are two: Site I and Site II. Site I involves the side chains of residues Asn 768, Glu 771 , Asp 800 and Glu 908; and Site II involves the side chains of residues Asn 796, Asp 800, Gly 309, Val 304, Ala 305 and lie 307 according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8. Thus the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Asn 768, Glu 771 , Asp 800 and Glu 908, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8 (e.g. 1 or 2 or 3 of said amino acid residues), and/or one or more atoms from any one or more of amino acid residues Asn 796, Asp 800, Gly 309, Val 304, Ala 305 and lie 307, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8 (e.g. at least 1 , 2, 3, 4, 5 or 6 of said amino acid residues).
In yet another example, the selected coordinates may comprise atoms of one or more amino acid residues of the SERCA Ca2+ ATPase Mg2+ binding site which involves residues Asp 800 and Glu 309 according to the numbering of the SERCA Ca + ATPase as set out in Figure 8. Thus the selected coordinates may comprise one or more atoms from any one or more of amino acid residues Asp 800 and Glu 309, according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8 (e.g. 1 or 2 of said amino acid residues). It is appreciated that the selected coordinates may comprise any atoms of particular interest including atoms from amino acid residues mentioned in any one or more of the above examples, or as listed in Example 1 below.
It is also appreciated that the selected coordinates may correspond to atoms from a particular structural region (e.g. helix and/or loop) of the SERCA Ca2+ ATPase. Thus, the selected coordinates may correspond to atoms from one or more amino acid residues of the three cytoplasmic domains, designated P, N and A. Similarly, the selected coordinates may correspond to atoms from one or more amino acid residues of one or more of the ten transmembrane helices, designated M1-M10.
Preferably, the selected coordinates include at least 2% or 5% C-a atoms, and more preferably at least 10% C-a atoms. Alternatively or additionally, the selected coordinates include at least 10% and more preferably at least 20% or 30% backbone atoms selected from any combination of the nitrogen, C-a, carbonyl C and carbonyl oxygen atoms.
It is appreciated that the coordinates of the SERCA Ca2+ ATPase used in the invention may be optionally varied and a subset of the coordinates or the varied coordinates may be selected (and constitute selected coordinates). Indeed, such variation may be necessary in various aspects of the invention, for example in the modelling of protein structures and in the fitting of various binding partners to a Ca2+ ATPase (e.g. SERCA Ca2+ ATPase) structure.
Protein structure variability and similarity is routinely expressed and measured by the root mean square deviation (rmsd), which measures the difference in positioning in space between two sets of atoms. The rmsd measures distance between equivalent atoms after their optimal superposition. The rmsd can be calculated over all atoms, over residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues), main chain atoms only (i.e. the nitrogen-carbon-oxygen-carbon backbone atoms of the protein amino acid residues), side chain atoms only or over C-a atoms only. The least-squares algorithms used to calculate rmsd are well known in the art and include those described by Rossman and Argos (J Biol Chem, (1975) 250:7525), Kabsch (Acta Cryst (1976) A92:922; Acta Cryst (1978) A34:827-828), Hendrickson (Acta Cryst (1979) A35: 158), McLachan (J Mol Biol (1979) 128:49) and Kearsley (Acta Cryst (1989) A45:208). Both algorithms based on iteration in which one molecule is moved relative to the other, such as that described by Ferro and Hermans (Acta Cryst (1977) A33:345- 347), and algorithms which locate the best fit directly (e.g. Kabsch's methods) may be used. Methods of comparing proteins structures are also discussed in Methods of Enzymology, vol 115: 397-420. Typically, rmsd values are calculated using coordinate fitting computer programs and any suitable computer program known in the art may be used, for example MNYFIT (part of a collection of programs called COMPOSER, Sutcliffe et al (1987) Protein Eng 1 : 377-384). Other programs also include LSQMAN (Kleywegt & Jones (1994) A super position, CCP4/ESF-EACBM, Newsletter on Protein Crystallography, 31 : 9-14), LSQKAB (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Cryst (1994) D50:760-763), QUANTA (Jones ef al, Acta Cryst (1991) A47:110-119 and commercially available from Accelrys, San Diego, CA), Insight (Commercially available from Accelrys, San Diego, CA), Sybyl® (commercially available from Tripos, Inc., St Louis) and O (Jones et a/., Acta Cryst (1991) A47:110-119).
In, for example, the programs LSQKAB and O, the user can define the residues in the two proteins that are to be paired for the purpose of the calculation. Alternatively, the pairing of residues can be determined by generating a sequence alignment of the two proteins as is well known in the art. The atomic coordinates can then be superimposed according to this alignment and an rmsd value calculated. The program Sequoia (Bruns et al (1999) J Mol Biol 288(3):427-439) performs the alignment of homologous protein sequences, and the superposition of homologous protein atomic coordinates. Once aligned, the rmsd can be calculated using programs detailed above. When the sequences are identical or highly similar, the structural alignment of proteins can be done manually or automatically as outlined above. Another approach would be to generate a superposition of protein atomic coordinates without considering the sequence.
We have conducted an rmsd analysis of C alpha atoms of the protein between the present SERCA Ca2+ ATPase and two known SERCAIa structures: one solved in the E1-P state (PDB code: 1T5S) and one solved in the E2 state (PDB code: 2AGV) using the program PyMol and the command Fit with specification of the C alpha atoms. The Fit command superimposes the model in the first selection on the model of the second selection (www.pymolwiki.org/index.php/Fit). Similar scripts can be used to calculate rmsd values for any other selected coordinates. Rmsd values have been calculated on C alpha atoms in the complete structure (residues 1-79, 86-883 and 887-994) and within the SLN binding site (i.e. residues Phe88, Phe92, Val93, Leu96, Ile97, AlalOO, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr122, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957) as discussed below. Conducting an rmsd analysis of C alpha atoms between the present SERCA Ca2+ ATPase and PDB code: 1T5S gave an rmsd value of 4.955 A, and between the present SERCA Ca2+ ATPase and PDB code: 2AGV gave an rmsd valued of 9.457 A. Thus in one embodiment, the coordinates or selected coordinates of Table (i) may be optionally varied within an rmsd of residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein) of not more than 4.95 A. Preferably, the coordinates or selected coordinates are varied within an rmsd of residue backbone atoms of not more than 4.9 A, 4.8 A 4.7 A, 4.6 A, 4.5 A, 4.4 A, 4.3 A, 4.2 A, 4.1 A, 4.0 A, 3.9 A, 3.8 A, 3.7 A, 3.6 A, 3.5 A, 3.4 A, 3.3 A, 3.2 A, 3.1 A, 3.0 A, 2.9 A, 2.8 A, 2.7 A, 2.6 A, 2.5 A, 2.4 A, 2.3 A, 2.1 A, 2.0 A, 1.9 A, 1.8 A, 1.7 A, 1.6 A, 1.5 A, 1.4 A, 1.3 A, 1.2 A, 1.1 A, 1.0 A, 0.9 A or 0.8 A and more preferably not more than 0.7 A, 0.6 A, 0.5 A, 0.4 A, 0.3 A, 0.2 A or 0.1 A. It is particularly preferred that when the selected coordinates correspond to all or some of the atoms of the SERCA Ca2+ ATPase, and none of the atoms of SLN, that they are optionally varied within an rmsd of residue backbone atoms of these values.
We have conducted an rmsd analysis of residue backbone atoms between the present SERCA Ca2+ ATPase and other SERCA Ca + ATPases represented by PDB codes: 1T5S and 2AGV, within the SLN binding site (i.e. residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, VaI104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr122, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957). The rmsd value for PDB: 1T5S is 3.581 and the rmsd value for PDB: 2AGV is 5.836 A. Thus in an embodiment, where the coordinates or selected coordinates used in the invention are optionally varied within the SLN binding site, they are varied within an rmsd of residue backbone atoms of not more than 3.58 A (such as not more than 3.5 A, 3.4 A, 3.3 A, 3.2 A, 3.1 A, 3.0 A, 2.9 A, 2.8 A,
2.7 A, 2.6 A, 2.5 A, 2.4 A, 2.3 A, 2.1 A, 2.0 A, 1.9 A, 1.8 A, 1.7 A, 1.6 A, 1.5 A, 1.4 A, 1.3 A, 1.2 A, 1.1 A, 1.0 A, 0.9 A, 0.8 A, 0.7 A, 0.6 A, 0.5 A, 0.4 A, 0.3 A, 0.2 A or 0.1 A).
We have also conducted an rmsd analysis of C alpha atoms between the present SLN and a known structure of SLN solved by NMR (PDB code: 1JDM) using the program PyMol and the command Align with specification of the C alpha atoms. Align does a BLAST-like BLOSUM62-weighted dynamic programming sequence alignment followed by a series of refinement cycles intended to improve the fit by eliminating pairing with high relative variability (e.g. >2 standard deviations from the cycle's mean deviance) (www.pymolwiki.org/index.php/Align#RMS_values). Rmsd values were calculated on C alpha atoms in the complete structure (SLN residues 5-8, 10-13, 15-21 and 23-29) and gave an rmsd value of 1.898 A. Thus in one embodiment, the coordinates or selected coordinates of Table (i) may be optionally varied within an rmsd of C alpha atoms of not more than 1.89 A. Preferably, the coordinates or selected coordinates are varied within an rmsd of C alpha atoms of not more than 1.8 A, 1.7 A, 1.6 A, 1.5 A, 1.4 A, 1.3 A, 1.2 A, 1.1 A, 1.0 A, 0.9 A or 0.8 A and more preferably not more than 0.7 A, 0.6 A, 0.5 A, 0.4 A, 0.3 A, 0.2 A or 0.1 A. It is particularly preferred that when the selected coordinates correspond to all or some of the atoms of the SLN, and none of the atoms of SERCA Ca2+ ATPase, that they are optionally varied within an rmsd of C alpha atoms of these values.
It is appreciated that the coordinates of the SERCA Ca2+ ATPase/SLN complex of Table (i) optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof may be used in the provision, design, modification or analysis of binding partners of Ca2+ ATPase and/or SLN. In other words, the binding partners may be binding partners of Ca2+ ATPase, binding partners of SLN, or binding partners of both Ca2+ ATPase and SLN (i.e. the binding partner may bind to both Ca2+ ATPase and SLN when the two protein are in complex with one another). Such a use will be important in drug design.
By Ca2+ ATPase we include any Ca2+ ATPase which has at least 75% sequence identity with rabbit SERCA Ca + ATPase as well as Ca2+ ATPases (eg SERCA Ca2+ ATPases) from other species (eg animal species) and mutants thereof. Preferably, the Ca2+ ATPase has at least 80% amino acid sequence identity to rabbit SERCA Ca2+ ATPase, and more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity. Most preferably, the Ca2+ ATPase is a SERCA Ca2+ ATPase.
By SLN we include any SLN which has at least 75% sequence identity with rabbit SLN as well as SLN from other species (eg animal species) and mutants thereof. Preferably, the SLN has at least 80% amino acid sequence identity to rabbit SLN, and more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% amino acid sequence identity.
By "binding partner" we mean any molecule that binds to a Ca2+ ATPase, or which binds to a SLN, or which binds to a Ca2+ ATPase/SLN complex. Preferably, the molecule binds selectively to the Ca2+ ATPase and/or SLN. For example, it is preferred if the binding partner has a Kd value (dissociation constant) which is at least five or ten times lower (i.e. higher affinity) than for at least one other Ca2+ ATPase and/or SLN, and preferably more than 100 or 500 times lower. Thus, if the binding partner is for a Ca2+ ATPase, it is preferred if the binding partner has a Kd value which is lower than for at least one other Ca2+ ATPase by the specified degree, and if the binding partner binds to both Ca2+ ATPase and SLN in a complex, it is preferred if the binding partner has a Kd value which is lower than for at least one other Ca2+ ATPase/SLN complex which complex contains a different Ca2+ ATPase and a different SLN. More preferably, the binding partner of a Ca2+ ATPase and/or SLN has a Kd value more than 1000 or 5000 times lower than for at least one other Ca2+ ATPase and/or SLN. However, it will be appreciated that the limits will vary dependent upon the nature of the binding partner. Thus, typically, for small molecule binding partners, the binding partner typically has a Kd value which is at least 10 times or 50 times or 100 times lower than for at least one other Ca2+ ATPase and/or SLN. Typically, for antibody binding partners, the binding partner typically has a Kd value which is at least 500 or 1000 times lower than for at least one other Ca2+ ATPase and/or SLN. Kd values can be determined readily using methods well known in the art and as described, for example, below.
At equilibrium Kd=[R][L]/[RL]
where the terms in brackets represent the concentration of
· Receptor-ligand complexes [RL],
• unbound receptor [R], and
• unbound ("free") ligand [L].
In order to determine the Kd the value of these terms must be known. Since the concentration of receptor is not usually known then the Hill-Langmuir equation is used where Fractional occupancy= [L]/[L] + Kd.
In order to experimentally determine a Kd then, the concentration of free ligand and bound ligand at equilibrium must be known. Typically, this can be done by using a radio- labelled or fluorescently labelled ligand which is incubated with the receptor (present in whole cells or homogenised membranes) until equilibrium is reached. The amount of free ligand vs bound ligand must then be determined by separating the signal from bound vs free ligand. In the case of a radioligand this can be done by centrifugation or filtration to separate bound ligand present on whole cells or membranes from free ligand in solution. Alternatively a scintillation proximity assay is used. In this assay the receptor (in membranes) is bound to a bead containing scintillant and a signal is only detected by the proximity of the radioligand bound to the receptor immobilised on the bead.
The binding partner may be any of a polypeptide; an anticalin; a peptide; an antibody; a chimeric antibody; a single chain antibody; an aptamer; a darpin; a Fab, F(ab')2, Fv, ScFv or dAb antibody fragment; a small molecule; a natural product; an affibody; a peptidomimetic; a nucleic acid; a peptide nucleic acid molecule; a lipid; a carbohydrate (eg saccharide); a protein based on a modular framework including ankyrin repeat proteins, armadillo repeat proteins, leucine rich proteins, tetrariopeptide repeat proteins or Designed Ankyrin Repeat Proteins (DARPins); a protein based on lipocalin or fibronectin domains or Affilin scaffolds based on either human gamma crystalline or human ubiquitin; a G protein; an RGS protein; an arrestin; a GPCR kinase; a receptor tyrosine kinase; a RAMP; a NSF; a GPCR; an NMDA receptor subunit NR1 or NR2a; calcyon; or a fragment or derivative thereof that binds to a Ca2+ ATPase and/or SLN. Typically, the binding partner is a small molecule or peptide.
It will be appreciated that the coordinates of the invention will also be useful in the analysis of solvent and ion interactions with a Ca2+ ATPase, which are important factors in drug design. Thus the binding partner may be a solvent molecule, for example water or acetonitrile, or an ion, for example a sodium ion or a protein.
It is particularly preferred if the binding partner is a small molecule with a molecule weight less than 5000 daltons, for example less than 4000, 3000, 2000 or 1000 daltons, or with a molecule weight less than 500 daltons, for example less than 450 daltons, 400 daltons, 350 daltons, 300 daltons, 250 daltons, 200 daltons, 150 daltons, 100 daltons, 50 daltons or 10 daltons.
It is further preferred if the binding partner causes a change (i.e a modulation) in the level of biological activity of the Ca2+ ATPase and/or SLN, and therefore may have the potential to be a candidate drug. Thus the binding partner may be a modulator of Ca2+ ATPase activity and/or SLN activity. In other words the binding partner may be a modulator of Ca2+ ATPase activity, a modulator of SLN activity, or a modulator of the activity of the Ca2+ ATPase/SLN complex. The activity that is modulated may be any one or more biological activities of Ca2+ ATPase or SLN or the Ca2+ ATPase/SLN complex, including binding activities, enzymatic activities and cell signalling activities. The major determinant of SERCA Ca2+ ATPase activity at physiological Ca2+ is its affinity for transported Ca2+ ions regulated by SLN and PLB, and so in a particularly preferred embodiment, the binding partner is a modulator of the SERCA Ca2+ ATPase/SLN interaction or of the SERCA Ca2+ ATPase/PLB interaction, and therefore also a modulator of SERCA Ca2+ ATPase activity. By 'modulator' we include the meaning of an agent that increases a given activity or an agent that decreases a given activity. Thus, a modulator would include an inhibitor or activator of a given activity (e.g. in the binding of SLN or PLB to a Ca ATPase, the modulator may act to either strengthen or diminish the interaction).
It will be appreciated that the binding partner may bind to an orthosteric site or to an allosteric site of either protein.
A second aspect of the invention provides a method for selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN, the method comprising using molecular modelling means to select or design one or more binding partners of a Ca2+ ATPase and/or SLN, wherein the three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, is compared with a three-dimensional structural representation of one or more candidate binding partners, and one or more binding partners that are predicted to interact with the Ca2+ ATPase and/or SLN are selected or designed.
In order to provide a three-dimensional structural representation of a candidate binding partner, the binding partner structural representation may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a structural representation of the binding partner.
The design of binding partners that bind to a Ca2+ ATPase and/or SLN generally involves consideration of two factors.
First, the binding partner must be capable of physically and structurally associating with parts or all of a binding region (e.g. ligand binding site or an allosteric binding site). Non- covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions.
Second, the binding partner must be able to assume a conformation that allows it to associate with the binding region directly. Although certain portions of the binding partner will not directly participate in these associations, those portions of the binding partner may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the binding partner in relation to all or a portion of the binding region, or the spacing between functional groups of a binding partner comprising several binding partners that directly interact with the protein or protein complex. This is particularly relevant where the binding partner is a protein.
Thus it will be appreciated that selected coordinates which represent a binding region of the SERCA Ca2+ ATPase, or a binding region of SLN, or a binding region of the SERCA Ca2+ ATPase/SLN complex (eg one that spans across both proteins) may be used. For example, atoms from one or more amino acid residues contributing to the SLN binding region of SERCA Ca2+ ATPase, including amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 may be used, and/or atoms from one or more amino acid residues of the SLN binding pocket of SERCA Ca2+ ATPase, including Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, may be used, and/or atoms of one or more amino acid residues of the SERCA Ca2+ ATPase binding site of SLN, including amino acid residues Met1 , Arg3, Ser4, Thr5, Glu7, Leu8, Leu10, Asn11 , Phe12, Val14, Val15, Leu16, Thr18, Val19, Leu21 , Ile22, Trp23, Leu25, Val26, and Tyr29, may be used. In a preferred embodiment, the one or more binding partners are predicted to bind to the SERCA Ca2+ ATPase/SLN interaction site. In this way, it is believed that the one or more binding partners may be modulators of the SERCA Ca2+ ATPase/SLN interaction, and thus modulators of Ca2+ ATPase activity. By the SERCA Ca2+ ATPase/SLN interaction site we include amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu 121 , Tyr122, Thr 317, Leu321 , Arg324, Lys328, Phe 760, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of SERCA Ca2+ ATPase according to the numbering of the SERCA Ca2+ ATPase as set out in Figure 8 and amino acids residues Met1 , Arg3, Ser4, Thr5, Glu7, Leu8, Leu10, Asn11, Phe12, Val14, Val15, Leu16, Thr18, Val19, Leu21 , Ile22, Trp23, Leu25, Val26, and Tyr29 according to the numbering of SLN as set out in Figure 8. Hence, the selected coordinates may correspond to atoms from one or more of these amino acid residues. Selected coordinates representing an extracellular face would be useful to select or design for binding partners such as antibodies, and selected coordinates representing an intracellular face would be useful to select or design for agents which modulate (e.g. increase or decrease or prevent) binding to natural binding partners such as SLN and PLB. Additional preferences for the selected coordinates, including the Ca2+ and Mg2+ binding sites, are as defined above with respect to the first aspect of the invention. It will be appreciated that any of these particular binding regions may be used to identifying binding partners and potential modulators.
Designing of binding partners can generally be achieved in two ways, either by the step wise assembly of a binding partner or by the de novo synthesis of a binding partner. As is described in more detail below, binding partners can also be identified by virtual screening.
With respect to the step-wise assembly of a binding partner, several methods may be used. Typically the process begins by visual inspection of, for example, any of the binding regions on a computer representation of the SERCA Ca2+ ATPase/SLN complex as defined by the coordinates in Table (i), optionally varied within a rmsd of C alpha atoms of not more than 4.95 A, or selected coordinates thereof. Selected binding partners, or fragments or moieties thereof may then be positioned in a variety of orientations, or docked, within the binding region. Docking may be accomplished using software such as QUANTA and Sybyl (Tripos Associates, St. Louis, Mo.), followed by, or performed simultaneously with, energy minimization, rigid-body minimization (Gshwend, supra) and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.
Specialized computer programs may also assist in the process of selecting binding partners or fragments or moieties thereof. These include: 1. GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK. 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 1 1 , pp. 29-34 (1991)). MCSS is available from Molecular Simulations, San Diego, Calif. 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif. 4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161 , pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif. Once suitable binding partners or fragments have been selected, they may be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of the SERCA Ca2+ ATPase and/or SLN. This would be followed by manual model building using software such as QUANTA or Sybyl.
Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include: 1. CAVEAT (P. A. Bartlett et al., "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", in "Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc, 78, pp. 182-196 (1989); G. Lauri and P. A. Bartlett, "CAVEAT: a Program to Facilitate the Design of Organic Molecules", J. Comput. Aided Mol. Des., 8, pp. 51-66 (1994)). CAVEAT is available from the University of California, Berkeley, Calif; 2. 3D Database systems such as ISIS (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992); and 3. HOOK (M. B. Eisen et al., "HOOK: A Program for Finding Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a Macromolecule Binding Site", Proteins: Struct., Funct., Genet, 19, pp. 199-221 (1994). HOOK is available from Molecular Simulations, San Diego, Calif.
Thus the invention includes a method of a method for selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN comprising the steps of: (a) providing a structural representation of a SERCA Ca2+ ATPase and/or SLN binding region as defined by the coordinates of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof (b) using computational means to dock a three dimensional structural representation of a first binding partner in part of the binding region; (c) docking at least a second binding partner in another part of the binding region; (d) quantifying the interaction energy between the first or second binding partner and part of the binding region; (e) repeating steps (b) to (d) with another first and second binding partner, selecting a first and a second binding partner based on the quantified interaction energy of all of said first and second binding partners; (f) optionally, visually inspecting the relationship of the first and second binding partner to each other in relation to the binding region; and (g) assembling the first and second binding partners into a one binding partner that interacts with the binding region by model building. As an alternative to the step-wise assembly of binding partners, binding partners may be designed as a whole or "de novo" using either an empty binding region or optionally including some portion(s) of a known binding partner(s). There are many de novo ligand design methods including: 1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Molecular Simulations Incorporated, San Diego, Calif; 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations Incorporated, San Diego, Calif; 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.); and 4. SPROUT (V. Gillet et al., "SPROUT: A Program for Structure Generation)", J. Comput. Aided Mol. Design, 7, pp. 127-153 (1993)). SPROUT is available from the University of Leeds, UK.
Other molecular modelling techniques may also be employed in accordance with this invention (see, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990); see also, M. A. Navia and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992); L. M. Balbes et al., "A Perspective of Modern Methods in Computer-Aided Drug Design", in Reviews in Computational Chemistry, Vol. 5, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, New York, pp. 337-380 (1994); see also, W. C. Guida, "Software For Structure-Based Drug Design", Curr. Opin. Struct. Biology, 4, pp. 777-781 (1994)).
In addition to the methods described above in relation to the design of binding partners, other computer-based methods are available to select for binding partners that interact with Ca2+ ATPase and/or SLN.
For example the invention involves the computational screening of small molecule databases for binding partners that can bind in whole, or in part, to Ca2+ ATPase and/or SLN. In this screening, the quality of fit of such binding partners to a binding region of Ca2+ ATPase and/or SLN as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, may be judged either by shape complementarity or by estimated interaction energy (E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992)).
For example, selection may involve using a computer for selecting an orientation of a binding partner with a favourable shape complementarity in a binding region comprising the steps of: (a) providing the coordinates of the SERCA Ca ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof and a three-dimensional structural representation of one or more candidate binding partners; (b) employing computational means to dock a first binding partner in the binding region; (c) quantitating the contact score of the binding partner in different orientations; and (d) selecting an orientation with the highest contact score.
The docking may be facilitated by the contact score. The method may further comprise the step of generating a three-dimensional structural representation of the binding region and binding partner bound therein prior to step (b).
The method may further comprise the steps of: (e) repeating steps (b) through (d) with a second binding partner; and (f) selecting at least one of the first or second binding partner that has a higher contact score based on the quantitated contact score of the first or second binding partner.
In another embodiment, selection may involve using a computer for selecting an orientation of a binding partner that interacts favourably with a binding region comprising; a) providing the coordinates of the SERCA Ca2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof; b) employing computational means to dock a first binding partner in the binding region; c) quantitating the interaction energy between the binding partner and all or part of a binding region for different orientations of the binding partner; and d) selecting the orientation of the binding partner with the most favorable interaction energy.
The docking may be facilitated by the quantitated interaction energy and energy minimization with or without molecular dynamics simulations may be performed simultaneously with or following step (b).
The method may further comprise the steps of: (e) repeating steps (b) through (d) with a second binding partner; and (f) selecting at least one of the first or second binding partner that interacts more favourably with a binding region based on the quantitated interaction energy of the first or second binding partner. In another embodiment, selection may involve screening a binding partner to associate at a deformation energy of binding of less than -7 kcal/mol with a binding region of a Ca2+ ATPase and/or SLN, comprising: (a) coordinates of the SERCA Ca2+ ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, and employing computational means which utilise coordinates to dock the binding partner into a binding region; (b) quantifying the deformation energy of binding between the binding partner and the binding region; and (d) selecting a binding partner that associates with a Ca2+ ATPase and/or SLN binding region at a deformation energy of binding of less than -7 kcal/mol.
Generally, the one or more binding partners are predicted to bind to at least one amino acid in a given binding region (e.g. SERCA Ca2+ ATPase/SLN interaction site), such as at least 2, 3, 4 or 5 amino acid residues. Preferably, the one or more binding partners that are selected or designed according to the invention, are ones that favourably interact with a Ca2+ ATPase and/or SLN. Thus, the one or more binding partners may be structurally complementary to a binding region of SERCA Ca2+ ATPase and/or SLN, and interact with a binding region substantially free of steric interference. For example, the one or more binding partners may accommodate a three-dimensional cavity in SERCA Ca2+ ATPase and/or SLN without interfering in the structure of SERCA Ca2+ ATPase and/or SLN. Complementarity indicates that the binding partner interacts with a binding region in an energy favourable way. Thus, there should be more favourable interactions than non-favourable interactions. Favourable interactions include any non-covalent attractive forces that may exist between chemical structures such as hydrophobic or van-der-Waals interactions and polar interactions such as hydrogen bonding, salt-bridges etc. Unfavourable interactions such as hydrophobic- hydrophilic interactions should be avoided but may be accepted if they are weaker than the sum of the attractive forces. Steric interference such as clashes or overlaps with portions of the binding partner being selected or designed with protein moieties will prevent binding unless resolvable by conformation changes. The binding strength or a potential binding partner may be assessed by comparing favourable and unfavourable interactions, for example on a computer screen or by using computational methods implemented in commercial computer programs. The invention provides a method of identifying a binding partner of a Ca + ATPase and/or SLN (e.g. a modulator of a Ca2+ ATPase/SLN interaction) comprising: providing a three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing a three-dimensional structural representation of one or more candidate binding partners,
selecting or designing of one or more binding partners that are structurally complementary to the three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex.
The invention provides a method of identifying a binding partner of a Ca2+ ATPase and/or SLN (e.g. a modulator of a Ca2+ ATPase/SLN interaction) comprising:
providing a three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing a three-dimensional structural representation of one or more candidate binding partners; and
selecting one or more binding partners that can bind to at least one amino acid residue of a binding region of SERCA Ca2+ ATPase and/or SLN without steric interference.
The invention also provides a computer-assisted method for identifying one or more binding partners of a Ca2+ ATPase and/or SLN (e.g. a modulator of a Ca2+ ATPase/SLN interaction) using a programmed computer processor, a data storage system, a data input device and a data output device, the method comprising:
inputting into the programmed computer, through the input device, data comprising the coordinates as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; comparing using said processor the coordinates or selected coordinates thereof to a computer data base of low molecular weight organic chemical structures stored in the data storage system; and
selecting from said database, using computer methods, a chemical structure having a portion that is structurally complementary to the coordinates or selected coordinates thereof and being free of steric hindrance with the SERCA Ca2+ ATPase and/or SLN. Typically, the method makes use of selected coordinates that correspond to a particular binding region of SERCA Ca2+ ATPase and/or SLNas described above. The invention further provides a computer-assisted method for identifying one or more binding partners of a Ca2+ ATPase and/or SLN (e.g. a modulator of a Ca2+ ATPase/SLN interaction) using a programmed computer processor, a data storage system, a data input device and a data output device, the method comprising:
inputting into the programmed computer, through the input device, data comprising the coordinates as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; comparing using said processor the coordinates or selected coordinates thereof to a computer data base of low molecular weight organic chemical structures stored in the data storage system; and
constructing, using computer methods, a chemical structure having a portion that is structurally complementary to the coordinates or selected coordinates thereof and being free of steric hindrance with the SERCA Ca2+ ATPase and/or SLN. Typically, the method makes use of selected coordinates that correspond to a particular binding region of SERCA Ca2+ ATPase and/or SLN as described above.
The invention provides a method for identifying one or more binding partners of a Ca2+ ATPase and/or SLN (e.g. a modulator of a Ca2+ ATPase/SLN interaction), the method comprising:
selecting one or more candidate binding partners using atomic coordinates in conjunction with computer modelling, wherein said coordinates are the coordinates as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, by docking one or more candidate binding partners into a binding region of SERCA Ca2+ ATPase and/or SLN by computer modelling and selecting one or more candidate binding partners capable of binding to at least one amino acid in the binding region;
contacting the one or more candidate binding partners and the Ca2+ ATPase and/or SLN; and
assessing binding of the one or more candidate binding partners with the Ca2+
ATPase and/or SLN. Preferably, the method comprises assessing whether the one or more candidate binding partners modulate an activity of the Ca2+ ATPase and/or SLN, such that the interaction between the Ca2+ ATPase and SLN. Preferences for the binding region of the SERCA Ca2+ ATPase and/or SLN include those defined above, such as a binding region of the SERCA Ca2+ ATPase, or a binding region of SLN, or a binding region of the SERCA Ca2+ ATPase/SLN complex (eg one that spans across both proteins). Preferably, the one or more binding partners bind to the SERCA Ca2+ ATPase/SLN interaction site.
A third aspect of the invention provides a method for selecting or designing one or more binding partners of a Ca2+ ATPase having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SERCA Ca2+ ATPase that is defined by residues including Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of rabbit SERCA Ca2+ ATPase, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said Ca2+ ATPase, wherein a three-dimensional structural representation of one or more candidate binding partners are compared with a three-dimensional structural representation of the said binding pocket, and one or more candidate binding partners that are predicted to interact with the said binding pocket, are selected.
Preferably, the binding partner selected is one that is able to interact with at least one of the amino acids that define the binding pocket (Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957), such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or all 33 of said amino acid residues.
A fourth aspect of the invention provides a method for selecting or designing one or more binding partners of a SLN having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SLN that is defined by residues including Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 of rabbit SLN, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said SLN, wherein a three- dimensional structural representation of one or more candidate binding partners are compared with a three-dimensional structural representation of the said binding pocket, and one or more candidate binding partners that are predicted to interact with the said binding pocket, are selected. Preferably, the binding partner selected is one that is able to interact with at least one of amino acids that define the binding pocket (Met1, Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11), such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or all 11 of said amino acid residues.
By a Ca2+ ATPase having a binding pocket in the position structurally equivalent to the defined binding pocket, we include the meaning of a protein identifiable as that of a Ca2+ ATPase, and further having a predicted or determined three-dimensional structure that includes a binding pocket defined by Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 according to the numbering of the rabbit SERCA Ca2+ ATPase in Figure 8. An amino acid sequence may be identifiable as that of a Ca2+ ATPase by reference to sequence identity or similarities of three dimensional structure with known Ca2+ ATPases, as known to those skilled in the art.
By a SLN having a binding pocket in the position structurally equivalent to the defined binding pocket, we include the meaning of a protein identifiable as that of a SLN, and further having a predicted or determined three-dimensional structure that includes a binding pocket defined by Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 according to the numbering of the rabbit SLN in Figure 8. An amino acid sequence may be identifiable as that of a SLN by reference to sequence identity or similarities of three dimensional structure with known SLN, as known to those skilled in the art.
It will be appreciated in the third and fourth aspects of the invention that the three- dimensional structural representations of the defined binding pockets may be any suitable three-dimensional structural representation. For example, it may be a three- dimensional structural representation represented by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof. It is preferred if the selected coordinates are from one or more amino acid residues that define a binding region of SERCA Ca2+ ATPase and/or SLN, including those mentioned above. Alternatively, the three-dimensional structural representations of the defined binding pockets may be a three-dimensional structural representation modelled on such coordinates. The structural representation may then be compared with structural representations of one or more candidate binding partners and those binding partners that are predicted to interact with the binding pocket are selected. Any suitable molecular modelling means may be employed in this selection, including those outlined above.
It is appreciated that in some instances high throughput screening of binding partners is preferred and that methods of the invention may be used as "library screening" methods, a term well known to those skilled in the art. Thus, the binding partner may be a library of binding partners. For example, the library may be a peptide or protein library produced, for example, by ribosome display or an antibody library prepared either in vivo, ex vivo or in vitro. Methodologies for preparing and screening such libraries are known in the art.
Determination of the three-dimensional structure of the SERCA Ca2+ ATPase/SLN complex provides important information about the binding sites of SERCA Ca2+ ATPases and SLN, particularly when comparisons are made with other Ca2+ ATPases. This information may then be used for rational design and modification of Ca2+ ATPase and/or SLN binding partners, e.g. by computational techniques which identify possible binding ligands for the binding sites, by enabling linked-fragment approaches to drug design, and by enabling the identification and location of bound ligands using X-ray crystallographic analysis. These techniques are discussed in more detail below. Thus as a result of the determination of the SERCA Ca2+ ATPase/SLN three-dimensional structure, more purely computational techniques for rational drug design may also be used to design structures whose interaction with Ca2+ ATPase and/or SLN is better understood (for an overview of these techniques see e.g. Walters et al (Drug Discovery Today, Vol.3, No.4, (1998), 160-178; Abagyan, R.; Totrov, M. Curr. Opin. Chem. Biol. 2001 , 5, 375-382). For example, automated ligand-receptor docking programs (discussed e.g. by Jones et al. in Current Opinion in Biotechnology, Vol.6, (1995), 652- 656 and Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Proteins 2002, 47, 409-443), which require accurate information on the atomic coordinates of target receptors may be used.
The aspects of the invention described herein which utilize the SERCA Ca2+ ATPase/SLN structure in silico may be equally applied to both the coordinates of the SERCA Ca ATPase/SLN complex of Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A or selected coordinates thereof, and to structural coordinates modelled on said coordinates, for example using the methods described below. Thus having determined a new set of structural coordinates, for example of a related Ca2* ATPase, by the methods described below, such a structure may be used, for example, in a computer-based method of rational drug design as described herein. In addition, the availability of the structure of the SERCA Ca2+ ATPase/SLN complex will allow the generation of highly predictive pharmacophore models for virtual library screening or ligand design.
A fifth aspect of the invention provides a method for the analysis of the interaction of one or more binding partners with a Ca2+ ATPase and/or SLN, comprising:
providing a three dimensional structural representation of the SERCA Ca2+
ATPase/SLN complex as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing a three dimensional structural representation of one or more binding partners to be fitted to the structural representation of the SERCA Ca2+ ATPase/SLN complex or selected coordinates thereof; and
fitting the one of more binding partners to said structural representation.
This method of the invention is generally applicable for the analysis of known binding partners of SERCA Ca2+ and/or SLN, the development or discovery of binding partners of SERCA Ca2+ and/or SLN, the modification of binding partners of SERCA Ca2+ and/or SLN e.g. to improve or modify one or more of their properties, and the like.
It will be desirable to model a sufficient number of atoms of the SERCA Ca2+ ATPase/SLN complex as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, which represent a binding region, e.g. atoms from amino acid residues contributing to the SLN binding region of SERCA Ca2+ ATPase, including amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111, Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 may be used, and/or atoms from one or more amino acid residues of the SLN binding pocket of SERCA Ca2+ ATPase, including Val104, Trp107, Gln108, Glu109, Asn111 , Ala112, Ala115, Ala118, Glu121 , Tyr122, Thr317, Leu321 , Arg324, Lys328, Phe760, Leu802, Thr805, Ala806 and Phe809, may be used, and/or atoms of one or more amino acid residues of the SERCA Ca2+ ATPase binding site of SLN, including amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10 and Asn11. Although every different binding partner bound by SERCA Ca2+ ATPase and/or SLN may interact with different parts of a binding region of SERCA Ca2+ ATPase and/or SLN, the structure of the SERCA Ca2+ ATPase/SLN complex allows the identification of a number of particular sites which are likely to be involved in many of the interactions of SERCA Ca2+ ATPase/SLN with a drug candidate. Additional preferred selected coordinates are as described as above with respect to the first and second aspects of the invention.
In order to provide a three-dimensional structural representation of a binding partner to be fitted to the SERCA Ca2+ ATPase/SLN structure, the binding partner structural representation may be modelled in three dimensions using commercially available software for this purpose or, if its crystal structure is available, the coordinates of the structure may be used to provide a structural representation of the binding partner for fitting to the SERCA Ca2+ ATPase/SLN structure of the invention.
By "fitting", is meant determining by automatic, or semi-automatic means, interactions between one or more atoms of a candidate binding partner and at least one atom of the SERCA Ca2+ ATPase/SLN structure of the invention, and calculating the extent to which such interactions are stable. Interactions include attraction and repulsion, brought about by charge, steric, lipophilic, considerations and the like. Charge and steric interactions of this type can be modelled computationally. An example of such computation would be via a force field such as Amber (Cornell et a/. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, (1995), 117(19), 5179-97) which would assign partial charges to atoms on the protein and binding partner and evaluate the electrostatic interaction energy between a protein and binding partner atom using the Coulomb potential. The Amber force field would also assign van der Waals energy terms to assess the attractive and repulsive steric interactions between two atoms. Lipophilic interactions can be modeled using a variety of means. For example the ChemScore function (Eldridge M D; Murray C W; Auton T R; Paolini G V; Mee R P Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of binding partners in receptor complexes, Journal of computer- aided molecular design (1997 Sep), 11 (5), 425-45) assigns protein and binding partner atoms as hydrophobic or polar, and a favourable energy term is specified for the interaction between two hydrophobic atoms. Other methods of assessing the hydrophobic contributions to ligand binding are available and these would be known to one skilled in the art. Other methods of assessing interactions are available and would be known to one skilled in the art of designing molecules. Various computer-based methods for fitting are described further herein.
More specifically, the interaction of a binding partner with the SERCA Ca2+ ATPase/SLN structure of the invention can be examined through the use of computer modelling using a docking program such as GOLD (Jones et al., J. Mol. Biol., 245, 43-53 (1995), Jones et al., J. Mol. Biol., 267, 727-748 (1997)), GRAMM (Vakser, I.A., Proteins , Suppl., 1 :226-230 (1997)), DOCK (Kuntz et al, (1982) J. Mol. Biol., 161 , 269-288; Makino et al, (1997) J.Comput.Chem., 18, 1812-1825), AUTODOCK (Goodsell et al, (1990) Proteins, 8, 195-202, Morris et al, (1998) J.Comput.Chem., 19, 1639- 1662.), FlexX, (Rarey et al, (1996) J. Mol. Biol., 261 , 470-489) or ICM (Abagyan et al, (1994) J.Comput.Chem., 15, 488-506). This procedure can include computer fitting of binding partners to the SERCA Ca2+ ATPase/SLN structure to ascertain how well the shape and the chemical structure of the binding partner will bind to a Ca2+ ATPase and/or SLN.
Thus the invention includes a method for the analysis of the interaction of one or more binding partners with a Ca2+ ATPase and/or SLN comprising (a) constructing a computer representation of a binding region of a Ca2+ ATPase and/or SLN as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof (b) selecting a binding partner to be evaluated by a method selected from the group consisting of assembling said binding partner; selecting a binding partner from a small molecule database; de novo ligand design of the binding partner; and modifying a known agonist or inhibitor, or a portion thereof, of a Ca2+ ATPase and/or SLN or homologue thereof; (c) employing computational means to dock said binding partner to be evaluated in a binding region in order to provide an energy-minimized configuration of the binding partner in a binding region; and (d) evaluating the results of said docking to quantify the interaction energy between said binding partner and the binding region.
Also computer-assisted, manual examination of the binding region structure of the Ca2+ ATPase and/or SLN may be performed. The use of programs such as GRID (Goodford, (1985) J. Med. Chem., 28, 849- 857) - a program that determines probable interaction sites between molecules with various functional groups and an enzyme surface - may also be used to analyse a binding region to predict, for example, the types of modifications which will alter the rate of metabolism of a binding partner.
Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of the a Ca2+ ATPase and/or SLN structure and a binding partner.
If more than one binding region is characterized and a plurality of respective smaller molecular fragments are designed or selected, a binding partner may be formed by linking the respective small molecular fragments into a single binding partner, which maintains the relative positions and orientations of the respective small molecular fragments at the binding sites. The single larger binding partner may be formed as a real molecule or by computer modelling. Detailed structural information can then be obtained about the binding of the binding partner to a Ca2+ ATPase and/or SLN, and in the light of this information adjustments can be made to the structure or functionality of the binding partner, e.g. to alter its interaction with a Ca2+ ATPase and/or SLN. The above steps may be repeated and re- repeated as necessary.
Thus, the three dimensional structural representation of the one or more binding partners of any of the above aspects of the invention may be obtained by: providing structural representations of a plurality of molecular fragments; fitting the structural representation of each of the molecular fragments to the coordinates of the structural representation of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and assembling the representations of the molecular fragments into one or more representations of single molecules to provide the three-dimensional structural representation of one or more candidate binding partners.
Typically the binding partner or molecule fragment is fitted to at least 5 or 10 non- hydrogen atoms of the SERCA Ca2+ ATPase/SLN structure, preferably at least 20, 30, 40, 50, 60, 70, 80 or 90 non-hydrogen atoms and more preferably at least 100, 150, 200, 250, 300, 350, 400, 450, or 500 atoms and even more preferably at least 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100 or 2200 non-hydrogen atoms. The invention includes screening methods to identify drugs or lead compounds of use in treating a disease or condition. For example, large numbers of binding partners, for example in a chemical database, can be screened for their ability to bind to a Ca' ATPase and/or SLN.
It is appreciated that in the methods described herein, which may be drug screening methods, a term well known to those skilled in the art, the binding partner may be a druglike compound or lead compound for the development of a drug-like compound.
The term "drug-like compound" is well known to those skilled in the art, and may include the meaning of a compound that has characteristics that may make it suitable for use in medicine, for example as the active ingredient in a medicament. Thus, for example, a drug-like compound may be a molecule that may be synthesised by the techniques of organic chemistry, less preferably by techniques of molecular biology or biochemistry, and is preferably a small molecule, which may be of less than 5000 daltons (such as less than 500 daltons) and which may be water-soluble. A drug-like compound may additionally exhibit features of selective interaction with a particular protein or proteins and be bioavailable and/or able to penetrate target cellular membranes or the blood.brain barrier, but it will be appreciated that these features are not essential.
The term "lead compound" is similarly well known to those skilled in the art, and may include the meaning that the compound, whilst not itself suitable for use as a drug (for example because it is only weakly potent against its intended target, non-selective in its action, unstable, poorly soluble, difficult to synthesise or has poor bioavailability) may provide a starting-point for the design of other compounds that may have more desirable characteristics.
Thus in one embodiment of the above methods of the invention, the methods further comprise modifying the structural representation of the binding partner so as to increase or decrease their interaction with the Ca2+ ATPase and/or SLN. For example, once a binding partner has been designed or selected by the above methods, the efficiency with which that binding partner may bind to a Ca2+ ATPase and/or SLN may be tested and optimised, for example by computational evaluation. For example, a binding partner designed or selected as binding to a Ca2+ ATPase and/or SLN may be further computationally optimised so that in its bound state it would preferably lack repulsive electrostatic interaction with the target Ca2+ ATPase and/or SLN and with the surrounding water molecules. Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Thus, it will be appreciated that the extent to which a given binding partner can modulate the Ca2+ ATPase/SLN interaction may be increased or decreased.
Furthermore, it is often desired that binding partners demonstrate a relatively small difference in energy between the bound and free states (i.e., a small deformation energy of binding). Thus, binding partners may be designed with a deformation energy of binding of not greater than about 10 kcal/mole, more preferably, not greater than 7 kcal/mole. Binding partners may interact with the binding region in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free binding partner and the average energy of the conformations observed when the binding partner binds to the protein.
Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interactions. Examples of programs designed for such uses include: Gaussian 94, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. .COPYRGT.1995); AMBER, version 4.1 (P. A. Kollman, University of California at San Francisco, .COPYRGT.1995); QUANTA/CHARMM (Molecular Simulations, Inc., San Diego, Calif. .COPYRGT.1998); Insight ll/Discover (Molecular Simulations, Inc., San Diego, Calif. .COPYRGT.1998); DelPhi (Molecular Simulations, Inc., San Diego, Calif. .COPYRGT.1998); and AMSOL (Quantum Chemistry Program Exchange, Indiana University). These programs may be implemented, for instance, using a Silicon Graphics workstation such as an lndigo2 with "IMPACT" graphics. Other hardware systems and software packages will be known to those skilled in the art.
By modifying the structural representation we include, for example, adding molecular scaffolding, adding or varying functional groups, or connecting the molecule with other molecules (e.g. using a fragment linking approach) such that the chemical structure of the binding partner is changed while its original binding to Ca2+ ATPase and/or SLN capability is increased or decreased. Such optimisation is regularly undertaken during drug development programmes to e.g. enhance potency, promote pharmacological acceptability, increase chemical stability etc. of lead compounds.
Examples of modifications include substitutions or removal of groups containing residues which interact with the amino acid side chain groups of the SERCA Ca2+ ATPase/SLN structure of the invention. For example, the replacements may include the addition or removal of groups in order to decrease or increase the charge of a group in a binding partner, the replacement of a charge group with a group of the opposite charge, or the replacement of a hydrophobic group with a hydrophilic group or vice versa. It will be understood that these are only examples of the type of substitutions considered by medicinal chemists in the development of new pharmaceutical compounds and other modifications may be made, depending upon the nature of the starting binding partner and its activity.
The potential binding effect of a binding partner on a Ca2+ ATPase and/or SLN may be analysed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given entity suggests insufficient interaction and association between it and the Ca2+ ATPase and/or SLN, testing of the entity is obviated. However, if computer modelling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to a Ca2+ ATPase and/or SLN. In this manner, synthesis of inoperative compounds may be avoided.
Thus in a further embodiment of the above aspects of the invention, the methods further comprise the steps of obtaining or synthesising the one or more binding partners of a Ca2+ ATPase and/or SLN; and optionally contacting the one or more binding partners with a Ca2+ ATPase and/or SLN to determine the ability of the one or more binding partners to interact with the Ca + ATPase and/or SLN.
Various methods may be used to determine binding between a Ca2+ ATPase and/or SLN and a binding partner including, for example, enzyme linked immunosorbent assays (ELISA), surface plasmon resonance assays, chip-based assays, immunocytofluorescence, yeast two-hybrid technology and phage display which are common practice in the art and are described, for example, in Plant et al (1995) Analyt Biochem, 226(2), 342-348. and Sambrook ef al (2001) Molecular Cloning A Laboratory Manual. Third Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Other methods of detecting binding between a Ca2+ ATPase and/or SLN and a binding partner include ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Fluorescence Energy Resonance Transfer (FRET) methods, for example, well known to those skilled in the art, may be used, in which binding of two fluorescent labelled entities may be measured by measuring the interaction of the fluorescent labels when in close proximity to each other.
Once computer modelling has indicated that a binding partner has a strong interaction, it is appreciated that it may be desirable to crystallise a complex of the Ca2+ ATPase and/or SLN with that binding partner and analyse its interaction further by X-ray crystallography.
Thus in a further embodiment, the methods of the invention further comprise the steps of obtaining or synthesising the one or more binding partners of a Ca2+ ATPase and/or SLN; forming one or more complexes of the Ca2+ ATPase and/or SLN and the one or more binding partners; and analysing the one or more complexes by X-ray crystallography to determine the ability of the one or more binding partners to interact with Ca2+ ATPase and/or SLN.
Thus, it will be appreciated that another particularly useful drug design technique enabled by this invention is iterative drug design. Iterative drug design is a method for optimizing associations between a protein and a binding partner by determining and evaluating the three-dimensional structures of successive sets of protein/compound complexes. In iterative drug design, crystals of a series of proteins or protein complexes are obtained and then the three-dimensional structures of each crystal are solved. Such an approach provides insight into the association between the proteins and binding partners of each complex. This is accomplished by selecting candidate binding partners, obtaining crystals of this new protein/binding partner complex, solving the three- dimensional structure of the complex, and comparing the associations between the new protein/binding partner complex and previously solved protein/binding partner complexes. By observing how changes in the binding partner affected the protein/ binding partner associations, these associations may be optimized. In some cases, iterative drug design is carried out by forming successive protein- binding partner complexes and then crystallizing each new complex. High throughput crystallization assays may be used to find a new crystallization condition or to optimize the original protein or complex crystallization condition for the new complex. Alternatively, a pre-formed protein crystal may be soaked in the presence of a binding partner, thereby forming a protein/ binding partner complex and obviating the need to crystallize each individual protein/ binding partner complex.
The ability of a binding partner to modify a function of Ca2+ ATPase and/or SLN may also be tested. For example the ability of a binding partner to modulate Ca2+ ATPase function (e.g. by modulating the Ca2+ ATPase/SLN interaction) could be tested by a number of well known standard methods, described extensively in the prior art. In addition to in silico analysis and design, the interaction of one or more binding partners with Ca2+ ATPase and/or SLN may be analysed directly by X-ray crystallography experiments, wherein the coordinates of the structural representation of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, are used to analyse the a crystal complex of the Ca2+ ATPase and/or SLN and binding partner. This can provide high resolution information of the interaction and can also provide insights into a mechanism by which a binding partner exerts an agonistic or antagonistic function.
Accordingly, a fifth aspect of the invention provides a method for the analysis of the interaction of one or more binding partners with a Ca2+ ATPase and/or SLN, comprising: obtaining or synthesising one or more binding partners;
forming one or more crystallised complexes of a binding partner with a Ca2+ ATPase and/or SLN; and
analysing the one or more complexes by X-ray crystallography by employing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to determine the ability of the one or more binding partners to interact with the a Ca + ATPase and/or SLN.
Preferences for the selected coordinates in this and all subsequent aspects of the invention are as defined above with respect to the first aspect of the invention. The analysis of such structures may employ X-ray crystallographic diffraction data from the complex and the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to generate a difference Fourier electron density map of the complex. The difference Fourier electron density map may then be analysed.
In one embodiment, the one or more crystallised complexes are formed by soaking a crystal of a Ca2+ ATPase and/or SLN with the binding partner to form a complex. Alternatively, the complexes may be obtained by cocrystallising the Ca2+ ATPase and/or SLN with the binding partner. For example a purified Ca2+ ATPase protein sample is incubated over a period of time (usually >1 hr) with a potential binding partner and the complex can then be screened for crystallization conditions. Alternatively, protein crystals containing a first binding partner can be back-soaked to remove this binding partner by placing the crystals into a stabilising solution in which the binding partner is not present. The resultant crystals can then be transferred into a second solution containing a second binding partner and used to produce an X-ray diffraction pattern of Ca2+ ATPase and/or SLN complexed with the second binding partner.
The complexes can be analysed using X-ray diffraction methods, e.g. according to the approach described by Greer et al.,(J of Medicinal Chemistry, Vol. 37, (1994), 1035- 1054), and difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked or co-crystallized Ca2+ ATPase and/or SLN and the solved structure of uncomplexed (i.e. without binding partner) Ca2+ ATPase and/or SLN.
Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50, (1994), 760-763.). For map visualization and model building programs such as "O" (Jones et al., Acta Crystallographica, A47, (1991), 110-119) can be used.
This information may thus be used to optimise known classes of Ca2+ ATPase and/or SLN binding partners and to design and synthesize novel classes of Ca2+ ATPase and/or SLN binding partners, particularly those which modulate Ca2+ ATPase function (e.g. by modulating the Ca2+ ATPase/SLN interaction), and to design drugs with modified Ca2+ ATPase and/or SLN interactions. In one approach, the structure of a binding partner bound to a Ca2+ ATPase and/or SLN may be determined by experiment. This will provide a starting point in the analysis of the binding partner bound to Ca2+ ATPase and/or SLN thus providing those of skill in the art with a detailed insight as to how that particular binding partner interacts with Ca2+ ATPase and/or SLN and the mechanism by which it exerts any functional effect.
Many of the techniques and approaches applied to structure-based drug design described above rely at some stage on X-ray analysis to identify the binding position of a binding partner in a ligand-protein complex. A common way of doing this is to perform X- ray crystallography on the complex, produce a difference Fourier electron density map, and associate a particular pattern of electron density with the binding partner. However, in order to produce the map (as explained e.g. by Blundell et al., in Protein Crystallography, Academic Press, New York, London and San Francisco, (1976)), it is necessary to know beforehand the protein three dimensional structure (or at least a set of structure factors for the protein crystal). Therefore, determination of the SERCA Ca + ATPase/SLN structure also allows difference Fourier electron density maps of binding partner complexes with SERCA Ca2+ ATPase and/or SLN to be produced, determination of the binding position of the binding partner and hence may greatly assist the process of rational drug design.
Accordingly, a sixth aspect of the invention provides a method for predicting the three dimensional structure of a binding partner of unknown structure, or part thereof, which binds to a Ca2+ ATPase and/or SLN, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing an X-ray diffraction pattern of a Ca2+ ATPase and/or SLN complexed with the binding partner; and
using said coordinates to predict at least part of the structure coordinates of the binding partner.
In one embodiment, the X-ray diffraction pattern is obtained from a crystal formed by soaking a crystal of a Ca2+ ATPase and/or SLN with the binding partner to form a complex. Alternatively, the X-ray diffraction pattern is obtained from a crystal formed by cocrystallising a Ca2+ ATPase and/or SLN with the binding partner as described above. Alternatively, protein crystals containing a first binding partner can be back-soaked to remove this binding partner and the resultant crystals transferred into a second solution containing a second binding partner as described above.
A mixture of compounds may be soaked or co-crystallized with a Ca2+ ATPase and/or SLN crystal (i.e. a crystal of a Ca2+ ATPase or of a SLN or of a Ca2+ ATPase/SLN complex), wherein only one or some of the compounds may be expected to bind to the Ca2+ ATPase and/or SLN. The mixture of compounds may comprise a ligand known to bind to a Ca2+ ATPase and/or SLN. As well as the structure of the complex, the identity of the complexing compound(s) is/are then determined.
Preferably, the methods of the previous aspects of the invention are computer-based. For example, typically the methods of the previous aspects of the invention make use of the computer systems and computer-readable storage mediums of the aspects of the invention described below. A seventh aspect of the invention provides a method for producing a binding partner of a Ca2+ ATPase and/or SLN comprising: identifying a binding partner according to the methods of any of the aspects of invention described above, and synthesising the binding partner.
The binding partner may be synthesised using any suitable technique known in the art including, for example, the techniques of synthetic chemistry, organic chemistry and molecular biology.
It will be appreciated that it may be desirable to test the binding partner in an in vivo or in vitro biological system in order to determine its binding and/or activity and/or its effectiveness. For example, its binding to a Ca2+ ATPase and/or SLN may be assessed using any suitable binding assay known in the art including the examples described above. Alternatively, is ability to modulate the interaction between Ca2+ ATPase and SLN may be assessed. Moreover, its effect on Ca2+ ATPase or SLN function in an in vivo or in vitro assay may be tested. For example, the effect of the binding partner on Ca2+ ATPase activity may be determined. Several techniques are available in the art to detect and measure ATPase activity which would be suitable for use in the present invention. Many of these are available in kits both for determining expression in vitro and in vivo.
An eighth aspect of the invention provides a binding partner produced by the method of the seventh aspect of the invention.
Following identification of a binding partner, it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals. Accordingly, the invention includes a method for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) providing a binding partner according to the eighth aspect of the invention and (b) preparing a medicament, pharmaceutical composition or drug containing the binding partner. The medicaments may be used to treat any disorder or condition ameliorated by modulation of Ca2+ ATPase or SLN. Malfunctioning Ca2+ cycling in the SR is known to play a central role in several human diseases including insulin resistance and diabetes, muscular dystrophy, atherosclerosis, heart failure and renal disease (James et al., 1989; Odermatt et al., 1989) and recent successful clinical trials with gene delivery of SERCA in patients with heart failure have demonstrated that up-regulation of SERCA activity is an important therapeutic target (Gwathmey et al., 2011 ; Tilemann et al., 2012). Both activators and inhibitors of SERCA activity have been suggested to be of potential therapeutic value. Thus, in an embodiment, the disorder or condition is any of cardiovascular disease, heart failure, insulin resistance, diabetes, muscular dystrophy, atherosclerosis, cancer and renal disease. A ninth aspect of the invention provides a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
predicting the three-dimensional structural representation of the target protein, or part thereof, by modelling the structural representation on all or the selected coordinates.
In this aspect of the invention, the coordinates of the SERCA Ca2+ ATPase/SLN structure are used to predict a three dimensional representation of a target protein of unknown structure, or part thereof, by modelling. By "modelling", we include the meaning of the prediction of structures using computer-assisted or other de novo prediction of structure, based upon manipulation of the coordinate data from Table (i) or selected coordinates thereof.
The target protein may be any protein that shares sufficient sequence identity to either the rabbit SERCA Ca2+ ATPase or the rabbit SLN such that its structure can be modelled by using the coordinates of Table (i). It will be appreciated that if a structural representation of only a part of the target protein is being modelled, for example a particular domain, the target protein only has to share sufficient sequence identity to the SERCA Ca2+ ATPase or the rabbit SLN over that part. It will also be understood that the coordinates corresponding to amino acid residues of SERCA Ca2+ ATPase will be used to model a structure of a target protein has sufficient sequence identity to SERCA Ca2+ ATPase, and that coordinates corresponding to amino acid residues of SLN will be used to model a structure of a target protein has sufficient sequence identity to SLN. It has been shown for soluble protein domains that their three dimensional structure is broadly conserved above 20% amino acid sequence identity and well conserved above 30% identity, with the level of structural conservation increasing as amino acid sequence identity increases up to 100% (Ginalski, K. Curr Op Struc Biol (2006) 16, 172-177). Thus, it is preferred if the target protein, or part thereof, shares at least 20% amino acid sequence identity with the rabbit SERCA Ca2+ ATPase or the rabbit SLN sequence provided in Figure 8, and more preferably at least 30%, 40%, 50%, 60%, 70%, 80% or 90% sequence identity, and yet more preferably at least 95% or 99% sequence identity. It will be appreciated therefore that the target protein may be a rabbit SERCA Ca2+ ATPase analogue or homologue or a rabbit SLN analogue or homologue.
Analogues are defined as proteins with similar three-dimensional structures and/or functions with little evidence of a common ancestor at a sequence level.
Homologues are proteins with evidence of a common ancestor, i.e. likely to be the result of evolutionary divergence and are divided into remote, medium and close sub-divisions based on the degree (usually expressed as a percentage) of sequence identity. By a rabbit SERCA Ca2+ ATPase homologue, we include a protein with at least 20%, 25%, 30%, 35%, 40%, 45% or at least 50% amino acid sequence identity with the sequence of SERCA Ca2+ ATPase provided in Figure 8, preferably at least 55%, 60%, 65%, 70%, 75% or 80% amino acid sequence identity and more preferably 85%, 90%, 95% or 99% amino acid sequence identity. This includes polymorphic forms of Ca2+ ATPases, e.g. mutants and Ca2+ ATPases from other species (e.g. animal species).
By a rabbit SLN homologue, we include a protein with at least 20%, 25%, 30%, 35%, 40%, 45% or at least 50% amino acid sequence identity with the sequence of SLN provided in Figure 8, preferably at least 55%, 60%, 65%, 70%, 75% or 80% amino acid sequence identity and more preferably 85%, 90%, 95% or 99% amino acid sequence identity. This includes polymorphic forms of SLN, e.g. mutants and SLN from other species (e.g. animal species).
Sequence identity may be measured using any suitable method known in the art, for example by the use of algorithms such as BLAST or PSI-BLAST (Altschul et al, NAR (1997), 25, 3389-3402) or methods based on Hidden Markov Models (Eddy S et al, J Comput Biol (1995) Spring 2 (1) 9-23). Typically, the percent sequence identity between two polypeptides may be determined using any suitable computer program, for example the GAP program of the University of Wisconsin Genetic Computing Group and it will be appreciated that percent identity is calculated in relation to polypeptides whose sequence has been aligned optimally. The alignment may alternatively be carried out using the Clustal W program (Thompson et a/., 1994). The parameters used may be as follows: Fast pairwise alignment parameters: K-tuple(word) size; 1 , window size; 5, gap penalty; 3, number of top diagonals; 5. Scoring method: x percent. Multiple alignment parameters: gap open penalty; 10, gap extension penalty; 0.05. Scoring matrix: BLOSUM. Other programs include BESTFIT or FASTA in the Wisconsin Genetics Software Package Release 7.0. The region of homology preferably covers at least 500 amino acids, such as 600 amino acids and more preferably 700 or 800 amino acids.
In one embodiment the target protein is an integral membrane protein. By "integral membrane protein" we mean a protein that is permanently integrated into the membrane and can only be removed using detergents, non-polar solvents or denaturing agents that physically disrupt the lipid bilayer. Examples include receptors such as GPCRs, the T- cell receptor complex and growth factor receptors; transmembrane ion channels such as ligand-gated and voltage gated channels; transmembrane transporters such as neurotransmitter transporters; enzymes; carrier proteins; and ion pumps.
The amino acid sequences (and the nucleotide sequences of the cDNAs which encode them) of many membrane proteins are readily available, for example by reference to GenBank. It should be noted, also, that because the sequence of the human genome is substantially complete, the amino acid sequences of human membrane proteins can be deduced therefrom.
Preferably, the target protein is a Ca2+ ATPase, or sarcolipin, or variants thereof. For example, the target protein may be a Ca2+ ATPase or sarcolipin from a species (eg animal species) other than rabbit, such as a human Ca2+ ATPase or sarcolipin.
Although the target protein may be derived from any source, it is particularly preferred if it is from a eukaryotic source. It is particularly preferred if it is derived from a vertebrate source such as a mammal. It is particularly preferred if the target protein is derived from rat, mouse, rabbit or dog or non-human primate or man.
Typically, modelling a structural representation of a target is done by homology modelling whereby homologous regions between the target protein and either the Ca2+ ATPase or SLN are matched and the coordinate data of the SERCA Ca ATPase/SLN used to predict a structural representation of the target protein.
The term "homologous regions" describes amino acid residues in two sequences that are identical or have similar (e.g. aliphatic, aromatic, polar, negatively charged, or positively charged) side-chain chemical groups. Identical and similar residues in homologous regions are sometimes described as being respectively "invariant" and "conserved" by those skilled in the art. Typically, the method involves comparing the amino acid sequences of the SERCA Ca2+ ATPase or SLN with a target protein by aligning the amino acid sequences. Amino acids in the sequences are then compared and groups of amino acids that are homologous (conveniently referred to as "corresponding regions") are grouped together. This method detects conserved regions of the polypeptides and accounts for amino acid insertions or deletions.
Homology between amino acid sequences can be determined using commercially available algorithms known in the art. For example, the programs BLAST, gapped BLAST, BLASTN, PSI-BLAST, BLAST 2 and WU- BLAST (provided by the National Center for Biotechnology Information) can be used to align homologous regions of two, or more, amino acid sequences. These may be used with default parameters to determine the degree of homology between the amino acid sequence of the Ca2+ ATPase or SLN, and other target proteins which are to be modelled. Preferred for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp ://blast. wustl. edu/blast/executables. This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul and Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et a!., 1990, Basic local alignment search tool, Journal of Molecular Biology 215: 403-410; Gish and States, 1993, Identification of protein coding regions by database similarity search, Nature Genetics 3: 266-272; Karlin and Altschul, 1993, Applications and statistics for multiple high-scoring segments in molecular sequences, Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).
In all search programs in the suite the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired. The default penalty (Q) for a gap of length one is Q=9 for proteins and BLASTP, and Q=10 for BLASTN, but may be changed to any integer. The default per-residue penalty for extending a gap (R) is R=2 for proteins and BLASTP, and R=10 for BLASTN, but may be changed to any integer. Any combination of values for Q and R can be used in order to align sequences so as to maximize overlap and identity while minimizing sequence gaps. The default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized. Once the amino acid sequences of the target protein of unknown structure and either of Ca2+ ATPase or SLN have been aligned, the structures of the conserved amino acids in the structural representation of the Ca2+ ATPase or SLN may be transferred to the corresponding amino acids of the target protein. For example, a tyrosine in the amino acid sequence of Ca2+ ATPase may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of the target protein.
The structures of amino acids located in non-conserved regions may be assigned manually by using standard peptide geometries or by molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energy minimization. Typically, the predicted three dimensional structural representation will be one in which favourable interactions are formed within the target protein and/or so that a low energy conformation is formed ("High resolution structure prediction and the crystallographic phase problem" Qian et al (2007) Nature 450; 259-264; "State of the art in studying protein folding and protein structure production using molecular dynamics methods" Lee ef al (2001) J of Mol Graph & Modelling 19(1 ): 146-149).
Whereas it is preferred to base homology modelling on homologous amino acid sequences, it is appreciated that some proteins have low sequence identity and at the same time are very similar in structure. Therefore, where at least part of the structure of the target protein is known, homologous regions can also be identified by comparing structures directly.
Homology modelling as such is a technique well known in the art (see e.g. Greer, (Science, Vol. 228, (1985), 1055), and Blundell ei al (Eur. J. Biochem, Vol. 172, (1988), 513)). The techniques described in these references, as well as other homology modelling techniques generally available in the art, may be used in performing the present invention.
Typically, homology modelling is performed using computer programs, for example SWISS-MODEL available through the Swiss Institute for Bioinformatics in Geneva, Switzerland; WHATIF available on EMBL servers; Schnare et al. (1996) J. Mol. Biol, 256: 701-719; Blundell et al. (1987) Nature 326: 347-352; Fetrow and Bryant (1993) Bio/Technology 11:479-484; Greer (1991) Methods in Enzymology 202: 239-252; and Johnson et al (1994) Crit. Rev. Biochem. Mol Biol. 29:1-68. An example of homology modelling is described in Szklarz G. D (1997) Life Sci. 61 : 2507-2520.
Thus, in an embodiment of the ninth aspect of the invention, the method further comprises aligning the amino acid sequence of the target protein of unknown structure with the amino acid sequence of SERCA Ca2+ ATPase or SLN as listed in Figure 8, to match homologous regions of the amino acid sequences prior to predicting the structural representation, and wherein modelling the structural representation comprises modelling the structural representation of the matched homologous regions of the target protein on the corresponding regions of the SERCA Ca2+ ATPase or SLN to obtain a three dimensional structural representation for the target protein that substantially preserves the structural representation of the matched homologous regions.
The invention therefore provides a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
aligning the amino acid sequence of a target protein of unknown structure or part thereof with the amino acid sequence of SERCA Ca2+ ATPase or SLN as listed in Figure 8 or part thereof to match homologous regions of the amino acid sequences;
modelling the structure of the matched homologous regions of the target protein on the corresponding regions of the SERCA Ca2+ ATPase/SLN structure as defined by Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
predicting a three dimensional structural representation for the target protein which substantially preserves the structure of the matched homologous regions.
The coordinate data of the SERCA Ca2+ ATPase/SLN structure can also be used to predict the crystal structure of target proteins where X-ray diffraction data or NMR spectroscopic data of the protein has been generated and requires interpretation in order to provide a structure. A tenth aspect of the invention provides a method of predicting the three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising: providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and either (a) positioning the coordinates in the crystal unit cell of the protein so as to predict its structural representation, or (b) assigning NMR spectra peaks of the protein by manipulating the coordinates.
Thus, where X-ray crystallographic or NMR spectroscopic data is provided for a target protein of unknown structure, the coordinate data of Table (i) may be used to interpret that data to predict a likely structure using techniques well known in the art including phasing, in the case of X-ray crystallography, and assisting peak assignments in the case of NMR spectra.
A three dimensional structural representation of any part of any target protein that is sufficiently similar to any portion of the SERCA Ca2+ ATPase or SLN can be predicted by this method. Typically, the target protein or part thereof has at least 20% amino acid sequence identity with any portion of SERCA Ca2+ ATPase or SLN, such as at least 30% amino acid sequence identity or at least 40% or 50% or 60% or 70% or 80% or 90% sequence identity. For example, the coordinates may be used to predict the three- dimensional representations of other crystal forms of SERCA Ca2+ ATPase or SLN, other SERCA Ca2+ ATPases or SLNs and mutants or co-complexes thereof. Other suitable target proteins are as defined with respect to the tenth aspect of the invention.
It will be appreciated that the coordinates corresponding to amino acid residues of SERCA Ca2+ ATPase will be used to model a structure of a target protein has sufficient sequence identity to SERCA Ca2+ ATPase, and that coordinates corresponding to amino acid residues of SLN will be used to model a structure of a target protein has sufficient sequence identity to SLN. One method that may be employed for the purposes of this aspect of the invention is molecular replacement which is well known in the art and described, for example, in Evans & McCoy (Acta Cryst, 2008, D64:1-10), McCoy (Acta Cryst, 2007, D63:32-42) and McCoy et al (J of App Cryst, 2007, 40:658-674). Molecular replacement enables the solution of the crystallographic phase problem by providing initial estimates of the phases of the new structure from a previously known structure, as opposed to the other major methods for solving the phase problem, i.e. experimental methods (which measure the phase from isomorphous or anomalous differences) or direct methods (which use mathematical relationships between reflection triplets and quartets to bootstrap a phase set for all reflections from phases for a small or random 'seed' set of reflections.) Compared to molecular replacement, such methods are time consuming and generally hinder the solution of crystal structures. Thus molecular replacement provides an accurate structural form for an unknown crystal more quickly and efficiently than attempting to determine such information ab initio.
Accordingly, the invention involves generating a preliminary model of a target protein whose structure coordinates are unknown, by orienting and positioning the relevant portion of the SERCA Ca2+ ATPase/SLN structure according to Table (i) within the unit cell of a crystal of the target protein so as best to account for the observed X-ray diffraction pattern of the crystal of the target protein. Phases can be calculated from this model and combined with the observed X-ray diffraction pattern amplitudes to generate an electron density map of the target protein's structure. This, in turn, can be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structural representation of the target protein (E. Lattman, "Use of the Rotation and Translation Functions", in Meth. Enzymol., 115, pp. 55-77 (1985); M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York (1972)).
Thus the invention includes a method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in
Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing an X-ray diffraction pattern of the target protein; and
using the coordinates to predict at least part of the structure coordinates of the target protein. In an embodiment, the X-ray diffraction pattern of the target protein is provided by crystallising the target protein unknown structure; and generating an X-ray diffraction pattern from the crystallised target protein. Thus, the invention also provides a method of predicting a three dimensional structural representation of a target protein of unknown structure comprising the steps of (a) crystallising the target protein; (b) generating an X- ray diffraction pattern from the crystallised target protein; (c) applying the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to the X-ray diffraction pattern to generate a three-dimensional electron density map of the target protein, or part thereof; and (d) predicting a three dimensional structural representation of the target protein from the three-dimensional electron density map.
Examples of computer programs known in the art for performing molecular replacement include CNX (Brunger AT.; Adams P. D.; Rice L. M., Current Opinion in Structural Biology, Volume 8, Issue 5, October 1998, Pages 606-611 (also commercially available from Accelrys San Diego, CA), MOLREP (A.Vagin, A.Teplyakov, MOLREP: an automated program for molecular replacement, J Appl Cryst (1997) 30, 1022-1025, part of the CCP4 suite), AMoRe (Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst A50, 157- 163), or PHASER (part of the CCP4 suite).
Preferred selected coordinates of the SERCA Ca2+ ATPase/SLN complex are as defined above with respect to the first aspect of the invention.
The invention may also be used to assign peaks of NMR spectra of target proteins, by manipulation of the data of Table (i) (J Magn Reson (2002) 157(1): 1 9-23). The invention also provides systems, particularly a computer system, intended to generate structures and/or perform optimisation of binding partner which interact with SERCA Ca2+ ATPase and/or SLN, homologues or analogues of SERCA Ca2+ ATPase and/or SLN, complexes of binding partners with SERCA Ca2+ ATPase and/or SLN, or complexes of binding partners with homologues or analogues of SERCA Ca2+ ATPase/SLN.
Accordingly, an eleventh aspect of the invention provides a computer system, intended to generate three dimensional structural representations of SERCA Ca2+ ATPase and/or SLN, homologues or analogues of SERCA Ca2+ ATPase and/or SLN, complexes of binding partners with SERCA Ca2+ ATPase and/or SLN, or complexes of binding partners with homologues or analogues of SERCA Ca2+ ATPase, or, to analyse or optimise binding of binding partners to SERCA Ca2+ ATPase and/or SLN, or homologues or analogues or complexes thereof, the system containing computer-readable data comprising one or more of:
(a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca2+ ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and
(d) structure factor data derivable from the coordinates of (a), (b) or (c).
For example the computer system may comprise: (i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data; (ii) a working memory for storing instructions for processing said computer-readable data; and (iii) a central-processing unit coupled to said working memory and to said computer- readable data storage medium for processing said computer-readable data and thereby generating structures and/or analyse or optimise binding and/or performing rational drug design. The computer system may further comprise a display coupled to the central- processing unit for displaying structural representations.
The invention also provides such systems containing atomic coordinate data of target proteins of unknown structure wherein such data has been generated according to the methods of the invention described herein based on the starting data provided in Table (i) optionally varied by a root mean square deviation of residue backbone atoms of not more than 4.8A, or selected coordinates thereof.
Such data is useful for a number of purposes, including the generation of structures to analyse the mechanisms of action of binding partners and/or to perform rational drug design of binding partners which interact with Ca2+ ATPases and/or SLN (e.g. binding partners that can modulate the Ca2+ ATPase/SLN interaction).
A twelfth aspect of the invention provides a computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data comprises one or more of (a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca2+ ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and (d) structure factor data derivable from the coordinates of (a), (b) or (c).
The invention also includes a computer-readable storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; which data, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure (eg a target protein of unknown structure), using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
The invention also provides a computer-readable data storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, e.g. a target protein of unknown structure, using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the electron density corresponding to the second set of machine readable data. It will be appreciated the that the computer-readable storage media of the invention may comprise a data storage material encoded with any of the data generated by carrying out any of the methods of the invention relating to structure solution and selection/design of binding partners to SERCA Ca ATPase and/or SLN and drug design. Typically, the data is stored in PDB or CIF format, as commonly used by the person skilled in the art. The PDB and CIF formats are organized according to the instructions and guidelines given by the Research Collaboratory for Structural Bioinformatics. As an example, the data may include information on any one or more of the identity of one or more binding partners identified or selected or designed by the methods of the invention, the structure of said binding partners, details of the site of interaction, and details of how the binding partners interact with the Ca2+ ATPase and/or SLN. The invention also includes a method of preparing the computer-readable storage media of the invention comprising encoding a data storage material with the computer-readable data.
As used herein, "computer readable media" refers to any medium or media, which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.
By providing such computer readable media, the atomic coordinate data of the invention can be routinely accessed to model SERCA Ca2+ ATPase and/or SLN or selected coordinates thereof. For example, RASMOL (Sayle et al., TIBS, Vol. 20, (1995), 374) is a publicly available computer software package, which allows access and analysis of atomic coordinate data for structure determination and/or rational drug design.
As used herein, "a computer system" refers to the hardware means, software means and data storage means used to analyse the atomic coordinate data of the invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualize structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows XP or IBM OS/2 operating systems. A thirteenth aspect of the invention provides a method for providing data for generating three dimensional structural representations of SERCA Ca2+ ATPase and/or SLN, homologues or analogues of SERCA Ca2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca2+ ATPase and/or SLN homologues or analogues, or for optimising binding of binding partners to said SERCA Ca2+ ATPase and/or SLN, or to homologues or analogues or complexes thereof, the method comprising:
(i) establishing communication with a remote device containing computer- readable data comprising at least one of:
(a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in
Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca2+ ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and
(d) structure factor data derivable from the coordinates of (a), (b) or (c); and
(ii) receiving said computer-readable data from said remote device.
The computer-readable data received from said remote device, particularly when in the form of the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, may be used in the methods of the invention described herein, e.g. for the analysis of a binding partner interaction with the SERCA Ca2+ ATPase and/or SLN
Thus the remote device may comprise e.g. a computer system or computer readable media of one of the previous aspects of the invention. The device may be in a different country or jurisdiction from where the computer-readable data is received. The communication may be via the internet, intranet, e-mail etc, transmitted through wires or by wireless means such as by terrestrial radio or by satellite. Typically the communication will be electronic in nature, but some or all of the communication pathway may be optical, for example, over optical fibers.
A fourteenth aspect of the invention provides a method of obtaining a three dimensional structural representation of a crystal of a complex of SERCA Ca2+ ATPase and SLN, which method comprises providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and generating a three- dimensional structural representation of said coordinates.
For example, the structural representation may be a physical representation or a computer generated representation. Examples of representations are described above and include, for example, any of a wire-frame model, a chicken-wire model, a ball-and- stick model, a space-filling model, a stick model, a ribbon model, a snake model, an arrow and cylinder model, an electron density map or a molecular surface model.
Computer representations can be generated or displayed by commercially available software programs including for example QUANTA (Accelrys .COPYRIGHT.2001 , 2002), O (Jones et al., Acta Crystallogr. A47, pp. 110-119 (1991)) and RIBBONS (Carson, J. Appl. Crystallogr., 24, pp. 9589-961 (1991)).
Typically, the computer used to generate the representation comprises (i) a computer- readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprise the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and (ii) instructions for processing the computer-readable data into a three- dimensional structural representation. The computer may further comprise a display for displaying said three-dimensional representation.
A fifteenth aspect of the invention provides a method of predicting one or more sites of interaction of SERCA Ca2+ ATPase and/or SLN, or homologues thereof, the method comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
analysing said coordinates to predict one or more sites of interaction. For example, a binding region of a SERCA Ca ATPase or a SLN for a particular binding partner can be predicted by modelling where the structure of the binding partner is known. Typically, the fitting and docking methods described above would be used. This method may be used, for example, to predict the site of interaction of a SERCA Ca2+ ATPase or a SLN of known structure.
A sixteenth aspect of the invention provides a method of predicting the location of internal and/or external parts of the structure of SERCA Ca2+ ATPase and/or SLN, or homologues thereof, the method comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
analysing said coordinates to predict the location of internal and/or external parts of the structure.
For example, from the three dimensional representation, it is possible to read off external parts of the structure, eg surface residues, as well as internal parts, eg residues within the protein core. It will be appreciated that the identification of external protein sequences will be especially useful in the generation of antibodies against a Ca2+ ATPase or SLN or Ca2+ ATPase/SLN complex.
A seventeenth aspect of the invention provides a method of producing a protein with a binding region that has substrate specificity substantially identical to that of SERCA Ca2+ ATPase, the method comprising
a) aligning the amino acid sequence of a target protein with the amino acid sequence of SERCA Ca2+ ATPase;
b) identifying the amino acid residues in the target protein that correspond to any one or more of the following positions according to the numbering of the rabbit SERCA Ca2+ ATPase as set out in Figure 8: Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957; and
c) making one or more mutations in the amino acid sequence of the target protein to replace one or more identified amino acid residues with the corresponding residue in the rabbit SERCA Ca2+ ATPase. Preferably, all 33 amino acids in the target portion which correspond to amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn1 1 1 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of the SERCA Ca2+ ATPase are, if different, replaced. However, it will be appreciated that only 32, 31 , 30, 29, 28, 27, 26, 25, 24, 23, 22, 21 , 20, 19, 18, 17, 16, 15, 14, 13, 12, 1 1 , 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues may be replaced. An eighteenth aspect of the invention provides a method of producing a protein with a binding region that has substrate specificity substantially identical to that of SLN, the method comprising
a) aligning the amino acid sequence of a target protein with the amino acid sequence of SLN;
b) identifying the amino acid residues in the target protein that correspond to any one or more of the following positions according to the numbering of the rabbit SLN as set out in Figure 8: Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 ; and
c) making one or more mutations in the amino acid sequence of the target protein to replace one or more identified amino acid residues with the corresponding residue in the rabbit SLN.
Preferably, all 1 1 amino acids in the target portion which correspond to amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn1 1 of the SLN are, if different, replaced. However, it will be appreciated that only 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues may be replaced.
By "an amino acid residue that corresponds to" we include an amino acid residue that aligns to the given SERCA Ca2+ ATPase or SLN when the SERCA Ca2+ ATPase or SLN, and target protein are aligned using e.g. MacVector and CLUSTALW.
According to this aspect of the invention, a binding site of a particular protein may be engineered using well known molecular biology techniques to contain any one or more of these residues to give it the same substrate specificity. This technique is well known in the art and is described in, for example, Ikuta et al (J Biol Chem (2001) 276, 27548- 27554) where the authors modified the active site of cdk2, for which they could obtain structural data, to resemble that of cdk4, for which no X-ray structure was available. Preferences for the target protein are as defined above with respect to the ninth aspect of the invention. The crystallisation of the SERCA Ca + ATPase/SLN complex has led to many interesting observations about the structure of the proteins, not least the site of interaction between the two. Thus it will be appreciated that the invention allows for the generation of mutant SERCA Ca2+ ATPase and mutant SLN proteins wherein residues corresponding to these areas of interest are mutated to determine their effect on protein activity.
Accordingly, a nineteenth aspect of the invention provides a mutant SERCA Ca2+ ATPase or homologue thereof, wherein any one or more of amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957, according to the numbering of the rabbit SERCA Ca2+ ATPase in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
A twentieth aspect of the invention provides a mutant SLN or homologue thereof, wherein any one or more of amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 , according to the numbering of the rabbit SLN in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
It is particularly preferred if the mutant SERCA Ca2+ ATPase of the invention is one which has at least 20% amino acid sequence identity when compared to the given rabbit SERCA Ca2+ ATPase, as determined using MacVector and CLUSTALW. Preferably, the mutant SERCA Ca2+ ATPase has at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% or 99% amino acid sequence identity. Similarly, it is particularly preferred if the mutant SLN of the invention is one which has at least 20% amino acid sequence identity when compared to the given rabbit SLN, as determined using MacVector and CLUSTALW. Preferably, the mutant SLN has at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% or 99% amino acid sequence identity.
The mutant SERCA Ca2+ ATPase or mutant SLN may be a mutant of any mutant SERCA Ca2+ ATPase or mutant SLN, respectively, provided that it is mutated at one or more of the amino acid positions as stated by reference to the given rabbit SERCA Ca2+ ATPase or SLN amino acid sequence.
Thus, the invention includes a mutant rabbit SERCA Ca2+ ATPase or a mutant rabbit SLN in which, compared to its parent, one or more of these amino acid residues have been replaced by another amino acid residue. The invention also includes mutant SERCA Ca2+ ATPases or SLNs from other sources (eg from another animal species such as a human) in which one or more corresponding amino acids in the parent receptor are replaced by another amino acid residue. For the avoidance of doubt the parent may be a Ca2+ ATPase or SLN which has a naturally-occurring sequence, or it may be a truncated form or it may be a fusion, either to the naturally-occurring protein or to a fragment thereof, or it may contain mutations compared to the naturally-occurring sequence, providing that it retains ATPase ability. In an embodiment, the mutant SERCA Ca + ATPase of the invention has a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32 or 33 mutations as described above.
In an embodiment, the mutant SLN of the invention has a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 mutations as described above.
By "an amino acid residue that corresponds to" we include an amino acid residue that aligns to the given SERCA Ca2+ ATPase or SLN when the SERCA Ca2+ ATPase or SLN, and target protein are aligned using e.g. MacVector and CLUSTALW.
Residues in proteins can be mutated using standard molecular biology techniques as are well known in the art.
A twenty-first aspect of the invention provides a method of assessing the conformational state of a structure for SERCA Ca2+ ATPase, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
performing a statistical analysis and/or a topological analysis on the coordinates; and
comparing the results of the analysis with the results of an analysis of coordinates of proteins of known conformational states. For example, protein structures may be compared for similarity by statistical and/or topological analyses (suitable analyses are known in the art and include, for example those described in Grindley ef a/ (1993) J Mol Biol Vol 229: 707-721 and Holm & Sander (1997) Nucl Acids Res Vol 25: 231-234). Highly similar scores would indicate a shared conformational and therefore functional state eg the open E1 state in this case.
One example of statistical analysis is multivariate analysis which is well known in the art and can be done using techniques including principal components analysis, hierarchical cluster analysis, genetic algorithms and neural networks.
By performing a multivariate analysis of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and comparing the result of the analysis with the results of the analysis performed on coordinates of proteins with known conformational states, it is possible to determine the conformational state of the coordinate set analysed. For example, the conformational state may be classified as any of E1 , E1 P, E2 and E2P (Laursen, et al., 2009; Olesen, et al., 2007; Olesen, et al., 2004; Toyoshima, et al., 2000). E1 refers to the pre-catalytic E1-apo state; E1 P refers to the high energy ATP and Ca2+ bound phospho enzyme E1 P; E2P refers to the low energy conformation E2P; and E2 refers to the proton occluded E2 state.
A twenty-second aspect of the invention provides a crystal comprising a Ca2+ ATPase/SLN complex.
It will be appreciated that the crystal may comprise rabbit SERCA Ca2+ ATPase and rabbit SLN, or homologues thereof as described above. It is preferred if the crystal comprises Ca2+ ATPase and/or a SLN that has at least 75% sequence identity with the respective sequences of the SERCA Ca2+ ATPase and SLN provided in Figure 8, such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity.
Preferably, the crystal has the structure defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof. The invention also includes a crystal comprising a Ca ATPase/SLN complex and further comprising a binding partner (eg of Ca2+ ATPase and/or SLN). Thus the invention includes a co-crystal. It is preferred if the structure of the Ca2+ ATPase/SLN complex is as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
The term "crystal" refers to an ordered state of matter. Proteins, by their nature are difficult to purify to homogeneity. Even highly purified proteins may be chronically heterogeneous due to modifications, structural flexibility, the binding of ligands or a host of other effects. In addition, proteins are crystallized from generally complex solutions that may include not only the target molecule but also buffers, salts, precipitating agents, water and any number of small binding proteins. It is important to note that protein crystals are composed not only of protein, but also of a large percentage of solvents molecules, in particular water. These contents may vary from 30 to even 90%. Protein crystals may accumulate greater quantities and a diverse range of impurities which cannot be listed here or anticipated in detail. The skilled person knows that some crystals diffract better than others. Crystals vary in size from a barely observable micron to 1 or more 20 millimetres. Crystals useful for X- ray analysis are typically single, 0.05 mm or larger, and free of cracks and other defects.
The protein crystal diffraction pattern determines the level of detail (resolution) that can be obtained on the three-dimensional structure of a protein. The quality of a three dimensional structure is evaluated by the resolution obtained, which is an expression for the minimum spacing observed in differentiation. At a resolution of about 6 A the overall shape of molecular parts is resolved, such as a-helices that are seen as rods with strong intensity. At a resolution of about 3.5 A the main chain is visible (usually with some ambiguities). At a resolution of about 3 A the side chains are partly resolved. At a resolution of about 2.5 A the side chains are well resolved. The atoms are located within about 0.4 A meaning that the lengths of hydrogen bonds calculated from a PDB file (for example, by RasMol) have at least this uncertainty. The normal limit of protein crystallography is around 1 A or slightly less, where atoms are located at below ± 0.1 A..
Advantageously, therefore, the crystals of the invention have a resolution of less than 6 A, preferably less than 5 A or 4 A, and most preferably around 3.6 A or less (eg less than 3.5, 3.4, 3.3, 3.2, 3.1 , 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1 , 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1 or 1.0A) to allow a sufficiently detailed model for selecting potential binding molecules e.g. modulators of the Ca2+-ATPase Sarcolipin complex. In a particularly preferred embodiment, the crystals of the invention have a resolution of around 3.2A or of around 3.1 A. In one embodiment, the crystal has P21221 symmetry with unit cell dimensions 85.9 (+10) A, 139.5(±10) A, 141.6(+10) A, wherein α=90°, β=90°, and γ=90°.
The invention also includes a use of the crystals of the invention for determination of three-dimensional structures of Ca2+ ATPases or SLN or homologues thereof. Thus, the crystals may be used in the methods of determining three-dimensional structure described above.
It will be appreciated that the crystal may contain one or more non-protein compounds such as ATP, ATP analogues, and/or ions (e.g. cations) which may have been added after the protein purification process and before crystallisation. Alternatively, crystals may be submerged in a solution comprising the indicated compounds prior to crystallisation. The compounds may be one or more binding partners of Ca2+ ATPase and/or SLN. A twenty-third aspect of the invention provides a method of making a crystal comprising a Ca2+ ATPase/SLN complex, the method comprising: providing a purified Ca + ATPase/SLN complex; and crystallising the complex by using the hanging drop vapour diffusion technique, using a precipitant solution comprising 15-25% (w/v) PEG6000, 100- 200 mM magnesium sulphate, 4-6% glycerol and 5-7% 2-methyl-2,4-pentandiol (MPD).
In a particularly preferred embodiment, the precipitant solution comprises about 19.5% (w/v) PEG6000, about 150 mM magnesium sulphate, about 5% glycerol and about 6% 2- methyl-2,4-pentandiol (MPD). The crystal made by the method may include one or more binding partners of Ca2+ ATPase and/or SLN. Thus, the method of this aspect of the invention may be a method of making a co-crystal. The one or more binding partners may be added to the purified Ca2+ ATPase/SLN complex, and the complex/binding partner crystallised, or a crystal of the Ca2+ ATPase/SLN complex may be submerged in a solution containing the one or more binding partners. The invention includes a crystal or co-crystal obtainable or obtained by the method of the twenty-third aspect of the invention.
The invention includes the use of the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof to solve the structure of target proteins of unknown structure.
The invention includes the use of the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof to identify binding partners of a Ca2+ ATPase and/or SLN.
The invention includes the use of the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof in methods of drug design where the drugs are aimed at modifying the activity of Ca2+ ATPase and/or SLN (e.g. modulate the Ca + ATPase/SLN interaction). The invention will now be described with the aid of the following Figures and Examples.
Figure 1 : Structure of the SERCA-SLN complex. (A) Overall cartoon model of the SERCA-SLN complex showing the SLN binding site between transmembrane helices M2, M6, and M9 of SERCA. Mg2+ is shown as magenta spheres, K+ as purple sphere, the beta- and gamma phosphates of AMPPCP and the Ca2+ binding site residues are shown as ball-and-stick. (B) Comparison of E1-SLN structure (middle) with representatives of the E2 (left, PDB ID 2C8K, stabilized by thapsigargin and AMPPCP) and [Ca2]E1 P (right, PDB ID 1T5S, stabilized by Ca2+ and AMPPCP) conformations. The arrangement of the cytoplasmic domains of the SERCA-SLN structure is E1-like, whereas transmembrane helices M1 - M4 adopt a unique configuration. The asterisk marks contacts between the N- and A-domains which are characteristic for [Ca2]E1 P states but absent in SERCA- SLN.
Figure 2: SERCA-SLN interactions. (A) Omit map showing the transmembrane a-helix formed by SLN. Green mesh: unbiased Fo-Fc difference density calculated at 50-3.1 A resolution and contoured at 2.8σ, after simulated annealing refinement omitting the SLN model. The bulky side chain density of Phe12 (asterisk) served as hallmark residue to assign the SLN sequence. Both the very N- and C-terminal residues are poorly defined. (B) close-up view of the polar interactions between the SLN N-terminal region and SERCA. (C) close-up view of hydrophobic contacts between the C-terminal region of SLN and SERCA.
Figure 3: Ca2+ access channel and binding sites. (A) Overall surface view of the SERCA-SLN complex, showing the wide open funnel leading towards the Ca2+ binding sites (circle). The 'M1 kink' is depressed into the membrane, indicating a distorted membrane interface (dotted line). (B) cross-section through the continuous ion entry funnel. Yellow surface representation indicate conserved residues. The residues forming Ca2+ binding sites I and II (dotted circles) are projected on the cross-section plane in ball- and-stick represenation (Asn 796 omitted for clarity). (C, D) the 'M1 sliding door' mechanism, depicted by the 'downward' movement of M1 relative to M3. The structures were superposed on M3. E2-Tg (PDB ID 2C8K, (C) is shown in green, [Ca2]E1- AMPPCP (PDB ID 1T5S, (D) is shown in blue. SLN bound SERCA is colored as in (A) Both in the E2 and the [Ca2]E1 P states L61 and Gly257 form a 'pivot point' that anchors the M1 kink to M3, occluding the ion binding sites, while L65 shields the gating residue Glu309. In SLN-bound SERCA, the M1 kink is translocated more than 10 A into the membrane, leaving E309 unshielded. (E, F, G) Structures of the proton/Ca2+ binding sites. (E) the Ca2+-free and protonated E2 state: both binding sites are distorted, (F) the E1-SLN state: site II residues are involved in Mg2+ binding, competing for high-affinity Ca2+ binding geometry. Site I is accessible for Ca2+ binding with only minor rearrangements. (G) the [Ca2]E1 P state with the two occupied Ca2+ sites bound at high affinity.
Figure 4: Model of the regulation mechanism by SLN. Superposition of SLN in the E1- SLN structure (middle) and as modelled on the E2 (left) and [Ca2]E1P (right) states. Superposed SLN is shown in light cyan color, key residues are highlighted in yellow. The binding mode of SLN appears compatible with the E2 state, with Leu321 in close contact to the SLN helix, in support of a mutational effect on PLB binding. In contrast, tight SLN binding would be incompatible with the [Ca2]E1 P conformation, where the groove is constricted by SERCA residues L96, Q108 and W107.
Figure 5: Transmembrane heliix arrangements. Left: superposition of E2-Tg (green) with SERCA-SLN; right: superposition of E1Ca2-AMPPCP (blue, Ca2+ in cyan) with SERCA- SLN. SERCA-SLN colouring as in Fig.1. Figure 6: Sequence alignment of rabbit and human phospholamban and sarcolipin from human and rabbit. The figure was created with Jalview using the program Muscle for the sequence alignment. From NMR studies (Lamberth, S. et al.) Helvetica Chimica Acta 83, 2141-2152 (2000). and modeling (Toyoshima, C. et al. Proc. Natl Acad. Sci USA 100, 467-472 (2003), PLB consists of three subdomains: an a-helical cytoplasmic subdomain la (residues 1-20) a hinge region (residues 20-30) and a transmembrane alpha helix (residues 31-52).
Figure 7: Positive Fo-Fc difference density signal in the nucleotide binding site.
Figure 8: Amino acid sequences of (A) SERCA Ca2+ ATPase and (B) SLN as present in crystallised structure.
Figure 9: Comparison of the electrostatic surface potential of SERCA in different states. Left: E2-Tg (PDB ID 2C8K); middle: E1-SLN, right: [Ca2]E1-AMPPCP (PDB ID 1T5S). The E1-SLN state has the most prominent patch of negative surface potential around the cation entry funnel (circle). Surface electrostatics were generated with Pymol (www.pymol.org). Structures are structurally aligned on the M8-M10 segment. Figure 10: Ca2+- binding pocket in various solved structures of the SERCA Ca2+- ATPase.
Figure 11: Electron density map of sarcolipin in the SERCA sln complex. Figure 12: Comparison of SLN and PLB. a, Helical wheel representation of the transmembrane segments of SLN and PLB. The hydrophobic side of SLN facing SERCA is indicated by a black arc. The distribution of hydrophobic (brown) and polar (green) amino acids is similar. However, SLN possesses two acidic (red) and three basic (blue) residues on the side opposite the SERCA-interface, whereas PLB only has one basic residue (Arg25, blue), b, PLB gain-of-function and loss-of-function mutations described earlier from alanine scanning experiments (Kimura et al, 1997) were plotted on the SLN structure. Loss-of function mutations (red, orange for weak effect) are proposed to be situated at the PLB-SERCA interface, whereas gain-of-function mutations (blue) are suggested to destabilize the PLB pentamer, leading to a higher concentration of inhibitory active PLB monomer. The analogous residues in SLN cluster on two opposite sides of the alpha-helix, with the PLB gain-of-function mutations pointing away from the SLN binding groove of SERCA, and the PLB loss-of-function mutations pointing towards the interface. This further supports that SLN and PLB bind to SERCA in a similar way.
Example 1 : The Sarcolipin-bound Calcium Pump exposes Calcium Sites to the Cytoplasm
Summary
Contraction and relaxation of muscle cells are controlled by the successive rise and fall of cytosolic Ca2+, which in the heart is tightly coupled with contractile properties and heart beat frequency. Release of sequestered Ca2+ from the sarcoplasmic reticulum (SR) store initiates contraction while a rapid removal of the cytosolic Ca2+ leads to relaxation. Re- sequestration of Ca2+ into the SR lumen is the main mechanism of Ca2+ removal and is catalyzed by the SR Ca2+-ATPase (SERCA), which therefore plays a key role in muscle and cardiovascular physiology. A major determinant of SERCA activity is its apparent Ca2+ affinity, which is regulated by two small and homologous membrane proteins called phospholamban (PLB) and sarcolipin (SLN)1,2. Detailed structural information explaining how these regulatory proteins reduce the apparent Ca2+-affinity has however been missing, and the structural features that characterize a proper, cytoplasmic entry pathway for Ca + leading to the intramembraneous binding sites of SERCA have remained unknown. Here we report the crystal structure of SERCA in complex with SLN at 3.1 A resolution. The regulatory SLN traps the Ca2+-ATPase in an open E1 state with cytoplasmic exposure of the Ca2+ sites through a pathway further stabilized by Mg2+. The structure suggests a mechanism for selective Ca2+ loading and activation of SERCA and provides novel insight on SLN/PLB inhibition by an E1 intermediate state stabilization. We find an intriguing analogy to how autoinhibitory domains of other ion pumps may modulate transport across biological membranes.
In humans, SLN is primarily expressed in skeletal muscle, whereas PLB expression predominates in heart, although significant levels of SLN expression are also observed in cardiac atrial muscle3. Both SLN and PLB are believed to bind to, and regulate SERCA in a similar fashion. Binding of SLN or PLB to SERCA lowers the apparent Ca2+ affinity thus modulating the threshold Ca2+ concentration at which SERCA gains transport activity2,4"7. Phosphorylation of SLN and PLB in response to beta-adrenergic stimulation is a main cellular pathway of regulation of heart activity, as SERCA is inhibited by the non- phosphorylated proteins at resting Ca2+ conditions7"8 (typically in the 0.1 μΜ range). The structures of SLN and PLB and their interactions with SERCA have previously been studied by NMR9,10, but a complex structure of either of the regulators bound to SERCA has so far only been observed for PLB at low-resolution by electron microscopy11. Numerous crystal structures have on the other hand provided a thorough description of SERCA at atomic detail12,13. The 110 kDa single polypeptide chain folds into a bundle of ten transmembrane segments (M1 through M10) that form the ion transport domain, and three cytoplasmic domains (A, P, and N), which mediate ATP hydrolysis via phosphorylation and dephosphorylation. SERCA undergoes large conformational changes during the Ca2+ transport cycle: the E1 state binds Ca + and ATP to form the ADP sensitive E1 P phospho-enzyme, which occludes two Ca2+ ions at intramembraneous sites I and II. Conversion to the ADP insensitive E2P conformation exposes a luminal exit pathway, where Ca2+ is exchanged for luminal protons. Dephosphorylation accompanies proton occlusion, and release of inorganic phosphate leads to the E2 state. An open question remains, however, on how the E2 to [Ca2]E1 P transition occurs; a structure of a physiologically relevant, ion exchanging E1 intermediate state is missing.
Results and Discussion Structure of the SERCA-SLN complex: a new E1 conformation.
Rabbit SERCAIa was solubilized from native SR membranes and crystallized in the presence of approx. 75 mM Mg2+ and no Ca2+. The structure was determined at 3.1 A resolution by molecular replacement revealing a novel conformation and clear indication of a SLN-bound complex (Fig. 1 , Fig. 2a). Forming a slightly curved and membrane- spanning helix, SLN associates to SERCA in a groove between M2, M6 and M9 (Fig. 1a). This is consistent with earlier models based on computational docking to the E2 form of SERCA5. However, the crystal structure is significantly different from the Ca2+- free E2 state (RMSD -6.6 A, E2 representing thapsigargin-bound E2 forms) and despite being a Ca +-free state it resembles much closer the Ca +-occluded E1 P states (RMSD -4.9 A, [Ca2]E1 P representing calcium-occluded AMPPCP and ADP-AIF4 " forms and the AMPPNP phosphorylated enzyme). Hence, we propose that the SLN complex represents a genuine E1 intermediate between the proton-occluded E2 and the Ca2+- occluded E1P states - in functional analogy to the E2P state that allows Ca2+/H+ exchange of ions on the luminal side12,13. The positions of the P- and the N-domain relative to the transmembrane domain are clearly E1 -like, whereas the A-domain is at the trajectory from the E2 to the [Ca2]E1P position (approx. 100° and -15° rotation, respectively). Characteristic contacts between the A- and the N-domain of the [Ca2]E1 P states (e.g. Arg134, Ser136, Arg139, Thr171 , and Lys218 interacting with Asp426, Asn469, Glu435, Glu486, and Asp422, respectively) have not yet formed in the SLN bound state (Fig. 1b), and compared to the [Ca2]E1 P states, the N-domain is in a slightly outward rotated position (~17°) relative to the phosphorylation site of the P-domain. The side chain conformation of the Asp351 phosphorylation site is still E2-like, i.e. interacting with Lys684 and Thr701 , and not pointing towards the N-domain introducing the adenine binding pocket. We observed, however, electron density, which overlaps with the position of a divalent cation and the β,γ-phosphates of bound AMPPCP in the Ca2+-occluded state. Accordingly, we assigned this density to a partially ordered AMPPCP molecule (present in the crystal) coordinated by Arg560 and Thr353 of SERCA.
SERCA-SLN interactions
The SLN molecule is traced in its complete 31 amino acid length, although N-and C- terminal residues are rather poorly defined in the electron density maps (Fig. 2a). The assignment of the SLN sequence is validated by the overall quality of fit to the electron density maps. Most of the observed SERCA-SLN contacts (4 A distance criterion) involve highly conserved amino-acid residues (Table 1), and the binding site is in accordance with previous observations and models based on mutational studies for both SLN and PLB4,5,14"16. The SERCA-M4 segment bends at the unwound region of the ion binding cavity within the membrane and it crosses diagonally over the N-terminal end of SLN at the cytoplasmic interface. The intermolecular contacts show however only few, intimate interactions: three hydrogen bonds (SLN-Thr5 to Trp932 of SERCA M9, and SLN-Asn11 to Thr805 and the main chain carbonyl of Gly801 of M6, Fig. 2b), and a hydrophobic cluster of SLN-Val19 and Ile22 to Leu953 of M9 (Fig. 2c; Table 2). SLN release in response to conformational changes of SERCA therefore seems only moderately restricted. A suggestion that the C-terminal YQY motif stacks with aromatic residues of SERCA in the M1-M2 luminal loop5, is not directly supported, although we note that this SLN motif is rather disordered in our structure. SLN is homologous to the membrane-spanning, C-terminal segment of phospholamban (PLB). Since mutations in SERCA that affect interactions with PLB also affect SLN binding and equivalent mutations of PLB and SLN reduce functional interactions with SERCA similarly, it is expected that PLB and SLN use analogous mechanisms for SERCA interactions. Indeed, the interactions we observe between SLN and SERCA agree with crosslinking studies to PLB by Chen et al.17 who predicted ~10 A and ~15 A distances between SERCA2b-Lys328 and Cys-mutations of PLB-Asn27 (SLN-Ser4) and PLB-Asn30 (SLN-Glu7), respectively - distances that measure 10 and 13 A in our structure (Lys328 side chain nitrogen to Ser4 and Glu7 side chain oxygens, respectively.
The Ca2+ access channel and binding sites
Relative movements of M1 against M2, M3 and M4 act like a 'sliding door' that generates a wide-open access pathway leading from the cytoplasm to the Ca2+ binding sites in the membrane (Fig. 3a+b, Suppl. Movie M1). Compared to the [Ca2]E1 P states, helices M1 , M2, M3 and M4 are all shifted away from the central M6, and most importantly, M1 describes a 'downward' translocation (towards the lumen) by almost two turns relative to M4 and ~12 A along the membrane normal (Fig, 3c+d). This leads to an opening of a wide funnel above the characteristic M1 kink at Leu61 and a distorted membrane interface. Glu309 is typically associated with a key role in Ca2+ binding and release12,13,18,19. Similarly, the conserved pair of the hydrophobic Leu61 (M1) and small Gly257 (M3) has been described as a 'pivot point' for the kink, and the conserved Leu65 as a 'gate-lock' residue, restricting Glu309 mobility as required for Ca2+ occlusion20. However, in our E1-SLN structure, the Leu61-Gly257 pair is separated: Leu61 now opposes Ala303 (M4) and Leu65 packs against Val300 (both also conserved). The M1 kink is therefore translocated from "above" to "below" the unwound, central part of M4 around the conserved Pro308 and Glu309, i.e. diving deeply into the membrane. The consequence is a large distortion of the membrane interface, through which Glu309 and other Ca2+ binding residues become accessible from the cytoplasmic environment (Fig. 3a-e).
The two intramembraneous Ca2+ sites I and II are also involved in the counter-transport of 2-3 protons. Site I involves the side chains of residues Asn768, Glu771 , Asp800, and Glu908, and site II comprises those of Asn796, Asp800, Glu309 and the main chain carbonyl oxygens of Val304, Ala305 and Ile307 (Fig. 3 e-g). Kinetic evidence points to a sequential and cooperative mechanism of Ca2+ binding to SERCA, where binding of the first Ca + ion leads to an increased affinity for the second22. In further support of this kinetic model, single mutations at site I prevent binding of Ca2+ to both sites I and II, while single mutations at site II only interfere with site II23.
With the M1 'sliding door' open, the side chains of Asp800 and Glu309 as well as the main chain carbonyl groups of Val304 and Ile307 are exposed to the surface of the entry funnel formed by SERCA M1 , M3 and M4 (Fig. 3b). These are all part of Ca2+ binding site II. Several other highly conserved residues (Gln56, Asn101 , Gln109) line the Ca2+ entry funnel, indicating that an ion selective environment for Ca2+ recruitment and binding is exposed at the membrane interface. Indeed, a comparison of the electrostatic surface potential of the E2, E1-SLN and [Ca2]E1 P states shows that only the E1-SLN structure displays such a deep, funnel-shaped and negatively charged path leading to the Ca2+ sites. Phospholipid head groups attracting Ca2+ ions21 may further assist Ca2+ entry.
Probing the molecular contact surface for Ca2+ ions (ionic radius of 1.14 A), the calcium entry pathway connects through a distorted site II all the way to site I. Interestingly, Asp800 (site l+ll) and Glu309 (site II) are associated with Mg2+ ions in our structure, one of which is also in close vicinity to the exposed main chain carbonyls of Val304, Ala305, and Ile307 (Fig. 3b+f). We assume that Mg + ions bound at low affinity (but saturated at the ~100 mM concentration in the crystal) stabilize a deprotonated, open structure of site II with exposed carbonyl groups of the unwound part of M4 and deprotonated side chains of Glu309 and Asp800. It grants access for cytoplasmic Ca2+ to reach site I through site II. Ca2+ binding at site I is likely to engage Asp800, thus distorting the Mg2+ sites and preparing also site II for Ca2+ binding as a basis for cooperativity. The involvement of Mg2+ in Ca2+ exchange is in line with a "gating function" proposed earlier24, and places an important role of Mg2+ in SLN/PLB mediated myocardial control. In further support of an open, deprotonated E1 state, Glu771 is separated from the hydrogen bond to Asn796 observed in the E2 conformation.
Mechanism of regulation
Besides the cytoplasmic calcium concentration and the lipid environment (see above), SLN and PLB activity is regulated by their expression level and phosphorylation status2,4,6,7. Both SLN and PLB have been proposed to exist in biological membranes in monomeric and multimeric free forms and as monomeric and dimeric SERCA-bound forms25. When plotting the gain-of-function and loss-of-function mutations of PLB4,15,26 onto the SLN structure, the mutations clearly cluster on opposite sides of the helix: loss- of-function mutations at the PLB-SERCA-interface, and gain-of-function mutations (presumably impaired PLB pentamerization leading to more active monomer) at the outside. This also supports the notion that SERCA can interact at least in part with PLB pentamers27.
During beta-adrenergic stimulation, PLB is phosphorylated by Protein Kinase A or Ca2+/calmodulin-dependent protein kinase II (CaMKII). This results in a rapid increase in Ca2+ uptake to SR and has a strong impact on relaxation and contraction6,7. SLN is also phosphorylated by CaMKII at Thr5. A study using adult rat ventricular myocytes showed that the point mutation Thr5Glu, mimicking phosphorylation, abolishes the inhibitory function of SLN. Furthermore, a block in CaMKII activity in SLN overexpressing myocytes completely eliminates beta-adrenergic responses8. Thr5 faces Trp932 of SERCA at approx. 2.6 A distance, indicating a hydrogen bond, while a phospho- threonine at this site would clash with Trp932 and probably destabilize binding. At the same time, SLN-Thr5 is not deeply buried at the interface, but accessible at a lateral position at the membrane interface allowing CaMKII phosphorylation possibly even when SLN is associated with SERCA.
Both non-dissociative and dissociative models for SLN and PLB interaction with SERCA have been suggested5,17. Superimposing our structure to the E2 state of SERCA, we find that the SLN binding groove is wider (Fig. 4) and thus compatible with also an E2-bound form of the complex. The E2 conformation would offer a more extensive contact to M4 rather than to M2, and the superpositioning suggests a close contact of SLN-Glu7 (PLB- Asn30) to Leu321 of M4. This may explain that mutation at Leu321 reduces PLB binding5. In the occluded [Ca2]E1 P conformation, M1 , M2, M3 and M4 have moved significantly, destroying the SLN binding groove. In particular residues Leu96, Trp107 and Glu108 constrict the groove at the N-terminal region of SLN, where all of the few polar interactions are located (Fig. 4). We therefore find it likely that the complex dissociates upon Ca2+-activation of SERCA.
A common regulation-sensitive surface?
The identified E1-SLN form of SERCA candidates as a genuine intermediate of the catalytic cycle, required for Ca2+ loading and therefore essential for the transport of ions across the SR membrane. SLN and PLB reduce the apparent affinity for Ca2+ by stabilization of this probably otherwise dynamic intermediate, which is also stabilized by Mg2+. Many P-type ATPases are regulated by autoinhibitory extensions/domains, such as the plasma-membrane Ca2+ATPases (PMCAs), which are activated by Ca2+- calmodulin binding to the autoinhibitory element in a Ca2+dependent way28,29. Interestingly, a conserved groove of the cytoplasmic domains that is linked to autoinhibition of PMCA29 represents the extension of the SLN/PLB binding site observed here. Additionally, it overlaps also with a conserved site of interaction of heavy-metal binding domains mapped to the heavy-metal transporting P1 B-ATPase30,31. This groove is conserved for different P-type ion pumps as a core feature of ATPase coupled conformational changes; maximally exposed in E2 states and buried in E1 P states. It implicates this conserved surface in different mechanisms of binding, inhibition or regulation of P-type ATPases, and hints at therapeutic potential for ion pump targeting. Methods Summary
The SERCA1a-SLN complex was obtained from rabbit hind leg muscle. Solubilization and purification were performed with the detergent octaethylene glycol monododecyl ether (C12E8) and crystals were obtained using PEG6000 as the precipitant and with approx. 75 mM MgS04 in the crystallization drop. Crystals were cryoprotected by addition of 20% glycerol in crystallization buffer. Crystallographic data were collected at the beam lines 911-3 at MaxLab in Lund, Sweden and X06SA of the Swiss Light Source (SLS) in Villigen, Switzerland. Phases were determined by molecular replacement using individual domains of SERCA E2 (pdb:2AGV) as structural search models. Refinement using data extending to 3.1 A resolution produced a model with a crystallographic R- factor of 19.1 % and a free R-factor of 24.6 %.
Table 1 : Serca residues facing the SLN binding groove (any atom within a distance of≤4 A)
Figure imgf000070_0001
*based on a sequence alignment of 50 Ca ATPase structures
Table 2: SLN residues facing the SERCA binding groove (any atom within a distance of≤4 A)
Figure imgf000071_0001
References
1. James, P., Inui, M., Tada, M., Chiesi, M., Carafoli, E. Nature and site of
phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342, 90- 92 (1989)
2. Odermatt, A. ei al. Sarcolipin regulates the activity of SERCA1 , the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 273, 12360-12369 (1998)
3. Babu, G.J., Bhupathy, P., Carnes, C.A., Billman, G.E., Periasamy, M. Differential expression of sarcolipin protein during muscle development and cardiac
pathophysiology. J. Mol. Cell Cardiol. 43, 215-222 (2007)
4. Asahi, M., Kimura, Y., Kurzydlowski, K., Tada, M., MacLennan, D.H. Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca2+-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J. Biol. Chem. 274, 32855-32862 (1999)
5. Asahi, M. et al. Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with
phospholamban. Proc. Natl. Acad. Sci. USA 100, 5040-5045 (2003)
6. Simmerman, H.K., Kobayashi ,Υ.Μ., Autry, J.M., Jones, L.R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J. Biol. Chem. 271 , 5941-5946 (1996)
7. Tada, M., Kadoma, M. Regulation of the Ca2+ pump ATPase by cAMP-dependent phosphorylation of phospholamban. Bioessays 10, 157-163 (1989)
8. Bhupathy, P., Babu, G.J., Ito, M., Periasamy, M. Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J. Mol. Cell Cardiol. 47, 723-729 (2009)
9. Buffy, J.J. et al. Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy. J. Mol. Biol. 358, 420-429 (2006)
10. Lamberth, S. et al. NMR solution structure of phosphorlamban. Helv. Chim. Acta. 83, 2141-2152 (2000)
11. Young, H.S., Jones, L.R., Stokes, D.L. Locating phospholamban in co-crystals with Ca2+-ATPase by cryoelectron microscopy. Biophys. J. 81 , 884-894 (2001)
12. Toyoshima, C. How Ca +-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim. Biophys. Acta. 1793, 941-946 (2009)
13. M0ller JV, Olesen C, Winther AM, Nissen P. The sarcoplasmic Ca2+-ATPase:
design of a perfect chemi-osmotic pump. Q Rev Biophys. 43, 501-66 (2010)
14. Toyoshima, C. et al. Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc. Natl. Acad. Sci. USA 100, 467-472 (2003) 15. Toyofuku, T., Kurzydlowski, K., Tada, M., MacLennan, D.H. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 269, 3088- 3094 (1994)
16. Kimura. Y., Asahi, M., Kurzydlowski, K., Tada, M., MacLennan, D.H. Phospholamban domain lb mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. J. Biol. Chem. 273, 14238-14241 (1998)
17. Chen, Z., Stokes, D.L., Rice, W.J., Jones, L.R. Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J. Biol. Chem. 278, 48348-48356 (2003)
18. Clarke, D.M., Loo, T.W., Inesi, G., MacLennan, D.H. Location of high affinity Ca2+- binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476-478 (1989)
19. Inesi, G., Ma, H., Lewis, D., Xu, C. Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J.
Biol. Chem. 279, 31629-31637 (2004)
20. Einholm, A.P., Andersen, J. P., Vilsen, B. Roles of transmembrane segment M1 of Na+,K+-ATPase and Ca2+-ATPase, the gatekeeper and the pivot. J. Bioenerg. Biomembr. 39, 357-66 (2007)
21. Puskin, J.S. Divalent cation binding to phospholipids: An EPR study. J. Membrane Biol. 35, 39-55 (1977)
22. Dupont, Y. Low-temperature studies of the sarcoplasmic reticulum calcium pump. Mechanisms of calcium binding. Biochim Biophys Acta. 688, 75-87 (1982)
23. Zhang, Z. et al. Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase. Biochemistry 39, 8758-8767 (2000)
24. Henderson, I.M., Starling, A.P., Wictome, M., East, J.M., Lee, A.G. Binding of Ca2+ to the Ca2+-Mg2+-ATPase of sarcoplasmic reticulum: kinetic studies. Biochem J. 297, 625- 636 (1994)
25. Mascioni, A., Karim, C, Barany, G., Thomas, D.D., Veglia, G. Structure and
Orientation of Sarcolipin in Lipid Environments. Biochemistry 41 , 475-492 (2002)
26. Kimura, Y., Kurzydlowski, K., Tada, M., MacLennan, D.H. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem. 272, 15061-15064 (1997)
27. Glaves, J. P., Trieber, C.A., Ceholski, D.K., Stokes, D.L., Young, H.S.
Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump. J. Mol. Biol. 405, 707-23 (2011) 28. Di Leva, F., Domi, T. , Fedrizzi, L, Lim, D., Carafoli, E. The plasma membrane Ca ATPase of animal cells: structure, function and regulation. Arch. Biochem. Biophys. 476, 65-74 (2008)
29. Tidow, H. et al. A bimodular mechanism of calcium control in eukaryotes. Nature in press
30. Wu, C. C, Rice, W. J. & Stokes, D. L. Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16, 976-985 (2008)
31. Gourdon, P. et al. Crystal structure of a copper-transporting PIB-type ATPase.
Nature 475, 59-64 (2011 )
32. Andersen, J. P., Lassen, K., Moller, J.V. Changes in Ca2+ affinity related to conformational transitions in the phosphorylated state of soluble monomeric Ca2+- ATPase from sarcoplasmic reticulum. J. Biol. Chem. 260, 371-80 (1985)
33. Kabsch, W. XDS. Acta Cryst. D66, 125-132 (2010)
34. McCoy A.J. et al. PHASER crystallographic software. J. Appl. Cryst. 40, 658-674 (2007)
35. Adams, D.P. et al. PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta Cryst. D66, 213-221 (2010)
36. Emsley P., Cowtan K. COOT: model-building tools for molecular graphics". Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132 (2004)
37. Arendall W.B. et al. A test of enhancing model accuracy in high-throughput crystallography. J. Struct. Fund. Genomics. 6, 1-11 (2005)
38. Toyoshima, C, Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647-655 (2000).
39. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605-611 (2002).
40. Sorensen, T.L., Moller, J.V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672- 675 (2004).
41. Toyoshima, C. & Mizutani, T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529-535 (2004).
42. Toyoshima, C, Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361-368 (2004) 43. Olesen, C, Sorensen, T.L., Nielsen, R.C., Moller, J.V. & Nissen, P.
Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251-2255 (2004).
44. Jensen, A.M., Sorensen, T.L., Olesen, C, Moller, J.V. & Nissen, P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25, 2305-2314 (2006). 45. Laursen, M. et al. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 284, 13513-13518 (2009)
46. Karplus P. A. & Diederichs, K. Linking crystallographic model and data quality.
Science 336, 1030-1033 (2012).
Example 2 : Crystallisation of Ca2* ATPase/SLN structure complex
SERCA 1a isoform was prepared from sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. The membranes were further extracted and purified with low concentration of deoxycholate according to established procedures32. The membrane preparation was washed in 100 mM MOPS-Tris pH 6.8 (3-[N-morpholino]propanesulfonic acid titrated by tris[hydroxymethyl]aminomethane) and 80 mM KCI followed by a centrifugation at 40,000 rpm for 35 minutes at 4° C (TLS-55 rotor). The purified membranes were incubated for 80 minutes with 1% DMSO, 100 mM MOPS-KOH pH 6.8, 20% glycerol, 80 mM KCI, 3 mM MgCI2, 3.9 mM EGTA, and SERCA and SLN were solubilized with 35 mM octaethyleneglycol dodecylether (C 2E8) for 10 minutes followed by centrifugation (TLA-55 rotor, 50,000 rpm, 35 minutes, 4° C). The protein concentration was 12 mg/ml of the final supernatant and 1 mM AMPPCP was added. Crystallization was obtained by vapour diffusion using hanging drops equilibrated at 23°C from 1 + 1 μΙ of protein and crystallization buffer (19.5% (w/v) PEG6000, 5% glycerol, 150 mM MgS04 and 6% MPD). Under these conditions the equilibrated drops maintain an approximately 2 μΙ volume. Single crystals appeared after few days and grew within a week to a final size of 250 x 250 x 50 microns. Experiments initially aimed for cocrystallization with inhibitory compounds, which however were not bound in the E1-SLN crystal structure presented here, and crystallization was later reproduced without inhibitors. Crystals were cryo-protected by addition of 1 μΙ of cryobuffer (20% glycerol, 19.5% PEG6000, 150 mM MgS04 and 6% MPD) to a 2 μΙ drop. Crystals were mounted in litho-loops and flash- cooled in liquid nitrogen. Example 3: Use of coordinates of Ca2+ ATPase/SLN structure
According to the invention various strategies can be followed to identify and generate selective modulators of the Ca2+-ATPsae sarcolipin interaction based on the structural information described herein. Potential modulators can be identified through virtual screening of chemical databases. Virtual screening are performed with different database docking programs (for instance Dock, FlexX, Gold, Flo, Fred, Glide, LigFit, MOE or MVP, but not limited to these) and used with different scoring functions (e.g. Warren et al, 2005; Jain, 2006; Seifert et a/, 2007). The scoring functions may include, but are not limited to force-field scoring functions (affinities estimated by summing Van der Waals and electrostatic interactions of all atoms in the complex between the Ca2+- ATPase and Sarcolipin and the ligand), empirical scoring functions (counting the number of various interactions, for instance number of hydrogen bonds, hydrophobic- hydrophobic contacts and hydrophilic-hydrophobic contacts, between the complex and the ligand), and knowledge based scoring functions (with basis on statistical findings of intermolecular contacts involving certain types of atoms or functional groups). Scoring functions involving terms from any of the two of the mentioned scoring functions may also be combined into a single function used in database virtual screening of chemical libraries. Identified potential modulators are confirmed by in vitro and in vivo experiments before further developments. The binding of modulators may further be confirmed by x-ray experiments. Even when inhibitory activity is confirmed further drug development may be required before a compound suitable as a drug is identified. As seen from the above and the three dimensional structure described herein, based on this knowledge potential modulators of a Ca2+-ATPase/Sarcolipin complex can be identified.
Such methods are preferable performed using computers, whereby the atomic coordinates are introduced into the computer, allowing generation of a model on the computer screen which allows visual selection of binding molecules.
Table (i)
Table (i) shows the x, y and z coordinates by amino acid residue of each non-hydrogen atom in the polypeptide structure for SLN bound SERCAI a.
The third column indicates whether the atom is from an amino acid residue of one of SERCAI a or SLN (differentiated by A and B, respectively, in fourth column), a diphosphate (ACP), a potassium ion (K), water (HOH), or a magnesium ion (MG).
Data collection and structure determination
Crystallographic data were collected at the beam lines 911 -3 at MaxLab in Lund, Sweden and X06SA of the Swiss Light Source (SLS) in Villigen, Switzerland. The data were collected at 100 K and a wavelength of 0.97935 A. XDS was used for dataprocessing33 and phases were determined by molecular replacement using individual domains of SERCA (pdb:2AGV and 3N5K) as search models34. Sarcolipin was originally traced as a poly-alanine model. Placing the 'distinct hallmark' side chain of SLN (Phe12 in the central part of SLN) into the largest unbiased side chain density yielded a reasonable fit of all other side chains in this helix register and satisfactory difference maps, while model refinement of alternative registers (shifted in both N- and C-terminal directions) increased the noise features of difference maps significantly. Phenix was used for refinement35 and Coot for model building36. Molprobity was used for model validation37. The Ramachandran plot shows 93% of residues in favored regions and 0.79 % outliers (8 residues), with the latter emerging in poorly resolved loops upon reciprocal space refinement. Several structural reports were included in model analysis38"45 and atomic coordinates used for specific purposes (pdb: 1T5S, 2AGV, 2C8K, 3BA6)
Methods Table: Data collection and refinement statistics
SERCA E1-SLN
Data collection
Space group Ρ2^2ι
Cell dimensions
a, b, c (A) 85.9, 139.5, 141.6
a, p, Y (°) 90, 90, 90
Resolution (A) 50 - 3.1 (3.2-3.1 )j
Rsym 27.3 (> 100)
Ι/σΙ 14.19 (2.2)
CC*" 99.9 (82.2)
Completeness (%) 99.3 (99.2)
Redundancy 22.6 (23.96)
Refinement
Resolution (A) 43 - 3.1 (3.2 - 3.1 )
Unique reflections 31 ,391 (3060)
Rwork Rfree 0.191 (0.272) / 0.246 (0.320)
No. atoms 7890
Protein 7869
AMPPCP 9 (β,γ -phosphates)
Mg2+ 3
K+ 1
Water 8
Av. e-factors (A2)
Protein 105.3 AMPPCP 144.9 (β,γ -phosphates)
Mg2+ 144.0
K+ 69.3
Water 98.6
R.m.s. deviations
Bond lengths (A) 0.009
Bond angles 1.41 °
' Highest resolution shell is shown in parenthesis
" CC* = percentage of correlation between intensities from random half-datasets46
ATOM 1 N MET A 1 -2.148 59.175 154.520 1.00 65.93 N
ATOM 2 CA MET A 1 -2.102 60.598 154.146 1.00 77.59 C
ATOM 3 C MET A 1 -0.982 60.974 153.160 1.00 85.02 C
ATOM 4 O MET A 1 0.208 60.772 153.441 1.00 91.71 O
ATOM 5 CB MET A 1 -1.969 61.478 155.387 1.00 77.42 C
ATOM 6 CG MET A 1 -1.908 62.953 155.050 1.00 81.44 C
ATOM 7 SD MET A 1 -1.830 64.086 156.457 1.00 86.56 S
ATOM 8 CE MET A 1 -2.046 65.638 155.561 1.00 59.73 C
ATOM 9 N GLU A 2 -1.348 61.555 152.022 1.00 75.32 N
ATOM 10 CA GLU A 2 -0.352 61.833 150.985 1.00 69.63 C
ATOM 11 C GLU A 2 0.241 63.237 150.970 1.00 73.85 C
ATOM 12 O GLU A 2 -0.472 64.240 151.039 1.00 78.46 O
ATOM 13 CB GLU A 2 -0.898 61.525 149.607 1.00 68.79 C
ATOM 14 CG GLU A 2 -0.114 60.496 148.874 1.00 83.35 C
ATOM 15 CD GLU A 2 -0.584 60.369 147.448 1.00104.91 C
ATOM 16 OE1 GLU A 2 -1.725 60.815 147.163 1.00111.73 O
ATOM 17 OE2 GLU A 2 0.184 59.835 146.616 1.00111.17 O
ATOM 18 N ALA A 3 1.561 63.273 150.813 1.00 74.53 N
ATOM 19 CA ALA A 3 2.335 64.500 150.815 1.00 73.76 C
ATOM 20 C ALA A 3 2.051 65.252 152.094 1.00 74.61 C
ATOM 21 O ALA A 3 1.715 66.441 152.061 1.00 74.94 O
ATOM 22 CB ALA A 3 2.022 65.349 149.621 1.00 67.27 C
ATOM 23 N ALA A 4 2.177 64.546 153.216 1.00 66.81 N
ATOM 24 CA ALA A 4 2.091 65.180 154.520 1.00 67.78 C
ATOM 25 C ALA A 4 3.075 66.340 154.632 1.00 67.43 C
ATOM 26 O ALA A 4 2.752 67.387 155.190 1.00 64.64 0
ATOM 27 CB ALA A 4 2.345 64.166 155.615 1.00 70.43 c ATOM 28 N HIS A ! 5 4.268 66.151 154.076 1.00 71.31
ATOM 29 CA HIS A 5 5.358 67.116 154.201 1.00 78.45
ATOM 30 C HIS A ! 5 5.021 68.463 153.570 1.00 78.86
ATOM 31 O HIS A 5 5.669 69.482 153.855 1.00 69.46
ATOM 32 CB HIS A 5 6.605 66.571 153.510 1.00 82.03
ATOM 33 CG HIS A 5 6.482 66.518 152.021 1.00 79.75
ATOM 34 ND1 HIS A 5 6.027 65.402 151.357 1.00 77.12
ATOM 35 CD2 HIS A 5 6.723 67.452 151.072 1.00 65.35
ATOM 36 CE1 HIS A 5 6.006 65.650 150.058 1.00 81.03
ATOM 37 NE2 HIS A 5 6.417 66.889 149.862 1.00 67.32
ATOM 38 N SER A 6 4.029 68.451 152.684 1.00 81.22
ATOM 39 CA SER A 6 3.633 69.655 151.974 1.00 81.64
ATOM 40 C SER A 6 2.445 70.296 152.668 1.00 73.34
ATOM 41 O SER A 6 2.248 71.513 152.586 1.00 71.99
ATOM 42 CB SER A 6 3.295 69.340 150.523 1.00 90.76
ATOM 43 OG SER A 6 2.206 68.439 150.469 1.00101.85
ATOM 44 N LYS A 7 1.649 69.477 153.351 1.00 67.75
ATOM 45 CA LYS A 7 0.578 70.016 154.178 1.00 70.15
ATOM 46 C LYS A 7 1.254 70.675 155.370 1.00 72.02
ATOM 47 O LYS A 7 2.341 70.278 155.783 1.00 60.52
ATOM 48 CB LYS A 7 -0.430 68.938 154.602 1.00 62.10
ATOM 49 CG LYS A 7 -1.159 68.286 153.434 1.00105.69
ATOM 50 CD LYS A 7 -1.910 69.334 152.598 1.00104.03
ATOM 51 CE LYS A 7 -1.831 69.078 151.090 1.00 94.92
ATOM 52 NZ LYS A 7 -1.515 70.347 150.377 1.00 82.64
ATOM 53 N SER A 8 0.622 71.715 155.892 1.00 77.60
ATOM 54 CA SER A 8 1.110 72.390 157.074 1.00 69.19
ATOM 55 C SER A 8 0.720 71.575 158.277 1.00 70.84
ATOM 56 O SER A 8 0.143 70.499 158.166 1.00 76.05
ATOM 57 CB SER A 8 0.468 73.751 157.198 1.00 70.16
ATOM 58 OG SER A 8 -0.859 73.592 157.622 1.00 64.60
ATOM 59 N THR A 9 1.019 72.098 159.448 1.00 74.06
ATOM 60 CA THR A 9 0.937 71.268 160.630 1.00 70.02
ATOM 61 C THR A 9 -0.491 71.159 161.187 1.00 76.58
ATOM 62 O THR A 9 -0.909 70.079 161.592 1.00 71.87
ATOM 63 CB THR A 9 1.974 71.710 161.660 1.00 68.21
ATOM 64 OG1 THR A 9 1.949 70.818 162.777 1.00 73.26
ATOM 65 CG2 THR A 9 1.731 73.150 162.094 1.00 67.03
ATOM 66 N GLU A 10 -1.243 72.262 161.169 1.00 85.03
ATOM 67 CA GLU A 10 -2.663 72.231 161.518 1.00 79.32 ATOM 68 C GLUA 10 -3.389 71.266160.601 1.0073.71 C
ATOM 69 0 GLUA 10 -4.283 70.528161.018 1.0079.36 O
ATOM 70 CB GLUA 10 -3.289 73.630161.431 1.0089.05 C
ATOM 71 CG GLUA 10 -2.694 74.545160.355 1.00108.67 C ATOM 72 CD GLUA 10 -3.304 75.962160.344 1.00130.87 C
ATOM 73 OE1 GLUA 10 -4.548 76.096160.472 1.00138.55 O
ATOM 74 OE2GLUA 10 -2.534 76.948160.208 1.00134.12 O
ATOM 75 N GLUA 11 -2.962 71.259159.346 1.0066.89 N
ATOM 76 CA GLUA 11 -3.620 70.506158.292 1.0069.04 C ATOM 77 C GLUA 11 -3.455 69.002158.416 1.0071.57 C
ATOM 78 O GLUA 11 -4.318 68.238157.994 1.0077.02 O
ATOM 79 CB GLUA 11 -3.089 70.970156.947 1.0068.26 C
ATOM 80 CG GLUA 11 -3.540 72.355156.608 1.0073.70 C
ATOM 81 CD GLUA 11 -3.011 72.841 155.286 1.0077.56 C ATOM 82 0E1 GLUA 11 -2.103 72.190154.712 1.0069.82 O
ATOM 83 OE2GLUA 11 -3.516 73.887154.835 1.0086.21 O
ATOM 84 N CYSA 12 -2.333 68.574158.971 1.0064.83 N
ATOM 85 CA CYSA 12 -2.111 67.157159.172 1.0067.57 C
ATOM 86 C CYSA 12 -2.967 66.658160.331 1.0076.80 C ATOM 87 0 CYSA 12 -3.505 65.553160.295 1.0083.18 O
ATOM 88 CB CYSA 12 -0.631 66.882159.439 1.0057.16 C
ATOM 89 SG CYSA 12 0.363 66.911 157.963 1.0074.43 S
ATOM 90 N LEU A 13 -3.084 67.480161.363 1.0073.26 N
ATOM 91 CA LEU A 13 -3.878 67.112162.517 1.0071.32 C ATOM 92 C LEU A 13 -5.304 67.049162.026 1.0074.55 C
ATOM 93 0 LEU A 13 -6.040 66.090162.289 1.0067.46 O
ATOM 94 CB LEU A 13 -3.729 68.142163.637 1.0057.57 C
ATOM 95 CG LEU A 13 -2.335 68.297164.239 1.0095.05 C
ATOM 96 CD1 LEU A 13 -2.178 69.589164.995 1.0057.46 C ATOM 97 CD2 LEU A 13 -2.072 67.132165.129 1.0055.00 C
ATOM 98 N ALA A 14 -5.679 68.064161.261 1.0077.01 N
ATOM 99 CA ALA A 14 -7.037 68.158160.783 1.0062.93 C
ATOM 100 C ALA A 14 -7.407 66.974159.895 1.0063.05 C
ATOM 101 O ALA A 14 -8.521 66.493159.940 1.0086.38 O ATOM 102 CB ALA A 14 -7.231 69.452160.069 1.0084.29 C
ATOM 103 N TYRA 15 -6.471 66.497159.095 1.0077.04 N
ATOM 104 CA TYRA 15 -6.799 65.512158.077 1.0071.91 C
ATOM 105 C TYRA 15 -7.279 64.212158.723 1.0067.91 C
ATOM 106 O TYRA 15 -8.186 63.527158.225 1.0065.19 O ATOM 107 CB TYRA 15 -5.578 65.278157.176 1.0066.70 C ATOM 108 CG TYRA 15 -5.759 64.236156.095 1.0063.29 C
ATOM 109 CD2TYRA 15 -6.237 64.582154.831 1.0066.32 C
ATOM 110 CD1 TYRA 15 -5.433 62.912156.329 1.0062.41 C
ATOM 111 CE2TYRA 15 -6.400 63.628153.845 1.0066.47 C
ATOM 112 CE1 TYRA 15 -5.601 61.957155.354 1.0062.85 C
ATOM 113 CZ TYR A 15 -6.087 62.317154.123 1.0075.64 C
ATOM 114 OH TYRA 15 -6.240 61.343153.174 1.0081.08 O
ATOM 115 N PHEA 16 -6.673 63.890159.852 1.0060.17 N
ATOM 116 CA PHEA 16 -6.977 62.650160.540 1.0079.24 C
ATOM 117 C PHEA 16 -7.922 62.896161.718 1.0077.88 C
ATOM 118 O PHEA 16 -8.279 61.958162.436 1.0079.46 O
ATOM 119 CB PHEA 16 -5.695 62.024161.080 1.0077.65 C
ATOM 120 CG PHEA 16 -4.863 61.320160.055 1.0079.46 C
ATOM 121 CD1 PHEA 16 -5.344 60.196159.406 1.0074.00 C
ATOM 122 CD2PHEA 16 -3.567 61.747159.786 1.0077.84 C
ATOM 123 CE1 PHEA 16 -4.567 59.524158.497 1.0065.95 C
ATOM 124 CE2PHEA 16 -2.777 61.085158.868 1.0068.51 C
ATOM 125 CZ PHEA 16 -3.278 59.970158.231 1.0070.05 C
ATOM 126 N GLYA 17 -8.293 64.158161.928 1.0070.65 N
ATOM 127 CA GLYA 17 -9.194 64.533163.004 1.0068.88 C
ATOM 128 C GLYA 17 -8.673 64.168164.380 1.0069.45 C
ATOM 129 O GLYA 17 -9.395 63.611165.197 1.0072.97 O
ATOM 130 N VALA 18 -7.416 64.496164.641 1.0072.09 N
ATOM 131 CA VALA 18 -6.735 64.064165.856 1.0073.55 C
ATOM 132 C VALA 18 -6.278 65.279 66.646 1.0075.58 C
ATOM 133 O VALA 18 -5.930 66.302166.065 1.0085.64 O
ATOM 134 CB VALA 18 -5.525 63.138165.507 1.0061.40 C
ATOM 135 CG1 VALA 18 -4.971 63.482164.153 1.0065.40 C
ATOM 136 CG2VALA 18 -4.425 63.235166.526 1.0059.53 C
ATOM 137 N SERA 19 -6.300 65.182167.968 1.0073.77 N
ATOM 138 CA SERA 19 -5.804 66.266168.796 1.0075.68 C
ATOM 139 C SERA 19 -4.351 66.070169.231 1.0085.04 C
ATOM 140 O SERA 19 -3.956 64.983169.663 1.0088.46 O
ATOM 141 CB SERA 19 -6.672 66.426170.023 1.0076.52 C
ATOM 142 OG SERA 19 -6.346 67.643170.650 1.0088.57 O
ATOM 143 N GLUA 20 -3.564 67.136169.138 1.0087.30 N
ATOM 144 CA GLU A 20 -2.171 67.096169.556 1.0085.24 C
ATOM 145 C GLU A 20 -2.106 66.902171.062 1.0086.80 C
ATOM 146 O GLU A 20 -1.182 66.275171.590 1.0085.10 O
ATOM 147 CB GLU A 20 -1.488 68.406169.175 1.0091.22 C ATOM 148 CG GLU A 20 0.020 68.391 169.272 1.00100.63 C
ATOM 149 CD GLU A 20 0.638 69.639 168.661 1.00118.23 c
ATOM 150 OE1 GLU A 20 0.006 70.218 167.761 1.00117.31 o
ATOM 151 OE2 GLU A 20 1.745 70.052 169.076 1.00130.58 o
ATOM 152 N THR A 21 -3.11 1 67.443 171.747 1.00 86.16 N
ATOM 153 CA THR A 21 -3.148 67.449 173.204 1.00 72.52 C
ATOM 154 C THR A 21 -3.456 66.089 173.783 1.00 71.81 C
ATOM 155 O THR A 21 -3.003 65.780 174.874 1.00 81.79 O
ATOM 156 CB THR A 21 -4.185 68.435 173.736 1.00 68.63 C
ATOM 157 OG1 THR A 21 -4.179 69.602 172.915 1.00 79.1 1 O
ATOM 158 CG2 THR A 21 -3.849 68.841 175.148 1.00 71.40 C
ATOM 159 N THR A 22 -4.224 65.273 173.070 1.00 69.49 N
ATOM 160 CA THR A 22 -4.630 63.981 173.623 1.00 74.54 c
ATOM 161 C THR A 22 -4.213 62.788 172.773 1.00 69.32 c
ATOM 162 O THR A 22 -3.885 61.729 173.313 1.00 67.21 o
ATOM 163 CB THR A 22 -6.146 63.926 173.858 1.00 78.35 c
ATOM 164 OG1 THR A 22 -6.824 63.776 172.609 1.00 78.99 o
ATOM 165 CG2 THR A 22 -6.610 65.206 174.507 1.00 86.62 c
ATOM 166 N GLY A 23 -4.223 62.975 171.453 1.00 61.97 N
ATOM 167 CA GLY A 23 -3.994 61.896 170.508 1.00 64.46 C
ATOM 168 C GLY A 23 -5.271 61.168 170.101 1.00 77.47 C
ATOM 169 O GLY A 23 -6.398 61.601 170.387 1.00 80.97 O
ATOM 170 N LEU A 24 -5.100 60.047 169.416 1.00 79.37 N
ATOM 171 CA LEU A 24 -6.250 59.276 168.966 1.00 77.52 C
ATOM 172 C LEU A 24 -6.998 58.718 170.149 1.00 76.08 C
ATOM 173 O LEU A 24 -6.388 58.289 171.120 1.00 84.80 O
ATOM 174 CB LEU A 24 -5.804 58.110 168.083 1.00 70.26 C
ATOM 175 CG LEU A 24 -5.109 58.477 166.778 1.00 63.20 C
ATOM 176 CD1 LEU A 24 -5.048 57.263 165.877 1.00 61.29 C
ATOM 177 CD2 LEU A 24 -5.835 59.636 166.1 12 1.00 63.56 C
ATOM 178 N THR A 25 -8.319 58.706 170.074 1.00 68.68 N
ATOM 179 CA THR A 25 -9.077 57.951 171.055 1.00 75.10 C
ATOM 180 C TH A 25 -8.962 56.477 170.676 1.00 77.81 C
ATOM 181 O THR A 25 -8.573 56.170 169.556 1.00 86.31 O
ATOM 182 CB THR A 25 -10.524 58.352 171.033 1.00 77.99 C
ATOM 183 OG1 THR A 25 -11.102 57.835 169.840 1.00 86.68 O
ATOM 184 CG2 THR A 25 -10.644 59.847 171.056 1.00 66.97 C
ATOM 185 N PRO A 26 -9.280 55.561 171.610 1.00 75.78 N
ATOM 186 CA PRO A 26 -9.340 54.121 171.333 1.00 74.93 C
ATOM 187 C PRO A 26 -10.11 1 53.754 170.052 1.00 82.12 C ATOM 188 O PRO A 26 -9.684 52.842 169.339 1.00 80.53
ATOM 189 CB PRO A 26 -10.105 53.576 172.542 1.00 72.75
ATOM 190 CG PRO A 26 -9.799 54.487 173.616 1.00 74.25
ATOM 191 CD PRO A 26 -9.541 55.840 173.032 1.00 77.45
ATOM 192 N ASP A 27 -1 1.228 54.434 169.784 1.00 79.80
ATOM 193 CA ASP A 27 -12.044 54.129 168.615 1.00 85.42
ATOM 194 C ASP A 27 -1 1.301 54.489 167.349 1.00 84.15
ATOM 195 O ASP A 27 -11.193 53.671 166.435 1.00 90.15
ATOM 196 CB ASP A 27 -13.386 54.865 168.658 1.00100.30
ATOM 197 CG ASP A 27 -14.232 54.643 167.393 1.00106.81
ATOM 198 OD1 ASP A 27 -14.680 53.496 167.142 1.00107.07
ATOM 199 OD2 ASP A 27 -14.470 55.632 166.664 1.00106.51
ATOM 200 N GLN A 28 -10.797 55.716 167.301 1.00 75.24
ATOM 201 CA GLN A 28 -10.024 56.185 166.167 1.00 64.31
ATOM 202 C GLN A 28 -8.920 55.197 165.818 1.00 74.76
ATOM 203 O GLN A 28 -8.668 54.936 164.640 1.00 73.20
ATOM 204 CB GLN A 28 -9.400 57.539 166.483 1.00 65.13
ATOM 205 CG GLN A 28 -10.276 58.730 166.226 1.00 63.99
ATOM 206 CD GLN A 28 -9.729 59.983 166.859 1.00 72.76
ATOM 207 OE1 GLN A 28 -9.355 59.991 168.033 1.00 75.03
ATOM 208 NE2 GLN A 28 -9.673 61.050 166.089 1.00 62.77
ATOM 209 N VAL A 29 -8.264 54.650 166.846 1.00 67.55
ATOM 210 CA VAL A 29 -7.148 53.726 166.645 1.00 64.07
ATOM 211 C VAL A 29 -7.635 52.468 165.971 1.00 68.78
ATOM 212 O VAL A 29 -7.035 52.009 165.004 1.00 73.89
ATOM 213 CB VAL A 29 -6.485 53.321 167.959 1.00 65.06
ATOM 214 CG1 VAL A 29 -5.408 52.279 167.701 1.00 60.17
ATOM 215 CG2 VAL A 29 -5.914 54.542 168.670 1.00 64.46
ATOM 216 N LYS A 30 -8.734 51.921 166.490 1.00 72.37
ATOM 217 CA LYS A 30 -9.370 50.749 165.907 1.00 67.54
ATOM 218 C LYS A 30 -9.714 51.004 164.442 1.00 78.12
ATOM 219 O LYS A 30 -9.343 50.216 163.571 1.00 81.55
ATOM 220 CB LYS A 30 -10.622 50.395 166.682 1.00 70.32
ATOM 221 CG LYS A 30 -1 1.438 49.290 166.055 1.00135.09
ATOM 222 CD LYS A 30 -12.912 49.365 166.486 1.00135.57
ATOM 223 CE LYS A 30 -13.766 48.408 165.668 1.00139.61
ATOM 224 NZ LYS A 30 -15.214 48.484 166.010 1.00145.23
ATOM 225 N ARG A 31 -10.410 52.109 164.174 1.00 79.10
ATOM 226 CA ARG A 31 -10.793 52.461 162.808 1.00 81.43
ATOM 227 C ARG A 31 -9.566 52.542 161.931 1.00 67.06 ATOM 228 O ARG A 31 -9.489 51.835 160.935 1.00 82.01 O
ATOM 229 CB ARG A 31 -11.576 53.779 162.749 1.00 69.49 C
ATOM 230 CG ARG A 31 -13.047 53.671 163.101 1.0011 1.20 C
ATOM 231 CD ARG A 31 -13.619 55.005 163.524 1.00 72.90 C
ATOM 232 NE ARG A 31 -12.853 56.126 163.011 1.00 70.65 N
ATOM 233 CZ ARG A 31 -13.008 57.381 163.419 1.00 91.22 C
ATOM 234 NH1 ARG A 31 -13.904 57.665 164.350 1.00 92.97 N
ATOM 235 NH2 ARG A 31 -12.267 58.356 162.905 1.00 87.89 N
ATOM 236 N HIS A 32 -8.593 53.373 162.316 1.00 64.39 N
ATOM 237 CA HIS A 32 -7.363 53.535 161.522 1.00 73.96 C
ATOM 238 C HIS A 32 -6.548 52.239 161.393 1.00 74.95 C
ATOM 239 O HIS A 32 -5.844 52.040 160.409 1.00 70.95 O
ATOM 240 CB HIS A 32 -6.463 54.645 162.065 1.00 60.19 C
ATOM 241 CG HIS A 32 -7.103 55.995 162.108 1.00 60.22 C
ATOM 242 ND1 HIS A 32 -6.373 57.154 162.286 1.00 58.50 N
ATOM 243 CD2 HIS A 32 -8.396 56.383 162.026 1.00 62.47 C
ATOM 244 CE1 HIS A 32 -7.189 58.192 162.303 1.00 72.39 C
ATOM 245 NE2 HIS A 32 -8.426 57.754 162.141 1.00 61.52 N
ATOM 246 N LEU A 33 -6.641 51.357 162.378 1.00 63.37 N
ATOM 247 CA LEU A 33 -5.956 50.081 162.280 1.00 70.00 C
ATOM 248 C LEU A 33 -6.723 49.139 161.357 1.00 77.97 C
ATOM 249 O LEU A 33 -6.132 48.282 160.689 1.00 77.45 O
ATOM 250 CB LEU A 33 -5.778 49.454 163.661 1.00 66.39 C
ATOM 251 CG LEU A 33 -4.709 48.368 163.806 1.00 64.74 C
ATOM 252 CD1 LEU A 33 -3.859 48.658 165.014 1.00 66.00 C
ATOM 253 CD2 LEU A 33 -5.364 47.008 163.935 1.00 67.15 C
ATOM 254 N GLU A 34 -8.043 49.296 161.327 1.00 77.53 N
ATOM 255 CA GLU A 34 -8.874 48.529 160.418 1.00 86.56 C
ATOM 256 C GLU A 34 -8.508 48.921 158.996 1.00 87.19 C
ATOM 257 O GLU A 34 -8.383 48.075 158.113 1.00 73.95 O
ATOM 258 CB GLU A 34 -10.347 48.835 160.679 1.00100.00 C
ATOM 259 CG GLU A 34 -11.315 48.270 159.649 1.00113.39 C
ATOM 260 CD GLU A 34 -11.587 46.795 159.862 1.00124.01 C
ATOM 261 OE1 GLU A 34 -11.186 46.270 160.929 1.00122.22 O
ATOM 262 OE2 GLU A 34 -12.201 46.165 158.967 1.00129.44 O
ATOM 263 N LYS A 35 -8.300 50.220 158.810 1.00 85.22 N
ATOM 264 CA LYS A 35 -8.176 50.841 157.495 1.00 83.47 C
ATOM 265 C LYS A 35 -6.779 50.762 156.904 1.00 83.66 C
ATOM 266 O LYS A 35 -6.618 50.526 155.714 1.00 86.71 O
ATOM 267 CB LYS A 35 -8.592 52.312 157.588 1.00 84.42 C ATOM 268 CG LYS A 35 -8.474 53.067 156.289 1.00 93.82 C
ATOM 269 CD LYS A 35 -9.183 54.406 156.331 1.00103.28 C
ATOM 270 CE LYS A 35 -9.158 55.048 154.949 1.00121.29 C
ATOM 271 NZ LYS A 35 -9.531 56.491 154.969 1.00132.72 N
ATOM 272 N TYR A 36 -5.769 50.971 157.742 1.00 80.26 N
ATOM 273 CA TYR A 36 -4.390 51.048 157.286 1.00 77.29 C
ATOM 274 C TYR A 36 -3.569 49.812 157.656 1.00 81.30 C
ATOM 275 O TYR A 36 -2.448 49.624 157.182 1.00 65.39 O
ATOM 276 CB TYR A 36 -3.739 52.314 157.835 1.00 62.43 C
ATOM 277 CG TY A 36 -4.444 53.574 157.427 1.00 62.38 C
ATOM 278 CD1 TYR A 36 -4.558 53.910 156.103 1.00 70.74 C
ATOM 279 CD2 TYR A 36 -4.996 54.433 158.364 1.00 88.1 1 C
ATOM 280 CE1 TYR A 36 -5.201 55.061 155.703 1.00 69.64 C
ATOM 281 CE2 TYR A 36 -5.649 55.605 157.970 1.00 80.34 C
ATOM 282 CZ TYR A 36 -5.746 55.900 156.630 1.00 68.49 C
ATOM 283 OH TYR A 36 -6.374 57.031 156.179 1.00 65.90 O
ATOM 284 N GLY A 37 -4.121 48.960 158.500 1.00 66.43 N
ATOM 285 CA GLY A 37 -3.417 47.750 158.864 1.00 82.08 C
ATOM 286 C GLY A 37 -2.311 48.015 159.865 1.00 77.04 C
ATOM 287 O GLY A 37 -2.137 49.140 160.368 1.00 69.02 0
ATOM 288 N HIS A 38 -1.546 46.974 160.162 1.00 78.47 N
ATOM 289 CA HIS A 38 -0.457 47.116 161.115 1.00 76.88 C
ATOM 290 C HIS A 38 0.789 47.782 160.524 1.00 75.35 C
ATOM 291 O HIS A 38 1.009 47.767 159.326 1.00 84.68 O
ATOM 292 CB HIS A 38 -0.118 45.760 161.710 1.00 77.94 C
ATOM 293 CG HIS A 38 -1.207 45.192 162.562 1.00 79.78 C
ATOM 294 ND1 HIS A 38 -1.271 45.395 163.924 1.00 81.95 N
ATOM 295 CD2 HIS A 38 -2.276 44.420 162.247 1.00 71.01 C
ATOM 296 CE1 HIS A 38 -2.326 44.772 164.416 1.00 77.27 C
ATOM 297 NE2 HIS A 38 -2.952 44.174 163.417 1.00 75.20 N
ATOM 298 N ASN A 39 1.605 48.374 161.380 1.00 78.85 N
ATOM 299 CA ASN A 39 2.873 48.950 160.959 1.00 74.43 C
ATOM 300 C ASN A 39 3.946 47.901 160.716 1.00 72.02 C
ATOM 301 O ASN A 39 4.932 47.865 161.440 1.00 74.12 O
ATOM 302 CB ASN A 39 3.379 49.881 162.039 1.00 70.45 C
ATOM 303 CG ASN A 39 4.345 50.876 161.509 1.00 67.35 C
ATOM 304 OD1 ASN A 39 4.659 50.860 160.330 1.00 57.98 O
ATOM 305 ND2 ASN A 39 4.802 51.775 162.360 1.00 68.16 N
ATOM 306 N GLU A 40 3.750 47.056 159.709 1.00 71.01 N
ATOM 307 CA GLU A 40 4.605 45.904 159.458 1.00 73.47 C ATOM 308 C GLU A 40 4.731 45.738 157.960 1.00 88.78 C
ATOM 309 O GLU A 40 4.017 46.388 157.192 1.00 89.57 O
ATOM 310 CB GLU A 40 3.954 44.616 159.978 1.00 74.95 C
ATOM 31 1 CG GLU A 40 3.768 44.490 161.483 1.00 87.18 C
ATOM 312 CD GLU A 40 3.063 43.187 161.881 1.00 96.52 C
ATOM 313 OE1 GLU A 40 3.382 42.630 162.954 1.00102.96 O
ATOM 314 OE2 GLU A 40 2.189 42.717 161.121 1.00 92.70 O
ATOM 315 N LEU A 41 5.626 44.845 157.547 1.00 96.87 N
ATOM 316 CA LEU A 41 5.638 44.340 156.176 1.00 94.65 C
ATOM 317 C LEU A 41 5.058 42.927 156.222 1.00 99.71 C
ATOM 318 O LEU A 41 5.165 42.253 157.247 1.00103.1 1 O
ATOM 319 CB LEU A 41 7.061 44.315 155.620 1.00 88.42 C
ATOM 320 CG LEU A 41 7.954 45.548 155.800 1.00 85.68 C
ATOM 321 CD2 LEU A 41 7.322 46.847 155.288 1.00 79.64 C
ATOM 322 CD1 LEU A 41 9.287 45.294 155.125 1.00 85.97 C
ATOM 323 N PRO A 42 4.436 42.471 155.124 1.00120.25 N
ATOM 324 CA PRO A 42 3.801 41.147 155.126 1.00119.45 C
ATOM 325 C PRO A 42 4.830 40.039 155.272 1.001 15.66 C
ATOM 326 O PRO A 42 5.907 40.125 154.689 1.00 96.69 O
ATOM 327 CB PRO A 42 3.161 41.059 153.738 1.00129.61 C
ATOM 328 CG PRO A 42 3.137 42.459 153.218 1.00134.90 C
ATOM 329 CD PRO A 42 4.321 43.132 153.817 1.00129.59 C
ATOM 330 N ALA A 43 4.500 39.010 156.041 1.001 15.78 N
ATOM 331 CA ALA A 43 5.423 37.907 156.248 1.00125.74 C
ATOM 332 C ALA A 43 5.520 37.079 154.976 1.00138.39 C
ATOM 333 O ALA A 43 4.568 36.392 154.609 1.00140.13 O
ATOM 334 CB ALA A 43 4.971 37.048 157.420 1.00124.12 C
ATOM 335 N GLU A 44 6.671 37.156 154.307 1.00148.80 N
ATOM 336 CA GLU A 44 6.883 36.491 153.017 1.00158.32 C
ATOM 337 C GLU A 44 6.672 34.975 153.107 1.00166.61 C
ATOM 338 O GLU A 44 5.763 34.429 152.475 1.00167.95 O
ATOM 339 CB GLU A 44 8.279 36.822 152.468 1.00157.91 C
ATOM 340 CG GLU A 44 8.615 36.199 151.1 10 1.00158.03 C
ATOM 341 CD GLU A 44 8.079 36.996 149.926 1.00155.78 C
ATOM 342 OE1 GLU A 44 6.924 37.470 149.999 1.00156.11 O
ATOM 343 OE2 GLU A 44 8.816 37.146 148.922 1.00150.93 O
ATOM 344 N GLU A 45 7.521 34.309 153.889 1.00169.92 N
ATOM 345 CA GLU A 45 7.352 32.893 154.233 1.00171.58 C
ATOM 346 C GLU A 45 7.227 31.941 153.037 1.00167.79 C
ATOM 347 O GLU A 45 6.298 31.137 152.971 1.00166.71 O ATOM 348 CB GLU A 45 6.151 32.722 155.171 1.00175.07 C
ATOM 349 CG GLU A 45 6.286 33.475 156.490 1.00178.47 C
ATOM 350 CD GLU A 45 5.005 33.467 157.305 1.00179.98 C
ATOM 351 OE1 GLU A 45 3.925 33.276 156.704 1.00182.91 O
ATOM 352 OE2 GLU A 45 5.079 33.651 158.542 1.00176.90 O
ATOM 353 N GLY A 46 8.171 32.025 152.105 1.00164.81 N
ATOM 354 CA GLY A 46 8.132 31.194 150.916 1.00164.37 C
ATOM 355 C GLY A 46 9.129 30.046 150.907 1.00166.73 C
ATOM 356 O GLY A 46 10.276 30.222 150.500 1.00171.20 O
ATOM 357 O LYS A 47 7.327 26.749 151.972 1.00149.97 O
ATOM 358 N LYS A 47 8.678 28.874 151.355 1.00162.01 N
ATOM 359 CA LYS A 47 9.450 27.626 151.329 1.00154.37 C
ATOM 360 C LYS A 47 8.462 26.494 151.570 1.00147.56 C
ATOM 361 CB LYS A 47 10.496 27.607 152.442 1.00154.67 C
ATOM 362 CG LYS A 47 1 1.850 28.192 152.083 1.00155.53 C
ATOM 363 CD LYS A 47 12.771 28.170 153.290 1.00157.62 C
ATOM 364 CE LYS A 47 14.108 28.816 152.990 1.00160.68 C
ATOM 365 NZ LYS A 47 15.030 28.719 154.156 1.00164.90 N
ATOM 366 N SER A 48 8.874 25.251 151.345 1.00140.89 N
ATOM 367 CA SER A 48 8.012 24.122 151.705 1.00144.93 C
ATOM 368 C SER A 48 8.773 22.822 151.964 1.00154.17 C
ATOM 369 O SER A 48 9.820 22.579 151.372 1.00158.46 O
ATOM 370 CB SER A 48 6.930 23.896 150.648 1.00146.14 C
ATOM 371 OG SER A 48 7.349 22.954 149.680 1.00152.05 O
ATOM 372 N LEU A 49 8.233 21.992 152.854 1.00158.25 N
ATOM 373 CA LEU A 49 8.839 20.704 153.194 1.00165.37 C
ATOM 374 C LEU A 49 8.863 19.771 151.987 1.00172.20 C
ATOM 375 O LEU A 49 9.783 18.970 151.819 1.00167.75 O
ATOM 376 CB LEU A 49 8.071 20.045 154.343 1.00166.25 C
ATOM 377 CG LEU A 49 8.286 18.545 154.573 1.00169.42 C
ATOM 378 CD1 LEU A 49 9.666 18.271 155.144 1.00170.71 C
ATOM 379 CD2 LEU A 49 7.202 17.977 155.476 1.00171.94 C
ATOM 380 N TRP A 50 7.832 19.883 151.155 1.00147.56 N
ATOM 381 CA TRP A 50 7.739 19.1 10 149.927 1.00157.06 C
ATOM 382 C TRP A 50 8.902 19.493 149.024 1.00149.12 C
ATOM 383 O TRP A 50 9.647 18.637 148.560 1.00148.00 O
ATOM 384 CB TRP A 50 6.421 19.400 149.194 1.00174.04 C
ATOM 385 CG TRP A 50 5.167 19.382 150.052 1.00188.09 C
ATOM 386 CD1 TRP A 50 4.820 20.283 151.023 1.00191.08 C
ATOM 387 CD2 TRP A 50 4.082 18.440 149.978 1.00196.02 C ATOM 388 NE1 TRP A 50 3.602 19.948 151.569 1.00194.31
ATOM 389 CE2 TRP A 50 3.127 18.824 150.944 1.00196.84
ATOM 390 CE3 TRP A 50 3.831 17.306 149.196 1.00198.92
ATOM 391 CZ2 TRP A 50 1.943 18.114 151.149 1.00198.35
ATOM 392 CZ3 TRP A 50 2.653 16.604 149.402 1.00200.45
ATOM 393 CH2 TRP A 50 I .725 17.01 1 150.370 1.00200.09
ATOM 394 N GLU A 51 9.052 20.794 148.794 1.00144.01
ATOM 395 CA GLU A 51 10.041 21.316 147.857 1.00142.26
ATOM 396 C GLU A 51 11.469 20.989 148.288 1.00141.34
ATOM 397 O GLU A 51 12.300 20.602 147.466 1.00144.84
ATOM 398 CB GLU A 51 9.875 22.833 147.711 1.00146.19
ATOM 399 CG GLU A 51 10.161 23.382 146.316 1.00156.61
ATOM 400 CD GLU A 51 1 1.588 23.129 145.855 1.00166.04
ATOM 401 OE2 GLU A 51 I I .765 22.605 144.730 1.00168.98
ATOM 402 OE1 GLU A 51 12.529 23.446 146.617 1.00168.73
ATOM 403 N LEU A 52 1 1.744 21.133 149.580 1.00137.47
ATOM 404 CA LEU A 52 13.107 21.020 150.091 1.00130.51
ATOM 405 C LEU A 52 13.698 19.608 150.002 1.00132.73
ATOM 406 O LEU A 52 14.899 19.454 149.778 1.00136.88
ATOM 407 CB LEU A 52 13.200 21.585 151.513 1.00120.41
ATOM 408 CG LEU A 52 12.988 23.103 151.580 1.00113.99
ATOM 409 CD2 LEU A 52 14.213 23.852 151.075 1.00114.41
ATOM 410 CD1 LEU A 52 12.626 23.563 152.977 1.00107.53
ATOM 411 N VAL A 53 12.870 18.579 150.164 1.00130.88
ATOM 412 CA VAL A 53 13.363 17.216 149.982 1.00129.39
ATOM 413 C VAL A 53 13.661 16.954 148.508 1.00129.29
ATOM 414 O VAL A 53 14.591 16.219 148.176 1.00132.21
ATOM 415 CB VAL A 53 12.399 16.134 150.533 1.00100.04
ATOM 416 CG1 VAL A 53 12.221 16.287 152.037 1.00102.19
ATOM 417 CG2 VAL A 53 11.061 16.184 149.824 1.00101.29
ATOM 418 N ILE A 54 12.876 17.564 147.626 1.00125.12
ATOM 419 CA ILE A 54 13.113 17.441 146.198 1.00124.59
ATOM 420 C ILE A 54 14.404 18.169 145.866 1.00127.93
ATOM 421 O ILE A 54 15.233 17.673 145.102 1.00131.65
ATOM 422 CB ILE A 54 11.939 18.014 145.366 1.00125.30
ATOM 423 CG1 ILE A 54 10.715 17.101 145.458 1.00123.65
ATOM 424 CG2 ILE A 54 12.325 18.165 143.905 1.00125.64
ATOM 425 CD1 ILE A 54 9.506 17.628 144.700 1.00124.24
ATOM 426 N GLU A 55 14.587 19.338 146.468 1.00129.26
ATOM 427 CA GLU A 55 15.771 20.141 146.202 1.00136.90 ATOM 428 C GLU A 55 17.026 19.441 146.715 1.00133.60 C
ATOM 429 O GLU A 55 18.131 19.715 146.258 1.00135.78 0
ATOM 430 CB GLU A 55 15.638 21.531 146.828 1.00146.23 c
ATOM 431 CG GLU A 55 16.666 22.534 146.328 1.00152.08 c
ATOM 432 CD GLU A 55 16.988 23.599 147.357 1.00154.60 c
ATOM 433 OE1 GLU A 55 16.042 24.169 147.943 1.00154.37 0
ATOM 434 OE2 GLU A 55 18.191 23.855 147.585 1.00155.33 0
ATOM 435 N GLN A 56 16.855 18.530 147.664 1.00128.92 N
ATOM 436 CA GLN A 56 17.990 17.776 148.172 1.00126.28 C
ATOM 437 C GLN A 56 18.421 16.706 147.172 1.00130.03 C
ATOM 438 O GLN A 56 19.608 16.408 147.040 1.00129.10 O
ATOM 439 CB GLN A 56 17.671 17.165 149.537 1.00121.11 C
ATOM 440 CG GLN A 56 18.827 17.253 150.503 1.00122.67 C
ATOM 441 CD GLN A 56 19.466 18.631 150.496 1.00128.85 c
ATOM 442 OE1 GLN A 56 18.773 19.649 150.450 1.00129.61 0
ATOM 443 NE2 GLN A 56 20.796 18.670 150.526 1.00131.06 N
ATOM 444 N PHE A 57 17.447 16.152 146.454 1.00132.14 N
ATOM 445 CA PHE A 57 17.703 15.120 145.451 1.00127.21 C
ATOM 446 C PHE A 57 18.149 15.696 144.116 1.00140.12 C
ATOM 447 O PHE A 57 17.947 15.071 143.071 1.00143.01 O
ATOM 448 CB PHE A 57 16.452 14.272 145.223 1.00110.03 C
ATOM 449 CG PHE A 57 16.271 13.195 146.231 1.00101.04 C
ATOM 450 CD2 PHE A 57 15.518 13.414 147.368 1.00100.47 C
ATOM 451 CD1 PHE A 57 16.864 11.960 146.048 1.00102.81 C
ATOM 452 CE2 PHE A 57 15.353 12.415 148.315 1.00104.16 C
ATOM 453 CE1 PHE A 57 16.710 10.954 146.983 1.00108.29 C
ATOM 454 CZ PHE A 57 15.950 11.182 148.122 1.00107.42 C
ATOM 455 N GLU A 58 18.748 16.883 144.139 1.00143.56 N
ATOM 456 CA GLU A 58 19.169 17.515 142.898 1.00145.61 C
ATOM 457 C GLU A 58 20.686 17.500 142.750 1.00147.01 C
ATOM 458 O GLU A 58 21.210 17.808 141.679 1.00149.85 O
ATOM 459 CB GLU A 58 18.619 18.937 142.792 1.00143.84 C
ATOM 460 CG GLU A 58 19.464 19.985 143.476 1.00144.23 C
ATOM 461 CD GLU A 58 18.790 21.339 143.491 1.00147.07 C
ATOM 462 OE1 GLU A 58 17.627 21.418 143.041 1.00148.76 O
ATOM 463 OE2 GLU A 58 19.419 22.317 143.953 1.00146.14 O
ATOM 464 N ASP A 59 21.389 17.135 143.819 1.00144.35 N
ATOM 465 CA ASP A 59 22.841 17.013 143.747 1.00145.76 C
ATOM 466 C ASP A 59 23.209 15.736 143.000 1.00148.53 C
ATOM 467 O ASP A 59 22.455 14.760 143.006 1.00150.86 O ATOM 468 CB ASP A 59 23.482 17.033 145.137 1.00143.01 C
ATOM 469 CG ASP A 59 23.371 15.702 145.850 1.00140.97 C
ATOM 470 OD2 ASP A 59 24.340 15.312 146.538 1.00137.04 0
ATOM 471 OD1 ASP A 59 22.314 15.049 145.721 1.00142.37 O ATOM 472 N LEU A 60 24.375 15.745 142.365 1.00146.98 N
ATOM 473 CA LEU A 60 24.734 14.694 141.419 1.00145.82 C
ATOM 474 C LEU A 60 24.894 13.311 142.044 1.00136.56 C
ATOM 475 O LEU A 60 24.296 12.344 141.569 1.00136.16 O
ATOM 476 CB LEU A 60 25.990 15.080 140.632 1.00149.98 C ATOM 477 CG LEU A 60 25.885 16.371 139.811 1.00154.93 C
ATOM 478 CD1 LEU A 60 26.349 17.595 140.614 1.00157.18 C
ATOM 479 CD2 LEU A 60 26.645 16.246 138.496 1.00153.44 C
ATOM 480 N LEU A 61 25.695 13.224 143.101 1.00128.10 N
ATOM 481 CA LEU A 61 26.009 11.942 143.721 1.00126.29 C ATOM 482 C LEU A 61 24.774 11.107 144.015 1.00131.98 C
ATOM 483 0 LEU A 61 24.747 9.907 143.742 1.00138.63 O
ATOM 484 CB LEU A 61 26.795 12.146 145.010 1.00121.36 C
ATOM 485 CG LEU A 61 28.304 12.304 144.870 1.001 13.90 C
ATOM 486 CD1 LEU A 61 28.972 1 1.965 146.199 1.00112.37 C ATOM 487 CD2 LEU A 61 28.841 1 1.435 143.734 1.00105.96 C
ATOM 488 N VAL A 62 23.751 11.751 144.559 1.00130.32 N
ATOM 489 CA VAL A 62 22.519 11.061 144.913 1.00129.72 C
ATOM 490 C VAL A 62 21.780 10.546 143.672 1.00131.20 C
ATOM 491 O VAL A 62 21.206 9.455 143.687 1.00128.53 O ATOM 492 CB VAL A 62 21.624 11.964 145.771 1.00126.15 C
ATOM 493 CG1 VAL A 62 20.238 1 1.372 145.925 1.00128.09 C
ATOM 494 CG2 VAL A 62 22.273 12.170 147.121 1.00123.08 C
ATOM 495 N ARG A 63 21.819 11.324 142.596 1.00131.89 N
ATOM 496 CA ARG A 63 21.224 10.897 141.336 1.00131.99 C ATOM 497 C ARG A 63 21.999 9.722 140.741 1.00132.59 C
ATOM 498 0 ARG A 63 21.402 8.759 140.261 1.00134.26 O
ATOM 499 CB ARG A 63 21.177 12.053 140.334 1.00130.14 C
ATOM 500 CG ARG A 63 20.255 13.201 140.718 1.00130.74 C
ATOM 501 CD ARG A 63 20.106 14.174 139.557 1.00137.74 C ATOM 502 NE ARG A 63 19.199 15.283 139.849 1.00144.61 N
ATOM 503 CZ ARG A 63 17.891 15.271 139.602 1.00146.25 C
ATOM 504 NH1 ARG A 63 17.323 14.199 139.066 1.00146.07 N
ATOM 505 NH2 ARG A 63 17.145 16.329 139.897 1.00145.73 N
ATOM 506 N ILE A 64 23.328 9.812 140.780 1.00131.06 N ATOM 507 CA ILE A 64 24.205 8.778 140.227 1.00129.51 C ATOM 508 C ILE A 64 23.920 7.409 140.830 1.00131.32 C
ATOM 509 O ILE A 64 23.719 6.435 140.100 1.00136.04 0
ATOM 510 CB ILE A 64 25.696 9.120 140.438 1.00123.19 C
ATOM 511 CG1 ILE A 64 26.125 10.248 139.498 1.00122.65 C
ATOM 512 CG2 ILE A 64 26.568 7.902 140.201 1.00118.36 C
ATOM 513 CD1 ILE A 64 27.571 10.679 139.678 1.00119.54 C
ATOM 514 N LEU A 65 23.905 7.345 142.159 1.00123.92 N
ATOM 515 CA LEU A 65 23.579 6.118 142.873 1.00125.78 C
ATOM 516 C LEU A 65 22.236 5.550 142.396 1.00132.97 C
ATOM 517 O LEU A 65 22.106 4.342 142.168 1.00136.87 0
ATOM 518 CB LEU A 65 23.563 6.376 144.384 1.00125.70 C
ATOM 519 CG LEU A 65 23.357 5.209 145.358 1.00126.10 C
ATOM 520 CD2 LEU A 65 23.104 5.729 146.764 1.00124.23 C
ATOM 521 CD1 LEU A 65 24.540 4.246 145.348 1.00124.38 C
ATOM 522 N LEU A 66 21.248 6.427 142.223 1.00134.05 N
ATOM 523 CA LEU A 66 19.937 6.025 141.712 1.00131.74 C
ATOM 524 C LEU A 66 20.025 5.519 140.275 1.00132.63 C
ATOM 525 O LEU A 66 19.290 4.615 139.884 1.00137.10 O
ATOM 526 CB LEU A 66 18.936 7.182 141.800 1.00128.46 C
ATOM 527 CG LEU A 66 18.580 7.678 143.204 1.00124.79 C
ATOM 528 CD2 LEU A 66 18.039 6.548 144.068 1.00119.94 C
ATOM 529 CD1 LEU A 66 17.584 8.823 143.129 1.00127.10 C
ATOM 530 N LEU A 67 20.926 6.104 139.492 1.00128.20 N
ATOM 531 CA LEU A 67 21.146 5.646 138.126 1.00129.87 C
ATOM 532 C LEU A 67 21.843 4.283 138.115 1.00138.60 C
ATOM 533 O LEU A 67 21.441 3.376 137.381 1.00140.66 O
ATOM 534 CB LEU A 67 21.956 6.673 137.335 1.00125.26 C
ATOM 535 CG LEU A 67 22.354 6.275 135.912 1.00126.59 C
ATOM 536 CD1 LEU A 67 21.959 7.350 134.907 1.00120.04 C
ATOM 537 CD2 LEU A 67 23.852 5.987 135.828 1.00131.41 C
ATOM 538 N ALA A 68 22.884 4.147 138.935 1.00142.26 N
ATOM 539 CA ALA A 68 23.598 2.880 139.085 1.00143.94 C
ATOM 540 C ALA A 68 22.630 1.762 139.455 1.00147.83 C
ATOM 541 0 ALA A 68 22.672 0.675 138.875 1.00153.23 O
ATOM 542 CB ALA A 68 24.698 3.004 140.138 1.00139.25 C
ATOM 543 N ALA A 69 21.753 2.049 140.414 1.00144.19 N
ATOM 544 CA ALA A 69 20.745 1.099 140.871 1.00143.76 C
ATOM 545 C ALA A 69 19.771 0.688 139.762 1.00149.53 C
ATOM 546 O ALA A 69 19.444 -0.493 139.623 1.00154.06 O
ATOM 547 CB ALA A 69 19.991 1.671 142.050 1.00139.92 C ATOM 548 N CYS A 70 19.312 1.661 138.978 1.00148.68
ATOM 549 CA CYS A 70 18.393 1.390 137.873 1.00150.94
ATOM 550 C CYS A 70 19.034 0.501 136.825 1.00157.29
ATOM 551 O CYS A 70 18.472 -0.529 136.435 1.00161.42
ATOM 552 CB CYS A 70 17.940 2.690 137.215 1.00146.96
ATOM 553 SG CYS A 70 16.775 3.641 138.199 1.00125.90
ATOM 554 N ILE A 71 20.213 0.914 136.371 1.00156.98
ATOM 555 CA ILE A 71 20.952 0.171 135.360 1.00157.91
ATOM 556 C ILE A 71 21.224 -1.271 135.790 1.00165.04
ATOM 557 O ILE A 71 21.030 -2.203 135.006 1.00172.35
ATOM 558 CB ILE A 71 22.287 0.856 135.012 1.00147.82
ATOM 559 CG1 ILE A 71 22.045 2.264 134.470 1.00142.78
ATOM 560 CG2 ILE A 71 23.047 0.033 133.997 1.00146.85
ATOM 561 CD1 ILE A 71 23.299 2.943 133.964 1.00139.83
ATOM 562 O SER A 72 20.875 -4.877 137.125 1.00175.41
ATOM 563 N SER A 72 21.662 -1.452 137.033 1.00161.54
ATOM 564 CA SER A 72 21.974 -2.785 137.536 1.00161.60
ATOM 565 C SER A 72 20.755 -3.700 137.472 1.00170.01
ATOM 566 CB SER A 72 22.508 -2.718 138.964 1.00157.38
ATOM 567 OG SER A 72 21.490 -2.325 139.861 1.00157.67
ATOM 568 O PHE A 73 17.579 -5.484 136.068 1.00186.37
ATOM 569 N PHE A 73 19.582 -3.155 137.786 1.00172.52
ATOM 570 CA PHE A 73 18.349 -3.939 137.745 1.00180.15
ATOM 571 C PHE A 73 17.940 -4.330 136.323 1.00182.72
ATOM 572 CB PHE A 73 17.195 -3.206 138.436 1.00185.60
ATOM 573 CG PHE A 73 15.853 -3.836 138.192 1.00195.55
ATOM 574 CD1 PHE A 73 15.602 -5.141 138.591 1.00201.42
ATOM 575 CD2 PHE A 73 14.845 -3.131 137.556 1.00200.33
ATOM 576 CE1 PHE A 73 14.371 -5.733 138.355 1.00206.73
ATOM 577 CE2 PHE A 73 13.609 -3.714 137.325 1.00206.40
ATOM 578 CZ PHE A 73 13.371 -5.016 137.728 1.00208.80
ATOM 579 O VAL A 74 17.995 -5.584 132.702 1.00182.00
ATOM 580 N VAL A 74 17.992 -3.365 135.406 1.00178.26
ATOM 581 CA VAL A 74 17.615 -3.602 134.013 1.00174.35
ATOM 582 C VAL A 74 18.493 -4.671 133.364 1.00177.20
ATOM 583 CB VAL A 74 17.679 -2.302 133.182 1.00162.60
ATOM 584 CG1 VAL A 74 17.425 -2.591 131.711 1.00161.05
ATOM 585 CG2 VAL A 74 16.678 -1.292 133.709 1.00158.85
ATOM 586 O LEU A 75 20.484 -7.838 132.621 1.00187.93
ATOM 587 N LEU A 75 19.799 -4.560 133.576 1.00174.48 ATOM 588 CA LEU A 75 20.755 -5.481 132.978 1.00177.28 C
ATOM 589 C LEU A 75 20.574 -6.925 133.443 1.00183.25 C
ATOM 590 CB LEU A 75 22.186 -5.010 133.241 1.00172.37 C
ATOM 591 CG LEU A 75 22.615 -3.759 132.471 1.00169.88 C
ATOM 592 CD1 LEU A 75 24.035 -3.363 132.846 1.00163.31 C
ATOM 593 CD2 LEU A 75 22.486 -3.969 130.961 1.00173.46 C
ATOM 594 O ALA A 76 18.758 -10.120 135.874 1.00197.50 O
ATOM 595 N ALA A 76 20.513 -7.134 134.755 1.00183.41 N
ATOM 596 CA ALA A 76 20.432 -8.488 135.299 1.00187.52 C
ATOM 597 C ALA A 76 19.019 -9.086 135.256 1.00195.25 C
ATOM 598 CB ALA A 76 20.998 -8.528 136.716 1.00184.40 C
ATOM 599 O TRP A 77 15.703 -10.974 133.608 1.00208.49 O
ATOM 600 N TRP A 77 18.122 -8.441 134.514 1.00199.35 N
ATOM 601 CA TRP A 77 16.751 -8.925 134.329 1.00205.04 C
ATOM 602 C TRP A 77 16.696 -10.244 133.544 1.00205.35 C
ATOM 603 CB TR A 77 15.906 -7.850 133.625 1.00210.09 C
ATOM 604 CG TRP A 77 14.549 -8.314 133.157 1.00219.23 C
ATOM 605 CD1 TRP A 77 13.377 -8.256 133.855 1.00221.55 C
ATOM 606 CD2 TRP A 77 14.226 -8.896 131.882 1.00227.62 C
ATOM 607 NE1 TRP A 77 12.349 -8.770 133.100 1.00228.50 N
ATOM 608 CE2 TRP A 77 12.843 -9.170 131.885 1.00232.27 C
ATOM 609 CE3 TRP A 77 14.974 -9.217 130.742 1.00229.11 C
ATOM 610 CZ2 TRP A 77 12.190 -9.750 130.791 1.00236.66 C
ATOM 611 CZ3 TRP A 77 14.323 -9.792 129.656 1.00232.73 C
ATOM 612 CH2 TRP A 77 12.946 -10.051 129.691 1.00235.98 c
ATOM 613 O PHE A 78 16.755 -13.838 131.919 1.00192.52 o
ATOM 614 N PHE A 78 17.773 -10.550 132.824 1.00199.50 N
ATOM 615 CA PHE A 78 17.794 -11.664 131.874 1.00194.00 C
ATOM 616 C PHE A 78 17.451 -13.016 132.520 1.00190.37 C
ATOM 617 CB PHE A 78 19.145 -11.736 131.137 1.00190.07 C
ATOM 618 CG PHE A 78 19.506 -10.480 130.360 1.00190.71 C
ATOM 619 CD1 PHE A 78 18.607 -9.428 130.219 1.00192.68 C
ATOM 620 CD2 PHE A 78 20.751 -10.365 129.758 1.00189.40 C
ATOM 621 CE1 PHE A 78 18.949 -8.285 129.512 1.00192.51 C
ATOM 622 CE2 PHE A 78 21.100 -9.224 129.045 1.00188.95 C
ATOM 623 CZ PHE A 78 20.197 -8.183 128.921 1.00191.02 c
ATOM 624 O GLU A 79 18.455 -13.491 136.488 1.00167.22 o
ATOM 625 N GLU A 79 17.928 -13.240 133.743 1.00184.68 N
ATOM 626 CA GLU A 79 17.645 -14.489 134.452 1.00179.94 C
ATOM 627 C GLU A 79 17.706 -14.320 135.969 1.00173.17 C ATOM 628 CB GLU A 79 18.612 -15.591 134.009 1.00178.68 C
ATOM 629 CG GLU A 79 20.013 -15.498 134.612 1.00175.28 C
ATOM 630 CD GLU A 79 20.898 -14.448 133.950 1.00171.29 C
ATOM 631 OE1 GLU A 79 22.080 -14.757 133.690 1.00167.54 O
ATOM 632 OE2 GLU A 79 20.428 -13.318 133.698 1.00171.01 O
ATOM 633 O THR A 86 18.636 -7.895 145.648 1.00157.40 O
ATOM 634 N THR A 86 16.095 -9.096 144.039 1.00154.73 N
ATOM 635 CA THR A 86 16.456 -7.839 144.687 1.00152.39 C
ATOM 636 C THR A 86 17.974 -7.620 144.648 1.00156.26 C
ATOM 637 CB THR A 86 16.001 -7.824 146.155 1.00144.58 C
ATOM 638 OG1 THR A 86 17.116 -8.056 147.024 1.00140.27 O
ATOM 639 CG2 THR A 86 14.928 -8.878 146.414 1.00143.70 C
ATOM 640 O ALA A 87 17.459 -4.323 142.614 1.00168.26 O
ATOM 641 N ALA A 87 18.559 -7.129 143.547 1.00157.82 N
ATOM 642 CA ALA A 87 17.916 -6.647 142.307 1.00163.61 C
ATOM 643 C ALA A 87 16.988 -5.433 142.418 1.00170.33 C
ATOM 644 CB ALA A 87 17.289 -7.786 141.461 1.00199.04 C
ATOM 645 O PHE A 88 14.054 -2.580 143.297 1.00185.36 O
ATOM 646 N PHE A 88 15.685 -5.648 142.285 1.00180.65 N
ATOM 647 CA PHE A 88 14.733 -4.546 142.1 16 1.00189.31 C
ATOM 648 C PHE A 88 14.366 -3.768 143.378 1.00185.40 C
ATOM 649 CB PHE A 88 13.447 -5.046 141.461 1.00201.60 C
ATOM 650 CG PHE A 88 12.808 -6.181 142.190 1.00210.59 C
ATOM 651 CD1 PHE A 88 11.755 -5.956 143.060 1.00215.49 C
ATOM 652 CD2 PHE A 88 13.270 -7.476 142.017 1.00212.51 C
ATOM 653 CE1 PHE A 88 11.168 -7.005 143.734 1.00218.78 C
ATOM 654 CE2 PHE A 88 12.695 -8.524 142.691 1.00215.90 c
ATOM 655 CZ PHE A 88 11.645 -8.289 143.553 1.00219.24 c
ATOM 656 N VAL A 89 14.368 -4.419 144.534 1.00180.21 N
ATOM 657 CA VAL A 89 13.994 -3.701 145.745 1.00175.37 C
ATOM 658 C VAL A 89 15.101 -2.743 146.170 1.00165.77 C
ATOM 659 O VAL A 89 14.831 -1.730 146.818 1.00163.08 O
ATOM 660 CB VAL A 89 13.632 -4.642 146.909 1.00178.74 C
ATOM 661 CG1 VAL A 89 12.947 -5.880 146.387 1.00181.13 C
ATOM 662 CG2 VAL A 89 14.864 -5.009 147.709 1.00178.94 C
ATOM 663 N GLU A 90 16.340 -3.058 145.797 1.00159.64 N
ATOM 664 CA GLU A 90 17.474 -2.227 146.186 1.00154.76 C
ATOM 665 C GLU A 90 17.332 -0.768 145.735 1.00150.06 C
ATOM 666 O GLU A 90 17.478 0.136 146.558 1.00152.18 O
ATOM 667 CB GLU A 90 18.819 -2.836 145.762 1.00158.55 C ATOM 668 CG GLU A 90 19.332 -3.915 146.706 1.00167.06
ATOM 669 CD GLU A 90 20.847 -3.893 146.862 1.00171.17
ATOM 670 OE1 GLU A 90 21.525 -3.168 146.095 1.00168.95
ATOM 671 OE2 GLU A 90 21.356 -4.591 147.768 1.00173.15
ATOM 672 N PRO A 91 17.020 -0.527 144.445 1.00140.71
ATOM 673 CA PRO A 91 16.821 0.864 144.023 1.00137.01
ATOM 674 C PRO A 91 15.672 1.550 144.752 1.00134.24
ATOM 675 O PRO A 91 15.700 2.763 144.952 1.00126.62
ATOM 676 CB PRO A 91 16.468 0.724 142.543 1.00134.34
ATOM 677 CG PRO A 91 17.119 -0.521 142.132 1.00133.50
ATOM 678 CD PRO A 91 16.961 -1.438 143.293 1.00135.25
ATOM 679 N PHE A 92 14.671 0.774 145.143 1.00139.31
ATOM 680 CA PHE A 92 13.512 1.330 145.822 1.00139.92
ATOM 681 C PHE A 92 13.796 1.670 147.280 1.00135.43
ATOM 682 O PHE A 92 13.354 2.709 147.764 1.00133.08
ATOM 683 CB PHE A 92 12.316 0.385 145.703 1.00144.20
ATOM 684 CG PHE A 92 11.628 0.448 144.365 1.00145.22
ATOM 685 CD1 PHE A 92 11.588 1.637 143.646 1.00140.52
ATOM 686 CD2 PHE A 92 11.025 -0.678 143.825 1.00145.29
ATOM 687 CE1 PHE A 92 10.957 1.703 142.419 1.00137.71
ATOM 688 CE2 PHE A 92 10.392 -0.618 142.598 1.00144.59
ATOM 689 CZ PHE A 92 10.359 0.577 141.894 1.00141.53
ATOM 690 N VAL A 93 14.536 0.807 147.974 1.00135.61
ATOM 691 CA VAL A 93 14.878 1.069 149.374 1.00136.23
ATOM 692 C VAL A 93 15.972 2.132 149.512 1.00137.35
ATOM 693 O VAL A 93 15.996 2.879 150.493 1.00139.71
ATOM 694 CB VAL A 93 15.276 -0.213 150.145 1.00133.83
ATOM 695 CG1 VAL A 93 14.233 -1.298 149.946 1.00134.99
ATOM 696 CG2 VAL A 93 16.648 -0.698 149.720 1.00133.69
ATOM 697 N ILE A 94 16.872 2.195 148.534 1.00133.05
ATOM 698 CA ILE A 94 17.843 3.279 148.468 1.00126.88
ATOM 699 C ILE A 94 17.100 4.620 148.460 1.00129.69
ATOM 700 O ILE A 94 17.349 5.485 149.300 1.00132.39
ATOM 701 CB ILE A 94 18.752 3.146 147.224 1.00119.74
ATOM 702 CG1 ILE A 94 19.773 2.028 147.433 1.00117.04
ATOM 703 CG2 ILE A 94 19.472 4.455 146.918 1.00115.09
ATOM 704 CD1 ILE A 94 20.779 1.906 146.300 1.00115.03
ATOM 705 N LEU A 95 16.166 4.766 147.527 1.00127.65
ATOM 706 CA LEU A 95 15.354 5.969 147.430 1.00121.56
ATOM 707 C LEU A 95 14.686 6.273 148.759 1.00117.89 ATOM 708 O LEU A 95 14.775 7.390 149.252 1.00122.86
ATOM 709 CB LEU A 95 14.292 5.812 146.339 1.00125.49
ATOM 710 CG LEU A 95 13.353 7.003 146.126 1.00122.32
ATOM 711 CD1 LEU A 95 14.153 8.230 145.702 1.00120.31
ATOM 712 CD2 LEU A 95 12.252 6.674 145.112 1.00117.92
ATOM 713 N LEU A 96 14.038 5.271 149.343 1.00115.87
ATOM 714 CA LEU A 96 13.282 5.467 150.577 1.00120.32
ATOM 715 C LEU A 96 14.157 5.959 151.725 1.00129.05
ATOM 716 O LEU A 96 13.797 6.913 152.412 1.00134.52
ATOM 717 CB LEU A 96 12.547 4.187 150.988 1.00116.79
ATOM 718 CG LEU A 96 11.268 3.828 150.227 1.00110.82
ATOM 719 CD1 LEU A 96 10.791 2.436 150.616 1.00110.63
ATOM 720 CD2 LEU A 96 10.186 4.862 150.481 1.00103.79
ATOM 721 N ILE A 97 15.298 5.309 151.936 1.00128.50
ATOM 722 CA ILE A 97 16.229 5.747 152.970 1.00126.56
ATOM 723 C ILE A 97 16.730 7.160 152.673 1.00124.51
ATOM 724 O ILE A 97 16.805 8.002 153.574 1.00123.81
ATOM 725 CB ILE A 97 17.425 4.791 153.099 1.00129.01
ATOM 726 CG1 ILE A 97 16.974 3.455 153.680 1.00134.52
ATOM 727 CG2 ILE A 97 18.502 5.389 153.989 1.00128.99
ATOM 728 CD1 ILE A 97 18.119 2.495 153.930 1.00138.22
ATOM 729 N LEU A 98 17.057 7.414 151.406 1.00120.91
ATOM 730 CA LEU A 98 17.518 8.731 150.978 1.00117.63
ATOM 731 C LEU A 98 16.438 9.789 151.144 1.00124.04
ATOM 732 O LEU A 98 16.733 10.938 151.471 1.00129.49
ATOM 733 CB LEU A 98 17.996 8.702 149.530 1.00113.21
ATOM 734 CG LEU A 98 19.336 8.012 149.294 1.00115.96
ATOM 735 CD1 LEU A 98 19.923 8.469 147.975 1.00119.37
ATOM 736 CD2 LEU A 98 20.309 8.257 150.440 1.00113.88
ATOM 737 N ILE A 99 15.189 9.399 150.908 1.00122.49
ATOM 738 CA ILE A 99 14.052 10.278 151.158 1.00117.11
ATOM 739 C ILE A 99 13.860 10.457 152.662 1.00111.71
ATOM 740 O ILE A 99 13.562 11.550 153.134 1.00108.84
ATOM 741 CB ILE A 99 12.757 9.738 150.504 1.00113.99
ATOM 742 CG1 ILE A 99 12.840 9.884 148.980 1.00107.66
ATOM 743 CG2 ILE A 99 11.529 10.460 151.056 1.00114.11
ATOM 744 CD1 ILE A 99 11.606 9.456 148.234 1.00103.28
ATOM 745 N ALA A 100 14.058 9.378 153.409 1.00114.69
ATOM 746 CA ALA A 100 13.957 9.413 154.865 1.00119.18
ATOM 747 C ALA A 100 14.997 10.352 155.464 1.00118.39 ATOM 748 O ALA A 100 14.672 11.225 156.273 1.00117.23
ATOM 749 CB ALA A 100 14.119 8.011 155.439 1.00120.41
ATOM 750 N ASN A 101 16.249 10.159 155.059 1.00115.41
ATOM 751 CA ASN A 101 17.348 10.968 155.558 1.00110.85
ATOM 752 C ASN A 101 17.153 12.430 155.191 1.00110.36
ATOM 753 O ASN A 101 17.419 13.321 156.000 1.00105.85
ATOM 754 CB ASN A 101 18.680 10.452 155.016 1.00106.81
ATOM 755 CG ASN A 101 19.864 10.981 155.791 1.00108.18
ATOM 756 OD1 ASN A 101 20.099 10.587 156.936 1.00106.93
ATOM 757 ND2 ASN A 101 20.624 11.875 155.171 1.00110.72
ATOM 758 N ALA A 102 16.668 12.661 153.972 1.00110.43
ATOM 759 CA ALA A 102 16.406 14.008 153.475 1.00111.11
ATOM 760 C ALA A 102 15.430 14.766 154.369 1.00120.41
ATOM 761 O ALA A 102 15.732 15.873 154.810 1.00124.83
ATOM 762 CB ALA A 102 15.881 13.958 152.060 1.00109.52
ATOM 763 N ILE A 103 14.266 14.171 154.632 1.00122.11
ATOM 764 CA ILE A 103 13.243 14.808 155.467 1.00120.36
ATOM 765 C ILE A 103 13.802 15.178 156.831 1.00124.33
ATOM 766 O ILE A 103 13.599 16.292 157.308 1.00130.63
ATOM 767 CB ILE A 103 12.003 13.909 155.674 1.00112.56
ATOM 768 CG1 ILE A 103 11.329 13.604 154.342 1.00111.58
ATOM 769 CG2 ILE A 103 10.998 14.584 156.591 1.00107.87
ATOM 770 CD1 ILE A 103 10.125 12.724 154.480 1.00112.15
ATOM 771 N VAL A 104 14.510 14.240 157.454 1.00120.55
ATOM 772 CA VAL A 104 15.123 14.489 158.752 1.00116.62
ATOM 773 C VAL A 104 16.068 15.677 158.655 1.00116.43
ATOM 774 O VAL A 104 16.037 16.578 159.490 1.00120.89
ATOM 775 CB VAL A 104 15.898 13.262 159.257 1.00115.42
ATOM 776 CG1 VAL A 104 16.557 13.563 160.590 1.00112.26
ATOM 777 CG2 VAL A 104 14.971 12.068 159.387 1.00118.98
ATOM 778 N GLY A 105 16.891 15.681 157.614 1.00112.98
ATOM 779 CA GLY A 105 17.808 16.776 157.372 1.00112.53
ATOM 780 C GLY A 105 17.127 18.106 157.108 1.00113.73
ATOM 781 O GLY A 105 17.680 19.156 157.414 1.00115.24
ATOM 782 N VAL A 106 15.930 18.078 156.533 1.00114.99
ATOM 783 CA VAL A 106 15.223 19.323 156.242 1.00118.39
ATOM 784 C VAL A 106 14.637 19.925 157.513 1.00119.24
ATOM 785 O VAL A 106 14.749 21.131 157.741 1.00121.73
ATOM 786 CB VAL A 106 14.095 19.138 155.203 1.00122.91
ATOM 787 CG1 VAL A 106 13.376 20.456 154.970 1.00124.36 ATOM 788 CG2 VAL A 106 14.648 18.610 153.895 1.00125.00 C
ATOM 789 N TRP A 107 14.006 19.081 158.329 1.001 18.34 N
ATOM 790 CA TRP A 107 13.463 19.509 159.613 1.00120.72 C
ATOM 791 C TRP A 107 14.590 20.067 160.476 1.001 19.66 C
ATOM 792 O TRP A 107 14.444 21.114 161.113 1.00118.71 O
ATOM 793 CB TRP A 107 12.780 18.343 160.336 1.00125.18 C
ATOM 794 CG TRP A 1 07 11.466 17.920 159.745 1.00133.75 C
ATOM 795 CD1 TRP A 107 10.750 18.570 158.781 1.00138.86 C
ATOM 796 CD2 TRP A 107 10.712 16.743 160.078 1.00139.13 C
ATOM 797 NE1 TRP A 107 9.598 17.870 158.491 1.00142.33 N
ATOM 798 CE2 TRP A 107 9.552 16.747 159.273 1.00140.37 C
ATOM 799 CE3 TRP A 107 10.907 15.689 160.977 1.00139.08 C
ATOM 800 CZ2 TRP A 107 8.590 15.738 159.344 1.00136.51 C
ATOM 801 CZ3 TRP A 107 9.948 14.688 161.045 1.00137.53 C
ATOM 802 CH2 TRP A 107 8.806 14.721 160.233 1.00135.96 C
ATOM 803 N GL A 108 15.716 19.359 160.481 1.001 15.50 N
ATOM 804 CA GLN A 1 08 16.900 19.797 161.199 1.00112.24 C
ATOM 805 C GLN A 108 17.258 21.218 160.787 1.001 1 1.67 C
ATOM 806 O GLN A 108 17.310 22.1 11 161.624 1.001 18.08 O
ATOM 807 CB GLN A 1 08 18.071 18.856 160.919 1.001 19.03 C
ATOM 808 CG GLN A 108 19.132 18.838 162.011 1.00129.23 C
ATOM 809 CD GLN A 108 19.677 20.222 162.336 1.00133.35 C
ATOM 810 OE1 GLN A 108 20.278 20.882 161.478 1.00135.37 O
ATOM 811 NE2 GLN A 108 19.451 20.679 163.575 1.00125.90 N
ATOM 812 N GLU A 109 17.494 21.423 159.498 1.001 12.51 N
ATOM 813 CA GLU A 1 09 17.860 22.743 158.993 1.00118.38 C
ATOM 814 C GLU A 109 16.833 23.839 159.308 1.00119.72 C
ATOM 815 O GLU A 109 17.216 24.934 159.722 1.00119.79 O
ATOM 816 CB GLU A 109 18.137 22.703 157.483 1.00124.43 C
ATOM 817 CG GLU A 109 19.527 22.210 157.103 1.00130.58 C
ATOM 818 CD GLU A 109 19.899 22.552 155.668 1.00140.66 C
ATOM 819 OE1 GLU A 109 20.512 23.621 155.457 1.00147.69 O
ATOM 820 OE2 GLU A 109 19.584 21.759 154.752 1.00140.74 O
ATOM 821 N ARG A 1 10 15.543 23.558 159.121 1.001 16.53 N
ATOM 822 CA ARG A 110 14.534 24.61 1 159.248 1.001 13.93 C
ATOM 823 C ARG A 1 10 14.275 25.041 160.696 1.00113.28 C
ATOM 824 O ARG A 1 10 14.055 26.225 160.964 1.00110.79 O
ATOM 825 CB ARG A 110 13.224 24.237 158.552 1.00116.71 C
ATOM 826 CG ARG A 110 12.231 25.403 158.476 1.00130.63 C
ATOM 827 CD ARG A 110 10.885 25.015 157.854 1.00146.12 C ATOM 828 NE ARG A 1 10 10.234 23.925 158.580 1.00158.70 N
ATOM 829 CZ ARG A 1 10 9.397 24.090 159.601 1.00163.61 C
ATOM 830 NH1 ARG A 110 9.091 25.310 160.025 1.00164.63 N
ATOM 831 NH2 ARG A 110 8.863 23.029 160.199 1.00163.29 N
ATOM 832 N ASN A 11 1 14.301 24.089 161.625 1.001 11.35 N
ATOM 833 CA ASN A 1 11 14.107 24.412 163.036 1.00105.19 C
ATOM 834 C ASN A 111 15.197 25.342 163.514 1.00105.52 C
ATOM 835 O ASN A 11 1 14.947 26.279 164.280 1.00108.74 O
ATOM 836 CB ASN A 1 11 14.106 23.151 163.894 1.00102.44 C
ATOM 837 CG ASN A 1 11 12.875 22.306 163.674 1.00104.73 C
ATOM 838 OD1 ASN A 111 1 1.841 22.810 163.231 1.00109.57 O
ATOM 839 ND2 ASN A 111 12.973 21.014 163.981 1.00100.20 N
ATOM 840 N ALA A 112 16.413 25.073 163.050 1.00100.56 N
ATOM 841 CA ALA A 1 12 17.557 25.905 163.382 1.00 91.63 C
ATOM 842 C ALA A 1 12 17.372 27.314 162.827 1.00 91.79 C
ATOM 843 O ALA A 112 17.620 28.293 163.524 1.00 94.95 O
ATOM 844 CB ALA A 1 12 18.835 25.284 162.868 1.00 78.05 C
ATOM 845 N GLU A 1 13 16.920 27.417 161.583 1.00 88.21 N
ATOM 846 CA GLU A 113 16.696 28.724 160.989 1.00 96.67 C
ATOM 847 C GLU A 1 13 15.642 29.489 161.779 1.00104.41 C
ATOM 848 O GLU A 1 13 15.865 30.637 162.164 1.00109.18 O
ATOM 849 CB GLU A 113 16.271 28.599 159.529 1.00107.66 C
ATOM 850 CG GLU A 1 13 16.026 29.932 158.841 1.00121.70 C
ATOM 851 CD GLU A 113 15.217 29.796 157.556 1.00136.58 C
ATOM 852 OE1 GLU A 113 15.436 28.813 156.806 1.00137.24 O
ATOM 853 OE2 GLU A 113 14.356 30.673 157.303 1.00143.61 O
ATOM 854 N AS A 1 14 14.504 28.843 162.035 1.00107.66 N
ATOM 855 CA ASN A 1 14 13.390 29.484 162.740 1.00107.05 C
ATOM 856 C ASN A 1 14 13.767 29.962 164.136 1.00104.39 C
ATOM 857 O AS A 1 14 13.428 31.077 164.538 1.00105.07 O
ATOM 858 CB ASN A 1 14 12.186 28.546 162.827 1.00108.03 C
ATOM 859 CG ASN A 1 14 11.585 28.239 161.468 1.00111.64 C
ATOM 860 OD1 ASN A 114 11.059 27.147 161.244 1.0011 1.70 O
ATOM 861 ND2 ASN A 114 1 1.664 29.199 160.552 1.00113.27 N
ATOM 862 N ALA A 115 14.463 29.102 164.869 1.00 98.82 N
ATOM 863 CA ALA A 1 15 15.011 29.463 166.165 1.00 94.32 C
ATOM 864 C ALA A 115 15.817 30.755 166.067 1.00 90.18 C
ATOM 865 O ALA A 1 15 15.584 31.698 166.821 1.00 94.53 O
ATOM 866 CB ALA A 1 15 15.883 28.331 166.698 1.00 95.21 C
ATOM 867 N ILE A 116 16.762 30.802 165.133 1.00 82.66 N ATOM 868 CA ILE A 116 17.630 31.965 165.009 1.00 82.24 C
ATOM 869 C ILE A 116 16.812 33.207 164.717 1.00 86.73 C
ATOM 870 O ILE A 116 17.042 34.284 165.282 1.00 79.98 O
ATOM 871 CB ILE A 116 18.634 31.801 163.877 1.00 78.43 C
ATOM 872 CG1 ILE A 1 16 19.494 30.562 164.098 1.00 77.20 C
ATOM 873 CG2 ILE A 1 16 19.521 33.029 163.812 1.00 80.56 C
ATOM 874 CD1 ILE A 1 16 20.545 30.748 165.159 1.00 81.83 C
ATOM 875 N GLU A 117 15.854 33.027 163.815 1.00 93.27 N
ATOM 876 CA GLU A 1 17 14.952 34.084 163.404 1.00 95.51 C
ATOM 877 C GLU A 117 14.072 34.497 164.576 1.00 93.73 C
ATOM 878 O GLU A 117 13.717 35.668 164.723 1.00 97.85 O
ATOM 879 CB GLU A 1 17 14.096 33.598 162.238 1.00 99.26 C
ATOM 880 CG GLU A 117 13.096 34.616 161.745 1.00107.95 C
ATOM 881 CD GLU A 117 13.762 35.890 161.288 1.00111.79 C
ATOM 882 OE2 GLU A 117 14.681 35.803 160.441 1.00119.56 O
ATOM 883 OE1 GLU A 117 13.363 36.974 161.770 1.00108.27 O
ATOM 884 N ALA A 118 13.737 33.528 165.421 1.00 86.89 N
ATOM 885 CA ALA A 1 18 12.867 33.784 166.562 1.00 81.28 C
ATOM 886 C ALA A 118 13.517 34.691 167.595 1.00 73.56 C
ATOM 887 O ALA A 118 12.823 35.262 168.432 1.00 78.23 O
ATOM 888 CB ALA A 1 18 12.435 32.485 167.203 1.00 74.86 C
ATOM 889 N LEU A 119 14.841 34.827 167.537 1.00 80.80 N
ATOM 890 CA LEU A 1 19 15.553 35.677 168.488 1.00 80.42 C
ATOM 891 C LEU A 119 15.058 37.109 168.411 1.00 83.12 C
ATOM 892 O LEU A 119 15.242 37.884 169.345 1.00 81.52 O
ATOM 893 CB LEU A 1 19 17.060 35.679 168.234 1.00 79.28 C
ATOM 894 CG LEU A 119 17.965 34.558 168.733 1.00 78.27 C
ATOM 895 CD1 LEU A 119 19.395 34.991 168.551 1.00 78.19 C
ATOM 896 CD2 LEU A 119 17.703 34.247 170.178 1.00 75.84 C
ATOM 897 N LYS A 120 14.446 37.469 167.289 1.00 76.59 N
ATOM 898 CA LYS A 120 13.996 38.835 167.110 1.00 78.25 C
ATOM 899 C LYS A 120 12.762 39.079 167.959 1.00 77.65 C
ATOM 900 O LYS A 120 12.371 40.221 168.168 1.00 83.24 O
ATOM 901 CB LYS A 120 13.698 39.127 165.638 1.00104.30 C
ATOM 902 CG LYS A 120 14.895 38.960 164.713 1.00106.84 C
ATOM 903 CD LYS A 120 14.557 39.336 163.274 1.00110.69 C
ATOM 904 CE LYS A 120 15.714 38.989 162.339 1.00116.52 C
ATOM 905 NZ LYS A 120 15.382 39.182 160.896 1.00121.04 N
ATOM 906 N GLU A 121 12.151 38.002 168.447 1.00 87.73 N
ATOM 907 CA GLU A 121 10.903 38.104 169.200 1.00 88.63 C ATOM 908 C GLU A 121 11.181 38.628 170.603 1.00 94.50
ATOM 909 O GLU A 121 10.333 39.284 171.223 1.00 75.04
ATOM 910 CB GLU A 121 10.178 36.757 169.251 1.00 86.65
ATOM 911 CG GLU A 121 9.336 36.457 168.019 1.00 96.03
ATOM 912 CD GLU A 121 9.087 34.963 167.818 1.00110.30
ATOM 913 OE1 GLU A 121 8.050 34.593 167.219 1.00116.62
ATOM 914 OE2 GLU A 121 9.935 34.152 168.246 1.001 14.47
ATOM 915 N TYR A 122 12.391 38.352 171.086 1.00 93.54
ATOM 916 CA TYR A 122 12.832 38.836 172.389 1.00 84.61
ATOM 917 C TYR A 122 13.001 40.350 172.413 1.00 89.50
ATOM 918 O TYR A 122 13.234 40.923 173.474 1.00 93.22
ATOM 919 CB TYR A 122 14.137 38.158 172.818 1.00 77.98
ATOM 920 CG TYR A 122 13.990 36.705 173.202 1.00 78.15
ATOM 921 CD2 TYR A 122 14.399 35.695 172.338 1.00 83.50
ATOM 922 CD1 TYR A 122 13.461 36.339 174.436 1.00 79.50
ATOM 923 CE2 TYR A 122 14.269 34.350 172.682 1.00 89.16
ATOM 924 CE1 TYR A 122 13.324 34.996 174.794 1.00 87.27
ATOM 925 CZ TYR A 122 13.733 34.003 173.910 1.00 93.62
ATOM 926 OH TYR A 122 13.606 32.665 174.245 1.00 95.76
ATOM 927 N GLU A 123 12.917 41.002 171.258 1.00 81.58
ATOM 928 CA GLU A 123 12.890 42.463 171.251 1.00 85.39
ATOM 929 C GLU A 123 12.197 43.101 170.060 1.00 81.40
ATOM 930 O GLU A 123 12.852 43.549 169.1 11 1.00 81.08
ATOM 931 CB GLU A 123 14.270 43.082 171.452 1.00 82.90
ATOM 932 CG GLU A 123 15.41 1 42.366 170.821 1.00 87.27
ATOM 933 CD GLU A 123 16.704 43.079 171.123 1.00 96.22
ATOM 934 OE1 GLU A 123 17.782 42.613 170.678 1.00100.07
ATOM 935 OE2 GLU A 123 16.619 44.120 171.814 1.00 94.37
ATOM 936 N PRO A 124 10.861 43.153 170.128 1.00 77.64
ATOM 937 CA PRO A 124 9.969 43.826 169.184 1.00 78.89
ATOM 938 C PRO A 124 10.227 45.323 169.074 1.00 77.48
ATOM 939 O PRO A 124 10.468 45.981 170.084 1.00 77.58
ATOM 940 CB PRO A 124 8.577 43.596 169.797 1.00 77.28
ATOM 941 CG PRO A 124 8.816 43.134 171.176 1.00 79.36
ATOM 942 CD PRO A 124 10.103 42.408 171.141 1.00 75.09
ATOM 943 N GLU A 125 10.167 45.848 167.855 1.00 76.66
ATOM 944 CA GLU A 125 10.232 47.289 167.640 1.00 80.03
ATOM 945 C GLU A 125 9.099 48.017 168.374 1.00 78.78
ATOM 946 O GLU A 125 7.927 47.677 168.217 1.00 83.29
ATOM 947 CB GLU A 125 10.181 47.598 166.145 1.00 81.75 ATOM 948 CG GLU A 125 11.303 46.971 165.342 1.00 87.42 C
ATOM 949 CD GLU A 125 12.222 48.020 164.759 1.00 95.41 C
ATOM 950 OE1 GLU A 125 11.798 49.201 164.724 1.00100.63 C
ATOM 951 OE2 GLU A 25 13.355 47.671 164.348 1.00 93.61 O
ATOM 952 N MET A 126 9.462 49.015 169.178 1.00 71.63 N
ATOM 953 CA MET A 126 8.503 49.757 169.988 1.00 64.70 C
ATOM 954 C MET A 126 8.553 51.243 169.668 1.00 64.00 C
ATOM 955 O MET A 126 9.582 51.756 169.236 1.00 67.18 O
ATOM 956 CB MET A 126 8.833 49.575 171.460 1.00 67.21 C
ATOM 957 CG MET A 126 9.236 48.177 171.832 1.00 66.86 C
ATOM 958 SD MET A 126 7.800 47.234 172.305 1.00116.33 s
ATOM 959 CE MET A 126 7.128 48.361 173.507 1.00 64.01 c
ATOM 960 N GLY A 127 7.446 51.941 169.896 1.00 61.91 N
ATOM 961 CA GLY A 127 7.405 53.378 169.678 1.00 59.90 C
ATOM 962 C GLY A 127 6.689 54.029 170.841 1.00 65.84 C
ATOM 963 O GLY A 127 6.045 53.334 171.627 1.00 78.51 O
ATOM 964 N LYS A 128 6.796 55.349 170.968 1.00 57.76 N
ATOM 965 CA LYS A 128 6.065 56.052 172.026 1.00 62.44 C
ATOM 966 C LYS A 128 4.944 56.913 171.455 1.00 66.40 C
ATOM 967 O LYS A 128 5.204 57.781 170.623 1.00 66.21 O
ATOM 968 CB LYS A 128 7.004 56.938 172.833 1.00 60.56 C
ATOM 969 CG LYS A 128 8.091 56.233 173.537 1.00 56.84 C
ATOM 970 CD LYS A 128 9.118 57.272 173.899 1.00 60.29 C
ATOM 971 CE LYS A 128 10.530 56.789 173.539 1.00 63.79 C
ATOM 972 NZ LYS A 128 11.499 57.912 173.510 1.00 61.14 N
ATOM 973 N VAL A 129 3.708 56.686 171.900 1.00 66.14 N
ATOM 974 CA VAL A 129 2.570 57.495 171.431 1.00 63.61 C
ATOM 975 C VAL A 129 1.865 58.196 172.571 1.00 61.74 C
ATOM 976 O VAL A 129 2.089 57.868 173.725 1.00 57.34 O
ATOM 977 CB VAL A 129 1.512 56.649 170.740 1.00 53.21 C
ATOM 978 CG1 VAL A 129 2.053 56.070 169.447 1.00 52.47 C
ATOM 979 CG2 VAL A 129 1.045 55.563 171.685 1.00 61.22 C
ATOM 980 N TYR A 130 1.031 59.176 172.236 1.00 67.40 N
ATOM 981 CA TYR A 130 0.058 59.731 173.171 1.00 71.30 C
ATOM 982 C TYR A 130 -1.326 59.443 172.651 1.00 73.05 C
ATOM 983 O TYR A 130 -1.660 59.768 171.519 1.00 82.44 O
ATOM 984 CB TYR A 130 0.198 61.228 173.322 1.00 55.65 C
ATOM 985 CG TYR A 130 1.461 61.652 174.000 1.00 71.36 C
ATOM 986 CD1 TYR A 130 1.578 61.609 175.379 1.00 76.68 C
ATOM 987 CD2 TYR A 130 2.533 62.119 173.267 1.00 75.33 C ATOM 988 CE1 TYR A 130 2.736 62.015 176.010 1.00 82.02 C
ATOM 989 CE2 TYR A 130 3.694 62.524 173.888 1.00 81.28 C
ATOM 990 CZ TYR A 130 3.790 62.464 175.253 1.00 82.53 c
ATOM 991 OH TYR A 130 4.952 62.856 175.855 1.00 88.66 o
ATOM 992 N ARG A 131 -2.127 58.814 173.489 1.00 73.42 N
ATOM 993 CA ARG A 131 -3.499 58.491 173.168 1.00 75.19 C
ATOM 994 C ARG A 131 -4.353 58.908 174.364 1.00 80.03 C
ATOM 995 O ARG A 131 -3.818 59.230 175.429 1.00 87.31 O
ATOM 996 CB ARG A 131 -3.614 57.007 172.859 1.00 58.47 C
ATOM 997 CG ARG A 131 -2.776 56.606 171.694 1.00 56.67 c
ATOM 998 CD ARG A 131 -2.890 55.139 171.386 1.00 71.36 c
ATOM 999 NE ARG A 131 -2.323 54.848 170.075 1.00 70.23 N
ATOM 1000 CZ ARG A 131 -2.138 53.626 169.596 1.00 74.05 C
ATOM 1001 NH1 ARG A 131 -2.469 52.576 170.324 1.00 77.27 N
ATOM 1002 NH2 ARG A 131 -1.622 53.456 168.387 1.00 80.67 N
ATOM 1003 N ALA A 132 -5.670 58.916 174.191 1.00 74.36 N
ATOM 1004 CA ALA A 132 -6.505 59.736 175.051 1.00 75.97 C
ATOM 1005 C ALA A 132 -6.840 59.038 176.345 1.00 85.81 C
ATOM 1006 O ALA A 132 -7.278 59.676 177.311 1.00 91.59 O
ATOM 1007 CB ALA A 132 -7.756 60.160 174.330 1.00 65.27 C
ATOM 1008 N ASP A 133 -6.612 57.730 176.375 1.00 85.66 N
ATOM 1009 CA ASP A 133 -7.039 56.937 177.521 1.00 83.88 C
ATOM 1010 C ASP A 133 -6.033 56.986 178.669 1.00 82.12 C
ATOM 1011 O ASP A 133 -6.275 56.412 179.729 1.00 85.17 O
ATOM 1012 CB ASP A 133 -7.351 55.500 177.098 1.00 87.14 C
ATOM 1013 CG ASP A 133 -6.168 54.816 176.473 1.00100.38 C
ATOM 1014 OD1 ASP A 133 -5.232 55.523 176.033 1.00104.32 O
ATOM 1015 OD2 ASP A 133 -6.174 53.570 176.425 1.00106.49 O
ATOM 1016 N ARG A 134 -4.915 57.674 178.449 1.00 82.25 N
ATOM 1017 CA ARG A 134 -3.892 57.911 179.461 1.00 68.64 C
ATOM 1018 C ARG A 134 -3.243 59.277 179.196 1.00 83.04 C
ATOM 1019 O ARG A 134 -2.969 59.637 178.045 1.00 72.25 O
ATOM 1020 CB ARG A 134 -2.850 56.782 179.456 1.00 93.97 C
ATOM 1021 CG ARG A 134 -3.411 55.411 179.857 1.00102.19 C
ATOM 1022 CD ARG A 134 -2.400 54.264 179.823 1.00107.68 C
ATOM 1023 NE ARG A 134 -1.041 54.688 180.138 1.001 17.82 N
ATOM 1024 CZ ARG A 134 -0.624 55.065 181.343 1.00129.82 C
ATOM 1025 NH1 ARG A 134 -1.465 55.095 182.377 1.00133.48 N
ATOM 1026 NH2 ARG A 134 0.641 55.428 181.509 1.00131.61 N
ATOM 1027 N LYS A 135 -3.002 60.052 180.246 1.00 88.56 N ATOM 1028 CA LYS A 135 -2.458 61.398 180.072 1.00 68.73 C
ATOM 1029 C LYS A 135 -0.969 61.355 179.746 1.00 74.31 C
ATOM 1030 O LYS A 135 -0.469 62.184 178.988 1.00 73.29 O
ATOM 1031 CB LYS A 135 -2.723 62.262 181.313 1.00100.41 C
ATOM 1032 CG LYS A 135 -2.221 63.709 181.222 1.00 72.08 C
ATOM 1033 CD LYS A 135 -2.979 64.618 182.187 1.00115.97 C
ATOM 1034 CE LYS A 135 -2.866 64.154 183.650 1.00119.49 C
ATOM 1035 NZ LYS A 135 -3.868 64.810 184.561 1.00120.62 N
ATOM 1036 N SER A 136 -0.283 60.363 180.312 1.00 72.97 N
ATOM 1037 CA SER A 136 1.150 60.137 180.123 1.00 75.51 C
ATOM 1038 C SER A 136 1.483 59.585 178.743 1.00 77.68 C
ATOM 1039 O SER A 136 0.591 59.126 178.013 1.00 89.34 O
ATOM 1040 CB SER A 136 1.616 59.079 181.108 1.00 80.35 C
ATOM 1041 OG SER A 136 1.228 57.794 180.627 1.00 75.69 O
ATOM 1042 N VAL A 137 2.775 59.591 178.405 1.00 65.57 N
ATOM 1043 CA VAL A 137 3.250 58.906 177.206 1.00 60.17 C
ATOM 1044 C VAL A 137 3.126 57.372 177.325 1.00 60.68 C
ATOM 1045 O VAL A 137 3.271 56.804 178.398 1.00 62.74 O
ATOM 1046 CB VAL A 137 4.689 59.319 176.840 1.00 60.57 C
ATOM 1047 CG1 VAL A 137 5.703 58.546 177.664 1.00 70.26 C
ATOM 1048 CG2 VAL A 137 4.941 59.081 175.373 1.00 57.29 C
ATOM 1049 N GLN A 138 2.818 56.709 176.221 1.00 59.15 N
ATOM 1050 CA GLN A 138 2.616 55.275 176.249 1.00 70.02 C
ATOM 1051 C GLN A 138 3.602 54.635 175.306 1.00 77.24 C
ATOM 1052 O GLN A 138 3.835 55.136 174.202 1.00 86.09 O
ATOM 1053 CB GLN A 138 1.206 54.898 175.804 1.00 64.43 C
ATOM 1054 CG GLN A 138 0.079 55.743 176.368 1.00 68.32 C
ATOM 1055 CD GLN A 138 -1.250 55.077 176.131 1.00 78.70 C
ATOM 1056 OE1 GLN A 138 -1.338 53.844 176.123 1.00 62.30 O
ATOM 1057 NE2 GLN A 138 -2.290 55.876 175.919 1.00 77.56 N
ATOM 1058 N ARG A 139 4.164 53.514 175.735 1.00 69.76 N
ATOM 1059 CA ARG A 139 5.193 52.842 174.968 1.00 64.73 C
ATOM 1060 C ARG A 139 4.630 51.542 174.435 1.00 67.99 C
ATOM 1061 O ARG A 139 4.629 50.538 175.120 1.00 66.42 O
ATOM 1062 CB ARG A 139 6.411 52.588 175.843 1.00 64.75 C
ATOM 1063 CG ARG A 139 7.605 52.054 175.102 1.00 76.30 C
ATOM 1064 CD ARG A 139 8.892 52.118 175.937 1.00 81.88 C
ATOM 1065 NE ARG A 139 9.933 51.316 175.303 1.00 82.68 N
ATOM 1066 CZ ARG A 139 10.179 50.053 175.627 1.00 92.68 C
ATOM 1067 NH1 ARG A 139 9.474 49.472 176.600 1.00 94.41 N ATOM 1068 NH2 ARG A 139 11.137 49.379 174.998 1.00 94.11 N
ATOM 1069 N ILE A 140 4.152 51.579 173.195 1.00 72.09 N
ATOM 1070 CA ILE A 140 3.467 50.452 172.586 1.00 69.96 C
ATOM 1071 C ILE A 140 4.314 49.786 171.514 1.00 74.00 C
ATOM 1072 O ILE A 140 5.256 50.378 170.988 1.00 72.12 O
ATOM 1073 CB ILE A 140 2.185 50.919 171.911 1.00 66.77 C
ATOM 1074 CG1 ILE A 140 2.524 51.856 170.756 1.00 59.10 C
ATOM 1075 CG2 ILE A 140 1.296 51.639 172.905 1.00 63.33 C
ATOM 1076 CD1 ILE A 140 1.303 52.318 170.022 1.00 56.83 C
ATOM 1077 N LYS A 141 3.965 48.542 171.202 1.00 81.12 N
ATOM 1078 CA LYS A 141 4.581 47.829 170.107 1.00 82.18 C
ATOM 1079 C LYS A 141 4.348 48.660 168.860 1.00 86.25 C
ATOM 1080 O LYS A 141 3.241 49.165 168.648 1.00 83.08 O
ATOM 1081 CB LYS A 141 3.945 46.455 169.957 1.00 63.36 C
ATOM 1082 CG LYS A 141 4.592 45.389 170.790 1.00 75.75 C
ATOM 1083 CD LYS A 141 4.079 44.011 170.413 1.00 68.18 C
ATOM 1084 CE LYS A 141 4.931 42.910 171.029 1.00 82.81 C
ATOM 1085 NZ LYS A 141 4.321 41.565 170.850 1.00 86.00 N
ATOM 1086 N ALA A 142 5.390 48.815 168.044 1.00 85.95 N
ATOM 1087 CA ALA A 142 5.351 49.757 166.932 1.00 72.35 C
ATOM 1088 C ALA A 142 4.423 49.293 165.824 1.00 74.50 C
ATOM 1089 O ALA A 142 3.922 50.108 165.054 1.00 79.76 O
ATOM 1090 CB ALA A 142 6.731 50.007 166.403 1.00 69.04 C
ATOM 1091 N ARG A 143 4.179 47.989 165.754 1.00 67.52 N
ATOM 1092 CA ARG A 143 3.224 47.460 164.787 1.00 66.49 C
ATOM 1093 C ARG A 143 1.778 47.853 165.122 1.00 73.68 C
ATOM 1094 O ARG A 143 0.851 47.510 164.390 1.00 76.46 O
ATOM 1095 CB ARG A 143 3.314 45.941 164.737 1.00 67.42 C
ATOM 1096 CG ARG A 143 2.842 45.261 166.011 1.00 66.03 C
ATOM 1097 CD ARG A 143 2.869 43.764 165.846 1.00 68.42 C
ATOM 1098 NE ARG A 143 1.946 43.321 164.813 1.00 72.40 N
ATOM 1099 CZ ARG A 143 0.765 42.791 165.091 1.00 93.79 C
ATOM 1100 NH1 ARG A 143 0.418 42.649 166.365 1.00108.35 N
ATOM 1101 NH2 ARG A 143 -0.062 42.401 164.124 1.00 96.10 N
ATOM 1102 N ASP A 144 1.574 48.541 166.239 1.00 66.65 N
ATOM 1103 CA ASP A 144 0.230 48.952 166.612 1.00 68.22 C
ATOM 1104 C ASP A 144 0.085 50.468 166.490 1.00 66.90 C
ATOM 1105 O ASP A 144 -0.879 51.068 166.985 1.00 69.32 O
ATOM 1106 CB ASP A 144 -0.103 48.458 168.016 1.00 74.15 C
ATOM 1107 CG ASP A 144 -0.040 46.942 168.126 1.00 80.62 C ATOM 1108 OD1 ASP A 144 -0.345 46.263 167.126 1.00 87.30 O
ATOM 1109 OD2 ASP A 144 0.300 46.424 169.212 1.00 82.13 O
ATOM 11 10 N ILE A 145 1.067 51.070 165.826 1.00 59.12 N
ATOM 111 1 CA ILE A 145 1.063 52.488 165.525 1.00 61.73 C
ATOM 11 12 C ILE A 145 0.306 52.679 164.205 1.00 72.14 C
ATOM 1113 O ILE A 145 0.534 51.973 163.219 1.00 75.39 O
ATOM 1114 CB ILE A 145 2.522 53.044 165.459 1.00 61.59 C
ATOM 1115 CG1 ILE A 145 3.198 52.884 166.825 1.00 65.21 C
ATOM 1116 CG2 ILE A 145 2.566 54.505 165.007 1.00 52.28 C
ATOM 11 17 CD1 ILE A 145 4.474 53.710 167.028 1.00 52.97 C
ATOM 1118 N VAL A 146 -0.627 53.618 164.197 1.00 69.97 N
ATOM 1119 CA VAL A 146 -1.465 53.825 163.030 1.00 66.70 C
ATOM 1120 C VAL A 146 -1.309 55.258 162.538 1.00 67.55 C
ATOM 1 121 O VAL A 146 -0.823 56.120 163.263 1.00 66.59 O
ATOM 1122 CB VAL A 146 -2.943 53.521 163.356 1.00 67.31 C
ATOM 1 123 CG1 VAL A 146 -3.119 52.044 163.724 1.00 57.95 C
ATOM 1124 CG2 VAL A 146 -3.427 54.412 164.470 1.00 68.53 C
ATOM 1 125 N PRO A 147 -1.675 55.514 161.282 1.00 68.84 N
ATOM 1126 CA PRO A 147 -1.645 56.902 160.819 1.00 67.50 C
ATOM 1127 C PRO A 147 -2.516 57.812 161.675 1.00 73.57 C
ATOM 1128 O PRO A 147 -3.665 57.488 161.976 1.00 74.58 O
ATOM 1129 CB PRO A 147 -2.211 56.796 159.409 1.00 58.60 C
ATOM 1130 CG PRO A 147 -1.761 55.453 158.961 1.00 58.75 C
ATOM 1131 CD PRO A 147 -1.838 54.565 160.168 1.00 62.38 C
ATOM 1132 N GLY A 148 -1.953 58.943 162.079 1.00 71.36 N
ATOM 1133 CA GLY A 148 -2.696 59.928 162.829 1.00 64.61 C
ATOM 1134 C GLY A 148 -2.344 59.864 164.289 1.00 66.25 C
ATOM 1135 O GLY A 148 -2.852 60.655 165.077 1.00 70.31 O
ATOM 1136 N ASP A 149 -1.481 58.916 164.648 1.00 66.47 N
ATOM 1137 CA ASP A 149 -0.970 58.798 166.013 1.00 62.12 C
ATOM 1138 C ASP A 149 -0.069 59.970 166.321 1.00 62.11 C
ATOM 1 139 O ASP A 149 0.631 60.463 165.446 1.00 72.21 O
ATOM 1140 CB ASP A 149 -0.189 57.490 166.194 1.00 57.16 C
ATOM 1141 CG ASP A 149 -0.934 56.467 167.054 1.00 61.87 C
ATOM 1 142 OD1 ASP A 149 -1.675 56.880 167.999 1.00 54.90 O
ATOM 1143 OD2 ASP A 149 -0.770 55.251 166.777 1.00 61.01 O
ATOM 1144 N ILE A 150 -0.112 60.444 167.556 1.00 58.44 N
ATOM 1145 CA ILE A 150 0.875 61.422 168.010 1.00 59.91 C
ATOM 1146 C ILE A 150 2.026 60.660 168.619 1.00 56.89 C
ATOM 1 147 O ILE A 150 1.884 60.1 13 169.708 1.00 58.75 O ATOM 1148 CB ILE A 150 0.316 62.335 169.1 10 1.00 61.09 C
ATOM 1 149 CG1 ILE A 150 -0.996 63.005 168.659 1.00 60.82 C
ATOM 1 150 CG2 ILE A 150 I .387 63.31 1 169.584 1.00 52.21 C
ATOM 1151 CD1 ILE A 150 -0.911 63.756 167.372 1.00 52.50 C
ATOM 1 152 N VAL A 151 3.155 60.596 167.924 1.00 54.59 N
ATOM 1153 CA VAL A 151 4.312 59.886 168.465 1.00 58.41 C
ATOM 1 154 C VAL A 151 5.357 60.841 168.974 1.00 50.88 C
ATOM 1155 O VAL A 151 5.415 61.994 168.562 1.00 56.78 O
ATOM 1156 CB VAL A 151 4.975 58.975 167.452 1.00 59.26 C
ATOM 1157 CG1 VAL A 151 4.017 57.890 167.042 1.00 69.48 C
ATOM 1 158 CG2 VAL A 151 5.370 59.771 166.271 1.00 57.73 C
ATOM 1159 N GLU A 1 52 6.169 60.349 169.898 1.00 68.84 N
ATOM 1 160 CA GLU A 152 7.253 61.129 170.472 1.00 65.31 C
ATOM 1161 C GLU A 152 8.584 60.440 170.197 1.00 67.24 C
ATOM 1 162 O GLU A 152 8.693 59.206 170.254 1.00 69.49 O
ATOM 1 163 CB GLU A 152 7.049 61.289 171.968 1.00 61.83 C
ATOM 1164 CG GLU A 152 8.049 62.203 172.620 1.00 73.1 1 C
ATOM 1165 CD GLU A 152 7.762 62.412 174.087 1.00 80.86 C
ATOM 1 166 OE1 GLU A 152 7.964 61.452 174.857 1.00 85.55 O
ATOM 1167 OE2 GLU A 152 7.329 63.529 174.464 1.00 82.83 O
ATOM 1168 N VAL A 153 9.590 61.242 169.871 1.00 64.30 N
ATOM 1169 CA VAL A 153 10.935 60.724 169.669 1.00 66.70 C
ATOM 1 170 C VAL A 1 53 11.945 61.546 170.462 1.00 66.76 C
ATOM 1171 O VAL A 153 11.796 62.757 170.656 1.00 56.15 O
ATOM 1172 CB VAL A 153 I I .325 60.725 168.178 1.00 53.86 C
ATOM 1173 CG1 VAL A 153 10.496 59.704 167.407 1.00 52.89 C
ATOM 1174 CG2 VAL A 153 11.131 62.106 167.592 1.00 74.99 C
ATOM 1175 N ALA A 154 12.979 60.878 170.936 1.00 65.04 N
ATOM 1176 CA ALA A 154 14.079 61.594 171.553 1 .00 69.59 C
ATOM 1177 C ALA A 154 15.401 60.907 171.237 1.00 71.10 C
ATOM 1 178 O ALA A 154 15.424 59.805 170.686 1.00 71.32 O
ATOM 1179 CB ALA A 154 13.867 61.687 173.026 1.00 76.41 C
ATOM 1180 N VAL A 155 16.497 61.563 171.601 1.00 67.13 N
ATOM 1181 CA VAL A 155 17.840 61.105 171.241 1.00 69.36 C
ATOM 1182 C VAL A 155 18.129 59.640 171.567 1.00 66.07 C
ATOM 1183 O VAL A 155 18.016 59.206 172.703 1.00 67.07 O
ATOM 1184 CB VAL A 155 18.905 62.004 171.862 1.00 67.83 C
ATOM 1185 CG1 VAL A 155 18.570 62.264 173.301 1.00 68.79 C
ATOM 1186 CG2 VAL A 155 20.259 61.378 171.716 1.00 70.46 C
ATOM 1187 N GLY A 156 18.481 58.886 170.536 1.00 66.03 N ATOM 1188 CA GLY A 156 18.786 57.481 170.687 1.00 79.10 C
ATOM 1189 C GLY A 156 17.736 56.570 170.091 1.00 77.69 C
ATOM 1190 O GLY A 156 17.999 55.384 169.850 1.00 73.79 O
ATOM 1191 N ASP A 157 16.547 57.129 169.855 1.00 74.76 N
ATOM 1192 CA ASP A 157 15.398 56.368 169.371 1.00 78.17 C
ATOM 1193 C ASP A 157 15.523 55.954 167.915 1.00 75.23 C
ATOM 1194 O ASP A 1 57 16.168 56.629 167.128 1.00 83.90 O
ATOM 1195 CB ASP A 157 14.118 57.190 169.515 1.00 87.27 C
ATOM 1196 CG ASP A 157 13.653 57.318 170.949 1.00 91.56 C
ATOM 1197 OD1 ASP A 157 14.229 56.638 171.835 1.00 91.31 O
ATOM 1198 OD2 ASP A 157 12.691 58.094 171.170 1.00 88.91 O
ATOM 1199 N LYS A 158 14.877 54.851 167.555 1.00 73.98 N
ATOM 1200 CA LYS A 158 14.753 54.454 166.155 1.00 72.61 C
ATOM 1201 C LYS A 158 13.329 54.765 165.697 1.00 72.58 C
ATOM 1202 O LYS A 158 12.392 54.098 166.127 1.00 77.70 O
ATOM 1203 CB LYS A 158 15.064 52.962 165.997 1.00 66.54 C
ATOM 1204 CG LYS A 158 14.874 52.384 164.609 1.00 67.93 C
ATOM 1205 CD LYS A 158 15.166 50.871 164.619 1.00 81.85 C
ATOM 1206 CE LYS A 158 15.760 50.349 163.291 1.00 94.59 C
ATOM 1207 NZ LYS A 158 17.197 50.748 163.058 1.00 98.75 N
ATOM 1208 N VAL A 159 13.185 55.776 164.836 1.00 64.53 N
ATOM 1209 CA VAL A 159 11.892 56.280 164.358 1.00 66.70 C
ATOM 1210 C VAL A 159 10.926 55.198 163.823 1.00 71.26 C
ATOM 1211 O VAL A 159 11.255 54.488 162.872 1.00 71.52 O
ATOM 1212 CB VAL A 159 12.095 57.389 163.303 1.00 55.09 C
ATOM 1213 CG1 VAL A 159 10.760 57.920 162.837 1.00 53.66 C
ATOM 1214 CG2 VAL A 159 12.940 58.522 163.872 1.00 55.45 C
ATOM 1215 N PRO A 160 9.725 55.083 164.444 1.00 71.27 N
ATOM 1216 CA PRO A 160 8.803 53.942 164.301 1.00 65.30 C
ATOM 1217 C PRO A 160 7.907 53.933 163.071 1.00 66.92 C
ATOM 1218 O PRO A 160 7.445 52.853 162.721 1.00 55.09 O
ATOM 1219 CB PRO A 160 7.923 54.061 165.542 1.00 57.36 C
ATOM 1220 CG PRO A 160 7.842 55.520 165.759 1.00 60.48 C
ATOM 1221 CD PRO A 160 9.235 56.032 165.462 1.00 68.54 C
ATOM 1222 N ALA A 161 7.642 55.094 162.472 1.00 66.97 N
ATOM 1223 CA ALA A 161 6.820 55.212 161.259 1.00 67.12 C
ATOM 1224 C ALA A 161 7.276 56.452 160.487 1.00 80.60 C
ATOM 1225 O ALA A 161 8.014 57.270 161.029 1.00 89.83 O
ATOM 1226 CB ALA A 161 5.330 55.345 161.625 1.00 55.01 C
ATOM 1227 N ASP A 162 6.858 56.596 159.231 1.00 72.53 N ATOM 1228 CA ASP A 162 6.982 57.887 158.562 1.00 61.97
ATOM 1229 C ASP A 162 6.124 58.924 159.307 1.00 64.20
ATOM 1230 O ASP A 162 4.927 58.723 159.503 1.00 71.01
ATOM 1231 CB ASP A 162 6.539 57.781 157.113 1.00 68.69
ATOM 1232 CG ASP A 162 7.664 57.371 156.178 1.00 80.17
ATOM 1233 OD1 ASP A 162 8.751 56.994 156.664 1.00 83.84
ATOM 1234 OD2 ASP A 162 7.446 57.418 154.944 1.00 87.73
ATOM 1235 N ILE A 163 6.726 60.035 159.714 1.00 52.20
ATOM 1236 CA ILE A 163 6.082 60.943 160.659 1.00 56.71
ATOM 1237 C ILE A 163 6.245 62.400 160.251 1.00 60.59
ATOM 1238 O ILE A 163 7.368 62.842 160.01 1 1.00 63.69
ATOM 1239 CB ILE A 163 6.728 60.758 162.064 1.00 58.77
ATOM 1240 CG1 ILE A 163 6.382 59.378 162.614 1.00 50.60
ATOM 1241 CG2 ILE A 163 6.311 61.851 163.036 1.00 50.28
ATOM 1242 CD1 ILE A 163 7.311 58.911 163.623 1.00 50.78
ATOM 1243 N ARG A 164 5.147 63.156 160.167 1.00 56.12
ATOM 1244 CA ARG A 164 5.269 64.622 160.042 1.00 59.52
ATOM 1245 C ARG A 164 5.666 65.178 161.407 1.00 67.42
ATOM 1246 O ARG A 164 5.121 64.765 162.429 1.00 76.50
ATOM 1247 CB ARG A 164 3.965 65.279 159.554 1.00 60.17
ATOM 1248 CG ARG A 164 3.991 66.820 159.425 1.00 53.71
ATOM 1249 CD ARG A 164 4.666 67.276 158.125 1.00 60.73
ATOM 1250 NE ARG A 164 4.494 68.695 157.756 1.00 56.53
ATOM 1251 CZ ARG A 164 4.877 69.747 158.486 1.00 65.56
ATOM 1252 NH 1 ARG A 164 5.432 69.587 159.680 1.00 63.54
ATOM 1253 NH2 ARG A 164 4.690 70.978 158.034 1.00 58.61
ATOM 1254 N ILE A 165 6.619 66.100 161.430 1.00 66.31
ATOM 1255 CA ILE A 165 7.022 66.716 162.685 1.00 66.43
ATOM 1256 C ILE A 165 6.066 67.847 163.100 1.00 74.37
ATOM 1257 O ILE A 165 5.721 68.721 162.293 1.00 80.28
ATOM 1258 CB ILE A 165 8.466 67.223 162.61 1 1.00 63.67
ATOM 1259 CG1 ILE A 165 9.417 66.051 162.408 1.00 60.83
ATOM 1260 CG2 ILE A 165 8.850 67.943 163.882 1.00 66.82
ATOM 1261 CD1 ILE A 165 10.788 66.477 161.999 1.00 67.65
ATOM 1262 N LEU A 166 5.638 67.820 164.362 1.00 67.61
ATOM 1263 CA LEU A 166 4.686 68.802 164.866 1.00 65.16
ATOM 1264 C LEU A 166 5.346 69.928 165.650 1.00 70.52
ATOM 1265 O LEU A 166 5.025 71.107 165.448 1.00 72.40
ATOM 1266 CB LEU A 166 3.657 68.126 165.766 1.00 62.97
ATOM 1267 CG LEU A 166 2.602 67.218 165.162 1.00 64.01 ATOM 1268 CD1 LEU A 166 1.867 66.557 166.300 1.00 64.09 C
ATOM 1269 CD2 LEU A 166 1.662 68.031 164.297 1.00 68.06 C
ATOM 1270 N SER A 167 6.245 69.562 166.563 1.00 54.87 N
ATOM 1271 CA SER A 167 6.886 70.543 167.426 1.00 56.50 C
ATOM 1272 C SER A 167 8.225 70.059 167.941 1.00 66.39 C
ATOM 1273 O SER A 167 8.346 68.918 168.390 1.00 69.07 O
ATOM 1274 CB SER A 167 5.985 70.846 168.607 1.00 64.64 C
ATOM 1275 OG SER A 167 6.685 71.571 169.598 1.00 68.11 O
ATOM 1276 N ILE A 168 9.227 70.931 167.892 1.00 63.50 N
ATOM 1277 CA ILE A 168 10.583 70.547 168.286 1.00 69.71 C
ATOM 1278 C ILE A 168 10.909 71.022 169.710 1.00 71.74 C
ATOM 1279 O ILE A 168 11.066 72.221 169.966 1.00 78.47 O
ATOM 1280 CB ILE A 168 1 1.628 71.038 167.246 1.00 75.60 C
ATOM 1281 CG1 ILE A 168 11.722 70.062 166.093 1.00 58.55 C
ATOM 1282 CG2 ILE A 168 13.008 71.168 167.848 1.00 77.29 C
ATOM 1283 CD1 ILE A 168 12.337 70.673 164.873 1.00106.25 C
ATOM 1284 N LYS A 169 10.996 70.070 170.635 1.00 69.25 N
ATOM 1285 CA LYS A 169 11.102 70.392 172.061 1.00 74.52 C
ATOM 1286 C LYS A 169 12.510 70.837 172.422 1.00 80.84 C
ATOM 1287 O LYS A 169 12.720 71.472 173.452 1.00 85.42 O
ATOM 1288 CB LYS A 169 10.692 69.196 172.930 1.00 73.11 C
ATOM 1289 CG LYS A 169 9.326 68.617 172.590 1.00 78.83 C
ATOM 1290 CD LYS A 169 8.211 69.352 173.318 1.00 88.52 C
ATOM 1291 CE LYS A 169 6.877 69.213 172.610 1.00 81.67 C
ATOM 1292 NZ LYS A 169 6.674 70.335 171.651 1.00 79.73 N
ATOM 1293 N SER A 1 70 13.470 70.502 171.565 1.00 82.51 N
ATOM 1294 CA SER A 170 14.865 70.878 171.773 1.00 86.31 C
ATOM 1295 C SER A 170 15.1 18 72.273 171.236 1.00 97.05 C
ATOM 1296 O SER A 170 14.181 72.983 170.873 1.00103.25 O
ATOM 1297 CB SER A 170 15.774 69.893 171.045 1.00 79.79 C
ATOM 1298 OG SER A 170 15.197 68.598 171.045 1.00 71.76 O
ATOM 1299 N THR A 171 16.384 72.676 171.197 1.00102.47 N
ATOM 1300 CA THR A 171 16.747 73.878 170.452 1.00103.19 C
ATOM 1301 C THR A 171 17.021 73.417 169.034 1.00 96.84 C
ATOM 1302 O THR A 171 17.032 74.214 168.101 1.00103.00 O
ATOM 1303 CB THR A 171 17.978 74.648 171.044 1.00131.75 C
ATOM 1304 OG1 THR A 171 18.984 73.717 171.467 1.00131.69 O
ATOM 1305 CG2 THR A 171 17.567 75.556 172.228 1.00 78.97 C
ATOM 1306 N THR A 172 17.214 72.109 168.887 1.00 84.82 N
ATOM 1307 CA THR A 172 17.541 71.504 167.602 1.00 81.49 C ATOM 1308 C THR A 172 17.166 70.044 167.631 1.00 85.53 C
ATOM 1309 O THR A 1 72 17.498 69.334 168.576 1.00 95.00 O
ATOM 1310 CB THR A 172 19.052 71.523 167.325 1.00 82.21 C
ATOM 131 1 OG1 THR A 172 19.750 71.301 168.555 1.00 98.52 O
ATOM 1312 CG2 THR A 172 19.503 72.847 166.733 1.00 78.35 C
ATOM 1313 N LEU A 173 16.486 69.588 166.587 1.00 81.10 N
ATOM 1314 CA LEU A 173 16.320 68.160 166.370 1.00 71.65 C
ATOM 1315 C LEU A 173 17.300 67.773 165.285 1.00 75.76 C
ATOM 1316 O LEU A 173 17.480 68.515 164.329 1.00 89.96 O
ATOM 1317 CB LEU A 173 14.901 67.825 165.934 1.00 66.13 C
ATOM 1318 CG LEU A 173 14.770 66.350 165.584 1.00 67.03 C
ATOM 1319 CD1 LEU A 173 15.032 65.523 166.831 1.00 59.04 C
ATOM 1320 CD2 LEU A 173 13.415 66.039 164.962 1.00 63.51 C
ATOM 1321 N ARG A 174 17.936 66.620 165.436 1.00 70.35 N
ATOM 1322 CA ARG A 174 19.021 66.223 164.556 1.00 71.83 C
ATOM 1323 C ARG A 174 18.915 64.720 164.295 1.00 68.21 C
ATOM 1324 O ARG A 174 18.827 63.927 165.224 1.00 68.97 O
ATOM 1325 CB ARG A 174 20.349 66.607 165.202 1.00 68.89 C
ATOM 1326 CG ARG A 174 21.553 66.380 164.345 1.00107.86 C
ATOM 1327 CD ARG A 174 22.727 67.239 164.802 1.001 15.57 C
ATOM 1328 NE ARG A 174 22.876 68.443 163.982 1.00124.18 N
ATOM 1329 CZ ARG A 174 23.589 68.501 162.857 1.00129.80 C
ATOM 1330 NH1 ARG A 174 24.222 67.425 162.410 1.00131.58 N
ATOM 1331 NH2 ARG A 174 23.671 69.635 162.170 1.00130.54 N
ATOM 1332 N VAL A 175 18.890 64.325 163.028 1.00 69.37 N
ATOM 1333 CA VAL A 175 18.487 62.963 162.680 1.00 70.06 C
ATOM 1334 C VAL A 175 19.514 62.219 161.812 1.00 78.95 C
ATOM 1335 O VAL A 175 20.167 62.826 160.969 1.00 86.01 O
ATOM 1336 CB VAL A 175 17.138 62.991 161.943 1.00 66.84 C
ATOM 1337 CG1 VAL A 175 16.552 61.645 161.891 1.00 67.52 C
ATOM 1338 CG2 VAL A 175 16.157 63.912 162.642 1.00 65.37 C
ATOM 1339 N ASP A 176 19.658 60.911 162.028 1.00 75.85 N
ATOM 1340 CA ASP A 176 20.546 60.076 161.218 1.00 76.89 C
ATOM 1341 C ASP A 176 19.733 59.267 160.219 1.00 83.71 C
ATOM 1342 O ASP A 176 19.302 58.159 160.517 1.00 92.91 O
ATOM 1343 CB ASP A 176 21.367 59.132 162.109 1.00 74.54 C
ATOM 1344 CG ASP A 176 22.260 58.149 161.314 1.00 82.14 C
ATOM 1345 OD1 ASP A 176 22.197 58.084 160.071 1.00 84.44 O
ATOM 1346 OD2 ASP A 176 23.029 57.397 161.950 1.00 90.77 O
ATOM 1347 N GL A 177 19.557 59.795 159.016 1.00 80.43 N ATOM 1348 CA GLN A 177 18.809 59.067 158.004 1.00 77.96 C
ATOM 1349 C GLN A 177 19.731 58.491 156.932 1.00 82.61 C
ATOM 1350 O GLN A 177 19.397 58.489 155.754 1.00 89.81 O
ATOM 1351 CB GLN A 177 17.704 59.950 157.400 1.00 66.29 C
ATOM 1352 CG GLN A 177 18.171 61.278 156.841 1.00 70.40 C
ATOM 1353 CD GLN A 177 17.052 62.290 156.686 1.00 69.13 C
ATOM 1354 OE1 GLN A 177 16.117 62.321 157.469 1.00 63.18 O
ATOM 1355 NE2 GLN A 177 17.153 63.129 155.675 1.00 77.36 N
ATOM 1356 N SER A 178 20.889 57.988 157.342 1.00 86.79 N
ATOM 1357 CA SER A 178 21.867 57.460 156.391 1.00 94.64 C
ATOM 1358 C SER A 178 21.367 56.205 155.690 1.00 98.23 C
ATOM 1359 O SER A 178 21.529 56.043 154.482 1.00103.83 O
ATOM 1360 CB SER A 178 23.140 57.086 157.122 1.00 97.37 C
ATOM 1361 OG SER A 178 23.000 55.781 157.655 1.00100.19 O
ATOM 1362 N ILE A 179 20.782 55.312 156.480 1.00 97.18 N
ATOM 1363 CA ILE A 179 20.214 54.051 156.015 1.00 94.81 C
ATOM 1364 C ILE A 179 19.162 54.306 154.926 1.00 91.25 C
ATOM 1365 O ILE A 179 18.842 53.439 154.104 1.00 82.52 O
ATOM 1366 CB ILE A 179 19.601 53.298 157.225 1.00 87.82 C
ATOM 1367 CG1 ILE A 179 18.824 52.051 156.792 1.00 91.32 C
ATOM 1368 CG2 ILE A 179 18.743 54.255 158.060 1.00 75.90 C
ATOM 1369 CD1 ILE A 179 18.181 51.292 157.930 1.00 89.41 C
ATOM 1370 N LEU A 180 18.647 55.527 154.911 1.00 95.33 N
ATOM 1371 CA LEU A 180 17.659 55.921 153.927 1.00 94.61 C
ATOM 1372 C LEU A 180 18.210 56.793 152.784 1.00 96.29 C
ATOM 1373 O LEU A 180 18.103 56.426 151.618 1.00101.27 O
ATOM 1374 CB LEU A 180 16.497 56.628 154.614 1.00 88.61 C
ATOM 1375 CG LEU A 180 15.405 56.962 153.608 1.00 96.77 C
ATOM 1376 CD1 LEU A 180 14.908 55.688 152.929 1.00 98.80 C
ATOM 1377 CD2 LEU A 180 14.279 57.679 154.293 1.00 96.75 C
ATOM 1378 N THR A 181 18.785 57.948 153.116 1.00 91.27 N
ATOM 1379 CA THR A 181 19.155 58.935 152.104 1.00 86.10 C
ATOM 1380 C THR A 181 20.637 58.863 151.733 1.00 96.84 C
ATOM 1381 O THR A 181 21.067 59.433 150.722 1.00109.07 O
ATOM 1382 CB THR A 181 18.825 60.370 152.564 1.00 80.62 C
ATOM 1383 OG1 THR A 181 19.804 60.798 153.515 1.00 77.69 O
ATOM 1384 CG2 THR A 181 17.411 60.457 153.191 1.00 71.39 C
ATOM 1385 N GLY A 182 21.419 58.166 152.550 1.00 87.50 N
ATOM 1386 CA GLY A 182 22.834 58.030 152.283 1.00 91.61 C
ATOM 1387 C GLY A 182 23.626 59.195 152.842 1.00105.38 C ATOM 1388 O GLY A 182 24.865 59.159 152.855 1.00118.22 O
ATOM 389 N GLU A 183 22.918 60.234 153.291 1.00100.93 N
ATOM 1390 CA GLU A 183 23.554 61.351 153.992 1.00106.05 C
ATOM 1391 C GLU A 183 24.257 60.761 155.220 1.00118.69 C
ATOM 1392 O GLU A 183 23.596 60.399 156.204 1.001 18.45 O
ATOM 1393 CB GLU A 183 22.519 62.402 154.436 1.00 98.79 C
ATOM 1394 CG GLU A 183 21.828 63.242 153.351 1.00 80.00 C
ATOM 1395 CD GLU A 183 20.440 63.753 153.798 1.00 93.10 C
ATOM 396 OE1 GLU A 183 20.125 64.944 153.590 1.00 94.49 O
ATOM 1397 OE2 GLU A 183 19.654 62.963 154.364 1.00 73.60 O
ATOM 1398 N SER A 184 25.584 60.636 155.165 1.00126.71 N
ATOM 1399 CA SER A 184 26.311 59.983 156.257 1.00130.96 C
ATOM 1400 C SER A 184 26.330 60.827 157.538 1.00125.15 C
ATOM 1401 O SER A 184 26.276 60.294 158.656 1.00122.20 O
ATOM 1402 CB SER A 184 27.730 59.614 155.831 1.00138.48 C
ATOM 1403 OG SER A 184 28.297 58.694 156.751 1.00141.70 O
ATOM 1404 N VAL A 185 26.401 62.144 157.361 1.00115.79 N
ATOM 1405 CA VAL A 185 26.298 63.081 158.472 1.00106.94 C
ATOM 1406 C VAL A 185 24.841 63.175 158.933 1.00104.03 C
ATOM 1407 O VAL A 185 23.933 62.753 158.221 1.00110.87 O
ATOM 1408 CB VAL A 185 26.781 64.471 158.044 1.00100.97 C
ATOM 1409 CG1 VAL A 185 27.133 65.321 159.261 1.00 99.30 C
ATOM 1410 CG2 VAL A 185 27.982 64.336 157.128 1.00101.91 C
ATOM 141 1 N SER A 186 24.612 63.71 1 160.127 1.00 95.80 N
ATOM 1412 CA SER A 186 23.253 63.937 160.598 1.00 84.09 C
ATOM 1413 C SER A 186 22.737 65.247 160.039 1.00 78.57 C
ATOM 1414 O SER A 186 23.502 66.184 159.825 1.00 79.96 O
ATOM 1415 CB SER A 186 23.200 63.972 162.1 17 1.00 86.41 c
ATOM 1416 OG SER A 186 23.924 65.082 162.607 1.00 94.01 0
ATOM 1417 N VAL A 187 21.429 65.298 159.809 1.00 80.49 N
ATOM 1418 CA VAL A 187 20.771 66.427 159.175 1.00 71.64 c
ATOM 1419 C VAL A 187 19.877 67.058 160.219 1.00 91.54 C
ATOM 1420 O VAL A 187 19.508 66.402 161.193 1.00 67.72 O
ATOM 1421 CB VAL A 187 19.914 65.918 158.045 1.00125.88 C
ATOM 1422 CG1 VAL A 187 20.740 65.023 157.158 1.00 72.79 C
ATOM 1423 CG2 VAL A 187 18.754 65.1 17 158.603 1.00 67.33 C
ATOM 1424 N ILE A 188 19.536 68.330 160.051 1.00 69.66 N
ATOM 1425 CA ILE A 188 18.586 68.938 160.981 1.00 90.86 C
ATOM 1426 C ILE A 188 17.173 68.955 160.402 1.00 65.55 C
ATOM 1427 O ILE A 188 16.973 68.781 159.199 1.00110.92 O ATOM 1428 CB ILE A 188 19.026 70.340 161.481 1.00 69.77 C
ATOM 1429 CG1 ILE A 188 19.028 71.358 160.362 1.00 95.02 C
ATOM 1430 CG2 ILE A 188 20.400 70.283 162.113 1.00 72.31 C
ATOM 1431 CD1 ILE A 188 17.812 72.251 160.386 1.00 99.78 C
ATOM 1432 N LYS A 189 16.185 69.136 161.262 1.00 72.04 N
ATOM 1433 CA LYS A 189 14.802 69.188 160.815 1.00 61.88 C
ATOM 1434 C LYS A 189 14.109 70.465 161.294 1.00 81.69 C
ATOM 1435 O LYS A 189 14.516 71.074 162.276 1.00 86.90 O
ATOM 1436 CB LYS A 189 14.047 67.957 161.313 1.00 59.60 C
ATOM 1437 CG LYS A 189 14.644 66.631 160.881 1.00 67.81 C
ATOM 1438 CD LYS A 189 14.395 66.343 159.411 1.00 65.67 C
ATOM 1439 CE LYS A 189 14.702 64.895 159.074 1.00 63.84 C
ATOM 1440 NZ LYS A 189 14.543 64.618 157.618 1.00 68.58 N
ATOM 1441 N HIS A 190 13.074 70.882 160.583 1.00 61.55 N
ATOM 1442 CA HIS A 190 12.227 71.959 161.061 1.00 82.84 C
ATOM 1443 C HIS A 190 10.763 71.492 161.047 1.00 77.95 C
ATOM 1444 O HIS A 190 10.496 70.289 160.927 1.00 71.62 O
ATOM 1445 CB HIS A 190 12.428 73.213 160.214 1.00 85.56 C
ATOM 1446 CG HIS A 190 12.243 72.981 158.751 1.00 93.23 C
ATOM 1447 ND1 HIS A 190 11.005 72.975 158.148 1.00 98.83 N
ATOM 1448 CD2 HIS A 190 13.141 72.729 157.769 1.00100.51 C
ATOM 1449 CE1 HIS A 190 11.147 72.740 156.856 1.00106.11 C
ATOM 1450 NE2 HIS A 190 12.435 72.587 156.602 1.00107.03 N
ATOM 1451 N THR A 191 9.824 72.434 161.177 1.00 71.97 N
ATOM 1452 CA THR A 191 8.409 72.088 161.263 1.00 65.29 C
ATOM 1453 C THR A 191 7.543 72.886 160.304 1.00 75.45 C
ATOM 1454 O THR A 191 6.324 72.675 160.265 1.00 82.95 O
ATOM 1455 CB THR A 191 7.835 72.271 162.697 1.00 59.64 C
ATOM 1456 OG1 THR A 191 7.997 73.629 163.111 1.00 60.41 O
ATOM 1457 CG2 THR A 191 8.524 71.366 163.695 1.00 57.46 C
ATOM 1458 N GLU A 192 8.153 73.809 159.551 1.00 79.84 N
ATOM 1459 CA GLU A 192 7.432 74.551 158.503 1.00 80.74 C
ATOM 1460 C GLU A 192 7.206 73.585 157.332 1.00 76.61 C
ATOM 1461 O GLU A 192 7.877 72.548 157.256 1.00 76.51 O
ATOM 1462 CB GLU A 192 8.187 75.813 158.057 1.00 66.41 C
ATOM 1463 CG GLU A 192 8.553 76.793 159.149 1.00128.93 C
ATOM 1464 CD GLU A 192 7.369 77.215 160.001 1.00131.73 C
ATOM 1465 OE1 GLU A 192 6.283 77.432 159.425 1.00134.44 O
ATOM 1466 OE2 GLU A 192 7.524 77.327 161.245 1.00130.60 O
ATOM 1467 N PRO A 193 6.259 73.899 156.425 1.00 69.40 N ATOM 1468 CA PRO A 193 5.980 72.952 155.342 1.00 73.56 C
ATOM 1469 C PRO A 193 6.937 73.079 154.156 1.00 83.35 C
ATOM 1470 O PRO A 193 7.476 74.168 153.894 1.00 68.08 O
ATOM 1471 CB PRO A 193 4.569 73.343 154.908 1.00 65.04 C
ATOM 1472 CG PRO A 193 4.521 74.803 155.131 1.00 73.14 C
ATOM 1473 CD PRO A 193 5.383 75.082 156.345 1.00 71.00 C
ATOM 1474 N VAL A 194 7.133 71.951 153.466 1.00 83.02 N
ATOM 1475 CA VAL A 194 7.895 71.866 152.219 1.00 77.31 C
ATOM 1476 C VAL A 194 6.901 71.870 151.075 1.00 84.48 C
ATOM 1477 O VAL A 194 6.314 70.832 150.750 1.00 89.41 O
ATOM 1478 CB VAL A 194 8.678 70.554 152.135 1.00 68.48 C
ATOM 1479 CG1 VAL A 194 9.339 70.413 150.783 1.00 71.05 C
ATOM 1480 CG2 VAL A 194 9.696 70.472 153.247 1.00 65.55 C
ATOM 1481 N PRO A 195 6.697 73.046 150.467 1.00 79.45 N
ATOM 1482 CA PRO A 195 5.669 73.305 149.452 1.00 79.57 C
ATOM 1483 C PRO A 195 5.585 72.299 148.304 1.00 81.91 C
ATOM 1484 O PRO A 195 4.470 71.998 147.890 1.00 85.19 O
ATOM 1485 CB PRO A 195 6.054 74.684 148.926 1.00 77.25 C
ATOM 1486 CG PRO A 195 6.630 75.345 150.106 1.00 80.91 C
ATOM 1487 CD PRO A 195 7.411 74.280 150.832 1.00 74.00 C
ATOM 1488 N ASP A 196 6.709 71.798 147.801 1.00 76.06 N
ATOM 1489 CA ASP A 196 6.682 70.922 146.631 1.00 77.91 C
ATOM 1490 C ASP A 196 6.164 69.549 146.997 1.00 75.60 C
ATOM 1491 O ASP A 196 6.749 68.878 147.833 1.00 75.94 O
ATOM 1492 CB ASP A 196 8.084 70.802 146.042 1.00101.66 C
ATOM 1493 CG ASP A 196 8.117 70.022 144.743 1.00104.42 C
ATOM 1494 OD1 ASP A 196 7.355 69.041 144.595 1.00 81.81 O
ATOM 1495 OD2 ASP A 196 8.932 70.392 143.868 1.00111.97 O
ATOM 1496 N PRO A 197 5.061 69.119 146.372 1.00 76.66 N
ATOM 1497 CA PRO A 197 4.545 67.779 146.672 1.00 92.03 C
ATOM 1498 C PRO A 197 5.491 66.692 146.190 1.00 98.79 C
ATOM 1499 O PRO A 197 5.757 65.713 146.900 1.00 73.40 O
ATOM 1500 CB PRO A 197 3.256 67.722 145.871 1.00 77.07 C
ATOM 1501 CG PRO A 197 2.855 69.133 145.710 1.00136.86 C
ATOM 1502 CD PRO A 197 4.110 69.909 145.580 1.00 79.40 C
ATOM 1503 N ARG A 198 6.010 66.883 144.984 1.00 79.01 N
ATOM 1504 CA ARG A 198 6.875 65.902 144.362 1.00 94.18 C
ATOM 1505 C ARG A 198 8.285 65.849 144.982 1.00 93.16 C
ATOM 1506 O ARG A 198 9.183 65.221 144.409 1.00 83.02 O
ATOM 1507 CB ARG A 198 7.016 66.230 142.884 1.00100.17 C ATOM 1508 CG ARG A 198 5.738 66.429 142.125 1.00 87.23 C
ATOM 1509 CD ARG A 198 5.286 65.1 16 141.519 1.00117.77 C
ATOM 1510 NE ARG A 198 4.267 65.279 140.479 1.00 92.17 N
ATOM 1511 CZ ARG A 198 4.535 65.253 139.187 1.00 97.43 C
ATOM 1512 NH1 ARG A 198 5.790 65.086 138.778 1.00103.74 N
ATOM 1513 NH2 ARG A 198 3.561 65.402 138.309 1.00104.01 N
ATOM 1514 N ALA A 199 8.486 66.507 146.127 1.00 93.29 N
ATOM 1515 CA ALA A 199 9.820 66.634 146.722 1.00 76.04 C
ATOM 1516 C ALA A 199 10.480 65.297 147.029 1.00 75.26 C
ATOM 1517 O ALA A 199 9.824 64.274 147.222 1.00 80.44 O
ATOM 1518 CB ALA A 199 9.802 67.523 147.965 1.00 73.49 C
ATOM 1519 N VAL A 200 11.805 65.330 147.062 1.00 79.83 N
ATOM 1520 CA VAL A 200 12.638 64.149 147.230 1.00 76.58 C
ATOM 1521 C VAL A 200 13.018 64.015 148.721 1.00 83.50 C
ATOM 1522 O VAL A 200 13.132 65.029 149.419 1.00 87.74 O
ATOM 1523 CB VAL A 200 13.852 64.287 146.289 1.00 80.43 C
ATOM 1524 CG1 VAL A 200 14.648 65.533 146.639 1.00114.32 C
ATOM 1525 CG2 VAL A 200 14.703 63.046 146.297 1.00108.09 C
ATOM 1526 N ASN A 201 13.167 62.782 149.215 1.00 76.22 N
ATOM 1527 CA ASN A 201 13.253 62.521 150.667 1.00 72.98 C
ATOM 1528 C ASN A 201 14.127 63.495 151.406 1.00 69.21 C
ATOM 1529 O ASN A 201 13.750 64.053 152.418 1.00 80.94 O
ATOM 1530 CB ASN A 201 13.781 61.125 150.957 1.00 69.72 C
ATOM 1531 CG ASN A 201 12.810 60.045 150.592 1.00 80.30 C
ATOM 1532 OD1 ASN A 201 1 1.606 60.225 150.695 1.00 67.98 O
ATOM 1533 ND2 ASN A 201 13.327 58.898 150.174 1.00 85.04 N
ATOM 1534 N GL A 202 15.303 63.716 150.850 1.00 88.60 N
ATOM 1535 CA GLN A 202 16.312 64.553 151.465 1.00 82.19 C
ATOM 1536 C GLN A 202 15.898 66.029 151.538 1.00 78.83 C
ATOM 1537 O GLN A 202 16.598 66.853 152.120 1.00 76.29 O
ATOM 1538 CB GLN A 202 17.626 64.381 150.707 1.00 83.44 C
ATOM 1539 CG GLN A 202 18.044 65.584 149.931 1.00 84.86 C
ATOM 1540 CD GLN A 202 19.507 65.842 150.070 1.00 86.64 C
ATOM 1541 OE1 GLN A 202 20.320 64.935 149.881 1.00 88.81 O
ATOM 1542 NE2 GLN A 202 19.863 67.077 150.421 1.00 86.51 N
ATOM 1543 N ASP A 203 14.745 66.363 150.968 1.00 81.63 N
ATOM 1544 CA ASP A 203 14.300 67.748 150.986 1.00 71.80 C
ATOM 1545 C ASP A 203 13.059 67.942 151.827 1.00 76.78 C
ATOM 1546 O ASP A 203 12.609 69.071 152.032 1.00 77.39 O
ATOM 1547 CB ASP A 203 14.099 68.267 149.583 1.00 74.67 C ATOM 1548 CG ASP A 203 15.316 68.982 149.071 1.00 93.96 C
ATOM 1549 OD1 ASP A 203 15.915 69.720 149.902 1.00 90.46 O
ATOM 1550 OD2 ASP A 203 15.671 68.799 147.861 1.00 86.61 O
ATOM 1551 N LYS A 204 12.533 66.824 152.320 1.00 66.73 N
ATOM 1552 CA LYS A 204 11.451 66.81 1 153.290 1.00 79.59 C
ATOM 1553 C LYS A 204 12.019 67.028 154.698 1.00 72.15 C
ATOM 1554 O LYS A 204 11.946 66.154 155.571 1.00 63.46 O
ATOM 1555 CB LYS A 204 10.718 65.477 153.232 1.00 62.83 C
ATOM 1556 CG LYS A 204 10.100 65.144 151.896 1.00 85.96 C
ATOM 1557 CD LYS A 204 9.780 63.686 151.881 1.00 63.90 C
ATOM 1558 CE LYS A 204 9.344 63.192 150.557 1.00 66.07 C
ATOM 1559 NZ LYS A 204 9.077 61.742 150.696 1.00 99.16 N
ATOM 1560 N LYS A 205 12.572 68.21 1 154.927 1.00 63.68 N
ATOM 1561 CA LYS A 205 13.231 68.510 156.184 1.00 63.09 C
ATOM 1562 C LYS A 205 12.243 68.590 157.321 1.00 67.64 C
ATOM 1563 O LYS A 205 12.604 68.969 158.430 1.00 66.72 O
ATOM 1564 CB LYS A 205 14.012 69.814 156.067 1.00 65.31 C
ATOM 1565 CG LYS A 205 14.996 69.786 154.923 1.00 68.01 C
ATOM 1566 CD LYS A 205 15.963 70.946 154.950 1.00 90.50 C
ATOM 1567 CE LYS A 205 17.016 70.785 153.864 1.00 73.55 C
ATOM 1568 NZ LYS A 205 17.614 72.090 153.474 1.00112.63 N
ATOM 1569 N ASN A 206 10.989 68.241 157.050 1.00 67.57 N
ATOM 1570 CA ASN A 206 9.967 68.241 158.090 1.00 63.32 C
ATOM 1571 C ASN A 206 9.404 66.855 158.383 1.00 59.23 C
ATOM 1572 O ASN A 206 8.421 66.728 159.095 1.00 58.61 O
ATOM 1573 CB ASN A 206 8.853 69.240 157.773 1.00 58.24 C
ATOM 1574 CG ASN A 206 8.054 68.859 156.552 1.00 72.89 C
ATOM 1575 OD1 ASN A 206 8.132 67.730 156.070 1.00 70.96 O
ATOM 1576 ND2 ASN A 206 7.255 69.800 156.050 1.00 77.76 N
ATOM 1577 N MET A 207 10.041 65.820 157.837 1.00 64.70 N
ATOM 1578 CA MET A 207 9.616 64.436 158.066 1.00 64.50 C
ATOM 1579 C MET A 207 10.660 63.634 158.829 1.00 63.42 C
ATOM 1580 O MET A 207 11.845 63.903 158.708 1.00 64.76 O
ATOM 1581 CB MET A 207 9.322 63.742 156.731 1.00 64.37 C
ATOM 1582 CG MET A 207 8.201 64.395 155.944 1.00 56.87 C
ATOM 1583 SD MET A 207 6.600 64.207 156.732 1.00 67.96 S
ATOM 1584 CE MET A 207 6.541 62.420 156.848 1.00 54.74 C
ATOM 1585 N LEU A 208 10.217 62.665 159.627 1.00 54.20 N
ATOM 1586 CA LEU A 208 11.113 61.643 160.168 1.00 62.14 C
ATOM 1587 C LEU A 208 10.679 60.305 159.583 1.00 56.64 C ATOM 1588 O LEU A 208 9.577 59.846 159.840 1.00 55.10 O
ATOM 1589 CB LEU A 208 11.086 61.597 161.700 1.00 53.64 C
ATOM 1590 CG LEU A 208 11.183 62.945 162.411 1.00 63.55 C
ATOM 1591 CD1 LEU A 208 10.561 62.908 163.810 1.00 55.82 C
ATOM 1592 CD2 LEU A 208 12.620 63.399 162.489 1.00 69.18 C
ATOM 1593 N PHE A 209 11.535 59.687 158.781 1.00 59.70 N
ATOM 1594 CA PHE A 209 1 1.167 58.436 158.134 1.00 68.23 C
ATOM 1595 C PHE A 209 11.440 57.260 159.074 1.00 69.34 C
ATOM 1596 O PHE A 209 12.298 57.355 159.950 1.00 72.80 O
ATOM 1597 CB PHE A 209 11.933 58.257 156.805 1.00 69.60 C
ATOM 1598 CG PHE A 209 12.024 59.512 155.971 1.00 63.30 C
ATOM 1599 CD1 PHE A 209 10.980 59.886 155.134 1.00 65.12 C
ATOM 1600 CD2 PHE A 209 13.153 60.311 156.018 1.00 64.72 C
ATOM 1601 CE1 PHE A 209 11.066 61.033 154.361 1.00 70.86 C
ATOM 1602 CE2 PHE A 209 13.238 61.463 155.256 1.00 72.78 C
ATOM 1603 CZ PHE A 209 12.194 61.823 154.424 1.00 74.80 C
ATOM 1604 N SER A 210 10.735 56.150 158.862 1.00 65.65 N
ATOM 1605 CA SER A 210 10.899 54.934 159.664 1.00 71.52 C
ATOM 1606 C SER A 210 12.325 54.377 159.587 1.00 74.67 C
ATOM 1607 O SER A 210 13.092 54.780 158.735 1.00 68.86 O
ATOM 1608 CB SER A 210 9.905 53.876 159.184 1.00 77.56 C
ATOM 1609 OG SER A 210 9.432 53.054 160.234 1.00 75.81 O
ATOM 1610 N GLY A 211 12.684 53.460 160.484 1.00 83.46 N
ATOM 1611 CA GLY A 21 14.014 52.851 160.475 1.00 87.15 C
ATOM 1612 C GLY A 211 15.225 53.764 160.674 1.00 81.85 C
ATOM 1613 O GLY A 211 16.364 53.343 160.514 1.00 85.85 O
ATOM 1614 N THR A 212 14.968 55.004 161.067 1.00 74.93 N
ATOM 1615 CA THR A 212 15.965 56.059 161.139 1.00 68.45 C
ATOM 1616 C THR A 212 16.216 56.462 162.594 1.00 76.82 C
ATOM 1617 O THR A 212 15.291 56.467 163.384 1.00 92.12 O
ATOM 1618 CB THR A 212 15.421 57.258 160.363 1.00 66.07 C
ATOM 1619 OG1 THR A 212 15.629 57.040 158.970 1.00 65.11 O
ATOM 1620 CG2 THR A 212 16.088 58.512 160.752 1.00 61.15 C
ATOM 1621 N ASN A 213 17.460 56.790 162.947 1.00 80.56 N
ATOM 1622 CA ASN A 213 17.844 57.155 164.318 1.00 79.52 C
ATOM 1623 C ASN A 213 17.736 58.653 164.595 1.00 78.00 C
ATOM 1624 O ASN A 213 17.893 59.465 163.692 1.00 83.89 O
ATOM 1625 CB ASN A 213 19.298 56.755 164.588 1.00 86.63 C
ATOM 1626 CG ASN A 213 19.526 55.265 164.503 1.00103.72 C
ATOM 1627 OD1 ASN A 213 18.601 54.475 164.674 1.001 11.97 O ATOM 1628 ND2 ASN A 213 20.777 54.867 164.252 1.001 10.98 N
ATOM 1629 N ILE A 214 17.508 59.023 165.849 1.00 72.14 N
ATOM 1630 CA ILE A 214 17.679 60.410 166.256 1.00 62.19 C
ATOM 1631 C ILE A 214 19.042 60.592 166.916 1.00 78.91 C
ATOM 1632 O ILE A 214 19.392 59.876 167.856 1.00 66.08 O
ATOM 1633 CB ILE A 214 16.594 60.862 167.231 1.00 63.71 C
ATOM 1634 CG1 ILE A 214 15.211 60.500 166.683 1.00 61.51 C
ATOM 1635 CG2 ILE A 214 16.731 62.352 167.519 1.00 60.89 C
ATOM 1636 CD1 ILE A 214 14.413 61.671 166.160 1.00 56.88 C
ATOM 1637 N ALA A 215 19.806 61.560 166.424 1.00 66.35 N
ATOM 1638 CA ALA A 215 21.164 61.789 166.887 1.00 69.47 C
ATOM 1639 C ALA A 215 21.229 62.784 168.043 1.00 83.27 C
ATOM 1640 O ALA A 215 22.1 10 62.696 168.904 1.00 80.72 O
ATOM 1641 CB ALA A 215 21.987 62.280 165.745 1.00 71.19 C
ATOM 1642 N ALA A 216 20.299 63.735 168.041 1.00 81.91 N
ATOM 1643 CA ALA A 216 20.215 64.780 169.055 1.00 69.06 C
ATOM 1644 C ALA A 216 18.793 65.330 169.073 1.00 74.67 C
ATOM 1645 O ALA A 216 18.185 65.526 168.029 1.00 80.35 O
ATOM 1646 CB ALA A 216 21.185 65.887 168.741 1.00 71.57 C
ATOM 1647 N GLY A 217 18.247 65.573 170.253 1.00 75.10 N
ATOM 1648 CA GLY A 217 16.964 66.248 170.330 1.00 68.38 C
ATOM 1649 C GLY A 217 15.767 65.432 170.788 1.00 66.35 C
ATOM 1650 O GLY A 217 15.841 64.221 171.016 1.00 65.47 O
ATOM 1651 N LYS A 218 14.646 66.126 170.933 1.00 66.87 N
ATOM 1652 CA LYS A 218 13.380 65.508 171.290 1.00 69.81 C
ATOM 1653 C LYS A 218 12.346 66.207 170.428 1.00 69.00 C
ATOM 1654 O LYS A 218 12.454 67.418 170.187 1.00 70.77 O
ATOM 1655 CB LYS A 218 13.069 65.733 172.777 1.00 60.99 C
ATOM 1656 CG LYS A 218 11.854 64.976 173.312 1.00 65.40 C
ATOM 1657 CD LYS A 218 11.597 65.307 174.775 1.00 76.62 C
ATOM 1658 CE LYS A 218 10.323 64.653 175.302 1.00 87.38 C
ATOM 1659 NZ LYS A 218 9.999 65.042 176.722 1.00 93.94 N
ATOM 1660 N ALA A 219 11.355 65.457 169.950 1.00 62.44 N
ATOM 1661 CA ALA A 219 10.312 66.051 169.126 1.00 60.82 C
ATOM 1662 C ALA A 219 9.023 65.262 169.173 1.00 62.79 C
ATOM 1663 O ALA A 219 9.015 64.072 169.515 1.00 62.06 O
ATOM 1664 CB ALA A 219 10.785 66.203 167.686 1.00 59.60 C
ATOM 1665 N LEU A 220 7.941 65.956 168.818 1.00 64.45 N
ATOM 1666 CA LEU A 220 6.595 65.398 168.742 1.00 56.73 C
ATOM 1667 C LEU A 220 6.084 65.513 167.304 1.00 59.20 C ATOM 1668 O LEU A 220 6.292 66.545 166.650 1.00 63.51 O
ATOM 1669 CB LEU A 220 5.678 66.194 169.655 1.00 60.48 C
ATOM 1670 CG LEU A 220 4.344 65.550 170.003 1.00 70.04 C
ATOM 1671 CD1 LEU A 220 4.556 64.486 171.060 1.00 70.66 C
ATOM 1672 CD2 LEU A 220 3.334 66.600 170.452 1.00 74.93 C
ATOM 1673 N GLY A 221 5.420 64.469 166.805 1.00 57.47 N
ATOM 1674 CA GLY A 221 4.878 64.500 165.455 1.00 58.70 C
ATOM 1675 C GLY A 221 3.621 63.680 165.252 1.00 62.44 C
ATOM 1676 O GLY A 221 3.199 62.959 166.159 1.00 71.20 O
ATOM 1677 N ILE A 222 3.013 63.798 164.068 1.00 56.55 N
ATOM 1678 CA ILE A 222 1.849 62.969 163.695 1.00 59.46 C
ATOM 1679 C ILE A 222 2.200 61.945 162.612 1.00 62.88 C
ATOM 1680 O ILE A 222 2.858 62.262 161.608 1.00 68.16 O
ATOM 1681 CB ILE A 222 0.626 63.818 163.236 1.00 65.80 C
ATOM 1682 CG1 ILE A 222 -0.617 62.948 163.076 1.00 65.24 C
ATOM 1683 CG2 ILE A 222 0.897 64.548 161.920 1.00 62.94 C
ATOM 1684 CD1 ILE A 222 -1.785 63.688 162.411 1.00 63.72 C
ATOM 1685 N VAL A 223 1.774 60.709 162.827 1.00 56.52 N
ATOM 1686 CA VAL A 223 2.090 59.635 161.898 1.00 55.33 C
ATOM 1687 C VAL A 223 1.326 59.770 160.584 1.00 58.98 C
ATOM 1688 O VAL A 223 0.106 59.766 160.579 1.00 73.66 O
ATOM 1689 CB VAL A 223 1.769 58.288 162.507 1.00 50.97 C
ATOM 1690 CG1 VAL A 223 1.925 57.214 161.478 1.00 76.82 C
ATOM 1691 CG2 VAL A 223 2.677 58.037 163.690 1.00 50.46 C
ATOM 1692 N ALA A 224 2.046 59.876 159.471 1.00 57.69 N
ATOM 1693 CA ALA A 224 1.408 60.069 158.175 1.00 62.28 C
ATOM 1694 C ALA A 224 1.193 58.759 157.415 1.00 68.89 C
ATOM 1695 O ALA A 224 0.152 58.574 156.755 1.00 67.30 O
ATOM 1696 CB ALA A 224 2.205 61.053 157.325 1.00 54.12 C
ATOM 1697 N THR A 225 2.194 57.877 157.442 1.00 54.78 N
ATOM 1698 CA THR A 225 2.074 56.571 156.789 1.00 56.26 C
ATOM 1699 C THR A 225 2.870 55.494 157.528 1.00 63.59 C
ATOM 1700 O THR A 225 3.917 55.770 158.088 1.00 60.70 O
ATOM 1701 CB THR A 225 2.429 56.604 155.242 1.00 65.69 C
ATOM 1702 OG1 THR A 225 3.689 55.972 154.979 1.00 60.04 O
ATOM 1703 CG2 THR A 225 2.454 58.025 154.670 1.00 58.26 C
ATOM 1704 N THR A 226 2.357 54.269 157.540 1.00 64.70 N
ATOM 1705 C A THR A 226 3.031 53.154 158.200 1.00 63.76 C
ATOM 1706 C THR A 226 3.275 52.01 1 157.219 1.00 69.59 C
ATOM 1707 O THR A 226 3.299 52.248 156.026 1.00 75.79 O ATOM 1708 CB THR A 226 2.220 52.680 159.389 1.00 71.80 C
ATOM 1709 OG1 THR A 226 0.870 52.412 158.983 1.00 82.13 O
ATOM 1710 CG2 THR A 226 2.200 53.762 160.440 1.00 77.18 C
ATOM 171 1 N GLY A 227 3.484 50.793 157.710 1.00 60.55 N
ATOM 1712 CA GLY A 227 3.652 49.621 156.852 1.00 73.10 C
ATOM 1713 C GLY A 227 4.469 49.772 155.568 1.00 69.22 C
ATOM 1714 O GLY A 227 5.402 50.565 155.514 1.00 66.94 O
ATOM 1715 N VAL A 228 4.120 49.019 154.527 1.00 67.54 N
ATOM 1716 CA VAL A 228 4.764 49.183 153.219 1.00 92.05 C
ATOM 1717 C VAL A 228 4.681 50.602 152.647 1.00 88.55 C
ATOM 1718 O VAL A 228 5.476 50.961 151.787 1.00 89.00 O
ATOM 1719 CB VAL A 228 4.191 48.227 152.156 1.00 73.10 C
ATOM 1720 CG1 VAL A 228 4.864 46.873 152.222 1.00 85.78 C
ATOM 1721 CG2 VAL A 228 2.710 48.096 152.339 1.00 73.32 C
ATOM 1722 N SER A 229 3.736 51.412 153.107 1.00 66.50 N
ATOM 1723 CA SER A 229 3.576 52.749 152.540 1.00 71.01 C
ATOM 1724 C SER A 229 4.717 53.692 152.883 1.00 69.80 C
ATOM 1725 O SER A 229 4.891 54.714 152.230 1.00 75.86 O
ATOM 1726 CB SER A 229 2.238 53.369 152.944 1.00 74.44 C
ATOM 1727 OG SER A 229 1.171 52.488 152.639 1.00 75.71 O
ATOM 1728 N THR A 230 5.486 53.343 153.909 1.00 73.28 N
ATOM 1729 CA THR A 230 6.645 54.134 154.336 1.00 61.85 C
ATOM 1730 C THR A 230 7.737 54.182 153.276 1.00 70.62 C
ATOM 1731 O THR A 230 7.838 53.294 152.423 1.00 73.32 O
ATOM 1732 CB THR A 230 7.277 53.539 155.577 1.00 60.84 C
ATOM 1733 OG1 THR A 230 7.597 52.171 155.321 1.00 82.85 O
ATOM 734 CG2 THR A 230 6.332 53.612 156.746 1.00 58.84 C
ATOM 1735 N GLU A 231 8.558 55.226 153.348 1.00 73.07 N
ATOM 1736 CA GLU A 231 9.710 55.393 152.467 1.00 77.72 C
ATOM 1737 C GLU A 231 10.636 54.192 152.470 1.00 82.90 C
ATOM 1738 O GLU A 231 11.186 53.81 1 151.437 1.00 91.64 O
ATOM 1739 CB GLU A 231 10.511 56.634 152.863 1.00 75.67 C
ATOM 1740 CG GLU A 231 9.986 57.894 152.238 1.00 80.16 C
ATOM 1741 CD GLU A 231 9.702 57.705 150.766 1.00 89.59 C
ATOM 1742 OE1 GLU A 231 10.627 57.265 150.034 1.00101.03 O
ATOM 1743 OE2 GLU A 231 8.551 57.974 150.350 1.00 81.06 O
ATOM 1744 N ILE A 232 10.818 53.608 153.642 1.00 79.73 N
ATOM 1745 CA ILE A 232 11.688 52.456 153.778 1.00 79.24 C
ATOM 1746 C ILE A 232 10.936 51.175 153.409 1.00 79.37 C
ATOM 1747 O ILE A 232 11.535 50.227 152.875 1.00 79.00 O ATOM 1748 CB ILE A 232 12.341 52.389 155.197 1.00 71.93 C
ATOM 1749 CG1 ILE A 232 13.138 51.109 155.359 1.00 77.92 C
ATOM 1750 CG2 ILE A 232 11.317 52.521 156.314 1.00 63.92 C
ATOM 1751 CD1 ILE A 232 13.650 50.936 156.737 1.00 86.91 C
ATOM 1752 N GLY A 233 9.622 51.171 153.658 1.00 74.66 N
ATOM 1753 CA GLY A 233 8.759 50.071 153.254 1.00 81.64 C
ATOM 1754 C GLY A 233 8.800 49.792 151.751 1.00 92.12 C
ATOM 1755 O GLY A 233 8.900 48.638 151.313 1.00 90.86 O
ATOM 1756 N LYS A 234 8.717 50.855 150.959 1.00 73.06 N
ATOM 1757 CA LYS A 234 8.851 50.755 149.516 1.00 76.47 C
ATOM 1758 C LYS A 234 10.191 50.125 149.121 1.00 81.34 C
ATOM 1759 O LYS A 234 10.291 49.379 148.148 1.00 87.66 O
ATOM 1760 CB LYS A 234 8.727 52.142 148.892 1.00 75.95 C
ATOM 1761 CG LYS A 234 7.431 52.862 149.219 1.00 74.08 C
ATOM 1762 CD LYS A 234 7.376 54.234 148.557 1.00 75.86 C
ATOM 1763 CE LYS A 234 6.175 55.044 149.040 1.00 80.30 C
ATOM 1764 NZ LYS A 234 6.278 56.467 148.603 1.00 86.33 N
ATOM 1765 N ILE A 235 1 1.224 50.423 149.891 1.00 83.07 N
ATOM 1766 CA ILE A 235 12.551 49.909 149.611 1.00 93.05 C
ATOM 1767 C ILE A 235 12.729 48.474 150.118 1.00104.91 C
ATOM 1768 O ILE A 235 13.255 47.620 149.402 1.00101.03 O
ATOM 1769 CB ILE A 235 13.613 50.839 150.208 1.00 90.26 C
ATOM 1770 CG1 ILE A 235 13.662 52.133 149.395 1.00 79.67 C
ATOM 1771 CG2 ILE A 235 14.967 50.142 150.273 1.00 82.40 C
ATOM 1772 CD1 ILE A 235 14.338 53.284 150.092 1.00 77.92 C
ATOM 1773 N ARG A 236 12.273 48.204 151.341 1.00115.38 N
ATOM 1774 CA ARG A 236 12.412 46.864 151.917 1.00120.96 C
ATOM 1775 C ARG A 236 11.553 45.826 151.189 1.00118.49 C
ATOM 1776 O ARG A 236 1 1.898 44.647 151.148 1.00117.82 O
ATOM 1777 CB ARG A 236 12.117 46.858 153.425 1.00120.89 C
ATOM 1778 CG ARG A 236 13.206 47.469 154.299 1.00124.76 C
ATOM 1779 CD ARG A 236 13.397 46.673 155.590 1.00138.48 C
ATOM 1780 NE ARG A 236 13.754 47.534 156.720 1.00148.86 N
ATOM 1781 CZ ARG A 236 14.068 47.097 157.938 1.00151.96 C
ATOM 1782 NH1 ARG A 236 14.085 45.795 158.199 1.00156.65 N
ATOM 1783 NH2 ARG A 236 14.372 47.966 158.897 1.00147.06 N
ATOM 1784 O ASP A 237 10.138 43.680 148.217 1.00128.06 O
ATOM 1785 N ASP A 237 10.440 46.272 150.616 1.00121.68 N
ATOM 1786 CA ASP A 237 9.576 45.404 149.815 1.00133.14 C
ATOM 1787 C ASP A 237 10.310 44.848 148.578 1.00130.26 C ATOM 1788 CB ASP A 237 8.303 46.159 149.398 1.00138.31 C
ATOM 1789 CG ASP A 237 7.038 45.326 149.556 1.00133.74 C
ATOM 1790 OD1 ASP A 237 6.792 44.816 150.672 1.00126.54 O
ATOM 1791 OD2 ASP A 237 6.294 45.189 148.558 1.00133.46 O
ATOM 1792 O GLN A 238 13.583 44.858 148.676 1.00188.11 O
ATOM 1793 N GLN A 238 11.113 45.693 147.933 1.00181.16 N
ATOM 1794 CA GLN A 238 12.044 45.249 146.893 1.00183.08 C
ATOM 1795 C GLN A 238 13.180 44.484 147.573 1.00183.65 C
ATOM 1796 CB GLN A 238 12.587 46.457 146.127 1.00184.61 C
ATOM 1797 CG GL A 238 13.529 46.1 16 144.987 1.00189.67 C
ATOM 1798 CD GLN A 238 13.757 47.293 144.049 1.00192.85 C
ATOM 1799 OE1 GLN A 238 13.373 48.427 144.353 1.00193.90 O
ATOM 1800 NE2 GLN A 238 14.378 47.026 142.899 1.00190.43 N
ATOM 1801 O MET A 239 12.556 41.761 148.542 1.00257.43 O
ATOM 1802 N MET A 239 13.679 43.421 146.935 1.00180.46 N
ATOM 1803 CA MET A 239 14.603 42.480 147.585 1.00182.84 C
ATOM 1804 C MET A 239 13.782 41.697 148.656 1.00257.42 C
ATOM 1805 CB MET A 239 15.864 43.220 148.042 1.00187.22 C
ATOM 1806 CG MET A 239 17.053 43.030 147.108 1.00189.35 C
ATOM 1807 SD MET A 239 18.483 43.998 147.622 1.00224.09 S
ATOM 1808 CE MET A 239 19.814 42.920 147.108 1.00215.08 C
ATOM 1809 O ALA A 240 16.625 39.727 148.399 1.00252.43 O
ATOM 1810 N ALA A 240 14.296 40.966 149.669 1.00256.61 N
ATOM 1811 CA ALA A 240 15.646 40.863 150.263 1.00255.86 C
ATOM 1812 C ALA A 240 16.813 40.516 149.324 1.00254.77 C
ATOM 1813 CB ALA A 240 15.605 39.885 151.442 1.00255.57 C
ATOM 1814 O ALA A 241 18.346 41.562 53.082 1.00253.07 O
ATOM 1815 N ALA A 241 18.023 41.068 149.533 1.00255.59 N
ATOM 1816 CA ALA A 241 18.522 41.867 150.696 1.00255.95 C
ATOM 1817 C ALA A 241 18.730 41.105 152.004 1.00254.07 C
ATOM 1818 CB ALA A 241 17.770 43.217 150.923 1.00286.50 C
ATOM 1819 O THR A 242 21.951 38.740 152.075 1.00249.32 O
ATOM 1820 N THR A 242 19.364 39.945 151.886 1.00253.02 N
ATOM 1821 CA THR A 242 19.788 39.179 153.048 1.00251.1 1 C
ATOM 1822 C THR A 242 21.316 39.061 153.085 1.00249.25 C
ATOM 1823 CB THR A 242 19.120 37.790 153.090 1.00249.82 C
ATOM 1824 OG1 THR A 242 19.063 37.247 151.765 1.00248.67 O
ATOM 1825 CG2 THR A 242 17.705 37.908 153.641 1.00247.92 C
ATOM 1826 O GLU A 243 24.967 37.791 153.626 1.00242.51 O
ATOM 1827 N GLU A 243 21.887 39.351 154.253 1.00245.87 N ATOM 1828 CA GLU A 243 23.329 39.323 154.468 1.00239.74 C
ATOM 1829 C GLU A 243 23.861 37.942 154.145 1.00241.01 C
ATOM 1830 CB GLU A 243 23.639 39.659 155.924 1.00231.62 C
ATOM 1831 CG GLU A 243 22.826 40.819 156.469 1.00222.03 C
ATOM 1832 CD GLU A 243 22.789 40.838 157.981 1.00215.53 C
ATOM 1833 OE1 GLU A 243 23.044 39.782 158.594 1.00212.06 O
ATOM 1834 OE2 GLU A 243 22.507 41.909 158.555 1.00215.92 O
ATOM 1835 O GLN A 244 25.346 34.393 153.678 1.00245.35 O
ATOM 1836 N GLN A 244 23.056 36.939 154.483 1.00241.48 N
ATOM 1837 CA GLN A 244 23.286 35.556 154.076 1.00241.97 C
ATOM 1838 C GLN A 244 24.622 34.946 154.511 1.00244.62 C
ATOM 1839 CB GLN A 244 23.097 35.407 152.561 1.00238.84 C
ATOM 1840 CG GLN A 244 21.641 35.405 152.121 1.00234.42 C
ATOM 1841 CD GLN A 244 21.482 35.418 150.613 1.00231.52 C
ATOM 1842 OE1 GLN A 244 22.463 35.520 149.876 1.00231.98 O
ATOM 1843 NE2 GLN A 244 20.242 35.315 150.146 1.00229.08 N
ATOM 1844 O ASP A 245 27.489 35.554 155.064 1.00179.07 O
ATOM 1845 N ASP A 245 24.943 35.054 155.802 1.00244.95 N
ATOM 1846 C A ASP A 245 25.995 34.232 156.405 1.00243.99 C
ATOM 1847 C ASP A 245 27.397 34.589 155.826 1.00178.92 C
ATOM 1848 CB ASP A 245 25.587 32.756 156.236 1.00241.19 C
ATOM 1849 CG ASP A 245 24.367 32.390 157.060 1.00238.57 C
ATOM 1850 OD1 ASP A 245 24.532 32.083 158.259 1.00238.55 O
ATOM 1851 OD2 ASP A 245 23.246 32.412 156.509 1.00236.92 O
ATOM 1852 O LYS A 246 30.402 34.234 158.073 1.00175.01 O
ATOM 1853 N LYS A 246 28.496 33.910 156.194 1.00178.84 N
ATOM 1854 CA LYS A 246 28.604 32.889 157.239 1.00176.80 C
ATOM 1855 C LYS A 246 29.622 33.310 158.289 1.00175.08 C
ATOM 1856 CB LYS A 246 29.050 31.549 156.644 1.00179.41 C
ATOM 1857 CG LYS A 246 28.406 31.162 155.318 1.00181.64 C
ATOM 1858 CD LYS A 246 27.844 29.741 155.352 1.00185.38 C
ATOM 1859 CE LYS A 246 26.622 29.597 154.444 1.00185.86 C
ATOM 1860 NZ LYS A 246 26.023 28.227 154.390 1.00185.38 N
ATOM 1861 N THR A 247 29.620 32.615 159.421 1.00176.53 N
ATOM 1862 CA THR A 247 30.557 32.900 160.502 1.00182.21 C
ATOM 1863 C THR A 247 31.996 32.587 160.068 1.00187.72 C
ATOM 1864 O THR A 247 32.210 31.729 159.214 1.00186.70 O
ATOM 1865 CB THR A 247 30.183 32.121 161.789 1.00196.54 C
ATOM 1866 OG1 THR A 247 29.817 30.780 161.451 1.00196.12 O
ATOM 1867 CG2 THR A 247 29.011 32.782 162.506 1.00163.76 C ATOM 1868 N PRO A 248 32.984 33.302 160.636 1.00103.41 N
ATOM 1869 CA PRO A 248 34.393 33.119 160.262 1.00117.73 C
ATOM 1870 C PRO A 248 34.894 31.722 160.593 1.00127.64 C
ATOM 1871 O PRO A 248 35.736 31.168 159.884 1.00134.29 O
ATOM 1872 CB PRO A 248 35.124 34.154 161.122 1.00119.14 C
ATOM 1873 CG PRO A 248 34.178 34.450 162.244 1.00116.54 C
ATOM 1874 CD PRO A 248 32.826 34.382 161.621 1.00108.77 C
ATOM 1875 N LEU A 249 34.380 31.159 161.675 1.00128.50 N
ATOM 1876 CA LEU A 249 34.743 29.806 162.053 1.00127.72 C
ATOM 1877 C LEU A 249 34.122 28.841 161.063 1.00128.60 C
ATOM 1878 O LEU A 249 34.667 27.772 160.810 1.00128.62 O
ATOM 1879 CB LEU A 249 34.258 29.493 163.469 1.00119.32 C
ATOM 1880 CG LEU A 249 34.748 28.210 164.132 1.00105.17 C
ATOM 1881 CD1 LEU A 249 36.261 28.243 164.296 1.00111.23 C
ATOM 1882 CD2 LEU A 249 34.067 28.047 165.464 1.00 92.10 C
ATOM 1883 N GLN A 250 32.985 29.234 160.495 1.00132.92 N
ATOM 1884 CA GLN A 250 32.263 28.381 159.559 1.00137.02 C
ATOM 1885 C GL A 250 33.071 28.166 158.293 1.00139.50 C
ATOM 1886 O GLN A 250 32.915 27.150 157.618 1.00135.55 O
ATOM 1887 CB GLN A 250 30.916 28.998 159.200 1.00136.51 C
ATOM 1888 CG GL A 250 29.790 28.003 159.064 1.00133.33 C
ATOM 1889 CD GLN A 250 28.452 28.635 159.366 1.00133.73 C
ATOM 1890 OE1 GLN A 250 28.304 29.857 159.313 1.00134.76 O
ATOM 1891 NE2 GLN A 250 27.472 27.810 159.700 1.00133.01 N
ATOM 1892 N GLN A 251 33.934 29.130 157.985 1.00142.49 N
ATOM 1893 CA GLN A 251 34.772 29.066 156.796 1.00142.66 C
ATOM 1894 C GLN A 251 36.030 28.249 157.057 1.00135.43 C
ATOM 1895 O GLN A 251 36.422 27.422 156.233 1.00134.58 O
ATOM 1896 CB GLN A 251 35.142 30.473 156.327 1.00151.84 C
ATOM 1897 CG GLN A 251 35.914 30.501 155.022 1.00162.71 C
ATOM 1898 CD GLN A 251 36.065 31.905 154.474 1.00175.28 C
ATOM 1899 OE1 GLN A 251 35.553 32.863 155.054 1.00181.05 O
ATOM 1900 NE2 GLN A 251 36.766 32.035 153.351 1.00177.21 N
ATOM 1901 N LYS A 252 36.653 28.480 158.210 1.00129.33 N
ATOM 1902 CA LYS A 252 37.868 27.765 158.577 1.00123.89 C
ATOM 1903 C LYS A 252 37.582 26.273 158.642 1.00112.65 C
ATOM 1904 O LYS A 252 38.437 25.444 158.336 1.00109.44 O
ATOM 1905 CB LYS A 252 38.397 28.254 159.927 1.00124.93 C
ATOM 1906 CG LYS A 252 38.589 29.758 160.025 1.00130.57 C
ATOM 1907 CD LYS A 252 39.157 30.135 161.386 1.00136.46 C ATOM 1908 CE LYS A 252 39.074 31.633 161.652 1.00136.84 C
ATOM 1909 NZ LYS A 252 37.692 32.062 161.989 1.00129.63 N
ATOM 1910 N LEU A 253 36.360 25.945 159.034 1.00108.51 N
ATOM 191 1 CA LEU A 253 35.938 24.559 159.157 1.00110.24 C
ATOM 1912 C LEU A 253 35.373 24.063 157.833 1.00111.53 C
ATOM 1913 O LEU A 253 35.386 22.865 157.552 1.00107.99 O
ATOM 1914 CB LEU A 253 34.917 24.416 160.296 1.00112.14 C
ATOM 1915 CG LEU A 253 34.097 23.137 160.475 1.00111.07 C
ATOM 1916 CD1 LEU A 253 33.791 22.902 161.932 1.00112.63 C
ATOM 1917 CD2 LEU A 253 32.800 23.250 159.713 1.00113.29 C
ATOM 1918 N ASP A 254 34.874 24.995 157.026 1.00119.64 N
ATOM 1919 CA ASP A 254 34.395 24.681 155.685 1.00123.25 C
ATOM 1920 C ASP A 254 35.563 24.214 154.820 1.001 19.92 C
ATOM 1921 O ASP A 254 35.464 23.212 154.102 1.001 16.50 O
ATOM 1922 CB ASP A 254 33.747 25.913 155.051 1.00129.31 C
ATOM 1923 CG ASP A 254 32.901 25.571 153.847 1.00134.73 C
ATOM 1924 OD1 ASP A 254 32.368 24.441 153.801 1.00137.85 O
ATOM 1925 OD2 ASP A 254 32.770 26.433 152.947 1.00136.09 O
ATOM 1926 N GLU A 255 36.665 24.954 154.897 1.001 17.64 N
ATOM 1927 CA GLU A 255 37.877 24.620 154.160 1.00118.42 C
ATOM 1928 C GLU A 255 38.363 23.218 154.522 1.00112.61 C
ATOM 1929 O GLU A 255 38.780 22.451 153.657 1.00110.45 O
ATOM 1930 CB GLU A 255 38.968 25.665 154.431 1.00127.13 C
ATOM 1931 CG GLU A 255 38.573 27.088 154.039 1.00134.60 C
ATOM 1932 CD GLU A 255 39.628 28.119 154.396 1.00143.49 C
ATOM 1933 OE1 GLU A 255 39.252 29.245 154.792 1.00143.37 O
ATOM 1934 OE2 GLU A 255 40.833 27.808 154.269 1.00150.70 O
ATOM 1935 N PHE A 256 38.294 22.884 155.805 1.00112.91 N
ATOM 1936 CA PHE A 256 38.661 21.552 156.271 1.00109.01 C
ATOM 1937 C PHE A 256 37.686 20.519 155.737 1.00114.56 C
ATOM 1938 O PHE A 256 38.025 19.346 155.594 1.00114.61 O
ATOM 1939 CB PHE A 256 38.669 21.509 157.792 1.00101.76 C
ATOM 1940 CG PHE A 256 38.843 20.135 158.357 1.00100.23 C
ATOM 1941 CD1 PHE A 256 40.106 19.614 158.565 1.00103.61 C
ATOM 1942 CD2 PHE A 256 37.744 19.364 158.697 1.00 99.57 C
ATOM 1943 CE1 PHE A 256 40.271 18.346 159.099 1.00105.27 C
ATOM 1944 CE2 PHE A 256 37.903 18.099 159.222 1.00101.11 C
ATOM 1945 CZ PHE A 256 39.167 17.589 159.425 1.00104.46 c
ATOM 1946 N GLY A 257 36.465 20.960 155.461 1.00122.96 N
ATOM 1947 CA GLY A 257 35.462 20.096 154.870 1.00125.40 C ATOM 1948 C GLY A 257 35.839 19.768 153.444 1.00123.33 C
ATOM 1949 O GLY A 257 35.760 18.61 1 153.026 1.00120.84 O
ATOM 1950 N GLU A 258 36.261 20.796 152.709 1.00124.15 N
ATOM 1951 CA GLU A 258 36.711 20.636 151.333 1.00127.28 C
ATOM 1952 C GLU A 258 37.883 19.670 151.269 1.00127.76 C
ATOM 1953 O GLU A 258 37.837 18.699 150.519 1.00130.95 O
ATOM 1954 CB GLU A 258 37.126 21.982 150.744 1.00140.70 C
ATOM 1955 CG GLU A 258 36.165 23.131 151.035 1.00155.49 C
ATOM 1956 CD GLU A 258 34.985 23.187 150.077 1.00164.56 C
ATOM 1957 OE1 GLU A 258 34.783 22.213 149.316 1.00167.01 O
ATOM 1958 OE2 GLU A 258 34.265 24.214 150.085 1.00166.09 O
ATOM 1959 N GLN A 259 38.924 19.945 152.059 1.00127.37 N
ATOM 1960 CA GLN A 259 40.108 19.080 152.151 1.00123.29 C
ATOM 1961 C GLN A 259 39.727 17.613 152.335 1.001 16.45 C
ATOM 1962 O GLN A 259 40.079 16.765 151.517 1.00112.99 O
ATOM 1963 CB GL A 259 41.028 19.519 153.305 1.00127.28 C
ATOM 1964 CG GLN A 259 42.155 18.511 153.623 1.00131.47 C
ATOM 1965 CD GLN A 259 42.792 18.695 155.011 1.00131.07 C
ATOM 1966 OE1 GLN A 259 42.934 19.818 155.506 1.00134.77 O
ATOM 1967 NE2 GLN A 259 43.177 17.581 155.638 1.00121.90 N
ATOM 1968 N LEU A 260 38.996 17.331 153.410 1.00118.18 N
ATOM 1969 CA LEU A 260 38.579 15.973 153.750 1.001 13.39 C
ATOM 1970 C LEU A 260 37.715 15.353 152.657 1.00106.62 C
ATOM 1971 O LEU A 260 37.948 14.216 152.242 1.00104.19 O
ATOM 1972 CB LEU A 260 37.827 15.965 155.086 1.00109.59 C
ATOM 1973 CG LEU A 260 37.545 14.597 155.712 1.00107.17 C
ATOM 1974 CD1 LEU A 260 38.795 13.746 155.715 1.00108.15 C
ATOM 1975 CD2 LEU A 260 37.034 14.755 157.129 1.00105.32 C
ATOM 1976 N SER A 261 36.724 16.108 152.193 1.00102.69 N
ATOM 1977 CA SER A 261 35.843 15.640 151.131 1.00104.75 C
ATOM 1978 C SER A 261 36.619 15.165 149.899 1.001 12.93 C
ATOM 1979 O SER A 261 36.272 14.153 149.285 1.00115.04 O
ATOM 1980 CB SER A 261 34.850 16.728 150.744 1.00101.97 C
ATOM 1981 OG SER A 261 34.153 16.349 149.579 1.00105.88 O
ATOM 1982 N LYS A 262 37.674 15.898 149.557 1.00117.07 N
ATOM 1983 CA LYS A 262 38.570 15.522 148.467 1.00115.64 C
ATOM 1984 C LYS A 262 39.192 14.138 148.705 1.00109.32 C
ATOM 1985 O LYS A 262 39.033 13.228 147.887 1.00108.38 O
ATOM 1986 CB LYS A 262 39.660 16.589 148.284 1.001 18.86 C
ATOM 1987 CG LYS A 262 40.714 16.259 147.231 1.00128.20 C ATOM 1988 CD LYSA262 41.798 17.338147.158 1.00137.04 C
ATOM 1989 CE LYSA262 42.921 16.970146.175 1.00138.51 C
ATOM 1990 NZ LYSA262 43.724 15.791146.619 1.00135.93 N
ATOM 1991 N VALA263 39.885 13.982149.830 1.00102.62 N
ATOM 1992 CA VALA263 40.585 12.735150.133 1.00102.37 C
ATOM 1993 C VALA263 39.628 11.546150.138 1.00110.94 C
ATOM 1994 O VALA263 40.021 10.424149.817 1.00110.40 O
ATOM 1995 CB VALA263 41.324 12.801151.493 1.0093.52 C
ATOM 1996 CG1 VAL A 263 42.156 11.535151.725 1.0085.33 C
ATOM 1997 CG2 VAL A 263 42.194 14.045151.573 1.0089.76 C
ATOM 1998 N ILEA 264 38.369 11.790150.492 1.00115.70 N
ATOM 1999 CA ILEA 264 37.384 10.714150.499 1.00118.26 C
ATOM 2000 C ILEA 264 37.005 10.348149.066 1.00116.72 C
ATOM 2001 O ILEA 264 36.778 9.176148.753 1.00120.54 O
ATOM 2002 CB ILEA 264 36.135 11.064151.333 1.00115.30 C
ATOM 2003 CG1 ILEA 264 36.519 11.304152.794 1.00111.01 C
ATOM 2004 CG2 ILEA 264 35.113 9.943151.269 1.00115.73 C
ATOM 2005 CD1 ILEA 264 35.334 11.592153.697 1.00107.14 C
ATOM 2006 N SERA 265 36.966 11.352148.195 1.00109.23 N
ATOM 2007 CA SERA 265 36.721 11.113146.780 1.00112.46 C
ATOM 2008 C SERA 265 37.812 10.230146.172 1.00116.17 C
ATOM 2009 O SERA 265 37.517 9.258145.470 1.00116.96 O
ATOM 2010 CB SERA 265 36.631 12.433146.019 1.00117.68 C
ATOM 2011 OG SERA 265 35.618 13.259146.562 1.00123.84 O
ATOM 2012 N LEU A 266 39.069 10.568146.449 1.00115.59 N
ATOM 2013 CA LEU A 266 40.197 9.783145.957 1.00113.87 C
ATOM 2014 C LEU A 266 40.090 8.344146.433 1.00112.04 C
ATOM 2015 O LEU A 266 40.212 7.419145.638 1.00117.55 O
ATOM 2016 CB LEU A 266 41.524 10.386146.412 1.00118.96 C
ATOM 2017 CG LEU A 266 41.679 11.887146.138 1.00127.51 C
ATOM 2018 CD1 LEU A 266 42.995 12.427146.713 1.00130.91 C
ATOM 2019 CD2 LEU A 266 41.549 12.207144.644 1.00125.50 C
ATOM 2020 N ILEA 267 39.837 8.159147.725 1.00105.39 N
ATOM 2021 CA ILEA 267 39.737 6.819148.301 1.00102.98 C
ATOM 2022 C ILEA 267 38.526 6.058147.756 1.00110.56 C
ATOM 2023 O ILEA 267 38.535 4.824147.672 1.00114.55 O
ATOM 2024 CB ILEA 267 39.733 6.866149.845 1.0095.87 C
ATOM 2025 CG1 ILEA 267 41.033 7.502150.342 1.0098.16 C
ATOM 2026 CG2 ILEA 267 39.588 5.471150.435 1.0091.81 C
ATOM 2027 CD1 ILEA 267 41.049 7.847151.812 1.0097.76 C ATOM 2028 N CYS A 268 37.498 6.801 147.357 1.00113.69 N
ATOM 2029 CA CYS A 268 36.324 6.202 146.730 1.00121.14 C
ATOM 2030 C CYS A 268 36.614 5.692 145.322 1.00129.11 C
ATOM 2031 O CYS A 268 36.196 4.594 144.951 1.00134.95 O
ATOM 2032 CB CYS A 268 35.171 7.196 146.690 1.00118.1 1 C
ATOM 2033 SG CYS A 268 34.223 7.221 148.197 1.00126.06 S
ATOM 2034 N VAL A 269 37.317 6.495 144.531 1.00123.12 N
ATOM 2035 CA VAL A 269 37.710 6.059 143.200 1.00115.61 C
ATOM 2036 C VAL A 269 38.677 4.884 143.291 1.00119.38 C
ATOM 2037 O VAL A 269 38.61 1 3.946 142.501 1.00122.55 O
ATOM 2038 CB VAL A 269 38.392 7.180 142.428 1.00104.69 C
ATOM 2039 CG1 VAL A 269 38.740 6.706 141.042 1.00103.15 C
ATOM 2040 CG2 VAL A 269 37.494 8.398 142.370 1.00102.17 C
ATOM 2041 N ALA A 270 39.569 4.937 144.273 1.00120.10 N
ATOM 2042 CA ALA A 270 40.600 3.921 144.420 1.00123.36 C
ATOM 2043 C ALA A 270 40.038 2.562 144.828 1.00131.41 C
ATOM 2044 O ALA A 270 40.654 1.534 144.554 1.00137.99 O
ATOM 2045 CB ALA A 270 41.668 4.375 145.401 1.00120.77 C
ATOM 2046 N VAL A 271 38.878 2.544 145.478 1.00129.83 N
ATOM 2047 CA VAL A 271 38.270 1.265 145.834 1.00132.13 C
ATOM 2048 C VAL A 271 37.721 0.605 144.569 1.00129.72 C
ATOM 2049 O VAL A 271 37.553 -0.620 144.502 1.00128.20 O
ATOM 2050 CB VAL A 271 37.172 1.403 146.922 1.001 12.26 C
ATOM 2051 CG1 VAL A 271 35.903 2.000 146.354 1.00109.17 C
ATOM 2052 CG2 VAL A 271 36.862 0.055 147.520 1.001 17.26 C
ATOM 2053 N TRP A 272 37.473 1.433 143.558 1.00123.45 N
ATOM 2054 CA TRP A 272 36.940 0.964 142.290 1.001 19.90 C
ATOM 2055 C TRP A 272 38.027 0.286 141.465 1.00121.43 C
ATOM 2056 O TRP A 272 37.801 -0.786 140.897 1.00129.78 O
ATOM 2057 CB TRP A 272 36.330 2.131 141.531 1.00115.50 C
ATOM 2058 CG TRP A 272 35.494 1.756 140.359 1.00119.38 C
ATOM 2059 CD1 TRP A 272 34.201 1.315 140.375 1.00120.58 C
ATOM 2060 CD2 TRP A 272 35.876 1.828 138.983 1.00121.87 C
ATOM 2061 NE1 TRP A 272 33.760 1.097 139.092 1.00122.06 N
ATOM 2062 CE2 TRP A 272 34.771 1.407 138.220 1.00121.29 C
ATOM 2063 CE3 TRP A 272 37.050 2.205 138.324 1.00120.11 C
ATOM 2064 CZ2 TRP A 272 34.805 1.349 136.832 1.00119.60 C
ATOM 2065 CZ3 TRP A 272 37.081 2.148 136.948 1.00117.79 C
ATOM 2066 CH2 TRP A 272 35.966 1.723 136.216 1.00118.28 C
ATOM 2067 N LEU A 273 39.210 0.895 141.407 1.00112.94 N ATOM 2068 CA LEU A 273 40.333 0.261 140.719 1.00112.38 C
ATOM 2069 C LEU A 273 40.828 -1.026 141.392 1.00115.34 C
ATOM 2070 O LEU A 273 41.398 -1.876 140.725 1.00121.00 O
ATOM 2071 CB LEU A 273 41.520 1.210 140.519 1.00111.18 C
ATOM 2072 CG LEU A 273 41.508 2.706 140.848 1.00110.64 C
ATOM 2073 CD1 LEU A 273 42.935 2.766 141.560 1.00235.80 C
ATOM 2074 CD2 LEU A 273 40.718 3.427 139.748 1.00101.76 C
ATOM 2075 N ILE A 274 40.637 -1.176 142.700 1.00115.48 N
ATOM 2076 CA ILE A 274 41.046 -2.418 143.346 1.00128.78 C
ATOM 2077 C ILE A 274 40.257 -3.558 142.738 1.00136.12 C
ATOM 2078 O ILE A 274 40.748 -4.680 142.590 1.00140.22 O
ATOM 2079 CB ILE A 274 40.755 -2.431 144.843 1.00140.20 C
ATOM 2080 CG1 ILE A 274 41.363 -1.213 145.530 1.00141.41 C
ATOM 2081 CG2 ILE A 274 41.286 -3.723 145.465 1.00148.39 C
ATOM 2082 CD1 ILE A 274 41.008 -1.120 146.997 1.00146.92 C
ATOM 2083 N ASN A 275 39.015 -3.255 142.390 1.00137.59 N
ATOM 2084 CA ASN A 275 38.150 -4.242 141.771 1.00142.48 C
ATOM 2085 C ASN A 275 38.290 -4.251 140.251 1.00143.40 C
ATOM 2086 O ASN A 275 37.850 -5.185 139.598 1.00151.69 O
ATOM 2087 CB ASN A 275 36.692 -4.032 142.189 1.00138.12 C
ATOM 2088 CG ASN A 275 36.424 -4.466 143.621 1.00130.69 C
ATOM 2089 OD1 ASN A 275 35.997 -3.663 144.455 1.00126.51 O
ATOM 2090 ND2 ASN A 275 36.660 -5.745 143.909 1.00126.79 N
ATOM 2091 N ILE A 276 38.927 -3.229 139.689 1.00132.71 N
ATOM 2092 CA ILE A 276 39.035 -3.129 138.234 1.00130.83 C
ATOM 2093 C ILE A 276 39.685 -4.358 137.570 1.00136.60 C
ATOM 2094 O ILE A 276 39.546 -4.552 136.363 1.00140.12 O
ATOM 2095 CB ILE A 276 39.795 -1.871 137.816 1.00128.33 C
ATOM 2096 CG1 ILE A 276 39.226 -1.302 136.517 1.00122.77 C
ATOM 2097 CG2 ILE A 276 41.263 -2.175 137.653 1.00133.95 C
ATOM 2098 CD1 ILE A 276 39.895 -0.014 136.084 1.001 19.22 C
ATOM 2099 N GLY A 277 40.397 -5.173 138.349 1.00136.44 N
ATOM 2100 CA GLY A 277 40.892 -6.446 137.857 1.00141.61 C
ATOM 2101 C GLY A 277 39.908 -7.556 138.175 1.00148.23 C
ATOM 2102 O GLY A 277 39.951 -8.638 137.587 1.00151.85 O
ATOM 2103 N HIS A 278 39.010 -7.271 139.110 1.00149.37 N
ATOM 2104 CA HIS A 278 38.051 -8.249 139.614 1.00153.24 C
ATOM 2105 C HIS A 278 36.709 -8.135 138.876 1.00150.92 C
ATOM 2106 O HIS A 278 35.784 -8.897 139.152 1.00152.93 O
ATOM 2107 CB HIS A 278 37.843 -8.000 141.1 16 1.00151.49 C ATOM 2108 CG HIS A 278 37.669 -9.242 141.934 1.00156.47 C
ATOM 2109 ND1 HIS A 278 36.489 -9.952 141.971 1.00162.53 N
ATOM 2110 CD2 HIS A 278 38.516 -9.878 142.778 1.00159.09 C
ATOM 2111 CE1 HIS A 278 36.620 -10.981 142.789 1.00166.00 C
ATOM 2112 NE2 HIS A 278 37.841 -10.960 143.293 1.00164.87 N
ATOM 2113 N PHE A 279 36.609 -7.186 137.945 1.00144.07 N
ATOM 2114 CA PHE A 279 35.351 -6.902 137.251 1.00141.17 C
ATOM 2115 C PHE A 279 34.771 -8.093 136.494 1.00154.38 C
ATOM 21 16 O PHE A 279 33.551 -8.203 136.340 1.00155.48 O
ATOM 2117 CB PHE A 279 35.524 -5.743 136.274 1.00131.30 C
ATOM 2118 CG PHE A 279 35.360 -4.389 136.899 1.00127.52 C
ATOM 21 19 CD2 PHE A 279 35.004 -3.298 136.126 1.00123.42 C
ATOM 2120 CD1 PHE A 279 35.547 -4.207 138.254 1.00125.21 C
ATOM 2121 CE2 PHE A 279 34.862 -2.054 136.686 1.001 16.21 C
ATOM 2122 CE1 PHE A 279 35.408 -2.960 138.830 1.00121.00 C
ATOM 2123 CZ PHE A 279 35.054 -1.881 138.040 1.00117.04 C
ATOM 2124 N ASN A 280 35.644 -8.969 136.002 1.00161.87 N
ATOM 2125 CA ASN A 280 35.189 -10.120 135.228 1.00168.46 C
ATOM 2126 C ASN A 280 34.986 -1 1.414 136.030 1.00174.16 C
ATOM 2127 O ASN A 280 34.563 -12.430 135.479 1.00182.03 O
ATOM 2128 CB ASN A 280 36.046 -10.344 133.963 1.00168.68 C
ATOM 2129 CG ASN A 280 37.522 -10.578 134.263 1.00168.19 C
ATOM 2130 OD1 ASN A 280 37.900 -10.950 135.373 1.00173.41 O
ATOM 2131 ND2 ASN A 280 38.363 -10.369 133.256 1.00162.52 N
ATOM 2132 N ASP A 281 35.278 -11.375 137.328 1.00169.95 N
ATOM 2133 CA ASP A 281 34.927 -12.483 138.211 1.00173.70 C
ATOM 2134 C ASP A 281 33.399 -12.508 138.279 1.00175.73 C
ATOM 2135 O ASP A 281 32.763 -11.461 138.140 1.00173.58 O
ATOM 2136 CB ASP A 281 35.547 -12.265 139.599 1.00175.21 C
ATOM 2137 CG ASP A 281 35.369 -13.462 140.532 1.00183.79 C
ATOM 2138 OD1 ASP A 281 36.126 -14.446 140.395 1.00186.60 O
ATOM 2139 OD2 ASP A 281 34.475 -13.417 141.406 1.00186.18 O
ATOM 2140 N PRO A 282 32.800 -13.701 138.455 1.00178.37 N
ATOM 2141 CA PRO A 282 31.336 -13.826 138.511 1.00177.06 C
ATOM 2142 C PRO A 282 30.595 -12.940 139.529 1.00168.94 C
ATOM 2143 O PRO A 282 30.405 -13.329 140.684 1.00164.02 O
ATOM 2144 CB PRO A 282 31.117 -15.313 138.838 1.00181.74 C
ATOM 2145 CG PRO A 282 32.464 -15.841 139.237 1.00183.24 C
ATOM 2146 CD PRO A 282 33.444 -15.022 138.468 1.00179.96 C
ATOM 2147 N VAL A 283 30.164 -11.762 139.077 1.00162.66 N ATOM 2148 CA VAL A 283 29.101 -11.030 139.763 1.00162.59 C
ATOM 2149 C VAL A 283 27.826 -10.703 138.940 1.00246.49 C
ATOM 2150 O VAL A 283 27.247 -9.642 139.178 1.00245.00 O
ATOM 2151 CB VAL A 283 29.612 -9.686 140.400 1.00141.56 C
ATOM 2152 CG1 VAL A 283 30.472 -9.931 141.633 1.00138.07 C
ATOM 2153 CG2 VAL A 283 30.362 -8.860 139.385 1.00138.14 C
ATOM 2154 N HIS A 284 27.348 -1 1.534 137.996 1.00250.31 N
ATOM 2155 CA HIS A 284 27.934 -12.780 137.476 1.00253.30 C
ATOM 2156 C HIS A 284 27.364 -13.050 136.070 1.00247.51 C
ATOM 2157 O HIS A 284 26.290 -12.549 135.744 1.00249.68 O
ATOM 2158 CB HIS A 284 27.672 -13.965 138.425 1.00264.64 C
ATOM 2159 CG HIS A 284 26.273 -14.496 138.384 1.00273.86 C
ATOM 2160 ND1 HIS A 284 25.280 -14.041 139.227 1.00275.28 N
ATOM 2161 CD2 HIS A 284 25.706 -15.464 137.625 1.00280.08 C
ATOM 2162 CE1 HIS A 284 24.159 -14.695 138.976 1.00281.24 C
ATOM 2163 NE2 HIS A 284 24.391 -15.564 138.009 1.00284.28 N
ATOM 2164 O GLY A 285 31.325 -13.868 134.209 1.00220.81 O
ATOM 2165 N GLY A 285 28.070 -13.802 135.225 1.00239.54 N
ATOM 2166 CA GLY A 285 29.380 -14.347 135.520 1.00231.55 C
ATOM 2167 C GLY A 285 30.489 -13.453 135.010 1.00220.87 C
ATOM 2168 N GLY A 286 30.484 -12.208 135.468 1.00210.37 N
ATOM 2169 CA GLY A 286 31.576 -11.300 135.195 1.00199.57 C
ATOM 2170 C GLY A 286 31.518 -10.587 133.861 1.00190.87 C
ATOM 2171 O GLY A 286 32.554 -10.170 133.345 1.00189.02 O
ATOM 2172 N SER A 287 30.325 -10.453 133.291 1.00186.50 N
ATOM 2173 CA SER A 287 30.161 -9.562 132.152 1.00179.56 C
ATOM 2174 C SER A 287 30.608 -8.181 132.617 1.00169.85 C
ATOM 2175 O SER A 287 30.240 -7.739 133.707 1.00169.04 O
ATOM 2176 CB SER A 287 28.712 -9.540 131.680 1.00183.68 C
ATOM 2177 OG SER A 287 27.833 -9.345 132.769 1.00186.67 O
ATOM 2178 N TRP A 288 31.421 -7.514 131.805 1.00161.98 N
ATOM 2179 CA TRP A 288 32.142 -6.335 132.271 1.00155.85 C
ATOM 2180 C TRP A 288 31.243 -5.201 132.756 1.00152.37 C
ATOM 2181 O TRP A 288 31.571 -4.517 133.722 1.00147.79 O
ATOM 2182 CB TRP A 288 33.11 1 -5.822 131.206 1.00157.43 C
ATOM 2183 CG TRP A 288 34.293 -5.115 131.809 1.00157.48 C
ATOM 2184 CD1 TRP A 288 34.287 -3.910 132.461 1.00153.85 C
ATOM 2185 CD2 TRP A 288 35.652 -5.573 131.824 1.00156.88 C
ATOM 2186 NE1 TRP A 288 35.559 -3.592 132.877 1.00150.40 N
ATOM 2187 CE2 TRP A 288 36.415 -4.595 132.500 1.00151.08 C ATOM 2188 CE3 TRP A 288 36.300 -6.711 131.330 1.00158.89 C
ATOM 2189 CZ2 TRP A 288 37.791 -4.725 132.695 1.00146.66 C
ATOM 2190 CZ3 TRP A 288 37.667 -6.837 131.526 1.00156.00 C
ATOM 2191 CH2 TRP A 288 38.397 -5.848 132.203 1.00149.62 C ATOM 2192 N ILE A 289 30.1 10 -5.003 132.092 1.00153.61 N
ATOM 2193 CA ILE A 289 29.207 -3.921 132.472 1.00149.30 C
ATOM 2194 C ILE A 289 28.514 -4.196 133.810 1.00145.85 C
ATOM 2195 O ILE A 289 28.312 -3.280 134.602 1.00139.14 O
ATOM 2196 CB ILE A 289 28.154 -3.640 131.381 1.00153.01 C ATOM 2197 CG1 ILE A 289 28.827 -3.490 130.013 1.00153.86 C
ATOM 2198 CG2 ILE A 289 27.346 -2.396 131.726 1.00148.52 C
ATOM 2199 CD1 ILE A 289 27.853 -3.295 128.870 1.00157.39 C
ATOM 2200 N ARG A 290 28.158 -5.453 134.068 1.00149.65 N
ATOM 2201 CA ARG A 290 27.545 -5.802 135.348 1.00151.89 C ATOM 2202 C ARG A 290 28.562 -5.767 136.469 1.00148.32 C
ATOM 2203 O ARG A 290 28.266 -5.320 137.576 1.00147.73 O
ATOM 2204 CB ARG A 290 26.876 -7.172 135.301 1.00159.97 C
ATOM 2205 CG ARG A 290 25.549 -7.151 134.589 1.00169.62 C
ATOM 2206 CD ARG A 290 24.859 -8.500 134.668 1.00183.24 C ATOM 2207 NE ARG A 290 23.918 -8.672 133.565 1.00193.79 N
ATOM 2208 CZ ARG A 290 23.305 -9.816 133.284 1.00204.13 C
ATOM 2209 NH1 ARG A 290 23.533 -10.888 134.029 1.00209.14 N
ATOM 2210 NH2 ARG A 290 22.467 -9.891 132.262 1.00208.67 N
ATOM 221 1 N GLY A 291 29.762 -6.253 136.179 1.00147.27 N ATOM 2212 CA GLY A 291 30.842 -6.206 137.143 1.00147.58 C
ATOM 2213 C GLY A 291 31.212 -4.776 137.486 1.00145.14 C
ATOM 2214 O GLY A 291 31.612 -4.473 138.607 1.00142.13 O
ATOM 2215 N ALA A 292 31.069 -3.885 136.513 1.00144.88 N
ATOM 2216 CA ALA A 292 31.481 -2.502 136.692 1.00138.92 C ATOM 2217 C ALA A 292 30.539 -1.750 137.607 1.00131.83 C
ATOM 2218 O ALA A 292 30.964 -1.103 138.557 1.00122.44 O
ATOM 2219 CB ALA A 292 31.574 -1.801 135.350 1.00142.11 C
ATOM 2220 N ILE A 293 29.253 - 1.852 137.307 1.00136.77 N
ATOM 2221 CA ILE A 293 28.233 -1.067 137.983 1.00136.44 C ATOM 2222 C ILE A 293 28.017 - 1.533 139.420 1.00139.36 C
ATOM 2223 O ILE A 293 27.691 - 0.730 140.297 1.00143.25 O
ATOM 2224 CB ILE A 293 26.935 -1.049 137.151 1.00137.41 C
ATOM 2225 CG1 ILE A 293 27.1 18 -0.105 135.967 1.00136.34 C
ATOM 2226 CG2 ILE A 293 25.743 -0.604 137.965 1.00139.70 C ATOM 2227 CD1 ILE A 293 26.466 -0.595 134.713 1.00145.99 C ATOM 2228 N TYR A 294 28.245 -■2.816 139.676 1.00138.93 N
ATOM 2229 CA TYR A 294 28.170 -3.313 141.044 1.00139.95 C
ATOM 2230 C TYR A 294 29.178 - ■2.598 141.927 1.00134.93 C
ATOM 2231 O TYR A 294 28.807 · -1.879 142.852 1.00135.45 O
ATOM 2232 CB TYR A 294 28.437 -4.805 141.099 1.00145.51 C
ATOM 2233 CG TYR A 294 28.292 -5.385 142.486 1.00150.94 C
ATOM 2234 CD1 TYR A 294 27.042 -5.720 142.988 1.00161.91 C
ATOM 2235 CD2 TYR A 294 29.402 -5.605 143.290 1.00148.47 C
ATOM 2236 CE1 TYR A 294 26.898 -6.260 144.251 1.00168.28 C
ATOM 2237 CE2 TYR A 294 29.270 -6.146 144.552 1.00155.44 C
ATOM 2238 CZ TYR A 294 28.014 -6.471 145.032 1.00165.35 C
ATOM 2239 OH TYR A 294 27.863 -7.011 146.293 1.00168.39 O
ATOM 2240 N TYR A 295 30.458 ■ ■2.772 141.614 1.00130.69 N
ATOM 2241 CA TYR A 295 31.535 -2.123 142.358 1.00125.43 C
ATOM 2242 C TYR A 295 31.538 - •0.603 142.211 1.00121.54 C
ATOM 2243 O TYR A 295 32.489 0.063 142.617 1.00118.57 O
ATOM 2244 CB TYR A 295 32.886 -2.683 141.919 1.00124.96 C
ATOM 2245 CG TYR A 295 33.047 -4.146 142.235 1.00132.92 C
ATOM 2246 CD2 TYR A 295 33.483 -5.043 141.269 1.00140.10 C
ATOM 2247 CD1 TYR A 295 32.739 -4.640 143.495 1.00136.27 C
ATOM 2248 CE2 TYR A 295 33.624 -6.399 141.555 1.00143.26 C
ATOM 2249 CE1 TYR A 295 32.879 -5.991 143.790 1.00141.41 C
ATOM 2250 CZ TYR A 295 33.320 -6.863 142.815 1.00138.45 C
ATOM 2251 OH TYR A 295 33.456 -8.200 143.092 1.00132.56 O
ATOM 2252 N PHE A 296 30.475 ■ 0.061 141.629 1.00121.96 N
ATOM 2253 CA PHE A 296 30.362 1.369 141.407 1.00116.37 C
ATOM 2254 C PHE A 296 29.224 1.899 142.236 1.00126.68 C
ATOM 2255 O PHE A 296 29.171 3.090 142.529 1.00134.66 O
ATOM 2256 CB PHE A 296 30.106 1.664 139.936 1.00110.30 C
ATOM 2257 CG PHE A 296 29.840 3.108 139.644 1.00104.81 C
ATOM 2258 CD1 PHE A 296 30.818 4.061 139.847 1.00 99.27 C
ATOM 2259 CD2 PHE A 296 28.611 3.511 139.147 1.00109.30 C
ATOM 2260 CE1 PHE A 296 30.571 5.395 139.567 1.00 99.53 c
ATOM 2261 CE2 PHE A 296 28.358 4.844 138.862 1.00105.13 c
ATOM 2262 CZ PHE A 296 29.339 5.785 139.072 1.00100.05 c
ATOM 2263 N LYS A 297 28.297 1.018 142.602 1.00128.69 N
ATOM 2264 CA LYS A 297 27.284 1.379 143.582 1.00127.60 c
ATOM 2265 C LYS A 297 27.987 1.533 144.929 1.00119.49 C
ATOM 2266 O LYS A 297 27.768 2.507 145.644 1.00111.95 O
ATOM 2267 CB LYS A 297 26.174 0.327 143.659 1.00133.85 C ATOM 2268 CG LYS A 297 25.307 0.229 142.409 1.00137.47 C
ATOM 2269 CD LYS A 297 23.948 -0.412 142.708 1.00143.07 C
ATOM 2270 CE LYS A 297 24.071 -1.847 143.217 1.00145.08 C
ATOM 2271 NZ LYS A 297 24.428 -2.81 1 142.138 1.00145.25 N
ATOM 2272 N ILE A 298 28.851 0.572 145.248 1.00117.93 N
ATOM 2273 CA ILE A 298 29.664 0.611 146.455 1.001 13.42 C
ATOM 2274 C ILE A 298 30.457 1.899 146.527 1.001 17.28 C
ATOM 2275 O ILE A 298 30.405 2.618 147.523 1.00121.52 O
ATOM 2276 CB ILE A 298 30.695 -0.520 146.463 1.00111.05 C
ATOM 2277 CG1 ILE A 298 30.009 -1.890 146.484 1.00114.26 C
ATOM 2278 CG2 ILE A 298 31.654 -0.346 147.634 1.00108.62 C
ATOM 2279 CD1 ILE A 298 29.528 -2.315 147.832 1.00116.19 C
ATOM 2280 N ALA A 299 31.198 2.181 145.463 1.00117.13 N
ATOM 2281 CA ALA A 299 32.087 3.333 145.443 1.00116.48 C
ATOM 2282 C ALA A 299 31.342 4.647 145.686 1.001 19.76 C
ATOM 2283 O ALA A 299 31.822 5.512 146.417 1.00122.41 O
ATOM 2284 CB ALA A 299 32.862 3.384 144.139 1.00111.53 C
ATOM 2285 N VAL A 300 30.166 4.793 145.087 1.00119.68 N
ATOM 2286 CA VAL A 300 29.414 6.033 145.231 1.001 18.01 C
ATOM 2287 C VAL A 300 28.491 6.000 146.454 1.00120.68 C
ATOM 2288 O VAL A 300 28.083 7.049 146.953 1.00119.30 O
ATOM 2289 CB VAL A 300 28.634 6.393 143.944 1.00121.05 C
ATOM 2290 CG1 VAL A 300 27.464 5.467 143.748 1.00126.99 C
ATOM 2291 CG2 VAL A 300 28.150 7.830 143.994 1.00124.21 C
ATOM 2292 N ALA A 301 28.176 4.802 146.947 1.00122.27 N
ATOM 2293 CA ALA A 301 27.413 4.681 148.191 1.001 18.22 C
ATOM 2294 C ALA A 301 28.232 5.246 149.344 1.001 4.52 C
ATOM 2295 O ALA A 301 27.785 6.148 150.058 1.00109.53 O
ATOM 2296 CB ALA A 301 27.037 3.235 148.470 1.00115.85 C
ATOM 2297 N LEU A 302 29.440 4.715 149.507 1.00115.74 N
ATOM 2298 CA LEU A 302 30.385 5.228 150.491 1.00117.33 C
ATOM 2299 C LEU A 302 30.569 6.724 150.313 1.001 14.44 C
ATOM 2300 O LEU A 302 30.763 7.451 151.277 1.00113.58 O
ATOM 2301 CB LEU A 302 31.741 4.538 150.339 1.00119.72 C
ATOM 2302 CG LEU A 302 32.851 5.021 151.278 1.001 15.55 C
ATOM 2303 CD1 LEU A 302 32.676 4.412 152.653 1.001 18.31 C
ATOM 2304 CD2 LEU A 302 34.227 4.698 150.723 1.001 13.15 C
ATOM 2305 N ALA A 303 30.506 7.176 149.066 1.00114.95 N
ATOM 2306 CA ALA A 303 30.686 8.583 148.758 1.00112.85 C
ATOM 2307 C ALA A 303 29.567 9.408 149.368 1.001 16.90 C ATOM 2308 O ALA A 303 29.822 10.299 150.167 1.00117.31 O
ATOM 2309 CB ALA A 303 30.745 8.788 147.263 1.00112.29 C
ATOM 2310 N VAL A 304 28.328 9.096 148.999 1.00122.31 N
ATOM 231 1 CA VAL A 304 27.163 9.836 149.482 1.00121.58 C
ATOM 2312 C VAL A 304 27.048 9.786 151.004 1.00121.53 C
ATOM 2313 O VAL A 304 26.741 10.789 151.650 1.00123.62 O
ATOM 2314 CB VAL A 304 25.857 9.295 148.861 1.00122.69 C
ATOM 2315 CG1 VAL A 304 24.644 9.904 149.544 1.00123.90 C
ATOM 2316 CG2 VAL A 304 25.822 9.568 147.364 1.00122.03 C
ATOM 2317 N ALA A 305 27.318 8.618 151.574 1.00119.22 N
ATOM 2318 CA ALA A 305 27.130 8.418 153.003 1.00118.94 C
ATOM 2319 C ALA A 305 28.249 9.006 153.860 1.00117.63 C
ATOM 2320 O ALA A 305 28.026 9.356 155.017 1.00122.85 O
ATOM 2321 CB ALA A 305 26.946 6.938 153.310 1.00123.61 C
ATOM 2322 N ALA A 306 29.449 9.124 153.302 1.00115.84 N
ATOM 2323 CA ALA A 306 30.604 9.51 1 154.1 17 1.00116.26 C
ATOM 2324 C ALA A 306 31.204 10.887 153.817 1.00108.22 C
ATOM 2325 O ALA A 306 31.947 1 1.422 154.636 1.00105.66 O
ATOM 2326 CB ALA A 306 31.684 8.430 154.075 1.00122.26 C
ATOM 2327 N ILE A 307 30.903 11.452 152.651 1.00106.68 N
ATOM 2328 CA ILE A 307 31.308 12.829 152.378 1.00108.43 C
ATOM 2329 C ILE A 307 30.588 13.750 153.357 1.001 13.59 C
ATOM 2330 O ILE A 307 29.354 13.834 153.349 1.001 17.25 O
ATOM 2331 CB ILE A 307 30.996 13.274 150.934 1.00103.70 C
ATOM 2332 CG1 ILE A 307 31.886 12.531 149.937 1.00110.23 C
ATOM 2333 CG2 ILE A 307 31.229 14.761 150.782 1.00 93.39 C
ATOM 2334 CD1 ILE A 307 33.349 12.862 150.067 1.001 11.98 C
ATOM 2335 N PRO A 308 31.361 14.435 154.214 1.00108.16 N
ATOM 2336 CA PRO A 308 30.814 15.258 155.292 1.00101.55 C
ATOM 2337 C PRO A 308 30.574 16.727 154.913 1.00103.21 C
ATOM 2338 O PRO A 308 31.556 17.459 154.906 1.00105.21 O
ATOM 2339 CB PRO A 308 31.907 15.166 156.356 1.00 92.46 C
ATOM 2340 CG PRO A 308 33.168 15.045 155.575 1.00 92.01 C
ATOM 2341 CD PRO A 308 32.831 14.347 154.288 1.00101.41 C
ATOM 2342 N GLU A 309 29.355 17.205 154.642 1.00108.65 N
ATOM 2343 CA GLU A 309 28.040 16.564 154.751 1.00122.29 C
ATOM 2344 C GLU A 309 27.168 17.796 154.762 1.00132.07 C
ATOM 2345 O GLU A 309 26.058 17.841 154.219 1.00138.81 O
ATOM 2346 CB GLU A 309 27.802 15.887 156.108 1.00122.20 C
ATOM 2347 CG GLU A 309 26.506 15.102 156.205 1.00125.48 C ATOM 2348 CD GLU A 309 26.746 13.604 156.269 1.00137.42 C
ATOM 2349 OE1 GLU A 309 26.634 12.934 155.218 1.00142.42 O
ATOM 2350 OE2 GLU A 309 27.048 13.097 157.372 1.00140.75 O
ATOM 2351 N GLY A 310 27.747 18.817 155.376 1.00129.10 N
ATOM 2352 CA GLY A 310 27.021 19.881 156.019 1.00129.94 C
ATOM 2353 C GLY A 310 27.637 19.912 157.406 1.00129.07 C
ATOM 2354 O GLY A 310 27.022 19.531 158.404 1.00134.37 O
ATOM 2355 N LEU A 311 28.905 20.295 157.445 1.001 19.93 N
ATOM 2356 CA LEU A 311 29.553 20.681 158.684 1.00112.04 C
ATOM 2357 C LEU A 311 29.183 22.116 159.074 1.00115.04 C
ATOM 2358 O LEU A 311 29.091 22.417 160.259 1.00125.27 O
ATOM 2359 CB LEU A 311 31.071 20.534 158.588 1.00107.53 C
ATOM 2360 CG LEU A 311 31.715 19.219 158.999 1.00105.55 C
ATOM 2361 CD1 LEU A 311 31.185 18.107 158.127 1.00111.62 C
ATOM 2362 CD2 LEU A 311 33.220 19.320 158.880 1.00 97.22 C
ATOM 2363 N PRO A 312 28.988 23.017 158.090 1.00109.10 N
ATOM 2364 CA PRO A 312 28.446 24.315 158.516 1.001 17.23 C
ATOM 2365 C PRO A 312 27.039 24.197 159.099 1.00121.16 C
ATOM 2366 O PRO A 312 26.622 25.054 159.882 1.00122.92 O
ATOM 2367 CB PRO A 312 28.420 25.1 19 157.219 1.00122.75 C
ATOM 2368 CG PRO A 312 29.552 24.551 156.433 1.00121.00 C
ATOM 2369 CD PRO A 312 29.529 23.083 156.720 1.00108.50 C
ATOM 2370 N ALA A 313 26.324 23.142 158.717 1.001 19.80 N
ATOM 2371 CA ALA A 313 25.040 22.819 159.328 1.00111.93 C
ATOM 2372 C ALA A 313 25.199 22.680 160.842 1.00112.02 C
ATOM 2373 O ALA A 313 24.352 23.140 161.608 1.00116.00 O
ATOM 2374 CB ALA A 313 24.479 21.535 158.732 1.00101.45 C
ATOM 2375 N VAL A 314 26.300 22.053 161.253 1.00106.54 N
ATOM 2376 CA VAL A 314 26.637 21.831 162.660 1.00 98.67 C
ATOM 2377 C VAL A 314 26.917 23.122 163.436 1.00 99.80 C
ATOM 2378 O VAL A 314 26.468 23.284 164.573 1.00 98.77 O
ATOM 2379 CB VAL A 314 27.847 20.890 162.772 1.00 89.45 C
ATOM 2380 CG1 VAL A 314 28.434 20.912 164.171 1.00 79.67 C
ATOM 2381 CG2 VAL A 314 27.448 19.479 162.358 1.00 97.51 C
ATOM 2382 N ILE A 315 27.655 24.040 162.823 1.00 99.09 N
ATOM 2383 CA ILE A 315 27.894 25.345 163.432 1.00102.35 C
ATOM 2384 C ILE A 315 26.593 26.150 163.551 1.00107.97 C
ATOM 2385 O ILE A 315 26.384 26.879 164.523 1.00107.46 O
ATOM 2386 CB ILE A 315 28.968 26.143 162.657 1.00 97.48 C
ATOM 2387 CG1 ILE A 315 30.325 25.467 162.817 1.00 99.23 C ATOM 2388 CG2 ILE A 315 29.059 27.572 163.154 1.00 96.20 C
ATOM 2389 CD1 ILE A 315 30.680 25.165 164.260 1.00 99.74 C
ATOM 2390 N THR A 316 25.705 25.989 162.575 1.00108.27 N
ATOM 2391 CA THR A 316 24.454 26.739 162.561 1.00109.43 C
ATOM 2392 C THR A 316 23.353 26.014 163.336 1.00107.60 C
ATOM 2393 O THR A 316 22.175 26.341 163.218 1.00114.31 O
ATOM 2394 CB THR A 316 24.001 27.023 161.117 1.00112.20 C
ATOM 2395 OG1 THR A 316 25.150 27.328 160.320 1.00121.36 O
ATOM 2396 CG2 THR A 316 23.055 28.211 161.065 1.001 10.53 C
ATOM 2397 N THR A 317 23.746 25.029 164.134 1.00 98.59 N
ATOM 2398 CA THR A 317 22.802 24.287 164.956 1.00 98.18 C
ATOM 2399 C THR A 317 23.148 24.525 166.410 1.00110.85 C
ATOM 2400 O THR A 317 22.268 24.748 167.248 1.00117.86 O
ATOM 2401 CB THR A 317 22.852 22.773 164.660 1.00 92.53 C
ATOM 2402 OG1 THR A 317 22.382 22.534 163.329 1.00103.85 O
ATOM 2403 CG2 THR A 317 21.991 21.983 165.643 1.00 78.64 C
ATOM 2404 N CYS A 318 24.443 24.482 166.704 1.00109.64 N
ATOM 2405 CA CYS A 318 24.931 24.757 168.046 1.00101.58 C
ATOM 2406 C CYS A 318 24.645 26.202 168.399 1.00 95.49 C
ATOM 2407 O CYS A 318 24.268 26.505 169.528 1.00 93.92 O
ATOM 2408 CB CYS A 318 26.417 24.457 168.132 1.00100.59 C
ATOM 2409 SG CYS A 318 26.743 22.714 167.907 1.00103.80 S
ATOM 2410 N LEU A 319 24.814 27.082 167.416 1.00 95.27 N
ATOM 2411 CA LEU A 319 24.352 28.463 167.518 1.00 95.65 C
ATOM 2412 C LEU A 319 22.877 28.524 167.920 1.00 98.29 C
ATOM 2413 O LEU A 319 22.540 29.092 168.962 1.00 94.55 O
ATOM 2414 CB LEU A 319 24.563 29.203 166.189 1.00 88.51 C
ATOM 2415 CG LEU A 319 25.949 29.817 165.970 1.00 82.78 C
ATOM 2416 CD1 LEU A 319 26.176 30.171 164.521 1.00 82.55 C
ATOM 2417 CD2 LEU A 319 26.1 17 31.045 166.836 1.00 81.63 C
ATOM 2418 N ALA A 320 22.018 27.921 167.094 1.00 97.72 N
ATOM 2419 CA ALA A 320 20.565 27.917 167.295 1.00 90.93 C
ATOM 2420 C ALA A 320 20.155 27.416 168.670 1.00 88.67 C
ATOM 2421 O ALA A 320 19.227 27.948 169.284 1.00 96.33 O
ATOM 2422 CB ALA A 320 19.882 27.095 166.211 1.00 90.67 C
ATOM 2423 N LEU A 321 20.842 26.384 169.143 1.00 80.56 N
ATOM 2424 CA LEU A 321 20.639 25.893 170.496 1.00 82.90 C
ATOM 2425 C LEU A 321 21.130 26.910 171.525 1.00 81.07 C
ATOM 2426 O LEU A 321 20.361 27.409 172.348 1.00 81.86 O
ATOM 2427 CB LEU A 321 21.381 24.576 170.685 1.00 88.17 C ATOM 2428 CG LEU A 321 20.776 23.373 169.968 1.00 93.51 C
ATOM 2429 CD1 LEU A 321 21.714 22.194 170.050 1.00 96.70 C
ATOM 2430 CD2 LEU A 321 19.438 23.019 170.584 1.00 97.73 C
ATOM 2431 N GLY A 322 22.416 27.222 171.460 1.00 80.46 N
ATOM 2432 CA GLY A 322 23.035 28.132 172.406 1.00 85.18 C
ATOM 2433 C GLY A 322 22.467 29.541 172.478 1.00 83.92 C
ATOM 2434 O GLY A 322 22.287 30.073 173.572 1.00 82.78 O
ATOM 2435 N THR A 323 22.200 30.162 171.333 1.00 77.70 N
ATOM 2436 CA THR A 323 21.595 31.489 171.349 1.00 80.14 C
ATOM 2437 C THR A 323 20.202 31.469 171.967 1.00 85.45 C
ATOM 2438 O THR A 323 19.763 32.470 172.545 1.00 86.34 O
ATOM 2439 CB THR A 323 21.504 32.141 169.952 1.00 80.04 C
ATOM 2440 OG1 THR A 323 21.080 31.170 168.989 1.00 92.66 O
ATOM 2441 CG2 THR A 323 22.835 32.735 169.539 1.00 63.80 C
ATOM 2442 N ARG A 324 19.505 30.340 171.841 1.00 86.92 N
ATOM 2443 CA ARG A 324 18.192 30.209 172.462 1.00 92.13 C
ATOM 2444 C ARG A 324 18.366 30.269 173.966 1.00 87.42 C
ATOM 2445 O ARG A 324 17.708 31.056 174.647 1.00 81.37 O
ATOM 2446 CB ARG A 324 17.495 28.912 172.055 1.00102.84 C
ATOM 2447 CG ARG A 324 16.059 28.823 172.563 1.00121.70 C
ATOM 2448 CD ARG A 324 15.242 27.772 171.816 1.00138.33 C
ATOM 2449 NE ARG A 324 15.785 26.427 171.991 1.00149.01 N
ATOM 2450 CZ ARG A 324 15.189 25.317 171.563 1.00156.57 C
ATOM 2451 NH1 ARG A 324 14.019 25.387 170.936 1.00160.76 N
ATOM 2452 NH2 ARG A 324 15.761 24.135 171.768 1.00156.29 N
ATOM 2453 N ARG A 325 19.283 29.442 174.463 1.00 88.95 N
ATOM 2454 CA ARG A 325 19.645 29.41 1 175.878 1.00 87.17 C
ATOM 2455 C ARG A 325 20.009 30.791 176.415 1.00 82.70 C
ATOM 2456 O ARG A 325 19.517 31.203 177.464 1.00 82.04 O
ATOM 2457 CB ARG A 325 20.810 28.444 176.100 1.00 86.10 C
ATOM 2458 CG ARG A 325 20.393 27.081 176.620 1.00 93.78 C
ATOM 2459 CD ARG A 325 21.080 25.940 175.877 1.00100.64 C
ATOM 2460 NE ARG A 325 22.522 26.136 175.754 1.00104.44 N
ATOM 2461 CZ ARG A 325 23.282 25.542 174.838 1.00107.95 C
ATOM 2462 NH 1 ARG A 325 22.742 24.707 173.956 1.00104.24 N
ATOM 2463 NH2 ARG A 325 24.584 25.790 174.800 1.00113.79 N
ATOM 2464 N MET A 326 20.869 31.502 175.691 1.00 74.19 N
ATOM 2465 CA MET A 326 21.334 32.800 176.152 1.00 67.28 C
ATOM 2466 C MET A 326 20.170 33.789 176.259 1.00 67.24 C
ATOM 2467 O MET A 326 20.160 34.645 177.133 1.00 61.81 O ATOM 2468 CB MET A 326 22.433 33.370 175.246 1.00 59.86 C
ATOM 2469 CG MET A 326 23.697 32.511 175.042 1.00 68.02 C
ATOM 2470 SD MET A 326 24.801 33.157 173.719 1.00 70.14 S
ATOM 2471 CE MET A 326 26.368 32.411 174.147 1.00214.46 C
ATOM 2472 N ALA A 327 19.187 33.684 175.375 1.00 68.06 N
ATOM 2473 CA ALA A 327 18.072 34.629 175.415 1.00 76.67 C
ATOM 2474 C ALA A 327 17.173 34.346 176.623 1.00 89.02 C
ATOM 2475 O ALA A 327 16.687 35.273 177.295 1.00 94.21 O
ATOM 2476 CB ALA A 327 17.281 34.571 174.130 1.00 78.85 C
ATOM 2477 N LYS A 328 16.963 33.058 176.898 1.00 87.00 N
ATOM 2478 CA LYS A 328 16.249 32.632 178.096 1.00 82.33 C
ATOM 2479 C LYS A 328 16.994 33.031 179.373 1.00 75.91 C
ATOM 2480 O LYS A 328 16.409 33.102 180.437 1.00 78.85 O
ATOM 2481 CB LYS A 328 15.985 31.125 178.069 1.00 86.50 C
ATOM 2482 CG LYS A 328 14.907 30.707 177.082 1.00 96.52 C
ATOM 2483 CD LYS A 328 14.324 29.353 177.455 1.00109.59 C
ATOM 2484 CE LYS A 328 13.005 29.099 176.739 1.00120.22 C
ATOM 2485 NZ LYS A 328 12.199 28.011 177.380 1.00124.41 N
ATOM 2486 N LYS A 329 18.288 33.296 179.261 1.00 76.73 N
ATOM 2487 CA LYS A 329 19.052 33.869 180.365 1.00 73.42 C
ATOM 2488 C LYS A 329 19.356 35.358 180.137 1.00 70.78 C
ATOM 2489 O LYS A 329 20.451 35.815 180.442 1.00 72.49 O
ATOM 2490 CB LYS A 329 20.370 33.112 180.539 1.00 74.62 C
ATOM 2491 CG LYS A 329 20.240 31.603 180.651 1.00 73.88 C
ATOM 2492 CD LYS A 329 21.610 30.991 180.865 1.00 79.46 C
ATOM 2493 CE LYS A 329 21.550 29.478 180.946 1.00 89.41 C
ATOM 2494 NZ LYS A 329 22.916 28.889 181.138 1.00 96.88 N
ATOM 2495 N ASN A 330 18.406 36.094 179.563 1.00 73.62 N
ATOM 2496 CA ASN A 330 18.537 37.542 179.345 1.00 70.07 C
ATOM 2497 C ASN A 330 19.714 38.066 178.515 1.00 74.18 C
ATOM 2498 O ASN A 330 20.042 39.256 178.604 1.00 75.69 O
ATOM 2499 CB ASN A 330 18.522 38.272 180.680 1.00 70.63 C
ATOM 2500 CG ASN A 330 17.274 38.003 181.455 1.00 74.53 C
ATOM 2501 OD1 ASN A 330 16.207 37.789 180.877 1.00 81.42 O
ATOM 2502 ND2 ASN A 330 17.388 38.004 182.772 1.00 69.45 N
ATOM 2503 N ALA A 331 20.342 37.198 177.719 1.00 73.61 N
ATOM 2504 CA ALA A 331 21.407 37.613 176.795 1.00 65.77 C
ATOM 2505 C ALA A 331 20.926 37.504 175.356 1.00 70.96 C
ATOM 2506 O ALA A 331 21.020 36.448 174.721 1.00 80.72 O
ATOM 2507 CB ALA A 331 22.653 36.770 176.991 1.00 60.74 C ATOM 2508 N ILE A 332 20.420 38.606 174.832 1.00 63.80 N
ATOM 2509 CA ILE A 332 19.846 38.603 173.499 1.00 66.52 C
ATOM 2510 C ILE A 332 20.898 38.855 172.406 1.00 72.00 C
ATOM 2511 O ILE A 332 21.389 39.979 172.237 1.00 80.59 O
ATOM 2512 CB ILE A 332 18.726 39.614 173.462 1.00 62.40 C
ATOM 2513 CG1 ILE A 332 17.667 39.176 174.464 1.00 64.50 C
ATOM 2514 CG2 ILE A 332 18.163 39.734 172.070 1.00 68.02 C
ATOM 2515 CD1 ILE A 332 16.681 40.255 174.814 1.00146.25 C
ATOM 2516 N VAL A 333 21.267 37.804 171.679 1.00 67.09 N
ATOM 2517 CA VAL A 333 22.354 37.926 170.695 1.00 65.96 C
ATOM 2518 C VAL A 333 21.921 38.571 169.371 1.00 71.41 C
ATOM 2519 O VAL A 333 20.963 38.128 168.726 1.00 74.57 O
ATOM 2520 CB VAL A 333 23.028 36.558 170.412 1.00 76.16 C
ATOM 2521 CG1 VAL A 333 23.869 36.625 169.149 1.00 59.55 C
ATOM 2522 CG2 VAL A 333 23.864 36.107 171.619 1.00 71.92 C
ATOM 2523 N ARG A 334 22.628 39.625 168.972 1.00 68.56 N
ATOM 2524 CA ARG A 334 22.341 40.291 167.705 1.00 69.38 C
ATOM 2525 C ARG A 334 23.276 39.848 166.583 1.00 75.66 C
ATOM 2526 O ARG A 334 22.841 39.618 165.459 1.00 80.82 O
ATOM 2527 CB ARG A 334 22.389 41.801 167.867 1.00 58.78 C
ATOM 2528 CG ARG A 334 21.198 42.344 168.578 1.00 59.66 C
ATOM 2529 CD ARG A 334 20.869 43.729 168.094 1.00 68.88 C
ATOM 2530 NE ARG A 334 19.621 44.200 168.679 1.00 68.78 N
ATOM 2531 CZ ARG A 334 19.120 45.412 168.481 1.00 75.62 C
ATOM 2532 NH1 ARG A 334 19.760 46.280 167.703 1.00 75.96 N
ATOM 2533 NH2 ARG A 334 17.982 45.758 169.064 1.00 78.41 N
ATOM 2534 N SE A 335 24.564 39.730 166.887 1.00 79.87 N
ATOM 2535 CA SER A 335 25.529 39.214 165.920 1.00 77.70 C
ATOM 2536 C SER A 335 25.905 37.765 166.219 1.00 75.95 C
ATOM 2537 O SER A 335 26.422 37.463 167.284 1.00 78.00 O
ATOM 2538 CB SER A 335 26.782 40.075 165.920 1.00 77.17 C
ATOM 2539 OG SER A 335 27.907 39.294 165.576 1.00 81.80 O
ATOM 2540 N LEU A 336 25.637 36.867 165.282 1.00 78.22 N
ATOM 2541 CA LEU A 336 25.987 35.463 165.470 1.00 84.92 C
ATOM 2542 C LEU A 336 27.498 35.158 165.424 1.00 89.13 C
ATOM 2543 O LEU A 336 27.966 34.274 166.149 1.00 93.87 O
ATOM 2544 CB LEU A 336 25.217 34.569 164.494 1.00 91.38 C
ATOM 2545 CG LEU A 336 23.918 33.955 165.008 1.00 96.29 C
ATOM 2546 CD1 LEU A 336 22.859 35.026 165.188 1.00103.23 C
ATOM 2547 CD2 LEU A 336 23.436 32.879 164.061 1.00 97.06 C ATOM 2548 N PRO A 337 28.260 35.856 164.555 1.00 81.31 N
ATOM 2549 CA PRO A 337 29.720 35.805 164.631 1.00 78.47 C
ATOM 2550 C PRO A 337 30.265 35.936 166.048 1.00 83.25 C
ATOM 2551 O PRO A 337 31.131 35.158 166.427 1.00 96.18 O
ATOM 2552 CB PRO A 337 30.125 37.035 163.835 1.00 71.82 C
ATOM 2553 CG PRO A 337 29.120 37.103 162.774 1.00 71.51 C
ATOM 2554 CD PRO A 337 27.835 36.550 163.327 1.00 77.81 C
ATOM 2555 N SER A 338 29.759 36.893 166.817 1.00 75.15 N
ATOM 2556 CA SER A 338 30.287 37.147 168.156 1.00 75.78 C
ATOM 2557 C SER A 338 30.152 35.978 169.144 1.00 75.22 C
ATOM 2558 O SER A 338 30.949 35.877 170.075 1.00 81.36 O
ATOM 2559 CB SER A 338 29.715 38.446 168.753 1.00 78.73 C
ATOM 2560 OG SER A 338 28.332 38.334 169.030 1.00 83.34 O
ATOM 2561 N VAL A 339 29.172 35.100 168.940 1.00 71.82 N
ATOM 2562 CA VAL A 339 28.999 33.922 169.806 1.00 75.14 C
ATOM 2563 C VAL A 339 30.287 33.091 169.916 1.00 77.68 C
ATOM 2564 O VAL A 339 30.602 32.570 170.983 1.00 75.77 O
ATOM 2565 CB VAL A 339 27.813 33.018 169.340 1.00 81.10 C
ATOM 2566 CG1 VAL A 339 27.682 31.767 170.196 1.00 69.89 C
ATOM 2567 CG2 VAL A 339 26.517 33.789 169.353 1.00 85.45 C
ATOM 2568 N GLU A 340 31.034 32.992 168.818 1.00 85.23 N
ATOM 2569 CA GLU A 340 32.320 32.289 168.800 1.00 91.92 C
ATOM 2570 C GLU A 340 33.397 33.030 169.573 1.00 89.51 C
ATOM 2571 O GLU A 340 34.107 32.435 170.389 1.00 96.03 O
ATOM 2572 CB GLU A 340 32.797 32.109 167.368 1.00103.80 C
ATOM 2573 CG GLU A 340 31.759 31.468 166.484 1.00119.78 C
ATOM 2574 CD GLU A 340 32.136 31.520 165.024 1.00125.62 C
ATOM 2575 OE1 GLU A 340 31.470 30.814 164.234 1.00126.99 O
ATOM 2576 OE2 GLU A 340 33.090 32.260 164.673 1.00122.41 O
ATOM 2577 N TH A 341 33.521 34.328 169.308 1.00 79.63 N
ATOM 2578 CA THR A 341 34.524 35.144 169.979 1.00 78.68 C
ATOM 2579 C THR A 341 34.102 35.522 171.387 1.00 83.51 C
ATOM 2580 O THR A 341 34.839 36.199 172.096 1.00 85.87 O
ATOM 2581 CB THR A 341 34.827 36.449 169.221 1.00 74.26 C
ATOM 2582 OG1 THR A 341 33.720 37.348 169.349 1.00 65.37 O
ATOM 2583 CG2 THR A 341 35.124 36.176 167.746 1.00 81.45 C
ATOM 2584 N LEU A 342 32.912 35.095 171.790 1.00 88.92 N
ATOM 2585 CA LEU A 342 32.408 35.425 173.118 1.00 86.61 C
ATOM 2586 C LEU A 342 33.091 34.586 174.192 1.00 90.99 C
ATOM 2587 O LEU A 342 33.432 35.102 175.253 1.00 91.36 O ATOM 2588 CB LEU A 342 30.895 35.242173.183 1.0082.28 C
ATOM 2589 CG LEU A 342 30.198 35.977174.323 1.0077.08 C
ATOM 2590 CD1 LEU A 342 30.393 37.466174.193 1.0069.80 C
ATOM 2591 CD2 LEU A 342 28.728 35.634174.314 1.0082.99 C
ATOM 2592 N GLYA343 33.303 33.300173.908 1.0093.15 N
ATOM 2593 CA GLYA343 34.036 32.423174.806 1.0093.56 C
ATOM 2594 C GLYA343 35.536 32.689174.799 1. '0094.12 C
ATOM 2595 O GLYA343 36.324 31.903175.330 1.00100.71 O
ATOM 2596 N CYSA344 35.928 33.801174.187 1.0085.38 N
ATOM 2597 CA CYSA344 37.313 34.237174.164 1.0082.30 C
ATOM 2598 C CYSA344 37.516 35.487175.004 1.0089.26 C
ATOM 2599 O CYSA344 38.648 35.924175.182 1.00101.24 O
ATOM 2600 CB CYSA344 37.750 34.531172.733 1.0079.87 C
ATOM 2601 SG CYSA344 38.189 33.076171.773 1.0085.24 S
ATOM 2602 N THRA345 36.418 36.061175.500 1.0084.28 N
ATOM 2603 CA THRA345 36.438 37.297176.294 1.0075.85 C
ATOM 2604 C THRA345 37.432 37.185177.425 1.0073.80 C
ATOM 2605 O THRA345 37.452 36.175178.126 1.0072.94 O
ATOM 2606 CB THRA345 35.053 37.598176.909 1.0071.48 C
ATOM 2607 OG1 THR A 345 34.063 37.603175.876 1.0074.48 O
ATOM 2608 CG2 THR A 345 35.051 38.939177.614 1.0065.49 C
ATOM 2609 N SERA 346 38.263 38.212177.592 1.0077.83 N
ATOM 2610 CA SERA 346 39.354 38.172178.576 1.0080.41 C
ATOM 2611 C SERA 346 39.335 39.368179.525 1.0077.54 C
ATOM 2612 O SERA 346 40.035 39.367180.542 1.0083.98 O
ATOM 2613 CB SERA 346 40.712 38.112177.881 1.0075.39 C
ATOM 2614 OG SERA 346 41.036 39.368177.307 1.0070.49 O
ATOM 2615 N VALA347 38.547 40.383179.171 1.0062.75 N
ATOM 2616 CA VAL A 347 38.404 41.598179.953 1.0056.54 C
ATOM 2617 C VAL A 347 36.977 42.062179.750 1.0064.71 C
ATOM 2618 O VAL A 347 36.484 42.046178.627 1.0067.93 O
ATOM 2619 CB VAL A 347 39.305 42.743179.420 1.0067.17 C
ATOM 2620 CG1 VAL A 347 39.112 44.016180.233 1.0071.51 C
ATOM 2621 CG2 VAL A 347 40.752 42.349179.406 1.0063.54 C
ATOM 2622 N ILEA 348 36.310 42.478180.820 1.0061.35 N
ATOM 2623 CA ILEA 348 35.000 43.108180.696 1.0064.68 C
ATOM 2624 C ILEA 348 35.002 44.486181.350 1.0072.36 C
ATOM 2625 O ILEA 348 35.145 44.595182.571 1.0082.18 O
ATOM 2626 CB ILEA 348 33.898 42.278181.378 1.0065.16 C
ATOM 2627 CG1 ILEA 348 33.809 40.884180.776 1.0058.97 C ATOM 2628 CG2 ILE A 348 32.560 42.980 181.262 1.00 51.61 C
ATOM 2629 CD1 ILE A 348 33.103 39.901 181.660 1.00 55.08 C
ATOM 2630 N CYS A 349 34.855 45.539 180.551 1.00 66.05 N
ATOM 2631 CA CYS A 349 34.603 46.853 181.128 1.00 68.64 C
ATOM 2632 C CYS A 349 33.109 46.966 181.300 1.00 69.25 C
ATOM 2633 O CYS A 349 32.367 46.801 180.340 1.00 72.55 O
ATOM 2634 CB CYS A 349 35.060 47.994 180.219 1.00 61.95 C
ATOM 2635 SG CYS A 349 36.603 47.764 179.388 1.00 85.22 S
ATOM 2636 N SER A 350 32.663 47.250 182.515 1.00 65.55 N
ATOM 2637 CA SER A 350 31.241 47.426 182.761 1.00 68.75 C
ATOM 2638 C SER A 350 30.947 48.788 183.349 1.00 63.59 C
ATOM 2639 O SER A 350 31.769 49.371 184.059 1.00 65.57 O
ATOM 2640 CB SER A 350 30.722 46.343 183.706 1.00 74.21 C
ATOM 2641 OG SER A 350 29.363 46.569 184.013 1.00 71.97 O
ATOM 2642 N ASP A 351 29.767 49.307 183.066 1.00 52.88 N
ATOM 2643 CA ASP A 351 29.382 50.516 183.749 1.00 58.87 C
ATOM 2644 C ASP A 351 28.856 50.136 185.115 1.00 66.03 C
ATOM 2645 O ASP A 351 28.502 48.987 185.352 1.00 67.28 O
ATOM 2646 CB ASP A 351 28.348 51.285 182.960 1.00 69.93 C
ATOM 2647 CG ASP A 351 28.959 52.070 181.846 1.00 76.19 C
ATOM 2648 OD1 ASP A 351 29.492 53.161 182.151 1.00 78.46 O
ATOM 2649 OD2 ASP A 351 28.914 51.601 180.681 1.00 76.20 O
ATOM 2650 N LYS A 352 28.838 51.099 186.022 1.00 70.64 N
ATOM 2651 CA LYS A 352 28.398 50.841 187.375 1.00 69.82 C
ATOM 2652 C LYS A 352 26.877 50.966 187.394 1.00 66.72 C
ATOM 2653 O LYS A 352 26.180 49.976 187.258 1.00 62.46 O
ATOM 2654 CB LYS A 352 29.078 51.821 188.359 1.00 68.80 C
ATOM 2655 CG LYS A 352 29.080 51.402 189.847 1.00 65.55 C
ATOM 2656 CD LYS A 352 29.028 52.618 190.781 1.00 58.65 C
ATOM 2657 CE LYS A 352 27.666 53.292 190.677 1.00 74.13 C
ATOM 2658 NZ LYS A 352 27.31 1 54.219 191.794 1.00 83.84 N
ATOM 2659 N THR A 353 26.381 52.191 187.528 1.00 55.70 N
ATOM 2660 CA THR A 353 24.957 52.464 187.745 1.00 66.47 C
ATOM 2661 C THR A 353 23.966 51.628 186.935 1.00 57.41 C
ATOM 2662 O THR A 353 23.857 51.771 185.738 1.00 65.47 O
ATOM 2663 CB THR A 353 24.649 53.936 187.483 1.00 70.96 C
ATOM 2664 OG1 THR A 353 25.549 54.752 188.245 1.00 69.55 O
ATOM 2665 CG2 THR A 353 23.215 54.249 187.856 1.00 75.09 C
ATOM 2666 N GLY A 354 23.255 50.742 187.612 1.00 81.96 N
ATOM 2667 CA GLY A 354 22.248 49.938 186.965 1.00 72.89 C ATOM 2668 C GLY A 354 22.760 48.689 186.274 1.00 73.99 C
ATOM 2669 O GLY A 354 21.972 47.966 185.676 1.00 81.56 O
ATOM 2670 N THR A 355 24.060 48.424 186.334 1.00 56.60 N
ATOM 2671 CA THR A 355 24.601 47.182 185.766 1.00 67.92 C
ATOM 2672 C THR A 355 25.366 46.348 186.801 1.00 73.53 C
ATOM 2673 O THR A 355 25.193 45.133 186.883 1.00 77.67 O
ATOM 2674 CB THR A 355 25.508 47.435 184.542 1.00 61.77 C
ATOM 2675 OG1 THR A 355 24.769 48.125 183.523 1.00 56.23 O
ATOM 2676 CG2 THR A 355 26.042 46.113 183.991 1.00 53.22 C
ATOM 2677 N LEU A 356 26.228 47.005 187.570 1.00 74.80 N
ATOM 2678 CA LEU A 356 26.860 46.385 188.728 1.00 73.25 C
ATOM 2679 C LEU A 356 26.001 46.661 189.950 1.00 73.78 C
ATOM 2680 O LEU A 356 26.009 45.907 190.912 1.00 76.93 O
ATOM 2681 CB LEU A 356 28.250 46.961 188.949 1.00 62.34 C
ATOM 2682 CG LEU A 356 29.224 46.556 187.861 1.00 58.56 C
ATOM 2683 CD1 LEU A 356 30.459 47.422 187.909 1.00 58.70 C
ATOM 2684 CD2 LEU A 356 29.564 45.094 188.043 1.00 57.26 C
ATOM 2685 N THR A 357 25.271 47.769 189.897 1.00 68.70 N
ATOM 2686 CA THR A 357 24.344 48.125 190.941 1.00 74.68 C
ATOM 2687 C THR A 357 22.963 47.895 190.375 1.00 80.62 C
ATOM 2688 O THR A 357 22.819 47.158 189.404 1.00 79.29 O
ATOM 2689 CB THR A 357 24.520 49.581 191.392 1.00 74.10 C
ATOM 2690 OG1 THR A 357 24.395 50.451 190.269 1.00 60.76 O
ATOM 2691 CG2 THR A 357 25.890 49.780 192.023 1.00 72.30 C
ATOM 2692 N THR A 358 21.951 48.524 190.966 1.00 83.70 N
ATOM 2693 CA THR A 358 20.571 48.227 190.596 1.00 84.11 C
ATOM 2694 C THR A 358 19.755 49.437 190.162 1.00 67.24 C
ATOM 2695 O THR A 358 18.627 49.284 189.720 1.00 73.93 O
ATOM 2696 CB THR A 358 19.813 47.525 191.740 1.00 87.04 C
ATOM 2697 OG1 THR A 358 19.837 48.347 192.915 1.00 89.13 O
ATOM 2698 CG2 THR A 358 20.419 46.176 192.050 1.00 69.88 C
ATOM 2699 N ASN A 359 20.318 50.628 190.303 1.00 73.90 N
ATOM 2700 CA ASN A 359 19.616 51.869 189.991 1.00 70.91 C
ATOM 2701 C ASN A 359 18.319 52.091 190.783 1.00 87.60 C
ATOM 2702 O ASN A 359 17.450 52.860 190.370 1.00 92.74 O
ATOM 2703 CB ASN A 359 19.335 51.980 188.498 1.00 71.98 C
ATOM 2704 CG ASN A 359 19.216 53.403 188.045 1.00123.99 C
ATOM 2705 OD1 ASN A 359 19.869 54.290 188.595 1.00 68.50 O
ATOM 2706 ND2 ASN A 359 18.375 53.641 187.049 1.00 70.89 N
ATOM 2707 N GLN A 360 18.177 51.422 191.920 1.00 79.45 N ATOM 2708 CA GLN A 360 17.073 51.730 192.803 1.00 72.57 C
ATOM 2709 C GLN A 360 17.573 52.757 193.811 1.00 74.06 C
ATOM 2710 O GLN A 360 18.070 52.383 194.870 1.00 78.89 O
ATOM 271 1 CB GLN A 360 16.613 50.485 193.541 1.00 74.29 C
ATOM 2712 CG GLN A 360 16.869 49.194 192.832 1.00 86.89 C
ATOM 2713 CD GLN A 360 15.622 48.617 192.203 1.00100.22 C
ATOM 2714 OE1 GLN A 360 14.929 49.297 191.447 1.00106.85 O
ATOM 2715 NE2 GLN A 360 15.327 47.352 192.511 1.00100.55 N
ATOM 2716 N MET A 361 17.465 54.044 193.488 1.00 67.56 N
ATOM 2717 CA MET A 361 17.954 55.079 194.391 1.00 66.53 C
ATOM 2718 C MET A 361 17.026 55.234 195.593 1.00 73.81 C
ATOM 2719 O MET A 361 15.859 54.875 195.529 1.00 79.66 O
ATOM 2720 CB MET A 361 18.083 56.436 193.692 1.00 70.70 C
ATOM 2721 CG MET A 361 18.819 56.445 192.385 1.00 76.49 C
ATOM 2722 SD MET A 361 20.458 55.780 192.523 1.00 69.36 S
ATOM 2723 CE MET A 361 21.309 57.079 193.404 1.00172.16 C
ATOM 2724 N SER A 362 17.565 55.787 196.677 1.00 77.51 N
ATOM 2725 CA SER A 362 16.814 56.077 197.889 1.00 75.88 C
ATOM 2726 C SER A 362 17.639 56.969 198.803 1.00 73.95 C
ATOM 2727 O SER A 362 18.713 56.581 199.236 1.00 76.53 O
ATOM 2728 CB SER A 362 16.472 54.785 198.625 1.00 78.76 C
ATOM 2729 OG SER A 362 17.578 53.918 198.626 1.00 64.17 O
ATOM 2730 N VAL A 363 17.133 58.167 199.082 1.00 72.90 N
ATOM 2731 CA VAL A 363 17.774 59.097 199.997 1.00 65.82 C
ATOM 2732 C VAL A 363 17.705 58.524 201.387 1.00 73.60 C
ATOM 2733 O VAL A 363 16.618 58.238 201.879 1.00 85.49 O
ATOM 2734 CB VAL A 363 17.051 60.436 200.017 1.00 57.09 C
ATOM 2735 CG1 VAL A 363 17.710 61.347 201.003 1.00 69.91 C
ATOM 2736 CG2 VAL A 363 17.079 61.059 198.649 1.00 78.08 C
ATOM 2737 N CYS A 364 18.854 58.351 202.033 1.00 74.92 N
ATOM 2738 CA CYS A 364 18.868 57.637 203.306 1.00 71.53 C
ATOM 2739 C CYS A 364 19.791 58.248 204.367 1.00 66.98 C
ATOM 2740 O CYS A 364 19.979 57.665 205.436 1.00 63.67 O
ATOM 2741 CB CYS A 364 19.209 56.171 203.077 1.00 70.64 C
ATOM 2742 SG CYS A 364 20.950 55.901 202.908 1.00 62.45 S
ATOM 2743 N LYS A 365 20.385 59.395 204.035 1.00 59.05 N
ATOM 2744 CA LYS A 365 20.877 60.373 205.009 1.00 58.77 C
ATOM 2745 C LYS A 365 20.634 61.752 204.409 1.00 63.37 C
ATOM 2746 O LYS A 365 20.426 61.876 203.207 1.00 64.00 O
ATOM 2747 CB LYS A 365 22.372 60.203 205.306 1.00 62.52 C ATOM 2748 CG LYS A 365 22.747 58.970 206.136 1.00 74.88
ATOM 2749 CD LYS A 365 24.195 59.013 206.619 1.00 72.48
ATOM 2750 CE LYS A 365 24.691 57.622 206.964 1.00 67.36
ATOM 2751 NZ LYS A 365 26.101 57.634 207.451 1.00 71.88
ATOM 2752 N MET A 366 20.649 62.787 205.233 1.00 57.12
ATOM 2753 CA MET A 366 20.576 64.155 204.737 1.00 59.20
ATOM 2754 C MET A 366 20.935 65.076 205.863 1.00 66.69
ATOM 2755 O MET A 366 20.764 64.730 207.029 1.00 69.60
ATOM 2756 CB MET A 366 19.175 64.515 204.238 1.00 57.97
ATOM 2757 CG MET A 366 18.080 64.388 205.291 1.00 56.05
ATOM 2758 SD MET A 366 16.425 64.762 204.686 1.00 71.78
ATOM 2759 CE MET A 366 15.389 64.011 205.933 1.00 56.93
ATOM 2760 N PHE A 367 21.428 66.256 205.532 1.00 55.90
ATOM 2761 CA PHE A 367 21.694 67.207 206.582 1.00 66.01
ATOM 2762 C PHE A 367 21.292 68.619 206.232 1.00 63.59
ATOM 2763 O PHE A 367 21.082 68.924 205.074 1.00 60.75
ATOM 2764 CB PHE A 367 23.140 67.104 207.070 1.00 57.40
ATOM 2765 CG PHE A 367 24.172 67.639 206.131 1.00 56.99
ATOM 2766 CD2 PHE A 367 25.046 66.777 205.498 1.00100.97
ATOM 2767 CD1 PHE A 367 24.347 68.996 205.963 1.00 63.66
ATOM 2768 CE2 PHE A 367 26.029 67.250 204.674 1.00 57.32
ATOM 2769 CE1 PHE A 367 25.320 69.473 205.130 1.00 64.97
ATOM 2770 CZ PHE A 367 26.161 68.599 204.486 1.00 73.51
ATOM 2771 N ILE A 368 21.143 69.458 207.247 1.00 56.40
ATOM 2772 CA ILE A 368 20.933 70.884 207.050 1.00 72.30
ATOM 2773 C ILE A 368 21.786 71.583 208.088 1.00 74.70
ATOM 2774 O ILE A 368 22.346 70.933 208.958 1.00 70.91
ATOM 2775 CB ILE A 368 19.469 71.301 207.272 1.00 64.97
ATOM 2776 CG1 ILE A 368 18.921 70.610 208.509 1.00 57.08
ATOM 2777 CG2 ILE A 368 18.622 70.916 206.1 14 1.00 55.40
ATOM 2778 CD1 ILE A 368 17.981 71.464 209.303 1.00146.02
ATOM 2779 N ILE A 369 21.881 72.902 208.008 1.00 73.04
ATOM 2780 CA ILE A 369 22.652 73.646 208.989 1.00 69.54
ATOM 2781 C ILE A 369 21.913 73.693 210.326 1.00 65.59
ATOM 2782 O ILE A 369 20.684 73.731 210.365 1.00 68.28
ATOM 2783 CB ILE A 369 22.953 75.051 208.468 1.00 72.78
ATOM 2784 CG1 ILE A 369 23.853 74.954 207.239 1.00 75.35
ATOM 2785 CG2 ILE A 369 23.592 75.907 209.528 1.00 60.79
ATOM 2786 CD1 ILE A 369 25.196 74.357 207.489 1.00 59.16
ATOM 2787 N ASP A 370 22.661 73.658 211.420 1.00 68.90 ATOM 2788 CA ASP A 370 22.079 73.676 212.757 1.00 71.74 C
ATOM 2789 C ASP A 370 22.402 75.007 213.448 1.00 70.66 C
ATOM 2790 O ASP A 370 21.620 75.936 213.379 1.00 72.52 O
ATOM 2791 CB ASP A 370 22.562 72.441 213.531 1.00 74.43 C
ATOM 2792 CG ASP A 370 22.084 72.398 214.967 1.00 85.18 C
ATOM 2793 OD1 ASP A 370 21.253 73.237 215.376 1.00 81.83 O
ATOM 2794 OD2 ASP A 370 22.556 71.491 215.691 1.00 94.13 O
ATOM 2795 N LYS A 371 23.557 75.118 214.086 1.00 65.51 N
ATOM 2796 CA LYS A 371 23.980 76.401 214.633 1.00 67.14 C
ATOM 2797 C LYS A 371 25.108 76.958 213.780 1.00 70.13 C
ATOM 2798 O LYS A 371 25.759 76.209 213.068 1.00 66.03 O
ATOM 2799 CB LYS A 371 24.445 76.248 216.080 1.00 69.37 C
ATOM 2800 CG LYS A 371 23.402 75.693 217.017 1.00 83.10 C
ATOM 2801 CD LYS A 371 22.151 76.547 217.018 1.00 85.90 C
ATOM 2802 CE LYS A 371 21.352 76.334 218.301 1.00 96.90 C
ATOM 2803 NZ LYS A 371 21.234 74.889 218.679 1.00102.90 N
ATOM 2804 N VAL A 372 25.312 78.271 213.837 1.00 71.57 N
ATOM 2805 CA VAL A 372 26.425 78.940 213.160 1.00 76.01 C
ATOM 2806 C VAL A 372 27.031 80.030 214.065 1.00 84.50 C
ATOM 2807 O VAL A 372 26.489 81.131 214.188 1.00 93.02 O
ATOM 2808 CB VAL A 372 25.991 79.562 21 1.809 1.00 73.27 C
ATOM 2809 CG1 VAL A 372 27.091 80.426 211.228 1.00 75.49 C
ATOM 2810 CG2 VAL A 372 25.635 78.493 210.829 1.00 64.86 C
ATOM 2811 N ASP A 373 28.149 79.715 214.707 1.00 81.52 N
ATOM 2812 CA ASP A 373 28.794 80.648 215.622 1.00 81.34 C
ATOM 2813 C ASP A 373 30.042 81.207 214.980 1.00 85.59 C
ATOM 2814 O ASP A 373 30.970 80.458 214.701 1.00 92.21 O
ATOM 2815 CB ASP A 373 29.173 79.937 216.920 1.00 84.97 C
ATOM 2816 CG ASP A 373 28.138 80.1 12 217.998 1.00101.09 C
ATOM 2817 OD1 ASP A 373 27.607 81.235 218.107 1.00110.52 O
ATOM 2818 OD2 ASP A 373 27.849 79.139 218.732 1.00106.81 O
ATOM 2819 N GLY A 374 30.077 82.514 214.750 1.00 91.76 N
ATOM 2820 CA GLY A 374 31.216 83.128 214.088 1.00105.46 C
ATOM 2821 C GLY A 374 31.502 82.553 212.705 1.00116.69 C
ATOM 2822 O GLY A 374 30.845 82.913 21 1.716 1.001 18.47 O
ATOM 2823 N ASP A 375 32.477 81.645 212.634 1.001 17.95 N
ATOM 2824 CA ASP A 375 32.848 81.012 211.366 1.00112.54 C
ATOM 2825 C ASP A 375 32.625 79.500 211.324 1.00104.10 C
ATOM 2826 O ASP A 375 32.801 78.880 210.284 1.00104.18 O
ATOM 2827 CB ASP A 375 34.309 81.312 211.028 1.00115.78 C ATOM 2828 CG ASP A 375 34.495 82.678 210.400 1.00116.03 C
ATOM 2829 OD2 ASP A 375 35.603 82.937 209.878 1.00117.92 O
ATOM 2830 OD1 ASP A 375 33.540 83.489 210.437 1.00112.18 o
ATOM 2831 N PHE A 376 32.238 78.907 212.445 1.00 94.57 N
ATOM 2832 CA PHE A 376 32.015 77.467 212.496 1.00 82.78 C
ATOM 2833 C PHE A 376 30.520 77.155 212.529 1.00 83.20 C
ATOM 2834 O PHE A 376 29.699 78.032 212.801 1.00 86.03 O
ATOM 2835 CB PHE A 376 32.737 76.879 213.700 1.00 80.59 C
ATOM 2836 CG PHE A 376 34.132 77.408 213.865 1.00 85.14 C
ATOM 2837 CD1 PHE A 376 34.355 78.630 214.475 1.00 88.70 c
ATOM 2838 CD2 PHE A 376 35.217 76.704 213.383 1.00 88.62 c
ATOM 2839 CE1 PHE A 376 35.625 79.127 214.608 1.00 93.26 c
ATOM 2840 CE2 PHE A 376 36.488 77.199 213.514 1.00 89.02 c
ATOM 2841 CZ PHE A 376 36.695 78.409 214.126 1.00 94.31 c
ATOM 2842 N CYS A 377 30.162 75.915 212.221 1.00 81.85 N
ATOM 2843 CA CYS A 377 28.761 75.551 212.170 1.00 66.96 C
ATOM 2844 C CYS A 377 28.509 74.158 212.733 1.00 79.94 C
ATOM 2845 O CYS A 377 29.391 73.301 212.748 1.00 71.87 O
ATOM 2846 CB CYS A 377 28.193 75.709 210.754 1.00 64.93 c
ATOM 2847 SG CYS A 377 28.612 74.423 209.501 1.00 74.42 s
ATOM 2848 N SER A 378 27.294 73.968 213.231 1.00 87.60 N
ATOM 2849 CA SER A 378 26.835 72.703 213.760 1.00 66.24 C
ATOM 2850 C SER A 378 26.022 72.147 212.620 1.00 69.30 C
ATOM 2851 O SER A 378 25.454 72.927 211.857 1.00 64.07 O
ATOM 2852 CB SER A 378 25.932 72.998 214.944 1.00 67.26 C
ATOM 2853 OG SER A 378 25.577 71.828 215.650 1.00113.96 o
ATOM 2854 N LEU A 379 25.965 70.830 212.449 1.00 63.65 N
ATOM 2855 CA LEU A 379 25.042 70.303 211.431 1.00 61.85 C
ATOM 2856 C LEU A 379 23.884 69.533 212.032 1.00 85.89 C
ATOM 2857 O LEU A 379 24.054 68.762 212.981 1.00 96.06 O
ATOM 2858 CB LEU A 379 25.729 69.419 210.396 1.00 61.20 C
ATOM 2859 CG LEU A 379 26.737 70.082 209.457 1.00 74.20 C
ATOM 2860 CD1 LEU A 379 27.219 69.096 208.413 1.00 74.97 C
ATOM 2861 CD2 LEU A 379 26.144 71.284 208.801 1.00 60.06 c
ATOM 2862 N ASN A 380 22.698 69.762 211.483 1.00 81.42 N
ATOM 2863 CA ASN A 380 21.532 68.945 211.796 1.00 77.21 C
ATOM 2864 C ASN A 380 21.412 67.807 210.794 1.00 74.74 C
ATOM 2865 O ASN A 380 21.266 68.038 209.597 1.00 72.63 O
ATOM 2866 CB ASN A 380 20.275 69.794 211.778 1.00 74.90 C
ATOM 2867 CG ASN A 380 19.727 70.010 213.138 1.00 79.88 C ATOM 2868 OD1 ASN A 380 19.823 69.129 213.977 1.00 62.81
ATOM 2869 ND2 ASN A 380 19.145 71.186 213.380 1.00 85.37
ATOM 2870 N GLU A 381 21.458 66.579 211.283 1.00 70.41
ATOM 2871 CA GLU A 381 21.723 65.459 210.404 1.00 59.99
ATOM 2872 C GLU A 381 20.861 64.239 210.710 1.00 69.37
ATOM 2873 O GLU A 381 20.824 63.744 211.850 1.00 75.88
ATOM 2874 CB GLU A 381 23.198 65.141 210.512 1.00 60.80
ATOM 2875 CG GLU A 381 23.656 63.915 209.805 1.00 66.61
ATOM 2876 CD GLU A 381 25.137 63.708 209.998 1.00 80.54
ATOM 2877 OE1 GLU A 381 25.873 64.708 210.234 1.00 62.26
ATOM 2878 OE2 GLU A 381 25.556 62.536 209.930 1.00 93.34
ATOM 2879 N PHE A 382 20.167 63.752 209.682 1.00 61.01
ATOM 2880 CA PHE A 382 19.106 62.771 209.895 1.00 65.41
ATOM 2881 C PHE A 382 19.331 61.582 209.008 1.00 67.80
ATOM 2882 O PHE A 382 20.136 61.645 208.109 1.00 59.60
ATOM 2883 CB PHE A 382 17.743 63.372 209.567 1.00 65.19
ATOM 2884 CG PHE A 382 17.547 64.755 210.092 1.00 65.61
ATOM 2885 CD1 PHE A 382 18.115 65.842 209.455 1.00 58.39
ATOM 2886 CD2 PHE A 382 16.788 64.971 211.210 1.00 60.40
ATOM 2887 CE1 PHE A 382 17.943 67.116 209.937 1.00 74.41
ATOM 2888 CE2 PHE A 382 16.608 66.248 211.688 1.00 74.92
ATOM 2889 CZ PHE A 382 17.189 67.321 211.047 1.00 71.51
ATOM 2890 N SER A 383 18.616 60.499 209.252 1.00 61.17
ATOM 2891 CA SER A 383 18.672 59.379 208.341 1.00 74.30
ATOM 2892 C SER A 383 17.244 58.928 208.002 1.00 72.37
ATOM 2893 O SER A 383 16.301 59.342 208.659 1.00 61.72
ATOM 2894 CB SER A 383 19.569 58.270 208.906 1.00 62.96
ATOM 2895 OG SER A 383 18.908 57.436 209.834 1.00 64.50
ATOM 2896 N ILE A 384 17.066 58.143 206.947 1.00 61.56
ATOM 2897 CA ILE A 384 15.723 57.719 206.563 1.00 75.30
ATOM 2898 C ILE A 384 15.672 56.215 206.287 1.00 73.70
ATOM 2899 O ILE A 384 16.548 55.680 205.622 1.00 74.01
ATOM 2900 CB ILE A 384 15.175 58.500 205.339 1.00 60.61
ATOM 2901 CG1 ILE A 384 15.238 60.019 205.543 1.00 81.75
ATOM 2902 CG2 ILE A 384 13.725 58.151 205.117 1.00 75.80
ATOM 2903 CD1 ILE A 384 16.501 60.714 205.075 1.00 58.32
ATOM 2904 N THR A 385 14.658 55.529 206.809 1.00 64.75
ATOM 2905 CA THR A 385 14.525 54.088 206.591 1.00 66.49
ATOM 2906 C THR A 385 13.637 53.761 205.392 1.00 75.51
ATOM 2907 O THR A 385 12.873 54.604 204.910 1.00 70.73 ATOM 2908 CB THR A 385 13.931 53.402 207.791 1.00 68.35
ATOM 2909 OG1 THR A 385 12.663 54.002 208.078 1.00 68.40
ATOM 2910 CG2 THR A 385 14.841 53.556 208.989 1.00 68.75
ATOM 2911 N GLY A 386 13.737 52.523 204.922 1.00 76.48
ATOM 2912 CA GLY A 386 13.030 52.101 203.725 1.00 79.91
ATOM 2913 C GLY A 386 13.830 52.451 202.490 1.00 78.71
ATOM 2914 O GLY A 386 14.211 53.602 202.302 1.00 80.38
ATOM 2915 N SER A 387 14.086 51.461 201.645 1.00 81.28
ATOM 2916 CA SER A 387 15.002 51.644 200.528 1.00 78.02
ATOM 2917 C SER A 387 14.386 51.270 199.192 1.00 78.85
ATOM 2918 O SER A 387 15.095 51.121 198.206 1.00 85.09
ATOM 2919 CB SER A 387 16.228 50.781 200.745 1.00 84.61
ATOM 2920 OG SER A 387 15.821 49.428 200.760 1.00 94.74
ATOM 2921 N THR A 388 13.075 51.077 199.163 1.00 79.14
ATOM 2922 CA THR A 388 12.371 50.948 197.902 1.00 77.35
ATOM 2923 C THR A 388 1 1.778 52.312 197.587 1.00 77.94
ATOM 2924 O THR A 388 12.141 53.300 198.220 1.00 78.63
ATOM 2925 CB THR A 388 1 1.271 49.895 197.950 1.00 72.57
ATOM 2926 OG1 THR A 388 10.174 50.395 198.711 1.00 72.33
ATOM 2927 CG2 THR A 388 1 1.783 48.615 198.563 1.00 74.43
ATOM 2928 N TYR A 389 10.895 52.383 196.597 1.00 77.51
ATOM 2929 CA TYR A 389 10.329 53.673 196.224 1.00 73.65
ATOM 2930 C TYR A 389 9.082 53.929 197.042 1.00 74.76
ATOM 2931 O TYR A 389 8.518 55.020 196.990 1.00 76.20
ATOM 2932 CB TYR A 389 10.015 53.752 194.725 1.00 71.38
ATOM 2933 CG TYR A 389 11.229 53.927 193.852 1.00 73.25
ATOM 2934 CD1 TYR A 389 11.985 55.096 193.888 1.00 74.33
ATOM 2935 CD2 TYR A 389 1 1.625 52.925 192.991 1.00 72.44
ATOM 2936 CE1 TYR A 389 13.105 55.246 193.081 1.00 69.88
ATOM 2937 CE2 TYR A 389 12.731 53.068 192.192 1.00 72.12
ATOM 2938 CZ TYR A 389 13.467 54.220 192.236 1.00 70.36
ATOM 2939 OH TYR A 389 14.569 54.320 191.420 1.00 74.69
ATOM 2940 N ALA A 390 8.661 52.909 197.790 1.00 71.03
ATOM 2941 CA ALA A 390 7.455 52.983 198.604 1.00 75.26
ATOM 2942 C ALA A 390 7.590 54.140 199.563 1.00 73.36
ATOM 2943 O ALA A 390 8.688 54.397 200.066 1.00 79.00
ATOM 2944 CB ALA A 390 7.246 51.691 199.365 1.00 72.63
ATOM 2945 N PRO A 391 6.494 54.877 199.795 1.00 68.92
ATOM 2946 CA PRO A 391 6.61 1 55.984 200.744 1.00 77.78
ATOM 2947 C PRO A 391 6.516 55.489 202.168 1.00 85.69 ATOM 2948 O PRO A 391 5.930 56.171 202.995 1.00 95.03 O
ATOM 2949 CB PRO A 391 5.415 56.867 200.408 1.00 69.69 C
ATOM 2950 CG PRO A 391 4.452 55.960 199.747 1.00 72.21 C
ATOM 2951 CD PRO A 391 5.245 54.938 199.022 1.00 70.27 C
ATOM 2952 N GLU A 392 7.094 54.328 202.447 1.00 69.22 N
ATOM 2953 CA GLU A 392 7.034 53.750 203.773 1.00 81.11 C
ATOM 2954 C GLU A 392 8.387 53.790 204.452 1.00 82.01 C
ATOM 2955 O GLU A 392 9.305 53.082 204.052 1.00 90.11 O
ATOM 2956 CB GLU A 392 6.525 52.312 203.684 1.00 95.10 C
ATOM 2957 CG GLU A 392 5.055 52.215 203.282 1.00113.65 C
ATOM 2958 CD GLU A 392 4.806 51.158 202.222 1.00129.17 C
ATOM 2959 OE1 GLU A 392 5.71 1 50.320 202.011 1.00134.20 O
ATOM 2960 OE2 GLU A 392 3.713 51.167 201.603 1.00132.75 O
ATOM 2961 N GLY A 393 8.506 54.620 205.484 1.00 78.05 N
ATOM 2962 CA GLY A 393 9.717 54.687 206.286 1.00 73.18 C
ATOM 2963 C GLY A 393 9.711 55.899 207.200 1.00 72.74 C
ATOM 2964 O GLY A 393 8.794 56.714 207.149 1.00 66.74 O
ATOM 2965 N GLU A 394 10.732 56.043 208.035 1.00 66.68 N
ATOM 2966 CA GLU A 394 10.794 57.230 208.885 1.00 83.87 C
ATOM 2967 C GLU A 394 12.092 58.005 208.800 1.00 79.65 C
ATOM 2968 O GLU A 394 13.137 57.458 208.462 1.00 83.61 O
ATOM 2969 CB GLU A 394 10.499 56.882 210.339 1.00 89.43 C
ATOM 2970 CG GLU A 394 1 1.020 55.543 210.744 1.00 97.33 C
ATOM 2971 CD GLU A 394 10.166 54.931 211.807 1.00114.97 C
ATOM 2972 OE1 GLU A 394 9.086 55.500 212.096 1.001 19.36 O
ATOM 2973 OE2 GLU A 394 10.574 53.890 212.360 1.00125.86 O
ATOM 2974 N VAL A 395 11.995 59.297 209.091 1.00 73.43 N
ATOM 2975 CA VAL A 395 13.154 60.140 209.270 1.00 72.16 C
ATOM 2976 C VAL A 395 13.544 59.997 210.734 1.00 76.18 C
ATOM 2977 O VAL A 395 12.738 60.242 211.634 1.00 75.45 O
ATOM 2978 CB VAL A 395 12.823 61.593 208.969 1.00 61.24 C
ATOM 2979 CG1 VAL A 395 14.000 62.465 209.206 1.00 60.41 C
ATOM 2980 CG2 VAL A 395 12.371 61.730 207.569 1.00 60.35 C
ATOM 2981 N LEU A 396 14.776 59.559 210.964 1.00 75.73 N
ATOM 2982 CA LEU A 396 15.291 59.392 212.303 1.00 74.93 C
ATOM 2983 C LEU A 396 16.255 60.520 212.625 1.00 76.80 C
ATOM 2984 O LEU A 396 16.765 61.186 211.730 1.00 63.00 O
ATOM 2985 CB LEU A 396 16.01 1 58.054 212.401 1.00 76.13 C
ATOM 2986 CG LEU A 396 15.194 56.843 211.957 1.00 82.59 C
ATOM 2987 CD1 LEU A 396 15.926 55.564 212.294 1.00 83.39 C ATOM 2988 CD2 LEU A 396 13.824 56.846 212.602 1.00 87.07 C
ATOM 2989 N LYS A 397 16.468 60.762 213.911 1.00 73.43 N
ATOM 2990 CA LYS A 397 17.612 61.551 214.365 1.00 75.94 C
ATOM 2991 C LYS A 397 18.173 60.915 215.620 1.00 73.08 C
ATOM 2992 O LYS A 397 17.458 60.722 216.595 1.00 79.75 O
ATOM 2993 CB LYS A 397 17.254 63.010 214.631 1.00 79.98 C
ATOM 2994 CG LYS A 397 18.397 63.760 215.265 1.00 65.68 C
ATOM 2995 CD LYS A 397 18.337 65.239 214.983 1.00 64.68 C
ATOM 2996 CE LYS A 397 19.414 65.946 215.785 1.00 84.69 C
ATOM 2997 NZ LYS A 397 19.335 67.420 215.670 1.00 84.28 N
ATOM 2998 N ASN A 398 19.451 60.581 215.577 1.00 68.22 N
ATOM 2999 CA ASN A 398 20.069 59.762 216.599 1.00 70.45 C
ATOM 3000 C ASN A 398 19.273 58.490 216.825 1.00 79.64 C
ATOM 3001 O ASN A 398 19.002 58.098 217.941 1.00 89.80 O
ATOM 3002 CB ASN A 398 20.265 60.569 217.873 1.00 82.68 C
ATOM 3003 CG ASN A 398 21.179 61.759 217.661 1.00 91.21 C
ATOM 3004 OD1 ASN A 398 20.731 62.901 217.566 1.00 88.27 O
ATOM 3005 ND2 ASN A 398 22.473 61.490 217.562 1.00103.53 N
ATOM 3006 N ASP A 399 18.895 57.861 215.726 1.00 82.14 N
ATOM 3007 CA ASP A 399 18.067 56.654 215.712 1.00 87.39 C
ATOM 3008 C ASP A 399 16.722 56.754 216.424 1.00 86.11 C
ATOM 3009 O ASP A 399 16.061 55.744 216.647 1.00 93.26 O
ATOM 3010 CB ASP A 399 18.865 55.412 216.1 18 1.00 98.69 C
ATOM 3011 CG ASP A 399 19.665 54.840 214.951 1.00113.78 C
ATOM 3012 OD1 ASP A 399 20.727 55.414 214.619 1.00121.14 O
ATOM 3013 OD2 ASP A 399 19.225 53.832 214.348 1.001 14.87 O
ATOM 3014 N LYS A 400 16.319 57.982 216.745 1.00 84.25 N
ATOM 3015 CA LYS A 400 15.000 58.276 217.298 1.00 85.20 C
ATOM 3016 C LYS A 400 14.104 58.874 216.209 1.00 79.31 C
ATOM 3017 O LYS A 400 14.458 59.903 215.637 1.00 75.19 O
ATOM 3018 CB LYS A 400 15.138 59.264 218.467 1.00 91.10 C
ATOM 3019 CG LYS A 400 13.800 59.784 219.024 1.00113.25 C
ATOM 3020 CD LYS A 400 13.910 60.218 220.500 1.00121.28 C
ATOM 3021 CE LYS A 400 12.560 60.132 221.231 1.00114.34 C
ATOM 3022 NZ LYS A 400 12.676 60.414 222.702 1.00108.30 N
ATOM 3023 N PRO A 401 12.950 58.229 215.905 1.00 76.65 N
ATOM 3024 CA PRO A 401 12.005 58.802 214.944 1.00 72.79 C
ATOM 3025 C PRO A 401 11.709 60.242 215.299 1.00 73.11 C
ATOM 3026 O PRO A 401 11.726 60.585 216.473 1.00 70.67 O
ATOM 3027 CB PRO A 401 10.757 57.937 215.132 1.00 71.62 C ATOM 3028 CG PRO A 401 1 1.276 56.637 215.492 1.00 73.12 C
ATOM 3029 CD PRO A 401 12.485 56.910 216.368 1.00 82.28 C
ATOM 3030 N ILE A 402 1 1.500 61.082 214.299 1.00 67.58 N
ATOM 3031 CA ILE A 402 11.208 62.486 214.527 1.00 79.83 C
ATOM 3032 C ILE A 402 10.319 62.995 213.410 1.00 75.10 C
ATOM 3033 O ILE A 402 10.271 62.415 212.322 1.00 74.00 O
ATOM 3034 CB ILE A 402 12.488 63.381 214.563 1.00 86.85 C
ATOM 3035 CG1 ILE A 402 13.240 63.336 213.222 1.00 84.96 C
ATOM 3036 CG2 ILE A 402 13.387 63.013 215.717 1.00 67.39 C
ATOM 3037 CD1 ILE A 402 12.965 64.506 212.301 1.00 62.71 C
ATOM 3038 N ARG A 403 9.640 64.102 213.685 1.00 72.89 N
ATOM 3039 CA ARG A 403 8.763 64.738 212.718 1.00 71.87 C
ATOM 3040 C ARG A 403 9.477 65.864 211.946 1.00 70.67 C
ATOM 3041 O ARG A 403 9.868 66.884 212.519 1.00 64.00 O
ATOM 3042 CB ARG A 403 7.477 65.203 213.422 1.00 67.35 C
ATOM 3043 CG ARG A 403 6.801 66.393 212.807 1.00113.38 C
ATOM 3044 CD ARG A 403 5.594 66.760 213.618 1.00109.15 C
ATOM 3045 NE ARG A 403 4.739 65.599 213.806 1.00 70.47 N
ATOM 3046 CZ ARG A 403 3.560 65.639 214.408 1.00 84.93 C
ATOM 3047 NH1 ARG A 403 3.093 66.786 214.883 1.00 73.50 N
ATOM 3048 NH2 ARG A 403 2.856 64.529 214.526 1.00 79.09 N
ATOM 3049 N SER A 404 9.634 65.669 210.638 1.00 62.58 N
ATOM 3050 CA SER A 404 10.492 66.545 209.833 1.00 64.21 C
ATOM 3051 C SER A 404 10.019 67.998 209.710 1.00 64.49 C
ATOM 3052 O SER A 404 10.813 68.871 209.410 1.00 71.48 O
ATOM 3053 CB SER A 404 10.755 65.954 208.436 1.00 59.90 C
ATOM 3054 OG SER A 404 1 1.038 64.571 208.506 1.00 74.46 O
ATOM 3055 N GLY A 405 8.739 68.267 209.923 1.00 66.73 N
ATOM 3056 CA GLY A 405 8.241 69.622 209.748 1.00 69.24 C
ATOM 3057 C GLY A 405 8.658 70.547 210.881 1.00 69.29 C
ATOM 3058 O GLY A 405 8.570 71.783 210.781 1.00 67.64 O
ATOM 3059 N GLN A 406 9.1 13 69.942 211.973 1.00 67.79 N
ATOM 3060 CA GL A 406 9.534 70.703 213.134 1.00 69.89 C
ATOM 3061 C GLN A 406 10.813 71.470 212.815 1.00 69.11 C
ATOM 3062 O GL A 406 11.139 72.445 213.472 1.00 79.44 O
ATOM 3063 CB GLN A 406 9.710 69.780 214.335 1.00 70.43 C
ATOM 3064 CG GLN A 406 8.411 69.427 215.051 1.00 80.57 C
ATOM 3065 CD GLN A 406 8.596 68.291 216.057 1.00100.25 C
ATOM 3066 OE1 GLN A 406 9.642 67.605 216.060 1.00101.55 O
ATOM 3067 NE2 GLN A 406 7.581 68.077 216.915 1.00 97.70 N ATOM 3068 N PHE A 407 11.516 71.034 211.777 1.00 66.22 N
ATOM 3069 CA PHE A 407 12.699 71.722 211.284 1.00 61.11 C
ATOM 3070 C PHE A 407 12.398 72.555 210.014 1.00 75.39 C
ATOM 3071 O PHE A 407 12.210 71.998 208.923 1.00 72.48 O
ATOM 3072 CB PHE A 407 13.759 70.680 210.958 1.00 60.15 C
ATOM 3073 CG PHE A 07 14.1 13 69.783 212.109 1.00 65.87 C
ATOM 3074 CD1 PHE A 407 13.370 68.644 212.374 1.00 61.69 C
ATOM 3075 CD2 PHE A 407 15.219 70.068 212.922 1.00 62.79 C
ATOM 3076 CE1 PHE A 407 13.713 67.820 213.435 1.00 62.83 C
ATOM 3077 CE2 PHE A 407 15.561 69.249 213.969 1.00 62.87 C
ATOM 3078 CZ PHE A 407 14.815 68.125 214.225 1.00 73.79 C
ATOM 3079 N ASP A 408 12.370 73.882 210.143 1.00 75.69 N
ATOM 3080 CA ASP A 408 12.133 74.764 208.997 1.00 72.52 C
ATOM 3081 C ASP A 408 13.159 74.568 207.892 1.00 71.47 C
ATOM 3082 O ASP A 408 12.882 74.812 206.709 1.00 78.36 O
ATOM 3083 CB ASP A 408 12.138 76.221 209.432 1.00 61.53 C
ATOM 3084 CG ASP A 408 1 1.038 76.526 210.411 1.00 89.12 C
ATOM 3085 OD1 ASP A 408 9.877 76.133 210.144 1.00 87.73 O
ATOM 3086 OD2 ASP A 408 1 1.333 77.137 211.462 1.00 95.46 O
ATOM 3087 N GLY A 409 14.354 74.146 208.287 1.00 69.09 N
ATOM 3088 CA GLY A 09 15.379 73.782 207.336 1.00 62.81 C
ATOM 3089 C GLY A 409 14.925 72.577 206.546 1.00 65.61 C
ATOM 3090 O GLY A 409 15.039 72.567 205.317 1.00 69.71 O
ATOM 3091 N LEU A 410 14.401 71.565 207.239 1.00 65.23 N
ATOM 3092 CA LEU A 410 13.914 70.370 206.560 1.00 65.82 C
ATOM 3093 C LEU A 410 12.734 70.680 205.662 1.00 64.09 C
ATOM 3094 O LEU A 410 12.564 70.047 204.6 1 1.00 65.28 O
ATOM 3095 CB LEU A 410 13.548 69.262 207.535 1.00 57.28 C
ATOM 3096 CG LEU A 410 14.725 68.474 208.105 1.00 57.29 C
ATOM 3097 CD1 LEU A 410 14.280 67.107 208.588 1.00 73.18 C
ATOM 3098 CD2 LEU A 410 15.836 68.330 207.102 1.00 56.30 C
ATOM 3099 N VAL A 411 11.919 71.651 206.071 1.00 63.48 N
ATOM 3100 CA VAL A 411 10.758 72.029 205.272 1.00 67.91 C
ATOM 3101 C VAL A 411 11.231 72.512 203.918 1.00 75.32 C
ATOM 3102 O VAL A 411 10.748 72.036 202.893 1.00 77.26 O
ATOM 3103 CB VAL A 411 9.885 73.096 205.957 1.00 62.73 C
ATOM 3104 CG1 VAL A 411 8.585 73.279 205.205 1.00 59.87 C
ATOM 3105 CG2 VAL A 411 9.570 72.657 207.343 1.00 67.95 C
ATOM 3106 N GLU A 412 12.201 73.422 203.914 1.00 72.68 N
ATOM 3107 CA GLU A 412 12.734 73.944 202.663 1.00 65.36 C ATOM 3108 C GLU A 412 13.523 72.929 201.859 1.00 64.90 C
ATOM 3109 O GLU A 412 13.513 72.968 200.638 1.00 63.95 O
ATOM 3110 CB GLU A 412 13.612 75.148 202.907 1.00 61.36 C
ATOM 3111 CG GLU A 412 14.130 75.739 201.632 1.00 56.06 C
ATOM 3112 CD GLU A 412 14.818 77.039 201.870 1.00 64.43 C
ATOM 3113 OE1 GLU A 412 15.145 77.320 203.037 1.00 66.43 O
ATOM 3114 OE2 GLU A 412 15.036 77.781 200.901 1.00 63.60 O
ATOM 3115 N LEU A 413 14.220 72.024 202.536 1.00 66.64 N
ATOM 3116 CA LEU A 413 14.949 70.979 201.824 1.00 63.80 C
ATOM 3117 C LEU A 413 13.964 70.043 201.1 12 1.00 65.77 C
ATOM 3118 O LEU A 413 14.238 69.518 200.034 1.00 68.75 O
ATOM 31 19 CB LEU A 413 15.861 70.202 202.773 1.00 54.14 C
ATOM 3120 CG LEU A 413 16.569 69.013 202.142 1.00 53.81 C
ATOM 3121 CD1 LEU A 413 17.914 68.884 202.737 1.00 53.81 C
ATOM 3122 CD2 LEU A 413 15.788 67.718 202.328 1.00 57.13 C
ATOM 3123 N ALA A 414 12.810 69.838 201.726 1.00 55.04 N
ATOM 3124 CA ALA A 414 11.792 69.010 201.122 1.00 74.72 C
ATOM 3125 C ALA A 414 11.089 69.773 199.997 1.00 74.31 C
ATOM 3126 O ALA A 414 10.704 69.169 198.999 1.00 69.55 O
ATOM 3127 CB ALA A 414 10.819 68.534 202.169 1.00 56.37 C
ATOM 3128 N THR A 415 10.954 71.094 200.144 1.00 56.07 N
ATOM 3129 CA THR A 415 10.295 71.920 199.136 1.00 71.71 C
ATOM 3130 C THR A 415 11.112 71.904 197.847 1.00 72.09 C
ATOM 3131 O THR A 415 10.583 71.888 196.727 1.00 67.81 O
ATOM 3132 CB THR A 415 10.137 73.359 199.627 1.00 57.21 C
ATOM 3133 OG1 THR A 415 9.081 73.425 200.588 1.00 69.61 O
ATOM 3134 CG2 THR A 415 9.770 74.264 198.508 1.00 57.87 C
ATOM 3135 N ILE A 416 12.424 71.904 198.022 1.00 69.31 N
ATOM 3136 CA ILE A 416 13.350 71.873 196.912 1.00 60.89 C
ATOM 3137 C ILE A 416 13.259 70.534 196.206 1.00 62.69 C
ATOM 3138 O ILE A 416 13.091 70.490 194.992 1.00 65.15 O
ATOM 3139 CB ILE A 416 14.762 72.170 197.400 1.00 56.30 C
ATOM 3140 CG1 ILE A 416 14.942 73.680 197.519 1.00 56.12 C
ATOM 3141 CG2 ILE A 416 15.789 71.607 196.466 1.00 65.96 C
ATOM 3142 CD1 ILE A 416 16.142 74.093 198.334 1.00 54.32 C
ATOM 3143 N CYS A 417 13.326 69.444 196.960 1.00 59.16 N
ATOM 3144 CA CYS A 417 13.258 68.1 16 196.352 1.00 63.67 C
ATOM 3145 C CYS A 417 11.960 67.840 195.589 1.00 69.98 C
ATOM 3146 O CYS A 417 11.939 66.969 194.717 1.00 85.02 O
ATOM 3147 CB CYS A 417 13.505 67.003 197.371 1.00 63.52 C ATOM 3148 SG CYS A 417 15.136 67.047 198.147 1.00 70.62 S
ATOM 3149 N ALA A 418 10.890 68.579 195.890 1.00 63.59 N
ATOM 3150 CA ALA A 418 9.617 68.407 195.177 1.00 65.51 C
ATOM 3151 C ALA A 418 9.519 69.239 193.921 1.00 58.36 C
ATOM 3152 O ALA A 418 8.960 68.796 192.939 1.00117.55 O
ATOM 3153 CB ALA A 418 8.441 68.693 196.086 1.00 58.52 C
ATOM 3154 N LEU A 419 10.051 70.450 193.947 1.00 75.30 N
ATOM 3155 CA LEU A 419 10.010 71.311 192.760 1.00 71.64 C
ATOM 3156 C LEU A 419 11.157 71.123 191.727 1.00 70.94 C
ATOM 3157 O LEU A 419 10.910 71.251 190.536 1.00 69.13 O
ATOM 3158 CB LEU A 419 9.846 72.783 193.157 1.00 70.27 C
ATOM 3159 CG LEU A 419 8.670 73.106 194.081 1.00 59.59 C
ATOM 3160 CD1 LEU A 419 8.880 74.447 194.755 1.00 82.02 C
ATOM 3161 CD2 LEU A 419 7.423 73.140 193.298 1.00 65.39 C
ATOM 3162 N CYS A 420 12.392 70.836 192.149 1.00 67.99 N
ATOM 3163 CA CYS A 420 13.431 70.470 191.169 1.00 63.87 C
ATOM 3164 C CYS A 420 13.301 69.002 190.860 1.00 70.76 C
ATOM 3165 O CYS A 420 14.172 68.214 191.203 1.00 77.49 O
ATOM 3166 CB CYS A 420 14.855 70.702 191.679 1.00 62.35 c
ATOM 3167 SG CYS A 420 15.302 72.373 192.002 1.00 84.98 S
ATOM 3168 N ASN A 421 12.212 68.625 190.214 1.00 70.91 N
ATOM 3169 CA ASN A 421 11.939 67.223 190.018 1.00 64.16 C
ATOM 3170 C ASN A 421 11.069 67.126 188.803 1.00 67.19 C
ATOM 3171 O ASN A 421 10.135 67.910 188.659 1.00 74.09 O
ATOM 3172 CB ASN A 421 11.213 66.688 191.248 1.00 61.55 C
ATOM 3173 CG ASN A 421 11.342 65.194 191.404 1.00 66.96 c
ATOM 3174 OD1 ASN A 421 11.169 64.432 190.450 1.00 64.29 o
ATOM 3175 ND2 ASN A 421 11.668 64.761 192.620 1.00 71.96 N
ATOM 3176 N ASP A 422 11.388 66.188 187.916 1.00 76.31 N
ATOM 3177 CA ASP A 422 10.619 65.986 186.690 1.00 85.81 C
ATOM 3178 C ASP A 422 10.020 64.589 186.684 1.00 87.77 C
ATOM 3179 O ASP A 422 9.622 64.073 185.638 1.00101.46 O
ATOM 3180 CB ASP A 422 11.502 66.170 185.457 1.00 89.46 C
ATOM 3181 CG ASP A 422 12.101 67.559 185.369 1.00100.60 C
ATOM 3182 OD1 ASP A 422 11.398 68.533 185.735 1.00 99.94 O
ATOM 3183 OD2 ASP A 422 13.279 67.670 184.937 1.00105.30 O
ATOM 3184 N SER A 423 9.947 63.987 187.864 1.00 75.44 N
ATOM 3185 CA SER A 423 9.610 62.578 187.974 1.00 80.98 C
ATOM 3186 C SER A 423 8.512 62.409 189.005 1.00 73.49 C
ATOM 3187 O SER A 423 8.078 63.402 189.573 1.00 71.46 O ATOM 3188 CB SER A 23 10.860 61.751 188.309 1.00 91.22 C
ATOM 3189 OG SER A 423 1 1.821 61.817 187.248 1.00 92.23 O
ATOM 3190 N SER A 424 8.050 61.175 189.221 1.00 66.02 N
ATOM 3191 CA SER A 424 6.843 60.919 190.031 1.00 76.29 C
ATOM 3192 C SER A 424 6.671 59.460 190.457 1.00 75.07 C
ATOM 3193 O SER A 424 7.267 58.558 189.874 1.00 84.68 O
ATOM 3194 CB SER A 424 5.578 61.396 189.300 1.00 81.01 C
ATOM 3195 OG SER A 424 5.646 61.161 187.894 1.00 82.03 o
ATOM 3196 N LEU A 425 5.862 59.240 191.489 1.00 70.47 N
ATOM 3197 CA LEU A 425 5.563 57.890 191.981 1.00 73.91 C
ATOM 3198 C LEU A 425 4.204 57.386 191.503 1.00 82.63 C
ATOM 3199 O LEU A 425 3.218 58.124 191.481 1.00 83.08 O
ATOM 3200 CB LEU A 425 5.571 57.858 193.507 1.00 68.46 C
ATOM 3201 CG LEU A 425 6.837 57.502 194.269 1.00 67.02 C
ATOM 3202 CD1 LEU A 425 6.539 57.557 195.747 1.00 96.08 C
ATOM 3203 CD2 LEU A 425 7.310 56.129 193.893 1.00 79.49 C
ATOM 3204 N ASP A 426 4.142 56.1 17 191.140 1.00 86.80 N
ATOM 3205 CA ASP A 426 2.886 55.555 190.688 1.00 94.10 C
ATOM 3206 C ASP A 426 2.686 54.164 191.277 1.00 95.10 C
ATOM 3207 O ASP A 426 3.640 53.398 191.430 1.00 89.28 o
ATOM 3208 CB ASP A 426 2.836 55.537 189.162 1.00101.22 c
ATOM 3209 CG ASP A 426 1.788 54.604 188.633 1.00114.10 c
ATOM 3210 OD1 ASP A 426 0.602 54.994 188.604 1.00122.48 o
ATOM 3211 OD2 ASP A 426 2.154 53.475 188.251 1.00117.99 o
ATOM 3212 N PHE A 427 1.446 53.848 191.639 1.00 95.74 N
ATOM 3213 CA PHE A 27 1.189 52.580 192.299 1.00 90.79 C
ATOM 3214 C PHE A 427 0.686 51.548 191.329 1.00 94.84 C
ATOM 3215 O PHE A 427 -0.277 51.774 190.605 1.00106.17 O
ATOM 3216 CB PHE A 427 0.230 52.720 193.479 1.00 87.96 C
ATOM 3217 CG PHE A 427 0.086 51.456 194.275 1.00 87.79 C
ATOM 3218 CD1 PHE A 427 1.1 13 51.020 195.101 1.00 91.01 c
ATOM 3219 CD2 PHE A 427 -1.062 50.689 194.185 1.00 86.97 c
ATOM 3220 CE1 PHE A 427 0.992 49.848 195.828 1.00 84.21 c
ATOM 3221 CE2 PHE A 427 -1.186 49.517 194.908 1.00 88.72 c
ATOM 3222 CZ PHE A 427 -0.157 49.099 195.731 1.00 87.33 c
ATOM 3223 N ASN A 428 1.353 50.406 191.339 1.00 85.44 N
ATOM 3224 CA ASN A 428 1.079 49.331 190.404 1.00106.22 C
ATOM 3225 C ASN A 428 0.157 48.312 191.035 1.00105.65 C
ATOM 3226 O ASN A 428 0.619 47.379 191.684 1.00103.20 O
ATOM 3227 CB ASN A 428 2.395 48.662 190.010 1.00101.91 c ATOM 3228 CG ASN A 428 2.238 47.627 188.915 1.00100.79
ATOM 3229 OD1 ASN A 428 1.276 46.859 188.884 1.00100.87
ATOM 3230 ND2 ASN A 428 3.206 47.591 188.017 1.00 98.82
ATOM 3231 N GLU A 429 -1.144 48.470 190.823 1.00110.89
ATOM 3232 CA GLU A 429 -2.120 47.657 191.545 1.00118.20
ATOM 3233 C GLU A 429 -2.070 46.178 191.173 1.00119.57
ATOM 3234 O GLU A 429 -2.649 45.339 191.868 1.00116.60
ATOM 3235 CB GLU A 429 -3.534 48.222 191.386 1.00116.16
ATOM 3236 CG GLU A 429 -3.769 49.483 192.193 1.00113.41
ATOM 3237 CD GLU A 429 -5.048 50.182 191.817 1.00121.91
ATOM 3238 OE1 GLU A 429 -6.045 50.025 192.553 1.00127.94
ATOM 3239 OE2 GLU A 429 -5.056 50.892 190.786 1.00124.41
ATOM 3240 N THR A 430 -1.360 45.858 190.095 1.00119.80
ATOM 3241 CA THR A 430 -1.246 44.468 189.668 1.00122.24
ATOM 3242 C THR A 430 -0.047 43.762 190.311 1.00121.02
ATOM 3243 O THR A 430 -0.191 42.680 190.876 1.00123.28
ATOM 3244 CB THR A 430 -1.210 44.342 188.140 1.001 19.46
ATOM 3245 OG1 THR A 430 -2.260 45.138 187.578 1.00115.69
ATOM 3246 CG2 THR A 430 -1.403 42.893 187.730 1.00122.24
ATOM 3247 N LYS A 431 1.131 44.373 190.238 1.00118.38
ATOM 3248 CA LYS A 431 2.289 43.845 190.958 1.00117.08
ATOM 3249 C LYS A 431 2.180 44.190 192.444 1.00116.82
ATOM 3250 O LYS A 431 2.889 43.625 193.277 1.00115.77
ATOM 3251 CB LYS A 431 3.603 44.397 190.387 1.00109.46
ATOM 3252 CG LYS A 431 3.941 43.935 188.981 1.00107.1 1
ATOM 3253 CD LYS A 431 5.235 44.568 188.515 1.00107.54
ATOM 3254 CE LYS A 431 5.299 44.673 186.993 1.001 14.31
ATOM 3255 NZ LYS A 431 6.426 45.553 186.527 1.00108.44
ATOM 3256 N GLY A 432 1.288 45.126 192.763 1.00115.66
ATOM 3257 CA GLY A 32 1.064 45.552 194.132 1.001 12.57
ATOM 3258 C GLY A 432 2.257 46.267 194.734 1.00112.92
ATOM 3259 O GLY A 432 2.487 46.179 195.936 1.00120.66
ATOM 3260 N VAL A 433 3.023 46.972 193.904 1.00106.43
ATOM 3261 CA VAL A 433 4.246 47.631 194.358 1.00101.50
ATOM 3262 C VAL A 433 4.304 49.082 193.880 1.00 93.87
ATOM 3263 O VAL A 433 3.760 49.412 192.835 1.00 92.90
ATOM 3264 CB VAL A 433 5.498 46.884 193.845 1.00105.86
ATOM 3265 CG1 VAL A 433 6.758 47.379 194.551 1.00107.68
ATOM 3266 CG2 VAL A 433 5.348 45.387 194.041 1.00107.48
ATOM 3267 N TYR A 434 4.958 49.947 194.651 1.00 90.67 ATOM 3268 CA TYR A 34 5.178 51.334 194.247 1.00 86.83
ATOM 3269 C TYR A 434 6.299 51.430 193.220 1.00 86.81
ATOM 3270 O TYR A 434 7.444 51.075 193.527 1.00 90.88
ATOM 3271 CB TYR A 434 5.547 52.178 195.462 1.00 79.81
ATOM 3272 CG TYR A 434 4.358 52.618 196.275 1.00 86.35
ATOM 3273 CD2 TYR A 434 3.978 51.928 197.420 1.00 86.37
ATOM 3274 CD1 TYR A 434 3.615 53.730 195.903 1.00 92.09
ATOM 3275 CE2 TYR A 434 2.884 52.333 198.176 1.00 86.62
ATOM 3276 CE1 TYR A 434 2.525 54.144 196.655 1.00 95.75
ATOM 3277 CZ TYR A 434 2.161 53.442 197.790 1.00 87.82
ATOM 3278 OH TYR A 434 1.075 53.852 198.532 1.00 83.23
ATOM 3279 N GLU A 435 5.984 51.916 192.014 1.00 80.93 N
ATOM 3280 CA GLU A 435 6.978 51.997 190.933 1.00 82.42 C
ATOM 3281 C GLU A 435 7.319 53.423 190.500 1.00 73.96 C
ATOM 3282 O GLU A 435 6.546 54.350 190.696 1.00 99.59 O
ATOM 3283 CB GLU A 435 6.520 51.189 189.716 1.00 78.81 C
ATOM 3284 CG GLU A 435 6.389 49.676 189.921 1.00 81.29 C
ATOM 3285 CD GLU A 435 5.840 48.971 188.675 1.00 98.47 C
ATOM 3286 OE1 GLU A 435 4.816 49.437 188.121 1.00 92.41 O
ATOM 3287 OE2 GLU A 435 6.437 47.958 188.240 1.00101.20
ATOM 3288 N LYS A 436 8.488 53.586 189.895 1.00 78.50 N
ATOM 3289 CA LYS A 436 8.971 54.915 189.499 1.00 76.71 C
ATOM 3290 C LYS A 436 8.540 55.350 188.102 1.00 78.55 C
ATOM 3291 O LYS A 436 8.275 54.534 187.212 1.00 74.61 O
ATOM 3292 CB LYS A 436 10.500 55.012 189.594 1.00 69.79 C
ATOM 3293 CG LYS A 436 11.234 54.239 188.531 1.00 71.25 C
ATOM 3294 CD LYS A 436 12.563 54.914 188.219 1.00 69.82 C
ATOM 3295 CE LYS A 436 13.362 54.209 187.118 1.00 71.44 C
ATOM 3296 NZ LYS A 436 12.848 54.483 185.743 1.00 80.24 N
ATOM 3297 N VAL A 437 8.485 56.661 187.935 1.00 71.05 N
ATOM 3298 CA VAL A 37 8.150 57.287 186.675 1.00 86.85 C
ATOM 3299 C VAL A 437 9.198 58.370 186.470 1.00 79.80 C
ATOM 3300 O VAL A 437 9.181 59.386 187.160 1.00 81.57 O
ATOM 3301 CB VAL A 437 6.743 57.891 186.735 1.00 72.78 C
ATOM 3302 CG1 VAL A 437 6.544 58.918 185.660 1.00 73.24 C
ATOM 3303 CG2 VAL A 437 5.735 56.804 186.626 1.00 75.22 C
ATOM 3304 N GLY A 438 10.143 58.140 185.563 1.00 71.20 N
ATOM 3305 CA GLY A 438 11.243 59.077 185.398 1.00 70.71
ATOM 3306 C GLY A 438 12.571 58.600 185.966 1.00 71.57
ATOM 3307 O GLY A 438 12.757 57.419 186.233 1.00 75.27 ATOM 3308 N GLU A 439 13.503 59.525 186.142 1.00 66.37 N
ATOM 3309 CA GLU A 439 14.846 59.155 186.563 1.00 93.93 C
ATOM 3310 C GLU A 439 14.843 58.623 187.984 1.00 78.94 C
ATOM 3311 O GLU A 439 14.248 59.231 188.873 1.00 69.29 O
ATOM 3312 CB GLU A 439 15.816 60.340 186.446 1.00103.14 C
ATOM 3313 CG GLU A 439 16.010 60.845 185.027 1.00109.38 C
ATOM 3314 CD GLU A 439 16.272 59.720 184.034 1.00110.16 C
ATOM 3315 OE1 GLU A 439 15.346 59.377 183.258 1.00109.78 O
ATOM 3316 OE2 GLU A 439 17.404 59.185 184.034 1.00109.58 O
ATOM 3317 N ALA A 440 15.519 57.497 188.193 1.00 65.44 N
ATOM 3318 CA ALA A 440 15.629 56.906 189.518 1.00 69.88 C
ATOM 3319 C ALA A 440 16.136 57.897 190.568 1.00 67.31 C
ATOM 3320 O ALA A 440 15.626 57.924 191.700 1.00 62.16 O
ATOM 3321 CB ALA A 440 16.493 55.681 189.479 1.00 66.15 C
ATOM 3322 N THR A 441 17.119 58.720 190.204 1.00 67.19 N
ATOM 3323 CA THR A 441 17.672 59.681 191.168 1.00 69.04 C
ATOM 3324 C THR A 441 16.664 60.748 191.516 1.00 68.76 C
ATOM 3325 O THR A 441 16.735 61.345 192.577 1.00 66.55 O
ATOM 3326 CB THR A 441 18.971 60.369 190.695 1.00 64.74 C
ATOM 3327 OG1 THR A 441 19.069 60.294 189.263 1.00 73.12 O
ATOM 3328 CG2 THR A 441 20.166 59.695 191.338 1.00 64.82 C
ATOM 3329 N GLU A 442 15.732 61.002 190.614 1.00 60.07 N
ATOM 3330 CA GLU A 442 14.710 61.967 190.917 1.00 69.82 C
ATOM 3331 C GLU A 442 13.590 61.351 191.764 1.00 76.14 C
ATOM 3332 O GLU A 442 13.227 61.901 192.820 1.00 75.58 O
ATOM 3333 CB GLU A 442 14.189 62.586 189.640 1.00 65.22 C
ATOM 3334 CG GLU A 442 14.691 63.974 189.453 1.00 69.43 C
ATOM 3335 CD GLU A 442 14.470 64.463 188.062 1.00 86.67 C
ATOM 3336 OE1 GLU A 442 13.894 63.705 187.248 1.00 89.27 O
ATOM 3337 OE2 GLU A 442 14.884 65.608 187.787 1.00 97.89 O
ATOM 3338 N THR A 443 13.070 60.202 191.320 1.00 71.04 N
ATOM 3339 CA THR A 443 12.025 59.496 192.061 1.00 71.75 C
ATOM 3340 C THR A 443 12.469 59.156 193.493 1.00 71.31 C
ATOM 3341 O THR A 443 11.638 58.926 194.369 1.00 77.34 O
ATOM 3342 CB THR A 443 11.563 58.210 191.344 1.00 70.09 C
ATOM 3343 OG1 THR A 443 11.369 58.481 189.962 1.00 72.67 O
ATOM 3344 CG2 THR A 443 10.242 57.730 191.905 1.00 73.60 C
ATOM 3345 N ALA A 444 13.772 59.132 193.737 1.00 61.31 N
ATOM 3346 CA ALA A 444 14.255 58.940 195.095 1.00 66.25 C
ATOM 3347 C ALA A 444 14.005 60.177 195.958 1.00 68.03 C ATOM 3348 O ALA A 444 13.712 60.055 197.165 1.00 73.24 O
ATOM 3349 CB ALA A 444 15.716 58.566 195.102 1.00 63.65 C
ATOM 3350 N LEU A 445 14.121 61.355 195.343 1.00 60.49 N
ATOM 3351 CA LEU A 445 13.731 62.603 196.002 1.00 65.90 C
ATOM 3352 C LEU A 445 12.227 62.638 196.224 1.00 78.49 C
ATOM 3353 O LEU A 445 11.752 63.156 197.234 1.00 82.32 O
ATOM 3354 CB LEU A 445 14.098 63.818 195.154 1.00 71.82 C
ATOM 3355 CG LEU A 445 15.554 64.032 194.775 1.00 70.06 C
ATOM 3356 CD1 LEU A 445 15.695 65.376 194.074 1.00 65.06 C
ATOM 3357 CD2 LEU A 445 16.425 63.952 195.998 1.00 55.30 C
ATOM 3358 N THR A 446 11.480 62.1 14 195.262 1.00 58.75 N
ATOM 3359 CA THR A 446 10.037 62.095 195.377 1.00 59.75 C
ATOM 3360 C THR A 446 9.595 61.273 196.595 1.00 70.27 C
ATOM 3361 O THR A 446 8.769 61.727 197.389 1.00 78.57 O
ATOM 3362 CB THR A 446 9.360 61.589 194.066 1.00 73.69 C
ATOM 3363 OG1 THR A 446 9.453 62.601 193.048 1.00 74.46 O
ATOM 3364 CG2 THR A 446 7.887 61.239 194.303 1.00 69.19 C
ATOM 3365 N THR A 447 10.164 60.081 196.760 1.00 63.59 N
ATOM 3366 CA THR A 447 9.809 59.227 197.884 1.00 61.47 C
ATOM 3367 C THR A 447 10.225 59.852 199.210 1.00 63.44 C
ATOM 3368 O THR A 447 9.658 59.549 200.243 1.00 61.15 O
ATOM 3369 CB THR A 447 10.436 57.834 197.760 1.00 65.75 C
ATOM 3370 OG1 THR A 447 9.980 57.210 196.556 1.00 63.61 O
ATOM 3371 CG2 THR A 447 10.048 56.961 198.941 1.00 63.40 C
ATOM 3372 N LEU A 448 11.221 60.732 199.185 1.00 62.38 N
ATOM 3373 CA LEU A 448 11.726 61.332 200.421 1.00 62.89 C
ATOM 3374 C LEU A 448 10.757 62.379 200.865 1.00 67.60 C
ATOM 3375 O LEU A 448 10.522 62.545 202.062 1.00 72.32 O
ATOM 3376 CB LEU A 448 13.113 61.966 200.243 1.00 57.17 C
ATOM 3377 CG LEU A 448 13.551 62.907 201.368 1.00 64.64 C
ATOM 3378 CD1 LEU A 448 13.920 62.121 202.606 1.00 81.60 C
ATOM 3379 CD2 LEU A 448 14.685 63.797 200.936 1.00 64.25 C
ATOM 3380 N VAL A 449 10.180 63.091 199.906 1.00 58.26 N
ATOM 3381 CA VAL A 449 9.215 64.103 200.276 1.00 74.96 C
ATOM 3382 C VAL A 449 7.942 63.457 200.845 1.00 70.36 C
ATOM 3383 O VAL A 449 7.377 63.944 201.852 1.00 61.96 O
ATOM 3384 CB VAL A 449 8.954 65.070 199.141 1.00 58.34 C
ATOM 3385 CG1 VAL A 449 7.820 66.028 199.508 1.00 63.69 C
ATOM 3386 CG2 VAL A 449 10.240 65.842 198.861 1.00 64.82 C
ATOM 3387 N GLU A 450 7.534 62.338 200.237 1.00 67.67 N ATOM 3388 CA GLU A 450 6.478 61.503 200.811 1.00 73.51 C
ATOM 3389 C GLU A 450 6.795 61.046 202.229 1.00 62.76 c
ATOM 3390 O GLU A 450 5.963 61.186 203.1 19 1.00 67.91 o
ATOM 3391 CB GLU A 450 6.147 60.290 199.938 1.00 76.08 c
ATOM 3392 CG GLU A 450 5.451 60.607 198.608 1.00 78.80 c
ATOM 3393 CD GLU A 450 4.418 61.730 198.692 1.00 74.89 c
ATOM 3394 OE2 GLU A 450 4.393 62.569 197.771 1.00 74.20 o
ATOM 3395 OE1 GLU A 450 3.627 61.782 199.655 1.00 69.96 o
ATOM 3396 N LYS A 451 7.983 60.502 202.440 1.00 62.32 N
ATOM 3397 CA LYS A 451 8.367 60.039 203.758 1.00 62.42 c
ATOM 3398 C LYS A 451 8.499 61.183 204.742 1.00 61.81 c
ATOM 3399 O LYS A 451 8.185 61.021 205.915 1.00 62.72 o
ATOM 3400 CB LYS A 451 9.666 59.246 203.717 1.00 62.02 c
ATOM 3401 CG LYS A 451 9.539 57.832 203.245 1.00 75.05 c
ATOM 3402 CD LYS A 451 10.923 57.262 203.043 1.00 80.48 c
ATOM 3403 CE LYS A 451 10.896 55.971 202.262 1.00 80.95 c
ATOM 3404 NZ LYS A 451 12.277 55.497 202.077 1.00 63.86 N
ATOM 3405 N MET A 452 8.964 62.343 204.296 1.00 60.50 N
ATOM 3406 CA MET A 452 9.123 63.450 205.247 1.00 66.56 C
ATOM 3407 C MET A 452 7.780 64.024 205.676 1.00 67.52 C
ATOM 3408 O MET A 452 7.491 64.086 206.848 1.00 69.25 O
ATOM 3409 CB MET A 452 10.011 64.561 204.697 1.00 68.52 C
ATOM 3410 CG MET A 452 1 1.456 64.176 204.492 1.00 69.51 C
ATOM 341 SD MET A 452 12.391 65.548 203.806 1.00 56.51 s
ATOM 3412 CE MET A 452 12.291 66.772 205.110 1.00143.08 c
ATOM 3413 N ASN A 453 6.961 64.441 204.722 1.00 76.18 N
ATOM 3414 CA ASN A 453 5.627 64.951 205.042 1.00 74.90 C
ATOM 3415 C ASN A 453 5.689 66.195 205.923 1.00 67.85 C
ATOM 3416 O ASN A 453 5.005 66.293 206.911 1.00 64.02 O
ATOM 3417 CB ASN A 453 4.749 63.852 205.663 1.00 74.67 C
ATOM 3418 CG ASN A 453 3.295 64.264 205.809 1.00 75.77 C
ATOM 3419 OD1 ASN A 453 2.881 65.316 205.316 1.00 70.33 O
ATOM 3420 ND2 ASN A 453 2.51 1 63.425 206.488 1.00 67.98 N
ATOM 3421 N VAL A 454 6.503 67.156 205.512 1.00 67.31 N
ATOM 3422 CA VAL A 454 6.785 68.362 206.289 1.00 69.28 C
ATOM 3423 C VAL A 454 5.584 69.221 206.743 1.00 75.17 C
ATOM 3424 O VAL A 454 5.711 70.051 207.653 1.00 63.41 O
ATOM 3425 CB VAL A 454 7.813 69.240 205.534 1.00 66.12 C
ATOM 3426 CG1 VAL A 454 8.943 68.368 205.071 1.00 60.78 C
ATOM 3427 CG2 VAL A 454 7.180 69.907 204.345 1.00 60.12 c ATOM 3428 N PHE A 455 4.425 69.034 206.123 1.00 63.97 N
ATOM 3429 CA PHE A 455 3.278 69.853 206.478 1.00 74.16 C
ATOM 3430 C PHE A 455 2.253 69.042 207.281 1.00 84.77 C
ATOM 3431 O PHE A 455 1.225 69.557 207.738 1.00 88.84 O
ATOM 3432 CB PHE A 55 2.669 70.458 205.224 1.00 65.95 C
ATOM 3433 CG PHE A 55 3.515 71.516 204.608 1.00 74.70 C
ATOM 3434 CD1 PHE A 455 3.710 72.712 205.251 1.00 65.07 C
ATOM 3435 CD2 PHE A 455 4.130 71.315 203.391 1.00 80.81 C
ATOM 3436 CE1 PHE A 455 4.489 73.692 204.698 1.00 64.19 C
ATOM 3437 CE2 PHE A 455 4.927 72.302 202.834 1.00 77.71 C
ATOM 3438 CZ PHE A 455 5.102 73.488 203.496 1.00 74.87 C
ATOM 3439 N ASN A 456 2.570 67.764 207.448 1.00 86.48 N
ATOM 3440 CA ASN A 456 1.779 66.837 208.237 1.00 86.04 C
ATOM 3441 C ASN A 456 0.401 66.615 207.663 1.00 86.26 C
ATOM 3442 O ASN A 456 -0.553 66.406 208.402 1.00 94.54 O
ATOM 3443 CB ASN A 456 1.712 67.273 209.703 1.00 97.52 C
ATOM 3444 CG ASN A 456 3.069 67.212 210.388 1.0011 1.98 C
ATOM 3445 OD1 ASN A 456 3.627 68.233 210.812 1.00108.25 O
ATOM 3446 ND2 ASN A 456 3.616 66.006 210.489 1.00123.40 N
ATOM 3447 N THR A 457 0.295 66.632 206.340 1.00 75.19 N
ATOM 3448 CA THR A 457 -1.001 66.395 205.726 1.00 82.74 C
ATOM 3449 C THR A 457 -1.419 64.934 205.921 1.00 87.49 C
ATOM 3450 O THR A 457 -0.577 64.068 206.168 1.00 73.83 O
ATOM 3451 CB THR A 57 -1.068 66.828 204.244 1.00 77.41 C
ATOM 3452 OG1 THR A 457 -0.327 65.912 203.447 1.00 73.85 O
ATOM 3453 CG2 THR A 457 -0.545 68.256 204.059 1.00 70.37 C
ATOM 3454 N GLU A 458 -2.724 64.686 205.809 1.00 97.13 N
ATOM 3455 CA GLU A 458 -3.352 63.480 206.338 1.00 93.54 C
ATOM 3456 C GLU A 458 -3.259 62.318 205.378 1.00 92.96 C
ATOM 3457 O GLU A 458 -4.164 62.102 204.590 1.00 98.45 O
ATOM 3458 CB GLU A 458 -4.819 63.785 206.653 1.00 94.46 C
ATOM 3459 CG GLU A 458 -5.582 62.704 207.411 1.001 10.51 C
ATOM 3460 CD GLU A 458 -6.983 63.188 207.792 1.00119.36 C
ATOM 3461 OE1 GLU A 458 -7.191 64.418 207.647 1.00121.48 O
ATOM 3462 OE2 GLU A 458 -7.853 62.369 208.219 1.00110.56 O
ATOM 3463 N VAL A 459 -2.181 61.549 205.453 1.00 75.95 N
ATOM 3464 CA VAL A 459 -1.961 60.509 204.458 1.00 75.90 C
ATOM 3465 C VAL A 459 -2.279 59.093 204.922 1.00 86.77 C
ATOM 3466 O VAL A 459 -2.489 58.201 204.102 1.00 88.04 O
ATOM 3467 CB VAL A 459 -0.537 60.546 203.909 1.00 73.27 C ATOM 3468 CG1 VAL A 459 -0.163 61.966 203.542 1.00 89.00 C
ATOM 3469 CG2 VAL A 459 0.437 59.969 204.912 1.00 72.47 c
ATOM 3470 N ARG A 460 -2.321 58.884 206.230 1.00 78.49 N
ATOM 3471 CA ARG A 460 -2.574 57.557 206.775 1.00101.40 C
ATOM 3472 C ARG A 460 -3.859 56.927 206.237 1.00 94.03 C
ATOM 3473 O ARG A 460 -3.962 55.708 206.128 1.00 89.62 O
ATOM 3474 CB ARG A 460 -2.584 57.602 208.310 1.00117.91 C
ATOM 3475 CG ARG A 460 -3.447 58.704 208.907 1.00129.74 C
ATOM 3476 CD ARG A 460 -3.197 58.866 210.403 1.00136.60 C
ATOM 3477 NE ARG A 460 -4.357 59.453 21 1.074 1.00144.34 N
ATOM 3478 CZ ARG A 460 -4.617 60.756 211.128 1.00143.02 C
ATOM 3479 NH1 ARG A 460 -3.792 61.622 210.550 1.00135.39 N
ATOM 3480 NH2 ARG A 460 -5.704 61.192 21 1.760 1.00143.74 N
ATOM 3481 N ASN A 461 -4.825 57.757 205.868 1.00 98.88 N
ATOM 3482 CA ASN A 461 -6.127 57.233 205.469 1.00113.16 C
ATOM 3483 C ASN A 461 -6.400 57.156 203.970 1.00117.92 C
ATOM 3484 O ASN A 461 -7.465 56.702 203.552 1.00 90.03 O
ATOM 3485 CB ASN A 461 -7.236 58.007 206.167 1.00116.17 C
ATOM 3486 CG ASN A 461 -7.353 57.640 207.615 1.001 16.21 C
ATOM 3487 OD1 ASN A 461 -7.137 58.470 208.501 1.00115.77 O
ATOM 3488 ND2 ASN A 461 -7.680 56.380 207.872 1.00118.14 N
ATOM 3489 N LEU A 462 -5.442 57.596 203.164 1.00113.92 N
ATOM 3490 CA LEU A 462 -5.596 57.542 201.723 1.00109.04 C
ATOM 3491 C LEU A 462 -5.302 56.135 201.230 1.00 85.73 C
ATOM 3492 O LEU A 462 -4.874 55.282 201.991 1.00124.86 O
ATOM 3493 CB LEU A 462 -4.672 58.553 201.065 1.00 82.05 C
ATOM 3494 CG LEU A 462 -4.855 60.003 201.502 1.00 81.25 C
ATOM 3495 CD1 LEU A 462 -3.640 60.827 201.192 1.00 78.22 C
ATOM 3496 CD2 LEU A 462 -6.016 60.588 200.800 1.00 83.24 C
ATOM 3497 N SER A 463 -5.556 55.890 199.954 1.00 98.88 N
ATOM 3498 CA SER A 463 -5.275 54.593 199.359 1.00 98.35 C
ATOM 3499 C SER A 463 -3.881 54.622 198.754 1.00 99.98 C
ATOM 3500 O SER A 463 -3.334 55.696 198.508 1.00100.89 O
ATOM 3501 CB SER A 463 -6.289 54.285 198.260 1.00 97.63 C
ATOM 3502 OG SER A 463 -6.012 55.048 197.098 1.00 94.88 O
ATOM 3503 N LYS A 464 -3.320 53.443 198.497 1.00100.40 N
ATOM 3504 CA LYS A 464 -1.999 53.330 197.889 1.00 96.25 C
ATOM 3505 C LYS A 464 -1.830 54.280 196.707 1.00 92.99 C
ATOM 3506 O LYS A 464 -0.861 55.039 196.661 1.00 87.02 O
ATOM 3507 CB LYS A 464 -1.712 51.888 197.456 1.00 84.85 C ATOM 3508 CG LYS A 464 -1.641 50.876 198.603 1.00 96.46 C
ATOM 3509 CD LYS A 464 -0.781 51.373 199.778 1.00 94.32 C
ATOM 3510 CE LYS A 464 0.164 50.288 200.294 1.00 92.00 C
ATOM 3511 NZ LYS A 464 -0.493 48.943 200.334 1.00 92.58 N
ATOM 3512 N VAL A 465 -2.794 54.261 195.785 1.00 91.46 N
ATOM 3513 CA VAL A 465 -2.739 55.089 194.575 1.00 90.30 C
ATOM 3514 C VAL A 465 -2.662 56.585 194.862 1.00 92.56 C
ATOM 3515 O VAL A 465 -1.776 57.274 194.349 1.00 91.91 O
ATOM 3516 CB VAL A 465 -3.953 54.853 193.663 1.00 88.30 C
ATOM 3517 CG1 VAL A 465 -3.866 55.739 192.447 1.00 86.32 C
ATOM 3518 CG2 VAL A 465 -4.035 53.400 193.259 1.00 91.87 C
ATOM 3519 N GLU A 466 -3.591 57.091 195.670 1.00 95.82 N
ATOM 3520 CA GLU A 466 -3.611 58.520 195.967 1.00 96.13 C
ATOM 3521 C GLU A 466 -2.507 58.923 196.952 1.00 96.61 C
ATOM 3522 O GLU A 466 -1.988 60.044 196.882 1.00 96.70 O
ATOM 3523 CB GLU A 466 -5.000 58.997 196.415 1.00 92.45 C
ATOM 3524 CG GLU A 466 -5.706 58.089 197.380 1.00106.51 C
ATOM 3525 CD GLU A 466 -7.069 58.632 197.769 1.00129.64 C
ATOM 3526 OE1 GLU A 466 -7.416 59.726 197.268 1.00139.81 O
ATOM 3527 OE2 GLU A 466 -7.791 57.979 198.566 1.00133.23 O
ATOM 3528 N ARG A 467 -2.137 57.997 197.837 1.00 90.41 N
ATOM 3529 CA ARG A 467 -1.011 58.188 198.754 1.00 89.19 C
ATOM 3530 C ARG A 467 0.330 58.423 198.024 1.00 88.06 C
ATOM 3531 O ARG A 467 1.216 59.098 198.550 1.00 85.08 O
ATOM 3532 CB ARG A 467 -0.896 56.990 199.711 1.00 89.44 C
ATOM 3533 CG ARG A 467 0.372 56.940 200.566 1.00 74.53 C
ATOM 3534 CD ARG A 467 0.459 58.151 201.477 1.00 92.59 C
ATOM 3535 NE ARG A 467 1.670 58.213 202.297 1.00 87.38 N
ATOM 3536 CZ ARG A 467 2.566 59.197 202.234 1.00 88.62 C
ATOM 3537 NH1 ARG A 467 2.392 60.202 201.388 1.00 68.60 N
ATOM 3538 NH2 ARG A 467 3.636 59.185 203.022 1.00 88.56 N
ATOM 3539 N ALA A 468 0.462 57.890 196.809 1.00 84.25 N
ATOM 3540 CA ALA A 468 1.751 57.853 196.113 1.00 79.43 C
ATOM 3541 C ALA A 468 2.431 59.203 195.840 1.00 80.94 C
ATOM 3542 O ALA A 468 3.639 59.263 195.695 1.00 68.52 O
ATOM 3543 CB ALA A 468 1.633 57.060 194.836 1.00 83.80 C
ATOM 3544 N AS A 469 1.670 60.285 195.769 1.00 82.01 N
ATOM 3545 CA ASN A 469 2.276 61.593 195.547 1.00 75.44 C
ATOM 3546 C ASN A 469 1.666 62.669 196.423 1.00 71.33 C
ATOM 3547 O AS A 469 1.857 63.859 196.169 1.00 69.36 O ATOM 3548 CB ASN A 469 2.110 62.011 194.092 1.00 78.49 C
ATOM 3549 CG ASN A 469 2.897 61.146 193.144 1.00 85.47 C
ATOM 3550 OD1 ASN A 469 4.063 61.435 192.842 1.00 91.41 O
ATOM 3551 ND2 ASN A 469 2.261 60.084 192.648 1.00 85.48 N
ATOM 3552 N ALA A 470 0.931 62.242 197.449 1.00 71.15 N
ATOM 3553 CA ALA A 470 0.164 63.149 198.305 1.00 70.24 C
ATOM 3554 C ALA A 470 0.949 64.358 198.831 1.00 75.64 C
ATOM 3555 O ALA A 470 0.552 65.493 198.611 1.00 72.28 O
ATOM 3556 CB ALA A 470 -0.462 62.384 199.440 1.00 71.54 C
ATOM 3557 N CYS A 471 2.063 64.120 199.513 1.00 66.70 N
ATOM 3558 CA CYS A 471 2.803 65.211 200.131 1.00 69.09 C
ATOM 3559 C CYS A 471 3.549 66.088 199.123 1.00 75.95 C
ATOM 3560 O CYS A 471 3.787 67.273 199.367 1.00 74.34 O
ATOM 3561 CB CYS A 471 3.773 64.657 201.152 1.00 66.29 C
ATOM 3562 SG CYS A 471 3.055 63.393 202.193 1.00 83.28 S
ATOM 3563 N ASN A 472 3.932 65.500 197.996 1.00 78.34 N
ATOM 3564 CA ASN A 472 4.542 66.262 196.918 1.00 69.38 C
ATOM 3565 C ASN A 472 3.560 67.282 196.344 1.00 74.04 C
ATOM 3566 O ASN A 472 3.929 68.423 196.064 1.00 73.99 O
ATOM 3567 CB ASN A 472 5.052 65.327 195.825 1.00 65.00 C
ATOM 3568 CG ASN A 472 6.478 64.855 196.072 1.00 72.49 C
ATOM 3569 OD1 ASN A 472 7.434 65.626 195.920 1.00 71.88 O
ATOM 3570 ND2 ASN A 472 6.632 63.575 196.430 1.00 68.13 N
ATOM 3571 N SER A 473 2.305 66.870 196.185 1.00 74.27 N
ATOM 3572 CA SER A 473 1.274 67.742 195.629 1.00 73.17 C
ATOM 3573 C SER A 473 1.016 68.965 196.495 1.00 78.63 C
ATOM 3574 O SER A 473 0.727 70.043 195.982 1.00 85.23 O
ATOM 3575 CB SER A 473 -0.029 66.984 195.440 1.00 70.07 C
ATOM 3576 OG SER A 473 0.213 65.715 194.874 1.00110.89 O
ATOM 3577 N VAL A 474 1.112 68.796 197.810 1.00 73.93 N
ATOM 3578 CA VAL A 474 0.892 69.901 198.733 1.00 74.73 C
ATOM 3579 C VAL A 474 1.947 70.976 198.503 1.00 78.45 C
ATOM 3580 O VAL A 474 1.654 72.171 198.625 1.00 88.79 O
ATOM 3581 CB VAL A 474 0.948 69.452 200.203 1.00 67.33 C
ATOM 3582 CG1 VAL A 474 0.651 70.606 201.107 1.00 74.88 C
ATOM 3583 CG2 VAL A 474 0.009 68.318 200.460 1.00 68.86 C
ATOM 3584 N ILE A 475 3.167 70.555 198.165 1.00 73.27 N
ATOM 3585 CA ILE A 475 4.237 71.515 197.933 1.00 71.71 C
ATOM 3586 C ILE A 475 3.948 72.291 196.654 1.00 72.31 C
ATOM 3587 O ILE A 475 4.218 73.486 196.588 1.00 80.57 O ATOM 3588 CB ILE A 475 5.653 70.863 197.854 1.00 74.91 C
ATOM 3589 CG1 ILE A 475 5.801 69.708 198.851 1.00 78.86 C
ATOM 3590 CG2 ILE A 475 6.755 71.893 198.100 1.00 67.85 C
ATOM 3591 CD1 ILE A 475 5.867 70.120 200.305 1.00 76.27 C
ATOM 3592 N ARG A 476 3.382 71.620 195.650 1.00 68.36 N
ATOM 3593 CA ARG A 476 3.054 72.277 194.386 1.00 65.91 C
ATOM 3594 C ARG A 476 1.879 73.218 194.547 1.00 72.42 C
ATOM 3595 O ARG A 476 1.886 74.321 194.039 1.00 76.25 O
ATOM 3596 CB ARG A 476 2.780 71.254 193.303 1.00 69.06 C
ATOM 3597 CG ARG A 476 3.884 70.246 193.169 1.00 75.28 C
ATOM 3598 CD ARG A 476 3.728 69.379 191.939 1.00 76.03 C
ATOM 3599 NE ARG A 476 4.072 67.997 192.243 1.00 83.99 N
ATOM 3600 CZ ARG A 476 3.173 67.053 192.502 1.00 93.11 C
ATOM 3601 NH1 ARG A 476 1.884 67.359 192.466 1.00 97.16 N
ATOM 3602 NH2 ARG A 476 3.554 65.806 192.780 1.00 93.19 N
ATOM 3603 N GLN A 477 0.877 72.796 195.296 1.00 83.47 N
ATOM 3604 CA GLN A 477 -0.224 73.672 195.677 1.00 94.59 C
ATOM 3605 C GLN A 477 0.270 74.945 196.401 1.00 88.03 C
ATOM 3606 O GLN A 477 -0.482 75.894 196.613 1.00 90.33 O
ATOM 3607 CB GLN A 477 -1.212 72.872 196.543 1.00107.62 C
ATOM 3608 CG GLN A 477 -2.485 73.599 196.931 1.00122.67 C
ATOM 3609 CD GLN A 477 -3.250 74.123 195.735 1.00134.05 C
ATOM 3610 OE1 GLN A 477 -3.071 73.650 194.610 1.00137.47 O
ATOM 3611 NE2 GLN A 477 -4.110 75.112 195.971 1.00138.25 N
ATOM 3612 N LEU A 478 1.551 74.959 196.752 1.00 79.89 N
ATOM 3613 CA LEU A 478 2.156 76.055 197.493 1.00 78.08 C
ATOM 3614 C LEU A 478 2.979 76.939 196.607 1.00 75.04 C
ATOM 3615 O LEU A 478 2.960 78.161 196.748 1.00 74.06 O
ATOM 3616 CB LEU A 478 3.098 75.51 1 198.553 1.00 76.84 C
ATOM 3617 CG LEU A 478 2.933 76.167 199.902 1.00 73.39 C
ATOM 3618 CD1 LEU A 478 1.515 75.871 200.391 1.00 70.65 C
ATOM 3619 CD2 LEU A 478 3.981 75.597 200.818 1.00 72.16 C
ATOM 3620 N MET A 479 3.751 76.303 195.732 1.00 78.71 N
ATOM 3621 CA MET A 479 4.594 77.012 194.772 1.00 80.83 C
ATOM 3622 C MET A 479 4.298 76.579 193.331 1.00 79.15 C
ATOM 3623 O MET A 479 4.298 75.384 193.004 1.00 72.24 O
ATOM 3624 CB MET A 479 6.085 76.820 195.107 1.00 77.87 C
ATOM 3625 CG MET A 479 6.559 77.484 196.422 1.00 73.66 C
ATOM 3626 SD MET A 479 6.597 79.301 196.449 1.00 81.46 S
ATOM 3627 CE MET A 479 8.050 79.702 195.491 1.00 66.49 C ATOM 3628 N LYS A 480 4.031 77.564 192.481 1.00 68.11 N
ATOM 3629 CA LYS A 480 3.819 77.324 191.057 1.00 86.86 C
ATOM 3630 C LYS A 480 5.180 77.281 190.370 1.00 67.82 C
ATOM 3631 O LYS A 480 5.861 78.293 190.319 1.00 74.31 O
ATOM 3632 CB LYS A 480 2.961 78.446 190.451 1.00 71.70 C
ATOM 3633 CG LYS A 480 2.561 78.231 189.015 1.00103.82 C
ATOM 3634 CD LYS A 480 1.930 79.490 188.410 1.00111.54 C
ATOM 3635 CE LYS A 480 1.693 79.336 186.891 1.00114.70 C
ATOM 3636 NZ LYS A 480 1.706 80.625 186.124 1.00111.11 N
ATOM 3637 N LYS A 481 5.595 76.121 189.862 1.00 78.22 N
ATOM 3638 CA LYS A 481 6.774 76.072 188.990 1.00 73.89 C
ATOM 3639 C LYS A 481 6.491 76.679 187.613 1.00 70.66 C
ATOM 3640 O LYS A 481 5.608 76.218 186.894 1.00 69.79 O
ATOM 3641 CB LYS A 481 7.251 74.647 188.787 1.00 65.19 C
ATOM 3642 CG LYS A 481 8.546 74.595 188.044 1.00103.32 C
ATOM 3643 CD LYS A 481 8.775 73.246 187.461 1.00 64.34 C
ATOM 3644 CE LYS A 481 8.802 72.208 188.488 1.00 63.06 C
ATOM 3645 NZ LYS A 481 9.286 70.975 187.898 1.00 62.96 N
ATOM 3646 N GLU A 482 7.248 77.706 187.247 1.00 70.68 N
ATOM 3647 CA GLU A 482 6.995 78.429 186.013 1.00 70.53 C
ATOM 3648 C GLU A 482 7.803 77.861 184.852 1.00 70.55 C
ATOM 3649 O GLU A 482 7.259 77.591 183.781 1.00 77.67 O
ATOM 3650 CB GLU A 482 7.270 79.916 186.196 1.00 71.22 C
ATOM 3651 CG GLU A 482 6.302 80.602 187.144 1.00 71.99 C
ATOM 3652 CD GLU A 482 6.451 82.104 187.099 1.00 89.03 C
ATOM 3653 OE1 GLU A 482 5.948 82.791 187.996 1.00 73.88 O
ATOM 3654 OE2 GLU A 482 7.074 82.610 86.154 1.00 85.74 O
ATOM 3655 N PHE A 483 9.096 77.672 185.068 1.00 69.11 N
ATOM 3656 CA PHE A 483 9.946 77.009 184.100 1.00 68.77 C
ATOM 3657 C PHE A 483 11.109 76.282 184.766 1.00 66.53 C
ATOM 3658 O PHE A 483 11.320 76.379 185.975 1.00 65.02 O
ATOM 3659 CB PHE A 83 10.455 78.008 183.058 1.00 78.84 c
ATOM 3660 CG PHE A 483 10.932 79.309 183.632 1.00 76.74 c
ATOM 3661 CD1 PHE A 483 10.043 80.345 183.872 1.00 78.01 c
ATOM 3662 CD2 PHE A 483 12.273 79.508 183.906 1.00 73.29 c
ATOM 3663 CE1 PHE A 483 10.483 81.552 184.397 1.00 79.71 c
ATOM 3664 CE2 PHE A 483 12.725 80.712 184.421 1.00 73.30 c
ATOM 3665 CZ PHE A 483 11.831 81.737 184.669 1.00 70.35 c
ATOM 3666 N THR A 484 11.877 75.558 183.970 1.00 66.55 N
ATOM 3667 CA THR A 484 13.032 74.833 184.480 1.00 64.80 C ATOM 3668 C THR A 84 14.314 75.245 183.755 1.00 76.59 C
ATOM 3669 O THR A 484 14.342 75.319 182.531 1.00 66.77 O
ATOM 3670 CB THR A 484 12.820 73.315 184.336 1.00 64.58 C
ATOM 3671 OG1 THR A 484 1 1.872 72.864 185.314 1.00 72.00 O
ATOM 3672 CG2 THR A 484 14.120 72.559 184.512 1.00 63.41 C
ATOM 3673 N LEU A 485 15.374 75.529 184.509 1.00 73.54 N
ATOM 3674 CA LEU A 485 16.692 75.720 183.901 1.00 76.64 C
ATOM 3675 C LEU A 485 17.410 74.362 183.819 1.00 70.83 C
ATOM 3676 O LEU A 485 18.094 73.944 184.749 1.00 66.50 O
ATOM 3677 CB LEU A 485 17.527 76.783 184.650 1.00 63.59 C
ATOM 3678 CG LEU A 485 16.865 78.159 184.860 1.00 68.16 C
ATOM 3679 CD1 LEU A 485 17.848 79.290 185.136 1.00 64.65 C
ATOM 3680 CD2 LEU A 485 15.971 78.513 183.698 1.00 66.35 C
ATOM 3681 N GLU A 486 17.207 73.672 182.703 1.00 69.25 N
ATOM 3682 CA GLU A 486 17.743 72.333 182.474 1.00 72.13 C
ATOM 3683 C GLU A 486 19.216 72.224 182.814 1.00 74.82 C
ATOM 3684 O GLU A 486 19.983 73.157 182.570 1.00 82.42 O
ATOM 3685 CB GLU A 486 17.545 71.948 180.999 1.00 80.71 C
ATOM 3686 CG GLU A 486 17.814 73.083 180.009 1.00 92.43 C
ATOM 3687 CD GLU A 486 18.161 72.588 178.609 1.00104.06 C
ATOM 3688 OE1 GLU A 486 17.866 71.410 178.300 1.00110.98 O
ATOM 3689 OE2 GLU A 486 18.733 73.375 177.817 1.00101.84 O
ATOM 3690 N PHE A 487 19.606 71.079 183.366 1.00 70.73 N
ATOM 3691 CA PHE A 487 21.018 70.766 183.648 1.00 67.30 C
ATOM 3692 C PHE A 487 22.018 71.091 182.545 1.00 68.28 C
ATOM 3693 O PHE A 487 21.734 70.899 181.369 1.00 78.90 O
ATOM 3694 CB PHE A 87 21.157 69.276 183.929 1.00 70.11 C
ATOM 3695 CG PHE A 487 22.531 68.873 184.351 1.00 62.22 C
ATOM 3696 CD1 PHE A 487 23.471 68.482 183.416 1.00 63.68 C
ATOM 3697 CD2 PHE A 487 22.888 68.893 185.692 1.00 65.81 C
ATOM 3698 CE1 PHE A 487 24.743 68.129 183.807 1.00 74.94 C
ATOM 3699 CE2 PHE A 487 24.158 68.538 186.092 1.00 60.83 C
ATOM 3700 CZ PHE A 487 25.084 68.152 185.160 1.00 71.84 C
ATOM 3701 N SER A 488 23.203 71.543 182.945 1.00 67.32 N
ATOM 3702 CA SER A 488 24.359 71.701 182.050 1.00 69.17 C
ATOM 3703 C SER A 488 25.662 71.316 182.760 1.00 72.33 C
ATOM 3704 O SER A 488 25.784 71.511 183.968 1.00 80.68 O
ATOM 3705 CB SER A 488 24.458 73.144 181.569 1.00 73.26 C
ATOM 3706 OG SER A 488 24.809 74.018 182.619 1.00 65.48 O
ATOM 3707 N ARG A 489 26.644 70.787 182.030 1.00 74.29 N ATOM 3708 CA ARG A 489 27.941 70.455 182.654 1.00 71.27 C
ATOM 3709 C ARG A 489 28.734 71.651 183.167 1.00 68.58 C
ATOM 3710 O ARG A 489 29.373 71.549 184.209 1.00 65.86 O
ATOM 3711 CB ARG A 489 28.830 69.621 181.746 1.00 72.91 C
ATOM 3712 CG ARG A 489 28.545 68.140 181.813 1.00 92.22 C
ATOM 3713 CD ARG A 489 29.624 67.390 181.060 1.00117.70 C
ATOM 3714 NE ARG A 489 29.262 66.011 180.739 1.00130.69 N
ATOM 3715 CZ ARG A 489 30.071 65.168 180.102 1.00137.41 C
ATOM 3716 NH1 ARG A 489 31.284 65.569 179.733 1.00137.80 N
ATOM 3717 NH2 ARG A 489 29.675 63.926 179.836 1.00138.01 N
ATOM 3718 N ASP A 490 28.673 72.785 182.476 1.00 67.58 N
ATOM 3719 CA ASP A 490 29.373 73.978 182.942 1.00 67.79 C
ATOM 3720 C ASP A 490 29.111 74.405 184.410 1.00 90.64 C
ATOM 3721 O ASP A 490 29.818 75.270 184.933 1.00 96.14 O
ATOM 3722 CB ASP A 490 29.114 75.145 182.006 1.00 69.17 C
ATOM 3723 CG ASP A 490 27.838 75.855 182.307 1.00100.10 C
ATOM 3724 OD2 ASP A 490 27.903 77.054 182.622 1.00106.48 O
ATOM 3725 OD1 ASP A 490 26.767 75.230 182.189 1.00 95.00 O
ATOM 3726 N ARG A 491 28.127 73.796 185.078 1.00 75.66 N
ATOM 3727 CA ARG A 491 27.734 74.246 186.408 1.00 67.20 C
ATOM 3728 C ARG A 491 27.284 73.105 187.317 1.00 67.07 C
ATOM 3729 O ARG A 491 27.157 73.269 188.529 1.00 60.28 O
ATOM 3730 CB ARG A 491 26.634 75.296 186.292 1.00 68.47 C
ATOM 3731 CG ARG A 491 25.294 74.759 185.886 1.00 75.79 C
ATOM 3732 CD ARG A 491 24.209 75.845 185.861 1.00 78.85 C
ATOM 3733 NE ARG A 491 23.320 75.590 184.736 1.00 82.20 N
ATOM 3734 CZ ARG A 491 22.097 75.105 184.829 1.00 62.40 C
ATOM 3735 NH1 ARG A 491 21.559 74.863 186.007 1.00 75.87 N
ATOM 3736 NH2 ARG A 491 21.416 74.879 183.725 1.00 77.74 N
ATOM 3737 N LYS A 492 27.053 71.950 186.704 1.00 71.46 N
ATOM 3738 CA LYS A 492 26.629 70.730 187.398 1.00 68.62 C
ATOM 3739 C LYS A 492 25.423 70.904 188.324 1.00 70.95 C
ATOM 3740 O LYS A 492 25.430 70.435 189.453 1.00 83.89 O
ATOM 3741 CB LYS A 492 27.820 70.076 188.115 1.00 67.96 C
ATOM 3742 CG LYS A 492 28.824 69.432 187.134 1.00 75.53 C
ATOM 3743 CD LYS A 492 30.233 69.299 187.711 1.00 90.69 C
ATOM 3744 CE LYS A 492 31.062 70.581 187.508 1.00103.28 C
ATOM 3745 NZ LYS A 492 32.362 70.614 188.265 1.00104.90 N
ATOM 3746 N SER A 493 24.383 71.574 187.835 1.00 68.24 N
ATOM 3747 CA SER A 493 23.139 71.731 188.586 1.00 75.42 C ATOM 3748 C SER A 493 21.985 72.045 187.628 1.00 85.58 C
ATOM 3749 O SER A 493 22.192 72.229 186.422 1.00 95.39 O
ATOM 3750 CB SER A 493 23.260 72.850 189.617 1.00 57.50 C
ATOM 3751 OG SER A 93 23.158 74.118 188.989 1.00 60.91 O
ATOM 3752 N MET A 494 20.770 72.093 188.168 1.00 76.05 N
ATOM 3753 CA MET A 494 19.595 72.518 187.419 1.00 68.19 C
ATOM 3754 C MET A 494 18.773 73.289 188.401 1.00 73.34 C
ATOM 3755 O MET A 494 18.993 73.189 189.593 1.00 87.76 O
ATOM 3756 CB MET A 494 18.788 71.314 186.970 1.00 59.06 C
ATOM 3757 CG MET A 494 18.169 70.558 188.118 1.00 59.83 C
ATOM 3758 SD MET A 494 16.527 69.918 187.784 1.00 92.85 S
ATOM 3759 CE MET A 494 15.633 71.460 187.700 1.00 90.16 C
ATOM 3760 N SER A 495 17.811 74.057 187.930 1.00 68.11 N
ATOM 3761 CA SER A 95 16.983 74.810 188.858 1.00 66.96 C
ATOM 3762 C SER A 495 15.599 75.025 188.276 1.00 73.34 C
ATOM 3763 O SER A 495 15.395 74.872 187.067 1.00 72.02 O
ATOM 3764 CB SER A 495 17.626 76.156 189.189 1.00 66.91 C
ATOM 3765 OG SER A 95 17.077 77.187 188.401 1.00 75.56 O
ATOM 3766 N VAL A 496 14.652 75.366 189.146 1.00 59.38 N
ATOM 3767 CA VAL A 496 13.292 75.676 188.729 1.00 60.60 C
ATOM 3768 C VAL A 496 12.937 77.074 189.215 1.00 73.02 C
ATOM 3769 O VAL A 496 13.320 77.459 190.317 1.00 72.23 O
ATOM 3770 CB VAL A 496 12.269 74.652 189.280 1.00 62.45 C
ATOM 3771 CG1 VAL A 496 12.349 73.364 188.526 1.00 61.56 C
ATOM 3772 CG2 VAL A 496 12.512 74.386 190.741 1.00 60.63 C
ATOM 3773 N TYR A 497 12.234 77.851 188.401 1.00 62.85 N
ATOM 3774 CA TYR A 97 11.843 79.184 188.837 1.00 68.96 C
ATOM 3775 C TYR A 497 10.389 79.140 189.309 1.00 69.26 C
ATOM 3776 O TYR A 497 9.472 79.028 188.508 1.00 75.79 O
ATOM 3777 CB TYR A 497 12.021 80.177 187.698 1.00 65.48 C
ATOM 3778 CG TYR A 497 11.739 81.625 188.041 1.00 75.70 C
ATOM 3779 CD1 TYR A 497 10.437 82.090 188.154 1.00 75.05 c
ATOM 3780 CD2 TYR A 497 12.778 82.543 188.209 1.00 75.25 c
ATOM 3781 CE1 TYR A 497 10.172 83.407 188.455 1.00 78.83 c
ATOM 3782 CE2 TYR A 497 12.518 83.877 188.510 1.00 68.29 c
ATOM 3783 CZ TYR A 497 11.208 84.293 188.634 1.00 69.68 c
ATOM 3784 OH TYR A 497 10.911 85.597 188.923 1.00104.60 0
ATOM 3785 N CYS A 498 10.171 79.223 190.612 1.00 63.71 N
ATOM 3786 CA CYS A 498 8.827 79.118 191.135 1.00 64.50 c
ATOM 3787 C CYS A 498 8.311 80.441 191.680 1.00 76.26 c ATOM 3788 O CYS A 498 9.082 81.342 191.990 1.00 71.88 O
ATOM 3789 CB CYS A 498 8.794 78.047 192.208 1.00 63.01 c
ATOM 3790 SG CYS A 498 9.597 76.531 191.659 1.00 97.55 S
ATOM 3791 N SER A 499 6.988 80.538 191.774 1.00 88.49 N
ATOM 3792 CA SER A 499 6.287 81.717 192.271 1.00 90.01 C
ATOM 3793 C SER A 499 5.200 81.254 193.244 1.00 89.82 C
ATOM 3794 O SER A 499 4.823 80.076 193.245 1.00 81.85 O
ATOM 3795 CB SER A 499 5.654 82.460 191.114 1.00 71.32 C
ATOM 3796 OG SER A 499 4.790 81.585 190.419 1.00 79.72 O
ATOM 3797 N PRO A 500 4.696 82.172 194.088 1.00 92.54 N
ATOM 3798 CA PRO A 500 3.791 81.689 195.131 1.00 90.34 C
ATOM 3799 C PRO A 500 2.366 81.423 194.637 1.00 91.27 C
ATOM 3800 O PRO A 500 1.872 82.108 193.740 1.00 84.30 O
ATOM 3801 CB PRO A 500 3.845 82.805 196.176 1.00 89.90 C
ATOM 3802 CG PRO A 500 4.192 84.026 195.416 1.00 88.93 C
ATOM 3803 CD PRO A 500 5.038 83.597 194.265 1.00 92.16 C
ATOM 3804 N ALA A 501 1.740 80.416 195.248 1.00 98.08 N
ATOM 3805 CA ALA A 501 0.423 79.892 194.880 1.00 98.59 C
ATOM 3806 C ALA A 501 -0.603 80.936 194.463 1.00108.63 C
ATOM 3807 O ALA A 501 -1.008 80.967 193.311 1.00110.81 O
ATOM 3808 CB ALA A 501 -0.135 79.043 196.024 1.00 93.84 C
ATOM 3809 N LYS A 502 -1.020 81.779 195.404 1.00123.99 N
ATOM 3810 CA LYS A 502 -2.097 82.746 195.172 1.00140.42 C
ATOM 3811 C LYS A 502 -1.556 84.119 194.760 1.00149.42 C
ATOM 3812 O LYS A 502 -0.584 84.606 195.339 1.00149.99 O
ATOM 3813 CB LYS A 502 -2.956 82.893 196.438 1.00145.77 C
ATOM 3814 CG LYS A 502 -3.373 81.573 197.093 1.00147.99 C
ATOM 3815 CD LYS A 502 -3.772 81.779 198.555 1.00152.72 C
ATOM 3816 CE LYS A 502 -4.134 80.459 199.242 1.00154.57 C
ATOM 3817 NZ LYS A 502 -4.594 80.632 200.660 1.00151.39 N
ATOM 3818 N SER A 503 -2.188 84.742 193.766 1.00159.55 N
ATOM 3819 CA SER A 503 -1.774 86.075 193.308 1.00169.90 C
ATOM 3820 C SER A 503 -2.842 86.828 192.497 1.00190.35 C
ATOM 3821 O SER A 503 -3.828 86.243 192.042 1.00194.21 O
ATOM 3822 CB SER A 503 -0.473 85.995 192.502 1.00157.45 C
ATOM 3823 OG SER A 503 0.615 85.635 193.333 1.00148.80 O
ATOM 3824 N SER A 504 -2.631 88.135 192.334 1.00201.01 N
ATOM 3825 CA SER A 504 -3.466 88.976 191.476 1.00207.98 C
ATOM 3826 C SER A 504 -2.620 90.052 190.786 1.00216.39 C
ATOM 3827 O SER A 504 -3.011 91.219 190.726 1.00220.13 O ATOM 3828 CB SER A 504 -4.616 89.615 192.268 1.00205.50 C
ATOM 3829 OG SER A 504 -4.140 90.469 193.294 1.00201.44 O
ATOM 3830 N ARG A 505 -1.459 89.637 190.275 1.00219.34 N
ATOM 3831 CA ARG A 505 -0.513 90.512 189.570 1.00222.28 C
ATOM 3832 C ARG A 505 -0.043 91.724 190.395 1.00221.11 C
ATOM 3833 O ARG A 505 -0.557 92.825 190.196 1.00223.88 O
ATOM 3834 CB ARG A 505 -1.092 90.953 188.215 1.00228.20 C
ATOM 3835 CG ARG A 505 -0.181 91.835 187.358 1.00229.73 C
ATOM 3836 CD ARG A 505 1.096 91.126 186.938 1.00226.58 C
ATOM 3837 NE ARG A 505 1.924 91.990 186.103 1.00227.97 N
ATOM 3838 CZ ARG A 505 2.783 92.885 186.579 1.00229.49 C
ATOM 3839 NH1 ARG A 505 2.932 93.031 187.888 1.00228.68 N
ATOM 3840 NH2 ARG A 505 3.495 93.633 185.749 1.00231.83 N
ATOM 3841 N ALA A 506 0.902 91.563 191.330 1.00217.12 N
ATOM 3842 CA ALA A 506 1.503 90.299 191.806 1.00212.38 C
ATOM 3843 C ALA A 506 2.164 89.352 190.794 1.00212.03 C
ATOM 3844 O ALA A 506 I .667 88.254 190.543 1.00214.47 O
ATOM 3845 CB ALA A 506 0.542 89.534 192.740 1.00210.82 C
ATOM 3846 N ALA A 507 3.281 89.789 190.222 1.00208.27 N
ATOM 3847 CA ALA A 507 4.142 88.909 189.442 1.00199.78 C
ATOM 3848 C ALA A 507 5.443 88.762 190.216 1.00194.23 C
ATOM 3849 O ALA A 507 6.512 88.609 189.630 1.00195.36 O
ATOM 3850 CB ALA A 507 4.403 89.498 188.064 1.00197.90 C
ATOM 3851 N VAL A 508 5.336 88.829 191.543 1.00189.50 N
ATOM 3852 CA VAL A 508 6.493 88.973 192.427 1.00187.51 C
ATOM 3853 C VAL A 508 6.423 88.016 193.644 1.00138.55 C
ATOM 3854 O VAL A 508 5.445 87.282 193.805 1.00136.99 O
ATOM 3855 CB VAL A 508 6.636 90.453 192.902 1.00101.22 C
ATOM 3856 CG1 VAL A 508 8.109 90.812 193.189 1.00101.62 C
ATOM 3857 CG2 VAL A 508 6.040 91.428 191.873 1.00 98.26 C
ATOM 3858 N GLY A 509 7.468 88.026 194.484 1.00134.16 N
ATOM 3859 CA GLY A 509 7.589 87.151 195.652 1.00115.64 C
ATOM 3860 C GLY A 509 8.435 85.899 195.418 1.00101.92 C
ATOM 3861 O GLY A 509 8.541 85.045 196.282 1.00 68.86 O
ATOM 3862 N ASN A 510 9.064 85.813 194.248 1.00 90.36 N
ATOM 3863 CA ASN A 510 9.541 84.542 193.705 1.00 74.56 C
ATOM 3864 C ASN A 510 10.894 84.048 194.220 1.00 73.61 C
ATOM 3865 O ASN A 510 I I .645 84.779 194.878 1.00 75.19 O
ATOM 3866 CB ASN A 510 9.591 84.596 192.170 1.00 74.09 C
ATOM 3867 CG ASN A 510 8.400 85.339 191.549 1.00 81.62 C ATOM 3868 OD1 ASN A 510 7.228 84.972 191.740 1.00 72.11 O
ATOM 3869 ND2 ASN A 510 8.707 86.377 190.773 1.00 82.25 N
ATOM 3870 N LYS A 511 11.199 82.802 193.866 1.00 64.53 N
ATOM 3871 CA LYS A 511 12.371 82.087 194.346 1.00 62.71 C
ATOM 3872 C LYS A 511 12.864 81.204 193.220 1.00 74.42 C
ATOM 3873 O LYS A 511 12.106 80.902 192.296 1.00 62.65 O
ATOM 3874 CB LYS A 511 12.018 81.172 195.525 1.00 61.60 C
ATOM 3875 CG LYS A 511 11.519 81.860 196.767 1.00 62.37 C
ATOM 3876 CD LYS A 511 12.417 82.961 197.194 1.00 62.91 C
ATOM 3877 CE LYS A 511 12.028 83.485 198.533 1.00 63.67 C
ATOM 3878 NZ LYS A 511 12.473 84.886 198.677 1.00 96.38 N
ATOM 3879 N MET A 512 14.134 80.800 193.292 1.00 70.76 N
ATOM 3880 CA MET A 512 14.653 79.734 192.434 1.00 70.76 C
ATOM 3881 C MET A 512 15.176 78.618 193.301 1.00 68.26 C
ATOM 3882 O MET A 512 15.930 78.857 194.229 1.00 75.40 O
ATOM 3883 CB MET A 512 15.761 80.229 191.513 1.00 73.09 C
ATOM 3884 CG MET A 512 15.266 81.104 190.380 1.00 77.54 C
ATOM 3885 SD MET A 512 16.628 81.887 189.503 1.00 74.38 S
ATOM 3886 CE MET A 512 17.658 80.456 189.240 1.00 61.76 C
ATOM 3887 N PHE A 513 14.765 77.395 193.011 1.00 64.53 N
ATOM 3888 CA PHE A 513 15.251 76.265 193.774 1.00 63.76 C
ATOM 3889 C PHE A 513 16.231 75.504 192.909 1.00 66.49 C
ATOM 3890 O PHE A 513 15.908 75.139 191.779 1.00 66.50 O
ATOM 3891 CB PHE A 513 14.098 75.392 194.256 1.00 61.85 C
ATOM 3892 CG PHE A 513 13.104 76.137 195.117 1.00 64.68 C
ATOM 3893 CD1 PHE A 513 13.433 76.511 196.414 1.00 58.16 C
ATOM 3894 CD2 PHE A 513 11.841 76.478 194.617 1.00 70.72 C
ATOM 3895 CE1 PHE A 513 12.526 77.203 197.190 1.00 62.22 C
ATOM 3896 CE2 PHE A 513 10.925 77.172 195.384 1.00 62.60 C
ATOM 3897 CZ PHE A 513 11.262 77.536 196.667 1.00 64.49 C
ATOM 3898 N VAL A 514 17.438 75.315 193.444 1.00 65.56 N
ATOM 3899 CA VAL A 514 18.584 74.812 192.713 1.00 55.70 C
ATOM 3900 C VAL A 514 19.041 73.515 193.318 1.00 54.92 C
ATOM 3901 O VAL A 514 19.202 73.412 194.530 1.00 54.40 O
ATOM 3902 CB VAL A 514 19.746 75.780 192.871 1.00 64.59 C
ATOM 3903 CG1 VAL A 514 20.976 75.235 192.205 1.00 61.97 C
ATOM 3904 CG2 VAL A 514 19.388 77.128 192.318 1.00 68.81 C
ATOM 3905 N LYS A 515 19.267 72.517 192.486 1.00 55.08 N
ATOM 3906 CA LYS A 515 19.816 71.262 192.975 1.00 59.57 C
ATOM 3907 C LYS A 515 20.901 70.733 192.034 1.00 66.11 C ATOM 3908 O LYS A 515 20.764 70.784 190.802 1.00 69.84
ATOM 3909 CB LYS A 515 18.707 70.218 193.169 1.00 54.48
ATOM 3910 CG LYS A 515 18.915 68.918 192.389 1.00 59.20
ATOM 391 1 CD LYS A 515 17.716 68.009 192.471 1.00 55.11
ATOM 3912 CE LYS A 515 17.138 67.783 191.109 1.00 61.61
ATOM 3913 NZ LYS A 515 17.325 66.392 190.623 1.00 67.60 N
ATOM 3914 N GLY A 516 21.985 70.228 192.613 1.00 65.44 N
ATOM 3915 CA GLY A 516 23.006 69.586 191.810 1.00 65.98 C
ATOM 3916 C GLY A 516 24.142 69.017 192.630 1.00 65.21 C
ATOM 3917 O GLY A 516 23.947 68.598 193.764 1.00 74.35 O
ATOM 3918 N ALA A 517 25.337 69.01 1 192.050 1.00 59.81 N
ATOM 3919 CA ALA A 517 26.508 68.486 192.71 1 1.00 57.05 C
ATOM 3920 C ALA A 517 27.159 69.599 193.501 1.00 83.33 C
ATOM 3921 O ALA A 517 27.086 70.768 193.1 14 1.00 88.56 O
ATOM 3922 CB ALA A 517 27.469 67.933 191.699 1.00 60.65 C
ATOM 3923 N PRO A 518 27.791 69.239 194.623 1.00 74.58 N
ATOM 3924 CA PRO A 518 28.479 70.191 195.487 1.00 75.94 C
ATOM 3925 C PRO A 518 29.589 70.919 194.749 1.00 76.34 C
ATOM 3926 O PRO A 518 29.803 72.104 195.031 1.00 82.15 O
ATOM 3927 CB PRO A 518 29.055 69.297 196.579 1.00 78.22 C
ATOM 3928 CG PRO A 518 28.146 68.139 196.614 1.00 57.11 C
ATOM 3929 CD PRO A 518 27.727 67.902 195.229 1.00 57.10 C
ATOM 3930 N GLU A 519 30.271 70.226 193.832 1.00 73.83 N
ATOM 3931 CA GLU A 519 31.339 70.836 193.035 1.00 76.25 C
ATOM 3932 C GLU A 519 30.786 72.098 192.413 1.00 66.73 C
ATOM 3933 O GLU A 519 31.406 73.168 192.468 1.00 64.40 O
ATOM 3934 CB GLU A 519 31.835 69.916 191.904 1.00 77.51 C
ATOM 3935 CG GLU A 519 32.459 68.604 192.335 1.00 85.07 C
ATOM 3936 CD GLU A 519 31.423 67.539 192.685 1.00 99.57 C
ATOM 3937 OE1 GLU A 519 30.582 67.771 193.586 1.00 99.28 O
ATOM 3938 OE2 GLU A 519 31.453 66.462 192.057 1.00105.78
ATOM 3939 N GLY A 520 29.593 71.965 191.847 1.00 65.47 N
ATOM 3940 CA GLY A 520 28.995 73.045 191.106 1.00 59.80 C
ATOM 3941 C GLY A 520 28.312 74.042 191.999 1.00 69.80 C
ATOM 3942 O GLY A 520 28.478 75.248 191.805 1.00 65.64 O
ATOM 3943 N VAL A 521 27.556 73.540 192.976 1.00 57.89 N
ATOM 3944 CA VAL A 521 26.612 74.369 193.709 1.00 57.23 C
ATOM 3945 C VAL A 521 27.260 75.264 194.755 1.00 70.89 C
ATOM 3946 O VAL A 521 26.919 76.443 194.876 1.00 70.76 O
ATOM 3947 CB VAL A 521 25.544 73.513 194.393 1.00 56.1 1 ATOM 3948 CG1 VAL A 521 24.692 74.358 195.332 1.00 55.68 C
ATOM 3949 CG2 VAL A 521 24.686 72.864 193.354 1.00 55.90 C
ATOM 3950 N ILE A 522 28.204 74.712 195.506 1.00 70.84 N
ATOM 3951 CA ILE A 522 28.700 75.404 196.682 1.00 71.54 C
ATOM 3952 C ILE A 522 29.444 76.706 196.401 1.00 67.06 C
ATOM 3953 O ILE A 522 29.184 77.697 197.067 1.00 60.04 O
ATOM 3954 CB ILE A 522 29.472 74.457 197.593 1.00 76.30 C
ATOM 3955 CG1 ILE A 522 28.487 73.478 198.233 1.00 74.63 C
ATOM 3956 CG2 ILE A 522 30.226 75.225 198.669 1.00 73.10 C
ATOM 3957 CD1 ILE A 522 29.077 72.703 199.381 1.00 81.32 C
ATOM 3958 N ASP A 523 30.330 76.735 195.408 1.00 60.72 N
ATOM 3959 CA ASP A 523 30.971 78.002 195.052 1.00 62.18 C
ATOM 3960 C ASP A 523 29.953 79.126 194.818 1.00 79.57 C
ATOM 3961 O ASP A 523 30.242 80.302 195.020 1.00 90.64 O
ATOM 3962 CB ASP A 523 31.848 77.835 193.822 1.00 71.35 C
ATOM 3963 CG ASP A 523 32.318 79.181 193.236 1.00 77.99 C
ATOM 3964 OD2 ASP A 523 31.792 79.589 192.170 1.00 84.17 O
ATOM 3965 OD1 ASP A 523 33.227 79.819 193.823 1.00 70.52 O
ATOM 3966 N ARG A 524 28.745 78.755 194.419 1.00 64.38 N
ATOM 3967 CA ARG A 524 27.754 79.735 194.034 1.00 61.64 C
ATOM 3968 C ARG A 524 26.819 80.124 195.182 1.00 68.59 C
ATOM 3969 O ARG A 524 25.814 80.805 194.958 1.00 71.57 O
ATOM 3970 CB ARG A 524 26.953 79.205 192.856 1.00 60.46 C
ATOM 3971 CG ARG A 524 27.694 79.201 191.567 1.00 61.56 C
ATOM 3972 CD ARG A 524 26.782 78.889 190.395 1.00 61.42 C
ATOM 3973 NE ARG A 524 26.748 77.470 190.080 1.00 60.66 N
ATOM 3974 CZ ARG A 524 25.637 76.757 189.964 1.00 66.21 C
ATOM 3975 NH1 ARG A 524 24.466 77.339 190.137 1.00 59.40 N
ATOM 3976 NH2 ARG A 524 25.699 75.464 189.669 1.00 61.86 N
ATOM 3977 N CYS A 525 27.142 79.693 196.404 1.00 69.57 N
ATOM 3978 CA CYS A 525 26.347 80.043 197.589 1.00 69.77 C
ATOM 3979 C CYS A 525 27.008 81.133 198.422 1.00 72.14 C
ATOM 3980 O CYS A 525 28.106 80.938 198.937 1.00 80.97 O
ATOM 3981 CB CYS A 525 26.156 78.834 198.491 1.00 58.61 C
ATOM 3982 SG CYS A 525 25.193 77.534 197.799 1.00 78.74 S
ATOM 3983 N ASN A 526 26.337 82.271 198.575 1.00 63.73 N
ATOM 3984 CA ASN A 526 26.842 83.332 199.435 1.00 63.37 C
ATOM 3985 C ASN A 526 26.303 83.246 200.835 1.00 68.83 C
ATOM 3986 O ASN A 526 26.852 83.828 201.761 1.00 75.92 O
ATOM 3987 CB ASN A 526 26.490 84.694 198.876 1.00 67.16 C ATOM 3988 CG ASN A 526 27.225 84.991 197.623 1.00 71.33 C
ATOM 3989 OD1 ASN A 526 28.147 84.267 197.265 1.00 78.26 O
ATOM 3990 ND2 ASN A 526 26.826 86.051 196.929 1.00 71.97 N
ATOM 3991 N TYR A 527 25.209 82.525 200.990 1.00 72.25 N
ATOM 3992 CA TYR A 527 24.572 82.447 202.279 1.00 66.68 C
ATOM 3993 C TYR A 527 24.304 81.019 202.664 1.00 62.87 C
ATOM 3994 O TYR A 527 24.374 80.102 201.863 1.00 59.31 O
ATOM 3995 CB TYR A 527 23.260 83.202 202.261 1.00 70.13 C
ATOM 3996 CG TYR A 527 23.361 84.636 201.804 1.00 78.98 C
ATOM 3997 CD1 TYR A 527 23.832 85.629 202.664 1.00 77.1 1 C
ATOM 3998 CD2 TYR A 527 22.941 85.007 200.521 1.00 73.55 C
ATOM 3999 CE1 TYR A 527 23.892 86.946 202.256 1.00 77.78 C
ATOM 4000 CE2 TYR A 527 23.005 86.317 200.102 1.00 69.93 C
ATOM 4001 CZ TYR A 527 23.477 87.281 200.973 1 .00 82.21 C
ATOM 4002 OH TYR A 527 23.537 88.587 200.561 1.00 95.17 O
ATOM 4003 N VAL A 528 23.978 80.852 203.926 1.00 68.63 N
ATOM 4004 CA VAL A 528 23.636 79.563 204.456 1.00 67.39 C
ATOM 4005 C VAL A 528 22.279 79.729 205.148 1.00 70.23 C
ATOM 4006 O VAL A 528 22.036 80.737 205.815 1.00 65.40 O
ATOM 4007 CB VAL A 528 24.753 79.128 205.392 1.00 60.30 C
ATOM 4008 CG1 VAL A 528 24.237 78.249 206.477 1.00 85.86 C
ATOM 4009 CG2 VAL A 528 25.841 78.456 204.580 1.00 79.77 C
ATOM 4010 N ARG A 529 21.361 78.790 204.938 1.00 73.71 N
ATOM 4011 CA ARG A 529 20.108 78.843 205.685 1.00 68.66 C
ATOM 4012 C ARG A 529 20.190 78.073 207.012 1.00 62.80 C
ATOM 4013 O ARG A 529 20.430 76.854 207.049 1.00 59.84 O
ATOM 4014 CB ARG A 529 18.889 78.413 204.850 1.00 63.64 C
ATOM 4015 CG ARG A 529 17.571 78.587 205.628 1.00 61.49 C
ATOM 4016 CD ARG A 529 16.448 79.224 204.817 1.00 60.13 C
ATOM 4017 NE ARG A 529 16.835 80.445 204.114 1.00 65.00 N
ATOM 4018 CZ ARG A 529 16.865 80.566 202.787 1.00 69.10 C
ATOM 4019 NH 1 ARG A 529 16.528 79.549 202.002 1.00 58.01 N
ATOM 4020 NH2 ARG A 529 17.242 81.706 202.234 1.00 72.99 N
ATOM 4021 N VAL A 530 20.010 78.831 208.087 1.00 62.45 N
ATOM 4022 CA VAL A 530 19.937 78.312 209.442 1.00 66.88 C
ATOM 4023 C VAL A 530 18.507 78.472 209.908 1.00 73.15 C
ATOM 4024 O VAL A 530 18.157 79.532 210.433 1.00 63.11 O
ATOM 4025 CB VAL A 530 20.796 79.156 210.412 1.00 63.91 C
ATOM 4026 CG1 VAL A 530 20.986 78.429 211.693 1.00 65.19 C
ATOM 4027 CG2 VAL A 530 22.146 79.462 209.806 1.00 72.08 C ATOM 4028 N GLY A 531 17.680 77.445 209.700 1.00 70.53
ATOM 4029 CA GLY A 531 16.280 77.498 210.105 1.00 68.70
ATOM 4030 C GLY A 531 15.373 78.251 209.143 1.00 71.83
ATOM 4031 O GLY A 531 14.819 77.663 208.218 1.00 76.87
ATOM 4032 N THR A 532 15.181 79.546 209.375 1.00 75.19
ATOM 4033 CA THR A 532 14.529 80.402 208.379 1.00 75.98
ATOM 4034 C THR A 532 15.365 81.659 208.210 1.00 79.23
ATOM 4035 O THR A 532 15.067 82.514 207.378 1.00 83.50
ATOM 4036 CB THR A 532 13.093 80.850 208.760 1.00 68.17
ATOM 4037 OG1 THR A 532 13.141 82.122 209.422 1.00 66.08
ATOM 4038 CG2 THR A 532 12.389 79.820 209.623 1.00 64.31
ATOM 4039 N THR A 533 16.404 81.783 209.024 1.00 78.72
ATOM 4040 CA THR A 533 17.252 82.950 208.957 1.00 65.31
ATOM 4041 C THR A 533 18.349 82.628 207.971 1.00 82.69
ATOM 4042 O THR A 533 18.455 81.487 207.517 1.00 78.20
ATOM 4043 CB THR A 533 17.851 83.225 210.311 1.00 78.23
ATOM 4044 OG1 THR A 533 18.483 82.030 210.804 1.00 80.03
ATOM 4045 CG2 THR A 533 16.761 83.642 211.271 1.00 81.13
ATOM 4046 N ARG A 534 19.165 83.614 207.619 1.00 64.88
ATOM 4047 CA ARG A 534 20.325 83.312 206.783 1.00 66.87
ATOM 4048 C ARG A 534 21.541 84.095 207.228 1.00 68.37
ATOM 4049 O ARG A 534 21.447 85.202 207.742 1.00 75.16
ATOM 4050 CB ARG A 534 20.055 83.517 205.280 1.00 65.96
ATOM 4051 CG ARG A 534 20.383 84.909 204.739 1.00 64.70
ATOM 4052 CD ARG A 534 19.983 85.021 203.297 1.00 64.12
ATOM 4053 NE ARG A 534 20.305 86.325 202.732 1.00 77.13
ATOM 4054 CZ ARG A 534 19.838 86.771 201.566 1.00 77.94
ATOM 4055 NH1 ARG A 534 19.009 86.024 200.846 1.00 79.06
ATOM 4056 NH2 ARG A 534 20.183 87.972 201.119 1.00 78.07
ATOM 4057 N VAL A 535 22.697 83.489 207.040 1.00 67.22
ATOM 4058 CA VAL A 535 23.931 84.098 207.446 1.00 68.83
ATOM 4059 C VAL A 535 24.958 83.818 206.370 1.00 75.01
ATOM 4060 O VAL A 535 24.854 82.819 205.650 1.00 72.74
ATOM 4061 CB VAL A 535 24.392 83.519 208.771 1.00 70.15
ATOM 4062 CG1 VAL A 535 23.523 84.049 209.876 1.00 70.72
ATOM 4063 CG2 VAL A 535 24.345 82.003 208.724 1.00 66.45
ATOM 4064 N PRO A 536 25.929 84.726 206.230 1.00 76.36
ATOM 4065 CA PRO A 536 27.006 84.637 205.252 1.00 73.47
ATOM 4066 C PRO A 536 27.719 83.297 205.236 1.00 75.03
ATOM 4067 O PRO A 536 28.133 82.812 206.288 1.00 79.98 ATOM 4068 CB PRO A 536 27.945 85.733 205.719 1.00 72.67 C
ATOM 4069 CG PRO A 536 27.024 86.773 206.217 1.00 71.46 c
ATOM 4070 CD PRO A 536 25.876 86.063 206.842 1.00 69.54 c
ATOM 4071 N MET A 537 27.837 82.703 204.051 1.00 72.32 N
ATOM 4072 CA MET A 537 28.689 81.536 203.872 1.00 74.04 C
ATOM 4073 C MET A 537 30.130 81.975 204.1 19 1.00 74.54 C
ATOM 4074 O MET A 537 30.493 83.123 203.852 1.00 76.54 O
ATOM 4075 CB MET A 537 28.517 80.926 202.471 1.00 69.75 c
ATOM 4076 CG MET A 537 29.467 79.773 202.155 1.00 62.58 c
ATOM 4077 SD MET A 537 29.046 78.205 202.934 1.00 81.92 s
ATOM 4078 CE MET A 537 27.960 77.496 201.712 1.00 59.50 c
ATOM 4079 N THR A 538 30.935 81.078 204.672 1.00 72.29 N
ATOM 4080 CA THR A 538 32.319 81.382 204.976 1.00 80.79 C
ATOM 4081 C THR A 538 33.180 80.160 204.748 1.00 83.19 C
ATOM 4082 O THR A 538 32.668 79.067 204.506 1.00 85.31 O
ATOM 4083 CB THR A 538 32.502 81.822 206.433 1.00 82.52 C
ATOM 4084 OG1 THR A 538 32.015 80.800 207.308 1.00 77.92 o
ATOM 4085 CG2 THR A 538 31.775 83.128 206.702 1.00 70.79 c
ATOM 4086 N GLY A 539 34.490 80.359 204.834 1.00 80.50 N
ATOM 4087 CA GLY A 539 35.438 79.296 204.600 1.00 70.42 C
ATOM 4088 C GLY A 539 35.155 78.020 205.364 1.00 83.09 C
ATOM 4089 O GLY A 539 34.864 77.002 204.752 1.00 68.15 O
ATOM 4090 N PRO A 540 35.253 78.063 206.707 1.00 82.89 N
ATOM 4091 CA PRO A 540 35.142 76.848 207.515 1.00 70.47 C
ATOM 4092 C PRO A 540 33.771 76.215 207.427 1.00 80.95 C
ATOM 4093 O PRO A 540 33.674 75.017 207.665 1.00 82.47 O
ATOM 4094 CB PRO A 540 35.393 77.351 208.927 1.00 97.13 C
ATOM 4095 CG PRO A 540 36.183 78.565 208.748 1.00 74.23 C
ATOM 4096 CD PRO A 540 35.671 79.209 207.528 1.00 72.83 C
ATOM 4097 N VAL A 541 32.738 76.996 207.104 1.00 78.70 N
ATOM 4098 CA VAL A 541 31.404 76.442 206.895 1.00 75.81 C
ATOM 4099 C VAL A 541 31.431 75.615 205.624 1.00 70.77 C
ATOM 4100 O VAL A 541 31.026 74.457 205.624 1.00 68.28 O
ATOM 4101 CB VAL A 541 30.317 77.527 206.745 1.00 72.96 C
ATOM 4102 CG1 VAL A 541 28.994 76.884 206.412 1.00 71.92 C
ATOM 4103 CG2 VAL A 541 30.179 78.334 207.989 1.00 65.73 C
ATOM 4104 N LYS A 542 31.903 76.228 204.542 1.00 72.37 N
ATOM 4105 CA LYS A 542 32.133 75.528 203.280 1.00 79.26 C
ATOM 4106 C LYS A 542 32.915 74.232 203.475 1.00 79.37 C
ATOM 4107 O LYS A 542 32.459 73.156 203.087 1.00 62.56 O ATOM 4108 CB LYSA542 32.884 76.438202.313 1.0079.26
ATOM 4109 CG LYSA542 32.781 76.010200.889 1.0080.62
ATOM 4110 CD LYSA542 33.262 77.086199.943 1.0080.62
ATOM 4111 CE LYSA542 32.597 78.412200.207 1.0073.53
ATOM 4112 NZ LYSA542 33.402 79.480199.559 1.0073.86
ATOM 4113 N GLUA543 34.086 74.345204.099 1.0077.39
ATOM 4114 CA GLU A 543 34.937 73.188204.382 1.0075.96
ATOM 4115 C GLU A 543 34.194 72.093205.165 1.0070.49
ATOM 4116 O GLU A 543 34.459 70.901204.960 1.0068.55
ATOM 4117 CB GLU A 543 36.217 73.607205.122 1.0068.93
ATOM 4118 CG GLU A 543 37.127 74.581204.376 1.00119.98
ATOM 4119 CD GLU A 543 38.057 73.895203.368 1.00123.85
ATOM 4120 OE1 GLU A 543 37.849 72.689203.089 1.00126.26
ATOM 4121 OE2 GLU A 543 38.998 74.558202.853 1.00122.90
ATOM 4122 N LYSA544 33.261 72.499206.036 1.0071.28
ATOM 4123 CA LYSA544 32.548 71.577206.929 1.0064.71
ATOM 4124 C LYSA544 31.556 70.751206.159 1.0069.98
ATOM 4125 O LYSA544 31.513 69.535206.286 1.0074.79
ATOM 4126 CB LYSA544 31.805 72.335208.031 1.0065.21
ATOM 4127 CG LYSA544 30.837 71.475208.859 1.0064.32
ATOM 4128 CD LYSA544 31.513 70.224209.387 1.0083.47
ATOM 4129 CE LYSA544 30.647 69.411210.337 1.0086.10
ATOM 4130 NZ LYSA544 31.320 68.123210.720 1.0066.79
ATOM 4131 N ILEA 545 30.725 71.435205.389 1.0061.53
ATOM 4132 CA ILEA 545 29.825 70.788204.466 1.0060.01
ATOM 4133 C ILEA 545 30.602 69.814203.583 1.0080.94
ATOM 4134 O ILEA 545 30.224 68.646203.479 1.0077.04
ATOM 4135 CB ILEA 545 29.135 71.833203.592 1.0059.02
ATOM 4136 CG1 ILEA 545 28.337 72.793204.467 1.0068.86
ATOM 4137 CG2 ILE A 545 28.251 71.165202.547 1.0057.74
ATOM 4138 CD1 ILE A 545 28.009 74.112203.800 1.0072.77
ATOM 4139 N LEU A 546 31.696 70.273202.972 1.0061.27
ATOM 4140 CA LEU A 546 32.410 69.420202.021 1.0083.88
ATOM 4141 C LEU A 546 32.941 68.155202.689 1.0079.66
ATOM 4142 O LEU A 546 32.891 67.059202.116 1.0072.62
ATOM 4143 CB LEU A 546 33.523 70.184201.294 1.0062.89
ATOM 4144 CG LEU A 546 33.050 71.314200.384 1.0078.43
ATOM 4145 CD1 LEU A 546 34.147 72.310200.082 1.0063.55
ATOM 4146 CD2 LEU A 546 32.418 70.777199.104 1.0061.09
ATOM 4147 N SERA 547 33.416 68.307203.917 1.0064.00 ATOM 4148 CA SER A 547 34.049 67.206 204.600 1.00 75.62
ATOM 4149 C SER A 547 33.053 66.108 204.961 1.00 75.64
ATOM 4150 O SER A 547 33.421 64.932 205.006 1.00 80.22
ATOM 4151 CB SER A 547 34.781 67.708 205.823 1.00 67.12
ATOM 4152 OG SER A 547 33.885 68.370 206.688 1.00 89.68
ATOM 4153 N VAL A 548 31.796 66.480 205.207 1.00 72.69
ATOM 4154 CA VAL A 548 30.756 65.488 205.493 1.00 79.97
ATOM 4155 C VAL A 548 30.362 64.772 204.208 1.00 87.94
ATOM 4156 O VAL A 548 30.158 63.554 204.204 1.00 95.75
ATOM 4157 CB VAL A 548 29.482 66.113 206.108 1.00 81.17
ATOM 4158 CG1 VAL A 548 28.410 65.042 206.363 1.00 60.93
ATOM 4159 CG2 VAL A 548 29.811 66.840 207.367 1.00 62.35
ATOM 4160 N ILE A 549 30.248 65.528 203.117 1.00 79.77
ATOM 4161 CA ILE A 549 29.946 64.917 201.833 1.00 71.75
ATOM 4162 C ILE A 549 31.028 63.891 201.513 1.00 69.97
ATOM 4163 O ILE A 549 30.730 62.814 201.005 1.00 76.07
ATOM 4164 CB ILE A 549 29.822 65.954 200.695 1.00 70.27
ATOM 4165 CG1 ILE A 549 28.856 67.068 201.079 1.00 70.23
ATOM 4166 CG2 ILE A 549 29.296 65.319 199.457 1.00 58.94
ATOM 4167 CD1 ILE A 549 28.715 68.130 200.030 1.00 67.64
ATOM 4168 N LYS A 550 32.278 64.194 201.851 1.00 65.78
ATOM 4169 CA LYS A 550 33.332 63.225 201.606 1.00 64.99
ATOM 4170 C LYS A 550 33.144 61.936 202.386 1.00 69.04
ATOM 4171 O LYS A 550 33.252 60.851 201.821 1.00 70.71
ATOM 4172 CB LYS A 550 34.717 63.795 201.890 1.00 66.63
ATOM 4173 CG LYS A 550 35.817 62.778 201.557 1.00 68.78
ATOM 4174 CD LYS A 550 37.209 63.279 201.838 1.00 70.76
ATOM 4175 CE LYS A 550 37.461 64.557 201.107 1.00 93.11
ATOM 4176 NZ LYS A 550 38.830 65.002 201.433 1.00104.53
ATOM 4177 N GLU A 551 32.857 62.067 203.681 1.00 74.15
ATOM 4178 CA GLU A 551 32.758 60.926 204.590 1.00 74.72
ATOM 4179 C GLU A 551 31.627 59.986 204.199 1.00 75.29
ATOM 4180 O GLU A 551 31.721 58.768 204.377 1.00 73.93
ATOM 4181 CB GLU A 551 32.537 61.415 206.012 1.00 79.72
ATOM 4182 CG GLU A 551 32.630 60.310 207.046 1.00 99.10
ATOM 4183 CD GLU A 551 32.387 60.804 208.465 1.00114.16
ATOM 4184 OE1 GLU A 551 33.248 60.542 209.344 1.00119.64
ATOM 4185 OE2 GLU A 551 31.332 61.445 208.695 1.001 14.63
ATOM 4186 N TRP A 552 30.560 60.572 203.666 1.00 64.39
ATOM 4187 CA TRP A 552 29.416 59.819 203.185 1.00 72.20 ATOM 4188 C TRP A 552 29.757 59.051 201.917 1.00 79.82 C
ATOM 4189 O TRP A 552 29.247 57.951 201.695 1.00 85.59 o
ATOM 4190 CB TRP A 552 28.234 60.755 202.923 1.00 68.59 c
ATOM 4191 CG TRP A 552 27.533 61.196 204.174 1.00 61.24 c
ATOM 4192 CD1 TRP A 552 27.913 60.936 205.446 1.00 67.12 c
ATOM 4193 CD2 TRP A 552 26.325 61.966 204.265 1.00 59.80 c
ATOM 4194 NE1 TRP A 552 27.032 61.500 206.332 1.00 62.33 N
ATOM 4195 CE2 TRP A 552 26.054 62.138 205.633 1.00 64.97 C
ATOM 4196 CE3 TRP A 552 25.460 62.521 203.329 1.00 58.43 C
ATOM 4197 CZ2 TRP A 552 24.938 62.844 206.081 1.00 73.29 C
ATOM 4198 CZ3 TRP A 552 24.376 63.227 203.770 1.00 70.01 C
ATOM 4199 CH2 TRP A 552 24.1 13 63.380 205.134 1.00 69.30 c
ATOM 4200 N GLY A 553 30.621 59.636 201.091 1.00 80.36 N
ATOM 4201 CA GLY A 553 31.057 58.999 199.864 1.00 84.27 C
ATOM 4202 C GLY A 553 31.930 57.779 200.104 1.00 95.03 C
ATOM 4203 O GLY A 553 31.738 56.734 199.485 1.00100.79 O
ATOM 4204 N THR A 554 32.880 57.903 201.023 1.00 96.54 N
ATOM 4205 CA THR A 554 33.944 56.914 201.166 1.00 94.57 C
ATOM 4206 C THR A 554 33.644 55.789 202.148 1.00 92.90 C
ATOM 4207 O THR A 554 34.493 54.907 202.361 1.00 75.04 O
ATOM 4208 CB THR A 554 35.237 57.588 201.627 1.00 93.10 C
ATOM 4209 OG1 THR A 554 35.022 58.162 202.920 1.00 91.30 O
ATOM 4210 CG2 THR A 554 35.648 58.689 200.642 1.00 90.81 C
ATOM 4211 N GLY A 555 32.450 55.807 202.738 1.00 85.75 N
ATOM 4212 CA GLY A 555 32.148 54.880 203.812 1.00 83.98 C
ATOM 4213 C GLY A 555 30.848 54.109 203.757 1.00 86.76 C
ATOM 4214 O GLY A 555 29.773 54.701 203.701 1.00 88.41 O
ATOM 4215 N ARG A 556 30.963 52.780 203.763 1.00 97.20 N
ATOM 4216 CA ARG A 556 29.858 51.864 204.110 1.00108.94 C
ATOM 4217 C ARG A 556 28.741 51.719 203.076 1.00103.86 C
ATOM 4218 O ARG A 556 28.479 50.626 202.562 1.00 95.32 O
ATOM 4219 CB ARG A 556 29.237 52.238 205.469 1.00115.25 C
ATOM 4220 CG ARG A 556 30.210 52.21 1 206.635 1.00125.78 C
ATOM 4221 CD ARG A 556 29.563 52.704 207.916 1.00132.51 c
ATOM 4222 NE ARG A 556 30.444 52.488 209.059 1.00148.65 N
ATOM 4223 CZ ARG A 556 30.097 52.678 210.328 1.00157.45 C
ATOM 4224 NH1 ARG A 556 28.875 53.096 210.628 1.00159.23 N
ATOM 4225 NH2 ARG A 556 30.974 52.450 211.301 1.00159.03 N
ATOM 4226 N ASP A 557 28.058 52.821 202.808 1.00105.63 N
ATOM 4227 CA ASP A 557 26.953 52.803 201.873 1.00107.37 C ATOM 4228 C ASP A 557 27.286 53.642 200.653 1.00109.22 C
ATOM 4229 O ASP A 557 26.611 53.548 199.619 1.00117.02 O
ATOM 4230 CB ASP A 557 25.675 53.278 202.554 1.00109.06 C
ATOM 4231 CG ASP A 557 25.032 52.193 203.376 1.00116.29 C
ATOM 4232 OD1 ASP A 557 25.656 51.1 17 203.511 1.00121.57 O
ATOM 4233 OD2 ASP A 557 23.914 52.413 203.889 1.00117.88 O
ATOM 4234 N THR A 558 28.343 54.442 200.781 1.00 97.88 N
ATOM 4235 CA THR A 558 28.897 55.192 199.663 1.00 84.80 C
ATOM 4236 C THR A 558 27.809 55.932 198.906 1.00 73.24 C
ATOM 4237 O THR A 558 27.279 55.460 197.912 1.00 69.60 O
ATOM 4238 CB THR A 558 29.708 54.274 198.744 1.00 79.98 C
ATOM 4239 OG1 THR A 558 28.858 53.269 198.173 1.00 80.55 O
ATOM 4240 CG2 THR A 558 30.751 53.591 199.564 1.00 79.54 C
ATOM 4241 N LEU A 559 27.470 57.098 199.418 1.00 71.23 N
ATOM 4242 CA LEU A 559 26.31 1 57.827 198.955 1.00 78.56 C
ATOM 4243 C LEU A 559 26.718 58.907 197.977 1.00 61.32 C
ATOM 4244 O LEU A 559 27.636 59.677 198.247 1.00 80.52 O
ATOM 4245 CB LEU A 559 25.637 58.507 200.150 1.00 86.63 C
ATOM 4246 CG LEU A 559 24.738 57.795 201.148 1.00 61.41 C
ATOM 4247 CD2 LEU A 559 25.007 58.400 202.492 1.00 75.05 C
ATOM 4248 CD1 LEU A 559 24.981 56.327 201.180 1.00 72.23 C
ATOM 4249 N ARG A 560 26.023 58.989 196.856 1.00 64.53 N
ATOM 4250 CA ARG A 560 26.174 60.154 196.000 1.00 65.46 C
ATOM 4251 C ARG A 560 25.299 61.253 196.610 1.00 68.13 C
ATOM 4252 O ARG A 560 24.161 60.981 197.006 1.00 63.74 O
ATOM 4253 CB ARG A 560 25.786 59.831 194.553 1.00 65.39 C
ATOM 4254 CG ARG A 560 25.603 61.047 193.676 1.00 90.14 C
ATOM 4255 CD ARG A 560 24.873 60.716 192.357 1.00114.85 C
ATOM 4256 NE ARG A 560 25.746 60.020 191.409 1.00130.04 N
ATOM 4257 CZ ARG A 560 25.643 58.730 191.102 1.00138.71 C
ATOM 4258 NH1 ARG A 560 24.684 57.985 191.651 1.00142.21 N
ATOM 4259 NH2 ARG A 560 26.495 58.186 190.238 1.00136.72 N
ATOM 4260 N CYS A 56 25.833 62.474 196.707 1.00 67.31 N
ATOM 4261 CA CYS A 561 25.147 63.571 197.392 1.00 56.73 C
ATOM 4262 C CYS A 561 24.697 64.703 196.476 1.00 58.1 1 C
ATOM 4263 O CYS A 561 25.403 65.043 195.543 1.00 56.75 O
ATOM 4264 CB CYS A 561 26.041 64.168 198.478 1.00 60.96 C
ATOM 4265 SG CYS A 561 26.691 63.031 199.750 1.00 63.76 S
ATOM 4266 N LEU A 562 23.534 65.295 196.758 1.00 56.90 N
ATOM 4267 CA LEU A 562 23.064 66.502 196.060 1.00 54.68 C ATOM 4268 C LEU A 562 23.099 67.707 196.980 1.00 61.67 C
ATOM 4269 O LEU A 562 22.645 67.627 198.1 13 1.00 65.86 O
ATOM 4270 CB LEU A 562 21.611 66.356 195.584 1.00 58.45 C
ATOM 4271 CG LEU A 562 21.252 65.517 194.374 1.00 55.12 C
ATOM 4272 CD1 LEU A 562 22.103 66.022 193.244 1.00 57.96 C
ATOM 4273 CD2 LEU A 562 21.514 64.051 194.671 1.00 57.80 C
ATOM 4274 N ALA A 563 23.604 68.830 196.491 1.00 63.31 N
ATOM 4275 CA ALA A 563 23.563 70.069 197.260 1.00 71.09 C
ATOM 4276 C ALA A 563 22.305 70.833 196.906 1.00 72.98 C
ATOM 4277 O ALA A 563 22.059 71.091 195.734 1.00 86.02 O
ATOM 4278 CB ALA A 563 24.777 70.909 196.959 1.00 71.11 C
ATOM 4279 N LEU A 564 21.510 71.207 197.899 1.00 64.33 N
ATOM 4280 CA LEU A 564 20.262 71.91 1 197.607 1.00 65.12 C
ATOM 4281 C LEU A 564 20.323 73.364 198.064 1.00 68.99 C
ATOM 4282 O LEU A 564 20.698 73.654 199.209 1.00 68.07 O
ATOM 4283 CB LEU A 564 19.073 71.189 198.250 1.00 59.80 C
ATOM 4284 CG LEU A 564 19.119 69.678 198.015 1.00 60.35 C
ATOM 4285 CD1 LEU A 564 18.535 68.902 199.156 1.00 55.87 C
ATOM 4286 CD2 LEU A 564 18.392 69.332 196.738 1.00 61.94 C
ATOM 4287 N ALA A 565 19.952 74.278 197.173 1.00 67.99 N
ATOM 4288 CA ALA A 565 19.994 75.701 197.51 1 1.00 70.96 C
ATOM 4289 C ALA A 565 18.809 76.495 196.942 1.00 74.32 C
ATOM 4290 O ALA A 565 18.040 75.986 196.139 1.00 67.73 O
ATOM 4291 CB ALA A 565 21.337 76.317 197.081 1.00 64.01 C
ATOM 4292 N THR A 566 18.673 77.746 197.365 1.00 55.89 N
ATOM 4293 CA THR A 566 17.590 78.599 196.906 1.00 64.12 C
ATOM 4294 C THR A 566 18.152 79.958 196.536 1.00 70.63 C
ATOM 4295 O THR A 566 19.022 80.479 197.219 1.00 79.95 O
ATOM 4296 CB THR A 566 16.518 78.828 198.033 1.00 61.02 C
ATOM 4297 OG1 THR A 566 16.025 77.575 198.531 1.00 63.56 O
ATOM 4298 CG2 THR A 566 15.344 79.650 197.521 1.00 65.08 C
ATOM 4299 N ARG A 567 17.668 80.554 195.463 1.00 58.61 N
ATOM 4300 CA ARG A 567 18.003 81.951 195.235 1.00 74.82 C
ATOM 4301 C ARG A 567 16.857 82.839 195.724 1.00 78.25 C
ATOM 4302 O ARG A 567 15.842 82.990 195.046 1.00 85.24 O
ATOM 4303 CB ARG A 567 18.385 82.249 193.777 1.00 69.08 C
ATOM 4304 CG ARG A 567 18.890 83.670 193.595 1.00 62.35 C
ATOM 4305 CD ARG A 567 19.292 83.992 192.179 1.00 85.25 C
ATOM 4306 NE ARG A 567 19.854 85.338 192.075 1.00 65.07 N
ATOM 4307 CZ ARG A 567 20.557 85.771 191.034 1.00 83.92 C ATOM 4308 NH1 ARG A 567 20.782 84.964 190.007 1.00 80.16 N
ATOM 4309 NH2 ARG A 567 21.042 87.006 191.017 1.00 68.00 N
ATOM 4310 N ASP A 568 17.052 83.413 196.910 1.00 74.03 N
ATOM 4311 CA ASP A 568 16.054 84.214 197.611 1.00 78.29 C
ATOM 4312 C ASP A 568 15.595 85.485 196.894 1.00 84.65 C
ATOM 4313 O ASP A 568 14.507 85.998 197.172 1.00 65.66 O
ATOM 4314 CB ASP A 568 16.585 84.586 198.990 1.00 80.95 C
ATOM 4315 CG ASP A 568 16.823 83.377 199.863 1.00 79.65 C
ATOM 4316 OD1 ASP A 568 16.129 82.350 199.659 1.00 84.39 O
ATOM 4317 OD2 ASP A 568 17.702 83.450 200.760 1.00 66.44 O
ATOM 4318 N THR A 569 16.428 86.018 196.008 1.00 85.94 N
ATOM 4319 CA THR A 569 16.012 87.135 195.166 1.00 67.11 C
ATOM 4320 C THR A 569 16.427 86.865 193.722 1.00 84.61 C
ATOM 4321 O THR A 569 17.399 87.430 193.223 1.00 90.86 O
ATOM 4322 CB THR A 569 16.582 88.479 195.656 1.00 68.89 C
ATOM 4323 OG1 THR A 569 16.294 88.635 197.042 1.00 68.99 O
ATOM 4324 CG2 THR A 569 15.983 89.637 194.913 1.00 71.21 C
ATOM 4325 N PRO A 570 15.684 85.990 193.034 1.00 81.80 N
ATOM 4326 CA PRO A 570 16.037 85.684 191.649 1.00 78.97 C
ATOM 4327 C PRO A 570 15.787 86.899 190.784 1.00 80.72 C
ATOM 4328 O PRO A 570 15.146 87.842 191.247 1.00 87.61 O
ATOM 4329 CB PRO A 570 15.058 84.569 191.291 1.00 71.53 C
ATOM 4330 CG PRO A 570 13.877 84.851 192.135 1.00 72.12 C
ATOM 4331 CD PRO A 570 14.410 85.367 193.425 1.00 77.56 C
ATOM 4332 N PRO A 571 16.298 86.889 189.546 1.00 74.93 N
ATOM 4333 CA PRO A 571 15.984 87.964 188.596 1.00 74.30 C
ATOM 4334 C PRO A 571 14.517 87.939 188.159 1.00 78.03 C
ATOM 4335 O PRO A 571 13.811 86.948 188.361 1.00 83.15 O
ATOM 4336 CB PRO A 571 16.907 87.664 187.412 1.00 80.14 C
ATOM 4337 CG PRO A 571 17.256 86.209 187.544 1.00 69.89 C
ATOM 4338 CD PRO A 571 17.268 85.919 189.001 1.00 71.79 C
ATOM 4339 N LYS A 572 14.058 89.032 187.565 1.00 82.30 N
ATOM 4340 CA LYS A 572 12.689 89.101 187.074 1.00 82.86 C
ATOM 4341 C LYS A 572 12.465 88.111 185.935 1.00 92.87 C
ATOM 4342 O LYS A 572 13.365 87.834 185.142 1.00101.86 O
ATOM 4343 CB LYS A 572 12.369 90.508 186.584 1.00 83.90 C
ATOM 4344 CG LYS A 572 12.181 91.553 187.656 1.00 85.05 C
ATOM 4345 CD LYS A 572 12.071 92.931 187.016 1.00 97.05 C
ATOM 4346 CE LYS A 572 11.967 94.033 188.062 1.00108.16 C
ATOM 4347 NZ LYS A 572 13.169 94.083 188.951 1.00110.75 N ATOM 4348 N ARG A 573 11.248 87.592 185.866 1.00 90.80 N
ATOM 4349 CA ARG A 573 10.794 86.712 184.803 1.00 85.30 C
ATOM 4350 C ARG A 573 11.101 87.295 183.404 1.00 93.23 C
ATOM 4351 O ARG A 573 11.466 86.576 182.458 1.00 95.95 O
ATOM 4352 CB ARG A 573 9.288 86.546 184.990 1.00 82.74 C
ATOM 4353 CG ARG A 573 8.686 85.342 184.341 1.00 93.20 C
ATOM 4354 CD ARG A 573 7.192 85.313 184.561 1.00 93.86 C
ATOM 4355 NE ARG A 573 6.838 85.191 185.968 1.00 77.85 N
ATOM 4356 CZ ARG A 573 6.312 86.174 186.693 1.00 95.37 C
ATOM 4357 NH1 ARG A 573 6.084 87.365 186.148 1.00 94.83 N
ATOM 4358 NH2 ARG A 573 6.01 1 85.966 187.965 1.00 89.15 N
ATOM 4359 N GLU A 574 10.945 88.612 183.296 1.00 91.86 N
ATOM 4360 CA GLU A 574 1 1.165 89.358 182.064 1.00 93.19 C
ATOM 4361 C GLU A 574 12.632 89.378 181.611 1.00 93.42 C
ATOM 4362 O GLU A 574 12.924 89.645 180.437 1.00 88.11 O
ATOM 4363 CB GLU A 574 10.678 90.795 182.251 1.00 87.21 C
ATOM 4364 CG GLU A 574 9.218 90.914 182.603 1.00123.07 C
ATOM 4365 CD GLU A 574 8.951 90.689 184.075 1.00130.24 C
ATOM 4366 OE1 GLU A 574 9.846 90.979 184.892 1.00125.39 O
ATOM 4367 OE2 GLU A 574 7.845 90.219 184.424 1.00142.87 O
ATOM 4368 N GLU A 575 13.545 89.091 182.540 1.00 94.01 N
ATOM 4369 CA GLU A 575 14.980 89.249 182.304 1.00 95.12 C
ATOM 4370 C GLU A 575 15.732 87.926 182.081 1.00 90.63 C
ATOM 4371 O GLU A 575 16.961 87.897 182.092 1.00 83.06 O
ATOM 4372 CB GLU A 575 15.613 90.005 183.471 1.00105.99 C
ATOM 4373 CG GLU A 575 14.984 91.355 183.777 1.00120.59 C
ATOM 4374 CD GLU A 575 15.336 91.875 185.174 1.00130.94 C
ATOM 4375 OE1 GLU A 575 15.053 93.062 185.452 1.00137.38 O
ATOM 4376 OE2 GLU A 575 15.889 91.104 185.997 1.00127.01 O
ATOM 4377 N MET A 576 14.994 86.842 181.862 1.00 97.49 N
ATOM 4378 CA MET A 576 15.590 85.525 181.668 1.00 76.39 C
ATOM 4379 C MET A 576 15.221 84.870 180.337 1.00 87.74 C
ATOM 4380 O MET A 576 14.123 85.074 179.791 1.00 88.00 O
ATOM 4381 CB MET A 576 15.194 84.606 182.815 1.00 75.09 C
ATOM 4382 CG MET A 576 15.603 85.125 184.178 1.00 72.58 C
ATOM 4383 SD MET A 576 15.209 83.933 185.457 1.00 79.66 S
ATOM 4384 CE MET A 576 16.441 82.664 185.209 1.00 76.02 C
ATOM 4385 N VAL A 577 16.148 84.058 179.832 1.00 89.56 N
ATOM 4386 CA VAL A 577 16.075 83.515 178.471 1.00 98.14 C
ATOM 4387 C VAL A 577 16.633 82.089 178.429 1.00 93.08 C ATOM 4388 O VAL A 577 17.724 81.840 178.932 1.00 87.36 o
ATOM 4389 CB VAL A 577 16.834 84.421 177.501 1.00 81.06 c
ATOM 4390 CG1 VAL A 577 17.193 83.671 176.272 1.00139.12 c
ATOM 4391 CG2 VAL A 577 15.975 85.623 177.144 1.00 90.58 c
ATOM 4392 N LEU A 578 15.890 81.145 177.853 1.00 77.32 N
ATOM 4393 CA LEU A 578 16.239 79.735 178.052 1.00 75.60 C
ATOM 4394 C LEU A 578 16.791 78.997 176.828 1.00 83.24 C
ATOM 4395 O LEU A 578 16.994 77.779 176.877 1.00 80.13 O
ATOM 4396 CB LEU A 578 15.066 78.961 178.661 1.00 74.49 C
ATOM 4397 CG LEU A 578 14.391 79.617 179.872 1.00106.99 C
ATOM 4398 CD1 LEU A 578 13.479 78.646 180.592 1.00 72.06 c
ATOM 4399 CD2 LEU A 578 15.421 80.183 180.817 1.00 71.88 c
ATOM 4400 N ASP A 579 17.053 79.733 175.745 1.00 85.88 N
ATOM 4401 CA ASP A 579 17.555 79.140 174.498 1.00 87.93 C
ATOM 4402 C ASP A 579 18.981 78.626 174.656 1.00 94.63 C
ATOM 4403 O ASP A 579 19.272 77.483 174.303 1.00 96.65 O
ATOM 4404 CB ASP A 579 17.433 80.107 173.316 1.00 84.55 C
ATOM 4405 CG ASP A 579 17.993 81.484 173.615 1.00105.15 C
ATOM 4406 OD2 ASP A 579 17.385 82.495 173.227 1.00110.69 O
ATOM 4407 OD1 ASP A 579 19.054 81.573 174.236 1.00105.85 o
ATOM 4408 N ASP A 580 19.859 79.470 175.200 1.00 98.71 N
ATOM 4409 CA ASP A 580 21.246 79.082 175.449 1.00 92.31 C
ATOM 4410 C ASP A 580 21.446 78.752 176.909 1.00 83.96 C
ATOM 4411 O ASP A 580 21.325 79.612 177.792 1.00 75.77 O
ATOM 4412 CB ASP A 580 22.243 80.153 174.998 1.00 95.78 C
ATOM 4413 CG ASP A 580 23.696 79.754 175.258 1.00 97.12 C
ATOM 4414 OD2 ASP A 580 24.534 80.673 175.399 1.00102.03 O
ATOM 4415 OD1 ASP A 580 24.008 78.536 175.319 1.00 90.77 o
ATOM 4416 N SER A 581 21.769 77.478 177.108 1.00 84.17 N
ATOM 4417 CA SER A 581 21.947 76.809 178.388 1.00 79.18 C
ATOM 4418 C SER A 581 23.029 77.430 179.253 1.00 74.30 C
ATOM 4419 O SER A 581 23.108 77.169 180.449 1.00 70.00 O
ATOM 4420 CB SER A 581 22.291 75.345 78.082 1.00 83.82 C
ATOM 4421 OG SER A 581 22.763 74.626 179.197 1.00 70.05 O
ATOM 4422 N SER A 582 23.856 78.268 178.647 1.00 75.37 N
ATOM 4423 CA SER A 582 25.090 78.701 179.280 1.00 78.58 C
ATOM 4424 C SER A 582 24.965 79.932 180.159 1.00 72.22 C
ATOM 4425 O SER A 582 25.923 80.299 180.802 1.00 90.56 O
ATOM 4426 CB SER A 582 26.139 78.976 178.230 1.00 75.02 C
ATOM 4427 OG SER A 582 26.088 80.340 177.867 1.00 76.65 O ATOM 4428 N ARG A 583 23.815 80.593 180.189 1.00 89.48 N
ATOM 4429 CA ARG A 583 23.643 81.676 181.165 1.00 82.42 C
ATOM 4430 C ARG A 583 23.013 81.21 1 182.468 1.00 86.37 C
ATOM 4431 O ARG A 583 22.796 82.019 183.363 1.00 92.72 O
ATOM 4432 CB ARG A 583 22.780 82.819 180.634 1.00 77.27 C
ATOM 4433 CG ARG A 583 22.421 82.773 179.180 1.00 75.71 C
ATOM 4434 CD ARG A 583 21.785 84.105 178.836 1.00 81.37 C
ATOM 4435 NE ARG A 583 21.957 84.494 177.442 1.00 84.08 N
ATOM 4436 CZ ARG A 583 21.324 83.906 176.431 1.00 93.79 C
ATOM 4437 NH1 ARG A 583 20.498 82.880 176.680 1.00 89.78 N
ATOM 4438 NH2 ARG A 583 21.520 84.331 175.179 1.00 84.39 N
ATOM 4439 N PHE A 584 22.687 79.929 182.573 1.00 68.19 N
ATOM 4440 CA PHE A 584 21.937 79.470 183.719 1.00 66.26 C
ATOM 4441 C PHE A 584 22.839 79.438 184.938 1.00 92.49 C
ATOM 4442 O PHE A 584 22.364 79.537 186.063 1.00 96.48 O
ATOM 4443 CB PHE A 584 21.339 78.089 183.477 1.00 71.54 C
ATOM 4444 CG PHE A 584 20.367 78.027 182.330 1.00 74.56 C
ATOM 4445 CD1 PHE A 584 19.949 79.177 181.680 1.00 76.71 C
ATOM 4446 CD2 PHE A 584 19.867 76.806 181.906 1.00 66.77 C
ATOM 4447 CE1 PHE A 584 19.074 79.104 180.616 1.00 80.94 C
ATOM 4448 CE2 PHE A 584 19.000 76.728 180.847 1.00 68.33 C
ATOM 4449 CZ PHE A 584 18.601 77.875 180.199 1.00 70.05 C
ATOM 4450 N MET A 585 24.147 79.311 184.723 1.00 91.29 N
ATOM 4451 CA MET A 585 25.076 79.294 185.848 1.00 86.91 C
ATOM 4452 C MET A 585 25.156 80.667 186.513 1.00 83.13 C
ATOM 4453 O MET A 585 25.356 80.761 187.718 1.00 92.91 O
ATOM 4454 CB MET A 585 26.453 78.777 185.451 1.00 65.30 C
ATOM 4455 CG MET A 585 27.400 78.559 186.653 1.00 64.51 C
ATOM 4456 SD MET A 585 29.179 78.630 186.304 1.00 71.93 S
ATOM 4457 CE MET A 585 29.330 80.411 186.186 1.00 67.74 C
ATOM 4458 N GLU A 586 24.968 81.729 185.739 1.00 71.69 N
ATOM 4459 CA GLU A 586 24.823 83.060 186.318 1.00 71.24 C
ATOM 4460 C GLU A 586 23.392 83.334 186.839 1.00 72.11 C
ATOM 4461 O GLU A 586 23.195 84.147 187.748 1.00 73.25 O
ATOM 4462 CB GLU A 586 25.266 84.134 185.328 1.00 77.69 C
ATOM 4463 CG GLU A 586 25.128 85.551 185.844 1.00 97.36 C
ATOM 4464 CD GLU A 586 24.756 86.536 184.746 1.00122.63 C
ATOM 4465 OE1 GLU A 586 25.637 86.873 183.919 1.00134.12 O
ATOM 4466 OE2 GLU A 586 23.579 86.966 184.706 1.00128.06 0
ATOM 4467 N TYR A 587 22.386 82.662 186.289 1.00 71.12 N ATOM 4468 CA TYR A 587 21.042 82.814 186.838 1.00 72.28 C
ATOM 4469 C TYR A 587 21.047 82.219 188.253 1.00 72.26 C
ATOM 4470 O TYR A 587 20.468 82.771 189.194 1.00 72.07 O
ATOM 4471 CB TYR A 587 19.985 82.150 185.940 1.00 66.09 C
ATOM 4472 CG TYR A 587 19.723 82.898 184.651 1.00 82.62 C
ATOM 4473 CD1 TYR A 587 19.803 84.283 184.607 1.00 85.63 C
ATOM 4474 CD2 TYR A 587 19.413 82.222 183.468 1.00 80.23 C
ATOM 4475 CE1 TYR A 587 19.575 84.974 183.434 1.00 88.76 C
ATOM 4476 CE2 TYR A 587 19.184 82.914 182.282 1.00 71.33 C
ATOM 4477 CZ TYR A 587 19.265 84.287 182.277 1.00 72.89 C
ATOM 4478 OH TYR A 587 19.046 84.994 181.118 1.00 75.41 O
ATOM 4479 N GLU A 588 21.745 81.101 188.396 1.00 70.28 N
ATOM 4480 CA GLU A 588 21.863 80.445 189.677 1.00 69.80 C
ATOM 4481 C GLU A 588 23.111 80.902 190.434 1.00 74.21 C
ATOM 4482 O GLU A 588 23.959 80.084 190.780 1.00 77.52 O
ATOM 4483 CB GLU A 588 21.908 78.945 189.474 1.00 60.23 C
ATOM 4484 CG GLU A 588 20.782 78.405 188.650 1.00 74.10 C
ATOM 4485 CD GLU A 588 21.072 76.993 188.196 1.00 82.97 C
ATOM 4486 OE1 GLU A 588 22.137 76.448 188.599 1.00 75.62 O
ATOM 4487 OE2 GLU A 588 20.242 76.438 187.431 1.00 86.76 O
ATOM 4488 N THR A 589 23.221 82.21 1 190.670 1.00 71.03 N
ATOM 4489 CA THR A 589 24.199 82.752 191.615 1.00 72.11 C
ATOM 4490 C THR A 589 23.541 83.416 192.838 1.00 62.88 C
ATOM 4491 O THR A 589 22.329 83.407 192.983 1.00 67.93 O
ATOM 4492 CB THR A 589 25.209 83.71 1 190.942 1.00 82.43 C
ATOM 4493 OG1 THR A 589 24.530 84.812 190.335 1.00 66.23 O
ATOM 4494 CG2 THR A 589 25.986 82.985 189.889 1.00 88.04 C
ATOM 4495 N ASP A 590 24.358 83.962 193.730 1.00 79.75 N
ATOM 4496 CA ASP A 590 23.877 84.550 194.978 1.00 70.78 C
ATOM 4497 C ASP A 590 22.969 83.579 195.741 1.00 65.66 C
ATOM 4498 O ASP A 590 21.947 83.976 196.295 1.00 68.94 O
ATOM 4499 CB ASP A 590 23.163 85.868 194.695 1.00 76.49 C
ATOM 4500 CG ASP A 590 23.233 86.829 195.861 1.00 87.51 C
ATOM 4501 OD1 ASP A 590 24.084 86.624 196.745 1.00 66.14 O
ATOM 4502 OD2 ASP A 590 22.443 87.797 195.888 1.00 93.80 O
ATOM 4503 N LEU A 591 23.343 82.301 195.756 1.00 62.88 N
ATOM 4504 CA LEU A 591 22.482 81.261 196.309 1.00 66.77 C
ATOM 4505 C LEU A 591 22.564 81.214 197.820 1.00 70.44 C
ATOM 4506 O LEU A 591 23.470 81.782 198.417 1.00 71.01 O
ATOM 4507 CB LEU A 591 22.830 79.884 195.736 1.00 66.78 C ATOM 4508 CG LEU A 591 22.721 79.696 194.224 1.00 70.36 C
ATOM 4509 CD1 LEU A 591 22.749 78.21 1 193.877 1.00 72.92 C
ATOM 4510 CD2 LEU A 591 21.472 80.367 193.672 1.00 65.24 C
ATOM 4511 N THR A 592 21.604 80.532 198.428 1.00 68.41 N
ATOM 4512 CA THR A 592 21.595 80.291 199.855 1.00 61.24 C
ATOM 4513 C THR A 592 21.588 78.798 200.053 1.00 67.84 C
ATOM 4514 O THR A 592 20.662 78.125 199.612 1.00 69.58 O
ATOM 4515 CB THR A 592 20.321 80.814 200.467 1.00 60.82 C
ATOM 4516 OG1 THR A 592 20.200 82.213 200.172 1.00 74.26 O
ATOM 4517 CG2 THR A 592 20.321 80.576 201.976 1.00 58.66 C
ATOM 4518 N PHE A 593 22.622 78.275 200.704 1.00 71.58 N
ATOM 4519 CA PHE A 593 22.721 76.845 200.956 1.00 65.69 C
ATOM 4520 C PHE A 593 21.583 76.367 201.849 1.00 62.96 C
ATOM 4521 O PHE A 593 21.219 77.053 202.808 1.00 69.27 O
ATOM 4522 CB PHE A 593 24.044 76.500 201.629 1.00 56.50 C
ATOM 4523 CG PHE A 593 24.199 75.036 201.884 1.00 72.77 C
ATOM 4524 CD1 PHE A 593 24.591 74.184 200.861 1.00 61.18 C
ATOM 4525 CD2 PHE A 593 23.910 74.498 203.131 1.00 55.99 C
ATOM 4526 CE1 PHE A 593 24.701 72.831 201.083 1.00 59.35 C
ATOM 4527 CE2 PHE A 593 24.022 73.143 203.355 1.00 60.29 C
ATOM 4528 CZ PHE A 593 24.417 72.308 202.333 1.00 59.94 c
ATOM 4529 N VAL A 594 21.015 75.200 201.547 1.00 55.74 N
ATOM 4530 CA VAL A 594 19.990 74.647 202.431 1.00 61.18 C
ATOM 4531 C VAL A 594 20.431 73.350 203.089 1.00 62.83 C
ATOM 4532 O VAL A 594 20.571 73.288 204.316 1.00 64.77 O
ATOM 4533 CB VAL A 594 18.597 74.489 201.755 1.00 54.93 C
ATOM 4534 CG1 VAL A 594 17.685 73.648 202.600 1.00 54.44 C
ATOM 4535 CG2 VAL A 594 17.972 75.829 201.546 1.00 55.07 C
ATOM 4536 N GLY A 595 20.641 72.317 202.288 1.00 54.05 N
ATOM 4537 CA GLY A 595 20.972 71.025 202.845 1.00 55.07 C
ATOM 4538 C GLY A 595 21.630 70.124 201.839 1.00 56.19 C
ATOM 4539 O GLY A 595 22.042 70.574 200.782 1.00 53.75 O
ATOM 4540 N VAL A 596 21.735 68.847 202.162 1.00 54.03 N
ATOM 4541 CA VAL A 596 22.309 67.893 201.230 1.00 64.47 C
ATOM 4542 C VAL A 596 21.508 66.619 201.346 1.00 64.82 C
ATOM 4543 O VAL A 596 21.194 66.201 202.446 1.00 61.20 O
ATOM 4544 CB VAL A 596 23.812 67.599 201.552 1.00 54.79 C
ATOM 4545 CG1 VAL A 596 24.298 66.323 200.860 1.00 55.21 C
ATOM 4546 CG2 VAL A 596 24.692 68.783 201.191 1.00 55.99 C
ATOM 4547 N VAL A 597 21.125 66.018 200.231 1.00 54.09 N ATOM 4548 CA VAL A 597 20.574 64.674 200.313 1.00 70.76 C
ATOM 4549 C VAL A 597 21.689 63.747 199.890 1.00 66.07 C
ATOM 4550 O VAL A 597 22.370 64.041 198.927 1.00 67.86 O
ATOM 4551 CB VAL A 597 19.280 64.447 199.425 1.00 63.44 C
ATOM 4552 CG1 VAL A 597 18.052 65.1 19 200.024 1.00 54.16 C
ATOM 4553 CG2 VAL A 597 19.481 64.909 198.006 1.00 54.25 C
ATOM 4554 N GLY A 598 21.916 62.667 200.628 1.00 55.97 N
ATOM 4555 CA GLY A 598 22.819 61.612 200.184 1.00 65.63 C
ATOM 4556 C GLY A 598 22.065 60.332 199.823 1.00 65.07 C
ATOM 4557 O GLY A 598 21.288 59.815 200.627 1.00 76.03 O
ATOM 4558 N MET A 599 22.263 59.794 198.626 1.00 59.63 N
ATOM 4559 CA MET A 599 21.475 58.612 198.285 1.00 65.00 C
ATOM 4560 C MET A 599 22.242 57.357 197.907 1.00 68.45 C
ATOM 4561 O MET A 599 23.380 57.402 197.433 1.00 61.03 O
ATOM 4562 CB MET A 599 20.369 58.914 197.257 1.00 62.33 C
ATOM 4563 CG MET A 599 20.864 59.492 195.968 1.00 58.42 C
ATOM 4564 SD MET A 599 19.534 60.029 194.901 1.00106.44 S
ATOM 4565 CE MET A 599 19.143 61.600 195.652 1.00 56.59 C
ATOM 4566 N LEU A 600 21.551 56.241 198.110 1.00 67.23 N
ATOM 4567 CA LEU A 600 22.126 54.917 198.076 1.00 68.66 C
ATOM 4568 C LEU A 600 21.733 54.271 196.766 1.00 73.00 C
ATOM 4569 O LEU A 600 20.662 54.549 196.245 1.00 84.05 O
ATOM 4570 CB LEU A 600 21.581 54.120 199.260 1.00 64.34 C
ATOM 4571 CG LEU A 600 21.850 52.631 199.397 1.00 81.83 C
ATOM 4572 CD1 LEU A 600 23.342 52.355 199.427 1.00 86.81 C
ATOM 4573 CD2 LEU A 600 21.198 52.150 200.658 1.00 67.19 C
ATOM 4574 N ASP A 601 22.619 53.440 196.224 1.00 72.64 N
ATOM 4575 CA ASP A 601 22.388 52.735 194.972 1.00 78.15 C
ATOM 4576 C ASP A 601 23.070 51.398 195.169 1.00 84.36 C
ATOM 4577 O ASP A 601 24.245 51.239 194.869 1.00 89.74 O
ATOM 4578 CB ASP A 601 22.992 53.530 193.800 1.00 84.20 C
ATOM 4579 CG ASP A 601 22.878 52.813 192.437 1.00 87.07 C
ATOM 4580 OD1 ASP A 601 22.204 51.762 192.346 1.00 85.29 O
ATOM 4581 OD2 ASP A 601 23.469 53.323 191.449 1.00 87.52 O
ATOM 4582 N PRO A 602 22.327 50.429 195.699 1.00 70.78 N
ATOM 4583 CA PRO A 602 22.835 49.154 196.210 1.00101.45 C
ATOM 4584 C PRO A 602 23.431 48.256 195.153 1.00 75.32 C
ATOM 4585 O PRO A 602 22.841 48.108 194.105 1.00122.48 O
ATOM 4586 CB PRO A 602 21.579 48.486 196.771 1.00 73.74 C
ATOM 4587 CG PRO A 602 20.477 49.080 195.997 1.00 94.56 C ATOM 4588 CD PRO A 602 20.867 50.511195.802 1.0090.76 C
ATOM 4589 N PRO A 603 24.591 47.662195.427 1.0076.96 N
ATOM 4590 CA PRO A 603 25.123 46.588194.599 1.0094.66 C
ATOM 4591 C PRO A 603 24.078 45.545194.248 1.0081.46 C
ATOM 4592 O PRO A 603 23.138 45.302194.987 1.0081.24 O
ATOM 4593 CB PRO A 603 26.190 45.982195.492 1.0081.37 C
ATOM 4594 CG PRO A 603 26.726 47.154196.214 1.0086.00 C
ATOM 4595 CD PRO A 603 25.592 48.130196.392 1.0076.41 C
ATOM 4596 N ARGA604 24.259 44.960193.076 1.0067.53 N
ATOM 4597 CA ARGA604 23.432 43.895192.554 1.0072.77 C
ATOM 4598 C ARGA604 23.669 42.727193.503 1.0084.48 C
ATOM 4599 O ARGA604 24.689 42.700194.189 1.0089.30 O
ATOM 4600 CB ARGA604 23.919 43.605191.135 1.0070.23 C
ATOM 4601 CG ARGA604 23.007 42.832190.236 1.0082.11 C
ATOM 4602 CD ARGA604 21.721 43.570189.900 1.0084.44 C
ATOM 4603 NE ARGA604 21.855 44.674188.955 1.0072.53 N
ATOM 4604 CZ ARG A 604 21.005 44.900187.951 1.0072.26 C
ATOM 4605 NH1 ARG A 604 19.980 44.090187.724 1.0065.27 N
ATOM 4606 NH2 ARG A 604 21.186 45.938187.156 1.0075.16 N
ATOM 4607 N LYSA605 22.740 41.783193.594 1.0091.46 N
ATOM 4608 CA LYSA605 22.88740.726194.597 1.0099.65 C
ATOM 4609 C LYSA605 23.834 39.631194.138 1.00100.81 C
ATOM 4610 O LYSA605 24.410 38.913194.948 1.00105.76 O
ATOM 4611 CB LYSA605 21.534 40.119194.976 1.00111.36 C
ATOM 4612 CG LYSA605 20.497 41.131195.426 1.00121.87 C
ATOM 4613 CD LYSA605 21.039 42.066196.514 1.00125.48 C
ATOM 4614 CE LYSA605 21.241 41.361197.849 1.00119.62 C
ATOM 4615 NZ LYSA605 21.606 42.341198.907 1.00111.25 N
ATOM 4616 N GLUA606 24.003 39.511192.831 1.0097.53 N
ATOM 4617 CA GLUA606 24.804 38.429192.288 1.0097.83 C
ATOM 4618 C GLUA606 26.158 38.883191.726 1.0099.02 C
ATOM 4619 O GLUA606 26.961 38.041191.321 1.00106.15 O
ATOM 4620 CB GLUA606 24.008 37.680191.223 1.0096.34 C
ATOM 4621 CG GLUA606 22.512 37.636191.498 1.00103.81 C
ATOM 4622 CD GLUA606 21.770 38.851190.954 1.00107.12 C
ATOM 4623 OE1 GLU A 606 22.333 39.560190.102 1.00105.07 O
ATOM 4624 OE2 GLU A 606 20.623 39.101 191.376 1.00115.29 O
ATOM 4625 N VALA607 26.416 40.194191.703 1.0086.99 N
ATOM 4626 CA VAL A 607 27.677 40.710191.167 1.0075.20 C
ATOM 4627 C VAL A 607 28.900 40.209191.898 1.0077.36 C ATOM 4628 O VALA607 29.887 39.860191.265 1.0078.62 O
ATOM 4629 CB VALA607 27.772 42.239191.181 1.0071.42 C
ATOM 4630 CG1 VAL A 607 27.146 42.813189.961 1.0076.69 C
ATOM 4631 CG2 VAL A 607 27.137 42.796192.416 1.0082.87 C
ATOM 4632 N MET A 608 28.852 40.191193.226 1.0080.77 N
ATOM 4633 CA MET A 608 30.045 39.865193.992 1.0080.87 C
ATOM 4634 C MET A 608 30.513 38.454193.660 1.0084.28 C
ATOM 4635 O MET A 608 31.699 38.220193.402 1.0087.49 O
ATOM 4636 CB MET A 608 29.808 40.026195.488 1.0088.16 C
ATOM 4637 CG MET A 608 31.074 39.793196.300 1.0096.10 C
ATOM 4638 SD MET A 608 30.824 39.963198.061 1.00136.52 S
ATOM 4639 CE MET A 608 29.577 38.698198.329 1.00112.21 C
ATOM 4640 N GLYA609 29.565 37.523193.643 1.0085.26 N
ATOM 4641 CA GLYA609 29.845 36.160193.235 1.0084.59 C
ATOM 4642 C GLYA609 30.131 36.030191.748 1.0081.12 C
ATOM 4643 O GLYA609 30.840 35.122191.329 1.0088.40 O
ATOM 4644 N SERA 610 29.572 36.922190.942 1.0076.47 N
ATOM 4645 CA SERA 610 29.845 36.889189.512 1.0085.13 C
ATOM 4646 C SERA 610 31.289 37.271189.208 1.0089.43 C
ATOM 4647 O SERA 610 31.941 36.620188.399 1.0095.08 O
ATOM 4648 CB SERA 610 28.883 37.790188.733 1.0084.15 C
ATOM 4649 OG SERA 610 27.630 37.158188.550 1.0086.61 O
ATOM 4650 N ILEA 611 31.780 38.326189.856 1.0084.30 N
ATOM 4651 CA ILEA611 33.153 38.786189.657 1.0077.87 C
ATOM 4652 C ILEA 611 34.139 37.707190.092 1.0083.45 C
ATOM 4653 O ILEA 611 35.212 37.544189.509 1.0089.47 O
ATOM 4654 CB ILEA611 33.412 40.117190.388 1.0072.02 C
ATOM 4655 CG1 ILEA 611 32.736 41.262189.628 1.0072.32 C
ATOM 4656 CG2 ILEA 611 34.896 40.393190.513 1.0066.56 C
ATOM 4657 CD1 ILE A611 32.595 42.546190.438 1.0074.14 C
ATOM 4658 N GLNA612 33.750 36.931191.092 1.0084.99 N
ATOM 4659 CA GLNA612 34.578 35.813191.510 1.0084.99 C
ATOM 4660 C GLNA612 34.633 34.736190.437 1.0079.67 C
ATOM 4661 O GL A612 35.598 33.988190.342 1.0085.53 O
ATOM 4662 CB GLNA612 34.077 35.212192.816 1.0086.64 C
ATOM 4663 CG GLNA612 34.972 34.105193.325 1.0093.97 C
ATOM 4664 CD GLNA612 36.412 34.559193.477 1.0098.71 C
ATOM 4665 OE1 GLN A 612 36.686 35.740193.722 1.0097.73 O
ATOM 4666 NE2 GLN A 612 37.344 33.624193.322 1.00104.29 N
ATOM 4667 N LEU A 613 33.593 34.646189.626 1.0074.64 N ATOM 4668 CA LEU A 613 33.567 33.602 188.623 1.00 76.46 C
ATOM 4669 C LEU A 613 34.487 34.011 187.486 1.00 75.38 C
ATOM 4670 O LEU A 613 35.103 33.160 186.842 1.00 77.93 O
ATOM 4671 CB LEU A 613 32.145 33.352 188.132 1.00 73.01 C
ATOM 4672 CG LEU A 613 31.911 31.971 187.515 1.00 76.34 C
ATOM 4673 CD1 LEU A 613 32.031 30.872 188.557 1.00 79.15 C
ATOM 4674 CD2 LEU A 613 30.562 31.918 186.808 1.00 74.82 C
ATOM 4675 N CYS A 614 34.583 35.321 187.262 1.00 72.33 N
ATOM 4676 CA CYS A 614 35.473 35.883 186.253 1.00 71.46 C
ATOM 4677 C CYS A 614 36.923 35.656 186.627 1.00 79.88 C
ATOM 4678 O CYS A 614 37.754 35.422 185.749 1.00 86.31 O
ATOM 4679 CB CYS A 614 35.239 37.380 186.086 1.00 64.58 C
ATOM 4680 SG CYS A 614 33.746 37.791 185.228 1.00 75.42 S
ATOM 4681 N ARG A 615 37.226 35.746 187.923 1.00 74.45 N
ATOM 4682 CA ARG A 615 38.559 35.411 188.422 1.00 77.44 C
ATOM 4683 C ARG A 615 38.893 33.963 188.1 17 1.00 83.00 C
ATOM 4684 O ARG A 615 39.906 33.681 187.495 1.00 92.86 O
ATOM 4685 CB ARG A 615 38.659 35.639 189.925 1.00 89.45 C
ATOM 4686 CG ARG A 615 38.959 37.063 190.311 1.00 97.73 C
ATOM 4687 CD ARG A 615 39.328 37.174 191.780 1.00 98.85 C
ATOM 4688 NE ARG A 615 40.003 38.439 192.038 1.00 96.13 N
ATOM 4689 CZ ARG A 615 39.382 39.541 192.432 1.00 94.41 C
ATOM 4690 NH1 ARG A 615 38.068 39.519 192.637 1.00 93.84 N
ATOM 4691 NH2 ARG A 615 40.076 40.656 192.628 1.00 90.82 N
ATOM 4692 N ASP A 616 38.032 33.051 188.556 1.00 88.57 N
ATOM 4693 CA ASP A 616 38.242 31.625 188.341 1.00 99.76 C
ATOM 4694 C ASP A 616 38.439 31.323 186.866 1.00100.09 C
ATOM 4695 O ASP A 616 39.105 30.353 186.505 1.00106.00 O
ATOM 4696 CB ASP A 616 37.054 30.813 188.864 1.00108.74 C
ATOM 4697 CG ASP A 616 36.878 30.927 190.367 1.001 16.18 C
ATOM 4698 OD1 ASP A 616 37.882 31.178 191.072 1.001 17.50 O
ATOM 4699 OD2 ASP A 616 35.733 30.758 190.842 1.00117.91 O
ATOM 4700 N ALA A 617 37.855 32.163 186.018 1.00 96.64 N
ATOM 4701 CA ALA A 617 37.875 31.952 184.574 1.00100.14 C
ATOM 4702 C ALA A 617 38.835 32.908 183.866 1.00101.33 C
ATOM 4703 O ALA A 617 38.762 33.088 182.649 1.00 91.02 O
ATOM 4704 CB ALA A 617 36.473 32.089 184.005 1.00 92.88 C
ATOM 4705 N GLY A 618 39.728 33.515 184.640 1.00105.94 N
ATOM 4706 CA GLY A 618 40.745 34.395 184.100 1 .00 74.60 C
ATOM 4707 C GLY A 618 40.203 35.542 183.281 1.00 78.73 C ATOM 4708 O GLY A 618 40.712 35.839 182.210 1.00 83.72 O
ATOM 4709 N ILE A 619 39.172 36.202 183.777 1.00 68.29 N
ATOM 4710 CA ILE A 619 38.594 37.323 183.051 1.00 75.64 C
ATOM 4711 C ILE A 619 38.664 38.605 183.866 1.00 70.93 C ATOM 4712 0 ILE A 61 9 38.033 38.707 184.911 1.00 70.48 O
ATOM 4713 CB ILE A 619 37.120 37.047 182.715 1.00 76.59 C
ATOM 4714 CG1 ILE A 619 36.991 35.760 181.900 1.00 64.31 C
ATOM 4715 CG2 ILE A 619 36.489 38.239 181.996 1.00 71.90 C
ATOM 4716 CD1 ILE A 619 35.580 35.428 181.546 1.00 63.95 C ATOM 4717 N ARG A 620 39.428 39.579 183.391 1.00 62.94 N
ATOM 4718 CA ARG A 620 39.547 40.843 184.094 1.00 62.14 C
ATOM 4719 C ARG A 620 38.262 41.631 183.978 1.00 74.08 C
ATOM 4720 O ARG A 620 37.587 41.577 182.958 1.00 75.58 O
ATOM 4721 CB ARG A 620 40.703 41.650 183.535 1.00 79.39 C ATOM 4722 CG ARG A 620 41.052 42.853 184.368 1.00 79.24 C
ATOM 4723 CD ARG A 620 42.552 43.010 184.441 1.00 78.01 C
ATOM 4724 NE ARG A 620 43.1 13 43.300 183.132 1.00 74.77 N
ATOM 4725 CZ ARG A 620 43.363 44.526 182.698 1.00 80.86 C
ATOM 4726 NH1 ARG A 620 43.873 44.703 181.491 1.00 87.14 N ATOM 4727 NH2 ARG A 620 43.112 45.569 183.474 1.00 62.54 N
ATOM 4728 N VAL A 621 37.919 42.359 185.033 1.00 71.01 N
ATOM 4729 CA VAL A 621 36.675 43.116 185.078 1.00 63.99 C
ATOM 4730 C VAL A 621 37.026 44.543 185.454 1.00 65.00 C
ATOM 4731 O VAL A 621 37.763 44.773 186.410 1.00 76.87 O ATOM 4732 CB VAL A 621 35.710 42.528 186.126 1.00 69.09 C
ATOM 4733 CG1 VAL A 621 34.522 43.456 186.355 1.00 56.69 C
ATOM 4734 CG2 VAL A 621 35.258 41.125 185.720 1.00 58.90 C
ATOM 4735 N ILE A 622 36.528 45.505 184.693 1.00 58.66 N
ATOM 4736 CA ILE A 622 36.907 46.897 184.912 1.00 62.29 C ATOM 4737 C ILE A 622 35.668 47.744 185.109 1.00 61.86 C
ATOM 4738 0 ILE A 622 34.859 47.890 184.201 1.00 68.21 O
ATOM 4739 CB ILE A 622 37.734 47.480 183.710 1.00 69.79 C
ATOM 4740 CG1 ILE A 622 38.999 46.653 183.455 1.00 65.53 C
ATOM 4741 CG2 ILE A 622 38.107 48.948 183.944 1.00 53.84 C ATOM 4742 CD1 ILE A 622 39.930 47.274 182.440 1.00 61.92 C
ATOM 4743 N MET A 623 35.512 48.304 186.296 1.00 55.22 N
ATOM 4744 CA MET A 623 34.396 49.203 186.535 1.00 57.33 C
ATOM 4745 C MET A 623 34.618 50.550 185.874 1.00 67.38 C
ATOM 4746 0 MET A 623 35.675 51.153 186.026 1.00 75.83 O ATOM 4747 CB MET A 623 34.190 49.425 188.026 1.00 68.00 C ATOM 4748 CG MET A 623 33.072 50.404 188.300 1.00 77.27 C
ATOM 4749 SD MET A 623 32.585 50.512 190.019 1.00 71.29 S
ATOM 4750 CE MET A 623 33.726 51.784 190.560 1.00 75.84 C
ATOM 4751 N ILE A 624 33.619 51.029 185.142 1.00 69.65 N
ATOM 4752 CA ILE A 624 33.651 52.402 184.653 1.00 66.18 C
ATOM 4753 C ILE A 624 32.438 53.141 185.177 1.00 66.18 C
ATOM 4754 O ILE A 624 31.339 52.961 184.670 1.00 71.72 O
ATOM 4755 CB ILE A 624 33.669 52.465 183.139 1.00 63.10 C
ATOM 4756 CG1 ILE A 624 34.831 51.633 182.613 1.00 73.07 C
ATOM 4757 CG2 ILE A 624 33.809 53.890 182.688 1.00 56.57 C
ATOM 4758 CD1 ILE A 624 34.784 51.394 181.127 1.00 80.06 C
ATOM 4759 N THR A 625 32.655 53.956 186.206 1.00 65.72 N
ATOM 4760 CA THR A 625 31.592 54.658 186.912 1.00 64.99 C
ATOM 4761 C THR A 625 31.780 56.160 186.758 1.00 66.64 C
ATOM 4762 O THR A 625 32.759 56.618 186.159 1.00 77.38 O
ATOM 4763 CB THR A 625 31.615 54.335 188.419 1.00 75.10 C
ATOM 4764 OG1 THR A 625 30.529 54.997 189.080 1.00 83.41 O
ATOM 4765 CG2 THR A 625 32.913 54.813 189.042 1.00 75.29 C
ATOM 4766 N GLY A 626 30.842 56.922 187.307 1.00 58.86 N
ATOM 4767 CA GLY A 626 30.877 58.366 187.204 1.00 59.41 C
ATOM 4768 C GLY A 626 30.894 59.002 188.577 1.00 74.69 C
ATOM 4769 O GLY A 626 30.834 60.229 188.702 1.00 80.04 O
ATOM 4770 N ASP A 627 30.947 58.164 189.613 1.00 76.40 N
ATOM 4771 CA ASP A 627 31.157 58.640 190.973 1.00 84.98 C
ATOM 4772 C ASP A 627 32.539 59.260 191.004 1.00 82.44 C
ATOM 4773 O ASP A 627 33.382 58.905 190.184 1.00 88.26 O
ATOM 4774 CB ASP A 627 31.170 57.468 191.957 1.00 96.55 C
ATOM 4775 CG ASP A 627 29.828 56.773 192.084 1.00 95.54 C
ATOM 4776 OD2 ASP A 627 29.032 57.182 192.971 1.00 95.08 O
ATOM 4777 OD1 ASP A 627 29.601 55.801 191.321 1.00 85.59 O
ATOM 4778 N ASN A 628 32.801 60.155 191.953 1.00 76.03 N
ATOM 4779 CA ASN A 628 34.175 60.567 192.198 1.00 73.63 C
ATOM 4780 C ASN A 628 35.009 59.334 192.522 1.00 77.11 C
ATOM 4781 O ASN A 628 34.461 58.256 192.758 1.00 76.04 O
ATOM 4782 CB ASN A 628 34.286 61.641 193.297 1.00 83.44 C
ATOM 4783 CG ASN A 628 33.810 61.162 194.678 1.00 87.24 C
ATOM 4784 OD1 ASN A 628 33.645 59.964 194.926 1.00 85.13 O
ATOM 4785 ND2 ASN A 628 33.605 62.118 195.591 1.00 87.38 N
ATOM 4786 N LYS A 629 36.326 59.487 192.538 1.00 80.78 N
ATOM 4787 CA LYS A 629 37.207 58.335 192.647 1.00 72.26 C ATOM 4788 C LYS A 629 37.054 57.576 193.953 1.00 74.96 C
ATOM 4789 O LYS A 629 37.042 56.347 193.953 1.00 74.03 O
ATOM 4790 CB LYS A 629 38.652 58.769 192.488 1.00 69.31 C
ATOM 4791 CG LYS A 629 39.625 57.626 192.415 1.00 65.15 C
ATOM 4792 CD LYS A 629 41.008 58.216 192.427 1.00 84.96 C
ATOM 4793 CE LYS A 629 42.071 57.166 192.367 1.00 83.21 C
ATOM 4794 NZ LYS A 629 43.375 57.852 192.378 1.00 85.54 N
ATOM 4795 N GLY A 630 36.943 58.313 195.058 1.00 80.11 N
ATOM 4796 CA GLY A 630 36.948 57.723 196.388 1.00 87.65 C
ATOM 4797 C GLY A 630 35.805 56.750 196.577 1.00 88.30 C
ATOM 4798 O GLY A 630 35.996 55.622 197.040 1.00 89.17 O
ATOM 4799 N THR A 631 34.615 57.199 196.194 1.00 82.62 N
ATOM 4800 CA THR A 631 33.419 56.384 196.255 1.00 77.31 C
ATOM 4801 C THR A 631 33.552 55.161 195.363 1.00 71.16 C
ATOM 4802 O THR A 631 33.286 54.049 195.800 1.00 76.97 O
ATOM 4803 CB THR A 631 32.204 57.183 195.812 1.00 83.15 C
ATOM 4804 OG1 THR A 631 32.203 58.450 196.478 1.00 86.93 O
ATOM 4805 CG2 THR A 631 30.940 56.438 196.148 1.00 89.84 C
ATOM 4806 N ALA A 632 33.974 55.382 194.121 1.00 65.86 N
ATOM 4807 CA ALA A 632 34.235 54.319 193.149 1.00 61.62 C
ATOM 4808 C ALA A 632 35.046 53.166 193.715 1.00 76.19 C
ATOM 4809 O ALA A 632 34.704 51.998 193.511 1.00 68.61 O
ATOM 4810 CB ALA A 632 34.946 54.887 191.955 1.00 60.13 C
ATOM 4811 N ILE A 633 36.121 53.504 194.427 1.00 80.89 N
ATOM 4812 CA ILE A 633 37.020 52.506 195.006 1.00 75.37 C
ATOM 4813 C ILE A 633 36.357 51.770 196.156 1.00 76.26 C
ATOM 4814 O ILE A 633 36.525 50.562 196.296 1.00 75.62 O
ATOM 4815 CB ILE A 633 38.324 53.141 195.493 1.00 77.52 C
ATOM 4816 CG1 ILE A 633 38.977 53.924 194.364 1.00 82.01 C
ATOM 4817 CG2 ILE A 633 39.301 52.081 195.944 1.00 70.82 C
ATOM 4818 CD1 ILE A 633 40.269 54.531 194.752 1.00 69.24 C
ATOM 4819 N ALA A 634 35.598 52.504 196.967 1.00 80.53 N
ATOM 4820 CA ALA A 634 34.778 51.91 1 198.028 1.00 82.48 C
ATOM 4821 C ALA A 634 33.787 50.891 197.475 1.00 80.89 C
ATOM 4822 O ALA A 634 33.599 49.813 198.040 1.00 85.23 O
ATOM 4823 CB ALA A 634 34.038 52.988 198.759 1.00 72.59 C
ATOM 4824 N ILE A 635 33.159 51.243 196.361 1.00 73.60 N
ATOM 4825 CA ILE A 635 32.253 50.344 195.663 1.00 75.60 C
ATOM 4826 C ILE A 635 32.952 49.087 195.108 1.00 80.12 C
ATOM 4827 O ILE A 635 32.423 47.980 195.240 1.00 85.1 1 O ATOM 4828 CB ILE A 635 31.476 51.099 194.547 1.00 81.48 C
ATOM 4829 CG1 ILE A 635 30.738 52.301 195.149 1.00 80.31 C
ATOM 4830 CG2 ILE A 635 30.502 50.163 193.839 1.00 62.82 C
ATOM 4831 CD1 ILE A 635 30.582 53.490 194.231 1.00 63.11 C ATOM 4832 N CYS A 636 34.130 49.253 194.500 1.00 72.52 N
ATOM 4833 CA CYS A 636 34.920 48.110 194.027 1.00 72.54 C
ATOM 4834 C CYS A 636 35.304 47.129 195.149 1.00 82.26 C
ATOM 4835 0 CYS A 636 35.383 45.913 194.933 1.00 68.94 O
ATOM 4836 CB CYS A 636 36.179 48.585 193.306 1.00 64.36 C ATOM 4837 SG CYS A 636 35.880 49.174 191.624 1.00 89.90 S
ATOM 4838 N ARG A 637 35.551 47.658 196.343 1.00 70.58 N
ATOM 4839 CA ARG A 637 35.943 46.822 197.455 1.00 74.07 C
ATOM 4840 C ARG A 637 34.741 46.028 197.909 1.00 86.70 C
ATOM 4841 O ARG A 637 34.828 44.828 198.163 1.00 88.85 O ATOM 4842 CB ARG A 637 36.463 47.680 198.589 1.00 76.44 C
ATOM 4843 CG ARG A 637 37.701 48.453 198.247 1.00 76.14 C
ATOM 4844 CD ARG A 637 38.472 48.836 199.486 1.00 79.69 C
ATOM 4845 NE ARG A 637 39.470 49.858 199.198 1.00 92.48 N
ATOM 4846 CZ ARG A 637 40.777 49.671 199.316 1.00 94.93 C ATOM 4847 NH1 ARG A 637 41.230 48.497 199.729 1.00 99.95 N
ATOM 4848 NH2 ARG A 637 41.628 50.655 199.035 1.00 92.81 N
ATOM 4849 N ARG A 638 33.612 46.720 197.989 1.00 86.89 N
ATOM 4850 CA ARG A 638 32.348 46.130 198.400 1.00 88.30 C
ATOM 4851 C ARG A 638 31.912 44.976 197.492 1.00 86.50 C ATOM 4852 O ARG A 638 31.381 43.980 197.964 1.00 87.59 O
ATOM 4853 CB ARG A 638 31.280 47.219 198.427 1.00 91.37 C
ATOM 4854 CG ARG A 638 29.999 46.835 199.128 1.00101.09 C
ATOM 4855 CD ARG A 638 29.066 48.028 199.214 1.00105.37 C
ATOM 4856 NE ARG A 638 27.760 47.662 199.751 1.00113.39 N ATOM 4857 CZ ARG A 638 26.687 48.439 199.664 1.001 18.51 C
ATOM 4858 NH1 ARG A 638 26.776 49.618 199.052 1.00118.61 N
ATOM 4859 NH2 ARG A 638 25.527 48.039 200.177 1.00118.06 N
ATOM 4860 N ILE A 639 32.155 45.101 196.192 1.00 81.91 N
ATOM 4861 CA ILE A 639 31.725 44.075 195.245 1.00 78.44 C ATOM 4862 C ILE A 639 32.819 43.086 194.842 1.00 81.21 C
ATOM 4863 0 ILE A 639 32.608 42.248 193.954 1.00 80.77 O
ATOM 4864 CB ILE A 639 31.124 44.688 193.973 1.00 75.56 C
ATOM 4865 CG1 ILE A 639 32.133 45.591 193.276 1.00 71.88 C
ATOM 4866 CG2 ILE A 639 29.883 45.493 194.304 1.00 79.96 C ATOM 4867 CD1 ILE A 639 31.825 45.799 191.804 1.00 73.80 C ATOM 4868 N GLY A 640 33.987 43.191 195.475 1.00 80.74 N
ATOM 4869 CA GLY A 640 35.052 42.224 195.259 1.00 81.98 C
ATOM 4870 C GLY A 640 36.029 42.447 194.1 10 1.00 79.16 C
ATOM 4871 O GLY A 640 36.81 1 41.558 193.782 1.00 83.26 O
ATOM 4872 N ILE A 641 35.993 43.617 193.487 1.00 71.54 N
ATOM 4873 CA ILE A 641 37.007 43.967 192.508 1.00 74.89 C
ATOM 4874 C ILE A 641 38.351 44.086 193.233 1.00 90.39 C
ATOM 4875 O ILE A 641 39.376 43.570 192.767 1.00 93.72 O
ATOM 4876 CB ILE A 641 36.703 45.314 191.844 1.00 74.04 C
ATOM 4877 CG1 ILE A 641 35.335 45.292 191.173 1.00 62.43 C
ATOM 4878 CG2 ILE A 641 37.763 45.644 190.819 1.00 80.68 C
ATOM 4879 CD1 ILE A 641 35.357 44.960 189.726 1.00 60.43 C
ATOM 4880 N PHE A 642 38.323 44.771 194.381 1.00 91.27 N
ATOM 4881 CA PHE A 642 39.491 44.966 195.239 1.00 84.92 C
ATOM 4882 C PHE A 642 39.355 44.198 196.543 1.00 86.89 C
ATOM 4883 O PHE A 642 38.290 43.694 196.862 1.00 94.33 O
ATOM 4884 CB PHE A 642 39.694 46.452 195.538 1.00 81.83 C
ATOM 4885 CG PHE A 642 40.117 47.256 194.340 1.00 83.25 C
ATOM 4886 CD1 PHE A 642 40.822 46.665 193.311 1.00 81.88 C
ATOM 4887 CD2 PHE A 642 39.813 48.601 194.242 1.00 80.50 C
ATOM 4888 CE1 PHE A 642 41.212 47.399 192.219 1.00 78.47 C
ATOM 4889 CE2 PHE A 642 40.208 49.339 193.148 1.00 69.14 C
ATOM 4890 CZ PHE A 642 40.903 48.739 192.140 1.00 71.79 C
ATOM 4891 N GLY A 643 40.443 44.101 197.294 1.00 86.15 N
ATOM 4892 CA GLY A 643 40.406 43.434 198.577 1.00 92.85 C
ATOM 4893 C GLY A 643 39.927 44.400 199.637 1.00108.75 C
ATOM 4894 O GLY A 643 39.813 45.599 199.384 1.00110.39 O
ATOM 4895 N GLU A 644 39.634 43.885 200.825 1.00119.15 N
ATOM 4896 CA GLU A 644 39.220 44.747 201.921 1.00126.67 C
ATOM 4897 C GLU A 644 40.326 45.759 202.236 1.00121.89 C
ATOM 4898 O GLU A 644 40.054 46.931 202.505 1.001 19.96 O
ATOM 4899 CB GLU A 644 38.847 43.913 203.154 1.00143.72 C
ATOM 4900 CG GLU A 644 37.533 43.137 203.008 1.00151.31 C
ATOM 4901 CD GLU A 644 37.368 42.026 204.046 1.00162.12 C
ATOM 4902 OE1 GLU A 644 38.104 41.018 203.964 1.00166.90 O
ATOM 4903 OE2 GLU A 644 36.500 42.155 204.939 1.00163.42 O
ATOM 4904 N AS A 645 41.576 45.308 202.168 1.00119.30 N
ATOM 4905 CA ASN A 645 42.710 46.186 202.438 1.00118.08 C
ATOM 4906 C ASN A 645 43.739 46.222 201.302 1.001 15.22 C
ATOM 4907 O ASN A 645 44.879 46.640 201.498 1.001 16.33 O ATOM 4908 CB ASN A 645 43.375 45.802 203.760 1.00122.37 C
ATOM 4909 CG ASN A 645 42.375 45.651 204.887 1.00120.79 C
ATOM 4910 OD1 ASN A 645 42.057 46.616 205.584 1.00121.92 O
ATOM 491 1 ND2 ASN A 645 41.866 44.436 205.068 1.00117.49 N
ATOM 4912 N GLU A 646 43.323 45.795 200.1 13 1.00109.29 N
ATOM 4913 CA GLU A 646 44.185 45.834 198.938 1.00100.23 C
ATOM 4914 C GLU A 646 44.695 47.253 198.719 1.00102.89 C
ATOM 4915 O GLU A 646 44.086 48.222 199.163 1.00 99.93 O
ATOM 4916 CB GLU A 646 43.447 45.320 197.692 1.00 89.79 C
ATOM 4917 CG GLU A 646 44.352 45.079 196.488 1.00 95.34 C
ATOM 4918 CD GLU A 646 43.662 44.388 195.311 1.00100.95 C
ATOM 4919 OE1 GLU A 646 43.887 44.819 194.156 1.00101.93 O
ATOM 4920 OE2 GLU A 646 42.921 43.404 195.530 1.00101.50 O
ATOM 4921 N GLU A 647 45.834 47.363 198.054 1.00113.20 N
ATOM 4922 CA GLU A 647 46.422 48.651 197.737 1.001 19.60 C
ATOM 4923 C GLU A 647 46.103 48.953 196.281 1.001 17.80 C
ATOM 4924 O GLU A 647 46.346 48.115 195.409 1.00120.76 O
ATOM 4925 CB GLU A 647 47.931 48.570 197.946 1.00127.58 C
ATOM 4926 CG GLU A 647 48.566 49.844 198.437 1.00137.21 C
ATOM 4927 CD GLU A 647 48.689 50.879 197.349 1.00143.62 C
ATOM 4928 OE1 GLU A 647 49.229 50.546 196.267 1.00143.24 O
ATOM 4929 OE2 GLU A 647 48.242 52.024 197.579 1.00148.03 O
ATOM 4930 N VAL A 648 45.532 50.123 195.999 1.00112.54 N
ATOM 4931 CA VAL A 648 45.129 50.418 194.617 1.00108.65 C
ATOM 4932 C VAL A 648 45.451 51.829 194.120 1.00103.27 C
ATOM 4933 O VAL A 648 44.745 52.368 193.261 1.00 97.88 O
ATOM 4934 CB VAL A 648 43.612 50.134 194.365 1.00 86.77 C
ATOM 4935 CG1 VAL A 648 43.260 48.716 194.742 1.00 88.65 C
ATOM 4936 CG2 VAL A 648 42.731 51.104 195.127 1.00 74.55 C
ATOM 4937 N ALA A 649 46.521 52.429 194.624 1.00101.14 N
ATOM 4938 CA ALA A 649 46.827 53.789 194.201 1.00103.59 C
ATOM 4939 C ALA A 649 47.424 53.790 192.801 1.00107.73 C
ATOM 4940 O ALA A 649 47.882 54.821 192.309 1.001 16.29 O
ATOM 4941 CB ALA A 649 47.741 54.464 195.174 1.00107.92 C
ATOM 4942 N ASP A 650 47.403 52.625 192.163 1.00 99.57 N
ATOM 4943 CA ASP A 650 47.883 52.479 190.805 1.00 96.08 C
ATOM 4944 C ASP A 650 46.970 51.569 189.999 1.00 97.88 C
ATOM 4945 O ASP A 650 47.324 51.158 188.897 1.00 99.69 O
ATOM 4946 CB ASP A 650 49.293 51.898 190.811 1.00110.76 C
ATOM 4947 CG ASP A 650 49.352 50.505 191.417 1.00124.61 C ATOM 4948 OD2 ASP A 650 49.760 50.382 192.595 1.00137.78 O
ATOM 4949 OD1 ASP A 650 49.008 49.529 190.714 1.00121.13 O
ATOM 4950 N ARG A 651 45.803 51.239 190.552 1.00100.73 N
ATOM 4951 CA ARG A 651 44.847 50.357 189.871 1.00 91.87 C
ATOM 4952 C ARG A 651 43.501 51.040 189.668 1.00 83.73 C
ATOM 4953 O ARG A 651 42.560 50.432 189.167 1.00 90.63 O
ATOM 4954 CB ARG A 651 44.657 49.037 190.632 1.00 98.30 C
ATOM 4955 CG ARG A 651 45.814 48.045 190.502 1.00115.54 C
ATOM 4956 CD ARG A 651 45.600 46.786 191.354 1.00130.62 C
ATOM 4957 NE ARG A 651 44.351 46.094 191.022 1.00141.77 N
ATOM 4958 CZ ARG A 651 44.255 45.036 190.218 1.00143.17 C
ATOM 4959 NH1 ARG A 651 45.342 44.528 189.652 1.00147.22 N
ATOM 4960 NH2 ARG A 651 43.069 44.484 189.984 1.00135.54 N
ATOM 4961 N ALA A 652 43.407 52.305 190.057 1.00 72.25 N
ATOM 4962 CA ALA A 652 42.190 53.064 189.825 1.00 69.66 C
ATOM 4963 C ALA A 652 42.479 54.509 189.466 1.00 71.33 C
ATOM 4964 O ALA A 652 43.222 55.193 190.158 1.00 82.39 O
ATOM 4965 CB ALA A 652 41.265 52.989 191.027 1.00 70.13 C
ATOM 4966 N TYR A 653 41.874 54.971 188.381 1.00 62.17 N
ATOM 4967 CA TYR A 653 42.153 56.300 187.848 1.00 76.13 C
ATOM 4968 C TYR A 653 40.897 57.154 187.627 1.00 70.51 C
ATOM 4969 O TYR A 653 39.877 56.665 187.170 1.00 58.83 O
ATOM 4970 CB TYR A 653 42.973 56.190 186.539 1.00 73.12 C
ATOM 4971 CG TYR A 653 44.370 55.650 186.743 1.00 64.79 C
ATOM 4972 CD1 TYR A 653 44.631 54.280 186.694 1.00 69.96 C
ATOM 4973 CD2 TYR A 653 45.414 56.500 187.013 1.00 67.24 C
ATOM 4974 CE1 TYR A 653 45.899 53.780 186.905 1.00 67.79 C
ATOM 4975 CE2 TYR A 653 46.677 56.014 187.231 1.00 80.56 C
ATOM 4976 CZ TYR A 653 46.922 54.658 187.179 1.00 77.74 C
ATOM 4977 OH TYR A 653 48.213 54.213 187.401 1.00 78.34 O
ATOM 4978 N THR A 654 40.990 58.422 188.013 1.00 67.94 N
ATOM 4979 CA THR A 654 40.125 59.488 187.543 1.00 65.55 C
ATOM 4980 C THR A 654 40.417 59.608 186.055 1.00 75.12 C
ATOM 4981 O THR A 654 41.536 59.332 185.636 1.00 77.22 O
ATOM 4982 CB THR A 654 40.540 60.829 188.182 1.00 74.35 C
ATOM 4983 OG1 THR A 654 40.230 60.828 189.570 1.00 81.93 O
ATOM 4984 CG2 THR A 654 39.830 61.986 187.566 1.00 81.73 C
ATOM 4985 N GLY A 655 39.430 60.01 1 185.251 1.00 77.45 N
ATOM 4986 CA GLY A 655 39.643 60.236 183.832 1.00 66.41 C
ATOM 4987 C GLY A 655 40.605 61.388 183.614 1.00 67.86 C ATOM 4988 O GLY A 655 41.228 61.490 182.569 1.00 74.70 O
ATOM 4989 N ARG A 656 40.727 62.252 184.616 1.00 66.92 N
ATOM 4990 CA ARG A 656 41.607 63.412 184.555 1.00 64.61 C
ATOM 4991 C ARG A 656 43.026 63.013 184.911 1.00 68.77 C
ATOM 4992 O ARG A 656 43.992 63.493 184.311 1.00 72.45 O
ATOM 4993 CB ARG A 656 41.130 64.480 185.531 1.00 65.85 C
ATOM 4994 CG ARG A 656 41.933 65.740 185.484 1.00 73.34 C
ATOM 4995 CD ARG A 656 41.286 66.837 186.298 1.00 75.78 C
ATOM 4996 NE ARG A 656 41.362 66.574 187.729 1.00 82.07 N
ATOM 4997 CZ ARG A 656 42.467 66.698 188.463 1.00 95.96 C
ATOM 4998 NH1 ARG A 656 43.620 67.079 187.915 1.00104.02 N
ATOM 4999 NH2 ARG A 656 42.418 66.429 189.754 1.00 99.26 N
ATOM 5000 N GLU A 657 43.135 62.151 185.916 1.00 66.93 N
ATOM 5001 CA GLU A 657 44.404 61.581 186.312 1.00 70.84 C
ATOM 5002 C GLU A 657 44.936 60.809 185.130 1.00 70.17 C
ATOM 5003 O GLU A 657 46.105 60.933 184.774 1.00 80.82 O
ATOM 5004 CB GLU A 657 44.222 60.631 187.500 1.00 78.96 C
ATOM 5005 CG GLU A 657 43.913 61.306 188.831 1.00 89.56 C
ATOM 5006 CD GLU A 657 43.574 60.31 1 189.938 1.00103.49 C
ATOM 5007 OE1 GLU A 657 43.367 59.1 18 189.625 1.00101.05 O
ATOM 5008 OE2 GLU A 657 43.514 60.723 191.122 1.00114.23 O
ATOM 5009 N PHE A 658 44.060 60.029 184.507 1.00 70.36 N
ATOM 5010 CA PHE A 658 44.437 59.166 183.391 1.00 77.88 C
ATOM 5011 C PHE A 658 44.922 59.960 182.180 1.00 82.26 C
ATOM 5012 O PHE A 658 45.691 59.466 181.356 1.00 87.04 O
ATOM 5013 CB PHE A 658 43.261 58.273 182.986 1.00 74.32 C
ATOM 5014 CG PHE A 658 43.572 57.354 181.846 1.00 72.06 C
ATOM 5015 CD1 PHE A 658 44.265 56.175 182.063 1.00 68.02 C
ATOM 5016 CD2 PHE A 658 43.187 57.676 180.552 1.00 72.68 C
ATOM 5017 CE1 PHE A 658 44.553 55.331 181.023 1.00 66.27 C
ATOM 5018 CE2 PHE A 658 43.480 56.837 179.502 1.00 68.82 C
ATOM 5019 CZ PHE A 658 44.155 55.660 179.737 1.00 69.30 C
ATOM 5020 N ASP A 659 44.464 61.200 182.089 1.00 79.80 N
ATOM 5021 CA ASP A 659 44.791 62.062 180.973 1.00 78.34 C
ATOM 5022 C ASP A 659 46.113 62.798 181.166 1.00 82.84 C
ATOM 5023 O ASP A 659 46.536 63.567 180.305 1.00 82.82 O
ATOM 5024 CB ASP A 659 43.653 63.057 180.763 1.00 78.16 C
ATOM 5025 CG ASP A 659 42.553 62.502 179.873 1.00 78.98 C
ATOM 5026 OD1 ASP A 659 42.607 61.294 179.532 1.00 78.03 O
ATOM 5027 OD2 ASP A 659 41.637 63.275 179.518 1.00 78.16 O ATOM 5028 N ASP A 660 46.769 62.571 182.295 1.00 86.30 N
ATOM 5029 CA ASP A 660 48.041 63.233 182.538 1.00 94.09 C
ATOM 5030 C ASP A 660 49.219 62.273 182.492 1.00 90.54 C
ATOM 5031 O ASP A 660 50.376 62.696 182.495 1.00 89.32 O
ATOM 5032 CB ASP A 660 48.018 64.031 183.838 1.00105.44 C
ATOM 5033 CG ASP A 660 47.403 65.400 183.653 1.00121.61 C
ATOM 5034 OD1 ASP A 660 48.164 66.340 183.338 1.00127.03 O
ATOM 5035 OD2 ASP A 660 46.162 65.536 183.798 1.00127.17 O
ATOM 5036 N LEU A 661 48.925 60.980 182.445 1.00 84.24 N
ATOM 5037 CA LEU A 661 49.973 60.010 182.236 1.00 76.49 C
ATOM 5038 C LEU A 661 50.369 60.162 180.769 1.00 92.98 C
ATOM 5039 O LEU A 661 49.504 60.322 179.903 1.00 96.65 O
ATOM 5040 CB LEU A 661 49.466 58.585 182.507 1.00102.21 C
ATOM 5041 CG LEU A 661 48.538 58.234 183.679 1.00 72.41 C
ATOM 5042 CD1 LEU A 661 48.214 56.762 183.669 1.00115.06 C
ATOM 5043 CD2 LEU A 661 49.141 58.599 185.000 1.00 91.60 C
ATOM 5044 N PRO A 662 51.678 60.129 180.473 1.00 87.91 N
ATOM 5045 CA PRO A 662 52.072 60.024 179.071 1.00 94.25 C
ATOM 5046 C PRO A 662 51.409 58.814 178.443 1.00 88.34 C
ATOM 5047 O PRO A 662 50.878 57.974 179.156 1.00 83.94 O
ATOM 5048 CB PRO A 662 53.587 59.827 179.158 1.00110.85 C
ATOM 5049 CG PRO A 662 53.870 59.528 180.609 1.00 87.04 C
ATOM 5050 CD PRO A 662 52.849 60.252 181.353 1.00 84.49 C
ATOM 5051 N LEU A 663 51.417 58.712 177.126 1.00 92.57 N
ATOM 5052 CA LEU A 663 50.61 1 57.664 176.521 1.00 95.94 C
ATOM 5053 C LEU A 663 51.187 56.313 176.916 1.00 93.03 C
ATOM 5054 O LEU A 663 50.446 55.357 177.163 1.00 74.92 O
ATOM 5055 CB LEU A 663 50.535 57.842 175.004 1.00 99.86 C
ATOM 5056 CG LEU A 663 50.1 19 59.254 174.610 1.00 77.18 C
ATOM 5057 CD1 LEU A 663 50.391 59.502 173.161 1.00 79.00 C
ATOM 5058 CD2 LEU A 663 48.671 59.477 174.931 1.00 73.61 C
ATOM 5059 N ALA A 664 52.517 56.282 177.030 1.00 92.86 N
ATOM 5060 CA ALA A 664 53.276 55.079 77.344 1.00 83.20 C
ATOM 5061 C ALA A 664 52.727 54.416 178.588 1.00 81.33 C
ATOM 5062 O ALA A 664 52.602 53.194 178.670 1.00 80.87 O
ATOM 5063 CB ALA A 664 54.690 55.447 177.557 1.00 87.90 C
ATOM 5064 N GLU A 665 52.372 55.271 179.542 1.00 80.48 N
ATOM 5065 CA GLU A 665 51.923 54.887 180.866 1.00 89.90 C
ATOM 5066 C GLU A 665 50.404 54.733 180.966 1.00 84.41 C
ATOM 5067 O GLU A 665 49.903 54.151 181.931 1.00 84.82 O ATOM 5068 CB GLU A 665 52.404 55.924 181.872 1.00 81.31 C
ATOM 5069 CG GLU A 665 53.589 55.491 182.651 1.00 85.29 C
ATOM 5070 CD GLU A 665 54.071 56.585 183.570 1.001 10.25 C
ATOM 5071 OE1 GLU A 665 55.174 56.458 184.166 1.00114.88 O
ATOM 5072 OE2 GLU A 665 53.334 57.586 183.684 1.00107.62 O
ATOM 5073 N GLN A 666 49.666 55.270 179.996 1.00 78.49 N
ATOM 5074 CA GL A 666 48.227 55.024 179.939 1.00 73.44 C
ATOM 5075 C GLN A 666 48.007 53.589 179.470 1.00 77.35 C
ATOM 5076 O GLN A 666 47.118 52.892 179.965 1.00 66.24 O
ATOM 5077 CB GLN A 666 47.541 55.999 178.984 1.00 68.77 C
ATOM 5078 CG GLN A 666 47.742 57.464 179.320 1.00 75.28 C
ATOM 5079 CD GLN A 666 47.080 58.387 178.310 1.00 77.32 C
ATOM 5080 OE1 GLN A 666 46.514 57.932 177.311 1.00 66.73 O
ATOM 5081 NE2 GLN A 666 47.149 59.693 178.567 1.00 69.23 N
ATOM 5082 N ARG A 667 48.846 53.155 178.524 1.00 82.50 N
ATOM 5083 CA ARG A 667 48.775 51.800 177.985 1.00 69.98 C
ATOM 5084 C ARG A 667 49.070 50.858 179.128 1.00 93.60 C
ATOM 5085 O ARG A 667 48.445 49.802 179.270 1.00 85.84 O
ATOM 5086 CB ARG A 667 49.774 51.606 176.841 1.00 74.27 C
ATOM 5087 CG ARG A 667 49.615 50.298 176.064 1.00 72.45 C
ATOM 5088 CD ARG A 667 50.678 50.120 174.964 1.00 78.94 C
ATOM 5089 NE ARG A 667 50.738 51.237 174.013 1.00 88.92 N
ATOM 5090 CZ ARG A 667 51.670 52.194 174.025 1.00108.73 C
ATOM 5091 NH1 ARG A 667 52.630 52.173 174.944 1.00116.87 N
ATOM 5092 NH2 ARG A 667 51.651 53.177 173.120 1.00110.99 N
ATOM 5093 N GLU A 668 50.018 51.281 179.960 1.00 99.46 N
ATOM 5094 CA GLU A 668 50.399 50.549 181.157 1.00101.90 C
ATOM 5095 C GLU A 668 49.234 50.413 182.129 1.00 93.06 C
ATOM 5096 O GLU A 668 48.810 49.302 182.439 1.00 90.25 O
ATOM 5097 CB GLU A 668 51.560 51.254 181.851 1.00107.50 C
ATOM 5098 CG GLU A 668 52.465 50.325 182.609 1.0011 1.04 C
ATOM 5099 CD GLU A 668 53.150 49.346 181.686 1.00117.45 C
ATOM 5100 OE1 GLU A 668 52.484 48.380 181.254 1.00105.43 O
ATOM 5101 OE2 GLU A 668 54.353 49.551 181.383 1.00131.56 O
ATOM 5102 N ALA A 669 48.735 51.553 182.606 1.00 85.21 N
ATOM 5103 CA ALA A 669 47.619 51.601 183.541 1.00 84.04 C
ATOM 5104 C ALA A 669 46.494 50.646 183.138 1.00 90.52 C
ATOM 5105 O ALA A 669 46.008 49.883 183.964 1.00 91.70 O
ATOM 5106 CB ALA A 669 47.098 53.028 183.663 1.00 76.36 C
ATOM 5107 N CYS A 670 46.116 50.660 181.859 1.00 87.25 N ATOM 5108 CA CYS A 670 45.053 49.789 181.353 1.00 80.35 C
ATOM 5109 C CYS A 670 45.316 48.298 181.570 1.00 80.98 C
ATOM 5110 O CYS A 670 44.403 47.486 181.490 1.00 79.77 O
ATOM 5111 CB CYS A 670 44.791 50.057 179.871 1.00 61.47 C
ATOM 5112 SG CYS A 670 44.079 51.680 179.568 1.00 75.50 S
ATOM 5113 N ARG A 671 46.560 47.936 181.848 1.00 86.79 N
ATOM 5114 CA ARG A 671 46.914 46.534 182.030 1.00 90.25 C
ATOM 5115 C ARG A 671 46.609 46.075 183.462 1.00 83.97 C
ATOM 5116 O ARG A 671 46.343 44.901 183.711 1.00 80.40 O
ATOM 5117 CB ARG A 671 48.398 46.320 181.681 1.00 98.58 C
ATOM 5118 CG ARG A 671 48.822 44.872 181.546 1.00103.68 C
ATOM 5119 CD ARG A 671 49.939 44.543 182.511 1.00111.36 C
ATOM 5120 NE ARG A 671 51.171 45.249 182.179 1.00121.22 N
ATOM 5121 CZ ARG A 671 52.009 44.877 181.213 1.00126.41 C
ATOM 5122 NH1 ARG A 671 51.732 43.812 180.471 1.00126.91 N
ATOM 5123 NH2 ARG A 671 53.119 45.573 180.980 1.00124.57 N
ATOM 5124 N ARG A 672 46.643 47.012 184.401 1.00 81.70 N
ATOM 5125 CA ARG A 672 46.509 46.671 185.810 1.00 89.02 C
ATOM 5126 C ARG A 672 45.255 47.294 186.430 1.00 98.33 C
ATOM 5127 O ARG A 672 44.767 46.832 187.464 1.00108.92 O
ATOM 5128 CB ARG A 672 47.764 47.105 186.582 1.00 81.08 C
ATOM 5129 CG ARG A 672 48.185 48.539 186.294 1.00 80.70 C
ATOM 5130 CD ARG A 672 49.341 49.026 187.162 1.00 89.91 C
ATOM 5131 NE ARG A 672 50.182 49.961 186.417 1.00 95.49 N
ATOM 5132 CZ ARG A 672 50.017 51.283 186.397 1.00 95.15 C
ATOM 5133 NH1 ARG A 672 49.053 51.849 187.102 1.00 88.01 N
ATOM 5134 NH2 ARG A 672 50.827 52.045 185.671 1.00103.34 N
ATOM 5135 N ALA A 673 44.742 48.344 185.796 1.00 91.79 N
ATOM 5136 CA ALA A 673 43.604 49.086 186.321 1.00 87.61 C
ATOM 5137 C ALA A 673 42.335 48.258 186.269 1.00 87.43 C
ATOM 5138 O ALA A 673 42.092 47.542 185.299 1.00 87.36 O
ATOM 5139 CB ALA A 673 43.410 50.373 185.540 1.00 92.92 C
ATOM 5140 N CYS A 674 41.526 48.363 187.320 1.00 88.89 N
ATOM 5141 CA CYS A 674 40.213 47.727 187.348 1.00 75.31 C
ATOM 5142 C CYS A 674 39.125 48.715 187.709 1.00 70.39 C
ATOM 5143 O CYS A 674 37.987 48.325 187.867 1.00 67.65 O
ATOM 5144 CB CYS A 674 40.190 46.568 188.327 1.00 66.80 C
ATOM 5145 SG CYS A 674 41.234 45.228 187.811 1.00109.68 S
ATOM 5146 N CYS A 675 39.468 49.994 187.823 1.00 75.18 N
ATOM 5147 CA CYS A 675 38.474 50.999 188.188 1.00 76.33 C ATOM 5148 C CYS A 675 38.732 52.379 187.588 1.00 70.93 C
ATOM 5149 O CYS A 675 39.656 53.070 187.977 1.00 68.19 O
ATOM 5150 CB CYS A 675 38.371 51.097 189.712 1.00 84.55 C
ATOM 5151 SG CYS A 675 37.373 52.463 190.344 1.00 67.53 s
ATOM 5152 N PHE A 676 37.907 52.775 186.631 1.00 68.53 N
ATOM 5153 CA PHE A 676 38.004 54.1 13 186.065 1.00 67.03 C
ATOM 5154 C PHE A 676 36.821 54.965 186.526 1.00 65.35 C
ATOM 5155 O PHE A 676 35.655 54.590 186.343 1.00 63.08 O
ATOM 5156 CB PHE A 676 38.062 54.069 184.530 1.00 61.70 C
ATOM 5157 CG PHE A 676 39.352 53.553 183.992 1.00 59.69 C
ATOM 5158 CD1 PHE A 676 40.458 54.387 183.899 1.00 65.95 C
ATOM 5159 CD2 PHE A 676 39.469 52.234 183.586 1.00 61.58 C
ATOM 5160 CE1 PHE A 676 41.669 53.922 183.414 1.00 69.62 C
ATOM 5161 CE2 PHE A 676 40.675 51.752 183.097 1.00 73.68 C
ATOM 5162 CZ PHE A 676 41.783 52.602 183.011 1.00 75.74 c
ATOM 5163 N ALA A 677 37.120 56.118 187.1 11 1.00 58.39 N
ATOM 5164 CA ALA A 677 36.065 56.977 187.614 1.00 64.08 C
ATOM 5165 C ALA A 677 36.060 58.331 186.934 1.00 63.94 C
ATOM 5166 O ALA A 677 37.096 58.804 186.505 1.00 57.01 O
ATOM 5167 CB ALA A 677 36.186 57.134 189.130 1.00 74.33 c
ATOM 5168 N ARG A 678 34.873 58.937 186.861 1.00 63.65 N
ATOM 5169 CA ARG A 678 34.657 60.267 186.282 1.00 62.33 C
ATOM 5170 C ARG A 678 35.353 60.456 184.954 1.00 66.00 C
ATOM 5171 O ARG A 678 36.233 61.328 184.844 1.00 57.76 O
ATOM 5172 CB ARG A 678 35.1 16 61.360 187.241 1.00 66.12 C
ATOM 5173 CG ARG A 678 34.288 61.444 188.500 1.00 81.60 C
ATOM 5174 CD ARG A 678 33.396 62.676 188.543 1.00 88.44 C
ATOM 5175 NE ARG A 678 32.408 62.566 189.615 1.00 96.50 N
ATOM 5176 CZ ARG A 678 32.432 63.280 190.734 1.00105.39 C
ATOM 5177 NH 1 ARG A 678 33.392 64.177 190.926 1.00110.99 N
ATOM 5178 NH2 ARG A 678 31.487 63.106 191.653 1.00106.50 N
ATOM 5179 N VAL A 679 34.954 59.651 183.960 1.00 64.16 N
ATOM 5180 CA VAL A 679 35.622 59.644 182.661 1.00 70.08 C
ATOM 5181 C VAL A 679 34.722 60.123 181.536 1.00 74.91 C
ATOM 5182 O VAL A 679 33.510 60.179 181.700 1.00 85.88 O
ATOM 5183 CB VAL A 679 36.136 58.242 182.289 1.00 71.10 C
ATOM 5184 CG1 VAL A 679 36.865 57.582 183.468 1.00 67.92 C
ATOM 5185 CG2 VAL A 679 35.014 57.393 181.797 1.00 52.44 C
ATOM 5186 N GLU A 680 35.334 60.465 180.399 1.00 84.01 N
ATOM 5187 CA GLU A 680 34.649 60.937 179.178 1.00 88.30 C ATOM 5188 C GLU A 680 34.270 59.791 178.260 1.00 87.41 C
ATOM 5189 O GLU A 680 34.851 58.710 178.342 1.00 90.28 O
ATOM 5190 CB GLU A 680 35.562 61.864 178.377 1.00 95.28 C
ATOM 5191 CG GLU A 680 36.005 63.094 179.115 1.00107.23 C
ATOM 5192 CD GLU A 680 34.902 64.108 179.228 1.00114.05 C
ATOM 5193 OE1 GLU A 680 33.968 64.074 178.389 1.00107.08 O
ATOM 5194 OE2 GLU A 680 34.975 64.934 180.162 1.00122.96 O
ATOM 5195 N PRO A 681 33.301 60.019 177.361 1.00 85.90 N
ATOM 5196 CA PRO A 681 32.998 58.899 176.462 1.00 78.75 C
ATOM 5197 C PRO A 681 34.179 58.582 175.536 1.00 71.90 C
ATOM 5198 O PRO A 681 34.362 57.411 175.171 1.00 69.61 O
ATOM 5199 CB PRO A 681 31.744 59.368 175.699 1.00 79.18 C
ATOM 5200 CG PRO A 681 31.704 60.854 175.878 1.00 85.83 C
ATOM 5201 CD PRO A 681 32.348 61.133 177.214 1.00 87.31 C
ATOM 5202 N SER A 682 34.977 59.591 175.189 1.00 55.40 N
ATOM 5203 CA SER A 682 36.228 59.331 174.476 1.00 64.27 C
ATOM 5204 C SER A 682 37.047 58.212 175.142 1.00 63.86 C
ATOM 5205 O SER A 682 37.577 57.329 174.456 1.00 64.63 O
ATOM 5206 CB SER A 682 37.076 60.585 174.397 1.00 65.92 C
ATOM 5207 OG SER A 682 37.843 60.724 175.585 1.00 81.31 O
ATOM 5208 N HIS A 683 37.116 58.243 176.476 1.00 55.54 N
ATOM 5209 CA HIS A 683 37.913 57.288 177.256 1.00 61.20 C
ATOM 5210 C HIS A 683 37.549 55.821 177.020 1.00 66.22 C
ATOM 521 1 O HIS A 683 38.373 54.932 177.239 1.00 70.16 O
ATOM 5212 CB HIS A 683 37.850 57.590 178.764 1.00 61.65 C
ATOM 5213 CG HIS A 683 38.563 58.842 179.167 1.00 65.83 C
ATOM 5214 ND1 HIS A 683 38.071 59.712 180.120 1.00 68.44 N
ATOM 5215 CD2 HIS A 683 39.742 59.377 178.764 1.00 74.36 C
ATOM 5216 CE1 HIS A 683 38.899 60.723 180.278 1.00 68.89 C
ATOM 5217 NE2 HIS A 683 39.929 60.542 179.464 1.00 73.07 N
ATOM 5218 N LYS A 684 36.324 55.553 176.585 1.00 70.02 N
ATOM 5219 CA LYS A 684 35.941 54.161 176.390 1.00 72.37 C
ATOM 5220 C LYS A 684 36.728 53.554 175.237 1.00 69.87 C
ATOM 5221 O LYS A 684 37.267 52.444 175.352 1.00 62.05 O
ATOM 5222 CB LYS A 684 34.425 53.989 176.221 1.00 63.28 C
ATOM 5223 CG LYS A 684 33.732 53.534 177.500 1.00 53.74 C
ATOM 5224 CD LYS A 684 32.380 52.923 177.230 1.00 60.57 C
ATOM 5225 CE LYS A 684 31.647 52.606 178.527 1.00 66.89 C
ATOM 5226 NZ LYS A 684 30.166 52.525 178.310 1.00 65.33 N
ATOM 5227 N SER A 685 36.822 54.305 174.144 1.00 68.47 N ATOM 5228 CA SERA 685 37.574 53.854172.983 1.0068.50
ATOM 5229 C SERA 685 39.077 53.804173.298 1.0073.23
ATOM 5230 O SERA 685 39.761 52.825172.969 1.0067.50
ATOM 5231 CB SERA 685 37.303 54.771171.798 1.0062.92
ATOM 5232 OG SERA 685 35.933 55.099171.718 1.0064.62
ATOM 5233 N LYSA686 39.575 54.861173.940 1.0073.45
ATOM 5234 CA LYSA686 40.959 54.905174.397 1.0069.40
ATOM 5235 C LYSA686 41.338 53.609175.122 1.0075.38
ATOM 5236 O LYSA686 42.307 52.943174.762 1.0086.49
ATOM 5237 CB LYSA686 41.197 56.118175.304 1.0058.91
ATOM 5238 CG LYSA686 41.928 57.264174.625 1.0068.62
ATOM 5239 CD LYSA686 42.431 58.292175.651 1.0082.17
ATOM 5240 CE LYSA686 43.729 59.005175.182 1.00101.52
ATOM 5241 NZ LYSA686 44.341 59.949176.186 1.0092.42
ATOM 5242 N ILEA 687 40.556 53.241176.125 1.0066.74
ATOM 5243 CA ILEA 687 40.813 52.011176.860 1.0067.14
ATOM 5244 C ILEA 687 40.839 50.766175.956 1.0070.42
ATOM 5245 O ILEA 687 41.787 49.992176.003 1.0071.59
ATOM 5246 CB ILEA 687 39.811 51.844178.026 1.0062.06
ATOM 5247 CG1 ILEA 687 40.016 52.962179.044 1.0060.50
ATOM 5248 CG2 ILE A 687 39.969 50.489178.696 1.0053.29
ATOM 5249 CD1 ILE A 687 39.050 52.926180.182 1.0060.14
ATOM 5250 N VALA688 39.810 50.587175.130 1.0068.77
ATOM 5251 CA VALA688 39.739 49.440174.227 1.0064.57
ATOM 5252 C VALA688 40.973 49.382173.359 1.0068.59
ATOM 5253 O VALA688 41.539 48.306173.162 1.0068.58
ATOM 5254 CB VALA688 38.480 49.484173.327 1.0065.04
ATOM 5255 CG1 VAL A 688 38.669 48.686172.055 1.0053.16
ATOM 5256 CG2 VAL A 688 37.299 48.950174.073 1.0065.35
ATOM 5257 N GLUA689 41.399 50.543172.860 1.0072.37
ATOM 5258 CA GLUA689 42.621 50.634172.054 1.0071.22
ATOM 5259 C GLUA689 43.827 50.047172.783 1.0071.70
ATOM 5260 O GLUA689 44.519 49.185172.240 1.0073.04
ATOM 5261 CB GLUA689 42.907 52.076171.633 1.0065.64
ATOM 5262 CG GLUA689 41.994 52.586170.541 1.0074.41
ATOM 5263 CD GLUA689 42.215 54.060170.235 1.0094.86
ATOM 5264 OE1 GLU A 689 41.434 54.636169.440 1.0097.48
ATOM 5265 OE2 GLU A 689 43.170 54.646170.797 1.00106.90
ATOM 5266 N TYRA690 44.066 50.499174.012 1.0068.83
ATOM 5267 CA TYR A 690 45.219 50.038174.769 1.0062.24 ATOM 5268 C TYR A 690 45.131 48.548 175.062 1.00 62.25 C
ATOM 5269 O TYR A 690 46.108 47.825 174.930 1.00 72.94 O
ATOM 5270 CB TYR A 690 45.375 50.834 176.055 1.00 79.38 C
ATOM 5271 CG TYR A 690 45.866 52.239 175.849 1.00 63.36 C
ATOM 5272 CD1 TYR A 690 46.951 52.493 175.057 1.00 65.96 C
ATOM 5273 CD2 TYR A 690 45.239 53.309 176.453 1.00 75.05 C
ATOM 5274 CE1 TYR A 690 47.410 53.770 174.872 1.00 67.34 C
ATOM 5275 CE2 TYR A 690 45.690 54.595 176.275 1.00 63.48 C
ATOM 5276 CZ TYR A 690 46.773 54.819 175.479 1.00 67.08 C
ATOM 5277 OH TYR A 690 47.238 56.099 175.284 1.00 67.75 O
ATOM 5278 N LEU A 691 43.955 48.081 175.445 1.00 59.98 N
ATOM 5279 CA LEU A 691 43.781 46.671 175.744 1.00 60.15 C
ATOM 5280 C LEU A 691 44.055 45.868 174.499 1.00 74.32 C
ATOM 5281 O LEU A 691 44.615 44.771 174.549 1.00 77.82 O
ATOM 5282 CB LEU A 691 42.360 46.402 176.214 1.00 57.70 C
ATOM 5283 CG LEU A 691 41.956 47.144 177.479 1.00 71.47 C
ATOM 5284 CD1 LEU A 691 40.442 47.021 177.713 1.00 69.01 C
ATOM 5285 CD2 LEU A 691 42.767 46.620 178.662 1.00 58.61 C
ATOM 5286 N GLN A 692 43.651 46.433 173.371 1.00 72.36 N
ATOM 5287 CA GLN A 692 43.806 45.753 172.105 1.00 70.35 C
ATOM 5288 C GLN A 692 45.286 45.520 171.826 1.00 76.03 C
ATOM 5289 O GLN A 692 45.663 44.507 171.236 1.00 77.91 O
ATOM 5290 CB GLN A 692 43.1 11 46.535 170.983 1.00 60.90 C
ATOM 5291 CG GLN A 692 41.744 45.977 170.652 1.00 58.59 C
ATOM 5292 CD GLN A 692 40.832 46.964 169.937 1.00 74.55 C
ATOM 5293 OE1 GLN A 692 41.252 48.053 169.526 1.00 79.52 O
ATOM 5294 NE2 GLN A 692 39.561 46.585 169.796 1.00 68.35 N
ATOM 5295 N SER A 693 46.129 46.435 172.291 1.00 76.64 N
ATOM 5296 CA SER A 693 47.542 46.343 171.973 1.00 79.19 C
ATOM 5297 C SE A 693 48.187 45.188 172.723 1.00 84.66 C
ATOM 5298 O SER A 693 49.276 44.747 172.354 1.00 99.68 O
ATOM 5299 CB SER A 693 48.271 47.664 172.229 1.00 80.57 C
ATOM 5300 OG SER A 693 48.556 47.838 173.600 1.00 83.33 O
ATOM 5301 N TYR A 694 47.518 44.690 173.763 1.00 77.39 N
ATOM 5302 CA TYR A 694 47.981 43.474 174.433 1.00 80.87 C
ATOM 5303 C TYR A 694 47.207 42.257 173.966 1.00 84.13 C
ATOM 5304 O TYR A 694 47.155 41.256 174.682 1.00 87.65 O
ATOM 5305 CB TYR A 694 47.806 43.534 175.943 1.00 80.24 C
ATOM 5306 CG TYR A 694 48.502 44.650 176.653 1.00 83.20 C
ATOM 5307 CD1 TYR A 694 49.887 44.624 176.854 1.00 79.21 C ATOM 5308 CD2 TYR A 694 47.769 45.711 177.181 1.00 81.51 C
ATOM 5309 CE1 TYR A 694 50.523 45.645 177.532 1.00 79.23 C
ATOM 5310 CE2 TYR A 694 48.395 46.736 177.856 1.00 86.40 C
ATOM 5311 CZ TYR A 694 49.770 46.698 178.029 1.00 85.82 C
ATOM 5312 OH TYR A 694 50.377 47.724 178.702 1.00 95.88 O
ATOM 5313 N ASP A 695 46.595 42.347 172.792 1.00 79.61 N
ATOM 5314 CA ASP A 695 45.847 41.229 172.231 1.00 83.97 C
ATOM 5315 C ASP A 695 44.795 40.712 173.200 1.00 76.98 C
ATOM 5316 O ASP A 695 44.615 39.502 173.331 1.00 79.65 O
ATOM 5317 CB ASP A 695 46.769 40.065 171.835 1.00 93.58 C
ATOM 5318 CG ASP A 695 47.798 40.448 170.794 1.00108.57 C
ATOM 5319 OD2 ASP A 695 48.704 39.625 170.539 1.00119.22 O
ATOM 5320 OD1 ASP A 695 47.704 41.556 170.225 1.00111.79 O
ATOM 5321 N GLU A 696 44.110 41.61 1 173.892 1.00 74.97 N
ATOM 5322 CA GLU A 696 43.056 41.165 174.802 1.00 82.39 C
ATOM 5323 C GLU A 696 41.668 41.298 174.187 1.00 84.82 C
ATOM 5324 O GLU A 696 41.337 42.337 173.609 1.00 93.70 O
ATOM 5325 CB GLU A 696 43.151 41.867 176.166 1.00 79.89 C
ATOM 5326 CG GLU A 696 43.741 40.952 177.242 1.00 88.10 C
ATOM 5327 CD GLU A 696 44.088 41.665 178.529 1.00 93.30 C
ATOM 5328 OE1 GLU A 696 44.537 42.834 178.470 1.00 94.88 O
ATOM 5329 OE2 GLU A 696 43.917 41.045 179.603 1.00 92.53 O
ATOM 5330 N ILE A 697 40.865 40.241 174.293 1.00 75.90 N
ATOM 5331 CA ILE A 697 39.486 40.286 173.795 1.00 75.01 C
ATOM 5332 C ILE A 697 38.535 41.005 174.767 1.00 73.45 C
ATOM 5333 O ILE A 697 38.167 40.462 175.813 1.00 73.32 O
ATOM 5334 CB ILE A 697 38.946 38.889 173.492 1.00 73.90 C
ATOM 5335 CG1 ILE A 697 39.850 38.197 172.495 1.00 78.58 C
ATOM 5336 CG2 ILE A 697 37.593 38.993 172.862 1.00 74.74 C
ATOM 5337 CD1 ILE A 697 39.824 38.870 171.169 1.00 81.56 C
ATOM 5338 N THR A 698 38.130 42.220 174.398 1.00 65.24 N
ATOM 5339 CA TH A 698 37.397 43.105 175.299 1.00 64.76 C
ATOM 5340 C THR A 698 35.885 43.182 175.042 1.00 69.39 C
ATOM 5341 O THR A 698 35.435 43.386 173.918 1.00 78.24 O
ATOM 5342 CB THR A 698 37.951 44.531 175.199 1.00 67.93 C
ATOM 5343 OG1 THR A 698 39.334 44.534 175.560 1.00 74.71 O
ATOM 5344 CG2 THR A 698 37.193 45.464 176.112 1.00 68.16 C
ATOM 5345 N ALA A 699 35.100 43.036 176.097 1.00 59.18 N
ATOM 5346 CA ALA A 699 33.679 43.281 176.008 1 .00 53.51 C
ATOM 5347 C ALA A 699 33.384 44.577 176.732 1.00 63.89 C ATOM 5348 O ALA A 699 33.580 44.682 177.935 1.00 79.12 O
ATOM 5349 CB ALA A 699 32.906 42.141 176.635 1.00 57.02 C
ATOM 5350 N MET A 700 32.917 45.570 175.997 1.00 63.51 N
ATOM 5351 CA MET A 700 32.560 46.853 176.576 1.00 56.13 C
ATOM 5352 C MET A 700 31.031 46.990 176.630 1.00 65.75 C
ATOM 5353 O MET A 700 30.329 46.578 175.708 1.00 79.26 O
ATOM 5354 CB MET A 700 33.173 47.954 175.720 1.00 50.87 C
ATOM 5355 CG MET A 700 32.856 49.348 176.145 1.00 51.74 C
ATOM 5356 SD MET A 700 33.910 49.839 177.491 1.00 73.48 S
ATOM 5357 CE MET A 700 35.466 50.145 176.689 1.00121.23 C
ATOM 5358 N THR A 701 30.518 47.549 177.722 1.00 62.95 N
ATOM 5359 CA THR A 701 29.096 47.869 177.847 1.00 54.88 C
ATOM 5360 C THR A 701 28.837 49.296 177.373 1.00 57.42 C
ATOM 5361 O THR A 701 29.765 50.083 177.217 1.00 61.49 O
ATOM 5362 CB THR A 701 28.596 47.747 179.318 1.00 62.45 C
ATOM 5363 OG1 THR A 701 29.159 48.794 180.123 1.00 61.27 O
ATOM 5364 CG2 THR A 701 28.930 46.382 179.927 1.00 49.17 C
ATOM 5365 N GLY A 702 27.571 49.629 177.156 1.00 61.26 N
ATOM 5366 CA GLY A 702 27.175 50.978 176.783 1.00 60.30 C
ATOM 5367 C GLY A 702 25.671 51.097 176.603 1.00 64.67 C
ATOM 5368 O GLY A 702 24.968 50.089 176.456 1.00 69.47 O
ATOM 5369 N ASP A 703 25.170 52.329 176.607 1.00 60.03 N
ATOM 5370 CA ASP A 703 23.726 52.554 176.550 1.00 58.14 C
ATOM 5371 C ASP A 703 23.327 53.812 175.797 1.00 59.53 C
ATOM 5372 O ASP A 703 22.260 53.857 175.193 1.00 67.39 O
ATOM 5373 CB ASP A 703 23.120 52.575 177.958 1.00 57.53 C
ATOM 5374 CG ASP A 703 23.873 53.489 178.908 1.00 75.95 C
ATOM 5375 OD1 ASP A 703 24.901 53.033 179.467 1.00 89.08 O
ATOM 5376 OD2 ASP A 703 23.439 54.649 179.114 1.00 73.99 O
ATOM 5377 N GLY A 704 24.172 54.834 175.834 1.00 60.21 N
ATOM 5378 CA GLY A 704 23.847 56.099 175.197 1.00 69.21 C
ATOM 5379 C GLY A 704 24.367 56.177 173.785 1.00 71.76 C
ATOM 5380 O GLY A 704 25.147 55.325 173.366 1.00 74.36 O
ATOM 5381 N VAL A 705 23.937 57.193 173.041 1.00 75.10 N
ATOM 5382 CA VAL A 705 24.413 57.370 171.669 1.00 68.83 C
ATOM 5383 C VAL A 705 25.932 57.510 171.656 1.00 68.01 C
ATOM 5384 O VAL A 705 26.602 56.968 170.784 1.00 78.44 O
ATOM 5385 CB VAL A 705 23.749 58.564 170.959 1.00 63.60 C
ATOM 5386 CG1 VAL A 705 22.295 58.296 170.765 1.00 75.71 C
ATOM 5387 CG2 VAL A 705 23.938 59.835 171.719 1.00 64.51 C ATOM 5388 N ASN A 706 26.479 58.191 172.657 1.00 60.95 N
ATOM 5389 CA ASN A 706 27.912 58.376 172.745 1.00 61.82 C
ATOM 5390 C ASN A 706 28.693 57.108 173.081 1.00 70.29 C
ATOM 5391 O AS A 706 29.931 57.118 173.089 1.00 77.70 O
ATOM 5392 CB ASN A 706 28.224 59.459 173.760 1.00 65.48 C
ATOM 5393 CG ASN A 706 27.757 60.815 173.313 1.00 74.26 C
ATOM 5394 OD1 ASN A 706 27.539 61.064 172.113 1.00 67.93 O
ATOM 5395 ND2 ASN A 706 27.598 61.716 174.272 1.00 83.96 N
ATOM 5396 N ASP A 707 27.987 56.019 173.369 1.00 66.91 N
ATOM 5397 CA ASP A 707 28.669 54.758 173.623 1.00 69.21 C
ATOM 5398 C ASP A 707 28.879 54.017 172.315 1.00 75.38 C
ATOM 5399 O ASP A 707 29.614 53.028 172.265 1.00 74.16 O
ATOM 5400 CB ASP A 707 27.899 53.891 174.613 1.00 68.63 C
ATOM 5401 CG ASP A 707 27.840 54.506 175.998 1.00 74.68 C
ATOM 5402 OD1 ASP A 707 28.890 54.950 176.51 1 1.00 72.65 O
ATOM 5403 OD2 ASP A 707 26.733 54.564 176.567 1.00 79.34 O
ATOM 5404 N ALA A 708 28.249 54.524 171.255 1.00 73.63 N
ATOM 5405 CA ALA A 708 28.263 53.863 169.952 1.00 65.26 C
ATOM 5406 C ALA A 708 29.656 53.564 169.389 1.00 71.31 C
ATOM 5407 O ALA A 708 29.908 52.421 169.001 1.00 76.06 O
ATOM 5408 CB ALA A 708 27.427 54.623 168.955 1.00 61.32 C
ATOM 5409 N PRO A 709 30.566 54.569 169.349 1.00 69.75 N
ATOM 5410 CA PRO A 709 31.918 54.323 168.839 1.00 67.33 C
ATOM 54 1 C PRO A 709 32.675 53.218 169.571 1.00 66.67 C
ATOM 5412 O PRO A 709 33.190 52.313 168.913 1.00 75.49 O
ATOM 5413 CB PRO A 709 32.619 55.648 169.088 1.00 55.72 C
ATOM 5414 CG PRO A 709 31.584 56.615 169.080 1.00 56.84 C
ATOM 5415 CD PRO A 709 30.420 55.979 169.738 1.00 68.69 C
ATOM 5416 N ALA A 710 32.748 53.291 170.898 1.00 64.87 N
ATOM 5417 CA ALA A 710 33.466 52.285 171.680 1.00 68.85 C
ATOM 5418 C ALA A 710 32.799 50.919 171.609 1.00 62.58 C
ATOM 5419 O ALA A 710 33.482 49.899 171.667 1.00 60.16 O
ATOM 5420 CB ALA A 710 33.620 52.731 173.133 1.00 68.31 C
ATOM 5421 N LEU A 711 31.472 50.905 171.493 1.00 58.05 N
ATOM 5422 CA LEU A 71 1 30.735 49.652 171.363 1.00 59.26 C
ATOM 5423 C LEU A 71 1 31.084 48.981 170.043 1.00 60.18 C
ATOM 5424 O LEU A 711 31.140 47.752 169.958 1.00 60.02 O
ATOM 5425 CB LEU A 711 29.224 49.880 171.439 1.00 63.15 C
ATOM 5426 CG LEU A 711 28.540 50.098 172.798 1.00 59.66 C
ATOM 5427 CD1 LEU A 711 27.149 50.670 172.586 1.00 51.39 C ATOM 5428 CD2 LEU A 711 28.466 48.806 173.602 1.00 55.81 C
ATOM 5429 N LYS A 712 31.323 49.796 169.020 1.00 59.31 N
ATOM 5430 CA LYS A 712 31.719 49.288 167.707 1.00 63.36 C
ATOM 5431 C LYS A 712 33.164 48.798 167.758 1.00 65.13 C
ATOM 5432 O LYS A 712 33.481 47.685 167.334 1.00 64.51 O
ATOM 5433 CB LYS A 712 31.537 50.368 166.628 1.00 56.81 C
ATOM 5434 CG LYS A 712 30.065 50.646 166.248 1.00 55.62 C
ATOM 5435 CD LYS A 712 29.944 51.817 165.265 1.00 71.87 C
ATOM 5436 CE LYS A 712 28.506 52.099 164.820 1.00 83.28 C
ATOM 5437 NZ LYS A 712 27.831 50.953 164.120 1.00 90.69 N
ATOM 5438 N LYS A 713 34.027 49.643 168.312 1.00 67.79 N
ATOM 5439 CA LYS A 713 35.453 49.375 168.440 1.00 57.63 C
ATOM 5440 C LYS A 713 35.766 48.150 169.304 1.00 58.03 C
ATOM 5441 O LYS A 713 36.663 47.386 168.973 1.00 63.99 O
ATOM 5442 CB LYS A 713 36.143 50.618 168.989 1.00 55.47 C
ATOM 5443 CG LYS A 713 37.618 50.689 168.743 1.00 69.34 C
ATOM 5444 CD LYS A 713 38.153 52.093 169.017 1.00 79.25 C
ATOM 5445 CE LYS A 713 39.393 52.366 168.171 1.00 92.55 C
ATOM 5446 NZ LYS A 713 40.255 51.144 168.001 1.00 98.52 N
ATOM 5447 N ALA A 714 35.028 47.949 170.398 1.00 54.66 N
ATOM 5448 CA ALA A 714 35.228 46.764 171.250 1.00 59.36 C
ATOM 5449 C ALA A 714 35.082 45.453 170.476 1.00 66.18 C
ATOM 5450 O ALA A 714 34.381 45.406 169.473 1.00 75.03 O
ATOM 5451 CB ALA A 714 34.278 46.778 172.427 1.00 49.78 C
ATOM 5452 N GLU A 715 35.753 44.400 170.935 1.00 52.06 N
ATOM 5453 CA GLU A 715 35.582 43.077 170.345 1.00 61.01 C
ATOM 5454 C GLU A 715 34.138 42.654 170.500 1.00 56.72 C
ATOM 5455 O GLU A 715 33.525 42.189 169.548 1.00 52.68 O
ATOM 5456 CB GLU A 715 36.493 42.022 170.985 1.00 68.39 C
ATOM 5457 CG GLU A 715 37.940 42.031 170.504 1.00 67.15 C
ATOM 5458 CD GLU A 715 38.660 43.312 170.878 1.00 75.68 C
ATOM 5459 OE1 GLU A 715 38.777 43.603 172.098 1.00 73.65 O
ATOM 5460 OE2 GLU A 715 39.098 44.030 169.951 1.00 77.46 O
ATOM 5461 N ILE A 716 33.594 42.826 171.702 1.00 61.55 N
ATOM 5462 CA ILE A 716 32.161 42.603 171.939 1.00 66.74 C
ATOM 5463 C ILE A 716 31.422 43.808 172.554 1.00 70.40 C
ATOM 5464 O ILE A 716 31.641 44.165 173.697 1.00 67.57 O
ATOM 5465 CB ILE A 716 31.921 41.381 172.811 1.00 58.15 C
ATOM 5466 CG1 ILE A 716 32.372 40.123 172.082 1 .00 61.70 C
ATOM 5467 CG2 ILE A 716 30.465 41.270 173.108 1.00 59.42 C ATOM 5468 CD1 ILE A 716 33.105 39.161 172.957 1.00 69.94 c
ATOM 5469 N GLY A 717 30.551 44.444 171.783 1.00 77.18 N
ATOM 5470 CA GLY A 717 29.802 45.580 172.287 1.00 74.08 C
ATOM 5471 C GLY A 717 28.548 45.059 172.949 1.00 72.61 C
ATOM 5472 O GLY A 717 27.835 44.249 172.377 1.00 87.31 O
ATOM 5473 N ILE A 718 28.277 45.504 174.163 1.00 62.30 N
ATOM 5474 CA ILE A 718 27.151 44.974 174.904 1.00 54.05 C
ATOM 5475 C ILE A 718 26.215 46.088 175.356 1.00 55.15 C
ATOM 5476 O ILE A 718 26.539 46.862 176.259 1.00 58.05 O
ATOM 5477 CB ILE A 718 27.631 44.192 176.108 1.00 55.17 C
ATOM 5478 CG1 ILE A 718 28.341 42.922 175.661 1.00 56.76 C
ATOM 5479 CG2 ILE A 718 26.462 43.787 176.959 1.00 70.04 C
ATOM 5480 CD1 ILE A 718 28.909 42.106 176.818 1.00 60.56 C
ATOM 5481 N ALA A 719 25.045 46.161 174.728 1.00 54.00 N
ATOM 5482 CA ALA A 719 24.099 47.236 174.991 1.00 52.18 C
ATOM 5483 C ALA A 719 23.112 46.894 176.095 1.00 60.18 C
ATOM 5484 O ALA A 719 22.719 45.735 176.254 1.00 56.27 O
ATOM 5485 CB ALA A 719 23.347 47.573 173.726 1.00 67.80 C
ATOM 5486 N MET A 720 22.705 47.916 176.845 1.00 62.09 N
ATOM 5487 CA MET A 720 21.637 47.768 177.830 1.00 65.64 C
ATOM 5488 C MET A 720 20.301 47.809 177.106 1.00 70.83 C
ATOM 5489 O MET A 720 20.087 48.655 176.231 1.00 69.25 O
ATOM 5490 CB MET A 720 21.686 48.879 178.890 1.00 60.51 C
ATOM 5491 CG MET A 720 23.031 49.026 179.580 1.00 53.74 c
ATOM 5492 SD MET A 720 23.525 47.503 180.407 1.00 75.36 S
ATOM 5493 CE MET A 720 25.066 47.170 179.570 1.00156.72 c
ATOM 5494 N GLY A 721 19.416 46.887 177.475 1.00 73.47 N
ATOM 5495 CA GLY A 721 18.071 46.841 176.938 1.00 77.12 C
ATOM 5496 C GLY A 721 17.233 48.045 177.320 1.00 77.45 C
ATOM 5497 O GLY A 721 16.391 48.495 176.546 1.00 83.81 O
ATOM 5498 N SER A 722 17.456 48.575 178.518 1.00 75.02 N
ATOM 5499 CA SER A 722 16.770 49.790 178.949 1.00 72.98 C
ATOM 5500 C SER A 722 17.373 51.003 178.254 1.00 74.54 C
ATOM 5501 O SER A 722 16.907 52.131 178.465 1.00 74.89 O
ATOM 5502 CB SER A 722 16.890 49.968 180.457 1.00 72.29 C
ATOM 5503 OG SER A 722 18.215 50.339 180.836 1.00 70.81 O
ATOM 5504 N GLY A 723 18.400 50.751 177.432 1.00 69.91 N
ATOM 5505 CA GLY A 723 19.184 51.775 176.757 1.00 70.04 C
ATOM 5506 C GLY A 723 18.589 52.371 175.491 1.00 68.57 C
ATOM 5507 O GLY A 723 17.372 52.480 175.377 1.00 75.62 O ATOM 5508 N THR A 724 19.444 52.777 174.550 1.00 65.48 N
ATOM 5509 CA THR A 724 18.976 53.393 173.298 1.00 76.01 C
ATOM 5510 C THR A 724 19.117 52.483 172.075 1.00 75.63 C
ATOM 5511 O THR A 724 20.032 51.661 172.004 1.00 77.27 O
ATOM 5512 CB THR A 724 19.654 54.766 172.996 1.00 75.08 C
ATOM 5513 OG1 THR A 724 21.069 54.685 173.190 1.00 62.90 O
ATOM 5514 CG2 THR A 724 19.093 55.849 173.885 1.00 65.77 C
ATOM 5515 N ALA A 725 18.203 52.646 171.1 19 1.00 71.88 N
ATOM 5516 CA ALA A 725 18.205 51.854 169.893 1.00 66.71 C
ATOM 5517 C ALA A 725 19.534 52.022 169.206 1.00 70.77 C
ATOM 5518 O ALA A 725 20.125 51.052 168.735 1.00 66.64 O
ATOM 5519 CB ALA A 725 17.098 52.298 168.972 1.00 70.48 C
ATOM 5520 N VAL A 726 19.992 53.271 169.166 1.00 73.24 N
ATOM 5521 CA VAL A 726 21.289 53.639 168.616 1.00 63.84 C
ATOM 5522 C VAL A 726 22.432 52.832 169.235 1.00 67.63 C
ATOM 5523 O VAL A 726 23.340 52.373 168.536 1.00 65.10 O
ATOM 5524 CB VAL A 726 21.555 55.131 168.837 1.00 69.40 C
ATOM 5525 CG1 VAL A 726 22.980 55.463 168.481 1.00 66.38 C
ATOM 5526 CG2 VAL A 726 20.581 55.975 168.032 1.00 68.51 C
ATOM 5527 N ALA A 727 22.390 52.637 170.542 1.00 59.23 N
ATOM 5528 CA ALA A 727 23.493 51.941 171.182 1.00 63.75 C
ATOM 5529 C ALA A 727 23.384 50.438 170.997 1.00 68.40 C
ATOM 5530 O ALA A 727 24.339 49.717 171.256 1.00 73.16 O
ATOM 5531 CB ALA A 727 23.596 52.299 172.660 1.00 59.47 C
ATOM 5532 N LYS A 728 22.230 49.956 170.555 1.00 65.63 N
ATOM 5533 CA LYS A 728 22.076 48.519 170.410 1.00 67.72 C
ATOM 5534 C LYS A 728 22.516 48.069 169.035 1.00 77.99 C
ATOM 5535 O LYS A 728 22.935 46.923 168.875 1.00 86.39 O
ATOM 5536 CB LYS A 728 20.636 48.068 170.657 1.00 63.45 C
ATOM 5537 CG LYS A 728 20.008 48.610 171.906 1.00 61.96 C
ATOM 5538 CD LYS A 728 18.792 47.817 172.281 1.00 61.39 C
ATOM 5539 CE LYS A 728 17.938 48.603 173.262 1.00 62.87 C
ATOM 5540 NZ LYS A 728 16.736 47.861 173.751 1.00 64.98 N
ATOM 5541 N THR A 729 22.399 48.952 168.040 1.00 76.61 N
ATOM 5542 CA THR A 729 22.781 48.600 166.670 1.00 75.68 C
ATOM 5543 C THR A 729 24.291 48.455 166.662 1.00 78.91 C
ATOM 5544 O THR A 729 24.841 47.589 165.970 1.00 83.70 O
ATOM 5545 CB THR A 729 22.388 49.663 165.613 1.00101.61 C
ATOM 5546 OG1 THR A 729 23.140 50.864 165.840 1.00108.28 O
ATOM 5547 CG2 THR A 729 20.892 49.969 165.625 1.00 65.06 C ATOM 5548 N ALA A 730 24.953 49.307 167.446 1.00 71.39 N
ATOM 5549 CA ALA A 730 26.403 49.221 167.633 1.00 65.70 C
ATOM 5550 C ALA A 730 26.850 47.870 168.211 1.00 68.65 C
ATOM 5551 O ALA A 730 28.020 47.494 168.108 1.00 72.03 O
ATOM 5552 CB ALA A 730 26.903 50.370 168.522 1.00 57.65 C
ATOM 5553 N SER A 731 25.907 47.127 168.772 1.00 53.93 N
ATOM 5554 CA SER A 731 26.230 46.010 169.633 1.00 52.83 C
ATOM 5555 C SER A 731 26.062 44.653 169.017 1.00 72.80 C
ATOM 5556 O SER A 731 25.437 44.485 167.972 1.00 81.96 O
ATOM 5557 CB SER A 731 25.361 46.075 170.870 1.00 71.40 C
ATOM 5558 OG SER A 731 25.385 47.393 171.371 1.00 76.00 O
ATOM 5559 N GLU A 732 26.627 43.682 169.717 1.00 69.19 N
ATOM 5560 CA GLU A 732 26.585 42.290 169.325 1.00 72.74 C
ATOM 5561 C GLU A 732 25.659 41.532 170.275 1.00 78.04 C
ATOM 5562 O GLU A 732 25.11 1 40.491 169.903 1.00 86.26 O
ATOM 5563 CB GLU A 732 28.004 41.687 169.312 1.00 68.15 C
ATOM 5564 CG GLU A 732 28.864 42.101 168.108 1.00 68.1 1 C
ATOM 5565 CD GLU A 732 29.426 43.514 168.209 1.00 73.53 C
ATOM 5566 OE1 GLU A 732 30.156 43.776 169.185 1.00 75.40 O
ATOM 5567 OE2 GLU A 732 29.158 44.359 167.317 1.00 74.72 O
ATOM 5568 N MET A 733 25.483 42.070 171.489 1.00 71.08 N
ATOM 5569 CA MET A 733 24.543 41.535 172.489 1.00 65.90 C
ATOM 5570 C MET A 733 23.756 42.648 173.141 1.00 64.32 C
ATOM 5571 O MET A 733 24.289 43.733 173.367 1.00 68.71 O
ATOM 5572 CB MET A 733 25.282 40.841 173.627 1.00 71.29 C
ATOM 5573 CG MET A 733 26.022 39.577 173.269 1.00 81.03 C
ATOM 5574 SD MET A 733 26.075 38.502 174.715 1.00115.30 S
ATOM 5575 CE MET A 733 26.198 39.728 175.996 1.00 53.36 C
ATOM 5576 N VAL A 734 22.500 42.375 173.477 1.00 64.64 N
ATOM 5577 CA VAL A 734 21.751 43.264 174.365 1.00 55.74 C
ATOM 5578 C VAL A 734 21.359 42.539 175.656 1.00 60.25 C
ATOM 5579 O VAL A 734 20.859 41.417 175.616 1.00 70.09 O
ATOM 5580 CB VAL A 734 20.487 43.780 173.708 1.00 57.62 C
ATOM 5581 CG1 VAL A 734 19.843 44.817 174.600 1.00 72.04 C
ATOM 5582 CG2 VAL A 734 20.810 44.370 172.379 1.00 59.59 C
ATOM 5583 N LEU A 735 21.601 43.165 176.799 1.00 58.08 N
ATOM 5584 CA LEU A 735 21.240 42.560 178.078 1.00 62.99 C
ATOM 5585 C LEU A 735 19.822 42.971 178.427 1.00 68.48 C
ATOM 5586 O LEU A 735 19.545 44.158 178.639 1.00 66.64 O
ATOM 5587 CB LEU A 735 22.183 43.019 179.189 1.00 64.48 C ATOM 5588 CG LEU A 735 23.693 42.945 178.970 1.00 63.95 C
ATOM 5589 CD1 LEU A 735 24.374 43.684 180.088 1.00 64.54 C
ATOM 5590 CD2 LEU A 735 24.160 41.509 178.930 1.00 64.18 C
ATOM 5591 N ALA A 736 18.932 41.984 178.481 1.00 69.05 N
ATOM 5592 CA ALA A 736 17.515 42.220 178.711 1.00 70.21 C
ATOM 5593 C ALA A 736 17.279 42.891 180.075 1.00 80.02 C
ATOM 5594 O ALA A 736 16.467 43.812 180.212 1.00 85.18 O
ATOM 5595 CB ALA A 736 16.790 40.923 178.628 1.00 65.67 C
ATOM 5596 N ASP A 737 18.027 42.436 181.074 1.00 82.21 N
ATOM 5597 CA ASP A 737 17.865 42.895 182.438 1.00 64.43 C
ATOM 5598 C ASP A 737 18.996 43.834 182.898 1.00 71.30 C
ATOM 5599 O ASP A 737 19.132 44.120 184.087 1.00 74.41 O
ATOM 5600 CB ASP A 737 17.764 41.679 183.355 1.00 68.63 C
ATOM 5601 CG ASP A 737 18.990 40.778 183.277 1.00 68.15 C
ATOM 5602 OD1 ASP A 737 19.976 41.157 182.618 1.00 61.97 O
ATOM 5603 OD2 ASP A 737 18.976 39.694 183.897 1.00 65.96 O
ATOM 5604 N ASP A 738 19.815 44.287 181.955 1.00 59.98 N
ATOM 5605 CA ASP A 738 20.866 45.273 182.213 1.00 61.21 C
ATOM 5606 C ASP A 738 21.912 44.758 183.179 1.00 67.73 C
ATOM 5607 O ASP A 738 22.792 45.51 1 183.592 1.00 63.33 O
ATOM 5608 CB ASP A 738 20.290 46.586 182.749 1.00 63.41 C
ATOM 5609 CG ASP A 738 19.359 47.279 181.759 1.00 81.47 C
ATOM 5610 OD1 ASP A 738 18.850 46.627 180.818 1.00 89.41 O
ATOM 5611 OD2 ASP A 738 19.122 48.490 181.937 1.00 86.06 O
ATOM 5612 N ASN A 739 21.822 43.475 183.527 1.00 75.71 N
ATOM 5613 CA ASN A 739 22.646 42.899 184.589 1.00 74.31 C
ATOM 5614 C ASN A 739 24.072 42.526 184.181 1.00 75.14 C
ATOM 5615 O ASN A 739 24.294 41.972 183.103 1.00 78.94 O
ATOM 5616 CB ASN A 739 21.952 41.685 185.208 1.00 65.41 C
ATOM 5617 CG ASN A 739 22.353 41.467 186.660 1.00 72.93 C
ATOM 5618 OD1 ASN A 739 23.175 42.205 187.208 1.00 67.52 O
ATOM 5619 ND2 ASN A 739 21.753 40.468 187.298 1.00 82.81 N
ATOM 5620 N PHE A 740 25.031 42.844 185.051 1.00 67.16 N
ATOM 5621 CA PHE A 740 26.404 42.404 184.866 1.00 66.50 C
ATOM 5622 C PHE A 740 26.450 40.888 184.817 1.00 68.70 C
ATOM 5623 O PHE A 740 27.160 40.293 184.009 1.00 74.58 O
ATOM 5624 CB PHE A 740 27.312 42.900 186.000 1.00 64.54 C
ATOM 5625 CG PHE A 740 28.757 42.496 185.833 1.00 64.90 C
ATOM 5626 CD2 PHE A 740 29.625 43.267 185.067 1.00 64.72 C
ATOM 5627 CD1 PHE A 740 29.235 41.333 186.405 1.00 60.71 C ATOM 5628 CE2 PHE A 740 30.939 42.893 184.897 1.00 63.24 C
ATOM 5629 CE1 PHE A 740 30.555 40.954 186.232 1.00 57.78 C
ATOM 5630 CZ PHE A 740 31.405 41.732 185.481 1.00 61.07 C
ATOM 5631 N SER A 741 25.680 40.266 185.692 1.00 61.95 N ATOM 5632 CA SER A 741 25.706 38.826 185.831 1.00 72.70 C
ATOM 5633 C SER A 741 25.266 38.164 184.536 1.00 72.30 C
ATOM 5634 0 SER A 741 25.660 37.033 184.228 1.00 69.04 O
ATOM 5635 CB SER A 741 24.807 38.419 186.988 1.00 86.37 C
ATOM 5636 OG SER A 741 25.048 39.279 188.093 1.00 95.23 O ATOM 5637 N THR A 742 24.465 38.891 183.767 1.00 71.49 N
ATOM 5638 CA THR A 742 24.020 38.400 182.475 1.00 77.60 C
ATOM 5639 C THR A 742 25.195 38.273 181.509 1.00 81.50 C
ATOM 5640 O THR A 742 25.268 37.313 180.739 1.00 84.33 O
ATOM 5641 CB THR A 742 22.970 39.321 181.860 1.00 76.79 C ATOM 5642 OG1 THR A 742 21.939 39.582 182.821 1.00 78.85 O
ATOM 5643 CG2 THR A 742 22.371 38.669 180.635 1.00 77.09 C
ATOM 5644 N ILE A 743 26.106 39.246 181.562 1.00 73.71 N
ATOM 5645 CA ILE A 743 27.309 39.227 180.743 1.00 66.80 C
ATOM 5646 C ILE A 743 28.148 37.973 181.002 1.00 72.51 C ATOM 5647 0 ILE A 743 28.635 37.326 180.069 1.00 77.10 O
ATOM 5648 CB ILE A 743 28.183 40.465 181.000 1.00 59.63 C
ATOM 5649 CG1 ILE A 743 27.399 41.739 180.680 1.00 61.39 C
ATOM 5650 CG2 ILE A 743 29.485 40.384 180.187 1.00 56.73 C
ATOM 5651 CD1 ILE A 743 28.215 43.033 180.764 1.00 54.78 C ATOM 5652 N VAL A 744 28.318 37.630 182.273 1.00 64.32 N
ATOM 5653 CA VAL A 744 29.155 36.499 182.627 1.00 58.25 C
ATOM 5654 C VAL A 744 28.477 35.213 182.202 1.00 70.41 C
ATOM 5655 O VAL A 744 29.128 34.283 181.740 1.00 74.48 O
ATOM 5656 CB VAL A 744 29.449 36.459 184.123 1.00 60.85 C ATOM 5657 CG1 VAL A 744 30.221 35.185 184.481 1.00 66.40 C
ATOM 5658 CG2 VAL A 744 30.218 37.707 184.543 1.00 53.08 C
ATOM 5659 N ALA A 745 27.157 35.165 182.343 1.00 79.45 N
ATOM 5660 CA ALA A 745 26.412 33.987 181.91 1 1.00 78.45 C
ATOM 5661 C ALA A 745 26.492 33.868 180.391 1.00 78.40 C ATOM 5662 0 ALA A 745 26.470 32.764 179.834 1.00 78.08 O
ATOM 5663 CB ALA A 745 24.975 34.059 182.374 1.00 69.44 C
ATOM 5664 N ALA A 746 26.597 35.010 179.720 1.00 71.78 N
ATOM 5665 CA ALA A 746 26.746 34.993 178.280 1.00 70.73 C
ATOM 5666 C ALA A 746 28.099 34.376 177.945 1.00 77.14 C ATOM 5667 0 ALA A 746 28.190 33.469 177.100 1.00 83.59 O ATOM 5668 CB ALA A 746 26.604 36.392 177.694 1.00 61.17 C
ATOM 5669 N VAL A 747 29.140 34.839 178.636 1.00 63.34 N
ATOM 5670 CA VAL A 747 30.488 34.356 178.371 1.00 56.98 C
ATOM 5671 C VAL A 747 30.620 32.860 178.647 1.00 60.21 C
ATOM 5672 O VAL A 747 31.304 32.142 177.929 1.00 60.60 O
ATOM 5673 CB VAL A 747 31.542 35.185 179.118 1.00 55.09 C
ATOM 5674 CG1 VAL A 747 32.808 34.399 179.323 1.00 52.12 C
ATOM 5675 CG2 VAL A 747 31.848 36.442 178.333 1.00 57.01 C
ATOM 5676 N GLU A 748 29.917 32.380 179.659 1.00 74.14 N
ATOM 5677 CA GLU A 748 29.980 30.966 179.997 1.00 83.28 C
ATOM 5678 C GLU A 748 29.354 30.145 178.901 1.00 83.00 C
ATOM 5679 O GLU A 748 29.862 29.092 178.537 1.00 81.84 O
ATOM 5680 CB GLU A 748 29.250 30.677 181.308 1.00 88.84 C
ATOM 5681 CG GLU A 748 29.343 29.221 181.737 1.00 87.74 C
ATOM 5682 CD GLU A 748 28.932 29.008 183.182 1.00 85.75 C
ATOM 5683 OE1 GLU A 748 28.705 30.009 183.905 1.00 80.02 O
ATOM 5684 OE2 GLU A 748 28.839 27.828 183.584 1.00 88.64 O
ATOM 5685 N GLU A 749 28.234 30.628 178.380 1.00 88.31 N
ATOM 5686 CA GLU A 749 27.512 29.865 177.385 1.00 87.13 C
ATOM 5687 C GLU A 749 28.346 29.870 176.132 1.00 84.01 C
ATOM 5688 O GLU A 749 28.308 28.914 175.359 1.00 85.84 O
ATOM 5689 CB GLU A 749 26.127 30.445 177.117 1.00 84.54 C
ATOM 5690 CG GLU A 749 25.165 29.420 176.547 1.00 92.64 C
ATOM 5691 CD GLU A 749 24.578 28.511 177.620 1.00100.00 C
ATOM 5692 OE1 GLU A 749 24.290 29.019 178.733 1.00101.40 O
ATOM 5693 OE2 GLU A 749 24.407 27.296 177.348 1.00 98.19 O
ATOM 5694 N GLY A 750 29.11 1 30.945 175.950 1.00 74.20 N
ATOM 5695 CA GLY A 750 30.009 31.044 174.819 1.00 73.12 C
ATOM 5696 C GLY A 750 30.924 29.837 174.834 1.00 74.63 C
ATOM 5697 O GLY A 750 31.034 29.100 173.847 1.00 74.08 O
ATOM 5698 N ARG A 751 31.555 29.621 175.983 1.00 70.97 N
ATOM 5699 CA ARG A 751 32.479 28.513 176.154 1.00 69.27 C
ATOM 5700 C ARG A 751 31.770 27.168 175.993 1.00 82.29 C
ATOM 5701 O ARG A 751 32.341 26.212 175.471 1.00 91.02 O
ATOM 5702 CB ARG A 751 33.166 28.599 177.519 1.00 60.49 C
ATOM 5703 CG ARG A 751 33.950 29.890 177.758 1.00 61.19 C
ATOM 5704 CD ARG A 751 34.933 29.683 178.905 1.00 69.44 C
ATOM 5705 NE ARG A 751 35.604 30.915 179.328 1.00 78.08 N
ATOM 5706 CZ ARG A 751 36.448 30.987 180.360 1.00 82.51 C
ATOM 5707 NH 1 ARG A 751 36.735 29.898 181.071 1.00 77.63 N ATOM 5708 NH2 ARG A 751 37.010 32.147 180.682 1.00 82.82 N
ATOM 5709 N ALA A 752 30.520 27.104 176.432 1.00 87.02 N
ATOM 5710 CA ALA A 752 29.762 25.862 176.388 1.00 87.40 C
ATOM 571 1 C ALA A 752 29.445 25.484 174.953 1.00 87.85 C
ATOM 5712 O ALA A 752 29.562 24.320 174.567 1.00 90.32 O
ATOM 5713 CB ALA A 752 28.480 25.993 177.201 1.00 86.12 C
ATOM 5714 N ILE A 753 29.044 26.478 174.170 1.00 81.63 N
ATOM 5715 CA ILE A 753 28.629 26.241 172.801 1.00 78.22 C
ATOM 5716 C ILE A 753 29.811 25.738 172.021 1.00 81.70 C
ATOM 5717 O ILE A 753 29.690 24.801 171.224 1.00 87.93 O
ATOM 5718 CB ILE A 753 28.121 27.528 172.141 1.00 74.68 C
ATOM 5719 CG1 ILE A 753 26.795 27.937 172.766 1.00 82.45 C
ATOM 5720 CG2 ILE A 753 27.961 27.346 170.637 1.00 66.21 C
ATOM 5721 CD1 ILE A 753 26.385 29.325 172.406 1.00 86.44 C
ATOM 5722 N TYR A 754 30.961 26.360 172.267 1.00 80.22 N
ATOM 5723 CA TYR A 754 32.164 26.065 171.496 1.00 80.99 C
ATOM 5724 C TYR A 754 32.568 24.614 171.697 1.00 76.50 C
ATOM 5725 O TYR A 754 32.864 23.897 170.750 1.00 72.64 O
ATOM 5726 CB TYR A 754 33.298 27.004 171.893 1.00 79.99 C
ATOM 5727 CG TYR A 754 34.535 26.805 171.070 1.00 82.20 C
ATOM 5728 CD2 TYR A 754 34.737 27.515 169.900 1.00 87.39 C
ATOM 5729 CD1 TYR A 754 35.495 25.900 171.455 1.00 82.22 C
ATOM 5730 CE2 TYR A 754 35.874 27.326 169.147 1.00 88.30 C
ATOM 5731 CE1 TYR A 754 36.623 25.706 170.711 1.00 84.77 C
ATOM 5732 CZ TYR A 754 36.816 26.416 169.563 1.00 88.82 C
ATOM 5733 OH TYR A 754 37.968 26.201 168.836 1.00 98.10 O
ATOM 5734 N ASN A 755 32.558 24.186 172.947 1.00 75.18 N
ATOM 5735 CA ASN A 755 32.773 22.791 173.264 1.00 82.75 C
ATOM 5736 C ASN A 755 31.699 21.877 172.689 1.00 78.42 C
ATOM 5737 O ASN A 755 31.918 20.685 172.517 1.00 77.58 O
ATOM 5738 CB ASN A 755 32.839 22.609 174.777 1.00 95.62 C
ATOM 5739 CG ASN A 755 34.250 22.573 175.286 1.00102.36 C
ATOM 5740 OD1 ASN A 755 34.719 21.531 175.742 1.00107.26 O
ATOM 5741 ND2 ASN A 755 34.954 23.706 175.190 1.00 99.82 N
ATOM 5742 N ASN A 756 30.523 22.415 172.415 1.00 80.73 N
ATOM 5743 CA ASN A 756 29.482 21.567 171.878 1.00 88.83 C
ATOM 5744 C ASN A 756 29.655 21.422 170.384 1.00 90.06 C
ATOM 5745 O ASN A 756 29.324 20.384 169.809 1.00 88.73 O
ATOM 5746 CB ASN A 756 28.093 22.092 172.204 1.00 93.08 C
ATOM 5747 CG ASN A 756 27.034 21.026 172.040 1.00 95.47 C ATOM 5748 OD1 ASN A 756 26.939 20.122172.859 1.00102.41 O
ATOM 5749 ND2 ASN A 756 26.242 21.117170.981 1.0089.69 N
ATOM 5750 N MET A 757 30.174 22.473169.762 1.0087.83 N
ATOM 5751 CA MET A 757 30.550 22.397168.366 1.0086.95 C
ATOM 5752 C MET A 757 31.624 21.330168.262 1.0086.83 C
ATOM 5753 O MET A 757 31.562 20.456167.410 1.0090.40 O
ATOM 5754 CB MET A 757 31.118 23.731167.877 1.0089.60 C
ATOM 5755 CG MET A 757 30.200 24.939168.029 1.0090.37 C
ATOM 5756 SD MET A 757 31.092 26.449167.612 1.00138.98 S
ATOM 5757 CE MET A 757 29.768 27.535167.092 1.0056.31 C
ATOM 5758 N LYSA758 32.605 21.400169.154 1.0089.00 N
ATOM 5759 CA LYSA758 33.773 20.531169.060 1.0094.12 C
ATOM 5760 C LYSA758 33.418 19.062169.224 1.0096.86 C
ATOM 5761 O LYSA758 34.049 18.194168.626 1.00102.88 O
ATOM 5762 CB LYSA758 34.862 20.948170.061 1.0097.00 C
ATOM 5763 CG LYSA758 35.868 21.952169.492 1.00100.13 C
ATOM 5764 CD LYSA758 37.036 22.209170.438 1.00102.33 C
ATOM 5765 CE LYSA758 38.191 22.852169.686 1.00106.14 C
ATOM 5766 NZ LYSA758 39.112 23.659170.543 1.00109.23 N
ATOM 5767 N GLNA759 32.402 18.781170.026 1.0096.31 N
ATOM 5768 CA GLNA759 32.024 17.398170.266 1.00101.96 C
ATOM 5769 C GLNA759 31.023 16.913169.224 1.00104.43 C
ATOM 5770 O GLNA759 30.822 15.715169.045 1.00105.71 O
ATOM 5771 CB GLNA759 31.506 17.200171.699 1.00104.10 C
ATOM 5772 CG GL A759 30.340 18.080172.096 1.00105.35 C
ATOM 5773 CD GLNA759 30.139 18.117173.598 1.00111.05 C
ATOM 5774 OE1 GLN A 759 30.794 17.384174.338 1.00 16.62 O
ATOM 5775 NE2 GLN A 759 29.236 18.976174.057 1.00112.82 N
ATOM 5776 N PHEA760 30.396 17.851168.531 1.00108.13 N
ATOM 5777 CA PHEA760 29.506 17.487167.444 1.00114.47 C
ATOM 5778 C PHEA760 30.350 16.925166.318 1.00111.54 C
ATOM 5779 O PHEA760 30.139 15.796165.871 1.00116.77 O
ATOM 5780 CB PHEA760 28.731 18.708166.946 1.00121.09 C
ATOM 5781 CG PHEA760 27.253 18.650167.219 1.00122.88 C
ATOM 5782 CD1 PHE A 760 26.399 17.991166.349 1.00125.02 C
ATOM 5783 CD2 PHE A 760 26.717 19.266168.336 1.00123.02 C
ATOM 5784 CE1 PHE A 760 25.043 17.940166.592 1.00127.38 C
ATOM 5785 CE2 PHE A 760 25.362 19.222168.582 1.00126.63 C
ATOM 5786 CZ PHE A 760 24.524 18.557167.709 1.00129.01 C
ATOM 5787 N ILEA 761 31.326 17.716165.881 1.00104.22 N ATOM 5788 CA ILE A 761 32.132 17.363 164.720 1.00 97.59 C
ATOM 5789 C ILE A 761 33.062 16.179 164.978 1.00 98.04 C
ATOM 5790 O ILE A 761 33.343 15.412 164.058 1.00108.72 O
ATOM 5791 CB ILE A 761 32.927 18.568 164.164 1.00 87.17 C
ATOM 5792 CG1 ILE A 761 34.125 18.895 165.036 1 .00 86.27 C
ATOM 5793 CG2 ILE A 761 32.052 19.787 164.085 1.00 85.13 C
ATOM 5794 CD1 ILE A 761 34.755 20.201 164.655 1.00 92.94 C
ATOM 5795 N ARG A 762 33.525 16.014 166.215 1.00 85.68 N
ATOM 5796 CA ARG A 762 34.350 14.857 166.540 1.00 87.81 C
ATOM 5797 C ARG A 762 33.563 13.581 166.274 1.00 93.09 C
ATOM 5798 O ARG A 762 34.123 12.553 165.891 1.00 95.00 O
ATOM 5799 CB ARG A 762 34.818 14.894 167.992 1.00 92.21 C
ATOM 5800 CG ARG A 762 35.524 13.622 168.423 1.00 98.50 C
ATOM 5801 CD ARG A 762 36.322 13.818 169.692 1.00109.17 C
ATOM 5802 NE ARG A 762 35.476 14.152 170.837 1.00115.94 N
ATOM 5803 CZ ARG A 762 34.760 13.264 171.522 1.00120.79 C
ATOM 5804 NH1 ARG A 762 34.770 11.978 171.177 1.00121.25 N
ATOM 5805 NH2 ARG A 762 34.026 13.666 172.550 1.00120.80 N
ATOM 5806 N TYR A 763 32.251 13.669 166.455 1.00 96.66 N
ATOM 5807 CA TYR A 763 31.362 12.540 166.230 1.00 96.13 C
ATOM 5808 C TYR A 763 31.115 12.299 164.744 1.00 98.79 C
ATOM 5809 O TYR A 763 31.057 11.146 164.295 1.00 96.96 O
ATOM 5810 CB TYR A 763 30.031 12.759 166.946 1.00 91.90 C
ATOM 5811 CG TYR A 763 29.141 11.548 166.891 1.00 93.93 C
ATOM 5812 CD1 TYR A 763 29.477 10.393 167.583 1.00 95.46 C
ATOM 5813 CD2 TYR A 763 27.967 11.552 166.145 1.00 91.08 C
ATOM 5814 CE1 TYR A 763 28.670 9.279 167.537 1.00 97.06 C
ATOM 5815 CE2 TYR A 763 27.154 10.439 166.091 1.00 89.89 C
ATOM 5816 CZ TYR A 763 27.514 9.306 166.787 1.00 97.27 C
ATOM 5817 OH TYR A 763 26.718 8.188 166.742 1.00107.28 O
ATOM 5818 N LEU A 764 30.965 13.384 163.985 1.00 96.27 N
ATOM 5819 CA LEU A 764 30.694 13.271 162.556 1.00 97.08 C
ATOM 5820 C LEU A 764 31.893 12.729 161.813 1.00 99.11 C
ATOM 5821 O LEU A 764 31.784 1 1.783 161.029 1.00101.30 O
ATOM 5822 CB LEU A 764 30.277 14.610 161.964 1.00 98.42 C
ATOM 5823 CG LEU A 764 28.784 14.625 161.635 1.00117.97 C
ATOM 5824 CD1 LEU A 764 27.920 14.420 162.901 1.00121.81 C
ATOM 5825 CD2 LEU A 764 28.397 15.900 160.885 1.00124.49 C
ATOM 5826 N ILE A 765 33.043 13.328 162.079 1.00 94.01 N
ATOM 5827 CA ILE A 765 34.273 12.931 161.423 1.00 93.22 C ATOM 5828 C ILE A 765 34.682 11.478 161.724 1.00101.07 C
ATOM 5829 O ILE A 765 34.968 10.707 160.801 1.00106.02 O
ATOM 5830 CB ILE A 765 35.400 13.91 1 161.759 1.00 85.48 C
ATOM 5831 CG1 ILE A 765 35.121 15.249 161.090 1.00 84.16 C
ATOM 5832 CG2 ILE A 765 36.733 13.378 161.293 1.00 90.53 C
ATOM 5833 CD1 ILE A 765 36.059 16.338 161.522 1.00 89.80 C
ATOM 5834 N SER A 766 34.692 1 1.092 162.997 1.00 97.05 N
ATOM 5835 CA SER A 766 35.133 9.744 163.342 1.00103.16 C
ATOM 5836 C SER A 766 34.169 8.682 162.821 1.00109.59 C
ATOM 5837 O SER A 766 34.584 7.583 162.462 1.00109.71 O
ATOM 5838 CB SER A 766 35.353 9.590 164.847 1.00108.66 C
ATOM 5839 OG SER A 766 34.147 9.778 165.559 1.00118.52 O
ATOM 5840 N SER A 767 32.884 9.016 162.766 1.00117.90 N
ATOM 5841 CA SER A 767 31.892 8.078 162.245 1.00121.63 C
ATOM 5842 C SER A 767 32.061 7.918 160.731 1.00122.02 C
ATOM 5843 O SER A 767 31.977 6.807 160.203 1.00126.45 O
ATOM 5844 CB SER A 767 30.460 8.507 162.610 1.00117.53 C
ATOM 5845 OG SER A 767 29.931 9.455 161.697 1.00116.63 O
ATOM 5846 N ASN A 768 32.318 9.025 160.040 1.001 14.23 N
ATOM 5847 CA ASN A 768 32.526 8.979 158.596 1.00107.80 C
ATOM 5848 C ASN A 768 33.832 8.289 158.214 1.00101.79 C
ATOM 5849 O ASN A 768 33.876 7.514 157.260 1.00105.64 O
ATOM 5850 CB ASN A 768 32.447 10.377 157.982 1.00105.99 C
ATOM 5851 CG ASN A 768 31.016 10.841 157.770 1.00109.65 C
ATOM 5852 OD1 ASN A 768 30.080 10.295 158.358 1.0011 1.41 O
ATOM 5853 ND2 ASN A 768 30.839 11.851 156.922 1.00110.42 N
ATOM 5854 N VAL A 769 34.889 8.559 158.970 1.00 93.37 N
ATOM 5855 CA VAL A 769 36.178 7.909 158.739 1.00 94.25 C
ATOM 5856 C VAL A 769 36.122 6.370 158.820 1.00 95.63 C
ATOM 5857 O VAL A 769 36.666 5.677 157.954 1.00 97.84 O
ATOM 5858 CB VAL A 769 37.258 8.467 159.692 1.00 90.35 C
ATOM 5859 CG1 VAL A 769 38.374 7.471 159.898 1.00 86.98 C
ATOM 5860 CG2 VAL A 769 37.801 9.776 159.156 1.00 87.55 C
ATOM 5861 N GLY A 770 35.464 5.844 159.848 1.00 90.49 N
ATOM 5862 CA GLY A 770 35.284 4.409 159.975 1.00 90.63 C
ATOM 5863 C GLY A 770 34.596 3.805 158.763 1.00 96.37 C
ATOM 5864 O GLY A 770 35.004 2.752 158.253 1.00 98.06 O
ATOM 5865 N GLU A 771 33.545 4.474 158.298 1.00 99.13 N
ATOM 5866 CA GLU A 771 32.827 4.030 157.112 1.00106.93 C
ATOM 5867 C GLU A 771 33.797 3.888 155.943 1.00114.92 C ATOM 5868 O GLU A 771 33.853 2.840 155.300 1.00121.89 O
ATOM 5869 CB GLU A 771 31.694 5.002 156.772 1.00111.71 C
ATOM 5870 CG GLU A 771 30.550 5.006 157.786 1.00121.10 C
ATOM 5871 CD GLU A 771 29.370 5.870 157.354 1.00131.03 C
ATOM 5872 OE1 GLU A 771 29.566 6.750 156.489 1.00135.19 O
ATOM 5873 OE2 GLU A 771 28.246 5.665 157.872 1.00132.60 O
ATOM 5874 N VAL A 772 34.582 4.935 155.697 1.001 11.22 N
ATOM 5875 CA VAL A 772 35.621 4.908 154.666 1.00105.31 C
ATOM 5876 C VAL A 772 36.618 3.761 154.867 1.00110.24 C
ATOM 5877 O VAL A 772 36.976 3.064 153.914 1.00117.43 O
ATOM 5878 CB VAL A 772 36.384 6.253 154.592 1.00 94.66 C
ATOM 5879 CG1 VAL A 772 37.657 6.116 153.777 1.00 90.65 C
ATOM 5880 CG2 VAL A 772 35.495 7.329 154.001 1.00 95.85 C
ATOM 5881 N VAL A 773 37.053 3.559 156.105 1.00104.99 N
ATOM 5882 CA VAL A 773 38.030 2.518 156.392 1.00104.51 C
ATOM 5883 C VAL A 773 37.520 1.123 156.032 1.00113.52 C
ATOM 5884 O VAL A 773 38.126 0.433 155.210 1.00116.53 O
ATOM 5885 CB VAL A 773 38.486 2.545 157.864 1.00 95.59 C
ATOM 5886 CG1 VAL A 773 39.302 1.293 158.194 1.00 93.99 C
ATOM 5887 CG2 VAL A 773 39.281 3.814 158.148 1.00 85.35 C
ATOM 5888 N CYS A 774 36.406 0.720 156.638 1.00118.63 N
ATOM 5889 CA CYS A 774 35.893 -0.638 156.461 1.00121.86 C
ATOM 5890 C CYS A 774 35.674 -0.963 154.991 1.00125.46 C
ATOM 5891 O CYS A 774 36.059 -2.029 154.516 1.00133.05 O
ATOM 5892 CB CYS A 774 34.590 -0.835 157.229 1.00117.34 C
ATOM 5893 SG CYS A 774 33.172 -0.016 156.494 1.00158.94 S
ATOM 5894 N ILE A 775 35.065 -0.028 154.276 1.00121.57 N
ATOM 5895 CA ILE A 775 34.824 -0.198 152.853 1.00124.80 C
ATOM 5896 C ILE A 775 36.146 -0.278 152.090 1.00129.99 C
ATOM 5897 O ILE A 775 36.262 -0.984 151.084 1.00133.10 O
ATOM 5898 CB ILE A 775 33.924 0.928 152.317 1.00122.17 C
ATOM 5899 CG1 ILE A 775 32.479 0.644 152.707 1.00117.55 C
ATOM 5900 CG2 ILE A 775 34.022 1.039 150.812 1.00126.76 C
ATOM 5901 CD1 ILE A 775 32.060 -0.782 152.393 1.001 17.07 C
ATOM 5902 N PHE A 776 37.156 0.422 152.590 1.00126.51 N
ATOM 5903 CA PHE A 776 38.462 0.365 151.960 1.00122.32 C
ATOM 5904 C PHE A 776 39.184 -0.952 152.245 1.00127.37 C
ATOM 5905 O PHE A 776 39.661 -1.609 151.322 1.00135.58 O
ATOM 5906 CB PHE A 776 39.331 1.541 152.379 1.00116.74 C
ATOM 5907 CG PHE A 776 40.637 1.582 151.666 1.00118.43 C ATOM 5908 CD1 PHE A 776 40.708 2.059 150.369 1.00120.72
ATOM 5909 CD2 PHE A 776 41.787 1.1 17 152.274 1.00119.49
ATOM 5910 CE1 PHE A 776 41.908 2.087 149.692 1.00123.66
ATOM 591 1 CE2 PHE A 776 42.991 1.141 151.605 1.00123.35
ATOM 5912 CZ PHE A 776 43.053 1.626 150.309 1.00124.99
ATOM 5913 N LEU A 777 39.271 -1.330 153.517 1.00123.65 N
ATOM 5914 CA LEU A 777 39.930 -2.575 153.893 1.00123.40 C
ATOM 5915 C LEU A 777 39.302 -3.756 153.181 1.00130.70 C
ATOM 5916 O LEU A 777 40.001 -4.650 152.700 1.00135.53 O
ATOM 5917 CB LEU A 777 39.833 -2.806 155.397 1.00117.05 C
ATOM 5918 CG LEU A 777 40.614 -1.828 156.261 1.00117.34 C
ATOM 5919 CD1 LEU A 777 40.486 -2.225 157.711 1.00120.24 C
ATOM 5920 CD2 LEU A 777 42.070 -1.786 155.834 1.001 16.47 C
ATOM 5921 N THR A 778 37.976 -3.746 153.1 11 1.00131.80 N
ATOM 5922 CA THR A 778 37.234 -4.870 152.558 1.00136.29 C
ATOM 5923 C THR A 778 37.626 -5.130 151.096 1.00138.38 C
ATOM 5924 O THR A 778 37.537 -6.259 150.612 1.00143.61 O
ATOM 5925 CB THR A 778 35.697 -4.692 152.746 1.00135.45 C
ATOM 5926 OG1 THR A 778 35.044 -5.968 152.703 1.00136.83
ATOM 5927 CG2 THR A 778 35.105 -3.772 151.689 1.00134.14
ATOM 5928 N ALA A 779 38.097 -4.095 150.410 1.00132.84 N
ATOM 5929 CA ALA A 779 38.571 -4.258 149.039 1.00130.12 C
ATOM 5930 C ALA A 779 40.098 -4.291 148.947 1.00133.31 C
ATOM 5931 O ALA A 779 40.653 -5.074 148.180 1.00141.38 O
ATOM 5932 CB ALA A 779 38.009 -3.176 148.149 1.00124.98 C
ATOM 5933 N ALA A 780 40.771 -3.451 149.729 1.00128.43 N
ATOM 5934 CA ALA A 780 42.234 -3.378 149.706 1.00129.85 C
ATOM 5935 C ALA A 780 42.909 -4.682 150.144 1.00135.09 C
ATOM 5936 O ALA A 780 44.006 -5.013 149.690 1.00136.50 O
ATOM 5937 CB ALA A 780 42.721 -2.223 150.560 1.00126.45 C
ATOM 5938 N LEU A 781 42.250 -5.417 151.031 1.00136.15 N
ATOM 5939 CA LEU A 781 42.786 -6.684 151.506 1.00135.64 C
ATOM 5940 C LEU A 781 42.272 -7.853 150.671 1.00140.42 C
ATOM 5941 O LEU A 781 42.805 -8.959 150.746 1.00139.44 O
ATOM 5942 CB LEU A 781 42.442 -6.890 152.981 1.00127.53 C
ATOM 5943 CG LEU A 781 43.154 -5.988 153.988 1.001 19.53 C
ATOM 5944 CD1 LEU A 781 42.533 -6.156 155.359 1.001 15.48 C
ATOM 5945 CD2 LEU A 781 44.648 -6.283 154.029 1.00116.26 C
ATOM 5946 N GLY A 782 41.235 -7.600 149.879 1.00146.33 N
ATOM 5947 CA GLY A 782 40.668 -8.616 149.007 1.00150.91 ATOM 5948 C GLY A 782 39.601 -9.442 149.700 1.00151.44 C
ATOM 5949 O GLY A 782 39.487 -10.648 149.465 1.00152.88 O
ATOM 5950 N LEU A 783 38.821 -8.785 150.555 1.00148.17 N
ATOM 5951 CA LEU A 783 37.778 -9.451 151.333 1.00143.43 C
ATOM 5952 C LEU A 783 36.425 -9.370 150.641 1.00142.84 C
ATOM 5953 O LEU A 783 36.244 -8.568 149.720 1.00139.75 O
ATOM 5954 CB LEU A 783 37.666 -8.816 152.722 1.00136.46 C
ATOM 5955 CG LEU A 783 38.440 -9.486 153.854 1.00129.91 C
ATOM 5956 CD1 LEU A 783 39.920 -9.255 153.687 1.00132.56 C
ATOM 5957 CD2 LEU A 783 37.969 -8.957 155.186 1.00125.02 C
ATOM 5958 N PRO A 784 35.469 -10.215 151.073 1.00144.25 N
ATOM 5959 CA PRO A 784 34.078 -10.027 150.652 1.00146.21 C
ATOM 5960 C PRO A 784 33.540 -8.723 151.229 1.00150.78 C
ATOM 5961 O PRO A 784 34.022 -8.278 152.276 1.00152.13 O
ATOM 5962 CB PRO A 784 33.352 -11.217 151.291 1.00139.92 C
ATOM 5963 CG PRO A 784 34.406 -12.228 151.528 1.00138.37 C
ATOM 5964 CD PRO A 784 35.640 -11.451 151.857 1.00139.22 C
ATOM 5965 N GLU A 785 32.568 -8.117 150.555 1.00151.24 N
ATOM 5966 CA GLU A 785 31.981 -6.873 151.031 1.00150.43 C
ATOM 5967 C GLU A 785 31.373 -7.088 152.406 1.00146.53 C
ATOM 5968 O GLU A 785 30.488 -7.928 152.581 1.00144.78 O
ATOM 5969 CB GLU A 785 30.910 -6.383 150.062 1.00158.10 C
ATOM 5970 CG GLU A 785 31.342 -6.424 148.612 1.00171.14 C
ATOM 5971 CD GLU A 785 30.426 -5.624 147.709 1.00182.46 C
ATOM 5972 OE1 GLU A 785 29.203 -5.595 147.969 1.00185.94 O
ATOM 5973 OE2 GLU A 785 30.935 -5.011 146.745 1.00186.33 O
ATOM 5974 N ALA A 786 31.867 -6.342 153.388 1.00143.03 N
ATOM 5975 CA ALA A 786 31.321 -6.423 154.733 1.00139.68 C
ATOM 5976 C ALA A 786 29.969 -5.713 154.799 1.00142.27 C
ATOM 5977 O ALA A 786 29.133 -6.035 155.644 1.00145.74 O
ATOM 5978 CB ALA A 786 32.293 -5.833 155.741 1.00132.98 C
ATOM 5979 N LEU A 787 29.755 -4.755 153.897 1.00137.11 N
ATOM 5980 CA LEU A 787 28.522 -3.970 153.886 1.00131.79 C
ATOM 5981 C LEU A 787 27.997 -3.665 152.477 1.00130.71 C
ATOM 5982 O LEU A 787 28.679 -3.039 151.664 1.00127.54 O
ATOM 5983 CB LEU A 787 28.718 -2.662 154.661 1.00128.56 C
ATOM 5984 CG LEU A 787 29.164 -2.746 156.124 1.00124.03 C
ATOM 5985 CD1 LEU A 787 29.607 -1.380 156.628 1.00119.41 C
ATOM 5986 CD2 LEU A 787 28.057 -3.322 157.005 1.00124.54 C
ATOM 5987 N ILE A 788 26.777 -4.116 152.204 1.00133.27 N ATOM 5988 CA ILE A 788 26.050 -3.759 150.990 1.00136.61 C
ATOM 5989 C ILE A 788 25.692 -2.278 151.075 1.00141.21 C
ATOM 5990 O ILE A 788 25.371 -1.796 152.158 1.00146.67 O
ATOM 5991 CB ILE A 788 24.770 -4.636 150.868 1.00119.38 C
ATOM 5992 CG1 ILE A 788 25.124 -6.01 1 150.300 1.00123.34 C
ATOM 5993 CG2 ILE A 788 23.689 -3.977 150.017 1.00120.03 C
ATOM 5994 CD1 ILE A 788 23.973 -6.991 150.296 1.00126.26 C
ATOM 5995 N PRO A 789 25.769 -1.546 149.945 1.00142.52 N
ATOM 5996 CA PRO A 789 25.443 -0.113 149.887 1.00143.53 C
ATOM 5997 C PRO A 789 24.167 0.233 150.651 1.00145.55 C
ATOM 5998 O PRO A 789 24.103 1.248 151.346 1.00142.18 O
ATOM 5999 CB PRO A 789 25.221 0.126 148.394 1.00147.30 C
ATOM 6000 CG PRO A 789 26.1 16 -0.852 147.734 1.00149.83 C
ATOM 6001 CD PRO A 789 26.152 -2.071 148.621 1.00147.08 C
ATOM 6002 N VAL A 790 23.166 -0.631 150.514 1.00150.48 N
ATOM 6003 CA VAL A 790 21.886 -0.479 151.195 1.00150.24 C
ATOM 6004 C VAL A 790 22.052 -0.483 152.710 1.00141.84 C
ATOM 6005 O VAL A 790 21.437 0.317 153.414 1.00140.80 O
ATOM 6006 CB VAL A 790 20.926 -1.615 150.799 1.00156.50 C
ATOM 6007 CG1 VAL A 790 19.640 -1.533 151.599 1.00160.32 C
ATOM 6008 CG2 VAL A 790 20.645 -1.569 149.310 1.00158.98 C
ATOM 6009 N GLN A 791 22.884 -1.392 153.204 1 .00136.25 N
ATOM 6010 CA GLN A 791 23.135 -1.498 154.634 1.00133.41 C
ATOM 60 C GLN A 791 23.789 -0.235 155.178 1.00133.97 C
ATOM 6012 O GLN A 791 23.554 0.150 156.324 1.00137.99 O
ATOM 6013 CB GLN A 791 24.014 -2.712 154.933 1.00130.23 C
ATOM 6014 CG GLN A 791 23.352 -4.034 154.609 1.00134.49 C
ATOM 6015 CD GLN A 791 24.319 -5.195 154.672 1.00138.63 C
ATOM 6016 OE1 GLN A 791 25.527 -5.021 154.505 1.00138.73 O
ATOM 6017 NE2 GLN A 791 23.794 -6.389 154.917 1.00141.43 N
ATOM 6018 N LEU A 792 24.600 0.414 154.348 1.00129.81 N
ATOM 6019 CA LEU A 792 25.360 1.579 154.782 1.00125.86 C
ATOM 6020 C LEU A 792 24.439 2.754 155.049 1.00122.63 C
ATOM 6021 O LEU A 792 24.423 3.304 156.148 1.00123.72 O
ATOM 6022 CB LEU A 792 26.401 1.962 153.732 1.00129.43 C
ATOM 6023 CG LEU A 792 27.547 2.872 154.183 1.00126.06 C
ATOM 6024 CD1 LEU A 792 28.312 2.248 155.345 1.00121.65 C
ATOM 6025 CD2 LEU A 792 28.482 3.160 153.014 1.00126.16 C
ATOM 6026 N LEU A 793 23.663 3.125 154.039 1.00123.84 N
ATOM 6027 CA LEU A 793 22.731 4.242 154.155 1.00131.25 C ATOM 6028 C LEU A 793 21.748 4.089 155.321 1.00134.17 C
ATOM 6029 O LEU A 793 21.230 5.080 155.832 1.00135.13 O
ATOM 6030 CB LEU A 793 21.964 4.430 152.843 1.00137.49 C
ATOM 6031 CG LEU A 793 22.807 4.668 151.589 1.00136.07 C
ATOM 6032 CD1 LEU A 793 21.909 4.924 150.387 1.00137.21 C
ATOM 6033 CD2 LEU A 793 23.775 5.826 151.805 1.00133.30 C
ATOM 6034 N TRP A 794 21.493 2.849 155.734 1.00136.26 N
ATOM 6035 CA TRP A 794 20.606 2.586 156.863 1.00134.37 C
ATOM 6036 C TRP A 794 21.236 3.065 158.156 1.00133.49 C
ATOM 6037 O TRP A 794 20.656 3.882 158.874 1.00134.15 O
ATOM 6038 CB TRP A 794 20.295 1.096 156.979 1.00132.12 C
ATOM 6039 CG TRP A 794 19.769 0.711 158.330 1.00131.04 C
ATOM 6040 CD1 TRP A 794 20.417 -0.015 159.287 1.00130.64 C
ATOM 6041 CD2 TRP A 794 18.491 1.046 158.878 1.00130.27 C
ATOM 6042 NE1 TRP A 794 19.617 -0.160 160.394 1.00130.20 N
ATOM 6043 CE2 TRP A 794 18.429 0.482 160.168 1.00130.84 C
ATOM 6044 CE3 TRP A 794 17.391 1.764 158.405 1.00132.88 C
ATOM 6045 CZ2 TRP A 794 17.315 0.617 160.987 1.00136.20 C
ATOM 6046 CZ3 TRP A 794 16.287 1.898 159.218 1.00137.90 C
ATOM 6047 CH2 TRP A 794 16.256 1.327 160.496 1.00140.10 C
ATOM 6048 N VAL A 795 22.418 2.531 158.450 1.00129.97 N
ATOM 6049 CA VAL A 795 23.202 2.965 159.596 1.00126.81 C
ATOM 6050 C VAL A 795 23.347 4.473 159.554 1.00127.36 C
ATOM 6051 O VAL A 795 23.116 5.162 160.546 1.00126.55 O
ATOM 6052 CB VAL A 795 24.604 2.342 159.573 1.00123.46 C
ATOM 6053 CG1 VAL A 795 25.499 2.981 160.630 1.00119.27 C
ATOM 6054 CG2 VAL A 795 24.513 0.847 159.775 1.00127.25 C
ATOM 6055 N ASN A 796 23.708 4.981 158.382 1.00129.94 N
ATOM 6056 CA ASN A 796 23.875 6.411 158.197 1.00131.04 C
ATOM 6057 C ASN A 796 22.587 7.196 158.453 1.00130.13 C
ATOM 6058 O ASN A 796 22.638 8.367 158.815 1.00134.95 O
ATOM 6059 CB ASN A 796 24.415 6.717 156.803 1.00134.26 C
ATOM 6060 CG ASN A 796 25.001 8.100 156.712 1.00139.42 C
ATOM 6061 OD1 ASN A 796 24.352 : 9.042 156.246 1.00140.90 O
ATOM 6062 ND2 ASN A 796 26.234 8.242 157.184 1.00142.27 N
ATOM 6063 N LEU A 797 21.437 6.555 158.267 1.00123.95 N
ATOM 6064 CA LEU A 797 20.158 7.197 158.560 1.00112.97 C
ATOM 6065 C LEU A 797 19.925 7.239 160.059 1.00111.41 C
ATOM 6066 O LEU A 797 19.655 8.298 160.625 1.00109.35 O
ATOM 6067 CB LEU A 797 19.008 6.455 157.887 1.00107.09 C ATOM 6068 CG LEU A 797 17.600 6.827 158.347 1.00106.56 C
ATOM 6069 CD1 LEU A 797 17.353 8.306 158.211 1.00 86.07 C
ATOM 6070 CD2 LEU A 797 16.573 6.061 157.542 1.00114.13 C
ATOM 6071 N VAL A 798 20.032 6.076 160.692 1.00112.40 N
ATOM 6072 CA VAL A 798 19.810 5.951 162.128 1.00117.30 C
ATOM 6073 C VAL A 798 20.691 6.890 162.953 1.00120.10 C
ATOM 6074 O VAL A 798 20.187 7.629 163.799 1.00123.78 O
ATOM 6075 CB VAL A 798 20.022 4.500 162.609 1.00120.02 C
ATOM 6076 CG1 VAL A 798 19.679 4.370 164.082 1.00116.16 C
ATOM 6077 CG2 VAL A 798 19.178 3.542 161.785 1.00128.57 C
ATOM 6078 N THR A 799 21.997 6.874 162.706 1.00118.44 N
ATOM 6079 CA THR A 799 22.912 7.690 163.501 1.00119.12 C
ATOM 6080 C THR A 799 22.659 9.195 163.358 1.00121.69 C
ATOM 6081 O THR A 799 22.636 9.906 164.357 1.00124.44 O
ATOM 6082 CB THR A 799 24.402 7.368 163.226 1.00117.67 C
ATOM 6083 OG1 THR A 799 24.762 7.806 161.908 1.00127.73 O
ATOM 6084 CG2 THR A 799 24.670 5.877 163.373 1.00104.98 C
ATOM 6085 N ASP A 800 22.464 9.675 162.130 1.00123.04 N
ATOM 6086 CA ASP A 800 22.196 11.099 161.896 1.00125.25 C
ATOM 6087 C ASP A 800 20.849 1 1.522 162.496 1.00128.13 C
ATOM 6088 O ASP A 800 20.644 12.692 162.832 1.00123.45 O
ATOM 6089 CB ASP A 800 22.217 11.431 160.395 1.00126.29 C
ATOM 6090 CG ASP A 800 23.610 11.329 159.781 1.00124.78 C
ATOM 6091 OD1 ASP A 800 24.550 10.894 160.486 1.00125.99 O
ATOM 6092 OD2 ASP A 800 23.757 11.671 158.584 1.00119.06 O
ATOM 6093 N GLY A 801 19.939 10.560 162.631 1.00130.73 N
ATOM 6094 CA GLY A 801 18.590 10.841 163.090 1.00130.93 C
ATOM 6095 C GLY A 801 18.388 10.801 164.595 1.00127.92 C
ATOM 6096 O GLY A 801 17.629 1 1.609 165.146 1.00122.57 O
ATOM 6097 N LEU A 802 19.048 9.857 165.266 1.00126.05 N
ATOM 6098 CA LEU A 802 18.878 9.711 166.714 1.00116.93 C
ATOM 6099 C LEU A 802 20.112 10.143 167.538 1.00101.56 C
ATOM 6100 O LEU A 802 20.082 1 1.214 168.141 1.00 97.24 O
ATOM 6101 CB LEU A 802 18.343 8.313 167.094 1.00116.47 C
ATOM 6102 CG LEU A 802 17.090 7.814 166.367 1.00118.70 C
ATOM 6103 CD1 LEU A 802 16.717 6.419 166.836 1.00122.97 C
ATOM 6104 CD2 LEU A 802 15.918 8.769 166.556 1.00118.98 C
ATOM 6105 N PRO A 803 21.200 9.344 167.552 1.00 95.38 N
ATOM 6106 CA PRO A 803 22.302 9.748 168.434 1.00 95.30 C
ATOM 6107 C PRO A 803 22.915 1 1.097 168.057 1.00102.35 C ATOM 6108 O PRO A 803 23.259 11.875 168.948 1.00104.29 O
ATOM 6109 CB PRO A 803 23.338 8.634 168.238 1.00 89.52 C
ATOM 6110 CG PRO A 803 22.582 7.501 167.674 1.00 93.91 C
ATOM 611 1 CD PRO A 803 21.547 8.124 166.805 1.00 96.61 C
ATOM 6112 N ALA A 804 23.046 11.372 166.763 1.00102.37 N
ATOM 6113 CA ALA A 804 23.605 12.644 166.322 1.00 98.06 C
ATOM 6114 C ALA A 804 22.757 13.831 166.783 1.00 98.73 C
ATOM 6115 O ALA A 804 23.297 14.840 167.242 1.00 96.62 O
ATOM 6116 CB ALA A 804 23.781 12.667 164.810 1.00 94.99 C
ATOM 6117 N THR A 805 21.436 13.715 166.661 1.00101.44 N
ATOM 6118 CA THR A 805 20.552 14.788 167.108 1.00103.61 C
ATOM 6119 C THR A 805 20.670 14.924 168.613 1.00101.74 C
ATOM 6120 O THR A 805 20.834 16.026 169.141 1.00103.13 O
ATOM 6121 CB THR A 805 19.077 14.534 166.728 1.00108.21 C
ATOM 6122 OG1 THR A 805 18.947 14.504 165.301 1.001 18.05 O
ATOM 6123 CG2 THR A 805 18.179 15.635 167.281 1.00 99.75 C
ATOM 6124 N ALA A 806 20.636 13.782 169.292 1.00100.30 N
ATOM 6125 CA ALA A 806 20.680 13.730 170.749 1.00102.83 C
ATOM 6126 C ALA A 806 21.887 14.449 171.354 1.00106.19 C
ATOM 6127 O ALA A 806 21.906 14.730 172.552 1.00109.50 O
ATOM 6128 CB ALA A 806 20.630 12.283 171.225 1.00 99.94 C
ATOM 6129 N LEU A 807 22.887 14.748 170.530 1.00103.10 N
ATOM 6130 CA LEU A 807 24.092 15.420 171.001 1.00 96.75 C
ATOM 6131 C LEU A 807 23.849 16.893 171.289 1.00102.49 C
ATOM 6132 O LEU A 807 24.572 17.505 172.084 1.00 99.92 O
ATOM 6133 CB LEU A 807 25.219 15.272 169.983 1.00 89.02 C
ATOM 6134 CG LEU A 807 25.817 13.872 169.927 1.00 89.96 C
ATOM 6135 CD1 LEU A 807 26.996 13.836 168.976 1.00 85.58 C
ATOM 6136 CD2 LEU A 807 26.227 13.419 171.326 1.00 93.35 C
ATOM 6137 N GLY A 808 22.831 17.460 170.645 1.00106.53 N
ATOM 6138 CA GLY A 808 22.513 18.866 170.825 1.00112.45 C
ATOM 6139 C GLY A 808 22.053 19.179 172.237 1 .00115.05 C
ATOM 6140 O GLY A 808 22.063 20.333 172.683 1.00111.21 O
ATOM 6141 N PHE A 809 21.662 18.125 172.943 1 .00119.29 N
ATOM 6142 CA PHE A 809 21.063 18.243 174.260 1.00122.64 C
ATOM 6143 C PHE A 809 22.038 17.739 175.314 1.00123.74 C
ATOM 6144 O PHE A 809 21.653 17.102 176.293 1.00129.06 O
ATOM 6145 CB PHE A 809 19.746 17.466 174.285 1.00127.71 C
ATOM 6146 CG PHE A 809 18.872 17.750 173.098 1.00132.62 C
ATOM 6147 CD1 PHE A 809 18.750 19.048 172.609 1.00136.22 C ATOM 6148 CD2 PHE A 809 18.201 16.730 172.451 1.00135.19 C
ATOM 6149 CE1 PHE A 809 17.967 19.323 171.506 1.00138.99 C
ATOM 6150 CE2 PHE A 809 17.410 16.997 171.348 1.00140.62 C
ATOM 6151 CZ PHE A 809 17.293 18.296 170.874 1.00141.84 C
ATOM 6152 N AS A 810 23.315 18.024 175.087 1.00120.04 N
ATOM 6153 CA ASN A 810 24.357 17.752 176.064 1.00114.61 C
ATOM 6154 C ASN A 810 24.360 18.847 177.138 1.00109.10 C
ATOM 6155 O ASN A 810 23.748 19.901 176.956 1.00112.27 O
ATOM 6156 CB ASN A 810 25.722 17.666 175.365 1.00108.74 C
ATOM 6157 CG ASN A 810 25.926 16.345 174.626 1.00105.58 C
ATOM 6158 OD1 ASN A 810 24.970 15.693 174.211 1.00107.61 O
ATOM 6159 ND2 ASN A 810 27.182 15.946 174.469 1.00101.69 N
ATOM 6160 N PRO A 811 25.017 18.596 178.275 1.00 95.84 N
ATOM 6161 CA PRO A 811 25.172 19.671 179.252 1.00 94.60 C
ATOM 6162 C PRO A 811 26.444 20.445 178.974 1.00 99.18 C
ATOM 6163 O PRO A 811 27.302 19.945 178.242 1.00100.58 O
ATOM 6164 CB PRO A 811 25.365 18.901 180.546 1.00 94.47 C
ATOM 6165 CG PRO A 811 26.129 17.725 180.100 1.00 90.71 C
ATOM 6166 CD PRO A 81 1 25.467 17.309 178.825 1.00 89.61 C
ATOM 6167 N PRO A 812 26.571 21.652 179.549 1.00101.91 N
ATOM 6168 CA PRO A 812 27.859 22.346 179.549 1.00100.18 C
ATOM 6169 C PRO A 812 28.939 21.431 180.094 1.00104.79 C
ATOM 6170 O PRO A 812 28.709 20.753 181.091 1.00114.72 O
ATOM 6171 CB PRO A 812 27.617 23.501 180.514 1.00 98.28 C
ATOM 6172 CG PRO A 812 26.190 23.833 180.293 1.00101.85 C
ATOM 6173 CD PRO A 812 25.498 22.502 180.087 1.00104.47 C
ATOM 6174 N ASP A 813 30.088 21.399 179.432 1.00103.80 N
ATOM 6175 CA ASP A 813 31.209 20.584 179.873 1.00106.89 C
ATOM 6176 C ASP A 813 31.581 20.964 181.299 1.00107.48 C
ATOM 6177 O ASP A 813 31.202 22.026 181.786 1.00106.34 O
ATOM 6178 CB ASP A 813 32.401 20.788 178.939 1.00108.82 C
ATOM 6179 CG ASP A 813 33.067 19.485 178.555 1.00112.22 C
ATOM 6180 OD2 ASP A 813 33.479 19.343 177.384 1.00111.67 O
ATOM 6181 OD1 ASP A 813 33.175 18.601 179.427 1.00116.41 O
ATOM 6182 N LEU A 814 32.306 20.095 181.985 1.00112.09 N
ATOM 6183 CA LEU A 814 32.632 20.369 183.379 1.001 19.16 C
ATOM 6184 C LEU A 814 33.836 21.293 183.500 1.00117.00 C
ATOM 6185 O LEU A 814 34.645 21.395 182.574 1.00114.81 O
ATOM 6186 CB LEU A 814 32.868 19.067 184.151 1.00123.90 C
ATOM 6187 CG LEU A 814 31.627 18.228 184.460 1.00123.18 C ATOM 6188 CD1 LEU A 814 32.021 17.034 185.304 1.00131.39 C
ATOM 6189 CD2 LEU A 814 30.552 19.059 185.161 1.001 17.04 C
ATOM 6190 N ASP A 815 33.933 21.969 184.645 1.00118.49 N
ATOM 6191 CA ASP A 815 35.093 22.789 184.978 1.00123.49 C
ATOM 6192 C ASP A 815 35.425 23.699 183.812 1.00112.50 C
ATOM 6193 O ASP A 815 36.577 23.845 183.424 1.00116.95 O
ATOM 6194 CB ASP A 815 36.287 21.895 185.326 1.00137.23 C
ATOM 6195 CG ASP A 815 35.978 20.918 186.457 1.00145.27 C
ATOM 6196 OD1 ASP A 815 35.541 21.375 187.541 1.00146.56 O
ATOM 6197 OD2 ASP A 815 36.158 19.693 186.252 1.00145.15 O
ATOM 6198 N ILE A 816 34.380 24.286 183.250 1.00104.00 N
ATOM 6199 CA ILE A 816 34.465 25.026 182.003 1.00 93.92 C
ATOM 6200 C ILE A 816 34.949 26.442 182.262 1.00 97.04 C
ATOM 6201 O ILE A 816 35.440 27.123 181.359 1.00101.24 O
ATOM 6202 CB ILE A 816 33.084 25.071 181.322 1.00 82.93 C
ATOM 6203 CG1 ILE A 816 33.204 25.250 179.816 1.00 77.12 C
ATOM 6204 CG2 ILE A 816 32.206 26.146 181.937 1.00 80.58 C
ATOM 6205 CD1 ILE A 816 31.871 25.307 179.146 1.00 75.18 C
ATOM 6206 N MET A 817 34.818 26.886 183.504 1.00 98.22 N
ATOM 6207 CA MET A 817 35.276 28.219 183.855 1.00 94.45 C
ATOM 6208 C MET A 817 36.283 28.225 184.986 1.00101.03 C
ATOM 6209 O MET A 817 36.433 29.224 185.686 1.00 97.26 O
ATOM 6210 CB MET A 817 34.102 29.137 184.140 1.00 80.93 C
ATOM 621 1 CG MET A 817 33.263 29.307 182.910 1.00 68.59 C
ATOM 6212 SD MET A 817 32.355 30.838 182.916 1.00 98.26 S
ATOM 6213 CE MET A 817 33.477 31.966 182.133 1.00 55.83 C
ATOM 6214 N ASP A 818 36.960 27.092 185.152 1.00110.54 N
ATOM 6215 CA ASP A 818 38.176 27.021 185.945 1.001 18.00 C
ATOM 6216 C ASP A 818 39.330 26.947 184.961 1.001 17.57 C
ATOM 6217 O ASP A 818 40.480 26.709 185.337 1.00126.76 O
ATOM 6218 CB ASP A 818 38.158 25.800 186.851 1.00125.99 C
ATOM 6219 CG ASP A 818 36.958 25.787 187.761 1.00132.93 C
ATOM 6220 OD2 ASP A 818 35.974 25.097 187.416 1.00137.54 O
ATOM 6221 OD1 ASP A 818 36.994 26.477 188.808 1.00130.54 O
ATOM 6222 N ARG A 819 38.992 27.141 183.690 1.00107.94 N
ATOM 6223 CA ARG A 819 39.967 27.280 182.625 1.00101.14 C
ATOM 6224 C ARG A 819 40.063 28.760 182.268 1.00 96.77 C
ATOM 6225 O ARG A 819 39.169 29.541 182.598 1.00 99.42 O
ATOM 6226 CB ARG A 819 39.533 26.463 181.406 1.00 99.72 C
ATOM 6227 CG ARG A 819 39.347 24.983 181.685 1.00104.42 C ATOM 6228 CD ARG A 819 39.024 24.219 180.417 1.001 10.31 C
ATOM 6229 NE ARG A 819 40.1 16 24.264 179.445 1.00119.97 N
ATOM 6230 CZ ARG A 819 41.071 23.342 179.339 1.00132.19 C
ATOM 6231 NH1 ARG A 819 41.086 22.289 180.150 1.00135.63 N
ATOM 6232 NH2 ARG A 819 42.016 23.471 178.417 1.00137.17 N
ATOM 6233 N PRO A 820 41.157 29.162 181.614 1.00 88.65 N
ATOM 6234 CA PRO A 820 41.328 30.547 181.171 1.00 90.13 C
ATOM 6235 C PRO A 820 40.687 30.745 179.800 1.00 90.12 C
ATOM 6236 O PRO A 820 40.292 29.744 179.193 1.00 92.42 O
ATOM 6237 CB PRO A 820 42.852 30.696 181.077 1.00 88.39 C
ATOM 6238 CG PRO A 820 43.405 29.511 181.769 1.00 94.86 C
ATOM 6239 CD PRO A 820 42.417 28.427 181.527 1.00 90.61 C
ATOM 6240 N PRO A 821 40.577 32.006 179.325 1.00 79.70 N
ATOM 6241 CA PRO A 821 39.930 32.227 178.033 1.00 75.66 C
ATOM 6242 C PRO A 821 40.633 31.463 176.935 1.00 86.00 C
ATOM 6243 O PRO A 821 41.858 31.368 176.941 1.00 89.58 O
ATOM 6244 CB PRO A 821 40.114 33.731 177.798 1.00 73.79 C
ATOM 6245 CG PRO A 821 40.259 34.316 179.137 1.00 71.98 C
ATOM 6246 CD PRO A 821 40.996 33.277 179.946 1.00 76.70 C
ATOM 6247 N ARG A 822 39.853 30.91 1 176.013 1.00 92.68 N
ATOM 6248 CA ARG A 822 40.392 30.303 174.806 1.00 84.40 C
ATOM 6249 C ARG A 822 41.239 31.338 174.108 1.00 86.00 C
ATOM 6250 O ARG A 822 40.995 32.547 174.214 1.00 82.58 O
ATOM 6251 CB ARG A 822 39.259 29.865 173.875 1.00 78.61 C
ATOM 6252 CG ARG A 822 39.669 28.850 172.833 1.00 78.83 C
ATOM 6253 CD ARG A 822 38.464 28.264 172.103 1.00 78.83 C
ATOM 6254 NE ARG A 822 37.997 29.099 170.999 1.00 79.92 N
ATOM 6255 CZ ARG A 822 36.938 29.903 171.053 1.00 83.20 C
ATOM 6256 NH1 ARG A 822 36.598 30.619 169.985 1.00 85.36 N
ATOM 6257 H2 ARG A 822 36.214 29.990 172.167 1.00 81.67 N
ATOM 6258 N SER A 823 42.258 30.868 173.410 1.00 96.65 N
ATOM 6259 CA SER A 823 43.037 31.768 172.600 1.00103.20 C
ATOM 6260 C SER A 823 42.251 32.067 171.343 1.0011 1.73 C
ATOM 6261 O SER A 823 41.661 31.163 170.745 1.00117.04 O
ATOM 6262 CB SER A 823 44.371 31.149 172.230 1.00103.25 C
ATOM 6263 OG SER A 823 45.070 32.029 171.375 1.00107.72 O
ATOM 6264 N PRO A 824 42.214 33.343 170.945 1.001 14.14 N
ATOM 6265 CA PRO A 824 41.744 33.586 169.587 1.00116.25 C
ATOM 6266 C PRO A 824 42.821 32.995 168.703 1.00124.54 C
ATOM 6267 O PRO A 824 43.968 32.907 169.149 1.00135.24 O ATOM 6268 CB PRO A 824 41.740 35.109 169.493 1.00120.12 C
ATOM 6269 CG PRO A 824 42.794 35.552 170.474 1.00119.31 C
ATOM 6270 CD PRO A 824 42.725 34.563 171.596 1.00117.91 C
ATOM 6271 N LYS A 825 42.468 32.548 167.506 1.00124.39 N
ATOM 6272 CA LYS A 825 43.454 31.994 166.574 1.00134.81 C
ATOM 6273 C LYS A 825 43.992 30.598 166.939 1.00132.70 C
ATOM 6274 O LYS A 825 44.625 29.952 166.106 1.00142.93 O
ATOM 6275 CB LYS A 825 44.603 32.985 166.312 1.00146.95 C
ATOM 6276 CG LYS A 825 44.138 34.352 165.817 1.00154.97 C
ATOM 6277 CD LYS A 825 45.291 35.334 165.681 1.00164.31 C
ATOM 6278 CE LYS A 825 44.800 36.686 165.179 1.00168.95 C
ATOM 6279 NZ LYS A 825 45.908 37.664 164.989 1.00174.75 N
ATOM 6280 N GLU A 826 43.755 30.132 168.164 1.00122.20 N
ATOM 6281 CA GLU A 826 43.946 28.714 168.468 1.00116.81 C
ATOM 6282 C GLU A 826 43.090 27.923 167.482 1.00116.28 C
ATOM 6283 O GLU A 826 41.873 28.097 167.447 1.00120.13 O
ATOM 6284 CB GLU A 826 43.513 28.389 169.898 1.00114.09 C
ATOM 6285 CG GLU A 826 43.227 26.902 170.125 1.00120.34 C
ATOM 6286 CD GLU A 826 42.383 26.636 171.366 1.00123.77 C
ATOM 6287 OE1 GLU A 826 41.515 25.730 171.323 1.00121.90 O
ATOM 6288 OE2 GLU A 826 42.592 27.330 172.386 1.00126.08 O
ATOM 6289 N PRO A 827 43.723 27.060 166.671 1.00111.70 N
ATOM 6290 CA PRO A 827 43.032 26.394 165.566 1.00108.54 C
ATOM 6291 C PRO A 827 41.880 25.556 166.084 1.00111.32 C
ATOM 6292 O PRO A 827 41.983 24.986 167.171 1.00112.66 O
ATOM 6293 CB PRO A 827 44.112 25.487 164.984 1.00112.20 C
ATOM 6294 CG PRO A 827 45.003 25.202 166.129 1.00112.63 C
ATOM 6295 CD PRO A 827 45.059 26.487 166.896 1.00114.44 C
ATOM 6296 N LEU A 828 40.792 25.497 165.323 1.00113.77 N
ATOM 6297 CA LEU A 828 39.605 24.761 165.740 1.00112.27 C
ATOM 6298 C LEU A 828 39.909 23.282 165.925 1.00113.23 C
ATOM 6299 O LEU A 828 39.485 22.660 166.896 1.00113.60 O
ATOM 6300 CB LEU A 828 38.499 24.939 164.715 1.00115.06 C
ATOM 6301 CG LEU A 828 37.251 24.095 164.938 1.00122.40 C
ATOM 6302 CD1 LEU A 828 36.646 24.320 166.321 1.00124.15 C
ATOM 6303 CD2 LEU A 828 36.257 24.439 163.867 1.00126.94 C
ATOM 6304 N ILE A 829 40.645 22.723 164.977 1.00116.67 N
ATOM 6305 CA ILE A 829 41.125 21.359 165.107 1.00115.25 C
ATOM 6306 C ILE A 829 42.628 21.341 165.345 1.00120.44 C
ATOM 6307 O ILE A 829 43.423 21.635 164.447 1.00120.92 O ATOM 6308 CB ILE A 829 40.783 20.522 163.884 1.00110.04 C
ATOM 6309 CG1 ILE A 829 39.264 20.379 163.772 1.00109.80 C
ATOM 6310 CG2 ILE A 829 41.454 19.165 163.983 1.00108.30 C
ATOM 6311 CD1 ILE A 829 38.801 19.586 162.566 1.00112.06 C
ATOM 6312 N SER A 830 43.001 21.021 166.578 1.00123.21 N
ATOM 6313 CA SER A 830 44.393 20.878 166.950 1.00123.18 C
ATOM 6314 C SER A 830 44.967 19.735 166.151 1.00113.77 C
ATOM 6315 O SER A 830 44.240 18.806 165.793 1.00101.95 O
ATOM 6316 CB SER A 830 44.506 20.567 168.442 1.00136.00 C
ATOM 6317 OG SER A 830 45.786 20.047 168.762 1.00148.23 O
ATOM 6318 N GLY A 831 46.266 19.818 165.864 1.00118.81 N
ATOM 6319 CA GLY A 831 46.970 18.755 165.172 1.00118.16 C
ATOM 6320 C GLY A 831 46.746 17.459 165.915 1.001 16.71 C
ATOM 6321 O GLY A 831 46.403 16.436 165.323 1.00 75.48 O
ATOM 6322 N TRP A 832 46.914 17.530 167.232 1.00118.93 N
ATOM 6323 CA TRP A 832 46.642 16.407 168.122 1.00121.88 C
ATOM 6324 C TRP A 832 45.219 15.875 167.969 1.00122.25 C
ATOM 6325 O TRP A 832 45.000 14.665 167.919 1.001 17.98 O
ATOM 6326 CB TRP A 832 46.871 16.81 1 169.584 1.001 16.17 C
ATOM 6327 CG TRP A 832 46.096 15.954 170.528 1.00106.22 C
ATOM 6328 CD1 TRP A 832 44.922 16.270 171.141 1.00101.92 C
ATOM 6329 CD2 TRP A 832 46.415 14.618 170.934 1.00102.37 C
ATOM 6330 NE1 TRP A 832 44.496 15.218 171.911 1.00101.71 N
ATOM 6331 CE2 TRP A 832 45.396 14.192 171.802 1.00100.26 C
ATOM 6332 CE3 TRP A 832 47.467 13.745 170.648 1.00108.46 C
ATOM 6333 CZ2 TRP A 832 45.397 12.931 172.394 1.00102.96 C
ATOM 6334 CZ3 TRP A 832 47.467 12.494 171.235 1.00112.35 C
ATOM 6335 CH2 TRP A 832 46.439 12.099 172.100 1.001 10.58 C
ATOM 6336 N LEU A 833 44.254 16.787 167.916 1.00123.25 N
ATOM 6337 CA LEU A 833 42.850 16.404 167.849 1.00119.12 C
ATOM 6338 C LEU A 833 42.584 15.534 166.620 1.00112.13 C
ATOM 6339 O LEU A 833 41.941 14.488 166.716 1.00105.02 O
ATOM 6340 CB LEU A 833 41.962 17.651 167.849 1.001 16.65 C
ATOM 6341 CG LEU A 833 40.465 17.434 168.055 1.001 12.36 C
ATOM 6342 CD1 LEU A 833 40.239 16.360 169.103 1.00109.73 C
ATOM 6343 CD2 LEU A 833 39.793 18.746 168.457 1.001 1 1.85 C
ATOM 6344 N PHE A 834 43.116 15.962 165.477 1.00110.51 N
ATOM 6345 CA PHE A 834 42.996 15.215 164.228 1.00107.79 C
ATOM 6346 C PHE A 834 43.449 13.767 164.382 1.00109.06 C
ATOM 6347 O PHE A 834 42.967 12.877 163.680 1.001 10.85 O ATOM 6348 CB PHE A 834 43.810 15.890 163.125 1.00104.15 C
ATOM 6349 CG PHE A 834 43.590 15.298 161.766 1.00105.66 C
ATOM 6350 CD2 PHE A 834 44.416 14.291 161.288 1.00110.74 C
ATOM 6351 CD1 PHE A 834 42.558 15.748 160.964 1.00104.32 C
ATOM 6352 CE2 PHE A 834 44.214 13.742 160.034 1.00107.38 C
ATOM 6353 CE1 PHE A 834 42.350 15.208 159.715 1.00104.24 C
ATOM 6354 CZ PHE A 834 43.183 14.205 159.247 1.00105.27 C
ATOM 6355 N PHE A 835 44.385 13.538 165.295 1.00102.20 N
ATOM 6356 CA PHE A 835 44.827 12.193 165.580 1.00 98.74 C
ATOM 6357 C PHE A 835 43.653 11.369 166.104 1.00101.98 C
ATOM 6358 O PHE A 835 43.415 10.252 165.643 1.00 99.91 O
ATOM 6359 CB PHE A 835 45.965 12.210 166.596 1.00102.77 C
ATOM 6360 CG PHE A 835 46.568 10.868 166.845 1.0011 1.49 C
ATOM 6361 CD1 PHE A 835 45.968 9.975 167.714 1.0011 1.23 C
ATOM 6362 CD2 PHE A 835 47.737 10.496 166.204 1.00121.20 C
ATOM 6363 CE1 PHE A 835 46.514 8.735 167.931 1.00119.07 C
ATOM 6364 CE2 PHE A 835 48.294 9.254 166.424 1.00127.36 C
ATOM 6365 CZ PHE A 835 47.680 8.371 167.291 1.00124.80 C
ATOM 6366 N ARG A 836 42.920 1 1.920 167.068 1.00106.32 N
ATOM 6367 CA ARG A 836 41.796 11.198 167.664 1.00113.02 C
ATOM 6368 C ARG A 836 40.729 10.886 166.627 1.00114.52 C
ATOM 6369 O ARG A 836 40.1 15 9.818 166.656 1.00113.89 O
ATOM 6370 CB ARG A 836 41.165 11.998 168.798 1.00115.58 C
ATOM 6371 CG ARG A 836 42.057 12.208 169.990 1.00121.56 C
ATOM 6372 CD ARG A 836 41.354 13.094 170.990 1.00123.12 C
ATOM 6373 NE ARG A 836 40.037 12.568 171.328 1.00123.70 N
ATOM 6374 CZ ARG A 836 39.230 13.114 172.231 1.00123.76 C
ATOM 6375 NH1 ARG A 836 39.610 14.208 172.882 1.00121.13 N
ATOM 6376 NH2 ARG A 836 38.047 12.566 172.483 1.00123.44 N
ATOM 6377 N TYR A 837 40.51 1 11.831 165.717 1.001 12.61 N
ATOM 6378 CA TYR A 837 39.516 11.663 164.667 1.00105.78 C
ATOM 6379 C TYR A 837 39.909 10.463 163.833 1.00103.85 C
ATOM 6380 O TYR A 837 39.071 9.635 163.479 1.00104.69 O
ATOM 6381 CB TYR A 837 39.411 12.917 163.795 1.00101.50 C
ATOM 6382 CG TYR A 837 38.871 14.127 164.529 1.00102.17 C
ATOM 6383 CD1 TYR A 837 38.425 14.024 165.837 1.00105.07 C
ATOM 6384 CD2 TYR A 837 38.798 15.368 163.911 1.00100.43 C
ATOM 6385 CE1 TYR A 837 37.937 15.118 166.512 1.00105.09 C
ATOM 6386 CE2 TYR A 837 38.304 16.471 164.581 1.00 99.46 C
ATOM 6387 CZ TYR A 837 37.873 16.335 165.882 1.00104.46 C ATOM 6388 OH TYR A 837 37.375 17.414 166.573 1.00109.54 O
ATOM 6389 N MET A 838 41.200 10.353 163.552 1.00100.67 N
ATOM 6390 CA MET A 838 41.701 9.217 162.799 1.00101.96 C
ATOM 6391 C MET A 838 41.764 7.952 163.661 1.00105.17 C
ATOM 6392 O MET A 838 41.206 6.917 163.287 1.00108.20 O
ATOM 6393 CB MET A 838 43.061 9.536 162.171 1.00103.50 C
ATOM 6394 CG MET A 838 42.993 10.558 161.046 1.00100.67 C
ATOM 6395 SD MET A 838 41.532 10.276 160.030 1.00132.63 S
ATOM 6396 CE MET A 838 41.959 11.144 158.525 1.00168.74 C
ATOM 6397 N ALA A 839 42.420 8.044 164.817 1.00101.88 N
ATOM 6398 CA ALA A 839 42.631 6.875 165.667 1.00103.68 C
ATOM 6399 C ALA A 839 41.324 6.151 166.014 1.00110.74 C
ATOM 6400 O ALA A 839 41.215 4.935 165.845 1.00108.62 O
ATOM 6401 CB ALA A 839 43.390 7.259 166.924 1.00 99.86 C
ATOM 6402 N ILE A 840 40.334 6.909 166.478 1.001 17.26 N
ATOM 6403 CA ILE A 840 39.016 6.359 166.791 1.001 18.1 1 C
ATOM 6404 C ILE A 840 38.331 5.842 165.530 1.00127.22 C
ATOM 6405 O ILE A 840 37.744 4.752 165.524 1.00130.21 O
ATOM 6406 CB ILE A 840 38.11 1 7.418 167.456 1.00104.73 C
ATOM 6407 CG1 ILE A 840 38.675 7.812 168.824 1.00103.74 C
ATOM 6408 CG2 ILE A 840 36.687 6.909 167.587 1.00 98.04 C
ATOM 6409 CD1 ILE A 840 38.799 6.660 169.794 1.00102.48 C
ATOM 6410 N GLY A 841 38.425 6.633 164.463 1.00126.95 N
ATOM 6411 CA GLY A 841 37.770 6.318 163.207 1.00120.55 C
ATOM 6412 C GLY A 841 38.287 5.029 162.619 1.00115.36 C
ATOM 6413 O GLY A 841 37.512 4.182 162.176 1.00114.68 O
ATOM 6414 N GLY A 842 39.608 4.886 162.628 1.00111.17 N
ATOM 6415 CA GLY A 842 40.248 3.689 162.128 1.00108.94 C
ATOM 6416 C GLY A 842 39.731 2.475 162.863 1.00112.41 C
ATOM 6417 O GLY A 842 39.392 1.467 162.241 1.00113.80 O
ATOM 6418 N TYR A 843 39.651 2.584 164.188 1.00113.66 N
ATOM 6419 CA TYR A 843 39.189 1.478 165.017 1.00111.61 C
ATOM 6420 C TYR A 843 37.824 0.993 164.565 1.001 12.51 C
ATOM 6421 O TYR A 843 37.591 -0.212 164.465 1.00112.13 O
ATOM 6422 CB TYR A 843 39.130 1.857 166.496 1.00107.29 C
ATOM 6423 CG TYR A 843 38.803 0.667 167.365 1.001 12.11 C
ATOM 6424 CD1 TYR A 843 39.797 -0.220 167.758 1.00112.88 C
ATOM 6425 CD2 TYR A 843 37.499 0.410 167.768 1.00119.15 C
ATOM 6426 CE1 TYR A 843 39.506 -1.321 168.541 1.001 16.27 C
ATOM 6427 CE2 TYR A 843 37.197 -0.692 168.552 1.00124.16 C ATOM 6428 CZ TYR A 843 38.208 -1.553 168.935 1.00122.19 C
ATOM 6429 OH TYR A 843 37.916 -2.648 169.711 1.00125.91 O
ATOM 6430 N VAL A 844 36.931 1.941 164.291 1.00113.16 N
ATOM 6431 CA VAL A 844 35.586 1.620 163.827 1.00115.27 C
ATOM 6432 C VAL A 844 35.652 0.715 162.605 1.00112.80 C
ATOM 6433 O VAL A 844 35.141 -0.401 162.623 1.00107.62 O
ATOM 6434 CB VAL A 844 34.802 2.891 163.469 1.00115.22 C
ATOM 6435 CG1 VAL A 844 33.400 2.530 163.000 1.00114.20 C
ATOM 6436 CG2 VAL A 844 34.752 3.838 164.659 1.00115.91 C
ATOM 6437 N GLY A 845 36.312 1.202 161.558 1.00115.54 N
ATOM 6438 CA GLY A 845 36.488 0.450 160.329 1.00116.24 C
ATOM 6439 C GLY A 845 37.239 -0.849 160.539 1.00119.23 C
ATOM 6440 O GLY A 845 36.843 -1.888 160.009 1.00124.72 O
ATOM 6441 N ALA A 846 38.321 -0.794 161.312 1.00114.76 N
ATOM 6442 CA ALA A 846 39.079 -1.994 161.654 1.00108.52 C
ATOM 6443 C ALA A 846 38.182 -3.028 162.345 1.00112.89 C
ATOM 6444 O ALA A 846 38.206 -4.212 162.009 1.00111.36 O
ATOM 6445 CB ALA A 846 40.270 -1.641 162.532 1.00 97.51 C
ATOM 6446 N ALA A 847 37.374 -2.567 163.293 1.00116.76 N
ATOM 6447 CA ALA A 847 36.501 -3.460 164.044 1.00119.59 C
ATOM 6448 C ALA A 847 35.383 -4.037 163.188 1.00118.87 C
ATOM 6449 O ALA A 847 35.115 -5.234 163.252 1.00122.12 O
ATOM 6450 CB ALA A 847 35.922 -2.754 165.267 1.00119.46 C
ATOM 6451 N THR A 848 34.731 -3.193 162.392 1.00115.94 N
ATOM 6452 CA THR A 848 33.549 -3.629 161.651 1.00115.60 C
ATOM 6453 C THR A 848 33.895 -4.717 160.657 1.00114.28 C
ATOM 6454 O THR A 848 33.124 -5.658 160.488 1.00115.64 O
ATOM 6455 CB THR A 848 32.832 -2.481 160.912 1.00117.51 C
ATOM 6456 OG1 THR A 848 33.732 -1.875 159.985 1.00123.06 O
ATOM 6457 CG2 THR A 848 32.336 -1.429 161.887 1.00117.40 C
ATOM 6458 N VAL A 849 35.051 -4.594 160.006 1.00116.98 N
ATOM 6459 CA VAL A 849 35.538 -5.665 159.132 1.00122.07 C
ATOM 6460 C VAL A 849 36.216 -6.768 159.940 1.00123.17 C
ATOM 6461 O VAL A 849 36.182 -7.929 159.552 1.00126.63 O
ATOM 6462 CB VAL A 849 36.495 -5.173 158.010 1.00122.01 C
ATOM 6463 CG1 VAL A 849 35.791 -4.183 157.093 1.00121.15 C
ATOM 6464 CG2 VAL A 849 37.773 -4.583 158.589 1.00122.57 C
ATOM 6465 N GLY A 850 36.814 -6.407 161.073 1.00120.88 N
ATOM 6466 CA GLY A 850 37.390 -7.390 161.969 1.00120.93 C
ATOM 6467 C GLY A 850 36.306 -8.271 162.559 1.00130.89 C ATOM 6468 O GLY A 850 36.590 -9.316 163.141 1.00137.29 o
ATOM 6469 N ALA A 851 35.057 -7.837 162.414 1.00133.35 N
ATOM 6470 CA ALA A 851 33.903 -8.604 162.866 1.00136.80 C
ATOM 6471 C ALA A 851 33.442 -9.556 161.771 1.00140.65 C
ATOM 6472 O ALA A 851 33.076 -10.699 162.040 1.00144.06 O
ATOM 6473 CB ALA A 851 32.776 -7.676 163.262 1.00136.04 C
ATOM 6474 N ALA A 852 33.451 -9.079 160.532 1.00140.14 N
ATOM 6475 CA ALA A 852 33.120 -9.931 159.400 1.00142.47 C
ATOM 6476 C ALA A 852 34.205 -10.984 159.229 1.00150.98 C
ATOM 6477 O ALA A 852 33.924 -12.131 158.883 1.00158.75 O
ATOM 6478 CB ALA A 852 32.971 -9.108 158.132 1.00137.03 C
ATOM 6479 N ALA A 853 35.448 -10.589 159.488 1.00150.62 N
ATOM 6480 CA ALA A 853 36.589 -11.488 159.348 1.00150.56 C
ATOM 6481 C ALA A 853 36.558 -12.578 160.401 1.00151.56 C
ATOM 6482 O ALA A 853 37.103 -13.660 160.203 1.00155.26 O
ATOM 6483 CB ALA A 853 37.891 -10.715 159.442 1.00150.29 C
ATOM 6484 N TRP A 854 35.915 -12.285 161.522 1.00149.86 N
ATOM 6485 CA TRP A 854 35.879 -13.217 162.638 1.00154.30 C
ATOM 6486 C TRP A 854 34.903 -14.373 162.417 1.00157.42 C
ATOM 6487 O TRP A 854 35.221 -15.520 162.732 1.00157.89 O
ATOM 6488 CB TRP A 854 35.564 -12.474 163.935 1.00155.93 C
ATOM 6489 CG TRP A 854 35.382 -13.365 165.1 15 1.00158.48 C
ATOM 6490 CD1 TRP A 854 36.362 -13.963 165.855 1.00159.06 C
ATOM 6491 CD2 TRP A 854 34.139 -13.750 165.707 1.00159.83 C
ATOM 6492 NE1 TRP A 854 35.802 -14.702 166.868 1.00161.65 N
ATOM 6493 CE2 TRP A 854 34.438 -14.587 166.800 1.00162.60 C
ATOM 6494 CE3 TRP A 854 32.799 -13.469 165.418 1.00158.50 C
ATOM 6495 CZ2 TRP A 854 33.448 -15.145 167.602 1.00166.86 C
ATOM 6496 CZ3 TRP A 854 31.819 -14.021 166.215 1.00161.72 C
ATOM 6497 CH2 TRP A 854 32.147 -14.851 167.295 1.00166.40 C
ATOM 6498 N TRP A 855 33.723 -14.078 161.876 1.00161.36 N
ATOM 6499 CA TRP A 855 32.756 -15.132 161.586 1.00169.85 C
ATOM 6500 C TRP A 855 33.307 -16.054 160.512 1.00173.49 C
ATOM 6501 O TRP A 855 33.030 -17.255 160.500 1.00178.88 O
ATOM 6502 CB TRP A 855 31.411 -14.563 161.130 1.00173.87 C
ATOM 6503 CG TRP A 855 30.389 -15.639 160.871 1.00182.32 C
ATOM 6504 CD1 TRP A 855 29.513 -16.171 161.773 1.00185.47 C
ATOM 6505 CD2 TRP A 855 30.151 -16.326 159.633 1.00189.25 C
ATOM 6506 NE1 TRP A 855 28.741 -17.137 161.174 1.00189.32 N
ATOM 6507 CE2 TRP A 855 29.1 17 -17.255 159.862 1.00191.90 C ATOM 6508 CE3 TRP A 855 30.713-16.244158.354 1.00192.52 C
ATOM 6509 CZ2 TRP A 855 28.626-18.092158.858 1.00196.13 C
ATOM 6510 CZ3 TRP A 855 30.227-17.079157.359 1.00195.29 C
ATOM 6511 CH2 TRP A 855 29.194-17.990157.617 1.00196.67 C
ATOM 6512 N PHEA856 34.096-15.477159.612 1.00170.19 N
ATOM 6513 CA PHEA856 34.686-16.221158.508 1.00166.85 C
ATOM 6514 C PHEA856 35.858-17.109158.935 1.00162.11 C
ATOM 6515 O PHEA856 36.390-17.855158.120 1.00159.88 O
ATOM 6516 CB PHEA856 35.124-15.258157.400 1.00164.66 C
ATOM 6517 CG PHEA856 34.085-15.042156.334 1.00164.02 C
ATOM 6518 CD1 PHEA856 33.376-16.111155.809 1.00165.81 C
ATOM 6519 CD2 PHE A 856 33.816-13.772155.856 1.00162.31 C
ATOM 6520 CE1 PHE A 856 32.422-15.916154.824 1.00164.89 C
ATOM 6521 CE2 PHE A 856 32.864-13.572154.872 1.00162.92 C
ATOM 6522 CZ PHE A 856 32.166-14.646154.357 1.00163.94 C
ATOM 6523 N MET A 857 36.252-17.039160.205 1.00161.30 N
ATOM 6524 CA MET A 857 37.397-17.815160.687 1.00162.42 C
ATOM 6525 C MET A 857 37.158-18.592161.989 1.00166.93 C
ATOM 6526 O MET A 857 37.106-19.824161.977 1.00172.08 O
ATOM 6527 CB MET A 857 38.636-16.924160.827 1.00161.50 C
ATOM 6528 CG MET A 857 39.277-16.526159.502 1.00160.56 C
ATOM 6529 SD MET A 857 40.824-15.611159.698 1.00178.07 S
ATOM 6530 CE MET A 857 40.328-13.983159.144 1.0094.25 C
ATOM 6531 N TYRA858 37.022-17.878163.105 1.00164.01 N
ATOM 6532 CA TYR A 858 36.979-18.525164.422 1.00164.27 C
ATOM 6533 C TYR A 858 35.573-18.928164.876 1.00161.96 C
ATOM 6534 O TYR A 858 35.414-19.549165.930 1.00160.14 O
ATOM 6535 CB TYR A 858 37.619-17.635165.496 1.00164.89 C
ATOM 6536 CG TYR A 858 39.039-17.192165.206 1.00163.86 C
ATOM 6537 CD2 TYR A 858 39.557-16.042165.793 1.00163.92 C
ATOM 6538 CD1 TYR A 858 39.862-17.917164.354 1.00162.94 C
ATOM 6539 CE2 TYR A 858 40.851 -15.624165.537 1.00162.20 C
ATOM 6540 CE1 TYR A 858 41.158-17.506164.090 1.00163.19 C
ATOM 6541 CZ TYR A 858 41.648-16.358164.685 1.00161.30 C
ATOM 6542 OH TYR A 858 42.937-15.944164.429 1.00159.09 O
ATOM 6543 N ALA A 859 34.560-18.570164.092 1.00161.41 N
ATOM 6544 CA ALA A 859 33.175-18.880164.442 1.00162.77 C
ATOM 6545 C ALA A 859 32.904-20.383164.382 1.00166.84 C
ATOM 6546 O ALA A 859 33.219-21.036163.387 1.00168.98 O
ATOM 6547 CB ALA A 859 32.218-18.130163.532 1.00158.61 C ATOM 6548 N GLUA860 32.317-20.927165.445 1.00168.18 N
ATOM 6549 CA GLU A 860 32.072-22.366165.522 1.00170.87 C
ATOM 6550 C GLU A 860 31.007-22.841164.533 1.00173.54 C
ATOM 6551 O GLU A 860 31.113-23.940163.981 1.00174.71 O
ATOM 6552 CB GLU A 860 31.716-22.797166.952 1.00169.62 C
ATOM 6553 CG GLU A 860 32.887-22.771167.932 1.00167.27 C
ATOM 6554 CD GLU A 860 33.886-23.896167.703 1.00169.52 C
ATOM 6555 OE1 GLU A 860 33.675-24.721166.791 1.00170.28 O
ATOM 6556 OE2 GLU A 860 34.889-23.960168.443 1.00171.45 O
ATOM 6557 N ASP A 861 29.985-22.018164.308 1.00173.18 N
ATOM 6558 CA ASP A 861 28.968-22.340163.309 1.00172.19 C
ATOM 6559 C ASP A 861 29.332-21.758161.942 1.00168.17 C
ATOM 6560 O ASP A 861 28.541 -21.811161.001 1.00167.12 O
ATOM 6561 CB ASP A 861 27.577-21.875163.755 1.00169.38 C
ATOM 6562 CG ASP A 861 27.490-20.372163.939 1.00164.60 C
ATOM 6563 OD1 ASP A 861 28.506 -19.676163.740 1.00158.24 O
ATOM 6564 OD2 ASP A 861 26.395-19.882164.286 1.00169.85 O
ATOM 6565 N GLYA862 30.533-21.199161.846 1.00166.02 N
ATOM 6566 CA GLYA862 31.031 -20.670160.592 1.00165.16 C
ATOM 6567 C GLYA862 32.023-21.611159.932 1.00170.73 C
ATOM 6568 O GLYA862 32.358-22.659160.488 1.00174.99 O
ATOM 6569 N PRO A 863 32.497-21.243158.733 1.00171.12 N
ATOM 6570 CA PRO A 863 33.489-22.031157.991 1.00172.09 C
ATOM 6571 C PRO A 863 34.916-21.784158.491 1.00173.44 C
ATOM 6572 O PRO A 863 35.381 -20.645158.473 1.00175.63 O
ATOM 6573 CB PRO A 863 33.336-21.510156.560 1.00168.61 C
ATOM 6574 CG PRO A 863 32.886-20.093156.726 1.00165.98 C
ATOM 6575 CD PRO A 863 32.050-20.055157.981 1.00167.41 C
ATOM 6576 N GLYA864 35.598-22.836158.934 1.00171.97 N
ATOM 6577 CA GLYA864 36.958-22.703159.427 1.00170.70 C
ATOM 6578 C GLYA864 37.930-22.294158.336 1.00171.07 C
ATOM 6579 O GLYA864 38.258-23.091 157.462 1.00175.19 O
ATOM 6580 N VALA865 38.384-21.045158.381 1.00169.82 N
ATOM 6581 CA VAL A 865 39.286-20.501157.364 1.00173.01 C
ATOM 6582 C VAL A 865 40.488-19.822158.057 1.00179.82 C
ATOM 6583 O VAL A 865 41.015-18.811 157.584 1.00176.93 O
ATOM 6584 CB VAL A 865 38.524-19.514156.417 1.00124.25 C
ATOM 6585 CG1 VAL A 865 39.326-19.165155.174 1.00122.52 C
ATOM 6586 CG2 VAL A 865 37.186-20.100155.990 1.00123.41 C
ATOM 6587 N THRA866 40.915-20.405159.180 1.00188.13 N ATOM 6588 CA THR A 866 41.970 -19.842 160.042 1.00192.12 C
ATOM 6589 C THR A 866 43.300 -19.548 159.333 1.00192.81 C
ATOM 6590 O THR A 866 44.038 -20.464 158.964 1.00195.23 O
ATOM 6591 CB THR A 866 42.238 -20.744 161.274 1.00147.31 C
ATOM 6592 OG1 THR A 866 41.074 -20.775 162.108 1.00150.10 O
ATOM 6593 CG2 THR A 866 43.414 -20.219 162.088 1.00147.42 C
ATOM 6594 N TYR A 867 43.588 -18.258 159.158 1.00189.53 N
ATOM 6595 CA TYR A 867 44.786 -17.786 158.458 1.00188.64 C
ATOM 6596 C TYR A 867 44.835 -18.206 156.987 1.00192.24 C
ATOM 6597 O TYR A 867 45.834 -17.997 156.296 1.00196.43 O
ATOM 6598 CB TYR A 867 46.063 - 18.175 159.214 1.00188.61 C
ATOM 6599 CG TYR A 867 46.290 -17.315 160.433 1.00189.58 C
ATOM 6600 CD2 TYR A 867 47.121 -17.730 161.467 1.00193.64 C
ATOM 6601 CD1 TYR A 867 45.663 -16.078 160.549 1.00186.69 C
ATOM 6602 CE2 TYR A 867 47.319 -16.929 162.586 1.00194.49 C
ATOM 6603 CE1 TYR A 867 45.854 -15.275 161.657 1.00185.95 C
ATOM 6604 CZ TYR A 867 46.680 -15.701 162.672 1.00188.79 C
ATOM 6605 OH TYR A 867 46.864 -14.892 163.770 1.00184.90 O
ATOM 6606 N HIS A 868 43.733 -18.786 156.524 1.00189.19 N
ATOM 6607 CA HIS A 868 43.559 -19.178 155.133 1.00183.17 C
ATOM 6608 C HIS A 868 43.086 -17.931 154.384 1.00174.88 C
ATOM 6609 O HIS A 868 42.478 - 17.029 154.975 1.00168.97 O
ATOM 6610 CB HIS A 868 42.540 -20.331 155.072 1.00176.44 C
ATOM 661 1 CG HIS A 868 42.212 -20.819 153.692 1.00169.72 C
ATOM 6612 ND1 HIS A 868 41.517 -20.062 152.774 1.00165.24 N
ATOM 6613 CD2 HIS A 868 42.429 -22.018 153.100 1.00169.92 C
ATOM 6614 CE1 HIS A 868 41.350 -20.760 151.665 1.00165.96 C
ATOM 6615 NE2 HIS A 868 41.893 -21.951 151.838 1.00169.12 N
ATOM 6616 N GLN A 869 43.398 -17.859 153.095 1.00167.05 N
ATOM 6617 CA GLN A 869 42.989 -16.713 152.305 1.00157.92 C
ATOM 6618 C GLN A 869 41.479 - 16.639 152.164 1.00153.84 C
ATOM 6619 O GLN A 869 40.879 -17.362 151.372 1.00150.61 O
ATOM 6620 CB GLN A 869 43.633 -16.724 150.916 1.00157.03 C
ATOM 6621 CG GLN A 869 45.065 -16.224 150.874 1.00155.28 C
ATOM 6622 CD GLN A 869 46.064 - 17.289 151.271 1.00154.77 C
ATOM 6623 OE1 GLN A 869 46.355 -18.207 150.497 1.00153.27 O
ATOM 6624 NE2 GLN A 869 46.597 -17.174 152.484 1.00153.71 N
ATOM 6625 N LEU A 870 40.872 -15.770 152.963 1.00154.60 N
ATOM 6626 CA LEU A 870 39.564 -15.234 152.636 1.00155.73 C
ATOM 6627 C LEU A 870 39.862 -14.198 151.563 1.00163.90 C ATOM 6628 O LEU A 870 38.981 -13.753150.828 1.00166.70 O
ATOM 6629 CB LEU A 870 38.931 -14.576153.857 1.00148.19 C
ATOM 6630 CG LEU A 870 37.582-13.879153.667 1.00140.17 C
ATOM 6631 CD2 LEU A 870 37.159-13.210154.953 1.00132.86 C
ATOM 6632 CD1 LEU A 870 36.521 -14.863153.193 1.00141.85 C
ATOM 6633 N THRA871 41.138-13.823151.500 1.00167.55 N
ATOM 6634 CA THR A 871 41.694-13.038150.412 1.00171.03 C
ATOM 6635 C THR A 871 41.430-13.724149.072 1.00180.33 C
ATOM 6636 O THR A 871 41.261 -13.051148.057 1.00182.72 O
ATOM 6637 CB THR A 871 43.222-12.862150.592 1.00168.03 C
ATOM 6638 OG1 THR A 871 43.504-12.382151.913 1.00159.65 O
ATOM 6639 CG2 THR A 871 43.789-11.887149.566 1.00170.86 C
ATOM 6640 N HIS A 872 41.388-15.058149.075 1.00185.28 N
ATOM 6641 CA HIS A 872 41.167-15.827147.850 1.00191.49 C
ATOM 6642 C HIS A 872 39.939-15.388147.063 1.00192.09 C
ATOM 6643 O HIS A 872 38.863-15.167147.620 1.00183.62 O
ATOM 6644 CB HIS A 872 41.068-17.328148.127 1.00202.04 C
ATOM 6645 CG HIS A 872 40.664-18.136146.926 1.00211.41 C
ATOM 6646 ND1 HIS A 872 41.296-18.022145.702 1.00213.91 N
ATOM 6647 CD2 HIS A 872 39.692-19.062146.760 1.00212.74 C
ATOM 6648 CE1 HIS A 872 40.728-18.844144.839 1.00213.24 C
ATOM 6649 NE2 HIS A 872 39.753-19.488145.451 1.00212.55 N
ATOM 6650 N PHEA873 40.129-15.299145.752 1.00205.97 N
ATOM 6651 CA PHEA873 39.133-14.792144.820 1.00217.73 C
ATOM 6652 C PHEA873 37.807-15.538144.903 1.00213.97 C
ATOM 6653 O PHEA873 37.765-16.763145.006 1.00212.84 O
ATOM 6654 CB PHEA873 39.709-14.793143.404 1.00233. 1 C
ATOM 6655 CG PHEA873 41.052-14.116143.312 1.00244.64 C
ATOM 6656 CD1 PHE A 873 41.145-12.733143.291 1.00247.16 C
ATOM 6657 CD2 PHE A 873 42.218-14.862143.277 1.00250.59 C
ATOM 6658 CE1 PHE A 873 42.374-12.104143.223 1.00249.37 C
ATOM 6659 CE2 PHE A 873 43.454-14.241143.208 1.00253.35 C
ATOM 6660 CZ PHE A 873 43.533-12.858143.181 1.00252.29 C
ATOM 6661 N MET A 874 36.727-14.768144.851 1.00213.28 N
ATOM 6662 CA MET A 874 35.403-15.237145.238 1.00213.90 C
ATOM 6663 C MET A 874 34.793-16.290144.319 1.00211.86 C
ATOM 6664 O MET A 874 33.778-16.897144.665 1.00208.65 O
ATOM 6665 CB MET A 874 34.460-14.041145.367 1.00217.62 C
ATOM 6666 CG MET A 874 35.043-12.911146.194 1.00217.14 C
ATOM 6667 SD MET A 874 35.725-13.502147.760 1.00239.09 S ATOM 6668 CE MET A 874 36.395 -11.977 148.407 1.00 95.09 C
ATOM 6669 N GLN A 875 35.395 -16.495 143.151 1.00213.88 N
ATOM 6670 CA GLN A 875 34.924 -17.534 142.242 1.00216.04 C
ATOM 6671 C GLN A 875 35.032 -18.890 142.939 1.00215.37 C
ATOM 6672 O GLN A 875 34.018 -19.517 143.242 1.00216.91 O
ATOM 6673 CB GLN A 875 35.715 -17.518 140.933 1.00216.65 C
ATOM 6674 CG GLN A 875 35.083 -18.351 139.826 1.00216.64 C
ATOM 6675 CD GLN A 875 35.671 -18.062 138.458 1.00214.73 C
ATOM 6676 OE1 GLN A 875 36.219 -16.985 138.218 1.00212.17 O
ATOM 6677 NE2 GLN A 875 35.561 -19.027 137.552 1.00215.23 N
ATOM 6678 N CYS A 876 36.264 -19.324 143.193 1.00210.80 N
ATOM 6679 CA CYS A 876 36.541 -20.434 144.106 1.00206.00 C
ATOM 6680 C CYS A 876 35.653 -21.671 143.934 1.00203.65 C
ATOM 6681 O CYS A 876 34.799 -21.958 144.773 1.00200.52 O
ATOM 6682 CB CYS A 876 36.462 -19.940 145.552 1.00205.02 C
ATOM 6683 SG CYS A 876 37.066 -21.1 12 146.769 1.00134.70 S
ATOM 6684 N THR A 877 35.854 -22.384 142.832 1.00204.48 N
ATOM 6685 CA THR A 877 35.214 -23.676 142.609 1.00202.91 C
ATOM 6686 C THR A 877 36.307 -24.652 142.196 1.00204.06 C
ATOM 6687 O THR A 877 36.063 -25.841 141.964 1.00205.10 O
ATOM 6688 CB THR A 877 34.144 -23.596 141.507 1.00200.52 C
ATOM 6689 OG1 THR A 877 34.683 -22.925 140.361 1.00198.08 O
ATOM 6690 CG2 THR A 877 32.932 -22.829 142.000 1.00198.69 C
ATOM 6691 N GLU A 878 37.520 -24.113 142.126 1.00201.95 N
ATOM 6692 CA GLU A 878 38.702 -24.807 141.626 1.00199.08 C
ATOM 6693 C GLU A 878 39.023 -26.060 142.416 1.00194.09 C
ATOM 6694 O GLU A 878 39.540 -27.038 141.871 1.00189.67 O
ATOM 6695 CB GLU A 878 39.898 -23.859 141.693 1.00196.67 C
ATOM 6696 CG GLU A 878 39.617 -22.476 141.128 1.00191.19 C
ATOM 6697 CD GLU A 878 40.794 -21.537 141.283 1.00186.50 C
ATOM 6698 OE1 GLU A 878 41.576 -21.727 142.238 1.00184.70 O
ATOM 6699 OE2 GLU A 878 40.939 -20.615 140.451 1.00185.39 O
ATOM 6700 N ASP A 879 38.729 -25.996 143.710 1.00195.16 N
ATOM 6701 CA ASP A 879 38.985 -27.080 144.648 1.00200.12 C
ATOM 6702 C ASP A 879 40.471 -27.322 144.923 1.00199.51 C
ATOM 6703 O ASP A 879 40.843 -28.406 145.362 1.00202.22 O
ATOM 6704 CB ASP A 879 38.303 -28.383 144.202 1.00204.86 C
ATOM 6705 CG ASP A 879 36.796 -28.252 144.116 1.00204.12 C
ATOM 6706 OD2 ASP A 879 36.171 -29.074 143.412 1.00206.00 O
ATOM 6707 OD1 ASP A 879 36.236 -27.335 144.758 1.00201.34 O ATOM 6708 N HIS A 880 41.319-26.326144.685 1.00194.19 N
ATOM 6709 CA HIS A 880 42.729-26.475145.055 1.00190.13 C
ATOM 6710 C HIS A 880 43.002-26.385146.569 1.00190.64 C
ATOM 6711 O HIS A 880 43.900-27.069147.059 1.00191.04 O
ATOM 6712 CB HIS A 880 43.656-25.550144.249 1.00185.70 C
ATOM 6713 CG HIS A 880 43.790-24.174144.820 1.00182.34 C
ATOM 6714 ND1 HIS A 880 42.999-23.122144.413 1.00181.79 N
ATOM 6715 CD2 HIS A 880 44.612-23.679145.777 1.00181.40 C
ATOM 6716 CE1 HIS A 880 43.330-22.037145.091 1.00182.56 C
ATOM 6717 NE2 HIS A 880 44.306-22.349145.926 1.00182.10 N
ATOM 6718 N PRO A 881 42.242-25.548147.318 1.00190.95 N
ATOM 6719 CA PRO A 881 42.418-25.617148.770 1.00193.51 C
ATOM 6720 C PRO A 881 41.181 -26.164149.493 1.00198.51 C
ATOM 6721 O PRO A 881 41.167-26.216150.725 1.00197.77 O
ATOM 6722 CB PRO A 881 42.622-24.148149.147 1.00186.90 C
ATOM 6723 CG PRO A 881 41.871 -23.366148.076 1.00184.77 C
ATOM 6724 CD PRO A 881 41.483-24.336146.968 1.00187.93 C
ATOM 6725 N HIS A 882 40.162-26.563148.734 1.00202.52 N
ATOM 6726 CA HIS A 882 38.915-27.061149.302 1.00205.61 C
ATOM 6727 C HIS A 882 38.546-28.399148.679 1.00211.89 C
ATOM 6728 O HIS A 882 38.203-28.459147.501 1.00214.60 O
ATOM 6729 CB HIS A 882 37.774-26.083149.028 1.00204.91 C
ATOM 6730 CG HIS A 882 38.196-24.649148.960 1.00205.65 C
ATOM 6731 ND1 HIS A 882 38.473-23.898150.082 1.00205.49 N
ATOM 6732 CD2 HIS A 882 38.363-23.822147.903 1.00204.44 C
ATOM 6733 CE1 HIS A 882 38.807-22.672149.717 1.00201.89 C
ATOM 6734 NE2 HIS A 882 38.746-22.598148.400 1.00201.25 N
ATOM 6735 N PHEA883 38.605-29.468149.464 1.00215.89 N
ATOM 6736 CA PHEA883 38.202-30.784148.976 1.00220.14 C
ATOM 6737 C PHEA883 37.090-31.364149.849 1.00223.91 C
ATOM 6738 O PHEA883 36.112-31.918149.345 1.00226.28 O
ATOM 6739 CB PHEA883 39.394-31.748148.931 1.00219.96 C
ATOM 6740 CG PHEA883 40.398-31.443147.846 1.00216.77 C
ATOM 6741 CD2 PHE A 883 41.570-30.762148.140 1.00216.29 C
ATOM 6742 CD1 PHE A 883 40.183-31.861146.541 1.00214.68 C
ATOM 6743 CE2 PHE A 883 42.502-30.491147.150 1.00216.07 C
ATOM 6744 CE1 PHE A 883 41.110-31.593145.546 1.00214.15 C
ATOM 6745 CZ PHE A 883 42.273-30.914145.852 1.00215.11 C
ATOM 6746 N ASP A 887 34.296-24.882150.836 1.00164.65 N
ATOM 6747 CA ASP A 887 33.222-25.530150.091 1.00170.75 C ATOM 6748 C ASP A 887 31.900-24.765150.188 1.00173.26 C
ATOM 6749 O ASP A 887 31.220-24.834151.213 1.00175.97 O
ATOM 6750 CB ASP A 887 33.011 -26.966150.587 1.00174.92 C
ATOM 6751 CG ASP A 887 34.197-27.866150.300 1.00179.31 C
ATOM 6752 OD2 ASP A 887 34.258-28.975150.873 1.00179.53 O
ATOM 6753 OD1 ASP A 887 35.062-27.471149.491 1.00182.44 O
ATOM 6754 N CYSA888 31.525-24.038149.138 1.00172.51 N
ATOM 6755 CA CYS A 888 32.344-23.842147.948 1.00175.20 C
ATOM 6756 C CYS A 888 32.230-22.375147.563 1.00177.38 C
ATOM 6757 O CYS A 888 33.189-21.763147.085 1.00179.04 O
ATOM 6758 CB CYS A 888 31.851 -24.713146.786 1.00176.99 C
ATOM 6759 SG CYS A 888 32.285-26.476146.869 1.00226.19 S
ATOM 6760 N GLUA889 31.038-21.823147.775 1.00175.82 N
ATOM 6761 CA GLU A 889 30.756-20.414147.523 1.00170.95 C
ATOM 6762 C GLU A 889 29.715-19.923148.516 1.00161.18 C
ATOM 6763 O GLU A 889 28.819-19.160148.162 1.00158.37 O
ATOM 6764 CB GLU A 889 30.227-20.201146.101 1.00178.94 C
ATOM 6765 CG GLU A 889 31.264-20.283144.987 1.00185.63 C
ATOM 6766 CD GLU A 889 30.673-19.944143.625 1.00192.19 C
ATOM 6767 OE1 GLU A 889 29.482-19.568143.569 1.00193.25 O
ATOM 6768 OE2 GLU A 889 31.393-20.052142.611 1.00195.69 O
ATOM 6769 N ILEA 890 29.827-20.368149.761 1.00158.53 N
ATOM 6770 CA ILEA 890 28.889-19.962150.804 1.00159.52 C
ATOM 6771 C ILEA 890 29.348-18.630151.421 1.00159.68 C
ATOM 6772 O ILEA 890 28.818-18.169152.434 1.00158.13 O
ATOM 6773 CB ILEA 890 28.718-21.090151.862 1.00165.37 C
ATOM 6774 CG1 ILE A 890 28.512-22.443151.160 1.00162.80 C
ATOM 6775 CG2 ILE A 890 27.556-20.800152.812 1.00167.75 C
ATOM 6776 CD1 ILE A 890 28.212-23.611152.093 1.00158.67 C
ATOM 6777 N PHEA891 30.325-18.005150.765 1.00161.83 N
ATOM 6778 CA PHEA891 30.892-16.719151.186 1.00160.30 C
ATOM 6779 C PHEA891 29.892-15.557151.194 1.00156.32 C
ATOM 6780 O PHEA891 30.159-14.514151.791 1.00152.79 O
ATOM 6781 CB PHEA891 32.071 -16.330150.281 1.00159.81 C
ATOM 6782 CG PHEA891 33.351 -17.059150.581 1.00158.09 C
ATOM 6783 CD1 PHE A 891 33.447-17.912151.667 1.00156.09 C
ATOM 6784 CD2 PHE A 891 34.468-16.875149.778 1.00159.94 C
ATOM 6785 CE1 PHE A 891 34.631 -18.576151.942 1.00155.47 C
ATOM 6786 CE2 PHE A 891 35.653-17.534150.047 1.00160.27 C
ATOM 6787 CZ PHE A 891 35.735-18.386151.132 1.00157.12 C ATOM 6788 N GLU A 892 28.761 -15.722 150.514 1.00156.09 N
ATOM 6789 CA GLU A 892 27.753 -14.665 150.445 1.00157.04 C
ATOM 6790 C GLU A 892 26.789 -14.720 151.626 1.00156.65 C
ATOM 6791 O GLU A 892 25.650 -14.262 151.534 1.00154.34 O
ATOM 6792 CB GLU A 892 26.972 -14.744 149.133 1.00162.27 C
ATOM 6793 CG GLU A 892 27.379 -13.704 148.104 1.00165.32 C
ATOM 6794 CD GLU A 892 26.549 -13.785 146.836 1.00170.44 C
ATOM 6795 OE1 GLU A 892 26.127 -14.905 146.472 1.00173.29 O
ATOM 6796 OE2 GLU A 892 26.314 -12.729 146.208 1.00170.15 O
ATOM 6797 N ALA A 893 27.260 -15.283 152.734 1.00157.32 N
ATOM 6798 CA ALA A 893 26.444 -15.444 153.929 1.00157.27 C
ATOM 6799 C ALA A 893 26.043 -14.100 154.529 1.00154.87 C
ATOM 6800 O ALA A 893 26.788 -13.122 154.438 1.00151.76 O
ATOM 6801 CB ALA A 893 27.185 -16.295 154.959 1.00158.96 C
ATOM 6802 N PRO A 894 24.845 -14.044 155.131 1.00157.30 N
ATOM 6803 CA PRO A 894 24.372 -12.847 155.833 1.00157.51 C
ATOM 6804 C PRO A 894 25.010 -12.710 157.216 1.00160.43 C
ATOM 6805 O PRO A 894 24.996 -11.620 157.792 1.00162.87 O
ATOM 6806 CB PRO A 894 22.869 -13.102 155.972 1.00157.82 C
ATOM 6807 CG PRO A 894 22.751 -14.585 156.007 1.00159.57 C
ATOM 6808 CD PRO A 894 23.808 -15.089 155.063 1.00159.31 C
ATOM 6809 N GLU A 895 25.557 -13.805 157.736 .00159.45 N
ATOM 6810 CA GLU A 895 26.191 -13.799 159.056 1.00156.75 C
ATOM 681 1 C GLU A 895 27.383 -12.829 159.224 1.00154.13 C
ATOM 6812 O GLU A 895 27.422 -12.078 160.198 1.00153.56 O
ATOM 6813 CB GLU A 895 26.571 -15.220 159.496 1.00158.06 C
ATOM 6814 CG GLU A 895 25.393 -16.139 159.817 1.00163.18 C
ATOM 6815 CD GLU A 895 24.987 -17.020 158.645 1.00165.44 C
ATOM 6816 OE1 GLU A 895 25.168 -16.587 157.491 1.00164.18 O
ATOM 6817 OE2 GLU A 895 24.493 -18.147 158.879 1.00167.42 O
ATOM 6818 N PRO A 896 28.359 -12.839 158.292 1.00153.42 N
ATOM 6819 CA PRO A 896 29.492 -11.920 158.474 1.00152.24 C
ATOM 6820 C PRO A 896 29.081 -10.450 158.474 1.00152.22 C
ATOM 6821 O PRO A 896 29.593 -9.665 159.273 1.00151.60 O
ATOM 6822 CB PRO A 896 30.376 -12.210 157.252 1.00151.61 C
ATOM 6823 CG PRO A 896 29.468 -12.837 156.255 1.00151.06 C
ATOM 6824 CD PRO A 896 28.523 -13.653 157.075 1.00153.87 C
ATOM 6825 N MET A 897 28.164 -10.091 157.583 1.00153.13 N
ATOM 6826 CA MET A 897 27.694 -8.719 157.473 1.00151.37 C
ATOM 6827 C MET A 897 26.914 -8.299 158.716 1.00155.03 C ATOM 6828 O MET A 897 26.975 -7.145 159.137 1.00159.05 O
ATOM 6829 CB MET A 897 26.837 -8.554 156.217 1.00150.02 C
ATOM 6830 CG MET A 897 27.560 -8.936 154.934 1.00150.12 C
ATOM 6831 SD MET A 897 26.539 -8.754 153.459 1.00142.25 s
ATOM 6832 CE MET A 897 25.200 -9.876 153.848 1.00138.55 c
ATOM 6833 N THR A 898 26.192 -9.241 159.314 1.00154.69 N
ATOM 6834 CA THR A 898 25.410 -8.946 160.513 1.00156.04 C
ATOM 6835 C THR A 898 26.250 -8.909 161.782 1.00151.90 C
ATOM 6836 O THR A 898 25.718 -8.948 162.887 1.00153.00 O
ATOM 6837 CB THR A 898 24.271 -9.947 160.721 1.00161.43 C
ATOM 6838 OG1 THR A 898 24.748 -11.271 160.463 1.00169.57 o
ATOM 6839 CG2 THR A 898 23.153 -9.648 159.785 1.00157.25 C
ATOM 6840 N MET A 899 27.563 -8.865 161.617 1.00145.09 N
ATOM 6841 CA MET A 899 28.450 -8.559 162.719 1.00139.22 C
ATOM 6842 C MET A 899 29.061 -7.225 162.358 1.00135.82 C
ATOM 6843 O MET A 899 29.209 -6.339 163.198 1.00133.06 O
ATOM 6844 CB MET A 899 29.522 -9.634 162.860 1.00136.21 C
ATOM 6845 CG MET A 899 28.961 -11.003 163.197 1.00135.75 C
ATOM 6846 SD MET A 899 28.248 -11.059 164.851 1.00236.78 S
ATOM 6847 CE MET A 899 29.722 -10.865 165.850 1.00103.50 c
ATOM 6848 N ALA A 900 29.392 -7.093 161.079 1.00137.92 N
ATOM 6849 CA ALA A 900 29.878 -5.843 160.529 1.00143.20 C
ATOM 6850 C ALA A 900 28.837 -4.748 160.733 1.00152.19 C
ATOM 6851 O ALA A 900 29.155 -3.673 161.240 1.00158.37 O
ATOM 6852 CB ALA A 900 30.200 -6.008 159.053 1.00142.35 C
ATOM 6853 N LEU A 901 27.591 -5.024 160.350 1.00151.45 N
ATOM 6854 CA LEU A 901 26.506 -4.066 160.549 1.00145.98 C
ATOM 6855 C LEU A 901 26.231 -3.893 162.038 1.00138.62 C
ATOM 6856 O LEU A 901 25.863 -2.812 162.500 1.00128.87 O
ATOM 6857 CB LEU A 901 25.231 -4.530 159.844 1.00147.01 C
ATOM 6858 CG LEU A 901 24.139 -3.463 159.735 1.00146.15 C
ATOM 6859 CD1 LEU A 901 24.422 -2.551 158.553 1.00144.45 C
ATOM 6860 CD2 LEU A 901 22.756 -4.083 159.626 1.00147.33 C
ATOM 6861 N SER A 902 26.423 -4.976 162.781 1.00139.57 N
ATOM 6862 CA SER A 902 26.173 -4.980 164.211 1.00143.43 C
ATOM 6863 C SER A 902 27.214 -4.167 164.971 1.00143.68 C
ATOM 6864 O SER A 902 26.865 -3.286 165.755 1.00146.88 O
ATOM 6865 CB SER A 902 26.149 -6.413 164.734 1.00149.50 C
ATOM 6866 OG SER A 902 25.934 -6.439 166.131 1.00155.04 O
ATOM 6867 N VAL A 903 28.488 -4.469 164.744 1.00141.08 N ATOM 6868 CA VAL A 903 29.573 -3.757 165.415 1.00135.53 C
ATOM 6869 C VAL A 903 29.547 -2.276 165.066 1.00130.99 C
ATOM 6870 O VAL A 903 29.777 -1.421 165.923 1.00131.97 O
ATOM 6871 CB VAL A 903 30.948 -4.368 165.076 1.00130.95 C
ATOM 6872 CG1 VAL A 903 32.078 -3.372 165.323 1.00121.89 C
ATOM 6873 CG2 VAL A 903 31.157 -5.646 165.878 1.00135.85 C
ATOM 6874 N LEU A 904 29.235 -1.978 163.811 1.00125.04 N
ATOM 6875 CA LEU A 904 29.151 -0.596 163.356 1.00122.10 C
ATOM 6876 C LEU A 904 28.068 0.173 164.107 1.00130.32 C
ATOM 6877 O LEU A 904 28.332 1.234 164.679 1.00127.66 O
ATOM 6878 CB LEU A 904 28.880 -0.552 161.854 1.00112.82 C
ATOM 6879 CG LEU A 904 28.840 0.833 161.220 1.00100.38 C
ATOM 6880 CD1 LEU A 904 30.035 1.640 161.688 1.00 98.97 C
ATOM 6881 CD2 LEU A 904 28.821 0.704 159.707 1.00 91.03 C
ATOM 6882 N VAL A 905 26.851 -0.371 164.095 1.00134.61 N
ATOM 6883 CA VAL A 905 25.715 0.237 164.784 1.00127.84 C
ATOM 6884 C VAL A 905 25.998 0.367 166.276 1.00125.34 C
ATOM 6885 O VAL A 905 25.703 1.394 166.886 1.00130.31 O
ATOM 6886 CB VAL A 905 24.418 -0.578 164.565 1.00123.74 C
ATOM 6887 CG1 VAL A 905 23.353 -0.187 165.570 1.00121.68 C
ATOM 6888 CG2 VAL A 905 23.905 -0.382 163.155 1.00122.76 C
ATOM 6889 N THR A 906 26.594 -0.671 166.851 1.00116.18 N
ATOM 6890 CA THR A 906 26.922 -0.670 168.267 1.00115.81 C
ATOM 6891 C THR A 906 28.031 0.344 168.597 1.00115.12 C
ATOM 6892 O THR A 906 27.913 1.107 169.558 1.00110.72 O
ATOM 6893 CB THR A 906 27.321 -2.083 168.743 1.00120.49 C
ATOM 6894 OG1 THR A 906 26.349 -3.033 168.292 1.00122.29 O
ATOM 6895 CG2 THR A 906 27.408 -2.139 170.256 1.00122.51 C
ATOM 6896 N ILE A 907 29.100 0.357 167.800 1.001 15.37 N
ATOM 6897 CA ILE A 907 30.215 1.266 168.059 1.00108.96 C
ATOM 6898 C ILE A 907 29.748 2.706 167.946 1.00107.09 C
ATOM 6899 O ILE A 907 30.131 3.552 168.750 1.001 11.41 O
ATOM 6900 CB ILE A 907 31.417 1.027 167.1 18 1.00105.00 C
ATOM 6901 CG1 ILE A 907 32.217 -0.187 167.575 1.00105.75 C
ATOM 6902 CG2 ILE A 907 32.337 2.231 167.104 1.00107.83 C
ATOM 6903 CD1 ILE A 907 33.667 -0.184 167.128 1.00106.05 C
ATOM 6904 N GLU A 908 28.901 2.969 166.956 1.00105.68 N
ATOM 6905 CA GLU A 908 28.342 4.300 166.745 1.00112.99 C
ATOM 6906 C GLU A 908 27.639 4.819 167.996 1.00118.18 C
ATOM 6907 O GLU A 908 27.627 6.025 168.261 1.00116.38 O ATOM 6908 CB GLU A 908 27.366 4.294 165.566 1.00121.69 C
ATOM 6909 CG GLU A 908 28.020 4.459 164.203 1.00129.50 C
ATOM 6910 CD GLU A 908 28.634 5.838 164.009 1.00134.84 C
ATOM 6911 OE1 GLU A 908 27.942 6.727 163.469 1.00135.26 O
ATOM 6912 OE2 GLU A 908 29.809 6.036 164.394 1.00137.55 O
ATOM 6913 N MET A 909 27.055 3.903 168.763 1.00120.11 N
ATOM 6914 CA MET A 909 26.406 4.260 170.017 1.001 17.13 C
ATOM 6915 C MET A 909 27.445 4.512 171.101 1.00114.13 C
ATOM 6916 O MET A 909 27.366 5.502 171.820 1.001 12.51 O
ATOM 6917 CB MET A 909 25.435 3.163 170.454 1.00119.98 C
ATOM 6918 CG MET A 909 24.366 2.864 169.425 1.00120.61 C
ATOM 6919 SD MET A 909 23.575 4.373 168.842 1.00140.93 S
ATOM 6920 CE MET A 909 23.080 3.874 167.198 1.00101.12 C
ATOM 6921 N CYS A 910 28.420 3.614 171.211 1.00115.19 N
ATOM 6922 CA CYS A 910 29.504 3.771 172.177 1.00117.33 C
ATOM 6923 C CYS A 910 30.287 5.060 171.943 1.00119.23 C
ATOM 6924 O CYS A 910 30.491 5.857 172.860 1.00121.31 O
ATOM 6925 CB CYS A 910 30.448 2.578 172.106 1.00116.60 C
ATOM 6926 SG CYS A 910 29.679 1.033 172.560 1.00138.04 S
ATOM 6927 N ASN A 911 30.715 5.260 170.703 1.00117.75 N
ATOM 6928 CA ASN A 911 31.424 6.469 170.316 1.00115.16 C
ATOM 6929 C ASN A 911 30.543 7.717 170.451 1.001 16.04 C
ATOM 6930 O ASN A 911 31.023 8.841 170.320 1.00118.94 O
ATOM 6931 CB ASN A 911 31.942 6.322 168.882 1.00113.74 C
ATOM 6932 CG ASN A 911 32.874 7.446 168.471 1.00110.50 C
ATOM 6933 OD1 ASN A 911 33.688 7.924 169.263 1.00108.41 O
ATOM 6934 ND2 ASN A 911 32.756 7.875 167.219 1.00109.31 N
ATOM 6935 N ALA A 912 29.253 7.521 170.707 1.00115.29 N
ATOM 6936 CA ALA A 912 28.359 8.640 170.979 1.001 13.04 C
ATOM 6937 C ALA A 912 28.407 8.989 172.464 1.00114.75 C
ATOM 6938 O ALA A 912 28.305 10.160 172.838 1.00112.19 O
ATOM 6939 CB ALA A 912 26.935 8.322 170.537 1.00111.52 C
ATOM 6940 N LEU A 913 28.571 7.966 173.302 1.001 17.82 N
ATOM 6941 CA LEU A 913 28.784 8.163 174.733 1.00116.63 C
ATOM 6942 C LEU A 913 30.095 8.901 174.926 1.00117.35 C
ATOM 6943 O LEU A 913 30.249 9.701 175.849 1.00116.97 O
ATOM 6944 CB LEU A 913 28.858 6.823 175.468 1.00112.50 C
ATOM 6945 CG LEU A 913 27.644 5.897 175.403 1.00110.97 C
ATOM 6946 CD1 LEU A 913 27.842 4.689 176.317 1.00108.80 C
ATOM 6947 CD2 LEU A 913 26.366 6.648 175.751 1.00108.96 C ATOM 6948 N ASN A 914 31.042 8.616 174.039 1.00115.84 N
ATOM 6949 CA ASN A 914 32.341 9.258 174.080 1.00114.45 C
ATOM 6950 C ASN A 914 32.242 10.733 173.753 1.00118.25 C
ATOM 6951 O ASN A 914 33.136 11.508 174.081 1.00124.91 O
ATOM 6952 CB ASN A 914 33.308 8.581 173.113 1.00109.98 C
ATOM 6953 CG ASN A 914 34.123 7.504 173.777 1.00110.68 C
ATOM 6954 OD1 ASN A 914 34.347 6.439 173.203 1.00111.72 O
ATOM 6955 ND2 ASN A 914 34.572 7.773 175.003 1.00111.20 N
ATOM 6956 N SER A 915 31.149 11.119 173.107 1.00114.97 N
ATOM 6957 CA SER A 915 30.981 12.500 172.680 1.00111.96 C
ATOM 6958 C SER A 915 30.132 13.291 173.656 1.00106.35 C
ATOM 6959 O SER A 915 29.490 14.267 173.271 1.00104.86 O
ATOM 6960 CB SER A 915 30.383 12.564 171.278 1.00117.42 C
ATOM 6961 OG SER A 915 31.268 11.986 170.331 1.00123.19 O
ATOM 6962 N LEU A 916 30.140 12.863 174.918 1.00105.27 N
ATOM 6963 CA LEU A 916 29.446 13.574 175.988 1.00100.48 C
ATOM 6964 C LEU A 916 30.268 14.758 176.461 1.00101.31 C
ATOM 6965 O LEU A 916 29.728 15.808 176.810 1.00104.10 O
ATOM 6966 CB LEU A 916 29.155 12.641 177.157 1.00 96.82 C
ATOM 6967 CG LEU A 916 27.933 11.752 176.944 1.00 99.45 C
ATOM 6968 CD1 LEU A 916 27.656 10.915 178.178 1.00104.81 C
ATOM 6969 CD2 LEU A 916 26.726 12.601 176.583 1.00 96.86 C
ATOM 6970 N SE A 917 31.581 14.579 176.472 1.00 99.71 N
ATOM 6971 CA SER A 917 32.492 15.664 176.778 1.00104.38 C
ATOM 6972 C SER A 917 33.582 15.630 175.732 1.00115.72 C
ATOM 6973 O SER A 917 33.698 14.653 174.994 1.00123.05 O
ATOM 6974 CB SER A 917 33.097 15.485 178.170 1.00105.02 C
ATOM 6975 OG SE A 917 33.992 16.541 178.471 1.00104.03 O
ATOM 6976 N GLU A 918 34.379 16.690 175.655 1.00116.63 N
ATOM 6977 CA GLU A 918 35.543 16.678 174.783 1.00115.13 C
ATOM 6978 C GLU A 918 36.661 15.860 175.423 1.00116.68 C
ATOM 6979 O GLU A 918 37.108 14.855 174.868 1.00114.48 O
ATOM 6980 CB GLU A 918 36.009 18.100 174.490 1.00117.63 C
ATOM 6981 CG GLU A 918 35.644 18.590 173.096 1.00124.72 C
ATOM 6982 CD GLU A 918 36.570 18.045 172.014 1.00133.69 C
ATOM 6983 OE1 GLU A 918 37.778 17.862 172.289 1.00133.36 O
ATOM 6984 OE2 GLU A 918 36.089 17.805 170.883 1.00137.67 O
ATOM 6985 N ASN A 919 37.095 16.282 176.605 1.00120.75 N
ATOM 6986 CA ASN A 919 38.178 15.599 177.306 1.00124.24 C
ATOM 6987 C ASN A 919 37.734 14.776 178.522 1.00131.30 C ATOM 6988 O AS A 919 38.379 13.784 178.875 1.00137.32 O
ATOM 6989 CB ASN A 919 39.254 16.605 177.729 1.001 17.51 C
ATOM 6990 CG ASN A 919 40.078 17.109 176.561 1.00109.13 C
ATOM 6991 OD1 ASN A 919 40.262 16.412 175.560 1.00106.77 O
ATOM 6992 ND2 ASN A 919 40.591 18.325 176.689 1.00109.48 N
ATOM 6993 N GLN A 920 36.638 15.183 179.158 1.00124.21 N
ATOM 6994 CA GLN A 920 36.211 14.555 180.405 1.00114.86 C
ATOM 6995 C GLN A 920 35.725 13.112 180.278 1.00113.93 C
ATOM 6996 O GLN A 920 34.927 12.777 179.399 1.00106.95 O
ATOM 6997 CB GLN A 920 35.177 15.420 181.114 1.00106.24 C
ATOM 6998 CG GLN A 920 35.726 16.771 181.520 1.00105.80 C
ATOM 6999 CD GLN A 920 36.823 16.668 182.562 1.00110.64 C
ATOM 7000 OE1 GLN A 920 37.008 15.626 183.194 1.00113.70 O
ATOM 7001 NE2 GLN A 920 37.558 17.757 182.749 1.0011 1.01 N
ATOM 7002 N SER A 921 36.218 12.277 181.192 1.00118.35 N
ATOM 7003 CA SER A 921 35.956 10.839 181.203 1.00122.09 C
ATOM 7004 C SER A 921 34.484 10.477 181.386 1.00122.10 C
ATOM 7005 O SER A 921 33.635 1 1.347 181.580 1.00125.11 O
ATOM 7006 CB SER A 921 36.782 10.175 182.309 1.00124.74 C
ATOM 7007 OG SER A 921 36.451 8.803 182.443 1.00124.17 O
ATOM 7008 N LEU A 922 34.185 9.184 181.321 1.00118.12 N
ATOM 7009 CA LEU A 922 32.837 8.718 181.618 1.00115.61 C
ATOM 7010 C LEU A 922 32.634 8.536 183.121 1.00119.82 C
ATOM 7011 O LEU A 922 31.522 8.682 183.619 1.00121.44 O
ATOM 7012 CB LEU A 922 32.502 7.431 180.856 1.00109.81 C
ATOM 7013 CG LEU A 922 32.113 7.635 179.391 1.00103.86 C
ATOM 7014 CD1 LEU A 922 31.517 6.377 178.814 1.00103.12 C
ATOM 7015 CD2 LEU A 922 31.134 8.782 179.256 1.00105.22 C
ATOM 7016 N MET A 923 33.707 8.240 183.850 1.00119.24 N
ATOM 7017 CA MET A 923 33.597 8.085 185.297 1.001 17.85 C
ATOM 7018 C MET A 923 33.434 9.444 185.962 1.00118.58 C
ATOM 7019 O MET A 923 33.217 9.519 187.169 1.00124.91 O
ATOM 7020 CB MET A 923 34.798 7.340 185.893 1.00119.59 C
ATOM 7021 CG MET A 923 35.236 6.099 185.1 17 1.00120.57 C
ATOM 7022 SD MET A 923 33.875 5.063 184.538 1.00212.63 S
ATOM 7023 CE MET A 923 34.425 4.628 182.871 1.00 98.69 C
ATOM 7024 N ARG A 924 33.538 10.515 185.175 1.001 16.64 N
ATOM 7025 CA ARG A 924 33.297 11.866 185.684 1.00119.81 C
ATOM 7026 C ARG A 924 32.055 12.510 185.059 1.00124.32 C
ATOM 7027 O ARG A 924 31.319 13.238 185.723 1.00130.84 O ATOM 7028 CB ARG A 924 34.524 12.761 185.492 1.00116.46 C
ATOM 7029 CG ARG A 924 34.346 14.166 186.058 1.00118.71 C
ATOM 7030 CD ARG A 924 35.648 14.947 186.045 1.00126.40 C
ATOM 7031 NE ARG A 924 35.472 16.338 186.458 1.00133.53 N
ATOM 7032 CZ ARG A 924 35.506 16.750 187.723 1.00143.25 C
ATOM 7033 NH1 ARG A 924 35.701 15.875 188.705 1.00147.52 N
ATOM 7034 NH2 ARG A 924 35.339 18.038 188.008 1.00144.24 N
ATOM 7035 N MET A 925 31.831 12.254 183.778 1.00120.71 N
ATOM 7036 CA MET A 925 30.574 12.638 183.150 1.00117.38 C
ATOM 7037 C MET A 925 29.935 1 1.384 182.598 1.00120.14 C
ATOM 7038 O MET A 925 30.143 1 1.030 181.439 1.00122.98 O
ATOM 7039 CB MET A 925 30.785 13.678 182.051 1.00115.21 C
ATOM 7040 CG MET A 925 31.191 15.035 182.593 1.00118.14 C
ATOM 7041 SD MET A 925 31.114 16.383 181.399 1.00164.99 S
ATOM 7042 CE MET A 925 29.438 16.203 180.799 1.00 85.94 C
ATOM 7043 N PRO A 926 29.166 10.694 183.448 1.001 18.78 N
ATOM 7044 CA PRO A 926 28.549 9.391 183.184 1.00120.89 C
ATOM 7045 C PRO A 926 27.661 9.378 181.942 1.00114.23 C
ATOM 7046 O PRO A 926 27.274 10.436 181.461 1.00103.42 O
ATOM 7047 CB PRO A 926 27.712 9.144 184.445 1.00125.44 C
ATOM 7048 CG PRO A 926 27.545 10.495 185.068 1.00122.50 C
ATOM 7049 CD PRO A 926 28.822 11.196 184.785 1.00117.25 C
ATOM 7050 N PRO A 927 27.356 8.182 181.416 1.001 18.90 N
ATOM 7051 CA PRO A 927 26.422 8.055 180.294 1.00117.60 C
ATOM 7052 C PRO A 927 25.099 8.784 180.537 1.00113.89 C
ATOM 7053 O PRO A 927 24.494 9.291 179.596 1.00105.85 O
ATOM 7054 CB PRO A 927 26.183 6.548 180.227 1.00119.75 C
ATOM 7055 CG PRO A 927 27.466 5.963 180.699 1.00120.45 C
ATOM 7056 CD PRO A 927 27.977 6.891 181.764 1.00120.88 C
ATOM 7057 N TRP A 928 24.669 8.851 181.791 1.00120.37 N
ATOM 7058 CA TRP A 928 23.349 9.391 182.1 17 1.00122.31 C
ATOM 7059 C TRP A 928 23.296 10.91 1 182.306 1.00122.32 C
ATOM 7060 O TRP A 928 22.312 1 1.434 182.822 1.00126.06 O
ATOM 7061 CB TRP A 928 22.757 8.676 183.342 1.00120.74 C
ATOM 7062 CG TRP A 928 23.559 8.839 184.601 1.00124.96 C
ATOM 7063 CD1 TRP A 928 23.543 9.911 185.453 1.00128.26 C
ATOM 7064 CD2 TRP A 928 24.483 7.896 185.162 1.00127.92 C
ATOM 7065 NE1 TRP A 928 24.406 9.695 186.504 1.00132.28 N
ATOM 7066 CE2 TRP A 928 24.993 8.466 186.351 1.00133.58 C
ATOM 7067 CE3 TRP A 928 24.930 6.630 184.777 1.00127.24 C ATOM 7068 CZ2 TRP A 928 25.929 7.810 187.151 1.00136.10 C
ATOM 7069 CZ3 TRP A 928 25.857 5.984 185.573 1.00132.40 C
ATOM 7070 CH2 TRP A 928 26.347 6.575 186.746 1.00136.32 C
ATOM 7071 N VAL A 929 24.339 11.622 181.888 1.00120.91 N
ATOM 7072 CA VAL A 929 24.312 13.083 181.949 1.00123.09 C
ATOM 7073 C VAL A 929 23.393 13.631 180.860 1.00122.03 C
ATOM 7074 O VAL A 929 22.826 14.718 180.990 1.00118.04 O
ATOM 7075 CB VAL A 929 25.710 13.698 181.801 1.00123.88 C
ATOM 7076 CG1 VAL A 929 25.650 15.155 182.108 1.00121.45 C
ATOM 7077 CG2 VAL A 929 26.665 13.055 182.763 1.00130.43 C
ATOM 7078 N ASN A 930 23.261 12.858 179.786 1.00124.51 N
ATOM 7079 CA ASN A 930 22.298 13.130 178.725 1.00122.95 C
ATOM 7080 C ASN A 930 21.358 11.940 178.573 1.00126.67 C
ATOM 7081 O ASN A 930 21.738 10.915 178.002 1.00128.34 O
ATOM 7082 CB ASN A 930 23.025 13.389 177.402 1.00116.90 C
ATOM 7083 CG ASN A 930 22.080 13.775 176.266 1.00114.36 C
ATOM 7084 OD1 ASN A 930 20.950 13.288 176.170 1.00113.54 O
ATOM 7085 ND2 ASN A 930 22.553 14.655 175.390 1.00111.08 N
ATOM 7086 N ILE A 931 20.131 12.071 179.070 1.00127.12 N
ATOM 7087 CA ILE A 931 19.172 10.973 178.971 1.00126.64 C
ATOM 7088 C ILE A 931 18.592 10.824 177.563 1.00126.66 C
ATOM 7089 O ILE A 931 18.397 9.701 177.089 1.00128.65 O
ATOM 7090 CB ILE A 931 18.034 11.081 180.010 1.00120.21 C
ATOM 7091 CG1 ILE A 931 17.337 12.435 179.910 1.00118.78 C
ATOM 7092 CG2 ILE A 931 18.577 10.877 181.403 1.00118.03 C
ATOM 7093 CD1 ILE A 931 15.985 12.461 180.583 1.00124.74 C
ATOM 7094 N TRP A 932 18.325 11.949 176.901 1.00119.31 N
ATOM 7095 CA TRP A 932 17.785 11.927 175.550 1.00116.17 C
ATOM 7096 C TRP A 932 18.690 11.079 174.679 1.00118.16 C
ATOM 7097 O TRP A 932 18.221 10.339 173.816 1.00119.30 O
ATOM 7098 CB TRP A 932 17.690 13.333 174.971 1.00117.22 C
ATOM 7099 CG TRP A 932 16.781 14.247 175.726 1.00126.58 C
ATOM 7100 CD1 TRP A 932 15.425 14.318 175.624 1.00129.16 C
ATOM 7101 CD2 TRP A 932 17.167 15.245 176.684 1.00131.59 C
ATOM 7102 NE1 TRP A 932 14.937 15.291 176.467 1.00134.04 N
ATOM 7103 CE2 TRP A 932 15.987 15.873 177.131 1.00133.16 C
ATOM 7104 CE3 TRP A 932 18.395 15.665 177.211 1.00130.49 C
ATOM 7105 CZ2 TRP A 932 15.997 16.896 178.077 1.00133.54 C
ATOM 7106 CZ3 TRP A 932 18.404 16.681 178.151 1.00129.93 C
ATOM 7107 CH2 TRP A 932 17.213 17.287 178.573 1.00132.69 C ATOM 7108 N LEU A 933 19.994 11.184 174.928 1.00119.21 N
ATOM 7109 CA LEU A 933 20.974 10.344 174.249 1.00116.28 C
ATOM 7110 C LEU A 933 20.733 8.881 174.586 1.00117.93 C
ATOM 711 1 O LEU A 933 20.714 8.023 173.701 1.00119.66 O
ATOM 7112 CB LEU A 933 22.403 10.734 174.629 1.00110.15 C
ATOM 7113 CG LEU A 933 23.455 9.828 173.983 1.00110.62 C
ATOM 7114 CD1 LEU A 933 23.350 9.884 172.457 1.00109.69 C
ATOM 7115 CD2 LEU A 933 24.866 10.172 174.455 1.00108.06 C
ATOM 7116 N LEU A 934 20.551 8.599 175.869 1.00114.01 N
ATOM 7117 CA LEU A 934 20.263 7.240 176.290 1.001 14.12 C
ATOM 71 18 C LEU A 934 18.955 6.781 175.648 1.001 14.77 C
ATOM 7119 O LEU A 934 18.848 5.639 175.192 1.00115.29 O
ATOM 7120 CB LEU A 934 20.193 7.137 177.817 1.001 14.28 C
ATOM 7121 CG LEU A 934 21.447 7.444 178.646 1.00102.66 C
ATOM 7122 CD1 LEU A 934 21.249 6.973 180.077 1.00 96.81 C
ATOM 7123 CD2 LEU A 934 22.697 6.819 178.045 1.00 96.76 C
ATOM 7124 N GLY A 935 17.974 7.681 175.592 1.00111.55 N
ATOM 7125 CA GLY A 935 16.701 7.377 174.960 1.00118.97 C
ATOM 7126 C GLY A 935 16.853 7.025 173.489 1.00122.89 C
ATOM 7127 O GLY A 935 16.312 6.022 173.002 1.00118.25 O
ATOM 7128 N SER A 936 17.616 7.855 172.786 1.00123.87 N
ATOM 7129 CA SER A 936 17.837 7.692 171.357 1.00120.69 C
ATOM 7130 C SER A 936 18.579 6.405 171.032 1.001 17.10 C
ATOM 7131 O SER A 936 18.295 5.769 170.021 1.00120.80 O
ATOM 7132 CB SER A 936 18.623 8.879 170.813 1.00123.04 C
ATOM 7133 OG SER A 936 19.909 8.930 171.402 1.00126.88 O
ATOM 7134 N ILE A 937 19.537 6.035 171.879 1.001 15.32 N
ATOM 7135 CA ILE A 937 20.294 4.798 171.687 1.001 19.64 C
ATOM 7136 C ILE A 937 19.355 3.592 171.709 1.00135.56 C
ATOM 7137 O ILE A 937 19.475 2.678 170.887 1.00142.16 O
ATOM 7138 CB ILE A 937 21.387 4.624 172.767 1.00112.34 C
ATOM 7139 CG1 ILE A 937 22.453 5.707 172.633 1.00105.98 C
ATOM 7140 CG2 ILE A 937 22.042 3.256 172.669 1.00111.06 C
ATOM 7141 CD1 ILE A 937 23.488 5.686 173.743 1.00103.36 C
ATOM 7142 N CYS A 938 18.408 3.604 172.642 1.00139.04 N
ATOM 7143 CA CYS A 938 17.440 2.523 172.757 1.00142.52 C
ATOM 7144 C CYS A 938 16.512 2.502 171.555 1.00141.06 C
ATOM 7145 O CYS A 938 16.237 1.443 170.988 1.00140.22 O
ATOM 7146 CB CYS A 938 16.629 2.681 174.037 1.00145.87 C
ATOM 7147 SG CYS A 938 17.649 2.767 175.509 1.00149.12 S ATOM 7148 N LEU A 939 16.032 3.684 171.178 1.00138.53 N
ATOM 7149 CA LEU A 939 15.187 3.841 170.000 1.00141.75 C
ATOM 7150 C LEU A 939 15.879 3.314 168.734 1.00146.44 C
ATOM 7151 O LEU A 939 15.248 2.680 167.883 1.00150.91 O
ATOM 7152 CB LEU A 939 14.788 5.309 169.830 1.00135.45 C
ATOM 7153 CG LEU A 939 13.425 5.750 170.370 1.00133.64 C
ATOM 7154 CD1 LEU A 939 13.141 5.156 171.736 1.00137.58 C
ATOM 7155 CD2 LEU A 939 13.364 7.264 170.428 1.00126.32 C
ATOM 7156 N SER A 940 17.179 3.578 168.622 1.00141.95 N
ATOM 7157 CA SER A 940 17.989 3.050 167.532 1.00134.50 C
ATOM 7158 C SER A 940 18.037 1.540 167.645 1.00135.66 C
ATOM 7159 O SER A 940 17.660 0.817 166.723 1.00140.51 O
ATOM 7160 CB SE A 940 19.414 3.589 167.627 1.00129.16 C
ATOM 7161 OG SER A 940 19.423 4.991 167.821 1.00129.35 o
ATOM 7162 N MET A 941 18.500 1.078 168.799 1.00131.46 N
ATOM 7163 CA MET A 941 18.662 -0.341 169.067 1.00133.79 C
ATOM 7164 C MET A 941 17.385 -1.151 168.859 1.00138.40 C
ATOM 7165 O MET A 941 17.440 -2.347 168.567 1.00137.82 O
ATOM 7166 CB MET A 941 19.197 -0.543 170.483 1.00133.38 C
ATOM 7167 CG MET A 941 20.665 -0.222 170.604 1.00127.80 C
ATOM 7168 SD MET A 941 21.539 -0.912 169.193 1.00135.00 S
ATOM 7169 CE MET A 941 23.237 -0.585 169.652 1.00190.13 C
ATOM 7170 N SER A 942 16.237 -0.499 169.007 1.00142.28 N
ATOM 7171 CA SER A 942 14.962 -1.175 168.801 1.00145.76 C
ATOM 7172 C SER A 942 14.604 -1.278 167.314 1.00150.08 C
ATOM 7173 O SER A 942 13.733 -2.064 166.932 1.00158.30 O
ATOM 7174 CB SE A 942 13.839 -0.508 169.610 1.00137.55 c
ATOM 7175 OG SER A 942 13.798 0.889 169.392 1.00129.58 o
ATOM 7176 N LEU A 943 15.283 -0.493 166.480 1.00139.14 N
ATOM 7177 CA LEU A 943 15.085 -0.574 165.037 1.00133.56 C
ATOM 7178 C LEU A 943 16.012 -1.607 164.428 1.00135.45 C
ATOM 7179 O LEU A 943 15.624 -2.359 163.535 1.00135.24 O
ATOM 7180 CB LEU A 943 15.331 0.776 164.384 1.00129.40 C
ATOM 7181 CG LEU A 943 14.292 1.831 164.732 1.00137.46 C
ATOM 7182 CD1 LEU A 943 14.769 3.176 164.239 1.00137.32 C
ATOM 7183 CD2 LEU A 943 12.951 1.469 164.118 1.00142.50 C
ATOM 7184 N HIS A 944 17.249 -1.633 164.907 1.00137.85 N
ATOM 7185 CA HIS A 944 18.196 -2.631 164.448 1.00138.37 C
ATOM 7186 C HIS A 944 17.642 -4.006 164.790 1.00141.27 C
ATOM 7187 O HIS A 944 17.668 -4.922 163.971 1.00142.70 O ATOM 7188 CB HIS A 944 19.566 -2.425 165.090 1.00136.37 C
ATOM 7189 CG HIS A 944 20.658 -3.193 164.419 1.00139.32 C
ATOM 7190 ND1 HIS A 944 21.117 -4.404 164.894 1.00144.82 N
ATOM 7191 CD2 HIS A 944 21.366 -2.938 163.294 1.00140.49 C
ATOM 7192 CE1 HIS A 944 22.070 -4.855 164.096 1.00144.61 C
ATOM 7193 NE2 HIS A 944 22.240 -3.984 163.1 17 1.00142.71 N
ATOM 7194 N PHE A 945 17.107 -4.134 165.998 1.00144.26 N
ATOM 7195 CA PHE A 945 16.465 -5.374 166.405 1.00154.94 C
ATOM 7196 C PHE A 945 15.176 -5.620 165.627 1.00160.82 C
ATOM 7197 O PHE A 945 14.659 -6.738 165.600 1.00162.71 O
ATOM 7198 CB PHE A 945 16.194 -5.378 167.910 1.00159.35 C
ATOM 7199 CG PHE A 945 17.264 -6.057 168.707 1.00160.52 C
ATOM 7200 CD1 PHE A 945 18.340 -5.340 169.200 1.00158.30 C
ATOM 7201 CD2 PHE A 945 17.204 -7.420 168.946 1.00164.38 C
ATOM 7202 CE1 PHE A 945 19.331 -5.969 169.927 1.00158.81 C
ATOM 7203 CE2 PHE A 945 18.193 -8.055 169.671 1.00164.86 C
ATOM 7204 CZ PHE A 945 19.258 -7.329 170.163 1.00161.50 C
ATOM 7205 N LEU A 946 14.664 -4.573 164.988 1.00159.75 N
ATOM 7206 CA LEU A 946 13.430 -4.684 164.224 1.00159.82 C
ATOM 7207 C LEU A 946 13.710 -5.220 162.822 1 .00161.34 C
ATOM 7208 O LEU A 946 13.075 -6.176 162.382 1.00167.05 O
ATOM 7209 CB LEU A 946 12.711 -3.333 164.165 1.00154.27 C
ATOM 7210 CG LEU A 946 11.242 -3.292 163.752 1.00154.39 C
ATOM 7211 CD1 LEU A 946 10.601 -2.022 164.281 1.00153.92 C
ATOM 7212 CD2 LEU A 946 11.091 -3.365 162.242 1.00153.48 C
ATOM 7213 N ILE A 947 14.664 -4.613 162.123 1.00157.88 N
ATOM 7214 CA ILE A 947 14.976 -5.032 160.759 1.00158.50 C
ATOM 7215 C ILE A 947 15.687 -6.374 160.736 1.00155.67 C
ATOM 7216 O ILE A 947 15.895 -6.951 159.672 1.00158.21 O
ATOM 7217 CB ILE A 947 15.864 -4.012 160.028 1.00158.34 C
ATOM 7218 CG1 ILE A 947 17.282 -4.037 160.596 1.00156.14 C
ATOM 7219 CG2 ILE A 947 15.263 -2.619 160.113 1.00158.98 C
ATOM 7220 CD1 ILE A 947 18.232 -3.1 16 159.876 1.00153.19 C
ATOM 7221 N LEU A 948 16.063 -6.860 161.913 1.00152.63 N
ATOM 7222 CA LEU A 948 16.732 -8.149 162.037 1.00150.91 C
ATOM 7223 C LEU A 948 15.762 -9.320 162.091 1.00157.06 C
ATOM 7224 O LEU A 948 15.981 -10.347 161.452 1.00159.52 O
ATOM 7225 CB LEU A 948 17.599 -8.178 163.293 1.00143.47 C
ATOM 7226 CG LEU A 948 19.042 -7.732 163.116 1.00133.10 C
ATOM 7227 CD1 LEU A 948 19.839 -8.1 11 164.344 1.00130.46 C ATOM 7228 CD2 LEU A 948 19.612 -8.380 161.874 1.00132.37 C
ATOM 7229 N TYR A 949 14.692 -9.165 162.859 1.00160.88 N
ATOM 7230 CA TYR A 949 13.842 -10.297 163.191 1.00170.86 C
ATOM 7231 C TYR A 949 12.558 -10.407 162.374 1.00176.94 C
ATOM 7232 O TY A 949 12.032 -11.509 162.203 1.00186.75 O
ATOM 7233 CB TYR A 949 13.501 -10.278 164.681 1.00178.64 C
ATOM 7234 CG TYR A 949 14.645 -10.676 165.584 1.00186.30 C
ATOM 7235 CD1 TYR A 949 15.648 -11.524 165.137 1.00189.25 C
ATOM 7236 CD2 TYR A 949 14.718 -10.207 166.890 1.00192.35 C
ATOM 7237 CE1 TYR A 949 16.694 -11.891 165.966 1.00191.67 C
ATOM 7238 CE2 TYR A 949 15.759 -10.568 167.724 1.00194.84 C
ATOM 7239 CZ TYR A 949 16.745 -11.411 167.256 1.00194.68 C
ATOM 7240 OH TYR A 949 17.785 -11.775 168.080 1.00196.06 O
ATOM 7241 N VAL A 950 12.060 -9.282 161.867 1.00171.62 N
ATOM 7242 CA VAL A 950 10.700 -9.231 161.319 1.00178.33 C
ATOM 7243 C VAL A 950 10.388 -10.234 160.186 1.00192.28 C
ATOM 7244 O VAL A 950 9.292 -10.803 160.160 1.00203.85 O
ATOM 7245 CB VAL A 950 10.284 -7.791 160.937 1.00172.44 C
ATOM 7246 CG1 VAL A 950 11.110 -7.287 159.772 1.00173.29 c
ATOM 7247 CG2 VAL A 950 8.794 -7.720 160.628 1.00171.53 c
ATOM 7248 N ASP A 951 11.340 -10.426 159.265 1.00190.43 N
ATOM 7249 CA ASP A 951 11.294 -11.428 158.162 1.00189.86 C
ATOM 7250 C ASP A 951 10.884 -10.997 156.727 1.00185.30 C
ATOM 7251 O ASP A 951 11.298 -11.644 155.766 1.00184.88 O
ATOM 7252 CB ASP A 951 10.628 -12.768 158.553 1.00188.48 C
ATOM 7253 CG ASP A 951 11.505 -13.620 159.461 1.00182.36 C
ATOM 7254 OD1 ASP A 951 12.545 -14.127 158.989 1.00177.56 O
ATOM 7255 OD2 ASP A 951 11.142 -13.789 160.643 1.00182.99 o
ATOM 7256 N PRO A 952 10.081 -9.926 156.561 1.00185.74 N
ATOM 7257 CA PRO A 952 9.953 -9.493 155.167 1.00187.43 C
ATOM 7258 C PRO A 952 10.977 -8.411 154.849 1.00187.25 C
ATOM 7259 O PRO A 952 10.906 -7.761 153.807 1.00190.68 O
ATOM 7260 CB PRO A 952 8.534 -8.907 155.107 1.00188.99 C
ATOM 7261 CG PRO A 952 7.995 -8.956 156.519 1.00189.40 C
ATOM 7262 CD PRO A 952 9.143 -9.196 157.425 1.00185.73 c
ATOM 7263 N LEU A 953 11.920 -8.224 155.764 1.00180.86 N
ATOM 7264 CA LEU A 953 12.915 -7.159 155.666 1.00166.15 C
ATOM 7265 C LEU A 953 14.373 -7.648 155.653 1.00162.90 C
ATOM 7266 O LEU A 953 15.179 -7.127 154.878 1.00160.77 O
ATOM 7267 CB LEU A 953 12.714 -6.122 156.781 1.00152.02 C ATOM 7268 CG LEU A 953 1 1.689 -4.997 156.611 1.00140.63 C
ATOM 7269 CD1 LEU A 953 10.293 -5.519 156.350 1.00145.03 C
ATOM 7270 CD2 LEU A 953 1 1.698 -4.163 157.860 1.00130.44 C
ATOM 7271 N PRO A 954 14.724 -8.635 156.511 1.00160.49 N
ATOM 7272 CA PRO A 954 16.104 -9.135 156.467 1.00158.04 C
ATOM 7273 C PRO A 954 16.520 -9.674 155.104 1.00162.94 C
ATOM 7274 O PRO A 954 17.716 -9.798 154.851 1.00161.90 O
ATOM 7275 CB PRO A 954 16.091 -10.272 157.488 1.00155.64 C
ATOM 7276 CG PRO A 954 15.070 -9.869 158.463 1.00157.40 C
ATOM 7277 CD PRO A 954 14.000 -9.179 157.675 1.00160.23 C
ATOM 7278 N MET A 955 15.557 -9.988 154.243 1.00167.64 N
ATOM 7279 CA MET A 955 15.877 -10.448 152.898 1.00169.71 C
ATOM 7280 C MET A 955 16.291 -9.287 152.005 1.00169.09 C
ATOM 7281 O MET A 955 17.078 -9.461 151.074 1.00172.31 O
ATOM 7282 CB MET A 955 14.702 -11.203 152.284 1.00174.27 C
ATOM 7283 CG MET A 955 14.438 -12.546 152.943 1.00177.23 C
ATOM 7284 SD MET A 955 15.882 -13.628 152.924 1.00234.37 S
ATOM 7285 CE MET A 955 16.039 -13.968 151.171 1.00197.31 C
ATOM 7286 N ILE A 956 15.759 -8.105 152.292 1.00164.57 N
ATOM 7287 CA ILE A 956 16.140 -6.909 151.557 1.00160.34 C
ATOM 7288 C ILE A 956 17.462 -6.369 152.077 1.00158.13 C
ATOM 7289 O ILE A 956 18.330 -5.958 151.306 1.00161.01 O
ATOM 7290 CB ILE A 956 15.079 -5.812 151.680 1.00159.05 C
ATOM 7291 CG1 ILE A 956 13.812 -6.216 150.932 1.00160.56 C
ATOM 7292 CG2 ILE A 956 15.612 -4.491 151.144 1.00159.13 C
ATOM 7293 CD1 ILE A 956 12.890 -5.061 150.668 1.00160.94 C
ATOM 7294 N PHE A 957 17.609 -6.378 153.396 1.00153.88 N
ATOM 7295 CA PHE A 957 18.811 -5.864 154.034 1.00149.50 C
ATOM 7296 C PHE A 957 19.923 -6.902 154.069 1.00146.55 C
ATOM 7297 O PHE A 957 21.035 -6.613 154.518 1.00143.30 O
ATOM 7298 CB PHE A 957 18.491 -5.390 155.448 1.00149.99 C
ATOM 7299 CG PHE A 957 17.931 -4.002 155.503 1.00146.76 C
ATOM 7300 CD1 PHE A 957 18.484 -2.991 154.732 1.00140.21 C
ATOM 7301 CD2 PHE A 957 16.851 -3.708 156.317 1.00146.55 C
ATOM 7302 CE1 PHE A 957 17.974 -1.715 154.776 1.00137.77 C
ATOM 7303 CE2 PHE A 957 16.336 -2.431 156.365 1.00143.71 C
ATOM 7304 CZ PHE A 957 16.898 -1.432 155.592 1.00140.26 C
ATOM 7305 N LYS A 958 19.61 1 -8.099 153.580 1.00147.29 N
ATOM 7306 CA LYS A 958 20.538 -9.225 153.605 1.00150.29 C
ATOM 7307 C LYS A 958 21.151 -9.422 154.990 1.00150.03 C ATOM 7308 O LYSA958 22.343 -9.188155.194 1.00150.25 O
ATOM 7309 CB LYSA958 21.615 -9.084152.522 1.00150.83 c
ATOM 7310 CG LYSA958 21.128 -9.477151.125 1.00153.59 c
ATOM 7311 CD LYSA958 22.148-10.343150.391 1.00152.74 c
ATOM 7312 CE LYSA958 21.473-11.289149.402 1.00155.49 c
ATOM 7313 NZ LYSA958 22.452-12.157148.679 1.00154.10 N
ATOM 7314 N LEU A 959 20.316 -9.846155.935 1.00149.50 N
ATOM 7315 CA LEU A 959 20.736-10.022157.319 1.00147.75 C
ATOM 7316 C LEU A 959 20.202-11.332157.909 1.00150.55 C
ATOM 7317 O LEU A 959 19.106-11.775157.555 1.00153.54 O
ATOM 7318 CB LEU A 959 20.238 -8.849158.171 1.00149.32 C
ATOM 7319 CG LEU A 959 20.519 -7.403157.746 1.00149.16 C
ATOM 7320 CD1 LEU A 959 19.881 -6.430158.729 1.00148.91 C
ATOM 7321 CD2 LEU A 959 22.005 -7.124157.620 1.00148.47 C
ATOM 7322 N LYSA960 20.976- 1.945158.805 1.00148.69 N
ATOM 7323 CA LYSA960 20.495-13.082159.600 1.00151.11 C
ATOM 7324 C LYSA960 20.513-12.751161.095 1.00160.63 C
ATOM 7325 O LYSA960 21.351 -11.976161.558 1.00161.84 O
ATOM 7326 CB LYSA960 21.319-14.350159.333 1.00142.39 C
ATOM 7327 CG LYSA960 20.802-15.602160.055 1.00139.42 c
ATOM 7328 CD LYSA960 21.756-16.782159.924 1.00138.20 c
ATOM 7329 CE LYSA960 21.293-17.985160.745 1.00138.24 c
ATOM 7330 NZ LYSA960 21.039-19.190159.902 1.00134.93 N
ATOM 7331 N ALA A 961 19.581 -13.339161.840 1.00168.61 N
ATOM 7332 CA ALA A 961 19.510-13.179163.289 1.00172.84 C
ATOM 7333 C ALA A 961 20.827-13.541163.981 1.00175.33 C
ATOM 7334 O ALA A 961 21.655-14.267163.431 1.00172.94 O
ATOM 7335 CB ALA A 961 18.371 -14.022163.847 1.00177.48 C
ATOM 7336 N LEU A 962 21.013-13.026165.192 1.00180.94 N
ATOM 7337 CA LEU A 962 22.207-13.321165.974 1.00183.31 C
ATOM 7338 C LEU A 962 21.835-13.816167.364 1.00187.22 C
ATOM 7339 O LEU A 962 21.150-13.118168.114 1.00188.24 O
ATOM 7340 CB LEU A 962 23.081 -12.078166.118 1.00181.32 C
ATOM 7341 CG LEU A 962 23.325-11.184164.907 1.00178.61 C
ATOM 7342 CD1 LEU A 962 24.105 -9.960165.346 1.00177.55 C
ATOM 7343 CD2 LEU A 962 24.068 -11.939163.826 1.00176.60 C
ATOM 7344 N ASP A 963 22.297-15.013167.710 1.00188.76 N
ATOM 7345 CA ASP A 963 22.063-15.553169.044 1.00191.36 C
ATOM 7346 C ASP A 963 22.889-14.805170.093 1.00191.04 C
ATOM 7347 O ASP A 963 23.671 -13.906169.765 1.00185.53 O ATOM 7348 CB ASP A 963 22.359-17.058169.093 1.00188.01 C
ATOM 7349 CG ASP A 963 21.240-17.896168.494 1.00184.11 C
ATOM 7350 OD2 ASP A 963 21.543-18.946167.894 1.00182.06 O
ATOM 7351 OD1 ASP A 963 20.060-17.508168.627 1.00183.84 O
ATOM 7352 N LEU A 964 22.710-15.186171.355 1.00192.97 N
ATOM 7353 CA LEU A 964 23.418-14.554172.463 1.00185.90 C
ATOM 7354 C LEU A 964 24.884-14.986172.500 1.00187.15 C
ATOM 7355 O LEU A 964 25.649-14.552173.360 1.00187.03 O
ATOM 7356 CB LEU A 964 22.723- 14.882173.785 1.00181.11 C
ATOM 7357 CG LEU A 964 21.205-14.697173.736 1.00175.71 C
ATOM 7358 CD1 LEU A 964 20.534-15.193175.018 1.00180.62 C
ATOM 7359 CD2 LEU A 964 20.855-13.242173.451 1.00163.78 C
ATOM 7360 N THRA965 25.262-15.846171.559 1.00187.14 N
ATOM 7361 CA THR A 965 26.648-16.251171.376 1.00183.76 C
ATOM 7362 C THR A 965 27.357-15.217170.511 1.00179.68 C
ATOM 7363 O THR A 965 28.566-15.005170.629 1.00176.20 O
ATOM 7364 CB THR A 965 26.724- 17.614170.672 1.00183.22 C
ATOM 7365 OG1 THR A 965 25.839-18.535171.319 1.00186.84 O
ATOM 7366 CG2 THR A 965 28.145-18.162170.700 1.00183.48 C
ATOM 7367 N GLNA966 26.582-14.563169.652 1.00179.89 N
ATOM 7368 CA GLN A 966 27.124-13.657168.647 1.00177.28 C
ATOM 7369 C GLN A 966 27.134-12.203169.107 1.00174.45 C
ATOM 7370 O GLN A 966 28.136-11.503168.937 1.00172.48 O
ATOM 7371 CB GLN A 966 26.335-13.801167.345 1.00178.19 C
ATOM 7372 CG GLN A 966 26.349-15.224166.806 1.00182.32 C
ATOM 7373 CD GLN A 966 25.057-15.611166.115 1.00184.38 C
ATOM 7374 OE1 GLN A 966 24.323-16.479166.590 1.00187.20 O
ATOM 7375 NE2 GLN A 966 24.779-14.977164.982 1.00181.63 N
ATOM 7376 N TRPA967 26.025-11.752169.692 1.00172.52 N
ATOM 7377 CA TRPA967 25.928-10.374170.174 1.00166.61 C
ATOM 7378 C TRPA967 26.951 -10.106171.274 1.00159.63 C
ATOM 7379 O TRPA967 27.327 -8.958171.519 1.00154.14 O
ATOM 7380 CB TRPA967 24.515-10.056170.676 1.00169.30 C
ATOM 7381 CG TRPA967 23.522 -9.702169.592 1.00169.35 C
ATOM 7382 CD1 TRP A 967 22.553-10.513169.067 1.00172.08 C
ATOM 7383 CD2 TRP A 967 23.395 -8.441168.915 1.00163.58 C
ATOM 7384 NE1 TRP A 967 21.836 -9.837168.105 1.00169.66 N
ATOM 7385 CE2 TRP A 967 22.334 -8.564167.994 1.00165.91 C
ATOM 7386 CE3 TRP A 967 24.077 -7.222168.998 1.00152.76 C
ATOM 7387 CZ2 TRP A 967 21.941 -7.515167.161 1.00159.68 C ATOM 7388 CZ3 TRP A 967 23.681 -6.181 168.172 1.00145.99
ATOM 7389 CH2 TRP A 967 22.627 -6.335 167.266 1.00148.92
ATOM 7390 N LEU A 968 27.395 -11.177 171.926 1.00159.29 N
ATOM 7391 CA LEU A 968 28.404 -11.095 172.975 1.00159.29 C
ATOM 7392 C LEU A 968 29.695 -10.501 172.426 1.00157.78 C
ATOM 7393 O LEU A 968 30.224 -9.521 172.957 1.00153.93 O
ATOM 7394 CB LEU A 968 28.681 -12.489 173.545 1.00160.39
ATOM 7395 CG LEU A 968 29.588 -12.580 174.776 1.00158.46
ATOM 7396 CD1 LEU A 968 28.877 -12.033 176.011 1.00156.53
ATOM 7397 CD2 LEU A 968 30.067 -14.01 1 175.002 1.00158.54
ATOM 7398 N MET A 969 30.189 -11.105 171.351 1.00160.71 N
ATOM 7399 CA MET A 969 31.435 -10.683 170.727 1.00161.78 C
ATOM 7400 C MET A 969 31.381 -9.216 170.302 1.00156.85 C
ATOM 7401 O MET A 969 32.384 -8.503 170.367 1.00154.61 O
ATOM 7402 CB MET A 969 31.745 -1 1.582 169.530 1.00163.78 C
ATOM 7403 CG MET A 969 33.087 -1 1.313 168.871 1.00163.31
ATOM 7404 SD MET A 969 34.452 -11.333 170.044 1.00241.86 S
ATOM 7405 CE MET A 969 35.828 -11.628 168.939 1.00 98.09 C
ATOM 7406 N VAL A 970 30.200 -8.772 169.884 1.00153.36 N
ATOM 7407 CA VAL A 970 29.997 -7.384 169.487 1.00150.53 C
ATOM 7408 C VAL A 970 30.284 -6.429 170.647 1.00152.83 C
ATOM 7409 O VAL A 970 30.633 -5.274 170.430 1.00152.38 O
ATOM 7410 CB VAL A 970 28.570 -7.154 168.963 1.00148.57 C
ATOM 7411 CG1 VAL A 970 28.462 -5.797 168.265 1.00142.62 C
ATOM 7412 CG2 VAL A 970 28.174 -8.276 168.019 1.00148.17 C
ATOM 7413 N LEU A 971 30.141 -6.907 171.879 1.00152.40 N
ATOM 7414 CA LEU A 971 30.573 -6.114 173.024 1.00149.44 C
ATOM 7415 C LEU A 971 32.099 -6.049 173.066 1.00152.21 C
ATOM 7416 O LEU A 971 32.681 -4.959 173.081 1.00152.68 O
ATOM 7417 CB LEU A 971 30.024 -6.679 174.332 1.00145.10 C
ATOM 7418 CG LEU A 971 28.537 -6.430 174.579 1.00139.32 c
ATOM 7419 CD1 LEU A 971 28.140 -6.903 175.970 1.00142.28 c
ATOM 7420 CD2 LEU A 971 28.204 -4.962 174.393 1.00131.41 c
ATOM 7421 N LYS A 972 32.735 -7.220 173.066 1.00148.30 N
ATOM 7422 CA LYS A 972 34.195 -7.321 173.085 1.00139.13
ATOM 7423 C LYS A 972 34.862 -6.551 171.938 1.00134.63
ATOM 7424 O LYS A 972 35.959 -6.018 172.095 1.00135.83
ATOM 7425 CB LYS A 972 34.631 -8.790 173.069 1.00135.13
ATOM 7426 CG LYS A 972 34.527 -9.489 174.418 1.00135.53
ATOM 7427 CD LYS A 972 34.956 -10.956 174.335 1.00137.10 ATOM 7428 CE LYS A 972 35.002 -11.612 175.722 1.00142.59 C
ATOM 7429 NZ LYS A 972 35.173 -13.101 175.681 1.00143.63 N
ATOM 7430 N ILE A 973 34.194 -6.487 170.792 1.00129.62 N
ATOM 7431 CA ILE A 973 34.728 -5.780 169.636 1.00127.50 C
ATOM 7432 C ILE A 973 34.482 -4.279 169.721 1.00127.77 C
ATOM 7433 O ILE A 973 35.378 -3.475 169.457 1.00123.56 O
ATOM 7434 CB ILE A 973 34.095 -6.293 168.336 1.00131.30 C
ATOM 7435 CG1 ILE A 973 34.478 -7.755 168.095 1.00137.59 C
ATOM 7436 CG2 ILE A 973 34.526 -5.434 167.163 1.00130.88 C
ATOM 7437 CD1 ILE A 973 33.933 -8.325 166.796 1.00137.94 C
ATOM 7438 N SER A 974 33.258 -3.911 170.092 1.00133.54 N
ATOM 7439 CA SER A 974 32.833 -2.513 170.102 1.00135.22 C
ATOM 7440 C SER A 974 33.349 -1.739 171.303 1.00134.40 C
ATOM 7441 O SER A 974 34.055 -0.742 171.146 1.00137.40 O
ATOM 7442 CB SER A 974 31.304 -2.409 170.079 1.00137.62 C
ATOM 7443 OG SER A 974 30.751 -3.172 169.022 1.00139.52 O
ATOM 7444 N LEU A 975 32.976 -2.206 172.493 1.00126.67 N
ATOM 7445 CA LEU A 975 33.227 -1.491 173.745 1.00118.98 C
ATOM 7446 C LEU A 975 34.605 -0.843 173.892 1.00118.01 C
ATOM 7447 O LEU A 975 34.691 0.307 174.317 1.00116.20 O
ATOM 7448 CB LEU A 975 32.913 -2.379 174.956 1.00120.17 C
ATOM 7449 CG LEU A 975 31.431 -2.712 175.139 1.00118.41 C
ATOM 7450 CD1 LEU A 975 31.248 -3.819 176.165 1.00121.13 C
ATOM 7451 CD2 LEU A 975 30.647 -1.466 175.531 1.00111.49 C
ATOM 7452 N PRO A 976 35.688 -1.560 173.533 1.00120.07 N
ATOM 7453 CA PRO A 976 36.993 -0.898 173.659 1.00120.86 C
ATOM 7454 C PRO A 976 37.145 0.413 172.882 1.00118.66 C
ATOM 7455 O PRO A 976 38.150 1.091 173.078 1.00123.13 O
ATOM 7456 CB PRO A 976 37.987 -1.954 173.152 1.00119.68 C
ATOM 7457 CG PRO A 976 37.157 -3.072 172.603 1.00119.37 C
ATOM 7458 CD PRO A 976 35.837 -3.000 173.272 1.00119.47 C
ATOM 7459 N VAL A 977 36.177 0.776 172.041 1.00114.47 N
ATOM 7460 CA VAL A 977 36.208 2.090 171.406 1.00112.18 C
ATOM 7461 C VAL A 977 35.995 3.152 172.471 1.00119.90 C
ATOM 7462 O VAL A 977 36.430 4.292 172.319 1.00124.37 O
ATOM 7463 CB VAL A 977 35.164 2.255 170.273 1.00102.54 C
ATOM 7464 CG1 VAL A 977 33.775 2.500 170.833 1.00 98.17 C
ATOM 7465 CG2 VAL A 977 35.557 3.413 169.367 1.00 98.58 C
ATOM 7466 N ILE A 978 35.326 2.765 173.552 1.00124.00 N
ATOM 7467 CA ILE A 978 35.173 3.626 174.717 1.00124.10 C ATOM 7468 C ILE A 978 36.460 3.555 175.517 1.00123.40 C
ATOM 7469 O ILE A 978 36.915 4.553 176.077 1.001 18.89 O
ATOM 7470 CB ILE A 978 33.992 3.184 175.602 1.00120.58 C
ATOM 7471 CG1 ILE A 978 32.679 3.349 174.839 1.00120.51 C
ATOM 7472 CG2 ILE A 978 33.953 3.986 176.887 1.00114.65 C
ATOM 7473 CD1 ILE A 978 31.471 2.885 175.607 1.00123.48 C
ATOM 7474 N GLY A 979 37.045 2.361 175.558 1.00122.22 N
ATOM 7475 CA GLY A 979 38.348 2.186 176.160 1.00122.17 C
ATOM 7476 C GLY A 979 39.337 3.093 175.459 1.00118.68 C
ATOM 7477 O GLY A 979 39.968 3.950 176.082 1.00118.23 O
ATOM 7478 N LEU A 980 39.440 2.920 174.148 1.00113.71 N
ATOM 7479 CA LEU A 980 40.402 3.658 173.349 1.00112.89 C
ATOM 7480 C LEU A 980 40.260 5.167 173.518 1.00117.09 C
ATOM 7481 O LEU A 980 41.247 5.867 173.736 1.00121.83 O
ATOM 7482 CB LEU A 980 40.272 3.276 171.876 1.00110.23 C
ATOM 7483 CG LEU A 980 41.191 4.053 170.934 1.0011 1.46 C
ATOM 7484 CD1 LEU A 980 42.648 3.888 171.350 1.00112.26 C
ATOM 7485 CD2 LEU A 980 40.978 3.619 169.492 1.0011 1.42 C
ATOM 7486 N ASP A 981 39.036 5.669 173.426 1.001 16.41 N
ATOM 7487 CA ASP A 981 38.821 7.109 173.494 1.00115.75 C
ATOM 7488 C ASP A 981 39.091 7.612 174.904 1.00109.42 C
ATOM 7489 O ASP A 981 39.512 8.754 175.096 1.00101.48 O
ATOM 7490 CB ASP A 981 37.399 7.471 173.058 1.00123.12 C
ATOM 7491 CG ASP A 981 37.285 8.900 172.547 1.00128.57 C
ATOM 7492 OD1 ASP A 981 38.161 9.731 172.873 1.00128.55 O
ATOM 7493 OD2 ASP A 981 36.316 9.193 171.814 1.00131.39 O
ATOM 7494 N GLU A 982 38.851 6.745 175.885 1.00112.26 N
ATOM 7495 CA GLU A 982 39.071 7.086 177.284 1.00109.22 C
ATOM 7496 C GLU A 982 40.558 7.292 177.512 1.00110.28 C
ATOM 7497 O GLU A 982 40.973 8.221 178.211 1.00104.73 O
ATOM 7498 CB GLU A 982 38.556 5.974 178.189 1.00107.24 C
ATOM 7499 CG GLU A 982 38.085 6.454 179.540 1.00115.65 C
ATOM 7500 CD GLU A 982 36.735 7.132 179.474 1.00123.42 C
ATOM 7501 OE2 GLU A 982 36.323 7.722 180.495 1.00126.18 O
ATOM 7502 OE1 GLU A 982 36.083 7.072 178.407 1.00125.79 O
ATOM 7503 N ILE A 983 41.346 6.407 176.904 1.001 13.38 N
ATOM 7504 CA ILE A 983 42.802 6.51 1 176.878 1.0011 1.79 C
ATOM 7505 C ILE A 983 43.248 7.810 176.208 1.00113.33 C
ATOM 7506 O ILE A 983 44.041 8.566 176.769 1.001 15.61 O
ATOM 7507 CB ILE A 983 43.426 5.320 176.117 1.00103.33 C ATOM 7508 CG1 ILE A 983 43.107 4.003 176.825 1.00104.71 C
ATOM 7509 CG2 ILE A 983 44.922 5.497 175.980 1.00 99.98 C
ATOM 7510 CD1 ILE A 983 43.543 2.779 176.050 1.00104.72 C
ATOM 751 1 N LEU A 984 42.736 8.056 175.005 1.00111.10 N
ATOM 7512 CA LEU A 984 43.005 9.300 174.297 1.001 12.84 C
ATOM 7513 C LEU A 984 42.648 10.512 175.148 1.00114.60 C
ATOM 7514 O LEU A 984 43.463 1 1.416 175.320 1.00114.75 O
ATOM 7515 CB LEU A 984 42.240 9.337 172.979 1.00114.99 C
ATOM 7516 CG LEU A 984 42.880 8.482 171.886 1.00122.60 C
ATOM 7517 CD1 LEU A 984 42.060 8.517 170.604 1.00123.70 C
ATOM 7518 CD2 LEU A 984 44.298 8.965 171.635 1.00125.20 C
ATOM 7519 N LYS A 985 41.433 10.518 175.689 1.00116.92 N
ATOM 7520 CA LYS A 985 40.987 1 1.600 176.562 1.00116.14 C
ATOM 7521 C LYS A 985 41.883 1 1.721 177.792 1.00116.56 C
ATOM 7522 O LYS A 985 42.115 12.820 178.293 1.00111.84 O
ATOM 7523 CB LYS A 985 39.536 11.386 176.996 1.001 15.59 C
ATOM 7524 CG LYS A 985 38.480 1 1.888 176.024 1.001 12.98 C
ATOM 7525 CD LYS A 985 37.152 11.190 176.307 1.00119.51 C
ATOM 7526 CE LYS A 985 35.953 12.083 176.024 1.00121.14 C
ATOM 7527 NZ LYS A 985 34.671 11.433 176.429 1.00122.20 N
ATOM 7528 N PHE A 986 42.387 10.590 178.275 1.00120.35 N
ATOM 7529 CA PHE A 986 43.270 10.598 179.437 1.00125.05 C
ATOM 7530 C PHE A 986 44.548 1 1.376 179.154 1.00124.31 C
ATOM 7531 O PHE A 986 44.906 12.288 179.902 1.00122.77 O
ATOM 7532 CB PHE A 986 43.619 9.176 179.873 1.00127.31 C
ATOM 7533 CG PHE A 986 44.560 9.1 16 181.044 1.00130.59 C
ATOM 7534 CD1 PHE A 986 44.095 9.299 182.334 1.00133.30 C
ATOM 7535 CD2 PHE A 986 45.910 8.866 180.854 1.00132.99 C
ATOM 7536 CE1 PHE A 986 44.959 9.239 183.409 1.00138.27 C
ATOM 7537 CE2 PHE A 986 46.778 8.804 181.928 1.00134.97 C
ATOM 7538 CZ PHE A 986 46.303 8.991 183.205 1.00137.22 C
ATOM 7539 N ILE A 987 45.225 11.001 178.070 1.00122.1 1 N
ATOM 7540 CA ILE A 987 46.434 1 1.686 177.624 1.00118.68 C
ATOM 7541 C ILE A 987 46.182 13.187 177.483 1.001 19.98 C
ATOM 7542 O ILE A 987 47.024 14.004 177.850 1.00123.88 O
ATOM 7543 CB ILE A 987 46.945 1 1.104 176.286 1.00110.85 C
ATOM 7544 CG1 ILE A 987 47.095 9.582 176.393 1.001 14.08 C
ATOM 7545 CG2 ILE A 987 48.256 11.754 175.883 1.00105.48 C
ATOM 7546 CD1 ILE A 987 47.687 8.914 175.163 1.00 88.87 C
ATOM 7547 N ALA A 988 45.003 13.542 176.980 1.00114.64 N ATOM 7548 CA ALA A 988 44.618 14.940 176.824 1.00106.45 C
ATOM 7549 C ALA A 988 44.588 15.688 178.154 1.00112.67 C
ATOM 7550 O ALA A 988 45.367 16.619 178.357 1.00110.78 O
ATOM 7551 CB ALA A 988 43.269 15.042 176.126 1.00 95.31 C
ATOM 7552 N ARG A 989 43.691 15.268 179.049 1.00121.32 N
ATOM 7553 CA ARG A 989 43.444 15.956 180.324 1.00126.54 C
ATOM 7554 C ARG A 989 44.731 16.224 181.097 1.00132.53 C
ATOM 7555 O ARG A 989 44.901 17.280 181.708 1.00127.68 O
ATOM 7556 CB ARG A 989 42.488 15.143 181.214 1.00125.78 C
ATOM 7557 CG ARG A 989 41.181 14.709 180.554 1.00121.13 C
ATOM 7558 CD ARG A 989 40.199 14.1 15 181.565 1.00118.83 C
ATOM 7559 NE ARG A 989 40.874 13.330 182.593 1.00120.84 N
ATOM 7560 CZ ARG A 989 40.999 12.006 182.570 1.00120.56 C
ATOM 7561 NH 1 ARG A 989 40.483 1 1.303 181.567 1.00113.96 N
ATOM 7562 NH2 ARG A 989 41.638 11.387 183.557 1.00123.75 N
ATOM 7563 N ASN A 990 45.637 15.256 181.056 1.00143.68 N
ATOM 7564 CA ASN A 990 46.873 15.333 181.817 1.00151.56 C
ATOM 7565 C ASN A 990 48.024 15.972 181.035 1.00157.85 C
ATOM 7566 O ASN A 990 49.101 16.180 181.591 1.00164.09 O
ATOM 7567 CB ASN A 990 47.267 13.943 182.325 1.00152.81 C
ATOM 7568 CG ASN A 990 46.139 13.258 183.089 1.00153.67 C
ATOM 7569 OD1 ASN A 990 45.568 12.272 182.625 1.00153.61 O
ATOM 7570 ND2 ASN A 990 45.816 13.782 184.267 1.00155.31 N
ATOM 7571 O TYR A 991 48.445 17.975 176.768 1.00135.76 O
ATOM 7572 N TYR A 991 47.788 16.285 179.757 1.00153.59 N
ATOM 7573 CA TYR A 991 48.787 16.951 178.914 1.00143.91 C
ATOM 7574 C TYR A 991 48.173 17.998 177.968 1.00137.66 C
ATOM 7575 CB TYR A 991 49.561 15.929 178.063 1.00136.91 C
ATOM 7576 CG TYR A 991 50.302 14.825 178.804 1.00137.42 C
ATOM 7577 CD2 TYR A 991 50.167 13.491 178.417 1.00134.18 C
ATOM 7578 CD1 TYR A 991 51.165 15.1 10 179.856 1.00142.89 C
ATOM 7579 CE2 TYR A 991 50.853 12.470 179.075 1.00133.08 C
ATOM 7580 CE1 TYR A 991 51.851 14.096 180.526 1.00143.31 C
ATOM 7581 CZ TYR A 991 51.690 12.781 180.128 1.00135.26 C
ATOM 7582 OH TYR A 991 52.360 11.779 180.785 1.00131.07 O
ATOM 7583 O LEU A 992 47.638 21.621 179.234 1.00132.19 O
ATOM 7584 N LEU A 992 47.345 18.906 178.486 1.00132.66 N
ATOM 7585 CA LEU A 992 46.820 19.998 177.653 1.00125.68 C
ATOM 7586 C LEU A 992 47.383 21.363 178.058 1.00129.48 C
ATOM 7587 CB LEU A 992 45.278 20.021 177.608 1.001 15.91 C ATOM 7588 CG LEU A 992 44.375 20.181 178.839 1.00105.54 C ATOM 7589 CD1 LEU A 992 44.448 21.571 179.438 1.00100.78 C ATOM 7590 CD2 LEU A 992 42.931 19.849 178.476 1.00 99.12 C HETATM 7591 PG ACP A1001 27.501 55.276 185.678 1.00259.59 P HETATM 7592 O1G ACP A1001 27.926 53.948 186.414 1.00 71.63 O HETATM 7593 O2G ACP A1001 28.605 55.314 184.541 1.00 93.20 O HETATM 7594 03G ACP A1001 26.208 55.252 184.951 1.00258.96 O HETATM 7595 PB ACP A1001 26.745 57.965 186.757 1.001 16.64 P HETATM 7596 01 B ACP A1001 25.237 57.666 187.109 1.00178.37 O HETATM 7597 02B ACP A1001 26.885 58.919 185.633 1.00103.22 O HETATM 7598 C3B ACP A1001 27.659 56.571 186.674 1.00 40.16 C HETATM 7599 03A ACP A1001 27.296 58.568 188.106 0.25182.50 O TER
ATOM 7600 O MET B 1 13.003 21.802 175.465 1.00187.25 O ATOM 7601 N MET B 1 13.367 24.334 176.520 1.00186.63 N
ATOM 7602 CA MET B 1 12.070 23.951 175.978 1.00187.82 C
ATOM 7603 C MET B 1 11.997 22.434 175.791 1.00187.34 C
ATOM 7604 CB MET B 1 11.824 24.665 174.643 1.00184.83 C
ATOM 7605 CG MET B 1 11.929 26.189 174.709 1.00189.60 C ATOM 7606 SD MET B 1 11.524 27.002 173.146 1.00176.44 S
ATOM 7607 CE MET B 1 11.675 28.737 173.570 1.00139.24 C
ATOM 7608 O GLU B 2 9.954 19.116 173.816 1.00170.34 O
ATOM 7609 N GLU B 2 10.814 21.851 175.996 1.00185.35 N
ATOM 7610 CA GLU B 2 10.609 20.422 175.735 1.00178.25 C ATOM 761 1 C GLU B 2 10.381 20.191 174.241 1.00173.66 C
ATOM 7612 CB GLU B 2 9.436 19.855 176.550 1.00177.20 C
ATOM 7613 CG GLU B 2 9.440 18.321 176.670 1.00172.69 C
ATOM 7614 CD GLU B 2 8.136 17.744 177.208 1.00174.60 C
ATOM 7615 OE1 GLU B 2 7.341 18.499 177.812 1.00181.72 O ATOM 7616 OE2 GLU B 2 7.910 16.527 177.024 1.00166.71 O
ATOM 7617 0 ARG B 3 11.711 19.759 170.376 1.00144.1 1 O
ATOM 7618 N ARG B 3 10.673 21.216 173.447 1.00171.86 N
ATOM 7619 CA ARG B 3 10.594 21.1 18 172.000 1.00164.29 C
ATOM 7620 C ARG B 3 11.724 20.231 171.509 1.00149.73 C ATOM 7621 CB ARG B 3 10.694 22.509 171.365 1.00174.10 C
ATOM 7622 CG ARG B 3 9.591 23.471 171.805 1.00188.62 C
ATOM 7623 CD ARG B 3 9.699 24.827 171.114 1.00196.45 C
ATOM 7624 NE ARG B 3 8.665 25.757 171.567 1.00204.68 N
ATOM 7625 CZ ARG B 3 8.577 27.025 171.174 1.00208.92 C ATOM 7626 NH1 ARG B 3 9.466 27.516 170.320 1.00207.97 N ATOM 7627 NH2 ARG B 3 7.605 27.802 171.635 1.00213.54 N
ATOM 7628 O SER B 4 14.125 16.997 171.215 1.00124.46 O
ATOM 7629 N SER B 4 12.696 20.001 172.386 1.00146.22 N
ATOM 7630 CA SER B 4 13.890 19.231 172.058 1.00140.60 C
ATOM 7631 C SER B 4 13.598 17.740 172.040 1.00131.66 C
ATOM 7632 CB SER B 4 14.978 19.506 173.091 1.00144.57 C
ATOM 7633 OG SER B 4 14.718 18.793 174.286 1.00147.18 O
ATOM 7634 O THR B 5 11.352 14.381 171.541 1.00124.18 O
ATOM 7635 N THR B 5 12.762 17.307 172.973 1.00133.65 N
ATOM 7636 CA THR B 5 12.399 15.903 173.079 1.00131.63 C
ATOM 7637 C THR B 5 11.399 15.527 171.992 1.00127.99 C
ATOM 7638 CB THR B 5 11.806 15.598 174.460 1.00133.49 C
ATOM 7639 OG1 THR B 5 12.713 16.052 175.474 1.00139.17 O
ATOM 7640 CG2 THR B 5 1 1.566 14.104 174.623 1.00129.27 C
ATOM 7641 O ARG B 6 10.138 15.291 168.333 1.00106.04 O
ATOM 7642 N ARG B 6 10.599 16.502 171.571 1.00129.19 N
ATOM 7643 CA ARG B 6 9.679 16.295 170.462 1.00124.49 C
ATOM 7644 C ARG B 6 10.479 16.119 169.177 1.001 15.93 C
ATOM 7645 CB ARG B 6 8.691 17.463 170.341 1.00131.05 C
ATOM 7646 CG ARG B 6 7.897 17.475 169.044 1.00136.24 C
ATOM 7647 CD ARG B 6 6.853 18.581 169.017 1.00148.29 C
ATOM 7648 NE ARG B 6 6.399 18.880 167.656 1.00158.44 N
ATOM 7649 CZ ARG B 6 5.509 18.159 166.972 1.00163.27 C
ATOM 7650 NH1 ARG B 6 4.966 17.070 167.507 1.00165.98 N
ATOM 7651 NH2 ARG B 6 5.166 18.525 165.742 1.00161.06 N
ATOM 7652 O GLU B 7 12.949 14.913 166.521 1.001 15.63 O
ATOM 7653 N GLU B 7 11.557 16.887 169.047 1.00122.19 N
ATOM 7654 CA GLU B 7 12.403 16.831 167.857 1.00126.02 C
ATOM 7655 C GLU B 7 12.983 15.440 167.635 1.00121.86 C
ATOM 7656 CB GLU B 7 13.539 17.846 167.947 1.00135.52 C
ATOM 7657 CG GLU B 7 14.539 17.725 166.812 1.00141.22 C
ATOM 7658 CD GLU B 7 15.612 18.785 166.866 1.00149.14 C
ATOM 7659 OE1 GLU B 7 15.668 19.520 167.879 1.00153.98 O
ATOM 7660 OE2 GLU B 7 16.395 18.883 165.894 1.00149.50 O
ATOM 7661 N LEU B 8 13.510 14.852 168.703 1.00122.85 N
ATOM 7662 CA LEU B 8 14.067 13.506 168.636 1.00121.79 C
ATOM 7663 C LEU B 8 12.983 12.444 168.383 1.00126.32 C
ATOM 7664 O LEU B 8 13.171 11.536 167.574 1.00122.47 O
ATOM 7665 CB LEU B 8 14.875 13.198 169.902 1.00116.94 C
ATOM 7666 CG LEU B 8 15.794 11.977 169.864 1.00118.99 C ATOM 7667 CD1 LEU B 8 17.060 12.221 170.675 1.00106.25 C
ATOM 7668 CD2 LEU B 8 15.059 10.744 170.378 1.00122.82 C
ATOM 7669 N CYS B 9 11.849 12.560 169.067 1.00132.83 N
ATOM 7670 CA CYS B 9 10.745 1 1.625 168.860 1.00135.42 C
ATOM 7671 C CYS B 9 10.239 11.634 167.413 1.00137.78 C
ATOM 7672 O CYS B 9 9.956 10.577 166.846 1.00141.61 O
ATOM 7673 CB CYS B 9 9.594 11.91 1 169.830 1.00135.64 C
ATOM 7674 SG CYS B 9 8.129 10.876 169.564 1.00120.46 S
ATOM 7675 N LEU B 10 10.131 12.822 166.819 1.00135.95 N
ATOM 7676 CA LEU B 10 9.674 12.944 165.434 1.00134.86 C
ATOM 7677 C LEU B 10 10.690 12.386 164.443 1.00134.25 C
ATOM 7678 O LEU B 10 10.327 1 1.940 163.354 1.00129.95 O
ATOM 7679 CB LEU B 10 9.357 14.396 165.079 1.00134.78 C
ATOM 7680 CG LEU B 10 8.074 14.991 165.653 1.00136.26 C
ATOM 7681 CD1 LEU B 10 7.804 16.355 165.030 1.00134.81 C
ATOM 7682 CD2 LEU B 10 6.899 14.044 165.446 1.00134.94 C
ATOM 7683 N ASN B 1 1 11.966 12.426 164.815 1.00136.04 N
ATOM 7684 CA ASN B 11 13.003 1 1.812 163.996 1.00132.61 C
ATOM 7685 C ASN B 1 1 12.853 10.295 164.006 1.00132.02 C
ATOM 7686 O ASN B 1 1 12.916 9.652 162.963 1.00131.17 O
ATOM 7687 CB ASN B 11 14.403 12.227 164.465 1.00128.62 C
ATOM 7688 CG ASN B 11 14.827 13.588 163.928 1.00122.26 C
ATOM 7689 OD1 ASN B 1 1 14.032 14.315 163.326 1.00116.81 O
ATOM 7690 ND2 ASN B 11 16.087 13.939 164.150 1.00122.99 N
ATOM 7691 N PHE B 12 12.636 9.731 165.191 1.00133.86 N
ATOM 7692 CA PHE B 12 12.426 8.295 165.332 1.00136.04 C
ATOM 7693 C PHE B 12 1 1.187 7.808 164.579 1.00133.50 C
ATOM 7694 O PHE B 12 11.150 6.672 164.102 1.00136.15 O
ATOM 7695 CB PHE B 12 12.324 7.908 166.811 1.00139.82 C
ATOM 7696 CG PHE B 12 11.673 6.573 167.043 1.00139.53 C
ATOM 7697 CD1 PHE B 12 12.415 5.406 166.974 1.00142.15 C
ATOM 7698 CD2 PHE B 12 10.317 6.488 167.320 1.00135.92 C
ATOM 7699 CE1 PHE B 12 11.820 4.182 167.178 1.00144.77 C
ATOM 7700 CE2 PHE B 12 9.717 5.268 167.521 1.00138.69 C
ATOM 7701 CZ PHE B 12 10.468 4.1 13 167.451 1.00144.35 C
ATOM 7702 N THR B 13 10.170 8.661 164.487 1.00128.49 N
ATOM 7703 CA THR B 13 8.928 8.298 163.805 1.00127.17 C
ATOM 7704 C THR B 13 9.139 8.051 162.311 1.00127.17 C
ATOM 7705 O TH B 13 8.662 7.055 161.759 1.00123.39 O
ATOM 7706 CB THR B 13 7.849 9.384 163.978 1.00121.33 C ATOM 7707 OG1 THR B 13 7.619 9.617 165.374 1.00120.65 O
ATOM 7708 CG2 THR B 13 6.545 8.958 163.302 1.00116.59 C
ATOM 7709 N VAL B 14 9.859 8.969 161.671 1.00128.54 N
ATOM 7710 CA VAL B 14 10.137 8.910 160.237 1.00130.24 C
ATOM 7711 C VAL B 14 10.852 7.625 159.805 1.00140.68 C
ATOM 7712 O VAL B 14 10.432 6.965 158.851 1.00143.99 O
ATOM 7713 CB VAL B 14 10.947 10.143 159.789 1.00123.31 C
ATOM 7714 CG1 VAL B 14 11.627 9.902 158.440 1.00123.34 C
ATOM 7715 CG2 VAL B 14 10.047 11.364 159.744 1.00119.05 C
ATOM 7716 N VAL B 15 11.919 7.269 160.516 1.00143.36 N
ATOM 7717 CA VAL B 15 12.689 6.070 160.198 1.00148.71 C
ATOM 7718 C VAL B 15 11.958 4.803 160.630 1.00155.09 C
ATOM 7719 O VAL B 15 12.368 3.695 160.285 1.00158.72 O
ATOM 7720 CB VAL B 15 14.068 6.093 160.859 1.00153.16 C
ATOM 7721 CG1 VAL B 15 14.794 7.373 160.501 1.00152.26 C
ATOM 7722 CG2 VAL B 15 13.921 5.979 162.356 1.00155.76 C
ATOM 7723 N LEU B 16 10.885 4.972 161.399 1.00157.63 N
ATOM 7724 CA LEU B 16 9.975 3.871 161.698 1.00157.91 C
ATOM 7725 C LEU B 16 8.957 3.727 160.570 1.00151.19 C
ATOM 7726 O LEU B 16 8.728 2.625 160.072 1.00154.18 O
ATOM 7727 CB LEU B 16 9.251 4.091 163.029 1.00157.44 C
ATOM 7728 CG LEU B 16 8.202 3.022 163.348 1.00158.05 C
ATOM 7729 CD1 LEU B 16 8.862 1.658 163.529 1.00162.27 C
ATOM 7730 CD2 LEU B 16 7.382 3.400 164.571 1.00156.14 C
ATOM 7731 N ILE B 17 8.357 4.846 160.168 1.00141.65 N
ATOM 7732 CA ILE B 17 7.413 4.855 159.057 1.00141.63 C
ATOM 7733 C ILE B 17 8.101 4.421 157.762 1.00146.27 C
ATOM 7734 O ILE B 17 7.475 3.831 156.883 1.00149.61 O
ATOM 7735 CB ILE B 17 6.759 6.240 158.878 1.00140.13 C
ATOM 7736 CG1 ILE B 17 5.966 6.625 160.129 1.00144.25 C
ATOM 7737 CG2 ILE B 17 5.838 6.251 157.673 1.00138.13 C
ATOM 7738 CD1 ILE B 17 4.831 5.672 160.457 1.00148.44 C
ATOM 7739 N THR B 18 9.398 4.702 157.660 1.00147.36 N
ATOM 7740 CA THR B 18 10.210 4.252 156.526 1.00147.15 C
ATOM 7741 C THR B 18 10.358 2.731 156.507 1.00155.17 C
ATOM 7742 O THR B 18 10.140 2.085 155.477 1.00161.68 O
ATOM 7743 CB THR B 18 11.610 4.898 156.541 1.00137.15 C
ATOM 7744 OG1 THR B 18 11.490 6.287 156.224 1.00135.57 O
ATOM 7745 CG2 THR B 18 12.517 4.241 155.522 1.00134.14 C
ATOM 7746 N VAL B 19 10.731 2.167 157.650 1.00153.05 N ATOM 7747 CA VAL B 19 10.842 0.720 157.796 1.00154.56 C
ATOM 7748 C VAL B 19 9.485 0.038 157.559 1.00158.74 C
ATOM 7749 O VAL B 19 9.416 -1.034 156.953 1.00164.41 O
ATOM 7750 CB VAL B 19 11.442 0.352 159.176 1.00148.35 C
ATOM 7751 CG1 VAL B 19 11.338 -1.130 159.443 1.00150.47 C
ATOM 7752 CG2 VAL B 19 12.888 0.789 159.247 1.00145.97 C
ATOM 7753 N ILE B 20 8.412 0.679 158.018 1.00155.95 N
ATOM 7754 CA ILE B 20 7.049 0.197 157.780 1.00159.52 C
ATOM 7755 C ILE B 20 6.747 -0.002 156.287 1.00162.99 C
ATOM 7756 O ILE B 20 6.286 -1.073 155.888 1.00170.84 O
ATOM 7757 CB ILE B 20 5.984 1.147 158.416 1.00120.09 C
ATOM 7758 CG1 ILE B 20 5.847 0.884 159.920 1.00119.31 C
ATOM 7759 CG2 ILE B 20 4.622 1.003 157.723 1.00118.95 C
ATOM 7760 CD1 ILE B 20 4.943 1.883 160.646 1.00106.30 C
ATOM 7761 N LEU B 21 7.019 1.018 155.471 1.00154.54 N
ATOM 7762 CA LEU B 21 6.694 0.984 154.042 1.00148.69 C
ATOM 7763 C LEU B 21 7.358 -0.186 153.321 1.00156.47 C
ATOM 7764 O LEU B 21 6.804 -0.747 152.372 1.00160.27 O
ATOM 7765 CB LEU B 21 7.085 2.297 153.362 1.00140.24 C
ATOM 7766 CG LEU B 21 6.430 3.573 153.890 1.00135.41 C
ATOM 7767 CD1 LEU B 21 6.833 4.779 153.051 1.00131.00 C
ATOM 7768 CD2 LEU B 21 4.917 3.425 153.944 1.00137.13 C
ATOM 7769 N ILE B 22 8.548 -0.551 153.782 1.00158.48 N
ATOM 7770 CA ILE B 22 9.293 -1.648 153.184 1.00164.75 C
ATOM 7771 C ILE B 22 8.655 -3.001 153.529 1.00179.13 C
ATOM 7772 O ILE B 22 8.686 -3.940 152.733 1.00186.99 O
ATOM 7773 CB ILE B 22 10.777■ -1.570 153.587 1.00155.70 C
ATOM 7774 CG1 ILE B 22 11.363 -0.246 153.084 1.00144.09 C
ATOM 7775 CG2 ILE B 22 11.550 -2.746 153.036 1.00162.84 C
ATOM 7776 CD1 ILE B 22 12.826 -0.058 153.367 1.00139.35 C
ATOM 7777 N TRP B 23 8.055 - 3.082 154.712 1.00182.93 N
ATOM 7778 CA TRP B 23 7.236 -4.230 155.087 1.00191.23 C
ATOM 7779 C TRP B 23 6.001 - 4.257 154.190 1.00188.03 C
ATOM 7780 O TRP B 23 5.491 ■ ■5.326 153.843 1.00190.19 O
ATOM 7781 CB TRP B 23 6.841 -4.116 156.566 1.00196.48 C
ATOM 7782 CG TRP B 23 5.960 -5.216 157.112 1.00204.42 C
ATOM 7783 CD1 TRP B 23 5.785 -6.469 156.600 1.00209.23 C
ATOM 7784 CD2 TRP B 23 5.133 -5.143 158.284 1.00204.90 C
ATOM 7785 NE1 TRP B 23 4.904 -7.181 157.380 1.00211.11 N
ATOM 7786 CE2 TRP B 23 4.488 -6.390 158.419 1.00208.70 C ATOM 7787 CE3 TRP B 23 4.876 -4.143 159.231 1.00199.32 C
ATOM 7788 CZ2 TRP B 23 3.603 -6.663 159.463 1.00209.29 C
ATOM 7789 CZ3 TRP B 23 3.995 -4.417 160.267 1.00198.82 C
ATOM 7790 CH2 TRP B 23 3.370 -5.666 160.374 1.00204.00 C
ATOM 7791 O LEU B 24 3.822 -3.447 150.670 1.00196.61 O
ATOM 7792 N LEU B 24 5.542 -3.066 153.804 1.00182.10 N
ATOM 7793 CA LEU B 24 4.373 -2.915 152.942 1.00181.57 C
ATOM 7794 C LEU B 24 4.703 -3.126 151.466 1.00188.01 C
ATOM 7795 CB LEU B 24 3.732 -1.538 153.129 1.00174.76 C
ATOM 7796 CG LEU B 24 3.070 -1.231 154.475 1.00174.17 C
ATOM 7797 CD1 LEU B 24 2.593 0.217 154.534 1.00171.05 C
ATOM 7798 CD2 LEU B 24 1.914 -2.180 154.735 1.00177.47 C
ATOM 7799 O LEU B 25 6.480 -5.017 148.238 1.00191.09 O
ATOM 7800 N LEU B 25 5.968 -2.946 151.099 1.00183.76 N
ATOM 7801 CA LEU B 25 6.373 -3.114 149.704 1.00181.04 C
ATOM 7802 C LEU B 25 6.698 -4.573 149.365 1.00186.36 C
ATOM 7803 CB LEU B 25 7.552 -2.192 149.363 1.00171.04 C
ATOM 7804 CG LEU B 25 8.027 -2.140 147.906 1.00165.78 C
ATOM 7805 CD2 LEU B 25 9.092 -1.069 147.734 1.00159.53 C
ATOM 7806 CD1 LEU B 25 6.867 -1.898 146.950 1.00162.10 C
ATOM 7807 O VAL B 26 6.309 -8.477 149.152 1.00213.43 O
ATOM 7808 N VAL B 26 7.207 -5.315 150.345 1.00186.72 N
ATOM 7809 CA VAL B 26 7.602 -6.705 150.128 1.00196.17 C
ATOM 7810 C VAL B 26 6.402 -7.639 150.053 1.00206.18 C
ATOM 781 1 CB VAL B 26 8.540 -7.202 151.233 1.00193.22 C
ATOM 7812 CG2 VAL B 26 9.813 -6.404 151.218 1.00188.82 C
ATOM 7813 CG1 VAL B 26 8.834 -8.685 151.054 1.00201.21 C
ATOM 7814 O ARG B 27 2.763 -8.801 149.194 1.00213.48 O
ATOM 7815 N ARG B 27 5.493 -7.495 151.011 1.00206.05 N
ATOM 7816 CA ARG B 27 4.249 -8.254 151.012 1.0021 1.09 C
ATOM 7817 C ARG B 27 3.454 -7.938 149.743 1.00209.43 C
ATOM 7818 CB ARG B 27 3.428 -7.928 152.266 1.00210.12 C
ATOM 7819 CG ARG B 27 2.192 -8.802 152.454 1.00217.08 C
ATOM 7820 CD ARG B 27 1.451 -8.472 153.748 1.00214.82 C
ATOM 7821 NE ARG B 27 0.905 -7.116 153.757 1.00208.13 N
ATOM 7822 CZ ARG B 27 -0.311 -6.793 153.323 1.00207.17 C
ATOM 7823 NH1 ARG B 27 -1.1 17 -7.729 152.836 1.00212.99 N
ATOM 7824 NH2 ARG B 27 -0.722 -5.532 153.375 1.00200.41 N
ATOM 7825 O SER B 28 2.752 -7.465 145.967 1.00200.70 O
ATOM 7826 N SER B 28 3.571 -6.695 149.278 1.00201.55 N ATOM 7827 CA SER B 28 2.933 -6.259 148.039 1.00196.75 C
ATOM 7828 C SER B 28 3.501 -6.997 146.826 1.00199.17 C
ATOM 7829 CB SER B 28 3.096 -4.747 147.861 1.00187.03 C
ATOM 7830 OG SER B 28 2.464 -4.294 146.678 1.00187.52 O
ATOM 7831 O TYR B 29 5.175 -10.015 144.767 1.00225.46 O
ATOM 7832 N TYR B 29 4.825 -7.098 146.761 1.00198.99 N
ATOM 7833 CA TYR B 29 5.476 -7.812 145.671 1.00206.58 C
ATOM 7834 C TYR B 29 5.269 -9.322 145.780 1.00216.54 C
ATOM 7835 CB TYR B 29 6.973 -7.495 145.609 1.00207.65 C
ATOM 7836 CG TY B 29 7.701 -8.382 144.626 1.00219.85 C
ATOM 7837 CD1 TYR B 29 7.667 -8.111 143.266 1.00225.45 C
ATOM 7838 CD2 TYR B 29 8.394 -9.511 145.053 1.00226.75 C
ATOM 7839 CE1 TYR B 29 8.316 -8.931 142.354 1.00235.09 C
ATOM 7840 CE2 TYR B 29 9.042 -10.338 144.148 1.00236.59 C
ATOM 7841 CZ TYR B 29 9.000 -10.042 142.800 1.00239.13 C
ATOM 7842 OH TYR B 29 9.646 -10.851 141.893 1.00246.46 O
ATOM 7843 O GLN B 30 3.387 -12.781 146.284 1.00238.93 O
ATOM 7844 N GLN B 30 5.212 -9.835 147.005 1.00216.77 N
ATOM 7845 CA GLN B 30 5.004 -11.267 147.216 1.00226.27 C
ATOM 7846 C GLN B 30 3.586 -11.694 146.831 1.00230.52 C
ATOM 7847 CB GLN B 30 5.309 -11.657 148.666 1.00223.69 C
ATOM 7848 CG GLN B 30 6.790 -11.660 149.012 1.00223.22 C
ATOM 7849 CD GLN B 30 7.042 -11.758 150.506 1.00219.91 C
ATOM 7850 OE1 GLN B 30 6.155 -11.489 151.315 1.00217.88 O
ATOM 7851 NE2 GLN B 30 8.255 -12.145 150.877 1.00220.14 N
ATOM 7852 O TYR B 31 -0.516 -9.703 145.824 1.00219.37 O
ATOM 7853 N TYR B 31 2.611 -10.832 147.115 1.00222.74 N
ATOM 7854 CA TYR B 31 1.213 -11.086 146.761 1.00220.22 C
ATOM 7855 C TYR B 31 0.411 -9.792 146.633 1.00216.36 C
ATOM 7856 CB TYR B 31 0.554 -12.018 147.781 1.00213.12 C
ATOM 7857 CG TYR B 31 0.723 -13.483 147.459 1.00214.51 C
ATOM 7858 CD2 TYR B 31 1.132 -14.386 148.431 1.00214.22 C
ATOM 7859 CD1 TYR B 31 0.488 -13.963 146.178 1.00217.32 C
ATOM 7860 CE2 TYR B 31 1.292 -15.726 148.139 1.00220.69 C
ATOM 7861 CE1 TYR B 31 0.646 -15.302 145.876 1.00224.26 C
ATOM 7862 CZ TYR B 31 1.048 -16.178 146.860 1.00225.18 C
ATOM 7863 OH TYR B 31 1.206 -17.512 146.567 1.00233.44 O
TER
HETATM 7864 K K C 1 31.885 45.788 168.344 1.00 78.99 K+1
TER HETATM 7865 O HOH E 1 32.856 43.462 166.218 1.00 64.80 O HETATM 7866 O HOH E 5 24.169 55.654 181.754 1.00 79.61 O TER
HETATM 7867 MG MG G 1 25.053 54.107 183.246 1.00 70.63 MG2+ TER
HETATM 7868 MG MG D 1 25.651 11.539 153.998 1.00124.67 MG2+ TER
HETATM 7869 MG MG F 1 26.860 10.272 159.152 1.00114.08 MG2+
TER
END

Claims

1. Use of a three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as defined by the coordinates listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, in a method for selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN.
2. A method for identifying or selecting or designing one or more binding partners of a Ca2+ ATPase and/or SLN, the method comprising using molecular modelling means to select or design one or more binding partners of a Ca2+ ATPase and/or SLN, wherein the three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, is compared with a three-dimensional structural representation of one or more candidate binding partners, and one or more binding partners that are predicted to interact with the Ca2+ ATPase and/or SLN are identified or selected or designed.
3. A use according to Claim 1 or a method according to Claim 2 wherein the one or more binding partners are one or more binding partners of a Ca2+ ATPase, or one or more binding partners of SLN, or one or more binding partners of both a Ca2+ ATPase and SLN.
4. A use according to Claim 1 or 3, or a method according to Claim 2 or 3, wherein the one or more binding partners are modulators of Ca2+ ATPase activity and/or SLN activity.
5. A use according to any of Claims 1 , 3 and 4, or a method according to any of Claims 2-4, wherein the one or more binding partners are modulators of the SERCA Ca2+ ATPase/SLN interaction.
6. A use according to any of Claims 1 and 3-5, or a method according to any of Claims 2-5, wherein one or more binding partners are any of a polypeptide, an antibody, a small molecule, a natural product, a peptidomimetic, or a nucleic acid.
7. A use according to any of Claims 1 and 3-6, or a method according to any of Claims 2-6, wherein the binding partner is small molecule with a molecule weight less than 500 daltons.
8. A use according to any of Claims 1 and 3-7, or a method according to any of Claims 2-7, wherein the three-dimensional structure of at least part of the SERCA Ca2+ ATPase/SLN complex is a three dimensional structure of the SERCA Ca2+ ATPase/SLN interaction site, or part thereof.
9. A use according to any of Claims 1 and 3-8, or a method according to any of Claims 2-8, wherein the one or more binding partners are predicted to bind to at least one amino acid within the SERCA Ca2+ ATPase/SLN interaction site.
10. A method according to any of Claims 2-9, comprising:
providing a three-dimensional structural representation of at least part of the
SERCA Ca2+ ATPase/SLN complex as listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing a three-dimensional structural representation of one or more candidate binding partners,
selecting or designing of one or more binding partners that are structurally complementary to the three-dimensional structural representation of at least part of the SERCA Ca2+ ATPase/SLN complex.
11. A method for identifying or selecting or designing one or more binding partners of a Ca2+ ATPase having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SERCA Ca2+ ATPase that is defined by residues including Phe88, Phe92, Val93, Leu96, Ne97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957 of rabbit SERCA Ca2+ ATPase, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said Ca2+ ATPase, wherein a three-dimensional structural representation of one or more candidate binding partners are compared with a three-dimensional structural representation of the said binding pocket, and one or more candidate binding partners that are predicted to interact with the said binding pocket, are identified or selected or designed.
12. A method for identifying or selecting or designing one or more binding partners of a SLN having a binding pocket in the position structurally equivalent to the binding pocket of rabbit SLN that is defined by residues including Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 of rabbit SLN, the method comprising the step of using molecular modelling means to select or design one or more binding partners that are predicted to interact with the said SLN, wherein a three-dimensional structural representation of one or more candidate binding partners are compared with a three-dimensional structural representation of the said binding pocket, and one or more candidate binding partners that are predicted to interact with the said binding pocket, are identified or selected or designed.
13. A method according to Claim 11 or 12, wherein the three-dimensional structural representation is that defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
14. A method according to any of Claims 11-13 wherein the one or more binding partners are as defined in any of Claims 3-7.
15. A method for the analysis of the interaction of one or more binding partners with a Ca2+ ATPase and/or SLN, comprising:
providing a three dimensional structural representation of the SERCA Ca2+ ATPase/SLN complex as defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing a three dimensional structural representation of one or more binding partners to be fitted to the structural representation of the SERCA Ca2+ ATPase/SLN complex or selected coordinates thereof; and
fitting the one of more binding partners to said structural representation.
16. A method according to any of Claims 2-15, wherein the three-dimensional structural representation of the one or more candidate binding partners is obtained by: providing structural representations of a plurality of molecular fragments;
fitting the structural representation of each of the molecular fragments to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
assembling the representations of the molecular fragments into one or more representations of single molecules to provide the three-dimensional structural representation of one or more candidate binding partners.
17. A method according to any of Claims 2-16 further comprising modifying the structural representation of the one or more binding partners so as to increase or decrease their interaction with Ca2+ ATPase and/or SLN.
18. A method according to any of Claims 15-17, wherein the binding partner or molecular fragment is fitted to at least 10 atoms.
19. A use according to any of Claims 1 and 3-9, or a method according to any of Claims 2-10 and 13-18 wherein the selected coordinates are of at least 500 atoms.
20. A method according to any of Claims 2-19, further comprising the steps of:
obtaining or synthesising the one or more binding partners; and
contacting the one or more binding partners with a Ca2+ ATPase and/or SLN to determine the ability of the one or more binding partners to interact with a Ca2+ ATPase and/or SLN.
21. A method according to Claim 20 wherein it is determined if the one or more binding partners are modulators of the SERCA Ca2+ ATPase/SLN interaction
22. A method according to any of Claims 2-21 , further comprising the steps of:
obtaining or synthesising the one or more binding partners;
forming one or more complexes of a binding partner with a Ca2+ ATPase and/or SLN; and
analysing the one or more complexes by X-ray crystallography to determine the ability of the one or more binding partners to interact with a Ca2+ ATPase and/or SLN.
23. A method for the analysis of the interaction of one or more binding partners with a Ca + ATPase and/or SLN, comprising:
obtaining or synthesising one or more binding partners;
forming one or more crystallised complexes of a binding partner with a Ca2+ ATPase and/or SLN; and analysing the one or more complexes by X-ray crystallography by employing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, to determine the ability of the one or more binding partners to interact with the a Ca2+ ATPase and/or SLN.
24. A method according to Claim 23, wherein the one or more crystallised complexes are formed by either (a) providing a crystal of a Ca2+ ATPase and/or SLN and soaking the crystal with the binding partner to form a complex; or (b) mixing a Ca2+ ATPase and/or SLN with the binding partner and crystallising a complex of the binding partner with the Ca2+ ATPase and/or SLN.
25. A method for producing a binding partner of a Ca2+ ATPase and/or SLN comprising:
identifying a binding partner according to the methods of any of Claims 2-24, and synthesising the binding partner.
26. A binding partner produced by the method of Claim 25.
27. A use according to any of Claims 1 , 3-9 and 19, or a method according to any of Claims 2-10 and 13-25, wherein the Ca2+ ATPase is SERCA Ca2+ ATPase.
28. A method of predicting the three dimensional structure of a binding partner of unknown structure, or part thereof, which binds to a Ca2+ ATPase and/or SLN, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing an X-ray diffraction pattern of a Ca2+ ATPase and/or SLN complexed with the binding partner; and
using said coordinates to predict at least part of the structure coordinates of the binding partner.
29. A method according to Claim 28, wherein the X-ray diffraction pattern is obtained from a crystal formed either by (a) soaking a crystal of a Ca2+ ATPase and/or SLN with the binding partner to form a complex, or (b) mixing a Ca2+ ATPase and/or SLN with the binding partner and crystallising a complex of the binding partner with the Ca ATPase and/or SLN.
30. A method according to any of Claims 2-25 and 27-29, wherein the method is computer-based.
31. A method for producing a medicament, pharmaceutical composition or drug, the process comprising: (a) providing a binding partner according to Claim 26 and (b) preparing a medicament, pharmaceutical composition or drug containing the binding partner.
32. A method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
predicting the three-dimensional structural representation of the target protein, or part thereof, by modelling the structural representation on all or the selected coordinates.
33. A method according to Claim 32, further comprising aligning the amino acid sequence of the target protein of unknown structure with the amino acid sequence of SERCA Ca2+ ATPase or SLN as listed in Figure 8, to match homologous regions of the amino acid sequences prior to predicting the structural representation, and wherein modelling the structural representation comprises modelling the structural representation of the matched homologous regions of the target protein on the corresponding regions of the SERCA Ca2+ ATPase or SLN to obtain a three dimensional structural representation for the target protein that substantially preserves the structural representation of the matched homologous regions.
34. A method of predicting the three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in
Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and either (a) positioning the coordinates in the crystal unit cell of the protein so as to predict its structural representation, or (b) assigning NMR spectra peaks of the protein by manipulating the coordinates.
35. A method of predicting a three dimensional structural representation of a target protein of unknown structure, or part thereof, comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in
Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
providing an X-ray diffraction pattern of the target protein; and
using the coordinates to predict at least part of the structure coordinates of the target protein.
36. A method according to any of Claims 32-35, wherein the target protein has at least 20% sequence identity to SERCA Ca2+ ATPase or SLN as listed in Figure 8.
37. A method according to any of Claims 32-36, wherein the target protein is an ATPase.
38. A method of providing data for generating three dimensional structural representations of SERCA Ca2+ ATPase and/or SLN, homologues or analogues of SERCA Ca2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca2+ ATPase and/or SLN, or complexes of a binding partner with SERCA Ca2+ ATPase and/or SLN homologues or analogues, or for optimising binding of binding partners to said SERCA Ca2+ ATPase and/or SLN, or to homologues or analogues or complexes thereof, the method comprising:
(i) establishing communication with a remote device containing computer- readable data comprising at least one of:
(a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in
Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca2+ ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and
(d) structure factor data derivable from the coordinates of (a), (b) or (c); and
(ii) receiving said computer-readable data from said remote device.
39. A method of obtaining a three dimensional structural representation of a crystal of a complex of SERCA Ca2+ ATPase and SLN, which method comprises providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and generating a three-dimensional structural representation of said coordinates.
40. A method according to Claim 39, wherein the three-dimensional structural representation is a computer generated representation or a physical representation.
41. A method according to Claim 39 or 40, wherein the computer used to generate the representation comprises:
(i) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprise the coordinates of the
SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
(ii) instructions for processing the computer-readable data into a three- dimensional structural representation.
42. A method according to any of Claims 38-41 , wherein the representation is any of a wire-frame model, a chicken-wire model, a ball-and-stick model, a space-filling model, a stick model, a ribbon model, a snake model, an arrow and cylinder model, an electron density map or a molecular surface model.
43. A method of predicting one or more sites of interaction of SERCA Ca2+ ATPase and/or SLN, or homologues thereof, the method comprising:
providing the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
analysing said coordinates to predict one or more sites of interaction.
44. A method of predicting the location of internal and/or external parts of the structure of SERCA Ca2+ ATPase and/or SLN, or homologues thereof, the method comprising: providing the coordinates of the SERCA Ca ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; and
analysing said coordinates to predict the location of internal and/or external parts of the structure.
45. A computer system, intended to generate three dimensional structural representations of SERCA Ca + ATPase and/or SLN, homologues or analogues of SERCA Ca2+ ATPase and/or SLN, complexes of binding partners with SERCA Ca2+ ATPase and/or SLN, or complexes of binding partners with homologues or analogues of SERCA Ca2+ ATPase, or, to analyse or optimise binding of binding partners to SERCA Ca + ATPase and/or SLN, or homologues or analogues or complexes thereof, the system containing computer-readable data comprising one or more of:
(a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95
A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca + ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+
ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and
(d) structure factor data derivable from the coordinates of (a), (b) or (c).
46. A computer system according to Claim 45, comprising:
(i) a computer-readable data storage medium comprising data storage material encoded with the computer-readable data;
(ii) a working memory for storing instructions for processing the computer- readable data; and
(iii) a central processing unit coupled to the working memory and to the computer- readable data storage medium for processing the computer-readable data to generate said structural representations or to analyse or optimise said binding.
47. A computer system according to Claim 46, further comprising a display coupled to the central-processing unit for displaying structural representations.
48. A computer-readable storage medium, comprising a data storage material encoded with computer readable data, wherein the data comprises one or more of
(a) the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
(b) the coordinates of a target SERCA Ca2+ ATPase and/or SLN homologue or analogue generated by homology modelling of the target based on the data in (a);
(c) the coordinates of a binding partner generated by interpreting X-ray crystallographic data or NMR data by reference to the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof, and
(d) structure factor data derivable from the coordinates of (a), (b) or (c).
49. A computer-readable storage medium comprising a data storage material encoded with a first set of computer-readable data comprising a Fourier transform of at least a portion of the structural coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof; which data, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure (eg a target protein of unknown structure), using a machine programmed with the instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
50. A computer-readable storage medium comprising a data storage material encoded with the data generated by carrying out the methods of any one of Claims 2-25, 27-30 and 32-44.
51. A method of preparing the computer-readable storage medium of Claim 49 or 50, comprising encoding a data storage material with the computer-readable data.
52. A method of producing a protein with a binding region that has substrate specificity substantially identical to that of SERCA Ca2+ ATPase, the method comprising a) aligning the amino acid sequence of a target protein with the amino acid sequence of SERCA Ca + ATPase;
b) identifying the amino acid residues in the target protein that correspond to any one or more of the following positions according to the numbering of the rabbit SERCA Ca2+ ATPase as set out in Figure 8: Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957; and
c) making one or more mutations in the amino acid sequence of the target protein to replace one or more identified amino acid residues with the corresponding residue in the rabbit SERCA Ca2+ ATPase.
53. A method of producing a protein with a binding region that has substrate specificity substantially identical to that of SLN, the method comprising
a) aligning the amino acid sequence of a target protein with the amino acid sequence of SLN;
b) identifying the amino acid residues in the target protein that correspond to any one or more of the following positions according to the numbering of the rabbit SLN as set out in Figure 8: Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 ; and
c) making one or more mutations in the amino acid sequence of the target protein to replace one or more identified amino acid residues with the corresponding residue in the rabbit SLN.
54. A mutant SERCA Ca2+ ATPase or homologue thereof, wherein any one or more of amino acid residues Phe88, Phe92, Val93, Leu96, Ile97, Ala100, Ile103, Val104, Trp107, Gln108, Asn111 , Tyr122, Arg324, Lys328, Trp794, Leu797, Asp800, Gly801 , Leu802, Thr805, Ala806, Phe809, Trp932, Ser936, Leu939, Ser942, Leu943, Leu946, Ile947, Pro952, Leu953, Ile956, and Phe957, according to the numbering of the rabbit SERCA Ca2+ ATPase in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
55. A mutant SLN or homologue thereof, wherein any one or more of amino acid residues Met1 , Glu2, Arg3, Ser4, Thr5, Arg6, Glu7, Leu8, Cys9, Leu10, and Asn11 , according to the numbering of the rabbit SLN in Figure 8, or any one or amino acids that correspond to said residues, are mutated.
56. A method of assessing the conformational state of a structure for SERCA Ca2+ ATPase, comprising: providing the coordinates of the SERCA Ca + ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof;
performing a statistical analysis and/or a topological analysis on the coordinates; and
comparing the results of the analysis with the results of an analysis of coorindates of proteins of known conformational states.
57. A method according to Claim 56, wherein the statistical analysis is a multivariate analysis such as one performed using a technique selected from any of principal components analysis, hierarchical cluster analysis, genetic algorithms and neural networks.
58. A method according to Claim 56 or 57, wherein the conformational state is classified as any of E1 , E1 P, E2 and E2P.
59. A crystal comprising a Ca2+ ATPase/SLN complex.
60. A crystal according to Claim 59, wherein the crystal comprises SERCA Ca2+ ATPase/SLN.
61. A crystal according to Claim 59 or 60 wherein the complex has the structure defined by the coordinates of the SERCA Ca2+ ATPase/SLN complex listed in Table (i), optionally varied by a root mean square deviation of C alpha atoms of not more than 4.95 A, or selected coordinates thereof.
62. A crystal according to any of Claims 59-61 , having a resolution of 3.1 A or better.
63. A crystal according to any of Claims 59-62, further comprising a binding partner of Ca2+ ATPase and/or SLN.
64. A method of making a crystal comprising a Ca2+ ATPase/SLN complex, the method comprising:
providing a purified Ca2+ ATPase/SLN complex;
and crystallising the complex by using the hanging drop vapour diffusion technique, using a precipitant solution comprising 15-25% (w/v) PEG6000, 100-200 mM magnesium sulphate, 4-6% glycerol and 5-7% 2-methyl-2,4-pentandiol (MPD).
65. A method according to Claim 62, wherein the precipitant solution comprises about 19.5% (w/v) PEG6000, about 150 mM magnesium sulphate, about 5% glycerol and about 6% 2-methyl-2,4-pentandiol (MPD).
66. A method according to Claim 64 or 65, wherein the crystal further comprises a Ca2+ ATPase and/or SLN binding partner.
67. A crystal obtainable by the method of any of Claims 64-66.
PCT/EP2013/069646 2012-09-25 2013-09-20 Crystal structure i WO2014048858A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB201217093A GB201217093D0 (en) 2012-09-25 2012-09-25 Crystal structure I
GB1217093.2 2012-09-25

Publications (2)

Publication Number Publication Date
WO2014048858A2 true WO2014048858A2 (en) 2014-04-03
WO2014048858A3 WO2014048858A3 (en) 2014-05-30

Family

ID=47190565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/069646 WO2014048858A2 (en) 2012-09-25 2013-09-20 Crystal structure i

Country Status (2)

Country Link
GB (1) GB201217093D0 (en)
WO (1) WO2014048858A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257194A (en) * 2018-01-23 2018-07-06 哈尔滨工程大学 Face simple picture generation method based on convolutional neural networks

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. R. TUPLING ET AL: "Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice", AJP: CELL PHYSIOLOGY, vol. 301, no. 4, 1 October 2011 (2011-10-01), pages C841-C849, XP055092345, ISSN: 0363-6143, DOI: 10.1152/ajpcell.00409.2010 *
BUFFY J J ET AL: "Defining the Intramembrane Binding Mechanism of Sarcolipin to Calcium ATPase Using Solution NMR Spectroscopy", JOURNAL OF MOLECULAR BIOLOGY, ACADEMIC PRESS, UNITED KINGDOM, vol. 358, no. 2, 28 April 2006 (2006-04-28), pages 420-429, XP024950935, ISSN: 0022-2836, DOI: 10.1016/J.JMB.2006.02.005 [retrieved on 2006-04-28] *
C. TOYOSHIMA ET AL: "Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 108, no. 5, 1 February 2011 (2011-02-01), pages 1833-1838, XP055092550, ISSN: 0027-8424, DOI: 10.1073/pnas.1017659108 *
DATABASE UniProt [Online] 1 October 2002 (2002-10-01), "SubName: Full=Similar to ATPase, Ca++ transporting, cardiac muscle, fast twitch 1; Flags: Fragment;", XP002717721, retrieved from EBI accession no. UNIPROT:Q8N3X5 Database accession no. Q8N3X5 *
DATABASE UniProt [Online] 5 July 2004 (2004-07-05), "RecName: Full=Sarcolipin; 1 31 Sarcolipin.", XP002717720, retrieved from EBI accession no. UNIPROT:Q6SLE7 Database accession no. Q6SLE7 *
GHISLAINE GAYAN-RAMIREZ ET AL: "Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm", THE JOURNAL OF PHYSIOLOGY, vol. 524, no. 2, 15 April 2000 (2000-04-15), pages 387-397, XP055092555, ISSN: 0022-3751, DOI: 10.1111/j.1469-7793.2000.t01-2-00387.x *
MACLENNAN D H ET AL: "PHOSPHOLAMBAN: A CRUCIAL REGULATOR OF CARDIAC CONTRACTILITY", NATURE REVIEWS MOLECULAR CELL BIOLOGY, MACMILLAN MAGAZINES, LONDON, GB, vol. 4, no. 7, 1 July 2003 (2003-07-01), pages 566-577, XP009052993, *
TOYOSHIMA ET AL: "Structural aspects of ion pumping by Ca<2+>-ATPase of sarcoplasmic reticulum", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, ACADEMIC PRESS, US, vol. 476, no. 1, 1 August 2008 (2008-08-01), pages 3-11, XP022931966, ISSN: 0003-9861, DOI: 10.1016/J.ABB.2008.04.017 [retrieved on 2008-04-18] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257194A (en) * 2018-01-23 2018-07-06 哈尔滨工程大学 Face simple picture generation method based on convolutional neural networks

Also Published As

Publication number Publication date
GB201217093D0 (en) 2012-11-07
WO2014048858A3 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
Mattos et al. Multiple solvent crystal structures: probing binding sites, plasticity and hydration
Rigden et al. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity
Davis et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases
US8058390B2 (en) HDM2-inhibitor complexes and uses thereof
JP2006221669A (en) Characterization of gsk-3beta protein and method of use thereof
Dalby et al. The structure of human liver fructose-1, 6-bisphosphate aldolase
Esposito et al. Docking of sulfonamides to carbonic anhydrase II and IV
Deng et al. Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation
US20040005686A1 (en) Crystalline structure of human MAPKAP kinase-2
Norledge et al. Modeling, mutagenesis, and structural studies on the fully conserved phosphate‐binding loop (Loop 8) of triosephosphate isomerase: Toward a new substrate specificity
Covaceuszach et al. Structural flexibility of human α‐dystroglycan
US7962290B1 (en) Identification of pharmacophores from co-crystals of spleen tyrosine kinase (SYK) and SYK ligands
WO2003087816A1 (en) Crystals and structures of pak4kd kinase pak4kd
Cui et al. Asymmetric anchoring is required for efficient Ω-loop opening and closing in cytosolic phosphoenolpyruvate carboxykinase
WO2014048858A2 (en) Crystal structure i
WO2011033322A2 (en) Crystal structure
US20090155815A1 (en) Crystal structure of the carboxyl transferase domain of human acetyl-coa carboxylase 2 protein (acc2 ct) and uses thereof
US20070129281A1 (en) Pharmaceutical compounds
US20030073134A1 (en) Crystals and structures of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase MECPS
WO2009026172A2 (en) New approach for designing diabetes drugs
US20050085626A1 (en) Polo domain structure
US6484103B1 (en) Crystal structure
US20050112746A1 (en) Crystals and structures of protein kinase CHK2
US20040253178A1 (en) Crystals and structures of spleen tyrosine kinase SYKKD
US20030171549A1 (en) Crystals and structures of YiiM proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13766282

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/07/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13766282

Country of ref document: EP

Kind code of ref document: A2