WO2014048485A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2014048485A1
WO2014048485A1 PCT/EP2012/069180 EP2012069180W WO2014048485A1 WO 2014048485 A1 WO2014048485 A1 WO 2014048485A1 EP 2012069180 W EP2012069180 W EP 2012069180W WO 2014048485 A1 WO2014048485 A1 WO 2014048485A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
conduit
refrigerant
passage
accumulator
Prior art date
Application number
PCT/EP2012/069180
Other languages
French (fr)
Inventor
Aschan ANDREAS
Furberg RICHARD
Original Assignee
Electrolux Home Products Corporation N. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrolux Home Products Corporation N. V. filed Critical Electrolux Home Products Corporation N. V.
Priority to PCT/EP2012/069180 priority Critical patent/WO2014048485A1/en
Priority to CN201280076069.1A priority patent/CN104685305A/en
Priority to US14/431,511 priority patent/US20150253040A1/en
Priority to KR1020157008337A priority patent/KR20150065173A/en
Priority to EP12766964.6A priority patent/EP2901092A1/en
Priority to AU2012391147A priority patent/AU2012391147A1/en
Priority to BR112015006703A priority patent/BR112015006703A2/en
Publication of WO2014048485A1 publication Critical patent/WO2014048485A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a refrigerator having a refrigeration circuit comprising an accumulator.
  • a refrigerator comprises a refrigeration system arranged to cool at least one
  • the refrigerator comprises a refrigeration system wherein a refrigerant circulates.
  • the refrigeration system comprises a compressor, a condenser, an expansion arrangement, and an evaporator. Gaseous refrigerant is compressed in the compressor and condenses to liquid phase in the condenser. Passing through the expansion arrangement, the pressure of the liquid refrigerant is reduced. The liquid refrigerant at low pressure evaporates in the evaporator.
  • the evaporator is arranged in thermal communication with the compartment of the refrigerator. Thus, the evaporator cools the compartment.
  • energy losses occur in the expansion arrangement due to fluid flow friction.
  • the fluid flow friction is caused by gaseous refrigerant flowing together with liquid refrigerant through the expansion arrangement and being subjected to a pressure reduction.
  • Two-stage compression systems comprising an accumulator arranged as a separator between a mid pressure level and a low pressure level are previously known outside the technical field of refrigerators.
  • the accumulator may also be referred to as a flash tank.
  • Two compressors operating at different pressure ratios, or one two-stage compressor with two inlet ports, provide basis for the expansion of the refrigerant to be divided into two steps, the two steps being separated by the accumulator at the mid pressure level. After a first expansion of the refrigerant from a high pressure level downstream of the condenser to the mid pressure level, the refrigerant in a gas/liquid mixture is led into the accumulator where the gaseous refrigerant is separated out and led to a mid pressure inlet of the compressor/s.
  • the liquid refrigerant in the accumulator is subjected to a second expansion, wherein the pressure is lowered to the low pressure level, at which low pressure level the refrigerant evaporates in the evaporator.
  • the evaporated low pressure refrigerant is led to a low pressure inlet of the compressor.
  • An object of the present invention is to provide a refrigerator comprising a refrigeration system having the above mentioned advantage of reduced energy loss but which does at least alleviate the above mentioned drawbacks.
  • a refrigerator comprising a refrigeration system being at least intermittently flowed through by a refrigerant and a compartment cooled by the refrigeration system.
  • the refrigeration system comprises a conduit system and system components interconnected by the conduit system.
  • the system components comprise a compressor, a condenser, a first expansion arrangement, an accumulator for gaseous and liquid refrigerant, a second expansion arrangement, and an evaporator.
  • the refrigeration system comprises a first conduit path and a second conduit path.
  • the first and second conduit paths extend in parallel from the accumulator towards the compressor.
  • the second conduit path extends, seen in the flow direction of the refrigerant, from the accumulator via the second expansion arrangement to the evaporator.
  • the compressor is the only compressor of the refrigeration system and the compressor is a single stage
  • a flow control device is arranged in the conduit system for alternately directing refrigerant through the first conduit path and the second conduit path.
  • the flow control device alternatingly directs refrigerant through the first and second conduit paths, one single stage compressor may be used in the system.
  • a refrigerator of comparatively low complexity is achieved.
  • the above mentioned object is achieved.
  • the first and second conduit paths are kept separated by means of the flow control device such that refrigerant flows either through the first conduit path or through the second conduit path. Accordingly, refrigerant flows alternately through the first conduit path at a mid pressure level and through the second conduit paths, partly at a low pressure level, to the compressor.
  • the compressor has one compression stage only and accordingly, one external inlet and one external outlet.
  • the refrigerator may be a domestic refrigerator for foodstuffs.
  • the refrigeration system is intermittently flowed through by the refrigerant due to the compressor being switched on and off based on the cooling requirements of e.g. the compartment. Accordingly, the refrigerant circulates in the refrigeration system while the compressor is running. As mentioned above, the refrigerant flows through one of the first and second conduit paths at a time. As the refrigerant circulates, the gaseous refrigerant coming from the compressor is cooled and condenses to a liquid state in the condenser. After the condenser, the liquid refrigerant is subjected to a pressure drop to the mid pressure level in the first expansion arrangement. The refrigerant in a gas/liquid mixture is led into the accumulator, inside which the mid pressure level prevails. The gaseous refrigerant is separated out in the accumulator and is led via the flow control device to the
  • the liquid refrigerant in the accumulator is subjected to a second pressure drop in the second expansion arrangement, wherein the pressure is lowered to the low pressure level.
  • the refrigerant evaporates in the evaporator and cools the compartment, the evaporator being in thermal communication with the compartment.
  • the evaporated low pressure gaseous refrigerant is led via the flow control device to the compressor. Accordingly, as the flow control device alternately directs refrigerant through the first conduit path and the second conduit path, gaseous refrigerant is compressed in the compressor alternately from the mid pressure level and the low pressure level.
  • the refrigerator may comprise a control system, which may be adapted to control the refrigerator, e.g. implementing the method according to aspects and embodiments discussed herein.
  • the control system may be adapted to control e.g. the flow control device and the compressor.
  • the control system may comprise temperature sensors arranged in thermal communication with the compartment, the evaporator, and/or the accumulator.
  • the control system may comprise a pressure sensor arranged e.g. in the accumulator.
  • the control system may be set to maintain the temperature in the compartment above 0 degrees Celsius or below 0 degrees Celsius.
  • the first and second conduit paths may extend in parallel from the accumulator to the flow control device.
  • FIG. 1 and 2 illustrate schematically refrigerators according to embodiments
  • Fig. 3 illustrates a refrigerant property diagram representing p - pressure, and h - enthalpy of the refrigeration systems illustrated in Figs. 1 and 2.
  • Fig. 1 illustrates schematically a refrigerator 2 according to embodiments.
  • the refrigerator 2 comprises a refrigeration system 4 being at least intermittently flowed through by a refrigerant and a compartment 6 cooled by the refrigeration system 4.
  • the refrigeration system 4 comprises a conduit system 8 and system components interconnected by the conduit system 8.
  • the system components comprise a compressor 10, a condenser 12, a first expansion arrangement 14, an accumulator 16 for gaseous and liquid refrigerant, a second expansion arrangement 18, and an evaporator 20.
  • the conduit system 4 extends, in the flow direction of the refrigerant, from the compressor 10 to the condenser 12, from the condenser 12 to the first expansion arrangement 14, and from the first expansion 14 arrangement to the accumulator 16.
  • the refrigeration system 4 comprises a first conduit path 22 and a second conduit path 24.
  • the first and second conduit paths 22, 24 extend in parallel from the accumulator 16 to a flow control device 26.
  • the compressor 10 is the only compressor of the
  • the refrigeration system 4 and the compressor 10 is a single stage compressor.
  • the flow control device 26 is arranged in the conduit system 8 and alternately directs refrigerant through the first conduit path 22 and the second conduit path 24.
  • the flow control device 26 is arranged upstream of the compressor 10 and downstream of the accumulator 16.
  • the first conduit path 22 and the second conduit path 24 meet upstream of the compressor 10 and downstream of the accumulator 16 and the evaporator 20.
  • the first conduit path 22 extends from the accumulator 16 to the flow control device 26.
  • the second conduit path 24 extends, seen in the flow direction of the refrigerant, from the accumulator 16 via the second expansion arrangement 18 to the evaporator 20 and to the flow control device 26.
  • the flow control device 26 comprises a 3-way valve 28 interconnecting the first conduit path 22, the second conduit path 24, and the
  • the refrigeration system 4 comprises a first heat exchanger 30.
  • the first heat exchanger 30 comprising a first passage 32 and a second passage 34.
  • the first passage 32 comprises portions of the first conduit path 22 downstream of the accumulator 16.
  • the second passage 34 is arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, or the second passage 34 forms part of the first expansion arrangement 14.
  • the refrigeration system 4 comprises a second heat exchanger 36.
  • the second heat exchanger 36 comprises a third passage 38 and a fourth passage 40.
  • the third passage 38 comprises portions of the second conduit path 24 downstream of the accumulator 16 and upstream of the second expansion arrangement 18, or the third passage 38 forms part of the second expansion
  • the fourth passage 40 comprises portions of the second conduit path 24 downstream of the evaporator 20.
  • the second heat exchanger 36 liquid refrigerant flowing from the accumulator 16 to the second expansion arrangement 18 is cooled while gaseous refrigerant at the low pressure level in the second refrigerant path 24 after the evaporator is superheated.
  • the second passage 34 of the first heat exchanger 30 forms part of the first expansion arrangement 14 as well as in embodiments where the third passage 38 forms part of the second expansion arrangement 18, a capillary tube of an expansion arrangement forms the second passage 34 and the third passage 38, respectively.
  • one or both of the first and second heat exchangers 30, 36 may be omitted from the conduit system 8.
  • Fig. 2 illustrates schematically a refrigerator 2 according to embodiments.
  • the flow control device 28 comprises a first valve 42 arranged in the first conduit path 22 and a second valve 44 arranged in the second conduit path 24. More specifically, the second valve is a check valve 44.
  • the check valve 44 prevents refrigerant from flowing into the second conduit path 24 when the refrigerant flows at mid pressure level through the first conduit path 26.
  • the heat first heat exchanger 30 has been omitted and the second heat exchanger 36 comprising the third passage 38 and the fourth passage 40 is arranged downstream of the condenser 12.
  • the third passage 38 is arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, or the third passage 38 forms part of the first expansion arrangement 14.
  • the fourth passage 40 comprises portions of the second conduit path 24 downstream of the evaporator 20.
  • a further possible arrangement of the second heat exchanger 38 may include the second heat exchanger 38 as illustrated in connection with Fig. 1. That is, the second heat exchanger 38 may include two parts, one part arranged between the condenser 12 and the accumulator 16 (as in Fig.2) and a further part arranged between the
  • refrigerant from the evaporator 12 may flow first through the fourth passage 40 of the heat exchanger part arranged between the accumulator 16 and the evaporator 20, and then through the fourth passage 40 of the heat exchanger part arranged between the condenser 12 and the accumulator 16.
  • the first heat exchanger 30 of the Fig. 1 embodiments may be provided in the conduit system 8.
  • a further possible heat exchanger arrangement may be to integrate the first and second heat exchangers 30, 36 with each other, the second passage 34 and the third passage 38 being arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, and/or the second and third passages 34, 38 forming part of the first expansion arrangement 14
  • Fig. 3 illustrates a refrigerant property diagram representing p - pressure, and h - enthalpy of the refrigeration systems 4 illustrated in Figs. 1 and 2.
  • the diagram is a schematic representation of pressure and enthalpy changes of a refrigerant circulating in the refrigeration system 4.
  • the diagram is provided to illustrate the gain made by the use of an accumulator 16 as described herein.
  • the curve 50 represents the complete transition of the refrigerant between liquid and gaseous phase, and vice versa. At the left hand end of the curve 50 the refrigerant is in liquid phase and at the right hand end of the curve 50 the refrigerant is in gaseous phase. Within the curve 50 the refrigerant is in both liquid and gaseous phase to various degrees.
  • a horizontal line in the diagram represents an isobar. Moreover, a horizontal line within the curve 50 represents an isotherm. Moving from left to right along an isotherm in the diagram, the refrigerant is evaporating. Conversely, moving from right to left along an isotherm, the refrigerant is condensing.
  • the lines provided with arrows represent the pressure and specific enthalpy of the refrigerant as it circulates in the refrigeration system 4.
  • the larger box, formed by the lines provided with arrows, represents circulation of refrigerant via the second conduit path 24 comprising the evaporator 20.
  • the smaller box, formed by the lines provided with arrows, represents circulation of refrigerant via the first conduit path 22.
  • the heat, or energy, Q, transferred by the refrigerant is the difference in specific enthalpy, Ah, times the mass flow, m', of the refrigerant, i.e. Ah x m'. Ah is represented by a distance along the h-axis in the diagram.
  • Part of the line 52 represents the condensation of the refrigerant in the condenser 12.
  • the refrigerant is subject to a pressure drop in the first expansion arrangement 14. While refrigerant flows through the first conduit path 22, gaseous refrigerant from the accumulator 16 is compressed in the compressor 10.
  • Line 56 represents the mid pressure level in the accumulator 16.
  • Line 58 represents this compression in the compressor 10.
  • gaseous refrigerants from the accumulator 16 is compressed and condenses to liquid refrigerant in the condenser 12, which in turn flows to the
  • the refrigerant When the refrigerant instead circulates in the refrigeration system 4 via the second conduit path 24, the refrigerant is subjected to a first pressure drop at point 54 in the first expansion arrangement 14 to the mid pressure level in the accumulator 16. Liquid refrigerant from the accumulator 16 at the mid pressure level is subjected to a second pressure drop at point 62 in the second expansion arrangement 18 to the low pressure level.
  • Line 64 represents evaporation of the refrigerant in the evaporator 20 at the low pressure level.
  • Line 66 represents compression in the compressor 10 of the refrigerant coming from the low pressure level.
  • a control system of the refrigerator 2 may be arranged to control at least the compressor 10 and the flow control device 26.
  • a temperature of the compartment 6 may be used as a condition for the running 100 of the compressor 10. For instance, at a maximum temperature threshold inside the compartment 6, the compressor 10 is started and at a minimum temperature threshold inside the compartment 6, the compressor 10 is stopped.
  • an average temperature inside the compartment 6 may be decisive for running the compressor 10.
  • the control system may direct the refrigerant alternately through the first conduit path 22 and the second conduit path 24 based on pressure criteria, e.g. in the accumulator 16.
  • Accumulator pressure may e.g. be established directly by a pressure sensor inside the accumulator 16, or indirectly by temperature measurements on the accumulator 16.
  • Example embodiments described above may be combined as understood by a person skilled in the art. It is also understood by those skilled in the art that each one of the first and second expansion arrangements may be e.g. a capillary tube, a thermostatic expansion valve or an electronic expansion valve.
  • the compressor 10 may be of single speed compressor or a variable speed compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

A refrigerator (2) comprising a refrigeration system (4) a compartment (6) cooled by the refrigeration system (4) is provided. The refrigeration system (4) comprises a compressor (10), a condenser (12), a first expansion arrangement (14), an accumulator (16) for gaseous and liquid refrigerant, a second expansion arrangement (18), and an evaporator (20). The refrigeration system (4) comprises a first conduit path (22) and a second conduit path (24), the first and second conduit paths (22, 24) extending in parallel from the accumulator (16) towards the compressor (10). The compressor (10) is the only compressor of the refrigeration system (4) and the compressor (10) is a single stage compressor. A flow control device (26) is arranged in the conduit system (8) for alternately directing refrigerant through the first conduit path (22) and the second conduit path (24).

Description

REFRIGERATOR
TECHNICAL FIELD
The present invention relates to a refrigerator having a refrigeration circuit comprising an accumulator.
BACKGROUND
A refrigerator comprises a refrigeration system arranged to cool at least one
compartment of the refrigerator. The temperature inside the compartment may be either above 0 degrees Celsius or below 0 degrees Celsius. The refrigerator comprises a refrigeration system wherein a refrigerant circulates. The refrigeration system comprises a compressor, a condenser, an expansion arrangement, and an evaporator. Gaseous refrigerant is compressed in the compressor and condenses to liquid phase in the condenser. Passing through the expansion arrangement, the pressure of the liquid refrigerant is reduced. The liquid refrigerant at low pressure evaporates in the evaporator. The evaporator is arranged in thermal communication with the compartment of the refrigerator. Thus, the evaporator cools the compartment. In such refrigeration systems energy losses occur in the expansion arrangement due to fluid flow friction. The fluid flow friction is caused by gaseous refrigerant flowing together with liquid refrigerant through the expansion arrangement and being subjected to a pressure reduction.
Two-stage compression systems comprising an accumulator arranged as a separator between a mid pressure level and a low pressure level are previously known outside the technical field of refrigerators. The accumulator may also be referred to as a flash tank. Two compressors operating at different pressure ratios, or one two-stage compressor with two inlet ports, provide basis for the expansion of the refrigerant to be divided into two steps, the two steps being separated by the accumulator at the mid pressure level. After a first expansion of the refrigerant from a high pressure level downstream of the condenser to the mid pressure level, the refrigerant in a gas/liquid mixture is led into the accumulator where the gaseous refrigerant is separated out and led to a mid pressure inlet of the compressor/s. The liquid refrigerant in the accumulator is subjected to a second expansion, wherein the pressure is lowered to the low pressure level, at which low pressure level the refrigerant evaporates in the evaporator. The evaporated low pressure refrigerant is led to a low pressure inlet of the compressor.
Although energy losses may be reduced in the latter kind of refrigeration systems, production costs and system complexity are higher than desired in some applications, e.g. in domestic refrigerators. Furthermore, suitably sized two-stage compressors for e.g. domestic refrigerators are not readily commercially available.
SUMMARY
An object of the present invention is to provide a refrigerator comprising a refrigeration system having the above mentioned advantage of reduced energy loss but which does at least alleviate the above mentioned drawbacks.
According to an aspect of the invention, the object is achieved by a refrigerator comprising a refrigeration system being at least intermittently flowed through by a refrigerant and a compartment cooled by the refrigeration system. The refrigeration system comprises a conduit system and system components interconnected by the conduit system. The system components comprise a compressor, a condenser, a first expansion arrangement, an accumulator for gaseous and liquid refrigerant, a second expansion arrangement, and an evaporator. The refrigeration system comprises a first conduit path and a second conduit path. The first and second conduit paths extend in parallel from the accumulator towards the compressor. The second conduit path extends, seen in the flow direction of the refrigerant, from the accumulator via the second expansion arrangement to the evaporator. The compressor is the only compressor of the refrigeration system and the compressor is a single stage
compressor. A flow control device is arranged in the conduit system for alternately directing refrigerant through the first conduit path and the second conduit path.
Since the flow control device alternatingly directs refrigerant through the first and second conduit paths, one single stage compressor may be used in the system. Thus, a refrigerator of comparatively low complexity is achieved. As a result, the above mentioned object is achieved. In the refrigerator, the first and second conduit paths are kept separated by means of the flow control device such that refrigerant flows either through the first conduit path or through the second conduit path. Accordingly, refrigerant flows alternately through the first conduit path at a mid pressure level and through the second conduit paths, partly at a low pressure level, to the compressor. The compressor has one compression stage only and accordingly, one external inlet and one external outlet.
The refrigerator may be a domestic refrigerator for foodstuffs. The refrigeration system is intermittently flowed through by the refrigerant due to the compressor being switched on and off based on the cooling requirements of e.g. the compartment. Accordingly, the refrigerant circulates in the refrigeration system while the compressor is running. As mentioned above, the refrigerant flows through one of the first and second conduit paths at a time. As the refrigerant circulates, the gaseous refrigerant coming from the compressor is cooled and condenses to a liquid state in the condenser. After the condenser, the liquid refrigerant is subjected to a pressure drop to the mid pressure level in the first expansion arrangement. The refrigerant in a gas/liquid mixture is led into the accumulator, inside which the mid pressure level prevails. The gaseous refrigerant is separated out in the accumulator and is led via the flow control device to the
compressor. The liquid refrigerant in the accumulator is subjected to a second pressure drop in the second expansion arrangement, wherein the pressure is lowered to the low pressure level. At the low pressure level the refrigerant evaporates in the evaporator and cools the compartment, the evaporator being in thermal communication with the compartment. The evaporated low pressure gaseous refrigerant is led via the flow control device to the compressor. Accordingly, as the flow control device alternately directs refrigerant through the first conduit path and the second conduit path, gaseous refrigerant is compressed in the compressor alternately from the mid pressure level and the low pressure level.
The refrigerator may comprise a control system, which may be adapted to control the refrigerator, e.g. implementing the method according to aspects and embodiments discussed herein. The control system may be adapted to control e.g. the flow control device and the compressor. The control system may comprise temperature sensors arranged in thermal communication with the compartment, the evaporator, and/or the accumulator. The control system may comprise a pressure sensor arranged e.g. in the accumulator. The control system may be set to maintain the temperature in the compartment above 0 degrees Celsius or below 0 degrees Celsius. The first and second conduit paths may extend in parallel from the accumulator to the flow control device. Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following detailed description. Those skilled in the art will realize that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention, as defined by the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The various aspects of the invention, including its particular features and advantages, will be readily understood from the following detailed description and the accompanying drawings, in which:
Figs. 1 and 2 illustrate schematically refrigerators according to embodiments,
Fig. 3 illustrates a refrigerant property diagram representing p - pressure, and h - enthalpy of the refrigeration systems illustrated in Figs. 1 and 2. DETAILED DESCRIPTION
The present invention will now be described more fully with reference to the
accompanying drawings, in which example embodiments are shown. However, this invention should not be construed as limited to the embodiments set forth herein.
Disclosed features of example embodiments may be combined as readily understood by one of ordinary skill in the art to which this invention belongs. Like numbers refer to like elements throughout. Well-known functions or constructions will not necessarily be described in detail for brevity and/or clarity.
Fig. 1 illustrates schematically a refrigerator 2 according to embodiments. The refrigerator 2 comprises a refrigeration system 4 being at least intermittently flowed through by a refrigerant and a compartment 6 cooled by the refrigeration system 4. The refrigeration system 4 comprises a conduit system 8 and system components interconnected by the conduit system 8. The system components comprise a compressor 10, a condenser 12, a first expansion arrangement 14, an accumulator 16 for gaseous and liquid refrigerant, a second expansion arrangement 18, and an evaporator 20. The conduit system 4 extends, in the flow direction of the refrigerant, from the compressor 10 to the condenser 12, from the condenser 12 to the first expansion arrangement 14, and from the first expansion 14 arrangement to the accumulator 16. The refrigeration system 4 comprises a first conduit path 22 and a second conduit path 24. The first and second conduit paths 22, 24 extend in parallel from the accumulator 16 to a flow control device 26. The compressor 10 is the only compressor of the
refrigeration system 4 and the compressor 10 is a single stage compressor. The flow control device 26 is arranged in the conduit system 8 and alternately directs refrigerant through the first conduit path 22 and the second conduit path 24. The flow control device 26 is arranged upstream of the compressor 10 and downstream of the accumulator 16. The first conduit path 22 and the second conduit path 24 meet upstream of the compressor 10 and downstream of the accumulator 16 and the evaporator 20. The first conduit path 22 extends from the accumulator 16 to the flow control device 26. The second conduit path 24 extends, seen in the flow direction of the refrigerant, from the accumulator 16 via the second expansion arrangement 18 to the evaporator 20 and to the flow control device 26. The flow control device 26 comprises a 3-way valve 28 interconnecting the first conduit path 22, the second conduit path 24, and the
compressor 10.
In the conduit system 8 there is arranged a first heat exchanger 30. The first heat exchanger 30 is arranged to transfer heat from liquid refrigerant before the first expansion arrangement 14 to gaseous refrigerant in the first conduit path 22 after the accumulator 16. Accordingly, the refrigeration system 4 comprises a first heat exchanger 30. The first heat exchanger 30 comprising a first passage 32 and a second passage 34. The first passage 32 comprises portions of the first conduit path 22 downstream of the accumulator 16. The second passage 34 is arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, or the second passage 34 forms part of the first expansion arrangement 14. When refrigerant flows through the first conduit path 22, in the first heat exchanger 30, liquid refrigerant flowing from the condenser 12 to the first expansion arrangement 14, or through the first expansion arrangement 14, is cooled while gaseous refrigerant at the mid pressure level in the first refrigerant path 22 is superheated. Similarly, in the conduit system 8 there is arranged a second heat exchanger 36. The second heat exchanger 36 is arranged to transfer heat from liquid refrigerant in the second conduit path 24 before the second expansion arrangement 18 to gaseous refrigerant in the second conduit path 22 after the evaporator 20. Accordingly, the refrigeration system 4 comprises a second heat exchanger 36. The second heat exchanger 36 comprises a third passage 38 and a fourth passage 40. The third passage 38 comprises portions of the second conduit path 24 downstream of the accumulator 16 and upstream of the second expansion arrangement 18, or the third passage 38 forms part of the second expansion
arrangement 18. The fourth passage 40 comprises portions of the second conduit path 24 downstream of the evaporator 20. When refrigerant flows through the second conduit path 24, in the second heat exchanger 36, liquid refrigerant flowing from the accumulator 16 to the second expansion arrangement 18 is cooled while gaseous refrigerant at the low pressure level in the second refrigerant path 24 after the evaporator is superheated. In embodiments where the second passage 34 of the first heat exchanger 30 forms part of the first expansion arrangement 14 as well as in embodiments where the third passage 38 forms part of the second expansion arrangement 18, a capillary tube of an expansion arrangement forms the second passage 34 and the third passage 38, respectively. Alternatively, one or both of the first and second heat exchangers 30, 36 may be omitted from the conduit system 8.
Fig. 2 illustrates schematically a refrigerator 2 according to embodiments. The main differences to the Fig. 1 embodiments are discussed below. In these embodiments the flow control device 28 comprises a first valve 42 arranged in the first conduit path 22 and a second valve 44 arranged in the second conduit path 24. More specifically, the second valve is a check valve 44. The check valve 44 prevents refrigerant from flowing into the second conduit path 24 when the refrigerant flows at mid pressure level through the first conduit path 26. The heat first heat exchanger 30 has been omitted and the second heat exchanger 36 comprising the third passage 38 and the fourth passage 40 is arranged downstream of the condenser 12. The third passage 38 is arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, or the third passage 38 forms part of the first expansion arrangement 14. The fourth passage 40 comprises portions of the second conduit path 24 downstream of the evaporator 20. A further possible arrangement of the second heat exchanger 38 may include the second heat exchanger 38 as illustrated in connection with Fig. 1. That is, the second heat exchanger 38 may include two parts, one part arranged between the condenser 12 and the accumulator 16 (as in Fig.2) and a further part arranged between the
accumulator 16 and the evaporator 20 (as in Fig. 1). In such an embodiment refrigerant from the evaporator 12 may flow first through the fourth passage 40 of the heat exchanger part arranged between the accumulator 16 and the evaporator 20, and then through the fourth passage 40 of the heat exchanger part arranged between the condenser 12 and the accumulator 16. Also the first heat exchanger 30 of the Fig. 1 embodiments may be provided in the conduit system 8. In such case, a further possible heat exchanger arrangement may be to integrate the first and second heat exchangers 30, 36 with each other, the second passage 34 and the third passage 38 being arranged downstream of the condenser 12 and upstream of the first expansion arrangement 14, and/or the second and third passages 34, 38 forming part of the first expansion arrangement 14
Fig. 3 illustrates a refrigerant property diagram representing p - pressure, and h - enthalpy of the refrigeration systems 4 illustrated in Figs. 1 and 2. The diagram is a schematic representation of pressure and enthalpy changes of a refrigerant circulating in the refrigeration system 4. The diagram is provided to illustrate the gain made by the use of an accumulator 16 as described herein. The curve 50 represents the complete transition of the refrigerant between liquid and gaseous phase, and vice versa. At the left hand end of the curve 50 the refrigerant is in liquid phase and at the right hand end of the curve 50 the refrigerant is in gaseous phase. Within the curve 50 the refrigerant is in both liquid and gaseous phase to various degrees. A horizontal line in the diagram represents an isobar. Moreover, a horizontal line within the curve 50 represents an isotherm. Moving from left to right along an isotherm in the diagram, the refrigerant is evaporating. Conversely, moving from right to left along an isotherm, the refrigerant is condensing.
The lines provided with arrows represent the pressure and specific enthalpy of the refrigerant as it circulates in the refrigeration system 4. The larger box, formed by the lines provided with arrows, represents circulation of refrigerant via the second conduit path 24 comprising the evaporator 20. The smaller box, formed by the lines provided with arrows, represents circulation of refrigerant via the first conduit path 22.
The heat, or energy, Q, transferred by the refrigerant is the difference in specific enthalpy, Ah, times the mass flow, m', of the refrigerant, i.e. Ah x m'. Ah is represented by a distance along the h-axis in the diagram.
Part of the line 52 represents the condensation of the refrigerant in the condenser 12. At point 54 the refrigerant is subject to a pressure drop in the first expansion arrangement 14. While refrigerant flows through the first conduit path 22, gaseous refrigerant from the accumulator 16 is compressed in the compressor 10. Line 56 represents the mid pressure level in the accumulator 16. Line 58 represents this compression in the compressor 10. As the refrigerant circulates through the refrigeration system via the first conduit path 22, gaseous refrigerants from the accumulator 16 is compressed and condenses to liquid refrigerant in the condenser 12, which in turn flows to the
accumulator 16.
When the refrigerant instead circulates in the refrigeration system 4 via the second conduit path 24, the refrigerant is subjected to a first pressure drop at point 54 in the first expansion arrangement 14 to the mid pressure level in the accumulator 16. Liquid refrigerant from the accumulator 16 at the mid pressure level is subjected to a second pressure drop at point 62 in the second expansion arrangement 18 to the low pressure level. Line 64 represents evaporation of the refrigerant in the evaporator 20 at the low pressure level. Line 66 represents compression in the compressor 10 of the refrigerant coming from the low pressure level.
As can be seen from the length of line 64 in the diagram; owing to the use of the accumulator 16, and the alternate flow of refrigerant through the first and second conduit paths 22, 24, the enthalpy available for cooling in the evaporator 20 is more, than if no accumulator 16 would be present and only flow of refrigerant through the second conduit path 24 would take place, i.e. the line 64 would in such case only start vertically below point 54. A control system of the refrigerator 2 may be arranged to control at least the compressor 10 and the flow control device 26. A temperature of the compartment 6 may be used as a condition for the running 100 of the compressor 10. For instance, at a maximum temperature threshold inside the compartment 6, the compressor 10 is started and at a minimum temperature threshold inside the compartment 6, the compressor 10 is stopped. Alternatively, an average temperature inside the compartment 6 may be decisive for running the compressor 10. The control system may direct the refrigerant alternately through the first conduit path 22 and the second conduit path 24 based on pressure criteria, e.g. in the accumulator 16. Accumulator pressure may e.g. be established directly by a pressure sensor inside the accumulator 16, or indirectly by temperature measurements on the accumulator 16.
Example embodiments described above may be combined as understood by a person skilled in the art. It is also understood by those skilled in the art that each one of the first and second expansion arrangements may be e.g. a capillary tube, a thermostatic expansion valve or an electronic expansion valve. The compressor 10 may be of single speed compressor or a variable speed compressor. Although the invention has been described with reference to example embodiments, many different alterations, modifications and the like will become apparent for those skilled in the art. Therefore, it is to be understood that the foregoing is illustrative of various example embodiments and that the invention is defined only the appended claims.
As used herein, the term "comprising" or "comprises" is open-ended, and includes one or more stated features, elements, steps, components or functions but does not preclude the presence or addition of one or more other features, elements, steps, components, functions or groups thereof.

Claims

1. A refrigerator (2) comprising a refrigeration system (4) being at least intermittently flowed through by a refrigerant and a compartment (6) cooled by the refrigeration system (4), wherein the refrigeration system (4) comprises a conduit system (8) and system components interconnected by the conduit system (8), wherein the system components comprise a compressor (10), a condenser (12), a first expansion arrangement (14), an accumulator (16) for gaseous and liquid refrigerant, a second expansion arrangement (18), and an evaporator (20), and wherein the refrigeration system (4) comprises a first conduit path (22) and a second conduit path (24), the first and second conduit paths (22, 24) extending in parallel from the accumulator (16) towards the compressor (10), wherein the second conduit path (24) extends, seen in the flow direction of the refrigerant, from the accumulator (16) via the second expansion arrangement (18) to the evaporator (20),
characterized in that
the compressor (10) is the only compressor of the refrigeration system (4) and the compressor (10) is a single stage compressor, and wherein a flow control device (26) is arranged in the conduit system (8) for alternately directing refrigerant through the first conduit path (22) and the second conduit path (24).
2. The refrigerator (2) according to claim 1 , wherein the conduit system (8) extends, in the flow direction of the refrigerant, from the compressor (10) to the condenser (12), from the condenser (12) to the first expansion arrangement (14), and from the first expansion arrangement (14) to the accumulator (16).
3. The refrigerator (2) according to claim 1 or 2, wherein the flow control device (26) is arranged upstream of the compressor (10) and downstream of the accumulator (16), and wherein the first conduit path (22) and the second conduit path (24) meet upstream of the compressor (10) and downstream of the accumulator (16) and the evaporator (20).
4. The refrigerator (2) according to any one of the preceding claims, wherein the flow control device (26) comprises a 3-way valve (28) interconnecting the first conduit path (22), the second conduit path (24), and the compressor (10).
5. The refrigerator (2) according to any one of the claims 1 - 3, wherein the flow control device (26) comprises a first valve (42) arranged in the first conduit path (22) and a second valve (44) arranged in the second conduit path (24).
6. The refrigerator (2) according to claim 5, wherein the second valve is a check valve (44).
7. The refrigerator (2) according to any one of the preceding claims, wherein the
refrigeration system (4) comprises a first heat exchanger (30), the first heat exchanger (30) comprising a first passage (32) and a second passage (34), the first passage (32) comprising portions of the first conduit path (22) downstream of the accumulator (16) and the second passage (34) being arranged downstream of the condenser (12) and upstream of the first expansion arrangement (14), or the second passage (34) forms part of the first expansion arrangement (14).
8. The refrigerator (2) according to any one of the preceding claims, wherein the
refrigeration system (4) comprises a second heat exchanger (36), the second heat exchanger (36) comprising a third passage (38) and a fourth passage (40), the third passage (38) comprising portions of the second conduit path (24) downstream of the accumulator (16) and upstream of the second expansion arrangement (18), or the third conduit path forming part of the second expansion arrangement 18, and wherein the fourth passage (40) comprises portions of the second conduit path (24) downstream of the evaporator (20).
9. The refrigerator (2) according to any one of the preceding claims, wherein the
refrigeration system (4) comprises a second heat exchanger (36), the second heat exchanger (36) comprising a third passage (38) and a fourth passage (40), the third passage (38) being arranged downstream of the condenser (12) and upstream of the first expansion arrangement (14), or the third passage (38) forming part of the first expansion arrangement (14), and wherein the fourth passage (40) comprises portions of the second conduit path (24) downstream of the evaporator (20).
PCT/EP2012/069180 2012-09-28 2012-09-28 Refrigerator WO2014048485A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/EP2012/069180 WO2014048485A1 (en) 2012-09-28 2012-09-28 Refrigerator
CN201280076069.1A CN104685305A (en) 2012-09-28 2012-09-28 Refrigerator
US14/431,511 US20150253040A1 (en) 2012-09-28 2012-09-28 Refrigerator
KR1020157008337A KR20150065173A (en) 2012-09-28 2012-09-28 Refrigerator
EP12766964.6A EP2901092A1 (en) 2012-09-28 2012-09-28 Refrigerator
AU2012391147A AU2012391147A1 (en) 2012-09-28 2012-09-28 Refrigerator
BR112015006703A BR112015006703A2 (en) 2012-09-28 2012-09-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/069180 WO2014048485A1 (en) 2012-09-28 2012-09-28 Refrigerator

Publications (1)

Publication Number Publication Date
WO2014048485A1 true WO2014048485A1 (en) 2014-04-03

Family

ID=46968201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/069180 WO2014048485A1 (en) 2012-09-28 2012-09-28 Refrigerator

Country Status (7)

Country Link
US (1) US20150253040A1 (en)
EP (1) EP2901092A1 (en)
KR (1) KR20150065173A (en)
CN (1) CN104685305A (en)
AU (1) AU2012391147A1 (en)
BR (1) BR112015006703A2 (en)
WO (1) WO2014048485A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051228A1 (en) * 2015-09-24 2017-03-30 Kolár Jaroslav Method of increasing coefficient of performance and output of heat pumps
AT525641B1 (en) * 2022-07-21 2023-06-15 Univ Graz Tech Refrigerant circuit of a refrigerator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146885A (en) * 2014-04-22 2016-12-21 미쓰비시덴키 가부시키가이샤 Air conditioner
US10830499B2 (en) * 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
CA3061617A1 (en) 2017-05-02 2018-11-08 Rolls-Royce North American Technologies Inc. Method and apparatus for isothermal cooling
CN108007005B (en) * 2017-11-08 2019-10-29 西安交通大学 Flash evaporation refrigeration system, the refrigerator with the refrigeration system and its control method
CN107990579B (en) * 2017-11-08 2020-02-18 西安交通大学 Refrigerating system, refrigerator with refrigerating system and control method of refrigerating system
US10790292B2 (en) 2018-05-14 2020-09-29 Silicon Storage Technology, Inc. Method of making embedded memory device with silicon-on-insulator substrate
CN111907301A (en) 2019-05-07 2020-11-10 开利公司 Combined heat exchanger, heat exchange system and optimization method thereof
US11885544B2 (en) 2019-12-04 2024-01-30 Whirlpool Corporation Adjustable cooling system
CN116685814A (en) * 2021-01-27 2023-09-01 三菱电机株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485146A1 (en) * 1990-11-09 1992-05-13 General Electric Company Refrigerator with refrigerant flow control means
EP0485147A1 (en) * 1990-11-09 1992-05-13 General Electric Company Refrigeration system
EP0624763A1 (en) * 1993-05-10 1994-11-17 General Electric Company Free-draining evaporator for refrigeration system
US20110197606A1 (en) * 2008-06-18 2011-08-18 Augusto Jose Pereira Zimmermann Refrigeration system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904049A (en) * 1997-03-31 1999-05-18 General Electric Company Refrigeration expansion control
US6327871B1 (en) * 2000-04-14 2001-12-11 Alexander P. Rafalovich Refrigerator with thermal storage
BRPI0601298B1 (en) * 2006-04-19 2019-10-08 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. REFRIGERATION CIRCUIT FLOW CONTROL SYSTEM, COOLING SYSTEM CONTROL METHOD AND COOLING SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485146A1 (en) * 1990-11-09 1992-05-13 General Electric Company Refrigerator with refrigerant flow control means
EP0485147A1 (en) * 1990-11-09 1992-05-13 General Electric Company Refrigeration system
EP0624763A1 (en) * 1993-05-10 1994-11-17 General Electric Company Free-draining evaporator for refrigeration system
US20110197606A1 (en) * 2008-06-18 2011-08-18 Augusto Jose Pereira Zimmermann Refrigeration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051228A1 (en) * 2015-09-24 2017-03-30 Kolár Jaroslav Method of increasing coefficient of performance and output of heat pumps
AT525641B1 (en) * 2022-07-21 2023-06-15 Univ Graz Tech Refrigerant circuit of a refrigerator
AT525641A4 (en) * 2022-07-21 2023-06-15 Univ Graz Tech Refrigerant circuit of a refrigerator

Also Published As

Publication number Publication date
BR112015006703A2 (en) 2017-07-04
AU2012391147A1 (en) 2015-03-26
EP2901092A1 (en) 2015-08-05
US20150253040A1 (en) 2015-09-10
KR20150065173A (en) 2015-06-12
CN104685305A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
US20150253040A1 (en) Refrigerator
JP5991989B2 (en) Refrigeration air conditioner
JP5241872B2 (en) Refrigeration cycle equipment
JP2019074250A (en) Heat pump cycle
EP2901091B1 (en) Refrigerator and method of controlling refrigerator
CN103836847B (en) Refrigerating circulatory device and the hot water generating device for possessing the refrigerating circulatory device
WO2017081157A1 (en) A vapour compression system comprising a secondary evaporator
JP2019011899A (en) Air conditioning device
US9134057B2 (en) Refrigeration cycle and condenser with supercooling unit
CN103649650A (en) Refrigeration circuit, gas-liquid separator and heating and cooling system
JP2016020760A (en) Air conditioner
JP2009293899A (en) Refrigerating device
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
JP2017089904A (en) Heat pump system
JP2009293887A (en) Refrigerating device
JP5942248B2 (en) Refrigeration cycle equipment
AU2019292493B2 (en) Apparatus and method for transferring heat
JP5555212B2 (en) Turbo refrigerator
CN111928516A (en) Split type air-cooled heat pump system
CN116105296A (en) Heat exchanger, air conditioner, control method of air conditioner, controller and storage medium
JP2003106686A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012391147

Country of ref document: AU

Date of ref document: 20120928

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008337

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006703

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2012766964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012766964

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015006703

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150325