WO2014048340A1 - 金属氧化物试品在陡前沿脉冲下响应特性测试装置 - Google Patents

金属氧化物试品在陡前沿脉冲下响应特性测试装置 Download PDF

Info

Publication number
WO2014048340A1
WO2014048340A1 PCT/CN2013/084290 CN2013084290W WO2014048340A1 WO 2014048340 A1 WO2014048340 A1 WO 2014048340A1 CN 2013084290 W CN2013084290 W CN 2013084290W WO 2014048340 A1 WO2014048340 A1 WO 2014048340A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
terminal
steep
test
voltage
Prior art date
Application number
PCT/CN2013/084290
Other languages
English (en)
French (fr)
Inventor
颜湘莲
陈维江
张乔根
李志兵
刘轩东
王浩
李晓昂
Original Assignee
国家电网公司
中国电力科学研究院
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 西安交通大学 filed Critical 国家电网公司
Publication of WO2014048340A1 publication Critical patent/WO2014048340A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/55Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a gas-filled tube having a control electrode

Definitions

  • the invention belongs to the field of overvoltage of power system, and particularly relates to a test device for response characteristics of a metal oxide sample under steep front pulse. Background technique
  • the experimental research shows that the gas insulated metal-enclosed switchgear (GIS) isolating switch operation will produce a very fast transient over-voltage (VFTO) with high amplitude and steepness, and a secondary device for GIS and its connected equipment insulation and casing connection. Operation has a significant impact.
  • GIS isolation switch with damping resistor proposed by Toshiba is widely used to suppress VFTO, which has been well applied in practice.
  • Both Changzhi Station and Nanyang Station of China UHV AC Test Demonstration Project have adopted this scheme. Tsinghua University tried to install a high-frequency magnetic ring on the GIS high-pressure guide to suppress VFTO.
  • arresters metal oxide arresters
  • the lightning arrester installed in the power system is mainly used to limit lightning and operating overvoltage. Because the VFTO wave head time is short, it can reach several ns, and the oscillation frequency may reach 100MHz or more. The lightning arrester valve at high frequency has limited response performance, and is rarely considered. Use a lightning arrester to limit VFTO. Since the 1980s, in order to develop lightning arresters with excellent performance, the response characteristics of arresters under steep shock waves have been explored at home and abroad. BBC has established a double exponential wave and square wave current source to test different kinds of metal oxide resistors (hereinafter referred to as resistors). The output current waveform has a wave head time range of 0.7 ⁇ 8 ⁇ 8 .
  • the China Electric Power Research Institute has developed a steep inrush current wave device that produces current waveforms of 0.1/0.2 ⁇ 8, 0.4/0.8 ⁇ 8, 0.8/3 ⁇ 8, 4/10 ⁇ 8, 8 /20 ⁇ 8, 30/60 ⁇ 8 and the maximum current amplitude.
  • lkA experimentally studied the influence of the structure and physical properties of the resistor on the response characteristics of the arrester. It can be seen that the above experimental research is limited by the steep wave test power supply, and there is a problem that the current wave head time is long or the current amplitude is small, and the volt-ampere characteristics of the resistor piece under the steep wave of VFTO are not obtained.
  • the volt-ampere characteristics of the resistor under steep wave is the premise of establishing the high-frequency model of the arrester, it is not necessary to obtain the volt-ampere characteristics of the resistor under the steep wave of the wave head time less than 100 ns, and then simulate the inhibitory effect of the arrester on VFTO and its application. range.
  • the object of the present invention is to provide a device for testing the response characteristics of metal oxide samples under steep front pulse.
  • a metal oxide test product having a response characteristic test device under steep front pulse comprising: a steep wave front current pulse generating device connected to the sample for generating a steep wave front current waveform; and a test instrument, and a test sample Connected, used to measure the current and voltage waveform of the sample;
  • the steep wave leading edge current pulse generating device includes a first capacitor, a three-electrode switch and a second capacitor which are sequentially connected in series, and the first capacitor and the second capacitor are respectively provided with three terminals, the first capacitor and the second capacitor
  • the second terminal of the capacitor is respectively connected to the positive and negative poles of the power source through a 1 ⁇ ⁇ resistor, and the first capacitor and the third terminal of the second capacitor are integrally connected by a three-electrode switch, the first capacitor and the first capacitor
  • the first terminal of the second capacitor is respectively connected to the crimping member mounted at both ends of the sample through a copper strip to form a discharge loop.
  • the first terminal of the second capacitor is mounted with a screw, and the idle end of the screw is provided with a copper strip for connecting the sample and a grounding copper strip for grounding the discharge circuit.
  • the test instrument comprises a Rogowski coil sleeved on the screw, a high voltage probe connected to the crimping member at both ends of the sample, a shielded cable and an oscilloscope; the Rogowski coil will steeply output the steep wave front current pulse generating device The wave front current waveform is transmitted to the oscilloscope through the shielded cable; under the steep wave front current waveform, the high voltage probe measures the current and voltage waveform of the sample, and is transmitted to the oscilloscope through the shielded cable.
  • the three-electrode switch includes a dry gas tank and a trigger electrode encapsulated in the dry gas tank, and positive and negative high-voltage electrodes on both sides of the trigger electrode, and one side of the positive and negative high-voltage electrodes is respectively provided with a connecting screw,
  • the third terminal of the first capacitor and the second capacitor are respectively provided with screw holes matched with the connecting screw, and the connecting screw is screwed into the screw hole to realize the integrated connection of the first capacitor, the second capacitor and the three-electrode switch
  • the dry gas tank is filled with an insulating gas medium.
  • the insulating gas medium is air, SF 6 gas or other inert gas.
  • the crimping member is a flat cylindrical structure made of a conductive material.
  • the first terminal is a low voltage end of the first capacitor and the second capacitor; the second terminal and the third terminal are equipotential, and both are high voltage ends of the first capacitor and the second capacitor.
  • first terminal and the third terminal of the first capacitor are respectively located on opposite sides of the housing of the first capacitor, and the second terminal of the first capacitor is connected to the positive pole of the power source, and is disposed in the third a first capacitor housing on an adjacent side of the terminal; a first terminal and a third high voltage terminal of the second capacitor are located on opposite sides of the housing of the second capacitor, and the second terminal of the second capacitor
  • the negative pole of the power supply is turned on, which is disposed on the second capacitor case on the side adjacent to the third terminal.
  • the first terminal connected to the first capacitor and the copper strip at one end of the sample, the first terminal connected to the second capacitor and the surface of the copper strip at the other end of the sample, the first capacitor and the second capacitor are respectively padded
  • An insulating rubber is provided, and the two copper strips are wound around the surfaces of the first capacitor and the second capacitor, respectively.
  • the steep wave front current pulse generating device Adopting the integrated coaxial structure design of the capacitor and the switch, the steep wave front current pulse generating device has almost no inductance, ensuring that the current wave head time generated is short, and the VFT0 waveform is satisfied;
  • the switching gap of the steep wave front current pulse generating device can adopt a variety of gas insulating media, the gas pressure can be adjusted, and the external trigger breakdown mode, so that the switching gap K has a higher breakdown voltage, and the generated current peak is larger and the range is larger. Wide, can meet the measurement requirements of different performance resistors.
  • FIG. 1 is a schematic structural view of a steep wave leading edge current pulse generating device in the testing device of the present invention
  • FIG. 2 is a circuit diagram of the testing device of the present invention
  • Figure 3 is a graph showing voltage and current waveforms of the resistive chip QA22 in the first embodiment at a steep front current of 10 kA;
  • FIG. 4 is a comparison diagram of the volt-ampere characteristics of the valve sheet under the steep wave and the lightning wave in the resistive sheet QA22 of the first embodiment
  • FIG. 5 is a voltage and current waveform diagram of the resistive sheet RB41 in the second embodiment at a steep front current of 4 kA
  • Fig. 6 is a view showing the comparison of the volt-ampere characteristics of the valve piece under the steep wave and the lightning wave in the resist piece RB41 of the second embodiment.
  • the metal oxide sample of the present invention is further elaborated in the steep front with reference to the accompanying drawings and specific examples.
  • the pulse response characteristic test device provides basic data for establishing a high-frequency simulation model of the arrester under steep waves. Where the same or similar reference numerals denote the same or similar devices.
  • the test apparatus includes a steep wave leading edge current pulse generating device and a test instrument, wherein the steep wave leading edge current pulse generating device includes a three-electrode switch K and two capacitors (ie, the first capacitor C1 and the first Two capacitors C2), two capacitors Cl C2 respectively have three terminals (ie, first terminal 1, second terminal 2 and third terminal 3), second terminal 2 and third terminal 3 are equal
  • the steep wave leading edge current pulse generating device includes a three-electrode switch K and two capacitors (ie, the first capacitor C1 and the first Two capacitors C2), two capacitors Cl C2 respectively have three terminals (ie, first terminal 1, second terminal 2 and third terminal 3), second terminal 2 and third terminal 3 are equal
  • the potential is the high voltage end of the two capacitors; the first terminal 1 is independent, the low voltage of the two capacitors
  • the two capacitors Cl C2 can be packaged in a thin film oil-molded shell. Compared with gas-insulated capacitors, they have twice the capacity of the same size and the environment is less demanding for storage, transportation and use.
  • the second terminal 2 of the first capacitor C1 can be connected to the positive pole of the DC high voltage power supply through a 1 ⁇ protection resistor, and the second terminal 2 of the second capacitor C2 can be protected by 1 ⁇ .
  • the resistor is connected to the negative pole of the DC high voltage power supply.
  • the two capacitors Cl C2 and the three-electrode switch K are mounted in a compact integrated structure, which can be placed in the transformer oil to improve the breakdown of the switching gap K;
  • the voltage three-electrode switch K can be a three-electrode field distortion gas switch, which can be used outside Triggering breakdown or self-breakdown,
  • the specific structure of the switch K includes a cylindrical dry gas tank and a trigger electrode packaged in the dry gas tank, and positive and negative high voltage electrodes on both sides of the trigger electrode; one side of the positive and negative high voltage electrodes
  • a M10 connecting screw with a length of 0.5 cm is respectively installed, and the third terminal 3 of the two capacitors Cl C2 is respectively provided with an M10 screw hole matched with the connecting screw, and the connecting screw passes through the through hole of the drying gas tank and rotates.
  • the integrated connection between the two capacitors Cl C2 and the three-electrode switch K is completed in the screw hole. Since the connecting screw and the screw hole are directly screwed, the contact is good, and the lead wire connection is not required, the miniaturization and the compact type are most embodied. It can guarantee the minimum loop inductance.
  • the three-electrode switch uses a dry gas tank as the outer casing. It has high mechanical strength and can withstand high gas pressure, which allows the three-electrode switch length to be reduced and the switching inductance to be reduced.
  • the dry gas tank is also filled with an insulating gas medium.
  • the insulating gas medium can be air, SF6 gas or other inert gas.
  • the gas pressure range is -0.1MPa 0.1MPa, which can be continuously adjusted. The selected insulating medium and gas pressure depend on the measured current peak.
  • the M10 screw is also mounted on the second capacitor C2.
  • One end of the screw is screwed on the first terminal 1 of the second capacitor C2, and the other end is connected with two copper strips.
  • the first strip is used to ground the discharge circuit.
  • Two pieces of crimping parts connected to one end of the metal oxide sample (MOA sample), MOA sample
  • MOA sample metal oxide sample
  • the crimping member at one end is connected to the first terminal 1 of the first capacitor CI through a third strip of copper to form a discharge loop.
  • the routing principle of the above second and third copper strips is as follows: Under the condition that the capacitor does not have flashover on the surface, the copper strip is as short as possible; the surface of the copper strip and the two capacitors Cl and C2 are respectively provided with insulating rubber, copper strip Wrapped on the surface of the two capacitors Cl, C2, and as close as possible, to ensure the most compact circuit, the steepest current front.
  • the crimping piece at both ends of the sample is a flat cylindrical shape made of two pieces of red copper, which ensures that the MOA test piece has uniform force and good contact, and is convenient for voltage measurement wiring.
  • the copper strip can be well connected by short and wide copper strips to reduce current oscillation.
  • the voltage and current test instrument includes a Rogowski coil, a high voltage probe, an oscilloscope and a plurality of shielded cables.
  • the Rogowski coil is set on a screw near the grounded copper strip, and the steep front current waveform of the steep wave front current pulse generating device is transmitted through the shielded cable.
  • the current and voltage waveforms of the MOA sample are measured by a high voltage probe connected to the crimping members at both ends of the MOA sample, and transmitted to the oscilloscope through the shielded cable, according to the current and voltage waveforms. The response characteristics of the sample under the steep wave front current waveform are obtained.
  • the specific operation method of the test device is as follows:
  • the MOA sample is connected to the circuit formed by the steep wave front current pulse generating device, and the two capacitors d and C 2 of the steep wave leading edge current pulse generating device are charged by the DC power source U to cause the three electrode switch K to break down, and the wave head is generated.
  • the steep wave front current waveform with a rise time of 50 to 100 ns and a peak value of 500 A to 50 kA is used to record the current and voltage waveforms on the MOA sample.
  • the corresponding value of the flat portion after reading the peak value in the voltage waveform is the MOA sample residual voltage. Under the current waveform of the same amplitude, the head rise time error is ⁇ 5 ns, and the current and residual voltage of the MOA sample are measured three times.
  • Each MOA sample measures the residual of not less than 5 different current amplitudes.
  • the measurement results of the volt-ampere characteristics of the MOA sample were processed by interpolation and fitting methods, and the average volt-ampere characteristics of the MOA sample under the steep wave front current pulse were obtained.
  • the MOA sample used in one embodiment of the present invention is an MOA resistor sheet QA22, in this example, the volt-ampere characteristic of the resistive sheet QA22 under steep waves, and the two capacitors d, C 2 of the steep wave leading edge current pulse generating device.
  • the capacitance value is 40nF
  • the three-electrode switch K filled with SF 6 gas is used, the gap distance is about 4mm, the gas pressure is -O.lMPa O.lMPa, and the charging voltage of the DC power source U is 10kV ⁇ 100kV.
  • the steep wave front current pulse generating device is placed in the air. Connect the resistor QA22 in the loop as shown in Figure 1.
  • the current and voltage waveforms on the resistor are shown in Figure 3.
  • the current is attenuated and the period is about 336ns.
  • the head rise time is 80 ns.
  • the current range is 610A ⁇ 10kA, and the current and residual voltage values of the resistor QA22 under 10 different current amplitudes are measured, and the average amplitude is measured 3 times for each current amplitude. Values, current peaks and residual voltages measured on the resistor sheet QA22 are listed in Table 1.
  • the ruthenium test piece used in another embodiment of the present invention is a ⁇ resistor RB41.
  • the volt-ampere characteristic of the ⁇ resistor RB41 under steep waves is measured, and the two capacitors d of the steep wave front current pulse generating device are The capacitance value of C 2 is 40nF.
  • the three-electrode switch K filled with air is used. The gap distance is about 1mm, the gas pressure is -0.1MPa ⁇ 0.1MPa, and the charging voltage of the DC power supply U is 10kV ⁇ 50kV.
  • the steep wave front current pulse generating device is placed in the air. Connect the resistor RB41 in the loop as shown in Figure 1.
  • the current and voltage waveforms on the resistor are shown in Figure 5.
  • the current is the damped oscillator wave with a period of about 283 ns.
  • the time is 60ns.
  • the current range is 770A ⁇ 5.55kA, and the measurement is made.
  • the current and residual voltage of the resistor RB41 at 10 different current amplitudes are averaged for each of the current amplitudes for 3 times.
  • the current peaks and residual voltages measured on the resistor RB41 are listed in Table 2. .
  • Data processing methods such as interpolation and fitting are used to process the volt-ampere characteristics of the resistor RB41 under steep waves, and compared with the volt-ampere characteristics of the resistor under other waveforms, as shown in Fig. 6, with lightning waves.
  • the residual pressure of the valve plate is increased by about 15%.

Abstract

本发明提出一种金属氧化物试品在陡前沿脉冲下响应特性测试装置,包括陡波前沿电流脉冲产生装置,用于产生陡波前沿电流波形;测试仪器,用于测量试品的电流、电压波形;在陡波前沿电流脉冲产生装置构成的回路中接入试品,通过直流电源对陡波前沿电流脉冲产生装置中的两个电容器充电使三电极开关击穿,以测试金属氧化物试品在陡前沿脉冲下响应特性。该测试装置由于采用电容、开关一体化结构,减小了回路电感,由于采用铜带紧凑包裹电容器的机构,是回路电感减小至最低,保证了足够的电流幅值和陡峭的上升沿,随着陡波前沿电流的增大,陡波下的阀片残压有明显提高。

Description

金属氧化物试品在陡前沿脉冲下响应特性测试装置 技术领域
本发明属于电力系统过电压领域,具体涉及一种金属氧化物试品在陡前沿脉 冲下响应特性测试装置。 背景技术
试验研究表明, 气体绝缘金属封闭开关设备 (GIS)隔离开关操作会产生幅值 高、 陡度大的特快速瞬态过电压 (VFTO), 对 GIS及其连接设备绝缘、 外壳连接 的二次设备运行有重要影响。 目前, 普遍采用东芝公司提出的 GIS 隔离开关带 阻尼电阻的方法抑制 VFTO, 在实际中得到了较好的应用, 我国特高压交流试验 示范工程的长治站和南阳站均采用了该方案。 清华大学尝试在 GIS 高压导杆上 安装高频磁环来抑制 VFTO, 进行了大量的实验室研究, 仍需通过现场应用验证 该措施的有效性。 近年来, 随着金属氧化物避雷器 (以下简称避雷器)性能提升, 其对 VFTO的抑制作用逐渐成为了研究关注的热点。
电力系统中安装的避雷器主要用于限制雷电和操作过电压,因 VFTO波头时 间较短, 可达数 ns, 振荡频率可能达到 100MHz 以上, 高频下的避雷器阀片响 应性能有限, 甚少考虑用避雷器限制 VFTO。 上世纪八十年代起, 为了研制性能 优异的避雷器, 国内外对避雷器在陡冲击波下的响应特性进行了探索。 BBC 公 司建立了双指数波和方波电流源对不同结构的金属氧化物电阻片 (下称电阻片) 进行了试验研究, 输出电流波形的波头时间范围为 0.7〜8μ8。 中国电力科学研究 院研制了陡冲击电流波装置,产生了 0.1/0.2μ8、0.4/0.8μ8、0.8/3μ8、4/10μ8、8/20μ8、 30/60μ8的电流波形, 最大电流幅值为 lkA, 试验研究了电阻片结构和物性等对 避雷器响应特性的影响。 可见, 上述试验研究受陡波试验电源的限制, 存在电流 波头时间较长或电流幅值较小的问题,均未得到电阻片在 VFTO陡波下的伏安特 性。因电阻片在陡波下的伏安特性是建立避雷器高频模型的前提, 亟需得到电阻 片在波头时间小于 100ns陡波下的伏安特性,进而仿真研究避雷器对 VFTO的抑 制作用和适用范围。
现有测试技术中, 一般通过 Marx发生器产生脉冲电压施加于金属氧化物试 发明内容
为了克服上述陡波试验电源测量金属氧化物试品在陡前沿脉冲下的伏安特 性存在的不足,本发明的目的在于提出一种金属氧化物试品在陡前沿脉冲下响应 特性测试装置。
一种金属氧化物试品在陡前沿脉冲下响应特性测试装置, 该装置包括: 陡波 前沿电流脉冲产生装置,与试品相连,用于产生陡波前沿电流波形;和测试仪器, 与试品相连, 用于测量试品的电流、 电压波形;
所述陡波前沿电流脉冲产生装置包括依次串联的第一电容器、三电极开关和 第二电容器,所述第一电容器和第二电容器上均设有三个接线端, 所述第一电容 器与第二电容器的第二接线端分别通过 1 ΜΩ电阻连接至电源的正、 负极, 所述 第一电容器与第二电容器的第三接线端之间通过三电极开关进行一体化连接,所 述第一电容器与第二电容器的第一接线端分别通过铜带与安装在试品两端的压 接件相连, 构成放电回路。
其中,所述第二电容器的第一接线端上安装有螺杆, 该螺杆的空闲端安装有 用于连接试品的铜带和用于使放电回路接地的接地铜带。
其中,所述测试仪器包括套设于螺杆上的罗氏线圈、与试品两端的压接件相 连接的高压探头、屏蔽电缆和示波器; 所述罗氏线圈将陡波前沿电流脉冲产生装 置输出的陡波前沿电流波形经屏蔽电缆传至示波器; 在所述陡波前沿电流波形 下, 所述高压探头测量出试品的电流、 电压波形, 并经屏蔽电缆传至示波器。
其中, 所述一体化连接的具体结构为:
所述三电极开关包括干燥气罐和封装于干燥气罐中的触发电极以及位于触 发电极两侧的正、 负高压电极, 所述正、 负高压电极的一侧分别设有连接螺杆, 所述第一电容器和第二电容器的第三接线端上分别设有与连接螺杆相匹配的螺 孔,所述连接螺杆旋入螺孔中实现第一电容器、第二电容器与三电极开关的一体 化连接; 所述干燥气罐中填充有绝缘气体介质。
其中, 所述绝缘气体介质为空气、 SF6气体或其它惰性气体。
其中, 所述压接件采用导电材质制成的扁圆柱体结构。 其中,所述第一接线端为第一电容器和第二电容器的低压端; 所述第二接线 端和第三接线端是等电位的, 均为第一电容器和第二电容器的高压端。
其中,所述第一电容器的第一接线端和第三接线端分别位于第一电容器的壳 体相对两侧,所述第一电容器的第二接线端接通电源正极, 其设在与第三接线端 相邻一侧的第一电容器壳体上;所述第二电容器的第一接线端和第三高压端位于 第二电容器的壳体相对两侧,所述第二电容器的第二接线端接通电源负极, 其设 在与第三接线端相邻一侧的第二电容器壳体上。
其中,所述连接第一电容器的第一接线端与试品一端的铜带、连接第二电容 器的第一接线端与试品另一端的铜带、第一电容器和第二电容器的表面分别垫设 有绝缘胶皮, 且上述两条铜带分别缠绕于第一电容器和第二电容器的表面。
本发明采用上述技术方案, 具有的优点有:
采用电容与开关一体化同轴结构设计,陡波前沿电流脉冲产生装置几乎没有 电感, 确保产生的电流波头时间较短, 满足 VFT0波形的要求;
陡波前沿电流脉冲产生装置的开关间隙可采用多种气体绝缘介质,气体压力 可调, 并带外触发击穿方式, 使得开关间隙 K击穿电压较高, 产生的电流峰值 较大、 范围较宽, 可满足不同性能电阻片的测量要求。 附图说明
下面结合附图对本发明进一步说明。
图 1是本发明测试装置中陡波前沿电流脉冲产生装置的结构示意图; 图 2是本发明测试装置的电路示意图;
图 3是实施例 1中电阻片 QA22在 10kA陡波前沿电流下的电压和电流波形 图;
图 4是实施例 1中电阻片 QA22在陡波与雷电波下的阀片伏安特性比较图; 图 5是实施例 2中电阻片 RB41在 4kA陡波前沿电流下的电压和电流波形图; 图 6是实施例 2中电阻片 RB41在陡波与雷电波下的阀片伏安特性比较图。 具体实施方式
下面结合附图和具体实例,进一步详细阐述本发明金属氧化物试品在陡前沿 脉冲下响应特性测试装置, 为建立避雷器在陡波下的高频仿真模型提供基础数 据。 其中相同或相似的附图标号表示相同或相似的器件。
如图 1-2所示, 该测试装置包括陡波前沿电流脉冲产生装置和测试仪器, 其 中, 陡波前沿电流脉冲产生装置包括一个三电极开关 K和两个电容器 (即第一 电容器 C1和第二电容器 C2), 两个电容器 Cl C2分别具有三个接线端 (即第 一接线端 1、第二接线端 2和第三接线端 3 ), 第二接线端 2和第三接线端 3是等 电位的, 为两个电容器的高压端; 第一接线端 1是独立的, 为两个电容器的低压
两个电容器 Cl C2可采用薄膜油塑壳封装结构, 与气体绝缘电容器相比, 其在相同尺寸下的容量比后者大 1倍, 存储、 运输和使用对环境的要求较宽松。 为了提高该测试装置的稳定和可靠性, 第一电容器 C1的第二接线端 2可以通过 1ΜΩ 的保护电阻器连接直流高压电源的正极, 第二电容器 C2 的第二接线端 2 可以通过 1ΜΩ的保护电阻器连接直流高压电源的负极。 两个电容器 Cl C2与 三电极开关 K安装成紧凑型一体化结构,可放置在变压器油中,提高开关间隙 K 的击穿; 电压三电极开关 K可采用三电极场畸变气体开关, 可采用外触发击穿 或自击穿, 开关 K的具体结构包括圆柱形干燥气罐和封装于干燥气罐中的触发 电极以及位于触发电极两侧的正、 负高压电极; 正、 负高压电极的一侧分别安装 有一个长 0.5cm的 M10连接螺杆, 两个电容器 Cl C2的第三接线端 3上分别 设有与连接螺杆相匹配的 M10螺孔, 连接螺杆穿过干燥气罐上的通孔并旋入螺 孔中完成两个电容器 Cl C2与三电极开关 K的一体化连接, 由于连接螺杆和螺 孔直接旋合、接触良好且无须引线连接, 小型化和紧凑型的特点得到了最大的体 现, 能够保证回路电感达到最小。三电极开关采用干燥气罐作为外壳, 具有很高 的机械强度, 能够承受很高的气压, 从而允许减小三电极开关长度, 减小开关电 感; 干燥气罐中还填充有绝缘气体介质, 该绝缘气体介质可采用空气、 SF6气体 或其它惰性气体, 气体压力范围在 -0.1MPa 0.1MPa, 可连续调节, 选用的绝缘 介质和气体压力取决于测量的电流峰值。
第二电容器 C2上还安装有 M10螺杆, 螺杆的一端拧在第二电容器 C2的第 一接线端 1上、其另一端连接有两条铜带, 其中第一条用于使放电回路接地, 第 二条连接至金属氧化物试品 (简称 MOA试品) 一端的压接件上, MOA试品另 一端的压接件通过第三条铜带连接至第一电容器 CI的第一接线端 1上, 构成放 电回路。 上述第二、三条铜带的走线原则是: 在保证电容器不发生沿面闪络的条 件下, 铜带尽量短; 铜带与两个电容器 Cl、 C2的表面分别垫设有绝缘胶皮, 铜 带包裹在两个电容器 Cl、 C2表面, 且尽量贴近, 可保证整个回路最紧凑, 电流 前沿最陡峭。 位于试品两端压接件为两片红铜制成的扁圆柱形, 可以保证 MOA 试品受力均匀和接触良好, 且方便电压测量接线。上述铜带可采用短、 宽铜条进 行良好连接, 减小电流振荡。
电压电流测试仪器包括罗氏线圈、 高压探头、示波器和若干根屏蔽电缆, 罗 氏线圈套设于接地铜带附近的螺杆,并将陡波前沿电流脉冲产生装置输出的陡波 前沿电流波形经屏蔽电缆传输至示波器; 在陡波前沿电流波形下, 通过与 MOA 试品两端的压接件相连接的高压探头测量出 MOA试品的电流、 电压波形, 并经 屏蔽电缆传至示波器,根据电流、 电压波形得到试品在陡波前沿电流波形下的响 应特性。
该测试装置的具体操作方法如下:
在陡波前沿电流脉冲产生装置构成的回路中接入 MOA试品,用直流电源 U 对陡波前沿电流脉冲产生装置的两个电容器 d、 C2充电使三电极开关 K击穿, 产生波头上升时间为 50〜100ns、 峰值为 500A〜50kA的陡波前沿电流波形, 记录 MOA试品上的电流和电压波形, 读取电压波形中峰值后的平坦部分对应的数值 为 MOA试品残压。 在相同幅值的电流波形下, 波头上升时间误差为 ±5ns, 重复 3次测量 MOA试品的电流和残压, 每个 MOA试品测量不少于 5个个不同电流 幅值下的残压,采用插值和拟合等方法对 MOA试品伏安特性的测量结果进行数 据处理, 求取 MOA试品在陡波前沿电流脉冲下的平均伏安特性。
实施例 1
本发明的一个实施例中所采用的 MOA试品为 MOA电阻片 QA22, 本例为 测量电阻片 QA22在陡波下的伏安特性,陡波前沿电流脉冲产生装置的两个电容 器 d、 C2的电容值均为 40nF, 选用填充 SF6气体的三电极开关 K, 间隙距离约 4mm, 气体压力为-O.lMPa O.lMPa, 直流电源 U的充电电压为 10kV〜100kV。 陡波前沿电流脉冲产生装置放置在空气中, 按图 1 所示在回路中接入电阻片 QA22, 电阻片上的电流和电压波形见图 3, 电流为衰减振荡波, 周期约 336ns, 波头上升时间为 80ns。
通过改变直流电源 U的充电电压, 产生电流范围为 610A〜10kA, 测量了电 阻片 QA22在 10个不同电流幅值下的电流和残压值, 对每个电流幅值重复测量 3次求取平均值, 在电阻片 QA22上测量到的电流峰值和残压列于表 1。
表 1 电阻片 QA22的电流和残压值
Figure imgf000008_0001
采用插值和拟合等数据处理方法对电阻片 QA22 在陡波下的伏安特性进行 数据处理, 与其在 8/20μ8标准雷电波下的伏安特性进行比较, 见图 4。 可见, 该 电阻片在陡波下的平均伏安特性与其在标准雷电波下的伏安特性基本类似,随电 流增大, 电阻片残压稍有上翘, 陡波下的阀片残压提高了 20%以上。
实施例 2
本发明的另一个实施例中所采用的 ΜΟΑ试品为 ΜΟΑ电阻片 RB41 , 本例 为测量 ΜΟΑ电阻片 RB41在陡波下的伏安特性, 陡波前沿电流脉冲产生装置的 两个电容器 d、 C2的电容值均为 40nF, 选用填充空气的三电极开关 K, 间隙距 离约 lmm,气体压力为 -0.1MPa〜0.1MPa,直流电源 U的充电电压为 10kV〜50kV。 陡波前沿电流脉冲产生装置放置在空气中, 按图 1 所示在回路中接入电阻片 RB41 , 电阻片上的电流和电压波形见图 5, 电流为衰减振荡波, 周期约 283ns, 波头上升时间为 60ns。
通过改变直流电源 U的充电电压, 产生电流范围为 770A〜5.55kA, 测量了 电阻片 RB41在 10个不同电流幅值下的电流和残压值, 对每个电流幅值重复 量 3次求取平均值, 在电阻片 RB41上测量到的电流峰值和残压列于表 2。
表 2 电阻片 RB41的电流和残压
Figure imgf000009_0001
采用插值和拟合等数据处理方法对电阻片 RB41在陡波下的伏安特性进行数 据处理, 与该电阻片在其它波形下的伏安特性进行比较, 如图 6所示, 与雷电波 下的残压相比, 阀片残压升高了 15%左右。
最后应该说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限 制, 结合上述实施例对本发明进行了详细说明, 所属领域的普通技术人员应当理 解到: 本领域技术人员依然可以对本发明的具体实施方式进行修改或者等同替 换, 但这些修改或变更均在申请待批的权利要求保护范围之中。

Claims

权 利 要 求
1、 一种金属氧化物试品在陡前沿脉冲下响应特性测试装置, 其特征在于, 该装 置包括:
陡波前沿电流脉冲产生装置, 与试品相连, 用于产生陡波前沿电流波形; 和 测试仪器, 与试品相连, 用于测量试品的电流、 电压波形;
所述陡波前沿电流脉冲产生装置包括依次串联的第一电容器、三电极开关和 第二电容器,所述第一电容器和第二电容器上均设有三个接线端, 所述第一电容 器与第二电容器的第二接线端分别通过 1 ΜΩ电阻连接至电源的正、 负极, 所述 第一电容器与第二电容器的第三接线端之间通过三电极开关进行一体化连接,所 述第一电容器与第二电容器的第一接线端分别通过铜带与安装在试品两端的压 接件相连, 构成放电回路。
2、 根据权利要求 1所述的测试装置, 其特征在于: 所述第二电容器的第一接线 端上安装有螺杆,该螺杆的空闲端安装有用于连接试品的铜带和用于使放电回路 接地的接地铜带。
3、 根据权利要求 2所述的测试装置, 其特征在于: 所述测试仪器包括套设于螺 杆上的罗氏线圈、 与试品两端的压接件相连接的高压探头、 屏蔽电缆和示波器; 所述罗氏线圈将陡波前沿电流脉冲产生装置输出的陡波前沿电流波形经屏蔽电 缆传至示波器; 在所述陡波前沿电流波形下, 所述高压探头测量出试品的电流、 电压波形, 并经屏蔽电缆传至示波器。
4、 根据权利要求 1-3任一所述的测试装置, 其特征在于, 所述一体化连接的具 体结构为:
所述三电极开关包括干燥气罐和封装于干燥气罐中的触发电极以及位于触 发电极两侧的正、 负高压电极, 所述正、 负高压电极的一侧分别设有连接螺杆, 所述第一电容器和第二电容器的第三接线端上分别设有与连接螺杆相匹配的螺 孔,所述连接螺杆旋入螺孔中实现第一电容器、第二电容器与三电极开关的一体 化连接; 所述干燥气罐中填充有绝缘气体介质。
5、 根据权利要求 4所述的测试装置, 其特征在于: 所述绝缘气体介质为空气、 8^气体或其它惰性气体。
6、 根据权利要求 1-3任一所述的测试装置, 其特征在于: 所述压接件采用导电 材质制成的扁圆柱体结构。
7、 根据权利要求 1-3任一所述的测试装置, 其特征在于: 所述第一接线端为第 一电容器和第二电容器的低压端; 所述第二接线端和第三接线端是等电位的, 均 为第一电容器和第二电容器的高压端。
8、 根据权利要求 1-3任一所述的测试装置, 其特征在于: 所述第一电容器的第 一接线端和第三接线端分别位于第一电容器的壳体相对两侧,所述第一电容器的 第二接线端接通电源正极, 其设在与第三接线端相邻一侧的第一电容器壳体上; 所述第二电容器的第一接线端和第三高压端位于第二电容器的壳体相对两侧,所 述第二电容器的第二接线端接通电源负极,其设在与第三接线端相邻一侧的第二 电容器壳体上。
9、 根据权利要求 1-3任一所述的测试装置, 其特征在于: 所述连接第一电容器 的第一接线端与试品一端的铜带、连接第二电容器的第一接线端与试品另一端的 铜带、第一电容器和第二电容器的表面分别垫设有绝缘胶皮, 且上述两条铜带分 别缠绕于第一电容器和第二电容器的表面。
PCT/CN2013/084290 2012-09-27 2013-09-26 金属氧化物试品在陡前沿脉冲下响应特性测试装置 WO2014048340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210365838.1A CN102914708B (zh) 2012-09-27 2012-09-27 金属氧化物试品在陡前沿脉冲下响应特性测试装置
CN201210365838.1 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014048340A1 true WO2014048340A1 (zh) 2014-04-03

Family

ID=47613158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084290 WO2014048340A1 (zh) 2012-09-27 2013-09-26 金属氧化物试品在陡前沿脉冲下响应特性测试装置

Country Status (2)

Country Link
CN (1) CN102914708B (zh)
WO (1) WO2014048340A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914708B (zh) * 2012-09-27 2015-09-23 中国电力科学研究院 金属氧化物试品在陡前沿脉冲下响应特性测试装置
CN103490660B (zh) * 2013-08-27 2016-04-06 西北核技术研究所 多路输出的高电压纳秒脉冲发生器
CN103743968B (zh) * 2013-12-17 2016-07-06 上海交通大学 金属氧化物避雷器多重雷电流耐受试验方法
CN109672358B (zh) * 2018-12-24 2020-04-21 西北核技术研究所 一种纳秒前沿双极性高压脉冲产生装置
CN110133354B (zh) * 2019-04-26 2020-07-10 华中科技大学 一种测量压接igbt模块芯片电流的pcb罗氏线圈
CN114094658B (zh) * 2021-11-01 2023-11-10 北京航天长征飞行器研究所 带负载特性测量功能的全固态供配电方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102594A2 (en) * 2003-05-19 2004-11-25 Eugeniusz Smycz Method and testing equipment for checking the operation of a lightning arrester
CN101937035A (zh) * 2010-08-20 2011-01-05 郭春雨 电力电子元件测量装置
CN102255552A (zh) * 2011-06-21 2011-11-23 西安交通大学 一种紧凑型快脉冲放电单元
CN102360032A (zh) * 2011-07-18 2012-02-22 陕西海泰电子有限责任公司 高可靠性远程触发强快沿电磁脉冲的发生装置
CN102914708A (zh) * 2012-09-27 2013-02-06 中国电力科学研究院 金属氧化物试品在陡前沿脉冲下响应特性测试装置
CN202929132U (zh) * 2012-09-27 2013-05-08 中国电力科学研究院 金属氧化物试品在陡前沿脉冲下响应特性测试装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598757B (zh) * 2009-07-14 2011-03-16 中国电力科学研究院 一种可控金属氧化物避雷器残压试验回路和方法
CN101639507B (zh) * 2009-07-16 2012-06-13 中国电力科学研究院 可控金属氧化物避雷器动作特性试验装置和方法
CN201532403U (zh) * 2009-09-29 2010-07-21 中国电力科学研究院 一种冲击电流发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102594A2 (en) * 2003-05-19 2004-11-25 Eugeniusz Smycz Method and testing equipment for checking the operation of a lightning arrester
CN101937035A (zh) * 2010-08-20 2011-01-05 郭春雨 电力电子元件测量装置
CN102255552A (zh) * 2011-06-21 2011-11-23 西安交通大学 一种紧凑型快脉冲放电单元
CN102360032A (zh) * 2011-07-18 2012-02-22 陕西海泰电子有限责任公司 高可靠性远程触发强快沿电磁脉冲的发生装置
CN102914708A (zh) * 2012-09-27 2013-02-06 中国电力科学研究院 金属氧化物试品在陡前沿脉冲下响应特性测试装置
CN202929132U (zh) * 2012-09-27 2013-05-08 中国电力科学研究院 金属氧化物试品在陡前沿脉冲下响应特性测试装置

Also Published As

Publication number Publication date
CN102914708A (zh) 2013-02-06
CN102914708B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014048340A1 (zh) 金属氧化物试品在陡前沿脉冲下响应特性测试装置
Shu et al. Experimental research on very-fast transient overvoltage in 1100-kV gas-insulated switchgear
JP2013527429A (ja) 校正電圧発生デバイスおよび方法
Wen et al. 3-MV compact very fast transient overvoltage generator for testing ultra-high-voltage gas-insulated switchgear
Li et al. Partial discharge characteristics over SF 6/epoxy interfaces under impulse voltage
CN109490812B (zh) 纳秒冲击电压发生器及用于检测互感器过电压的检测系统
CN109254242A (zh) 一种烧蚀试验回路及断路器弧触头烧蚀状态测试方法
CN106645859B (zh) 一种电容分压器
CN108680777A (zh) 一种冲击电压发生装置
CN201917593U (zh) 一种测量电涌保护器残压的分压器装置
Ran et al. Spacer flashover characteristics in SF 6 under repetitive nanosecond pulses
CN202929132U (zh) 金属氧化物试品在陡前沿脉冲下响应特性测试装置
CN106645876A (zh) 一种gis内部高频暂态电压的测量系统及方法
Burow et al. Can ferrite materials or resonant arrangements reduce the amplitudes of VFTO in GIS
Ali et al. Effects of impulse polarity on grounding systems
CN104833859B (zh) 一种平板试样空间电荷分布压力波法测量装置
CN204065227U (zh) 无感脉冲电流检测装置
Christian et al. Very fast transient oscillation measurement at three gorges left bank hydro power plant
Wang et al. Electromagnetic disturbance characteristic of typical high voltage switchgear interruption process in offshore wind farm based on integrated conduction model
CN110672891A (zh) 一种用于分压器标定的方波发生器
Pătru et al. Applications of Voltage Pulse Generator to Achieve Current Pulses of High Amplitude
CN112881866B (zh) 一种局部放电监测过电压抑制方法和装置
Zhang et al. Impedance characteristics of metal oxide varistor under different pulses
CN216449682U (zh) 局部放电脉冲电流超宽频带检测用耦合装置
Zhao et al. Immunity requirements for secondary equipment with regard to switching operations of disconnectors in substations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840726

Country of ref document: EP

Kind code of ref document: A1