WO2014048336A1 - 一种新能源外送系统的facts设备协调控制方法 - Google Patents

一种新能源外送系统的facts设备协调控制方法 Download PDF

Info

Publication number
WO2014048336A1
WO2014048336A1 PCT/CN2013/084261 CN2013084261W WO2014048336A1 WO 2014048336 A1 WO2014048336 A1 WO 2014048336A1 CN 2013084261 W CN2013084261 W CN 2013084261W WO 2014048336 A1 WO2014048336 A1 WO 2014048336A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
voltage
station
resistance
shazhou
Prior art date
Application number
PCT/CN2013/084261
Other languages
English (en)
French (fr)
Inventor
王雅婷
申洪
班连庚
周勤勇
段智
黄丹
王一兵
Original Assignee
国家电网公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院 filed Critical 国家电网公司
Publication of WO2014048336A1 publication Critical patent/WO2014048336A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the invention belongs to the technical field of power systems, and particularly relates to a FACTS device coordinated control method for a new energy delivery system. Background technique
  • a 750 kV double-ring network with a total length of nearly 3,000 km and a second channel and a second channel of the Hercynian channel will be formed.
  • the channel is lined with Jiuquan, Hami two million kilowatt-class large wind power base and Haixi photovoltaic base. The development of new energy in these areas is characterized by large-scale, high concentration and long-distance, and is developing rapidly.
  • the new channel of the Xinjiang and Northwest Network is planned to install multiple sets of new FACTS devices.
  • the Shazhou-Fish card two lines are equipped with 4 sets of line-graded controllable reactors, each with a capacity of 390Mvar, a fixed capacity of 39Mvar, an adjustable capacity of 351Mvar, a three-stage adjustable, single-stage capacity of 117Mvar; Shazhou station transformer
  • the third winding side is equipped with static var compensator SVC (360Mvar capacitive, 360Mvar inductive); the fish card station busbar configuration 330Mvar magnetic valve busbar controllable high resistance, fixed capacity is 16.5M V ar, continuously adjustable.
  • the static var compensator SVC has been widely used in medium and high voltage power grids and ultra-high voltage power grids, and has accumulated many years of operational experience. SVC is mainly used to provide emergency reactive power compensation to the grid during post-fault transients to enhance grid power. Pressure support to improve the safety and stability of the grid, while providing continuous reactive power regulation during normal operation to suppress voltage fluctuations. SVC generally uses a voltage-based control strategy that maintains a constant bus voltage at the SVC through continuous regulation.
  • a total of 5 sets of 750kV controllable high-resistance and 1 set of 66kV SVC are installed in the second channel of the main network of Xinjiang and the northwest. It is the world's first application of new high-capacity FACTS equipment in the 750kV transmission system.
  • the coordinated optimization control between the controllable high-resistance group and the coordinated optimization control between the controllable high-resistance and the SVC are very important to effectively suppress the frequent fluctuation of the reactive voltage of the two-channel transmission system caused by the fluctuation of the new energy. Summary of the invention
  • the present invention provides a FACTS device coordinated control method for a new energy delivery system, which is divided into inner layer control, outer layer control and outermost layer control, wherein the outermost layer control has a high priority.
  • the outer control priority is higher than the inner control.
  • the inner control ensures that the substation voltage can be accurately controlled within a certain value or a certain range.
  • the outer control and outermost control provide emergency reactive support when the system is disturbed, ensuring that the substation voltage can be quickly restored to the allowable range.
  • the three-layer voltage control method can coordinate and control multiple FACTS equipment actions with high precision and efficiency, and the engineering adaptability is very strong.
  • the invention provides a FACTS device coordinated control method for a new energy delivery system, the method comprising an inner layer control, an outer layer control and an outermost layer control; the inner layer control accurately controls a substation voltage at a voltage target value or voltage In the control zone; the outer control and outermost control provide emergency reactive support when the new energy delivery system is disturbed, so that the substation voltage can be quickly restored to the allowable range.
  • the new energy delivery system is the second channel connecting the Xinjiang and the northwest main network, and the wind power and the solar energy are sent out by the networking channel, and the FACTS device is installed on the networking channel; wherein the main station of the Shazhou station along the networked channel becomes the third A 66kV static var compensator is installed on the winding side, and a magnetically controlled busbar can be installed on the busbar side of the fish card switch station to control the high resistance.
  • the hierarchical controllable high-resistance is installed on both sides of the Shazhou-Fish card line double-circuit line.
  • the inner layer voltage control is cycled every 1 minute; the inner control of the Shazhou station and the fish card station is set to delay for 30s to avoid the hierarchical controllable high-resistance simultaneous action of the Shazhou station and the fish card station line. .
  • the inner layer voltage control takes the substation bus voltage as an input quantity, inputs the control value target value of the Shazhou station 1 ⁇ 4, the fish card station control voltage target value V 2 , the Shazhou bus voltage control band ⁇ - ⁇ , ⁇ 1 + ⁇ ] and fish card
  • the bus voltage control band [V 2 - AV 2 , V 2 + AV 2 ] , ⁇ ⁇ 2 is the allowable bus voltage deviation of the Shazhou station and the fish card station, respectively, 1 ⁇ 4, V 2 , ⁇ ⁇ Determined by the user.
  • the line in the station can be controlled to be high and anti-trigger action;
  • the controllable high-resistance control triggers the line of the Shazhou station can be controlled to resist the alternating action of I and II, and the line of the fish card station can be controlled to resist the alternating action of I and II, each action level;
  • the trigger command is sent to another set of lines of the station to control the high anti-II, controllable high anti-II
  • the trigger command is given to the controllable high-resistance I, and the controllable high-resistance I-resistance level is performed;
  • the trigger command is sent to another set of lines of the station to control high anti-II, controllable high Anti-II action level, after controllable high anti-II action level, if the monitoring bus voltage is still not within the allowable voltage control band, then the controllable high anti- ⁇ needs to be operated again.
  • the outer layer control takes the substation bus voltage as an input quantity, inputs the upper layer voltage upper boundary U1 and the outer layer voltage lower boundary U2, and the outer layer voltage upper boundary U1 and the outer layer voltage lower boundary U2 are determined by the user; Voltage, when there is a large disturbance in the new energy delivery system, the bus voltage is monitored for 5s in succession for [5, U1], and the two groups of lines in the station can control the anti-I and controllable high-resistance II simultaneously or cut into the first level. Capacity, at this time, the static var compensator and the magnetically controlled high-resistance have been dynamically adjusted within 5s of monitoring time to reach their maximum/minimum capacity. After the line is controllable and high-resistance is completed, the next cycle is started. Timing
  • the priority electromagnetic transient control When an area failure occurs, that is, the Shazhou ⁇ fish card line fault, the priority electromagnetic transient control; if the monitoring time of 5s, the station coordination controller and line controllable high resistance to receive the Shazhou ⁇ fish card line The electric protection exit signal or the circuit breaker position contact signal, the outer layer control is locked, the electromagnetic transient control strategy is started, and the two lines are controllable and high-resistance to the maximum capacity, and after the electromagnetic transient control ends, the outer control is turned back. .
  • the outermost voltage control takes the substation bus voltage as an input, and inputs the outermost voltage control upper limit.
  • the value of ⁇ ' is determined by the user; the outermost voltage control monitors the voltage of the system in real time. Once the voltage is higher than ', the two sets of lines in the station can be controlled to high-resistance to the maximum capacity to suppress the high voltage.
  • the outermost control priority is higher than the outer control, and the outer control priority is higher than the inner control.
  • the beneficial effects of the invention are:
  • the method of the invention directly takes the voltage as the control target, has clear physical meaning, and is simple and intuitive.
  • the invention effectively controls the high-resistance FACSS equipment (including the static var compensator and the magnetically controlled busbar controllable high-resistance) and the step-by-step line.
  • the continuous voltage regulating device takes priority action, and plays the following voltage regulating function to accurately control the voltage to the target value.
  • the continuous voltage regulator has been adjusted to the maximum/minimum capacity and the substation voltage is still out of the control range, then the stepped line can be controlled to resist high re-action and control the voltage within a reasonable range.
  • the control method makes full use of the continuous follow-up voltage regulation function of SVC and magnetic control busbar controllable high-resistance, avoids the frequent action of hierarchical controllable high-resistance, and significantly improves the motion precision and utilization efficiency of each FACTS device.
  • the invention adopts three-layer voltage control, the outermost layer control takes precedence over the outer layer control, and the outer layer control takes precedence over the inner layer control, and the hierarchical controllable enthalpy of different control layers takes different action principles.
  • the inner layer control each time a set of hierarchical controllable high-resistance action level in the substation is allowed; in the outer layer control, two sets of hierarchical controllable high-resistance simultaneous action levels are allowed in the substation each time; Each time, two sets of hierarchical controllable high-resistance in the substation are allowed to simultaneously move to the maximum capacity.
  • Figure 1 is a schematic diagram of a FACTS equipment coordinated control method for a new energy delivery system
  • FIG. 2 is a schematic diagram of an outer layer control strategy of a Shazhou station in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an outer layer control strategy of a fish card station in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the outermost control strategy of the Shazhou station in the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the outermost control strategy of the fish card station in the embodiment of the present invention.
  • 6 is a schematic diagram of a second channel of networking between Xinjiang and the northwest main network in the embodiment of the present invention;
  • FIG. 8 is a controllable high-resistance action diagram of a fish card side line when the wind power is uniformly fluctuated in the summer mode in 2013 according to an embodiment of the present invention
  • FIG. 9 is an operation diagram of the Shazhou SVC when the wind power is uniformly fluctuated in the summer mode of 2013 according to the embodiment of the present invention
  • FIG. 10 is a controllable high-resistance action of the fish card busbar when the wind power is uniformly fluctuated in the summer mode of 2013 according to the embodiment of the present invention
  • 11 is a 750 kV side voltage change diagram (kV) of the Shazhou station and the fish card station when the wind power is uniformly fluctuated in the summer mode in 2013 according to the embodiment of the present invention
  • 13 is a voltage change diagram (kV) of a fish card station after a N-2 fault of the Dunhuang ⁇ Jiuquan line in the Xia Da basic mode in the embodiment of the present invention
  • Fig. 15 is a diagram showing the voltage change diagram (kV) of a fish card station after the wind power off-grid in Gansu Republic in the winter limit mode of 2013 in the embodiment of the present invention. detailed description
  • the present invention provides a FACTS device coordinated control method for a new energy delivery system, the method comprising an inner layer control, an outer layer control and an outermost layer control; the inner layer control accurately controls a substation voltage at a voltage The target value or voltage control band; when the new energy delivery system has a large disturbance, the outer control and the outermost layer control provide emergency reactive support, so that the substation voltage can be quickly restored to the allowable range.
  • the inner layer voltage control is cycled every 1 minute; the inner control of the Shazhou station and the fish card station is set to delay for 30s to avoid the hierarchical controllable high-resistance simultaneous action of the Shazhou station and the fish card station line. .
  • the bus voltage control band [V 2 - AV 2 , V 2 + AV 2 ] , ⁇ ⁇ 2 is the allowable bus voltage deviation of the Shazhou station and the fish card station, respectively, 1 ⁇ 4, V 2 , ⁇ ⁇ Determined by the user.
  • the line in the station can be controlled to be high and anti-trigger action;
  • the controllable high-resistance control triggers the line of the Shazhou station can be controlled to resist the alternating action of I and II, and the line of the fish card station can be controlled to resist the alternating action of I and II, each action level;
  • the trigger command is sent to another set of lines of the station to control the high anti-II, controllable high anti-II
  • the trigger command is given to the controllable high-resistance I, and the controllable high-resistance I-resistance level is performed;
  • the trigger command is sent to another set of lines of the station to control high anti-II, controllable high Anti-II action level, after controllable high anti-II action level, if the monitoring bus voltage is still not within the allowable voltage control band, then the controllable high anti- ⁇ needs to be operated again.
  • the outer layer control takes the substation bus voltage as an input, inputs the outer voltage upper boundary U1 and the outer voltage lower boundary U2, and the outer voltage upper boundary U1 and the outer voltage lower boundary U2 are used by the user. Determined; the outer layer controls the voltage in real time.
  • the bus voltage is monitored for 5s in a row for 5s, and the two groups of lines in the station can control the high I and controllable high resistance. II Simultaneously cut or put into the first-level capacity.
  • the static var compensator and the magnetically controlled high-resistance have been dynamically adjusted within 5s of monitoring time, reaching its maximum/minimum capacity, and the line is controllable and high-resistance. After that, start the next cycle time;
  • the priority electromagnetic transient control When an area failure occurs, that is, the Shazhou ⁇ fish card line fault, the priority electromagnetic transient control; if the monitoring time of 5s, the station coordination controller and the line controllable high resistance to receive the receiving Shazhou ⁇ fish card If the line relays the power supply exit signal or the circuit breaker position contact signal, the outer layer control is blocked, and the electromagnetic transient control strategy is started, and the two lines are controllable and high-resistance to the maximum capacity. After the electromagnetic transient control ends, the circuit is turned back. Layer control.
  • the outermost voltage control takes the substation bus voltage as an input, and the input is the outermost.
  • the upper limit of the layer voltage control C/ ', ⁇ / ' is determined by the user; the outermost voltage control monitors the system voltage in real time. Once the voltage is monitored above U ' , the two groups of lines in the station are hierarchically controllable and high-resistance to the maximum action. Capacity to suppress system high voltage.
  • the new energy delivery system is a second channel connecting the Xinjiang and the northwest main network, and the wind power and the solar energy are sent out by the networking channel, and the FACTS device is installed on the networking channel; wherein, the Sazhou station along the networked channel
  • the 66kV static var compensator is installed on the third winding side of the main transformer.
  • the magnetically controlled busbar is installed on the busbar busbar side of the switch station to control the high impedance.
  • the grading type can be installed on both sides of the Shazhou ⁇ Fish card line. Control high resistance.
  • control strategy simulation calculation is carried out to investigate the control effect of the coordinated control strategy of the second channel multi-FACTS equipment in Xinjiang and Northwest China.
  • the second channel networking diagram is shown in Figure 7.
  • the calculation example uses the 2013 summer mode planning data.
  • the fish card bus voltage control band is [765kV, 775kV].
  • the wind power was used to maintain the power balance of the system.
  • the two channels of FACTS equipment are arranged to issue the maximum inductive reactive power, that is, the controllable high resistance of the four groups of Shazhou ⁇ fish card is arranged at the maximum capacity of 390Mvar, and the SVC of Shazhou station is arranged in the maximum capacity of 360Mvar.
  • the magnetic control busbar of the fish card station is controllable and high-resistance arranged at a maximum capacity of 330Mvar, with an inductive "+” and a capacitive "-".
  • the controllable high-resistance behavior of the two sets of lines in Shazhou Station is shown in Figure ,.
  • the controllable high-resistance behavior of the two sets of lines inside the fish card station is shown in Figure 8.
  • the action situation is shown in Figure 9.
  • the controllable high-resistance action of the magnetic control busbar of the fish card station is shown in Figure 10.
  • the voltage change at the 750kV side of Shazhou Station and Yuka Station is shown in Figure 11.
  • the Shazhou line can control high anti-1, controllable high anti-2 alternate action, fish card controllable high resistance 1, controllable high anti-2 alternate action, controllable high resistance, only one action per action .
  • the controllable high-resistance action the controllable high-resistance of the Shazhou SVC and the fish card magnetic control busbar will be reverse-adjusted, and the voltage will be controlled at the target value.
  • the wind power output is 2400 MW and 3000 MW 3300 MW
  • the SVC is reversely adjusted.
  • the magnetically controlled busbar can be controlled with high resistance and reverse regulation.
  • the wind power output When the wind power output is 0MW ⁇ 1500MW, it can only control the high-resistance follow-up voltage regulation of the SVC and the fish card station of the Shazhou station, and the voltage of the Shazhou station and the fish card station can be controlled to the target value.
  • the Shazhou voltage When wind power is output At 1800 MW, the Shazhou voltage is within the control range, while the fish card voltage is lower than 765 kV, and the fish card has a controllable anti-action level.
  • the wind power output is 2100MW and 2700MW, a group of lines in Shazhou can control the high-resistance level, and the voltage of Shazhou and fish card can be restored to the control range.
  • the fish card line can be controlled and high-resistance without action.
  • Shazhou can control the high-resistance action level, but the fish card voltage is lower than 765kV, and the fish card can be controlled to high resistance level.
  • the Shazhou voltage is still lower than 770kV after a group of lines in Shazhou can be controlled and high.
  • the other group of Shazhou can control the high-resistance and re-action level, and the Shazhou voltage returns to the control range.
  • Within the fish card voltage is still lower than 765kV, a set of controllable high anti-action level.
  • the Shazhou voltage can be accurately controlled at 775kV
  • the fish card voltage can be accurately controlled at 770kV when the wind power fluctuation is 0 ⁇ 2400MW.
  • the fish card voltage can be controlled in the wind power fluctuation 2700MW-3300MW. [765kV, 770kV] range.
  • the calculation example adopts the 2013 summer basic mode planning data.
  • the four groups of controllable high-resistance input on the two sides of the Shazhou-Fish card line have a maximum capacity of 390Mvar, the capacity of the SVC in Shazhou is OMvar, and the magnetic control busbar of the fish card can control the maximum capacity of 330Mvar.
  • the voltage changes of the busbars at Shazhou Station and Yuka Station are shown in Figures 12 and 13.
  • the voltage changes at stations along the second channel of Xinjiang and Northwest Network are shown in Table 1 below.
  • the Shazhou voltage is 736kV and the fish card voltage is 709kV.
  • the voltage of Shazhou is restored to 750kV
  • the voltage of the fish card is restored to 720kV
  • the voltage of the fish card is still lower than the lower limit of the outer voltage control of 745kV
  • the outer layer control is started, and the two sets of lines on the fish card side are controllable and highly resistant.
  • the fish card voltage is restored to 734kV, still lower than 745kV, and the next round of outer control is started.
  • the two sets of lines on the fish card side can be controlled to be high-resistance and re-cut, and the fish card voltage is restored to 748kV.
  • the capacity of Shazhou SVC is OMvar, and the four groups of controllable high-resistance input capacity of 156Mvar (fixed capacity 39Mvar+l-class controllable capacity 117Mvar) on both sides of Shazhou ⁇ Fish card line.
  • the voltage can be restored to a reasonable range, the voltage of Shazhou is restored to 790kV, and the voltage of the fish card is restored to 790kV.
  • the voltage changes of each station after the disconnection fault caused by the dynamic reactive power compensation device are shown in Table 2 below.

Abstract

本发明提供一种新能源外送系统的FACTS设备协调控制方法,分为内层控制、外层控制和最外层控制,其中,最外层控制优先级高于外层控制,外层控制优先级高于内层控制。内层控制保证变电站电压能精确控制在某个值或某个范围内,外层控制和最外层控制在系统出现大扰动时提供紧急无功支撑,保证变电站电压能够迅速恢复至允许范围内。三层电压控制结合的方法能够高精度、高效地集中协调控制多个FACTS设备动作,工程适应性很强。

Description

一种新能源外送系统的 FACTS设备协调控制方法 技术领域
本发明属于电力系统技术领域, 具体涉及一种新能源外送系统的 FACTS设 备协调控制方法。 背景技术
隨着新疆与西北主网联网第二通道建成,将形成第一通道一第二通道一海西 通道总长度接近 3000公里的 750千伏双环网。 该通道上串有酒泉、 哈密两个千 万千瓦级大型风电基地和海西光伏基地。这些地区的新能源开发呈现大规模、高 集中、 远距离的特点, 发展迅速。 随着新能源大规模馈入, 风功率大范围、 高频 度的波动造成新疆与西北联网的两个通道上潮流波动频繁, 无功电压控制困难。 釆用常规的低压无功补偿设备无法满足频繁投切的要求,需要采用动态无功补偿 设备。 根据规划论证, 新疆与西北联网第二通道规划装设多套容量新型 FACTS 装置。 其中, 沙州 ~鱼卡两回线路共配置 4组线路分级式可控电抗器, 每组容量 390Mvar, 固定容量 39Mvar, 可调容量 351Mvar, 三级可调, 单级容量 117Mvar; 沙州站变压器第三绕组侧配置静止无功补偿器 SVC (360Mvar 容性, 360Mvar 感性); 鱼卡站母线配置 330Mvar磁阀式母线可控高抗, 固定容量为 16.5MVar, 连续可调。
目前, 750kV可控电抗器和 SVC独立的控制策略国内已有研究,但多 FACTS 设备之间的协调控制策略在国内尚属空白。 中国 750kV敦煌站可控高抗示范工 程是世界首套 750kV风电集中送出系统应用的可控高抗工程, 该工程于 2012年 1月 5日成功投运。针对敦煌 750kV可控电抗器, 中国电科院系统所提出了基于 无功需求增量和母线边界电压的可控电抗器内外双层控制策略,控制策略实际中 应用良好, 对于抑制母线电压波动、 降低线路无功损耗、 在暂态过程中实现母线 电压动态支撑、减少站内低压无功补偿装置的动作次数和减轻站内运行压力方面 作用明显。 静止无功补偿器 SVC作为无功补偿、 抑制电压波动的有效手段, 目 前已广泛地应用于中、 高压电网以及超高压电网中, 并积累了多年的运行经验。 SVC 主要用于在故障后暂态过程中为电网提供紧急无功功率补偿以增强电网电 压支撑以改善电网的安全稳定性,同时常态运行中提供连续的无功功率调节以抑 制电压的波动。 SVC —般采用基于电压的控制策略, 通过连续的调节, 可以维 持 SVC所在母线电压恒定。
新疆与西北主网联网第二通道共装设 5套 750kV可控高抗、 1套 66kV SVC, 是世界上首次在 750kV输电系统集中应用新型大容量 FACTS设备。实现可控高 抗群之间的协调优化控制、 可控高抗与 SVC之间的协调优化控制, 对于有效抑 制由于新能源波动造成的二通道输电系统无功电压频繁波动非常关键。 发明内容
为了克服上述现有技术的不足, 本发明提供一种新能源外送系统的 FACTS 设备协调控制方法, 分为内层控制、 外层控制和最外层控制, 其中, 最外层控制 优先级高于外层控制,外层控制优先级高于内层控制。 内层控制保证变电站电压 能精确控制在某个值或某个范围内,外层控制和最外层控制在系统出现大扰动时 提供紧急无功支撑, 保证变电站电压能够迅速恢复至允许范围内。三层电压控制 结合的方法能够高精度、 高效地集中协调控制多个 FACTS设备动作, 工程适应 性很强。
为了实现上述发明目的, 本发明采取如下技术方案:
本发明提供一种新能源外送系统的 FACTS设备协调控制方法, 所述方法包 括内层控制、外层控制和最外层控制; 所述内层控制将变电站电压精确控制在电 压目标值或电压控制带内;在新能源外送系统出现大扰动时外层控制和最外层控 制提供紧急无功支撑, 使变电站电压能够迅速恢复至允许范围内。
所述新能源外送系统为新疆与西北主网联网第二通道,风电和太阳能由联网 通道外送, 所述联网通道上装设 FACTS设备; 其中, 在联网通道沿线的沙州站 主变第三绕组侧装设 66kV静止无功补偿器, 在鱼卡开关站母线侧装设磁控式母 线可控高抗, 在沙州〜鱼卡线路双回线路两侧装设分级式可控高抗。
所述内层控制中, 内层电压控制每隔 1分钟循环一次; 沙州站和鱼卡站内层 控制设置时延 30s, 以避免沙州站和鱼卡站线路分级式可控高抗同时动作。
所述内层电压控制以变电站母线电压为输入量,输入沙州站控制电压目标值 ¼、 鱼卡站控制电压目标值 V2、 沙州母线电压控制带 Γ^ -Δ^ , ν1 + Δ ]和鱼卡 母线电压控制带 [V2 - AV2 , V2 + AV2] , Δν^Ρ Δν2分别为沙州站和鱼卡站允许的母 线电压偏差, ¼、 V2、 Δν^Ρ Δ^的数值由用户确定。
内层电压控制时,优先发挥沙州静止无功补偿器、鱼卡磁控式可控高抗的跟 随式调节作用,将沙州站电压和鱼卡站电压分别控制在 V^P V2 ; 当静止无功补偿 器、 磁控式可控高抗已达到最大 /最小容量, 沙州 /鱼卡母线电压仍不在电压控制 带内, 此时站内的线路可控高抗触发动作; 为减少设备损耗, 可控高抗控制触发 时,沙州站线路可控高抗 I和 II交替动作,鱼卡站线路可控高抗 I和 II交替动作, 每次动作一级;
当站内一组线路可控高抗 I动作一级后,若监控母线电压仍不在允许电压控 制带内时, 则发触发指令给本站另一组线路可控高抗 II, 可控高抗 II动作一级, 若此时可控高抗 II故障或己达到最大 /最小容量, 则发触发指令给可控高抗 I, 可 控高抗 I再动作一级;
当站内一组线路可控高抗 I需要动作, 但由于可控髙抗 I自身故障或者已达 到最大 /最小容量, 则发触发指令给本站另一组线路可控高抗 II, 可控高抗 II动 作一级, 可控高抗 II动作一级后, 若监控母线电压仍不在允许电压控制带内时, 则可控高抗 π需要再动作一级。
所述外层控制以变电站母线电压为输入量, 输入外层电压上边界 U1和外层 电压下边界 U2, 外层电压上边界 U1和外层电压下边界 U2由用户确定; 外层控 制实时监测电压, 当新能源外送系统中出现大的扰动, 连续 5s监测到母线电压 在 [U2, U1]之外, 站内两组线路可控髙抗 I和可控高抗 II同时切除或投入一级容 量, 此时静止无功补偿器和磁控式可控高抗在 5s的监测时间之内已经动态调节 完毕, 达到其最大 /最小容量, 线路可控高抗动作完毕后, 再开始下一次循环计 时;
当发生区内故障时, 即沙州〜鱼卡线路故障, 则优先电磁暂态控制; 若 5s 的监测时间之内,站内协调控制器和线路可控高抗接收到沙州〜鱼卡线路继电保 出口信号或断路器位置接点信号, 则闭锁外层控制, 启动电磁暂态控制策略, 将 两侧线路可控高抗投至最大容量, 待电磁暂态控制结束后, 转回外层控制。
所述最外层电压控制以变电站母线电压为输入量,输入最外层电压控制上限 υ', 的数值由用户确定; 最外层电压控制实时监测系统电压, 一旦监测到电 压高于 ', 站内两组线路分级式可控高抗立即动作至最大容量, 以抑制系统高 压。
所述最外层控制优先级高于外层控制, 外层控制优先级高于内层控制。 与现有技术相比, 本发明的有益效果在于:
1.本发明的方法直接以电压为控制目标, 物理意义明确, 简单直观。
2.本发明将连续调压的 FACTS设备 (包括静止无功补偿器和磁控式母线可 控高抗)与分级动作的线路可控高抗有效协调。 当风功率波动引起系统电压变化 时, 连续调压设备优先动作, 发挥其跟随调压功能, 将电压精确控制在目标值。 当连续调压设备已经调整至最大 /最小容量, 变电站电压仍超出控制范围时, 此 时分级式线路可控高抗再动作, 将电压控制在合理范围内。 控制方法充分发挥 SVC、磁控式母线可控高抗的连续跟随调压功能, 避免了分级式可控高抗的频繁 动作, 显著提高各 FACTS设备的动作精度和利用效率。
3.本发明采用三层电压控制, 最外层控制优先于外层控制, 外层控制优先于 内层控制, 不同的控制层中分级式可控髙抗釆取不同的动作原则。 内层控制中, 每次允许变电站内一组分级式可控高抗动作一级; 外层控制中, 每次允许变电站 内两组分级式可控高抗同时动作一级; 最外层控制中, 每次允许变电站内两组分 级式可控高抗同时动作至最大容量。釆取不同的分级式可控高抗动作原则, 既可 以在内层控制时减少可控高抗的动作频度和对系统的冲击,又可以在外层控制和 最外层控制时为系统提供紧急无功支撑。三层控制相结合的方法使得可控高抗动 作合理性显著提高,为可控高抗在大规模新能源外送的输电系统中发挥作用提供 了保障, 具有广阔的应用前景。 附图说明
图 1是新能源外送系统的 FACTS设备协调控制方法示意图;
图 2是本发明实施例中沙州站外层控制策略示意图;
图 3是本发明实施例中鱼卡站外层控制策略示意图;
图 4是本发明实施例中沙州站最外层控制策略示意图;
图 5是本发明实施例中鱼卡站最外层控制策略示意图; 图 6是本发明实施例中新疆与西北主网联网第二通道示意图;
图 7是本发明实施例中 2013年夏大方式下风电均匀波动时沙州侧线路可控 高抗动作图;
图 8是本发明实施例中 2013年夏大方式下风电均匀波动时鱼卡侧线路可控 高抗动作图;
图 9是本发明实施例中 2013年夏大方式下风电均匀波动时沙州 SVC动作图; 图 10是本发明实施例中 2013年夏大方式下风电均匀波动时鱼卡母线可控高 抗动作图;
图 11是本发明实施例中 2013年夏大方式下风电均匀波动时沙州站和鱼卡站 750kV侧电压变化图 (kV);
图 12是本发明实施例中 2013年夏大基础方式下敦煌~酒泉线路 N-2故障后 沙州站电压变化图 (kV) ;
图 13是本发明实施例中 2013年夏大基础方式下敦煌〜酒泉线路 N-2故障后 鱼卡站电压变化图 (kV) ;
图 14是本发明实施例中 2013年冬大极限方式下甘肃风电脱网后沙州站电压 变化图 (kV);
图 15是本发明实施例中 2013年冬大极限方式下甘肃风电脱网后鱼卡站电压 变化图 (kV)。 具体实施方式
下面结合附图对本发明作进一步详细说明。
如图 1, 本发明提供一种新能源外送系统的 FACTS设备协调控制方法, 所 述方法包括内层控制、外层控制和最外层控制; 所述内层控制将变电站电压精确 控制在电压目标值或电压控制带内;在新能源外送系统出现大扰动时外层控制和 最外层控制提供紧急无功支撑, 使变电站电压能够迅速恢复至允许范围内。
所述内层控制中, 内层电压控制每隔 1分钟循环一次; 沙州站和鱼卡站内层 控制设置时延 30s, 以避免沙州站和鱼卡站线路分级式可控高抗同时动作。
所述内层电压控制以变电站母线电压为输入量,输入沙州站控制电压目标值 ¼、 鱼卡站控制电压目标值 V2、 沙州母线电压控制带 Γ^ -Δ^ , ν1 + Δ ]和鱼卡 母线电压控制带 [V2 - AV2 , V2 + AV2] , Δν^Ρ Δν2分别为沙州站和鱼卡站允许的母 线电压偏差, ¼、 V2、 Δν^Ρ Δ^的数值由用户确定。
内层电压控制时,优先发挥沙州静止无功补偿器、鱼卡磁控式可控高抗的跟 随式调节作用,将沙州站电压和鱼卡站电压分别控制在 V^P V2 ; 当静止无功补偿 器、 磁控式可控高抗已达到最大 /最小容量, 沙州 /鱼卡母线电压仍不在电压控制 带内, 此时站内的线路可控高抗触发动作; 为减少设备损耗, 可控高抗控制触发 时,沙州站线路可控高抗 I和 II交替动作,鱼卡站线路可控高抗 I和 II交替动作, 每次动作一级;
当站内一组线路可控高抗 I动作一级后,若监控母线电压仍不在允许电压控 制带内时, 则发触发指令给本站另一组线路可控高抗 II, 可控高抗 II动作一级, 若此时可控高抗 II故障或己达到最大 /最小容量, 则发触发指令给可控高抗 I, 可 控高抗 I再动作一级;
当站内一组线路可控高抗 I需要动作, 但由于可控髙抗 I自身故障或者已达 到最大 /最小容量, 则发触发指令给本站另一组线路可控高抗 II, 可控高抗 II动 作一级, 可控高抗 II动作一级后, 若监控母线电压仍不在允许电压控制带内时, 则可控高抗 π需要再动作一级。
如图 2和图 3, 所述外层控制以变电站母线电压为输入量, 输入外层电压上 边界 U1和外层电压下边界 U2, 外层电压上边界 U1和外层电压下边界 U2由用 户确定; 外层控制实时监测电压, 当新能源外送系统中出现大的扰动, 连续 5s 监测到母线电压在 [U2, U1]之外, 站内两组线路可控高抗 I和可控高抗 II同时切 除或投入一级容量, 此时静止无功补偿器和磁控式可控高抗在 5s的监测时间之 内已经动态调节完毕, 达到其最大 /最小容量, 线路可控高抗动作完毕后, 再开 始下一次循环计时;
当发生区内故障时, 即沙州〜鱼卡线路故障, 则优先电磁暂态控制; 若 5s 的监测时间之内,站内协调控制器和线路可控高抗接收到接收到沙州〜鱼卡线路 继电保出口信号或断路器位置接点信号, 则闭锁外层控制, 启动电磁暂态控制策 略,将两侧线路可控高抗投至最大容量,待电磁暂态控制结束后,转回外层控制。
如图 4和图 5, 所述最外层电压控制以变电站母线电压为输入量, 输入最外 层电压控制上限 C/ ', ί/ '的数值由用户确定;最外层电压控制实时监测系统电压, 一旦监测到电压高于 U ' , 站内两组线路分级式可控高抗立即动作至最大容量, 以抑制系统高压。
如图 6, 所述新能源外送系统为新疆与西北主网联网第二通道, 风电和太阳 能由联网通道外送, 所述联网通道上装设 FACTS设备; 其中, 在联网通道沿线 的沙州站主变第三绕组侧装设 66kV静止无功补偿器, 在开关站鱼卡母线侧装设 磁控式母线可控高抗, 在沙州〜鱼卡线路双回线路两侧装设分级式可控高抗。
基于 BPA潮流计算程序进行控制策略仿真计算, 考察所提新疆与西北联网 第二通道多 FACTS设备协调控制策略对于电压的控制效果。 第二通道联网示意 图如图 7所示。
首先, 考察新疆与西北主网联网第二通道多 FACTS设备内层协调控制策略 对于电压的控制效果, 计算算例采用 2013年夏大方式规划数据。 设置沙州站、 鱼卡站的控制电压目标值 ^ =7751^, V2=770kV,沙州母线电压控制带为 [770kV,
780kV] ,鱼卡母线电压控制带为 [765kV, 775kV]。考虑敦煌和酒泉风电从 OMW 均匀波动至 3300MW, 每 300MW—级, 风电波动时利用青海水电调峰以维持系 统的功率平衡。 仿真中, 风电初始出力 0MW时, 二通道各 FACTS设备安排发 出最大感性无功, 即沙州 ~鱼卡四组线路可控高抗安排在最大容量 390Mvar, 沙 州站 SVC安排在感性最大容量 360Mvar, 鱼卡站磁控式母线可控高抗安排在最 大容量 330Mvar, 感性为 "+", 容性为 "-"。 根据所述内层控制策略, 沙州站内部 两组线路可控高抗动作情况如图 Ί所示,鱼卡站内部两组线路可控高抗动作情况 如图 8所示, 沙州站 SVC动作情况如图 9所示, 鱼卡站磁控式母线可控高抗动 作情况如图 10所示。 沙州站和鱼卡站 750kV侧电压变化情况如图 11所示。 从 图中可以看出, 沙州线路可控高抗 1、 可控高抗 2交替动作, 鱼卡可控高抗 1、 可控高抗 2交替动作,可控高抗每次只动作一级。当可控高抗动作后,沙州 SVC、 鱼卡磁控式母线可控高抗将出现反向调节, 将电压控制在目标值。 图 9中, 当风 电出力 2400MW、 3000MW 3300MW时, SVC出现反向调节。 图 10中, 当风 电出力 1800MW、 2400MW时, 磁控式母线可控高抗出现反向调节。
当风电出力 0MW~1500MW时, 仅依靠沙州站 SVC和鱼卡站磁控式母线可 控高抗的跟随调压, 能够将沙州站、 鱼卡站电压控制在目标值。 当风电出力 1800MW, 沙州电压在控制范围内, 而鱼卡电压低于 765kV, 鱼卡一组可控髙抗 动作一级。 当风电出力 2100MW、 2700MW时, 沙州一组线路可控高抗动作一 级, 沙州和鱼卡电压都能恢复到控制范围内, 鱼卡线路可控高抗无需动作。 当风 电出力 2400MW、 3300MW 时, 沙州可控高抗动作一级后, 但鱼卡电压低于 765kV, 鱼卡可控高抗动作一级。 当风电出力 3000MW时, 沙州一组线路可控高 抗动作一级后, 沙州电压仍低于 770kV, 沙州另一组线路可控高抗再动作一级, 沙州电压恢复至控制范围内, 鱼卡电压仍低于 765kV, 鱼卡一组可控高抗动作一 级。采取所述多 FACTS设备内层协调控制策略,沙州电压能精确控制在 775kV, 鱼卡电压在风电波动 0~2400MW时能精确控制在 770kV, 鱼卡电压在风电波动 2700MW-3300MW时能控制在 [765kV, 770kV]范围内。
其次, 考察新疆与西北主网联网第二通道多 FACTS设备外层协调控制策略 对于电压的控制效果, 计算算例采用 2013年夏大基础方式规划数据。 设置外层 电压控制的上下边界为默认值, 取 Ul=803kV, U2=745kV。 仿真中, 沙州〜鱼卡 线路两侧四组可控高抗均投入最大容量 390Mvar, 沙州 SVC容量为 OMvar, 鱼 卡磁控式母线可控高抗投入最大容量 330Mvar。敦煌 ~酒泉 N-2故障后, 沙州站、 鱼卡站母线电压变化如图 12、 13所示。 新疆与西北联网第二通道沿线各站的电 压变化如下表 1所示。故障后沙州电压为 736kV, 鱼卡电压为 709kV。考虑 SVC 的跟隨调压作用, 沙州电压恢复至 750kV, 鱼卡电压恢复至 720kV, 鱼卡电压仍 低于外层电压控制下限 745kV, 启动外层控制, 鱼卡侧两组线路可控高抗都切除 一级, 鱼卡电压恢复至 734kV, 仍低于 745kV, 启动下一轮外层控制, 鱼卡侧两 组线路可控高抗再切除一级, 鱼卡电压恢复至 748kV。
表 1
Figure imgf000010_0001
最后, 考察新疆与西北主网联网第二通道多 FACTS设备最外层协调控制策 略对于电压的控制效果, 计算算例采用 2013年冬大极限方式规划数据。 其中, 敦煌风电接入 3200MW, 酒泉风电接入 1000MW。 设置最外层电压控制的上边 界为默认值, 取 t/ '=830kV。 仿真中, 沙州 SVC容量为 OMvar, 沙州 ~鱼卡线路 两侧四组可控高抗均投入容量 156Mvar (固定容量 39Mvar+l级可控容量 117Mvar)。 设置酒泉风电场汇集侧玉门 ~嘉峪关三永 N-1故障, 模拟故障后甘肃 4200MW风电全部脱网, 沙州站和鱼卡站的电压变化情况如图 14和图 15所示。 风电脱网后,考虑 SVC跟随调压作用,沙州和鱼卡最髙电压仍达到 830kV之上, 启动最外层控制策略, 沙州站和鱼卡站两组线路可控高抗均投至最大容量 390Mvar。可控高抗动作后电压能够恢复至合理范围内,沙州电压恢复至 790kV, 鱼卡电压恢复至 790kV。动态无功补偿设备动作后引起的脱网故障后各站电压变 化如下表 2所示。
表 2
Figure imgf000011_0001
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限 制,尽管参照上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员 应当理解: 依然可以对本发明的具体实施方式进行修改或者等同替换, 而未脱离 本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范 围当中。

Claims

权 利 要 求
1.一种新能源外送系统的 FACTS设备协调控制方法, 其特征在于: 所述方 法包括内层控制、外层控制和最外层控制; 所述内层控制将变电站电压精确控制 在电压目标值或电压控制带内;在新能源外送系统出现大扰动时外层控制和最外 层控制提供紧急无功支撑, 使变电站电压能够迅速恢复至允许范围内。
2.根据权利要求 1所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 所述新能源外送系统为新疆与西北主网联网第二通道, 风电和太阳能 由联网通道外送, 所述联网通道上装设 FACTS设备; 其中, 在联网通道沿线的 沙州站主变第三绕组侧装设 66kV静止无功补偿器, 在鱼卡开关站母线侧装设磁 控式母线可控高抗, 在沙州〜鱼卡双回线路两侧装设分级式可控高抗。
3.根据权利要求 1所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 所述内层控制中, 内层电压控制每隔 1分钟循环一次; 沙州站和鱼卡 站内层控制设置时延 30s,以避免沙州站和鱼卡站线路分级式可控高抗同时动作。
4.根据权利要求 3所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 所述内层电压控制以变电站母线电压为输入量, 输入沙州站控制电压 目标值 、鱼卡站控制电压目标值 V2、沙州母线电压控制带 - , V, + AV,]和 鱼卡母线电压控制带 [V2 - AV2 , V2 + AV2] , ΔΥ^Ρ Δ^分别为沙州站和鱼卡站允许 的母线电压偏差, ¼、 V2 , Δν Π Δ 的数值由用户确定。
5.根据权利要求 4所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 内层电压控制时, 优先发挥沙州静止无功补偿器、鱼卡磁控式可控高 抗的跟随式调节作用,将沙州站电压和鱼卡站电压分别控制在 ¼和¥2 ; 当静止无 功补偿器、 磁控式可控高抗已达到最大 /最小容量, 沙州 /鱼卡母线电压仍不在电 压控制带内, 此时站内的线路可控髙抗触发动作; 为减少设备损耗, 可控高抗控 制触发时, 沙州站线路可控高抗 I和 II交替动作, 鱼卡站线路可控高抗 I和 II交 替动作, 每次动作一级:
当站内一组线路可控高抗 I动作一级后,若监控母线电压仍不在允许电压控 制带内时, 则发触发指令给本站另一组线路可控高抗 II, 可控高抗 II动作一级, 若此时可控高抗 II故障或已达到最大 /最小容量, 则发触发指令给可控高抗 I, 可 控髙抗 I再动作一级;
当站内一组线路可控高抗 I需要动作, 但由于可控高抗 I自身故障或者已达 到最大 /最小容量, 则发触发指令给本站另一组线路可控高抗 II , 可控高抗 II动 作一级, 可控高抗 II动作一级后, 若监控母线电压仍不在允许电压控制带内时, 则可控高抗 Π需要再动作一级。
6.根据权利要求 1所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 所述外层控制以变电站母线电压为输入量, 输入外层电压上边界 U1 和外层电压下边界 U2, 外层电压上边界 U1和外层电压下边界 U2由用户确定; 外层控制实时监测电压, 当新能源外送系统中出现大的扰动, 连续 5s监测到母 线电压在 [U2, U1]之外, 站内两组线路可控高抗 I和可控高抗 II同时切除或投入 一级容量, 此时静止无功补偿器和磁控式可控高抗在 5s的监测时间之内已经动 态调节完毕, 达到其最大 /最小容量, 线路可控高抗动作完毕后, 再开始下一次 循环计时;
当发生区内故障时, 即沙州〜鱼卡线路故障, 则优先电磁暂态控制; 若 5s 的监测时间之内,站内协调控制器和线路可控高抗接收到沙州〜鱼卡线路继电保 出口信号或断路器位置接点信号, 则闭锁外层控制, 启动电磁暂态控制策略, 将 两侧线路可控高抗投至最大容量, 待电磁暂态控制结束后, 转回外层控制。
7.根据权利要求 1所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于: 所述最外层电压控制以变电站母线电压为输入量, 输入最外层电压控 制上限 C/ ', :/ '的数值由用户确定; 最外层电压控制实时监测系统电压, 一旦监 测到电压高于 ί/ ', 站内两组线路分级式可控高抗立即动作至最大容量, 以抑制 系统高压。
8.根据权利要求 1所述的新能源外送系统的 FACTS设备协调控制方法, 其 特征在于:所述最外层控制优先级高于外层控制,外层控制优先级高于内层控制。
PCT/CN2013/084261 2012-09-27 2013-09-26 一种新能源外送系统的facts设备协调控制方法 WO2014048336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210369375.6 2012-09-27
CN201210369375.6A CN102904287B (zh) 2012-09-27 2012-09-27 一种新能源外送系统的facts设备协调控制方法

Publications (1)

Publication Number Publication Date
WO2014048336A1 true WO2014048336A1 (zh) 2014-04-03

Family

ID=47576392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084261 WO2014048336A1 (zh) 2012-09-27 2013-09-26 一种新能源外送系统的facts设备协调控制方法

Country Status (2)

Country Link
CN (1) CN102904287B (zh)
WO (1) WO2014048336A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904287B (zh) * 2012-09-27 2015-06-10 中国电力科学研究院 一种新能源外送系统的facts设备协调控制方法
CN105610175B (zh) * 2016-01-22 2020-06-30 国家电网公司 一种facts设备广域无功协调控制方法
CN105958503A (zh) * 2016-06-13 2016-09-21 成都欣维保科技有限责任公司 一种无功智能调节输电系统的运行方法
CN105958502A (zh) * 2016-06-13 2016-09-21 成都欣维保科技有限责任公司 一种智能输电系统的无功自动调节方法
CN106208096B (zh) * 2016-07-21 2018-09-21 国网河北省电力公司电力科学研究院 一种变电站无功补偿程度分级方法
CN112162509B (zh) * 2020-09-25 2024-01-02 中国直升机设计研究所 一种基于fpga+cpu架构的主动控制旋翼实时控制系统
CN112653156B (zh) * 2021-01-05 2024-03-12 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种线路可控高抗与静止同步补偿器间的协调控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521381A (zh) * 2008-02-26 2009-09-02 上海纳杰电气成套有限公司 有源动态无功功率补偿兼滤波的综合装置
CN201611785U (zh) * 2010-04-07 2010-10-20 孙勇 在线动态电能质量综合控制装置
CN102611118A (zh) * 2012-03-14 2012-07-25 清华大学 一种引入预测信息的风电场综合无功电压控制方法
CN102904287A (zh) * 2012-09-27 2013-01-30 中国电力科学研究院 一种新能源外送系统的facts设备协调控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923862B2 (en) * 2009-10-06 2011-04-12 General Electric Company Reactive power regulation and voltage support for renewable energy plants
CN102064554B (zh) * 2010-12-20 2014-08-27 中国电力科学研究院 一种输电系统可控高压并联电抗器控制方法
CN102074961B (zh) * 2010-12-30 2014-10-22 中电普瑞科技有限公司 采用串联公共电抗器配置的分级式可控并联电抗器装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521381A (zh) * 2008-02-26 2009-09-02 上海纳杰电气成套有限公司 有源动态无功功率补偿兼滤波的综合装置
CN201611785U (zh) * 2010-04-07 2010-10-20 孙勇 在线动态电能质量综合控制装置
CN102611118A (zh) * 2012-03-14 2012-07-25 清华大学 一种引入预测信息的风电场综合无功电压控制方法
CN102904287A (zh) * 2012-09-27 2013-01-30 中国电力科学研究院 一种新能源外送系统的facts设备协调控制方法

Also Published As

Publication number Publication date
CN102904287B (zh) 2015-06-10
CN102904287A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2014048336A1 (zh) 一种新能源外送系统的facts设备协调控制方法
CN104659780A (zh) 适用于消纳大规模分布式电源的能源互联网的实现方法
CN103269079B (zh) 一种基于静态、暂态电压稳定约束的无功补偿配置方法
Qin et al. Study on the development and reliability of HVDC transmission systems in China
WO2013083064A1 (zh) 不停电融冰兼svg型无功静补复合装置及其使用方法
CN101299541B (zh) 一种超高压磁控式并联电抗器励磁设备
Huang et al. Research status and prospect of control and protection technology for DC distribution network
CN107026455A (zh) 一种风电场高压穿越的动态无功协调控制方法及系统
CN202260632U (zh) 电网智能风电稳定控制系统
CN102842920A (zh) 一种抑制大规模风机脱网的交直流协调控制方法
CN105610175B (zh) 一种facts设备广域无功协调控制方法
Li et al. Study on AC-side dynamic braking-based fault ride-through control for islanded renewable energy system with grid-connected VSC-HVDC transmission
Opana et al. STATCOM Application for Grid Dynamic Voltage Regulation: A Kenyan Case Study
CN106356866A (zh) 一种智能变电站自动电压控制子站装置及其控制方法
Wang et al. Multi-circuit HVDC system emergency DC power support with reactive control
CN104022514B (zh) 分级可调高压电抗器与静止无功补偿器最优协调控制方法
Qu et al. Automatic Voltage Control of Large-scale Synchronous Condensers in UHV-DC Converter Station
CN110492517A (zh) 一种多馈入直流输电系统换相失败的风险评估方法及系统
CN205335862U (zh) 一种智能柔性开关装置
Wang et al. Reactive power and voltage emergency control strategy of large-scale grid-connected wind farm
Hui et al. Research on the influence of large scale offshore wind turbines integrated into Jiangsu power system
CN212210440U (zh) 10kV配电线路不停电交流融冰兼电压和无功优化系统
Chang et al. A method of synthesizing coordinated optimization between FACTS and HVDC for curbing large-scale wind turbine tripping
Juan et al. Research about impact of DGs in distribution networks
Dai et al. Research on Emergency Coordinated Control System of Reactive Power and Voltage in Shandong Power Grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841473

Country of ref document: EP

Kind code of ref document: A1