WO2014048017A1 - 内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏 - Google Patents

内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏 Download PDF

Info

Publication number
WO2014048017A1
WO2014048017A1 PCT/CN2012/084671 CN2012084671W WO2014048017A1 WO 2014048017 A1 WO2014048017 A1 WO 2014048017A1 CN 2012084671 W CN2012084671 W CN 2012084671W WO 2014048017 A1 WO2014048017 A1 WO 2014048017A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
liquid crystal
crystal touch
electrode
layer
Prior art date
Application number
PCT/CN2012/084671
Other languages
English (en)
French (fr)
Inventor
吴天一
马骏
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Publication of WO2014048017A1 publication Critical patent/WO2014048017A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to the field of touch display, and in particular to a color film substrate and an in-cell liquid crystal touch screen of an in-cell liquid crystal touch screen.
  • capacitive touch screen Since the world's first resistive touch screen appeared in 1974, touch technology has developed rapidly, and various types of products such as capacitive, resistive, infrared, and sonic have been produced in the industry. Among them, the capacitive touch screen has become the mainstream product on the market due to its advantages of precise positioning, good touch, long service life and support for multi-touch. Capacitive touch screens are classified into self-capacitance and mutual capacitance. Since multi-touch can be realized, the mutual capacitive touch screen has become the mainstream and future development trend in the capacitive touch screen market.
  • the industry has proposed an in-cell mutual-capacitive touch screen, which integrates the mutual-capacitive touch screen into the display panel, so that the double effect of high transmittance and light weight can be achieved.
  • the best integration method at present is to integrate the mutual capacitance touch screen inside the liquid crystal display panel.
  • the mutual capacitance touch screen integrated in the liquid crystal display panel is embedded in the mutual capacitance touch screen
  • the touch signal is weakened due to the influence of the internal components of the liquid crystal display panel, and the signal-to-noise ratio of the touch signal is reduced. problem.
  • the color filter substrate of the touch liquid crystal panel comprises: a black matrix; an electrode layer directly stacked with the black matrix; the resistivity of the black matrix is greater than or equal to 10 6 ⁇ ( ⁇ .
  • the matrix includes a resin material containing a titanium oxynitride colorant.
  • the black matrix comprises a resin material containing a carbon black colorant.
  • the electrode layer is directly stacked under the black matrix.
  • the electrode layer comprises driving electrodes and sensing electrodes insulated from each other.
  • the driving electrode and/or the sensing electrode are directly stacked under the black matrix.
  • the driving electrode and/or the sensing electrode are made of a transparent metal oxide.
  • the present invention further provides an in-cell type liquid crystal touch panel, comprising: the color film substrate as described above; an array substrate disposed opposite to the color film substrate; a liquid crystal layer between the color filter substrate and the array substrate.
  • the color filter substrate further includes a flat layer.
  • the flat layer is an organic film layer.
  • the color filter substrate of the in-cell touch liquid crystal panel disclosed in the present invention comprises a black matrix having a resistivity greater than or equal to 10 6 Q.cm, which is more than 10 times the resistivity of a conventional black matrix.
  • the black matrix having the resistivity can greatly reduce the conductivity of the black matrix, thereby weakening the conductive effect of the black matrix on the electrode of the electrode layer, reducing the interference generated when the signal is transmitted in the electrode layer, and improving the signal at the electrode layer. Signal to noise ratio during transmission.
  • the in-cell touch liquid crystal panel disclosed by the invention adopts the above color film substrate, thereby preventing noise interference of the whole device, improving the signal-to-noise ratio and touch sensitivity of the device, and enhancing the detection capability of the device.
  • FIG. 1 is a schematic diagram of a touch layer of a common mutual capacitance touch screen
  • FIG. 2 is an equivalent circuit diagram of the touch electrode pattern shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a touch structure according to an embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram of the touch structure shown in FIG. 3;
  • FIG. 5 is a cross-sectional view of the color filter substrate having the touch structure shown in FIG. 3 taken along line A-A of FIG. 3;
  • FIG. 6 is a cross-sectional view of the color filter substrate having the touch structure shown in FIG. 3 taken along line B-B of FIG. 3.
  • FIG. 1 is a schematic diagram of a common mutual capacitance touch screen touch layer.
  • a common mutual-capacitive touch screen touch layer includes a plurality of driving electrodes 11 arranged along a first axial direction to form a driving line (two adjacent driving electrodes 11 are shown in FIG. 1); a plurality of sensing electrodes 12 Arranged along the second axis Inductive line (shown in Figure 1 where two adjacent sensing electrodes 12 are representative).
  • the entire touch layer includes a plurality of driving lines arranged in parallel with each other, and a plurality of sensing lines arranged in parallel with each other.
  • FIG. 1 It can also be seen from FIG. 1 that two adjacent drive electrodes 11 are connected together by a narrow portion therebetween to form the drive line, and adjacent two sense electrodes 12 are connected together by a conductive bridge 121.
  • the sensing line is formed.
  • the conductive bridge 121 connects the adjacent two sensing electrodes 12 through the through holes 21 in the transparent insulating layer 2.
  • the touch layer shown in Figure 1 is typically formed on a transparent insulating substrate, which may be a glass substrate or a plastic (e.g., PET) substrate.
  • a transparent insulating substrate which may be a glass substrate or a plastic (e.g., PET) substrate.
  • FIG. 2 is an equivalent circuit diagram of the touch electrode pattern shown in FIG. 1 .
  • Ed represents the drive electrode
  • Es represents the sense electrode
  • Rd represents the equivalent resistance of the drive electrode
  • Rs represents the equivalent resistance of the sense electrode
  • a mutual capacitance Cm is formed between the drive electrode and the sense electrode.
  • the capacitive touch screen uses the mutual capacitance Cm to realize the touch detection function.
  • the mutual capacitance Cm is changed, and a corresponding touch signal is output to the touch control circuit, and the touch control circuit determines whether a touch action occurs according to the received touch signal. .
  • the driving electrode also has a coupling capacitance (also called parasitic capacitance) Cd to the ground
  • the sensing electrode also has a coupling capacitance (also called parasitic capacitance) Cs to the ground.
  • the external capacitive touch panel has some shortcomings and shortcomings.
  • the industry proposes an in-cell mutual capacitive touch that integrates the mutual capacitive touch screen into the liquid crystal display panel. LCD screen. This requires the touch layer to be made inside the liquid crystal cell.
  • FIG. 3 is a schematic diagram of a touch structure according to an embodiment of the present invention. It can also be seen that the touch layer formed in the transparent insulating substrate of the color filter substrate is formed in the touch layer and the black matrix.
  • FIG. 3 Schematic diagram of the touch structure.
  • the black matrix 4 covers the touch layer as shown in FIG. 1 (since the black matrix 4 and the touch layer are in the upper and lower layers, it can also be seen as the touch layer covering the black matrix 4) .
  • the black matrix 4 has a grid shape, so that the same grid line of the black matrix 4 covers both the driving electrode 11 and the sensing electrode 12.
  • FIG. 4 is an equivalent circuit diagram of the touch structure shown in FIG. 3 .
  • the black matrix 4 is made of a common carbon powder-containing resin having a resistivity of about 10 5 Q.cm.
  • the grid lines forming the black matrix 4 are connected to each other while covering the driving electrodes 11 and the sensing electrodes 12, so that the resistivity of the grid lines formed into the black matrix 4 is only 10 5 .
  • FIG. 4 shows that an electrical connection is made between the driving electrode Ed and the sensing electrode Es, and the driving electrode is The resistance between Ed and the sensing electrode Es is Rds, which is the resistance of the black matrix 4.
  • Rds which is the resistance of the black matrix 4.
  • the electrical connection is weak, it is sufficient to cause the touch signal to generate impurities during the transmission process.
  • the letter reduces the signal-to-noise ratio of the touch signal, thereby reducing the touch sensitivity of the device.
  • the inventors have found that to avoid the interference of this weak electrical connection, the resistivity of the black matrix should be increased by 10 times in the existing case, that is, the material with a resistivity of 10 6 Q.cm is required. Make a black matrix.
  • a color film substrate of an in-cell touch liquid crystal panel comprising a black matrix and a touch layer laminated with the black matrix.
  • the resistivity of the black matrix is greater than or equal to 10 6 ⁇ ( ⁇ .
  • the electrical resistivity of the black matrix is increased, and the electrical connection between the driving electrode Ed and the sensing electrode Es can be weakened by the black matrix, thereby preventing the driving electrode Ed and
  • the sensing electrode Es has an electrical connection to generate a noise interference, which further improves the touch sensitivity of the entire device, and the detection capability becomes stronger.
  • FIG. 3 is a schematic diagram of the touch structure formed by the touch layer of the touch layer in the transparent insulating substrate of the color filter substrate and the black matrix
  • FIG. 5 has FIG.
  • the color film substrate of the touch structure shown in FIG. 3 is cut along the line AA of FIG. 3.
  • FIG. 6 is a cross-sectional view of the color film substrate having the touch structure shown in FIG. 3 taken along line BB of FIG.
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 3.
  • the AA line just coincides with the black matrix 3
  • the AA line just coincides with the edge of the conductive bridge 121, and thus from FIG.
  • under the transparent substrate 4 is a black matrix 3 of a whole layer.
  • the underside of the black matrix 3 includes an electrode layer composed of the driving electrode 11 and the sensing electrode 12. It is apparent that the black matrix 3 is directly laminated with the electrode layer including the driving electrode 11 and the sensing electrode 12.
  • the embodiment of the present invention proposes that the resistivity of the black matrix 3 is at least 10 times higher than that of the conventional black matrix, and reaches 10 6 ⁇ -cm or more.
  • the black matrix 3 is directly laminated with the driving electrode 11 and the sensing electrode 12 at the same time, and the electrode layer has a single layer structure.
  • the electrode layer may also be a two-layer structure in which the driving electrode 11 and the sensing electrode 12 are divided into two layers. At this time, the black matrix 3 is only connected to the driving electrode 11 and the sensing electrode 12 One layer is stacked directly.
  • the black matrix 3 when the black matrix 3 is directly laminated over the driving electrode 11, although the conductive action of the black matrix 3 is beneficial for the driving electrodes 11 on the same driving line, for the driving electrodes 11 not on the same driving line, black
  • the conduction of the matrix 3 still causes noise generation when the signal is transmitted over the electrode layer, so in this embodiment, the resistivity of the black matrix 3 still needs to reach 10 6 ⁇ -cm or more.
  • the touch layer includes, in addition to the electrode layer, a conductive bridge 121 and a transparent insulating layer 2 as shown in FIG.
  • the transparent insulating layer 2 includes through holes 21 (also seen in FIG. 3), and the conductive bridges 121 are electrically connected to the transparent insulating layer 2 and through the through holes 21 on the transparent insulating layer 2.
  • Two adjacent sensing electrodes 12 form the sensing line.
  • the conductive bridge 121 may be composed of at least one metal wire, and the conductive bridge 121 is blocked by the black matrix 3.
  • the conductive bridge 121 may be at least one transparent metal oxide wire, so that no matter how the conductive bridge 121 is disposed, the visual effect of the display device is not affected.
  • the black matrix 3 in Fig. 5 can be made of a resin material containing a titanium oxynitride (TiOxNy) colorant.
  • the black matrix made of the resin material containing the titanium oxynitride coloring agent has an OD value (OD, optical density) when the thickness is 1.20 ⁇ , which is defined as: incident light intensity and transmitted light intensity.
  • the common logarithmic value of the ratio is 4.00, and the black matrix made of a common toner-doped resin material has an OD value of 3.97 when the thickness is 1.20 ⁇ ⁇ . It can be seen that the black matrix made of the resin material containing the titanium oxynitride coloring agent has a light shielding effect slightly better than that of the black matrix made of the usual carbon powder doped resin material.
  • the black matrix made of the resin material containing the titanium oxynitride coloring agent has a resistivity as high as 10 13 Q'cm, which is much larger than that of the conventional black powder-doped resin matrix (about 10 5 ). ⁇ ( ⁇ ).
  • a black matrix made of a resin material containing a titanium oxynitride coloring agent has a dielectric constant of only 14 and can function as a good dielectric insulator.
  • the black matrix made of miscellaneous resin material has a dielectric constant value of up to 49,656. It can also be seen that the black matrix made of the usual toner-doped resin material cannot perform good dielectric insulation.
  • a high-resistance resin material containing a carbon black colorant can be used to fabricate a black matrix having a resistivity of up to 2.2 ⁇ 10 1 () ⁇ -cm, and the material has a thickness of 1.20 ⁇ m.
  • the OD value also reaches 3.69, and the light-shielding property is similar to that of a black matrix made of a usual material. At the same time, its dielectric constant is only 18, which can effectively function as a dielectric insulation.
  • the technology of the present invention The solution can also be implemented by using other materials that meet the relevant properties.
  • a transparent flat layer 5 is further disposed under the touch layer, and the transparent flat layer 5 is included.
  • Fig. 6 is a cross-sectional view taken along line BB of Fig. 3. As can be seen from Fig. 3, the BB line passes through the drive electrode 11, and the drive electrode 11 and the black matrix 3 can still be seen in Fig. 6. Direct stacking. The BB line passes through the transparent region defined by the black matrix 3, and thus it can be seen in FIG.
  • the color filter substrate of the present embodiment includes a transparent flat layer 5, which is located below the color resist unit 6, and protects the color resist unit 6.
  • the laminated structure of the touch layer is as shown in FIG. 5, and the electrode layer composed of the driving electrode 11 and the sensing electrode 12 is directly stacked under the black matrix 3, and the transparent insulating layer 2 is located above. Below the electrode layer, the conductive bridge 121 is located below the transparent insulating layer 2.
  • the touch layer may further include another metal layer in addition to the stacked structure described above.
  • the metal layer has a grid shape identical to that of the black matrix 3, and is disposed directly under the black matrix 3 (that is, between the electrode layer composed of the driving electrode 11 and the sensing electrode 12 and the black matrix 3). , between the driving electrode 11 and the black matrix 3 in FIG. 6).
  • the grid-like metal layer is not a continuous layer, but a small piece or a small piece of metal mesh formed on an induction electrode or a driving electrode, each of the sensing electrodes or the driving electrodes.
  • the grid is insulated from the metal grids on the other drive or sense electrodes.
  • black matrix 3 occlusion The grid of metal is lived.
  • the metal layer is disposed such that the resistance of the driving electrode and the sensing electrode is reduced, so that the touch signal is less attenuated when being transmitted on the driving electrode and the sensing electrode, so that the touch signal can maintain high intensity during transmission. .
  • the material for fabricating the electrode layer is preferably a transparent metal.
  • An oxide material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • both the driving electrode and the sensing electrode have a rhombus shape, but in other embodiments of the present invention, the driving electrodes may also have other shapes such as a triangle, a hexagon, a cross, and a circle.
  • the color film substrate of the in-cell touch liquid crystal panel disclosed in the above invention comprises a black matrix having a resistivity greater than or equal to 10 6 ⁇ -cm, and the resistivity is more than 10 times that of a conventional black matrix.
  • the black matrix having the resistivity can weaken the electrical connection between the driving electrode and the sensing electrode of the black matrix, and greatly reduce the driving electrode and the sensing electrode of the color film substrate of the in-cell touch liquid crystal screen due to the existence of the black matrix. Electrical connection occurs to avoid signal interference between the drive and sense electrodes.
  • the embodiment of the present invention further provides an in-cell type liquid crystal touch screen, comprising the color film substrate described above and an array substrate disposed opposite to the color film substrate, wherein the color film substrate and the array substrate are A liquid crystal layer is provided between them. Since the color film substrate described above is integrated with a touch function, the in-cell liquid crystal touch screen can simultaneously have dual functions of display and touch.
  • the color film substrate of the embodiment of the invention further comprises a flat layer, and the addition of the flat layer can protect the structures of the color film substrate to prevent foreign substances from contaminating the color film substrate.
  • the flat layer is an organic film layer, and the organic film layer has high transparency, corrosion resistance and strong ion penetration resistance.
  • the in-cell touch liquid crystal panel disclosed by the invention uses the above-mentioned color film substrate to prevent noise interference of the whole device, improve the signal-to-noise ratio and touch sensitivity of the device, and enhance the detection capability of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏。内嵌式液晶触控屏的彩膜基板包括黑矩阵(3)和与黑矩阵(3)层叠的触控层,黑矩阵(3)的电阻率大于或等于106Ω·cm,因此减少了黑矩阵(3)的电导率,从而减弱了黑矩阵(3)对电极层的电极(11,12)产生的导电作用,减小了信号在电极层中传输时产生的干扰,提高了信号在电极层中传输时的信噪比。

Description

内嵌式液晶触控屏的彩膜 及内嵌式液晶触控屏
本申请要求于 2012 年 09 月 26 日提交中国专利局、 申请号为 201210364973.4、 发明名称为 "内嵌式液晶触控屏的彩膜基板及内嵌式液晶 触控屏 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及触控显示领域,特别是涉及一种内嵌式液晶触控屏的彩膜基板 及内嵌式液晶触控屏。
背景技术
自 1974年出现世界上最早的电阻式触摸屏以来, 触控技术经过飞速地发 展, 目前业界已经产生出了诸如电容式、 电阻式、 红外式和声波式等多种类型 的产品。 其中电容式触摸屏由于具有定位精确灵敏、 触摸手感好、 使用寿命长 和支持多点触控等优点, 成为当前市场上的主流产品。 电容式触摸屏分为自电 容式和互电容式。 由于可以实现多点触控, 互电容式触摸屏已成为电容式触摸 屏市场上的主流和未来发展的趋势。
目前互电容式触摸屏绝大部分采用的是外挂式的结构,即将触摸屏面板贴 合于显示面板外部。但这种外挂式的结构不可避免地增加整个显示器的厚度和 重量, 造成透光率的下降, 不符合显示器轻薄化发展趋势的要求。
因此业界提出了内嵌 (in-cell)式互电容触控屏, 即将互电容触控屏集成于 显示面板内部, 这样就能够达到透光率高和产品轻薄化的双重效果。 而目前最 佳的集成方式莫过于将互电容触控屏集成于液晶显示面板内部。
但是将互电容触控屏集成于液晶显示面板内部的内嵌式互电容触控屏存 在许多技术问题, 例如当将触控屏集成于液晶显示面板的彩膜基板后, 由于 受到液晶显示面板内部器件的影响, 触控信号会发生减弱, 并且触控信号的 信噪比会降低的问题。
发明内容
为解决现有技术中, 将触控屏集成于液晶显示面板的彩膜基板时, 触控 信号会发生减弱, 并且触控信号的信噪比会降低的问题, 本发明提供了一种 内嵌式触控液晶屏的彩膜基板, 包括: 黑矩阵; 与所述黑矩阵直接层叠的电 极层; 所述黑矩阵的电阻率大于或者等于 106 Ω·(Μΐι。 可选的, 所述黑矩阵包括含有氮氧化钛着色剂的树脂材料。 可选的, 所述黑矩阵包括含有碳黑着色剂的树脂材料。
可选的, 所述电极层直接层叠于所述黑矩阵下方。 可选的,其特征在于,所述电极层包括相互绝缘的驱动电极和感应电极。 可选的, 所述驱动电极和 /或所述感应电极直接层叠于所述黑矩阵下方。 可选的, 所述驱动电极和 /或所述感应电极由透明金属氧化物制成。 另外, 为解决上述问题, 本发明还提供了一种内嵌式液晶触控屏, 其特征在 于, 包括: 如上所述的彩膜基板; 与所述彩膜基板相对设置的阵列基板; 设 置于所述彩膜基板与所述阵列基板之间的液晶层。
可选的, 所述彩膜基板还包括一层平坦层。 可选的, 所述平坦层为有机膜层。 与现有技术相比, 本发明具有以下优点: 本发明所公开的内嵌式触控液晶屏的彩膜基板, 其包括的黑矩阵的电阻 率大于或者等于 106 Q.cm, 该电阻率为常用现有黑矩阵电阻率的 10倍以上, 采用具有该电阻率的黑矩阵可以大幅减小黑矩阵的导电率, 从而减弱黑矩阵 对电极层的电极产生的导电作用, 减小信号在电极层中传输时产生的干扰, 提高信号在电极层中传输时的信噪比。
本发明所公开的内嵌式触控液晶屏采用上述彩膜基板, 因而能够防止整 个装置产生杂信干扰, 提高了装置的信噪比和触控灵敏度, 使装置的检测能 力增强。
附图说明
图 1为常见的互电容触控屏的触控层示意图;
图 2为图 1所示触控电极图形的等效电路图;
图 3为本发明实施例的触控结构的示意图;
图 4为图 3所示的触控结构的等效电路图;
图 5为具有图 3所示触控结构的彩膜基板沿图 3中 A-A线切开得到的截 面图;
图 6为具有图 3所示触控结构的彩膜基板沿图 3中 B-B线切开得到的截 面图。
具体实施方式
请参考图 1 , 为常见的互电容触控屏触控层的示意图。 常见的互电容触 控屏触控层包括多个驱动电极 11沿第一轴向排列形成驱动线 (图 1中显示出 其中的两个相邻的驱动电极 11为代表);多个感应电极 12沿第二轴向排列形 成感应线(图 1中显示出其中相邻的两个感应电极 12为代表)。 图 1虽无法给 予全部显示, 但本领域人员可知, 整个触控层包括多条相互平行排列的驱动 线, 多条相互平行排列的感应线。
从图 1中还可以看到,相邻两个驱动电极 11通过它们之间的狭细部分连 接在一起形成所述驱动线,而相邻两个感应电极 12之间通过导电桥 121连接 在一起形成所述感应线。 图 1中虽然没有示出, 但是导电桥 121与驱动线之 间存在透明绝缘层 2(可参考图 5和图 6), 使得它们之间相互绝缘隔离。 导电 桥 121通过透明绝缘层 2上的通孔 21连接相邻两个感应电极 12。
对于外挂式互电容触控屏, 图 1中所显示的触控层通常形成于一个透明 绝缘衬底上, 该透明绝缘衬底可以是玻璃基板, 也可以是塑料 (例如 PET)基 板。
请参考图 2, 为图 1所示触控电极图形的等效电路图。 图 2中 Ed代表的 是驱动电极, Es代表的是感应电极, Rd代表驱动电极的等效电阻, Rs代表 感应电极的等效电阻, 在驱动电极与感应电极之间形成有互电容 Cm, 互电 容式触控屏即是利用此互电容 Cm来实现触控检测功能。 当驱动电极和感应 电极之间发生触控动作时, 会引起互电容 Cm发生变化, 产生相应的触控信 号输出到触控制电路, 触控控制电路根据接收到的触控信号判断是否发生触 摸动作。 另外, 驱动电极还存在对地的耦合电容 (也称寄生电容) Cd, 感应电 极还存在对地的耦合电容 (也称寄生电容) Cs。 背景技术提到的, 外挂式互电容触控屏由于存在一些不足和缺点, 业界 提出将互电容触控屏集成于液晶显示面板内部的内嵌式 (in-cell)互电容触控 液晶屏。 这就要求将触控层制作在液晶盒内部。 请参考图 3 , 为本发明实施例的触控结构的示意图, 也可以看成是图 1 中的触控层制作于彩膜基板的透明绝缘衬底后, 该触控层与黑矩阵形成的触 控结构的示意图。 从图 3中可以看到, 黑矩阵 4覆盖于如图 1所示的触控层 (由于黑矩阵 4 与触控层是上下层关系, 也可以看成是触控层覆盖于黑矩阵 4)。 而黑矩阵 4呈网格状, 因而黑矩阵 4的同一条网格线同时覆盖于驱动电 极 11和感应电极 12上。 通过将图 1中的触控层制作于彩膜基板的透明绝缘衬底后, 整个触控装 置的噪声加大许多, 触控信号严重减弱。 为解决这种情况, 发明人经过多次 实验发现, 上述问题是由于前面提到的 "黑矩阵 4的同一条网格线同时覆盖 于驱动电极 11和 /或感应电极 12上" 引起的。 具体的, 请参考图 4, 为图 3所示的触控结构的等效电路图。 通常, 黑 矩阵 4是由普通的含碳粉的树脂制成的, 它的电阻率在 105 Q.cm左右。 而从 图 3中可以看出, 形成黑矩阵 4的网格线相互连接, 同时覆盖于驱动电极 11 和感应电极 12上, 因而当制成黑矩阵 4的网格线的电阻率仅为 105 Ω-cm左 右时, 黑矩阵 4会使得驱动电极 11和感应电极 12相互导通, 即驱动电极 11 和感应电极 12之间的绝缘作用被破坏。整个触控结构的等效电路图就如图 4 所示, 相比于图 2所示的电路图, 图 4中显示出, 在驱动电极 Ed和感应电 极 Es之间会变成电连接, 而驱动电极 Ed和感应电极 Es之间的电阻为 Rds, 该电阻即为黑矩阵 4的电阻。 请继续参考图 4, 如果采用通常的含碳粉的树脂材料来制作具有内嵌式 触控结构的彩膜基板的黑矩阵, 则驱动电极 Ed和感应电极 Es之间会形成微 弱的电连接, 虽然此电连接的作用较为微弱, 但是它足以导致触控信号在传 输过程中产生杂信, 从而降低了触控信号的信噪比, 进而降低了装置的触控 灵敏度。 而发明人研究发现, 要避免此微弱的电连接产生杂信干扰的作用, 黑矩阵的电阻率应该在现有的情况下提高 10倍,即要求用电阻率为 106 Q.cm 的材料来制作黑矩阵。
为此, 发明人提出一种内嵌式触控液晶屏的彩膜基板, 包括黑矩阵和与 所述黑矩阵层叠的触控层。 所述黑矩阵的电阻率大于或者等于 106 Ω·(Μΐι。 提 高了黑矩阵的电阻率, 就可以减弱黑矩阵对驱动电极 Ed和感应电极 Es的电 连接作用, 从而防止因为驱动电极 Ed和感应电极 Es存在电连接作用而产生 杂信干扰的情况, 进而使得整个装置的触控灵敏度提高, 检测能力变强。 下面将结合附图对本发明的具体实施例加以说明。 请结合参考图 3、 图 5和图 6。 前面已经提到, 图 3为图 1中的触控层制 作于彩膜基板的透明绝缘衬底后与黑矩阵形成的触控结构的示意图, 而图 5 为具有图 3所示触控结构的彩膜基板沿图 3中 A-A线切开得到的截面图。 图 6为具有图 3所示触控结构的彩膜基板沿图 3中 B-B线切开得到的截面图。
图 5为沿图 3中的 A-A线切开得到的截面图, 从图 3中可以看出, A-A 线刚好与黑矩阵 3重合, 并且 A-A线刚好与导电桥 121的边缘重合, 因而从 图 5中可以看到, 透明基板 4下方为整层的黑矩阵 3。 而黑矩阵 3下方包括 有驱动电极 11和感应电极 12构成的电极层, 可以明显看到, 黑矩阵 3与包 括有驱动电极 11和感应电极 12的所述电极层直接层叠。从图 5中可以看出, 沿 A-A线切开的黑矩阵 3的网格线同时与驱动电极 11和感应电极 12直接层 叠, 因而, 如果黑矩阵 3的电阻率低的话, 就可能对驱动电极 11和感应电极 12有导电作用, 从而就会产生信号干扰作用。 因而本发明实施例提出, 黑矩 阵 3的电阻率要比现有通常情况下黑矩阵的电阻率提高至少 10倍, 达到 106 Ω-cm以上。
需要说明的是, 图 5所示的实施例中,黑矩阵 3同时与驱动电极 11和感 应电极 12直接层叠, 电极层为单层结构。 但是, 在本发明的其它实施例中, 电极层也可以是双层结构,其中驱动电极 11和感应电极 12分为两层,此时, 黑矩阵 3仅与驱动电极 11和感应电极 12的其中一层直接层叠。 例如当黑矩 阵 3直接层叠在驱动电极 11上方时,虽然黑矩阵 3的导电作用对于同一条驱 动线上的驱动电极 11是有益的,但是,对于不在同一条驱动线上的驱动电极 11 , 黑矩阵 3的导电作用仍然会导致信号在电极层上传输时产生杂信, 因而 在该实施例中, 黑矩阵 3的电阻率仍然需要达到 106 Ω-cm以上。
前面已经提到, 触控层除包括电极层外, 还包括如图 5中所示的导电桥 121及透明绝缘层 2。 从图 5中可以看到, 透明绝缘层 2上包括有通孔 21(亦 可见于图 3), 而导电桥 121跨过透明绝缘层 2并通过透明绝缘层 2上的通孔 21电连接相邻的两个感应电极 12形成所述的感应线。
需要说明的是,本实施例中,导电桥 121可以由至少一条金属导线组成, 并且导电桥 121被黑矩阵 3遮挡。 但是, 在其它其实例中, 所述导电桥 121 可以为至少一条透明金属氧化物导线, 这样, 无论导电桥 121如何设置, 都 不会影响显示装置的视觉效果。 图 5中的黑矩阵 3可以由含有氮氧化钛 (TiOxNy)着色剂的树脂材料制成。 该种含有氮氧化钛着色剂的树脂材料做成的黑矩阵,当其厚度为 1.20 μ ηι时, OD值 (OD , optical density, 指光密度, 其定义为: 入射光强度与透射光强 度之比值的常用对数值)为 4.00, 而普通的碳粉掺杂的树脂材料制作的黑矩 阵, 当厚度为 1.20 μ ηι时, OD值为 3.97。 可见用该种含有氮氧化钛着色剂 的树脂材料做成的黑矩阵的遮光效果比通常的碳粉掺杂的树脂材料制作的黑 矩阵的遮光效果略好。而该种含有氮氧化钛着色剂的树脂材料做成的黑矩阵, 其电阻率高达 1013Q'cm, 远大于通常的碳粉掺杂的树脂材料制作的黑矩阵的 电阻率 (约 105 Ω·(Μΐι)。 并且, 该种含有氮氧化钛着色剂的树脂材料做成的黑 矩阵, 其介电常数值仅为 14 , 可以起到良好的介电绝缘作用。 而通常的碳粉 掺杂的树脂材料制作的黑矩阵, 其介电常数值高达 49656, 从中也可以看出, 通常的碳粉掺杂的树脂材料制作的黑矩阵无法起到很好的介电绝缘作用。 另 夕卜, 本发明实施例还可以用一种高电阻的含有碳黑着色剂的树脂材料来制作 黑矩阵, 该材料的电阻率高达 2.2 χ 101() Ω-cm, 该材料厚度为 1.20 μ m时, OD值也达到了 3.69 , 遮光性与通常材料制作的黑矩阵相近, 同时, 其介电 常数也仅为 18 , 可以有效地起到介电绝缘的作用。 当然, 除以上所述的两种 具体材料外, 本发明的技术方案还可以用其它符合相关性质的材料来实施。 请继续参考图 5 , 本实施例中, 除以上所描述的结构外, 在触控层下方 还包括有一透明平坦层 5 , 该透明平坦层 5用于保护彩膜基板, 使得彩膜基 板的平滑性较好, 同时防止彩膜基板上的离子对液晶层造成污染, 采用透明 平坦层 5可以提高整个彩膜基板的透明性。 图 6为沿图 3中的 B-B线切开得到的截面图, 从图 3中可以看出, B-B 线穿过的是驱动电极 11 , 在图 6中仍然可以看到驱动电极 11与黑矩阵 3直 接层叠。 B-B线穿过黑矩阵 3限定出的透明区域, 因而在图 6中可以看到, 在透明基板 4下方为被横切的黑矩阵 3和相邻两道黑矩阵 3之间的透明区域, 而透明区域被驱动电极 11所占据。 在驱动电极 11下方为透明绝缘层 2, 而 在透明绝缘层 2下方还包括有色阻单元 6(色阻单元 6包括红、 绿和蓝三原色 的三种色阻单元), 并且每个色阻单元 6都刚好位于透明区域的正下方, 遮挡 住所述透明区域。 图 6中也显示了本实施例的彩膜基板包括有透明平坦层 5 , 透明平坦层 5位于色阻单元 6下方, 保护色阻单元 6。
需要说明的是, 在上述实施例中, 触控层的层叠结构如图 5所示, 由驱 动电极 11和感应电极 12构成的电极层直接层叠于黑矩阵 3的下方, 透明绝 缘层 2位于上述电极层下方, 而导电桥 121位于透明绝缘层 2下方。 这是一 种优选的实施例, 因为, 这样的层叠结构能够使得电极层靠近触控操作 (通常 触控操作发生在透明基板 4上方), 因而能够使装置的触控灵敏度较高。 在本 实施例中, 所述触控层除了以上所述的层叠结构外, 还可以进一步包括有另 外一层金属层。 所述金属层呈与黑矩阵 3的形状相同的网格状, 并直接设置 于黑矩阵 3下面(亦即设置于由驱动电极 11和感应电极 12组成的所述电极层 与黑矩阵 3之间, 如图 6中的驱动电极 11与黑矩阵 3之间)。 但是, 该呈网 格状金属层并不是连续的一整层, 而是一小块一小块孤立地形成于一个感应 电极或者一个驱动电极上的, 每个感应电极或者驱动电极上的金属网格与其 它驱动电极或者感应电极上的金属网格是相互绝缘的。 同时, 黑矩阵 3遮挡 住该呈网格状的金属层。 该金属层的设置可以使得驱动电极和感应电极自身 电阻减小, 进而使得触控信号在驱动电极和感应电极上传输时衰减较小, 从 而使得触控信号在传输过程中能够保持较高的强度。
以上各图所显示的各实施例中, 由于所述电极层中各驱动电极和感应电 极的面积较大, 因而电极会占据显示区域, 所以, 制作所述电极层的材料优 选的, 选用透明金属氧化物材料, 例如铟锡氧化物 (ITO)。 另外, 在以上各图 中, 驱动电极和感应电极都呈菱形, 但是, 本发明其它实施例中, 驱动电极 也可以是三角形、 六边形、 十字形和圓形等其它形状。 本发明上述公开的内嵌式触控液晶屏的彩膜基板, 其包括的黑矩阵的电 阻率大于或者等于 106 Ω-cm, 该电阻率为常用现有黑矩阵电阻率的 10倍以 上, 运用具有该电阻率的黑矩阵可以减弱黑矩阵对驱动电极和感应电极的电 连接作用, 大幅减小内嵌式触控液晶屏的彩膜基板因为黑矩阵的存在而引起 的驱动电极和感应电极发生电连接作用, 避免驱动电极和感应电极之间产生 信号干扰。
本发明实施例还提供了一种内嵌式液晶触控屏, 包括有上面所述的彩膜 基板和与该彩膜基板相对设置的阵列基板, 在所述彩膜基板与所述阵列基板 之间设置有液晶层。 由于上面所述的彩膜基板集成有触控功能, 因而该内嵌 式液晶触控屏就可以同时具备显示和触控双重功能。 另外, 在本发明实施例 的所述彩膜基板上还包括一层平坦层, 增加平坦层可以保护到彩膜基板的各 结构, 防止外来物质污染彩膜基板。 进一步优选的, 本实施例中所述平坦层 为有机膜层, 有机膜层透明度高, 耐腐蚀, 防离子透过的能力强。 本发明所公开的内嵌式触控液晶屏运用了上述的彩膜基板, 从而防止整 个装置产生杂信干扰, 提高了装置的信噪比和触控灵敏度, 使装置的检测能 力增强。
本说明书中各个部分采用递进的方式描述, 每个部分重点说明的都是与 其他部分的不同之处, 各个部分之间相同相似部分互相参见即可。
本发明虽然以较佳实施例公开如上, 但其并不是用来限定本发明, 任何 本领域技术人员在不脱离本发明的精神和范围内, 都可以做出可能的变动和 修改, 因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims

权 利 要 求
1. 一种内嵌式液晶触控屏的彩膜基板, 其特征在于, 包括:
黑矩阵;
与所述黑矩阵直接层叠的电极层;
所述黑矩阵的电阻率大于或者等于 106 Ω·«η。
2. 如权利要求 1所述的内嵌式液晶触控屏的彩膜基板, 其特征在于, 所述 黑矩阵包括含有氮氧化钛着色剂的树脂材料。
3. 如权利要求 1所述的内嵌式液晶触控屏的彩膜基板, 其特征在于, 所述 黑矩阵包括含有碳黑着色剂的树脂材料。
4. 如权利要求 1所述的内嵌式液晶触控屏, 其特征在于, 所述电极层直接 层叠于所述黑矩阵下方。
5. 如权利要求 1至 4任意一项所述的内嵌式液晶触控屏的彩膜基板, 其特 征在于, 所述电极层包括相互绝缘的驱动电极和感应电极。
6. 如权利要求 5所述的内嵌式液晶触控屏, 其特征在于, 所述驱动电极和 /或所述感应电极直接层叠于所述黑矩阵下方。
7. 如权利要求 6所述的内嵌式液晶触控屏, 其特征在于, 所述驱动电极和 /或所述感应电极由透明金属氧化物制成。
8. 一种内嵌式液晶触控屏, 其特征在于, 包括:
如权利要求 1至 7任意一项所述的彩膜基板;
与所述彩膜基板相对设置的阵列基板;
设置于所述彩膜基板与所述阵列基板之间的液晶层。
9. 如权利要求 8所述的内嵌式液晶触控屏, 其特征在于, 所述彩膜基板还 包括一层平坦层。
10. 如权利要求 9所述的内嵌式液晶触控屏, 其特征在于, 所述平坦层为有 机膜层。
PCT/CN2012/084671 2012-09-26 2012-11-15 内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏 WO2014048017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012103649734A CN103293749A (zh) 2012-09-26 2012-09-26 内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏
CN201210364973.4 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014048017A1 true WO2014048017A1 (zh) 2014-04-03

Family

ID=49094903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084671 WO2014048017A1 (zh) 2012-09-26 2012-11-15 内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏

Country Status (2)

Country Link
CN (1) CN103293749A (zh)
WO (1) WO2014048017A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558942B (zh) * 2013-11-08 2016-03-09 京东方科技集团股份有限公司 触摸屏及其制造方法
CN104965617B (zh) 2015-06-30 2018-11-02 上海天马微电子有限公司 触控显示面板
CN107203299B (zh) * 2017-05-27 2020-07-24 厦门天马微电子有限公司 一种触控显示装置和显示设备
CN111562856A (zh) * 2020-04-17 2020-08-21 Tcl华星光电技术有限公司 显示面板及显示装置
CN114035712A (zh) * 2021-11-17 2022-02-11 广东示润科技有限公司 一种薄膜式电容屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359337A (zh) * 1999-05-14 2002-07-17 3M创新有限公司 含有炭黑的黑色矩阵的热转印法
CN101424817A (zh) * 2008-12-17 2009-05-06 友达光电股份有限公司 制作彩色滤光触控基板的方法
US20100136868A1 (en) * 2008-12-03 2010-06-03 Yu-Feng Chien Method of forming a color filter touch sensing substrate
US20110032209A1 (en) * 2009-08-06 2011-02-10 Samsung Mobile Display Co. Ltd. Display apparatus
JP2011227651A (ja) * 2010-04-19 2011-11-10 Optrex Corp 電極基板、タッチパネル装置および表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359337A (zh) * 1999-05-14 2002-07-17 3M创新有限公司 含有炭黑的黑色矩阵的热转印法
US20100136868A1 (en) * 2008-12-03 2010-06-03 Yu-Feng Chien Method of forming a color filter touch sensing substrate
CN101424817A (zh) * 2008-12-17 2009-05-06 友达光电股份有限公司 制作彩色滤光触控基板的方法
US20110032209A1 (en) * 2009-08-06 2011-02-10 Samsung Mobile Display Co. Ltd. Display apparatus
JP2011227651A (ja) * 2010-04-19 2011-11-10 Optrex Corp 電極基板、タッチパネル装置および表示装置

Also Published As

Publication number Publication date
CN103293749A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
US9229596B2 (en) Touch screen panel having sensing cells and coupling patterns
TWI497157B (zh) 具觸控功能的平面轉換式液晶顯示器
TWI393924B (zh) 觸控式顯示面板、彩色濾光片及其製作方法
EP2750003B1 (en) In-cell touch display device
WO2018192281A1 (zh) 触控基板及其制作方法和触控显示面板
US8493337B2 (en) Light transmission touch panel
JP3180899U (ja) 静電容量方式タッチパネル及びそれが応用されるタッチコントロールディスプレイパネル
JP6224224B2 (ja) タッチパネル及びその製造方法
CN202735635U (zh) 彩膜基板及具有该彩膜基板的内嵌式触控液晶显示面板
US20150085205A1 (en) Touch panel
WO2014048017A1 (zh) 内嵌式液晶触控屏的彩膜基板及内嵌式液晶触控屏
TWI485599B (zh) 觸控元件以及平面顯示裝置
US9557594B2 (en) Liquid-crystal display screen with touch-control function and manufacturing method thereof and electronic apparatus
KR20150007062A (ko) 터치 스크린 패널 일체형 표시장치
WO2015106538A1 (zh) 触控显示面板及其制备方法
WO2014023066A1 (zh) 触控液晶显示装置
JP3180689U (ja) タッチパネル
CN101216626B (zh) 液晶显示面板
CN103019445A (zh) 触控面板与触控显示面板
KR20110092814A (ko) 터치패널센서
JP2014146283A (ja) 前面板一体型タッチパネルセンサー基板及び表示装置
CN107741800B (zh) 触控显示屏及制备方法、显示装置
KR102007662B1 (ko) 베젤이 최소화된 표시소자
TWI613581B (zh) 觸控顯示面板
CN102314272B (zh) 一种双层结构电容式触摸屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885575

Country of ref document: EP

Kind code of ref document: A1