WO2014046410A1 - Method for producing virus-like particles of nodavirus, yeast cell line expressing same, and vaccine composition containing same - Google Patents

Method for producing virus-like particles of nodavirus, yeast cell line expressing same, and vaccine composition containing same Download PDF

Info

Publication number
WO2014046410A1
WO2014046410A1 PCT/KR2013/008088 KR2013008088W WO2014046410A1 WO 2014046410 A1 WO2014046410 A1 WO 2014046410A1 KR 2013008088 W KR2013008088 W KR 2013008088W WO 2014046410 A1 WO2014046410 A1 WO 2014046410A1
Authority
WO
WIPO (PCT)
Prior art keywords
nodavirus
capsid protein
virus
chromatography
present
Prior art date
Application number
PCT/KR2013/008088
Other languages
French (fr)
Korean (ko)
Inventor
김홍진
강현아
김형진
이재영
최유리
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130082891A external-priority patent/KR101608121B1/en
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2014046410A1 publication Critical patent/WO2014046410A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/30011Nodaviridae
    • C12N2770/30023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/30011Nodaviridae
    • C12N2770/30034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/30011Nodaviridae
    • C12N2770/30051Methods of production or purification of viral material
    • C12N2770/30052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Definitions

  • the present invention relates to a method for producing virus-like particles (VLP) of nodavirus, a yeast cell line expressing the same, and an immunogenic composition and vaccine composition comprising the same as an active ingredient.
  • VLP virus-like particles
  • the nodaviridae family consists of alphanodavirus and betanodavirus [1].
  • Alpha nodaviruses infect insects and beta nodaviruses are known to infect fish [1].
  • Betanoviruses can infect more than 40 species of fish and can cause nerve damage (nervous necrosis) resulting in 100% death [2].
  • Betanovirus is mainly infected with the central nerve and is known to infect fish during the growing season [2].
  • Betanodavirus species known to date include stripped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV), tiger puffer nervous necrosis virus (TPNNV), and red spotted grouper nervous necrosis virus (RGNNV) [3].
  • BFNNV is mainly found in fish inhabiting the Korean Wave
  • RGNNV is found mainly in fish inhabiting the turbulent ocean [4].
  • Fish infected with nodaviruses exhibit abnormal swimming and brain lesions
  • Species susceptible to beta-daviruses include convict surgeonfish (Acanthurus triostegus), lined surgeonfish (A. lineatus), narrowstripe cardinalfish (Apogon exostigma), and three-spotted dome (threespot). dascyllus; Dascyllus trimaculatus), Scopas tang; Zebrasoma scopas, blueband goby; Valenciennea strigata, tiger puffer; Takifugu rubripes, lemon peel angelfish (lemonpeel angelfish; Centropyge flavissimus) Orbicularis batfish (Platax orbicularis) is known [6, 7].
  • Nodavirus has 3.1 kb of RNA 1 and 1.4 kb of RNA2.
  • RNA 1 encodes an RNA-dependent RNA polymerase [8] and RNA 2 encodes a capsid protein [9].
  • RNA replication an additional 0.4 kb of RNA 3 is synthesized and RNA 3 is known to contain two open reading frames (ORFs). Both ORFs encode a B1 protein of 111 amino acids and a B2 protein of 75 amino acids [10, 11].
  • prophylactic vaccines against nodaviruses have been tried in various forms, including virus inactivated virus vaccines, synthetic peptide vaccines, DNA vaccines, and recombinant capsid protein vaccines [12].
  • the vaccine using capsid protein showed a good preventive effect in fish and also induced high virus neutralizing activity in blood [13, 14].
  • the amino acid regions 1-32, 91-162, 181-212, 254-256 of betanovirus virus capsid proteins are known to be important in the formation of neutralizing antibodies in host fish [15, 16].
  • the capsid protein of nodavirus is considered to be the most useful antigen candidate.
  • VLPs virus-like particles
  • viral analogues of nodavirus have been produced in Escherichai coli and insect cells (spodoptera frugiperda) [17, 19].
  • Ultracentrifugation using sucrose cushion or cesium chloride cushion is commonly used to purify virus like particles of nodaviruses [17, 19, 20].
  • these purification methods have limitations that can be applied only to the production of antigens on a laboratory scale.
  • Purification using column chromatography is essential for the actual production of viral vaccines [21].
  • no method for the high efficiency purification of virus particles of Nodavirus using column chromatography has been developed.
  • Vaccine immunization through mucous membranes has been considered the most ideal way to immunize fish and animals in large quantities. Mucosal immunity, however, induces a significantly lower immune response than injection-induced immunity and in many cases fails protective defense. Low pH of the digestive system and enzymes for proteolysis are major factors that make oral immunity difficult. Most vaccine antigens break down or lose antigenicity as they pass through the digestive tract. Even if the antigenicity remains, the digestive organs often recognize these antigens as food and cannot cause an immune response. Therefore, oral immunization requires a significantly larger amount of antigen than immunization, and even when a large amount of antigen is used, a lower antibody response is induced than immunization through injection. As a barrier to the development of such oral vaccines, vaccination of farmed fish is still carried out by injection.
  • Korean Patent Publication No. 10-2011-0135206 discloses a polypeptide comprising an epitope of a fish nodavirus protein, a recombinant expression vector comprising the polypeptide, a host cell transformed with the vector, and a production by the host cell. Although recombinant proteins have been described, there is no mention of expression in yeast strains as in the present invention.
  • the present inventors have tried to develop a method for stably mass production of virus analog particles (VLP) of nodavirus for vaccine production.
  • VLP virus analog particles
  • the capsid protein of nodavirus using a yeast cell expression system and purifying the expressed yeast cell lysate by column chromatography method, it is possible to obtain a large amount of virus-like particles of high quality nodavirus. Confirmed that the present invention was completed.
  • the yeast cell line expressing the nodavirus capsid protein itself is used as a vaccine composition, it shows a superior protective immune inducing effect than when the purified capsid protein is used as a vaccine composition, which is superior to the yeast strain containing the capsid protein itself. It was confirmed that the immune inducing ability and completed the present invention.
  • Another object of the present invention is to provide a virus like particle of nodavirus assembled from a nodavirus capsid protein.
  • It is another object of the present invention to provide an immunogenic composition comprising virus like particles of nodavirus.
  • Another object of the present invention is to provide a recombinant yeast strain expressing the nodavirus capsid protein.
  • Still another object of the present invention is to provide a vaccine composition
  • a vaccine composition comprising a virus like particle of nodavirus, a recombinant yeast strain expressing a nodavirus capsid protein, or a culture thereof.
  • the present invention provides a method for producing a nodavirus virus analogous particle comprising the steps of: (a) transformed with an expression vector comprising a DNA sequence encoding a nodavirus capsid protein Culturing yeast cells expressing the nodavirus capsid protein; (b) lysing the cultured yeast cells to obtain cell lysates; And (c) subjecting the cell lysate to chromatography to purify the nodavirus capsid protein.
  • the present invention provides a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein.
  • VLP virus-like particle
  • the present invention comprises a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein, and is immunogenic capable of inducing an immune response against nodavirus. It provides a composition (immunogenic composition).
  • VLP virus-like particle
  • the present invention provides a recombinant yeast strain expressing the nodavirus capsid protein.
  • the present invention (a) expresses an immunogenic composition comprising a virus-like particle (VLP) of nodavirus assembled from the nodavirus capsid protein, nodavirus capsid protein Immunologically effective amount of a recombinant yeast strain or culture thereof; And (b) a pharmaceutically acceptable carrier.
  • VLP virus-like particle
  • the present invention relates to a method for producing virus-like particles (VLP) of nodavirus, a yeast cell line expressing the same, and an immunogenic composition and vaccine composition comprising the same as an active ingredient.
  • VLP virus-like particles
  • the capsid protein of nodavirus is expressed through a yeast expression system, and then purified through a chromatographic purification method to mass produce high quality nodavirus virus analogous particles.
  • the prepared nodavirus virus analogous particles can be very usefully used as an antigen of a vaccine against nodavirus infection.
  • the protective capsid protein exhibited a superior protective immune inducing effect than the vaccine composition. Therefore, this means that the yeast strain containing the capsid protein itself has excellent immune inducing ability.
  • the process for preparing the vaccine antigen can be omitted. In addition, using it for oral vaccines can save a great deal of time, effort and money for vaccination.
  • Figure 1 shows the sequence of DNA encoding the capsid protein of RGNNV nodavirus of the present invention.
  • FIG. 2 shows the amino acid sequence of 338 aa translated from the DNA sequence of FIG. 1.
  • Figure 3 shows the configuration of the recombinant vector YEG ⁇ -MCS-NNVcp inserted with the DNA sequence (NNV capsid protein gene, 1017 bp) encoding the nodavirus capsid protein.
  • the DNA sequence was inserted at the HindIII and SalI restriction enzyme sites of the vector YEG ⁇ -MCS.
  • Figure 4 is the result of analyzing the main section in which nodavirus capsid protein is eluted in heparin chromatography.
  • concentration of NaCl from which nodavirus capsid protein was eluted was confirmed by SDS-PAGE and Western blotting.
  • Cell lysates containing capsid proteins were bound to heparin resin under buffer conditions containing 0.15 M NaCl.
  • the capsid protein was clearly reduced in impurities from the NaCl containing elution buffer of 0.5M to 0.6M, it was confirmed that the largest amount is eluted when flowing the buffer containing 1.2M NaCl. It was confirmed that a large amount of impurity protein was eluted with the capsid protein in the elution buffer section containing 0.4-0.5 M NaCl.
  • FIG. 5 shows the process of purifying the nodavirus capsid protein.
  • Cell lysates were dialyzed against heparin binding buffer after crushing Saccharomyces cerevisiae expressing nodavirus capsid proteins.
  • Capsid proteins in dialysis completed cell lysate were purified by heparin chromatography. Fractions containing the capsid protein were concentrated using a centrifugal filter device and then dialyzed with a buffer containing 0.5 NaCl.
  • LS and FT refer to a loading sample (LS) loaded on heparin resin, and a flow-throug (FT) flowed out without binding.
  • Cell lysates were prepared by dialysis with a buffer containing 0.5 M NaCl. The purified cell lysate was passed through heparin resin and purified, and the high purity capsid protein was confirmed in the elution fraction of 1.2 M NaCl. The heparin chromatography fraction containing the capsid protein was concentrated and dialyzed against a buffer containing 0.5 M NaCl.
  • FIG. 7 shows the results of 6 ⁇ g of the purified nodavirus capsid protein developed by SDS-PAGE, followed by silver staining (Panel A) and Western blotting (Panel B). Capsid protein was identified as the major band 37 kDa band, 110 kDa band was also identified. This is consistent with the SDS-PAGE results of previously known nodavirus capsid proteins [19].
  • FIG. 8 shows the results of observing the purified capsid protein with a transmission electron microscope (80 kv). It was confirmed that the capsid protein forms a virus analog of 25-30 nm size similar to that of nodavirus.
  • FIG. 10 shows the results of dynamic light scattering analysis of purified capsid proteins.
  • Dynamic light scattering analysis shows the size of capsid proteins present in solution. In dynamic light scattering analysis, the capsid protein was found to have an average size of 103 nm.
  • FIG. 11 shows Western RGNNV capsid protein expression levels of recombinant Saccharomyces cerevisiae (rs) expressing RGNNV capsid protein and recombinant Yarrowia lipolytica (rY) expressing RGNNV capsid protein. This is the result of the blot analysis.
  • Panels (a) and (b) show the results of rS and rY expression analysis.
  • 48 ⁇ g of rS was found to contain 200 ng of RGNNV capsid protein.
  • 140 ⁇ g of rY was found to contain 60 ng of RGNNV capsid protein.
  • 1 mg of rS contained 4.1 ⁇ g of RGNNV capsid protein and 1 mg of rY contained 0.4 ⁇ g of RGNNV capsid protein.
  • PBS means orally immunized phosphate buffered saline (PBS)
  • rS means orally immunized Saccharomyces cerevisiae expressing the RGNNV capsid protein
  • rY refers to a group orally immunized Yarrowia lipolytica expressing the RGNNV capsid protein.
  • VLP-S and VLP-Y refer to a group orally administered capsid proteins purified according to the amount of capsid proteins administered to the rS and rY groups.
  • FIG. 13 shows the result of neutralizing activity against RGNNV of mouse serum after the fourth oral immunization.
  • Cytopathic effect CPE was observed when serum of PBS, VLP-S and VLP-Y groups were reacted with RGNNV and then infected with E-11 cells.
  • the serum of the rS and rY groups were reacted with RGNNV and then infected with E-11 cells, no cell lesion was observed. Therefore, it was confirmed that rS and rY effectively induced neutralizing antibodies against RGNNV.
  • the present invention provides a method for producing a nodavirus virus analogous particle comprising the steps of: (a) transformed with an expression vector comprising a DNA sequence encoding a nodavirus capsid protein Culturing yeast cells expressing the nodavirus capsid protein; (b) lysing the cultured yeast cells to obtain cell lysates; And (c) subjecting the cell lysate to chromatography to purify the nodavirus capsid protein.
  • nodavirus is a virus belonging to the nodaviridae family and includes both an alphanodavirus that hosts insects and a betanodavirus that infects fish. Nodaviruses do not have an envelope, the virion is 29-35 nm in size, and the capsid consists of 32 capsomers.
  • the genome of nodaviruses is a linear, positive sense, single-stranded RNA of about 4500 nucleotides, consisting of two sites of RNA 1 and RNA 2.
  • RNA 1 about 3.1 kb in size, encodes a protein with a multi-functional domain, wherein the multi-functional domain comprises a mitochondrial targeting domain, a transmembrane domain, an RNA-dependent RNA polymerase (RdRp) domain, self-interaction Functional domain and RNA capping domain.
  • RNA 1 also encodes a subgenomic RNA3 translated to protein B2, which is an RNA silencing inhibitor.
  • RNA 2 encodes protein ⁇ , a viral capsid protein precursor, which is cleaved into two mature proteins, 38 kDa ⁇ protein and 5 kDa ⁇ protein, during viral assembly.
  • the "nodavirus” of the present invention is a beta nodavirus (betanodavirus) that infects fish
  • the beta noda virus is SJNNV (striped jack nervous necrosis virus), BFNNV (barfin flounder nervous necrosis virus), TPNNV (tiger puffer) nervous necrosis virus (RGNNV), red spotted grouper nervous necrosis virus (RGNNV), malabaricus grouper nervous necrosis virus (MGNNV), and dragon grouper nervous necrosis virus (DGNNV).
  • SJNNV striped jack nervous necrosis virus
  • BFNNV barfin flounder nervous necrosis virus
  • TPNNV tiger puffer nervous necrosis virus
  • RGNNV red spotted grouper nervous necrosis virus
  • MGNNV malabaricus grouper nervous necrosis virus
  • DGNNV dragon grouper nervous necrosis virus
  • a DNA sequence encoding nodavirus capsid protein can be obtained through a suitable method known in the art.
  • total viral RNA can be used as a template for amplification into cDNA through suitable primers and reverse-transcriptase polymerase chain reaction (RT-PCR).
  • Total viral RNA can be isolated from, for example, the brains of fish infected with nodaviruses.
  • the cloned cDNA is inserted into a suitable expression vector and transformed into host cells for expression of the capsid protein.
  • the “nodavirus capsid protein” is an amino acid sequence of SEQ ID NO: 2, an amino acid sequence having at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, or at least 99% identity with this sequence It consists of a nodavirus capsid protein.
  • the "DNA sequence encoding the nodavirus capsid protein" of the present invention is the base sequence of SEQ ID NO: 1 codon optimized for expression in S. cerevisiae (S. cerevisiae) It consists of.
  • the cell used as a host cell is a yeast
  • a preferred yeast strain genus includes, for example, Saccharomyces, Candida, Cryptococcus (Cryptococcus). ), Hansenula, Kluyveromyces, Pichia, Rhodotorula, Schizosaccharomyces and Yarrowia, and more preferably.
  • Saccharomyces, Candida, Hansenul, Peachia and Ski Research Carromamyses most preferably Saccharomyces.
  • yeast strain species Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces carlsbergensis, Candida albicans, Candida kefyr, Candida tropicalis, Cryptococcus laurentii, Cryptococcus neoformans, Hansenula anomala, Hansenula polymorpha, Klutoluco morphus Kluyveromyces fragilis, Kluyveromyces lactis, Kluyveromyces marxianus var.lactis, Pichia pastoris, Rhodotorula Rhodotorula rubra, Schizosaccharomyces pombe, Yarrowia lipolytica, and the like. Most preferably the host yeast of the present invention is Saccharomyces cerevisiae .
  • Transformed yeast of the present invention refers to yeast cells transformed with an expression vector that successfully expresses the nodavirus capsid protein.
  • the expression vector may include transcriptional or translational regulatory elements and other marker genes known in the art.
  • Transformed yeasts expressing the nodavirus capsid proteins of the invention can be readily prepared using methods known in the art, such methods being described in US Pat. Nos. US 7250170, US 6613557, US 5888516, US 5871998, US 5618536, US5437951 and the like, the contents of these patent documents are incorporated herein by reference.
  • Cultivation of the transformed yeast of the present invention is carried out using a medium known to those skilled in the art in which the yeast strain can be cultured.
  • An effective medium is generally a water soluble medium containing anabolic carbohydrates, nitrogen and phosphate sources, as well as suitable salts, minerals, metals and other nutrients such as vitamins and growth factors.
  • the medium may be a complex nutrient or a minimal minimal medium.
  • Transformed yeast of the present invention may be cultured in a variety of vessels including, but not limited to, bioreactors, flasks, test tubes, microtiter dishes, and petri plates. Cultivation of yeast is carried out at temperatures, pH and oxygen concentrations suitable for yeast cells. Culture conditions for yeast cells are known to those skilled in the art, for example Guthrie et al. (eds.), 1991, Methods in Enzymolgy, vol. 194, Academic Press, San Diego.
  • the method for lysing the yeast cells cultured in the present invention may be any method capable of obtaining a total lysate of the yeast cells, and is not limited to a specific method.
  • Dissolution methods that can be used in the present invention may use, for example, crushing by ultrasonication, crushing by glass beads, crushing by using a surfactant, and combinations of these methods, but It is not limited.
  • the host yeast cells expressing the nodavirus capsid protein are lysed and the lysate is chromatographed to purify the nodavirus capsid protein.
  • ultracentrifugation using a sucrose cushion or cesium chloride cushion was used to purify the capsid protein of nodavirus, but the method of the present invention is characterized by using a chromatography method for mass purification of the capsid protein.
  • Chromatographic methods usable in the present invention include cation-exchange chromatography, anion-exchange chromatography, affinity chromatography and size-exclusion chromatography.
  • the method of the present invention can be used heparin chromatography having both cation exchange chromatography characteristics and affinity chromatography characteristics.
  • the nodavirus capsid protein when the nodavirus capsid protein is purified by heparin chromatography, it is preferable to use an elution buffer containing NaCl at a concentration of 0.15 M-1.2 M. More preferably, the use of an elution buffer containing 0.5 M-1.2 M NaCl can effectively purify the capsid protein in terms of purity and amount.
  • the concentration of NaCl contained in the elution buffer is preferably It is at a concentration of 0.6 M-1.2 M, more preferably 0.7 M-1.2 M, even more preferably 0.8 M-1.2 M, most preferably 0.9 M-1.2 M. Elution buffers with concentrations of NaCl in this range can be used to obtain pure nodavirus capsid protein fractions that do not contain contaminants.
  • the concentration of NaCl included in the binding buffer is not particularly limited. However, 0.5 M is most suitable according to the following specific examples.
  • the nodavirus capsid protein obtained by the production method of the present invention successfully infected virus analog particles having a size of 25 to 35 nm, similar in size to that of the nodavirus. Formed. Therefore, according to the method of the present invention, a virus like particle composed of nodavirus capsid can be obtained.
  • the present invention provides a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein.
  • VLP virus-like particle
  • the present invention comprises a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein, and is immunogenic capable of inducing an immune response against nodavirus. It provides a composition (immunogenic composition).
  • VLP virus-like particle
  • the present invention provides a recombinant yeast strain expressing the nodavirus capsid protein.
  • the present invention (a) expresses an immunogenic composition comprising a virus-like particle (VLP) of nodavirus assembled from the nodavirus capsid protein, nodavirus capsid protein Immunologically effective amount of a recombinant yeast strain or culture thereof; And (b) a pharmaceutically acceptable carrier.
  • VLP virus-like particle
  • the virus analog particles of the nodavirus are prepared by the method for producing nodavirus analog particles of the present invention described above.
  • the nodavirus analogue of the present invention is an amino acid sequence of SEQ ID NO: 2, at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, or at least 99 It consists of a nodavirus capsid protein consisting of an amino acid sequence having% identity.
  • the vaccine composition of the present invention is for preventing or treating nodavirus infection in fish.
  • the nodavirus includes alpha nodavirus and beta nodavirus, more preferably beta nodavirus.
  • the beta nodal virus is, for example, striped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV), tiger puffer nervous necrosis virus (TPNNV), red spotted grouper nervous necrosis virus (RGNNV), or Malabaricus grouper nervous (MGNNV). necrosis virus), and dragon grouper nervous necrosis virus (DGNNV).
  • the vaccine composition is a vaccine composition for fish, and the fish is a fish, flounder, perch, or rockfish, but is not limited thereto.
  • the immunogenic composition of the invention is adjusted or buffered within the range of pH 7.0 to 8.0, or pH 7.2 to 7.6.
  • the vaccine composition of the present invention may comprise one or more pharmaceutically acceptable carriers.
  • a pharmaceutically acceptable carrier in the present invention means any component suitable for delivering the virus analog particles of the antigen nodavirus to an in vivo site, for example, water, saline, phosphate buffered saline, Ringer's solution, dextrose. Solutions, serum-containing solutions, Hans' solutions, other water-soluble physiological equilibrium solutions, oils, esters and glycols, and the like.
  • Carriers of the present invention may include suitable auxiliary ingredients and preservatives to enhance chemical stability and isotonicity, and may include temperature stabilizers or freezes by including stabilizers such as trehalose, glycine, sorbitol, lactose or monosodium glutamate (MSG).
  • the vaccine composition can be protected against drying.
  • the vaccine composition of the present invention may comprise a suspension liquid, such as sterile water or saline (preferably buffered saline).
  • the immunogenic composition or vaccine composition of the present invention may contain any adjuvant in an amount sufficient to enhance the immune response to the immunogen.
  • Suitable adjuvants are described in Takahashi et al. (1990) Nature 344: 873-875, for example, aluminum salts (aluminum phosphate or aluminum hydroxide), squalene mixtures (SAF-1), muramyl peptides, saponin derivatives, mycobacterial cell wall preparations, monophos Polyl lipid A, mycolic acid derivatives, nonionic block copolymer surfactants, Quil A, cholera toxin B subunits, polyphosphazenes and derivatives, and immunostimulatory complexes (ISCOMs).
  • an immunologically effective amount of an immunogen should be determined empirically, in which case factors that can be considered include immunogenicity, route of administration and the number of immune doses administered.
  • Nodavirus virus like particles in the vaccine composition of the present invention may be present in various concentrations in the composition of the present invention, but typically, the virus like particles of the nodavirus are required to induce an appropriate level of antibody formation in vivo.
  • an “immunologically effective amount” of the vaccine composition of the invention means an amount capable of inducing a suitable immune response against nodavirus in vivo, wherein the immunogenic composition or vaccine composition is preferably 1-100 ⁇ g. , More preferably 5-50 ⁇ g, even more preferably 5-25 ⁇ g of virus analog particles.
  • the vaccine composition of the present invention can be used to protect or treat animals sensitive to nodavirus infection by administering the vaccine composition via the systemic or mucosal route.
  • Administration of the vaccine composition can include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous route, oral / meal, respiratory, mucosal administration to the genitourinary tract.
  • VLPs Virus-like Particles
  • NNVcp DNA sequence encoding capsid protein of RGNNV (red spotted grouper nervous necrosis virus) was synthesized by Blueheron biotechnology Inc. (USA). NNVcp was constructed to have codon configuration with optimized expression in Saccharomyces cerevisiae (FIG. 1). The prepared NNVcp was inserted into the HindIII and SalI restriction sites of the YEG ⁇ -MCS vector to construct a recombinant vector YEG ⁇ -MCS-NNVcp (see FIG. 3). The recombinant vector YEG ⁇ -MCS-NNVcp prepared above was transformed using Saccharomyces cerevisiae Y2805 as a host cell according to a known method [25]. The transformant into which the recombinant vector YEG ⁇ -MCS-NNVcp was introduced was selected by culturing in a synthetic medium lacking uracil.
  • S. cerevisiae Y2805 expressing a nodavirus capsid protein was cultured according to a known method [26]. More specifically, the transformant into which the recombinant vector YEG ⁇ -MCS-NNVcp was introduced was selected by the above method and inoculated in SD-ura liquid medium and cultured for 2 days. The cultured cells were cultured in YPDG medium containing 1% yeast extract (Duchefa, Netherlands), 2% peptone (Duchefa), 7% glucose (Duchefa) and 1% galactose (Duchefa). After completion of the culture, the cultured cells were centrifuged to remove the culture solution, and washed with PBS (phosphate-buffered saline). The washed cells were collected by centrifugation and stored at -70 ° C until protein purification.
  • PBS phosphate-buffered saline
  • the cultured cells were mixed 1: 1 with cell disruption buffer (10 mM sodium phosphate dibasic, 0.15 M NaCl, 0.05% Tween 80 pH 7.2). The mixed solution was again mixed with 0.5 mm glass beads (glass bead, Biospec Product, USA) and vortexed to crush the cells. Cell residue was removed by centrifugation for 15 min at 12,000 ⁇ g. The supernatant from which cell residues have been removed is mixed with the supernatant in a ratio of 1: 5 to 1:10 (supernatant: binding buffer) or dialyzed against binding buffer to make the composition of heparin chromatography binding buffer. It was.
  • cell disruption buffer 10 mM sodium phosphate dibasic, 0.15 M NaCl, 0.05% Tween 80 pH 7.2
  • the mixed solution was again mixed with 0.5 mm glass beads (glass bead, Biospec Product, USA) and vortexed to crush the cells. Cell residue was removed by centrifugation for 15 min at 12,000 ⁇
  • Heparin binding buffer consists of 10 mM Tris, 0.15-0.5 M NaCl, 5% glycerol, 0.05% Tween 80, 0.1% ⁇ -mercaptoethanol, 50 mM L-glutamine, 50 mM L-arginine pH 7.2-8.0 It was.
  • POROS50 HE heparin resin (Applied Biosystems, USA) was equilibrated by flowing heparin binding buffer at least 5 times the resin volume.
  • the cell lysate prepared with the heparin binding buffer composition was passed through the heparin resin, and then the binding buffer was flowed at least 5 times the resin volume to wash the resin.
  • the elution buffer was then flowed to elute the nodavirus capsid protein.
  • Elution buffer was 10 mM Tris, 5% glycerol, 0.05% Tween 80, 0.1% ⁇ -mercaptoethanol, 50 mM L-glutamine, 50 mM L-arginine pH 7.2-8.0 in NaCl 0.65 M, 0.75 M, respectively.
  • the capsid protein of the eluate was identified by SDS-PAGE and Western blot by the method described below.
  • the eluate containing the capsid protein was concentrated using Ultracel-100K (Millipore, USA), the concentrate was 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 0.1% ⁇ -mercaptoethanol, 50 mM L-glutamine, Dialysis against 50 mM L-arginine pH 8.0 buffer. Protein concentrations in purification steps were measured using a protein quantification kit (Bio-Rad, USA).
  • the purified nodavirus capsid protein was adsorbed onto a carbon-coated grid and then stained with phosphotungstic acid or uranyl acetate. Transmission electron micrographs were taken using JEM1010 (JEOL, Japan) [25], and energy transmission electron micrographs were taken using LIBRA 120 (Carl Zeiss, Germany).
  • capsid proteins for dynamic light scattering analysis of nodavirus capsid proteins were prepared in buffer of 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 50 mM L-glutamine, 50 mM L-arginine pH 8.0. It was then analyzed using an ELSZ-2 system (Otsuka Electronics, Japan).
  • NNVcp DNA DNA sequences encoding nodavirus RGNNV capsid proteins (NNVcp DNA, 1017 bp) and amino acid sequences translated from NNVcp DNA are shown in FIGS. 1 and 2, respectively.
  • the amino acid sequence of FIG. 2 was confirmed to match the NCBI reference sequence YP_611157.1 (capsid protein of RGNNV, 338 aa).
  • the NNVcp DNA encodes the YP_611157.1 amino acid sequence, but the codon is constructed to optimize expression in S. cerevisiae .
  • Recombinant expression vector for the expression of nodavirus capsid protein was prepared by inserting the prepared NNVcp DNA into the vector YEG ⁇ -MCS (Fig. 3).
  • the cultured cells were disrupted and then prepared in binding buffer containing 0.15 M NaCl.
  • the remaining composition of the binding buffer and the elution buffer was the same as that presented in the experimental method.
  • the concentration of NaCl was confirmed while eluting the nodavirus capsid (FIG. 4).
  • a buffer containing 0.4 M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M, 1.2 M NaCl was flowed sequentially to the capsid-bound heparin resin.
  • the purity and amount of the Nodavirus capsid protein eluted in 1.2 M NaCl was the best, the fraction eluted with a buffer of 0.4-0.5 M NaCl was found to contain a lot of impurity protein . Therefore, according to the results of FIG. 4, the ideal concentration of NaCl in the elution buffer for separating the nodavirus capsid protein in heparin chromatography is shown. It was confirmed that the concentration of 0.5 M or more and 1.2 M or less.
  • FIG. 5 The purification process of the nodavirus capsid protein is shown in FIG. 5.
  • Cell lysates were prepared by dialysis on heparin binding buffer containing 0.5 M NaCl, and then loaded on heparin resin. The concentration of NaCl in heparin binding buffer was determined under 0.5 M NaCl conditions based on the results in FIG. 4.
  • high purity nodavirus capsid proteins were identified in the fraction of the elution buffer containing 1.2 M NaCl. Elution buffer fractions containing 1.2 M NaCl were concentrated and dialyzed against 0.5 M NaCl containing buffer.
  • nodavirus capsid protein was confirmed on SDS-PAGE.
  • 37 kDa capsid protein was identified as the main band, a band of 110 kDa was further confirmed.
  • a band of 110 kDa is also shown in the SDS-PAGE and Western blotting results of the 1.2 M NaCl fractions of FIGS. 4 and 6.
  • the band patterns of 37 kDa and 110 kDa are consistent with the band patterns of known nodavirus capsid proteins [19]. In conclusion, these results show that the purity of the nodavirus capsid protein purified by the above method is excellent.
  • Saccharomyces serevisiae S. cerevisiae expressing the Nodavirus capsid protein was purified from 1 L culture results are shown in Table 1.
  • Table 1 shows that most impurity proteins were removed after heparin chromatography.
  • FIG. 8 The results of electron microscopic analysis of the purified nodavirus capsid proteins are shown in FIG. 8.
  • the horizontal bar in FIG. 8 means a size of 100 nm.
  • the result of analyzing the purified nodavirus capsed protein using an energy transmission electron microscope is shown in FIG. In Figure 9, the horizontal bars represent 50 nm size. Electron microscopic analysis showed that the purified capsid proteins were in the form of virus pseudoparticles of 25-30 nm size. This is similar to the form of known nodaviruses [5].
  • the size was examined by dynamic light scattering analysis. 10 shows the results of the dynamic light scattering analysis. In the dynamic light scattering assay, the average size of purified nodavirus capsid protein was found to be 103 nm. This is similar to the results of dynamic light scattering analysis of known virus mimics [28].
  • YEG- ⁇ MCS-opt-RGNNV-cp vector was constructed by inserting the YEG- ⁇ MCS vector into the nucleic acid sequence of FIG. 1.
  • Saccharomyces cerevisiae Y2805 was transformed with YEG- ⁇ MCS-opt-RGNNV-cp and transformants were selected from synthetic media lacking uracil. Selected transformants were cultured in YPDG medium containing 1% yeast extract (Duchefa, Netherlands), 2% peptone (Duchefa), 4% glucose (Duchefa) and 4% galactose (Duchefa). Incubation was for 48 hours at 30 ° C.
  • the nucleic acid sequence of FIG. 1 was inserted into pINATX2 and pIMR53 vectors to express RGNNV capsid proteins in Yarrowia lipolytica.
  • Yarrowia lipolytica was transformed with the two vectors prepared above, and transformants containing both vectors were selected from synthetic media lacking uracil and leucine. Selected transformants were cultured in a medium containing 1% yeast extract (Duchefa), 2% peptone (Duchefa), 2% glucose (Duchefa). Incubation was for 48 hours at 28 °C.
  • the rS group received 10 mg (dry weight) of rS per immunization. 10 mg rS contains 40 ⁇ g of capsid protein.
  • the VLP-S group was set up to administer the same amount of capsid protein as the dose of rS.
  • the VLP-S group was orally administered 40 ⁇ g of purified capsid protein (according to Bradford protein quantitative concentration).
  • the rY group received 35 mg (dry weight) of rY orally per immunization. 35 mg rY contains 15 ⁇ g of capsid protein.
  • the VLP-Y group was set up to administer the same amount of capsid protein as the dose of rY.
  • the VLP-Y group was orally administered 15 ⁇ g of purified capsid protein (according to Bradford protein quantitative concentration).
  • the amount of antigen administered per immunization is shown in Table 2. Immunization progressed four times every two weeks. Each antigen per immunization was administered in combination with 5 mg of saponin (Saponin from quilaja bark, Sigma). Three consecutive dose regimens were made for one immunization. Therefore, the VLP-S, rS, VLP-Y, and rY groups received 40 ⁇ g, 10 mg, 15 ⁇ g, and 35 mg of antigen divided into 3 days. After the third and fourth oral immunizations, blood was collected through the tail vein of the mouse. Sera were collected by centrifuging mouse blood at 12000 ⁇ g and stored at ⁇ 70 ° C. until neutralizing antibody activity and anti-RGNNV capsid protein IgG measurements.
  • RGNNV capsid proteins and cell lysates were transferred onto PVDF membranes (Millipore, USA) after being run on a 12% acrylamide gel. Protein-adsorbed PVDF membranes were blocked with a buffer containing 5% skim mik (Bioworld, USA) (tris-buffered saline with 0.1% Tween 20, TBST). PVDF membranes were then reacted with rabbit anti-RGNNV capsid protein polyclonal antibodies. Rabbit anti-RGNNV capsid protein polyclonal antibodies were awarded from Gendocs Inc., South Korea.
  • the membrane was washed three times with TBST for 10 minutes, and then reacted with HRP-labeled goat anti-earth IgG antibody (Bethyl, USA) and washed four times for 10 minutes.
  • RGNNV capsid proteins were detected using the ECL kit (Santacruz, USA).
  • RGNNV capsid proteins were coated with 200 ng per well in 96 well ELISA plates. Coating was carried out at 4 ° C. for 16 hours. Capsid proteins were diluted in PBS for coating. After coating each well was blocked with PBS-T (PBS containing 0.05% Tween 20) containing 3% bovine serum albumin. Blocking was performed for 1 hour at room temperature. The mouse serum was then serially diluted three times with PBS-T containing 0.3% bovine serum albumin and applied to the wells and reacted at 37 ° C. for 1 hour.
  • PBS-T PBS containing 0.05% Tween 20
  • the plate was washed three times with PBS-T and then reacted with HPR attached goat anti-mouse Ig antibody (Bethyl, USA) for 1 hour at 37 ° C. Color development was carried out using o-phenylenediamine dihydrochloride (Sigma, USA) as substrate and color reaction was measured at 492 nm. End-point titers were determined to be 1.5 times the optical density values of mouse serum immunized with PBS.
  • Neutralizing antibody titers were determined by modifying known methods. E-11 cells were dispensed into 96 well cell culture plates at 1 ⁇ 10 4 cells per well and incubated at 25 ° C. As a medium for cell culture, L-15 medium (Gibco, USA) containing 10% FBS and 1% penicillin-streptomycin was used. When cells formed 80-90% confluency, a mixture of mouse serum and RGNNV was infected with the prepared cells. Mouse serum was diluted 1:50 or 1: 200 in L-15 medium with 5% FBS. 75 ⁇ L of mouse serum dilutions were mixed with 75 ⁇ L of RGNNV (10 2 TCID 50 ) and allowed to stand at room temperature for 30 minutes.
  • Serum + RGNNV mixed solution was removed from the culture medium of E-11 cells prior to infection with the cells. Thereafter, 75 ⁇ L of mouse serum and RGNNV mixed solution were infected with E-11 cells, and cultured at 25 ° C. for 4 days. After 4 days of culture, the cell lesion was observed under a microscope.
  • rY was loaded with 140, 70, 35, 17 ⁇ g (dry weight) of cells and the amount of capsid contained in these cells was compared with 60, 30, 15, 7.5 ng (Bradford protein quantification) of purified RGNNV capsid proteins.
  • 48 ⁇ g of rS contained 200 ng of capsid protein and 140 ⁇ g of rY contained 60 ng of capsid protein.
  • 1 mg of rS expresses 4.1 ⁇ g of capsid protein and 1 mg of rY expresses 0.43 ⁇ g of capsid protein.
  • the VLP-S group is a group immunized with purified RGNNV capsid protein in accordance with the amount of capsid protein expressed by rS.
  • the VLP-Y group is an orally immunized RGNNV capsid protein purified to the amount of capsid protein expressed by rY.
  • Antibody titers in each mouse group were calculated as median values.
  • Anti-RGNNV capsid protein IgG antibody titers were measured after tertiary oral immunity.
  • the VLP-S group showed an antibody titer of 450 while the rS group showed 4050 antibody titers.
  • the antibody titer of the VLP-Y group showed 0 while the antibody titer of the rY group showed 4050.
  • the antibody titers after the 4th immunity were found to have an antibody titer of 450 while the VLP-S and VLP-Y groups showed an antibody titer of 12150. Therefore, oral immunization of the yeast cell line expressing the RGNNV capsid protein itself was confirmed to induce anti-RGNNV capsid protein antibody titers 10 to 30 times higher than when orally immunized the purified capsid protein.
  • Betanodavirus non-structural protein B1 A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385: 444-454.
  • the capsid protein of nodavirus is expressed through a yeast expression system, and then purified through a chromatographic purification method to mass produce high quality nodavirus virus analogous particles.
  • the prepared nodavirus virus analogous particles can be very usefully used as an antigen of a vaccine against nodavirus infection.
  • the protective capsid protein exhibited a superior protective immune inducing effect than the vaccine composition. Therefore, this means that the yeast strain containing the capsid protein itself has excellent immune inducing ability.
  • the process for preparing the vaccine antigen can be omitted. In addition, using it for oral vaccines can save a great deal of time, effort and money for vaccination.

Abstract

The present invention relates to a method for producing virus-like particles of nodavirus, a yeast cell line expressing the same, and a vaccine composition containing the same. According to the method of the present invention, it is possible to mass produce high-quality virus-like particles of nodavirus by expressing a nodavirus capsid protein through a yeast expression system and purifying the same by chromatography. The virus-like particles of nodavirus prepared by the method of the present invention can be very useful as an antigen of a vaccine against nodavirus infection. In addition, the present invention provides a recombinant yeast strain expressing a nodavirus capsid protein, and a vaccine composition containing the recombinant yeast strain or a cultured product thereof.

Description

노다바이러스의 바이러스 유사입자의 생산방법, 이를 발현하는 효모 세포주 및 이를 포함하는 백신 조성물Production method of virus like particles of nodavirus, yeast cell line expressing the same and vaccine composition comprising the same
본 발명은 노다바이러스의 바이러스 유사입자(Virus-like particle, VLP)의 생산방법, 이를 발현하는 효모 세포주 및 이를 유효성분으로 포함하는 면역원성 조성물 및 백신 조성물에 관한 것이다.The present invention relates to a method for producing virus-like particles (VLP) of nodavirus, a yeast cell line expressing the same, and an immunogenic composition and vaccine composition comprising the same as an active ingredient.
노다바이러스과(nodaviridae family)는 알파노다바이러스(alphanodavirus)와 베타노다바이러스(betanodavirus)로 구성되어 있다[1]. 알파노다바이러스는 곤충에 감염을 일으키며 베타노다바이러스는 어류에 감염을 일으키는 것으로 알려져 있다[1]. 베타노다바이러스는 40종 이상의 어류에 감염할 수 있으며 어류에 감염 시 신경손상(nervous necrosis)를 일으켜 100% 사망에 이르게 한다[2]. 베타노다바이러스는 중추신경에 주로 감염하며 성장기의 어류에 감염하는 것으로 알려져 있다[2]. 현재까지 알려진 베타노다바이러스 종은 SJNNV(striped jack nervous necrosis virus), BFNNV(barfin flounder nervous necrosis virus), TPNNV(tiger puffer nervous necrosis virus)와 RGNNV(red spotted grouper nervous necrosis virus)가 있다[3]. BFNNV는 한류가 흐르는 바다에 서식하는 어류에서 주로 발견되며 RGNNV는 난류 지역의 바다에서 서식하는 어류에서 주로 발견된다[4]. 노다바이러스에 감염된 어류는 이상 유영(abnormal swim) 증상을 나타내며 뇌 조직에 소강 (vacuole)을 형성하는 뇌 병변이 발견된다[5]. The nodaviridae family consists of alphanodavirus and betanodavirus [1]. Alpha nodaviruses infect insects and beta nodaviruses are known to infect fish [1]. Betanoviruses can infect more than 40 species of fish and can cause nerve damage (nervous necrosis) resulting in 100% death [2]. Betanovirus is mainly infected with the central nerve and is known to infect fish during the growing season [2]. Betanodavirus species known to date include stripped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV), tiger puffer nervous necrosis virus (TPNNV), and red spotted grouper nervous necrosis virus (RGNNV) [3]. BFNNV is mainly found in fish inhabiting the Korean Wave, while RGNNV is found mainly in fish inhabiting the turbulent ocean [4]. Fish infected with nodaviruses exhibit abnormal swimming and brain lesions that form vacuole in brain tissue [5].
베타노다바이러스에 감수성을 가진 종에는 컨빅트 서전피쉬(convict surgeonfish; Acanthurus triostegus), 라인드 서전피쉬(lined surgeonfish; A. lineatus), 네로스트라이프 카디날피쉬(narrowstripe cardinalfish; Apogon exostigma), 샛별돔(threespot dascyllus; Dascyllus trimaculatus), 스코파스 탱(Scopas tang; Zebrasoma scopas), 블루핸드 고비(blueband goby; Valenciennea strigata), 자주복(tiger puffer; Takifugu rubripes), 레몬필 엔젤피쉬(lemonpeel angelfish; Centropyge flavissimus) 및 원반제비활치(orbicularis batfish; Platax orbicularis)가 알려져 있다[6, 7]. Species susceptible to beta-daviruses include convict surgeonfish (Acanthurus triostegus), lined surgeonfish (A. lineatus), narrowstripe cardinalfish (Apogon exostigma), and three-spotted dome (threespot). dascyllus; Dascyllus trimaculatus), Scopas tang; Zebrasoma scopas, blueband goby; Valenciennea strigata, tiger puffer; Takifugu rubripes, lemon peel angelfish (lemonpeel angelfish; Centropyge flavissimus) Orbicularis batfish (Platax orbicularis) is known [6, 7].
노다바이러스는 3.1 kb 의 RNA 1과 1.4 kb의 RNA2를 보유하고 있다. RNA 1은 RNA-의존성 RNA 중합효소를 암호화하며[8], RNA 2는 캡시드 단백질을 암호화한다[9]. RNA 복제과정에서 0.4 kb의 RNA 3가 추가로 합성되며 RNA 3는 두 개의 ORF(open reading frame)을 포함하는 것으로 알려져 있다. 두 ORF는 111개의 아미노산으로 이루어지는 B1 단백질과 75개 아미노산으로 이루어지는 B2 단백질을 암호화 한다[10, 11]. Nodavirus has 3.1 kb of RNA 1 and 1.4 kb of RNA2. RNA 1 encodes an RNA-dependent RNA polymerase [8] and RNA 2 encodes a capsid protein [9]. During RNA replication, an additional 0.4 kb of RNA 3 is synthesized and RNA 3 is known to contain two open reading frames (ORFs). Both ORFs encode a B1 protein of 111 amino acids and a B2 protein of 75 amino acids [10, 11].
현재까지 노다바이러스에 대한 예방 백신은 바이러스 불활화 백신 (inactivated virus vaccine), 합성 펩타이드 백신, DNA 백신, 재조합 캡시드 단백질 백신 등 다양한 형태로 시도되었다[12]. 이들 중 캡시드 단백질을 이용한 백신은 어류에서 좋은 예방효과를 보여주었으며 혈액 내 바이러스 중화활성 또한 높게 유도하는 것으로 나타났다[13, 14]. 베타노다바이러스 캡시드 단백질의 아미노산 부위 1-32, 91-162, 181-212, 254-256 가 숙주 어류의 중화항체 형성에 중요하게 관여하는 것으로 알려져 있다[15, 16]. 따라서 노다바이러스의 캡시드 단백질은 가장 유용한 항원 후보로 생각되고 있다. To date, prophylactic vaccines against nodaviruses have been tried in various forms, including virus inactivated virus vaccines, synthetic peptide vaccines, DNA vaccines, and recombinant capsid protein vaccines [12]. Among them, the vaccine using capsid protein showed a good preventive effect in fish and also induced high virus neutralizing activity in blood [13, 14]. The amino acid regions 1-32, 91-162, 181-212, 254-256 of betanovirus virus capsid proteins are known to be important in the formation of neutralizing antibodies in host fish [15, 16]. Thus, the capsid protein of nodavirus is considered to be the most useful antigen candidate.
RNA 2의 cDNA 클로닝에 의해 생산된 캡시드 단백질은 자가조립되어 노다바이러스의 구조와 유사한 바이러스 유사입자(virus-like particles, VLPs)를 형성하는 것으로 알려져 있다[17]. 극저온전자현미경(cryo-electron microscopy)를 통해 밝혀진 베타노다바이러스 바이러스 유사입자의 3차 구조는 25-30 nm 크기의 T-3 캡시드 형태이다[18]. 현재까지 노다바이러스의 바이러스 유사입자는 대장균(Escherichai coli)와 곤충세포(spodoptera frugiperda)에서 생산된 바 있다[17, 19]. 그러나 아직까지 효모(yeast) 생산 시스템을 이용하여 노다바이러스의 바이러스 유사입자를 생산한 예는 보고되어 있지 않다. Capsid proteins produced by cDNA cloning of RNA 2 are known to self-assemble to form virus-like particles (VLPs) similar to the structure of nodaviruses [17]. The tertiary structure of the beta-novirus virus like particles, revealed by cryo-electron microscopy, is in the form of T-30 capsid, 25-30 nm in size [18]. To date, viral analogues of nodavirus have been produced in Escherichai coli and insect cells (spodoptera frugiperda) [17, 19]. However, there have not been reported examples of producing virus analog particles of nodavirus using the yeast production system.
노다바이러스의 바이러스 유사입자 정제에 있어서 수크로오즈 쿠션(sucrose cushion) 또는 세슘클로라이드 쿠션(cesium chloride cushion)을 사용한 초원심분리법(ultracentrifugation)이 공통적으로 사용되고 있다[17, 19, 20]. 그러나 이들 정제 방법은 실험실 규모의 항원 생산에만 적용될 수 있다는 한계점을 가지고 있다. 바이러스 백신의 실질적인 생산을 위해서는 칼럼 크로마토그래피를 사용한 정제방법이 필수적으로 요구되나[21], 현재까지 노다바이러스의 바이러스 입자를 컬럼 크로마토그래피 방법을 사용하여 고효율로 정제하기 위한 방법은 개발되어 있지 않다. Ultracentrifugation using sucrose cushion or cesium chloride cushion is commonly used to purify virus like particles of nodaviruses [17, 19, 20]. However, these purification methods have limitations that can be applied only to the production of antigens on a laboratory scale. Purification using column chromatography is essential for the actual production of viral vaccines [21]. However, no method for the high efficiency purification of virus particles of Nodavirus using column chromatography has been developed.
한편, 병원체에 대한 방어 면역을 유도하기 위해서는 정제된 항원을 피하 또는 근육으로 주사하는 방법이 사용되어 오고 있다. 주사를 통한 항원의 면역은 높은 수준의 항체 역가와 세포성 면역 반응을 유도할 수 있으나 제조과정에서 백신제에 대한 안전성 확보에 많은 노력이 들어간다. 주사제 백신의 제조를 위해서는 고 순도로 정제된 항원이 필요하며, 세포주 유래 불순물 및 독소의 제거에 대한 강도 높은 주의가 요구된다. In order to induce protective immunity against pathogens, a method of injecting purified antigen subcutaneously or intramuscularly has been used. Immunization of antigens by injection can induce high levels of antibody titers and cellular immune responses, but much effort has been put into securing safety for vaccines during the manufacturing process. High purity purified antigens are required for the preparation of injectable vaccines, and intense care is required for the removal of cell line derived impurities and toxins.
주사제를 통한 동물 및 어류의 대량 백신 접종은 경제적인 측면에서 많은 한계를 가지고 있다. 주사제로 제조된 백신의 경우 생산가격이 고가여서 이를 대량으로 접종 시 축산 및 어류 양식 업자에 경제적 부담을 안겨줄 수 있다. 특히, 개체수가 많은 양식 어류를 대상으로 한 주사제 면역은 많은 시간과 노력이 들어가게 된다. Mass vaccination of animals and fish by injection has many limitations in economic terms. Injectable vaccines are expensive to produce, which can put economic burdens on livestock and fish farmers when inoculated in large quantities. In particular, injecting immunity against aquaculture fish requires a lot of time and effort.
경구 또는 비강 등 점막을 통한 백신 면역은 대량으로 어류 및 동물을 면역시키는데 가장 이상적인 방법으로 생각되어 오고 있다. 그러나 점막 면역은 주사를 통한 면역보다 현저하게 낮은 면역반응을 유도하며 많은 경우 방어 면역에 실패하게 된다. 소화기관의 낮은 pH와 단백질 분해를 위한 효소들은 경구 면역을 어렵게하는 주요 요인이다. 대부분의 백신 항원은 소화기관을 통과할 때 분해되거나 항원성을 잃어버리게 된다. 항원성이 남아 있더라도 소화기관은 이들 항원을 음식물로 인식하여 면역반응을 일으키지 못하는 경우가 많다. 따라서 경구를 통한 면역은 주사를 통한 면역보다 현격하게 많은 양의 항원을 요구하게 되며 많은 양의 항원을 사용하더라도 주사를 통한 면역보다 낮은 항체 반응이 유도된다. 이러한 경구 백신의 개발에 대한 장벽으로 아직까지 양식 어류에 대한 백신 접종은 주사를 통해 이루어지고 있다.Vaccine immunization through mucous membranes, such as oral or nasal, has been considered the most ideal way to immunize fish and animals in large quantities. Mucosal immunity, however, induces a significantly lower immune response than injection-induced immunity and in many cases fails protective defense. Low pH of the digestive system and enzymes for proteolysis are major factors that make oral immunity difficult. Most vaccine antigens break down or lose antigenicity as they pass through the digestive tract. Even if the antigenicity remains, the digestive organs often recognize these antigens as food and cannot cause an immune response. Therefore, oral immunization requires a significantly larger amount of antigen than immunization, and even when a large amount of antigen is used, a lower antibody response is induced than immunization through injection. As a barrier to the development of such oral vaccines, vaccination of farmed fish is still carried out by injection.
한편, 한국공개특허 제10-2011-0135206호에서는 어류 노다바이러스 단백질의 에피토프를 포함하는 폴리펩타이드, 상기 폴리펩타이드를 포함하는 재조합 발현 벡터, 상기 벡터로 형질전환된 숙주세포, 상기 숙주세포에 의해 생산된 재조합 단백질에 대해 개시하고 있지만, 본원 발명과 같이 효모 균주에서의 발현에 대한 언급은 없다.Meanwhile, Korean Patent Publication No. 10-2011-0135206 discloses a polypeptide comprising an epitope of a fish nodavirus protein, a recombinant expression vector comprising the polypeptide, a host cell transformed with the vector, and a production by the host cell. Although recombinant proteins have been described, there is no mention of expression in yeast strains as in the present invention.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 백신 제조를 위한 노다바이러스의 바이러스 유사입자(VLP)를 안정적으로 대량 생산하는 방법을 개발하기 위해 연구 노력하였다. 그 결과, 효모 세포 발현 시스템을 이용하여 노다바이러스의 캡시드 단백질을 발현시키고, 발현된 효모 세포 용해물에 대해 컬럼 크로마토그래피 방법을 사용하여 정제하면 높은 품질의 노다바이러스의 바이러스 유사입자를 대량으로 얻을 수 있음을 확인하여 본 발명을 완성하였다. 또한, 노다바이러스 캡시드 단백질을 발현하는 효모 세포주 자체를 백신 조성물로 사용할 경우 정제된 캡시드 단백질을 백신의 조성물로 사용했을 때보다 우수한 방어 면역 유도 효과를 나타내고, 이는 캡시드 단백질을 포함하는 효모주 자체가 우수한 면역 유도능을 가지고 있음을 확인하고 본 발명을 완성하였다. The present inventors have tried to develop a method for stably mass production of virus analog particles (VLP) of nodavirus for vaccine production. As a result, by expressing the capsid protein of nodavirus using a yeast cell expression system and purifying the expressed yeast cell lysate by column chromatography method, it is possible to obtain a large amount of virus-like particles of high quality nodavirus. Confirmed that the present invention was completed. In addition, when the yeast cell line expressing the nodavirus capsid protein itself is used as a vaccine composition, it shows a superior protective immune inducing effect than when the purified capsid protein is used as a vaccine composition, which is superior to the yeast strain containing the capsid protein itself. It was confirmed that the immune inducing ability and completed the present invention.
따라서, 본 발명의 목적은 노다바이러스의 바이러스 유사입자의 생산 방법을 제공하는 데에 있다. It is therefore an object of the present invention to provide a method for producing virus like particles of nodavirus.
본 발명의 다른 목적은 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자를 제공하는 것에 있다. Another object of the present invention is to provide a virus like particle of nodavirus assembled from a nodavirus capsid protein.
본 발명의 또 다른 목적은 노다바이러스의 바이러스 유사입자를 포함하는 면역원성 조성물을 제공하는 데에 있다. It is another object of the present invention to provide an immunogenic composition comprising virus like particles of nodavirus.
본 발명의 또 다른 목적은 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주를 제공하는 데에 있다. Another object of the present invention is to provide a recombinant yeast strain expressing the nodavirus capsid protein.
본 발명의 또 다른 목적은 노다바이러스의 바이러스 유사입자, 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주 또는 이의 배양물을 포함하는 백신용 조성물을 제공하는 데에 있다. Still another object of the present invention is to provide a vaccine composition comprising a virus like particle of nodavirus, a recombinant yeast strain expressing a nodavirus capsid protein, or a culture thereof.
본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.The objects and advantages of the invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 노다바이러스 바이러스 유사입자의 생산 방법을 제공한다: (a) 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열을 포함하는 발현벡터로 형질전환되어 상기 노다바이러스 캡시드 단백질을 발현하는 효모 세포를 배양하는 단계; (b) 상기 배양된 효모 세포를 용해시켜 세포 용해물을 얻는 단계; 및 (c) 상기 세포 용해물에 대해 크로마토그래피(chromatography)를 행하여 노다바이러스 캡시드 단백질을 정제하는 단계. According to one aspect of the present invention, the present invention provides a method for producing a nodavirus virus analogous particle comprising the steps of: (a) transformed with an expression vector comprising a DNA sequence encoding a nodavirus capsid protein Culturing yeast cells expressing the nodavirus capsid protein; (b) lysing the cultured yeast cells to obtain cell lysates; And (c) subjecting the cell lysate to chromatography to purify the nodavirus capsid protein.
본 발명의 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 제공한다. According to another aspect of the present invention, the present invention provides a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 포함하며, 노다바이러스에 대한 면역반응을 유발할 수 있는 면역원성 조성물(immunogenic composition)을 제공한다. According to another aspect of the present invention, the present invention comprises a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein, and is immunogenic capable of inducing an immune response against nodavirus. It provides a composition (immunogenic composition).
본 발명의 또 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주를 제공한다.According to another aspect of the present invention, the present invention provides a recombinant yeast strain expressing the nodavirus capsid protein.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 (a) 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 포함하는 면역원성 조성물, 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주 또는 이의 배양물의 면역학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 백신 조성물을 제공한다. According to another aspect of the invention, the present invention (a) expresses an immunogenic composition comprising a virus-like particle (VLP) of nodavirus assembled from the nodavirus capsid protein, nodavirus capsid protein Immunologically effective amount of a recombinant yeast strain or culture thereof; And (b) a pharmaceutically acceptable carrier.
본 발명은 노다바이러스의 바이러스 유사입자(Virus-like particle, VLP)의 생산방법, 이를 발현하는 효모 세포주 및 이를 유효성분으로 포함하는 면역원성 조성물 및 백신 조성물에 관한 것이다. 본 발명의 방법에 의하면, 노다바이러스의 캡시드 단백질을 효모 발현 시스템를 통해 발현시킨 후 크로마토그래피 정제 방법을 통해 정제하면, 높은 품질의 노다바이러스 바이러스 유사입자를 대량 생산할 수 있다. 또한, 제조된 노다바이러스 바이러스 유사입자는 노다바이러스 감염에 대한 백신의 항원으로 매우 유용하게 사용될 수 있다. The present invention relates to a method for producing virus-like particles (VLP) of nodavirus, a yeast cell line expressing the same, and an immunogenic composition and vaccine composition comprising the same as an active ingredient. According to the method of the present invention, the capsid protein of nodavirus is expressed through a yeast expression system, and then purified through a chromatographic purification method to mass produce high quality nodavirus virus analogous particles. In addition, the prepared nodavirus virus analogous particles can be very usefully used as an antigen of a vaccine against nodavirus infection.
한편, 본 발명의 결과에 따르면 노다바이러스 캡시드 단백질을 발현하는 효모 세포주 자체를 백신 조성물로 사용할 경우 정제된 캡시드 단백질을 백신의 조성물로 사용했을 때보다 우수한 방어 면역 유도 효과를 나타내었다. 따라서 이는 캡시드 단백질을 포함하는 효모주 자체가 우수한 면역 유도능을 가지고 있음을 의미한다. 이러한 형태의 재조합 효모주를 경구 백신으로 사용할 경우 백신 항원 제조를 위한 공정을 생략할 수 있다. 또한 이를 경구 백신을 위한 용도로 사용할 경우 백신 접종을 위한 시간, 노력, 비용을 크게 절약할 수 있다.Meanwhile, according to the results of the present invention, when the yeast cell line expressing the nodavirus capsid protein itself was used as the vaccine composition, the protective capsid protein exhibited a superior protective immune inducing effect than the vaccine composition. Therefore, this means that the yeast strain containing the capsid protein itself has excellent immune inducing ability. When using this type of recombinant yeast strain as an oral vaccine, the process for preparing the vaccine antigen can be omitted. In addition, using it for oral vaccines can save a great deal of time, effort and money for vaccination.
도 1은 본 발명의 RGNNV 노다바이러스의 캡시드 단백질을 암호화하는 DNA의 서열을 나타낸다. Figure 1 shows the sequence of DNA encoding the capsid protein of RGNNV nodavirus of the present invention.
도 2는 도 1의 DNA 서열로부터 번역된 338 aa의 아미노산 서열을 보여준다. FIG. 2 shows the amino acid sequence of 338 aa translated from the DNA sequence of FIG. 1.
도 3은 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열(NNV 캡시드 단백질 유전자, 1017 bp)이 삽입된 재조합 벡터 YEGα-MCS-NNVcp의 구성을 보여준다. 상기 DNA 서열은 벡터 YEGα-MCS의 HindIII 및 SalI 제한효소 자리에 삽입되었다. Figure 3 shows the configuration of the recombinant vector YEGα-MCS-NNVcp inserted with the DNA sequence (NNV capsid protein gene, 1017 bp) encoding the nodavirus capsid protein. The DNA sequence was inserted at the HindIII and SalI restriction enzyme sites of the vector YEGα-MCS.
도 4는 헤파린 크로마토그래피에서 노다바이러스 캡시드 단백질이 용출되는 주요 구간을 분석한 결과이다. 노다바이러스 캡시드 단백질이 용출되는 NaCl 농도는 SDS-PAGE와 웨스턴 블로팅(Western blot)을 통해 확인하였다. 캡시드 단백질을 포함하는 세포 파쇄물을 0.15 M NaCl이 포함된 완충액 조건으로 헤파린 수지에 결합시켰다. 이어서, 각각 0.4 M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M, 1.2 M의 NaCl이 포함된 용출 완충액을 순차적으로 흘려주었다. 그 결과 캡시드 단백질은 0.5 M 내지 0.6 M의 NaCl 포함 용출 완충액에서부터 불순물이 확실히 줄었으며, 1.2 M NaCl이 포함된 완충액을 흘려주었을 때 가장 많은 양이 용출됨을 확인하였다. 0.4 - 0.5 M NaCl을 포함하는 용출완충액 구간에서는 많은 양의 불순물 단백질이 캡시드 단백질과 함께 용출됨을 확인하였다. Figure 4 is the result of analyzing the main section in which nodavirus capsid protein is eluted in heparin chromatography. The concentration of NaCl from which nodavirus capsid protein was eluted was confirmed by SDS-PAGE and Western blotting. Cell lysates containing capsid proteins were bound to heparin resin under buffer conditions containing 0.15 M NaCl. Subsequently, an elution buffer containing 0.4 M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M, and 1.2 M NaCl, respectively, was flowed sequentially. As a result, the capsid protein was clearly reduced in impurities from the NaCl containing elution buffer of 0.5M to 0.6M, it was confirmed that the largest amount is eluted when flowing the buffer containing 1.2M NaCl. It was confirmed that a large amount of impurity protein was eluted with the capsid protein in the elution buffer section containing 0.4-0.5 M NaCl.
도 5는 노다바이러스 캡시드 단백질을 정제하는 과정을 보여준다. 노다바이러스 캡시드 단백질을 발현하는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 파쇄한 후 세포 파쇄물을 헤파린 결합 완충액에 대해 투석하였다. 투석 완료된 세포 파쇄액 내 캡시드 단백질은 헤파린 크로마토그래피를 통해 정제하였다. 캡시드 단백질을 포함하는 분획은 원심분리형 농축 필터 (Centrifugal filter device)를 사용하여 농축된 후 0.5 NaCl이 포함된 완충액으로 투석되었다.5 shows the process of purifying the nodavirus capsid protein. Cell lysates were dialyzed against heparin binding buffer after crushing Saccharomyces cerevisiae expressing nodavirus capsid proteins. Capsid proteins in dialysis completed cell lysate were purified by heparin chromatography. Fractions containing the capsid protein were concentrated using a centrifugal filter device and then dialyzed with a buffer containing 0.5 NaCl.
도 6은 도 4의 결과를 바탕으로 최적화된 결합조건으로 헤파린 크로마토그래피를 수행한 결과이다. LS, FT는 헤파린 수지에 로딩된 샘플(loading sample; LS)과, 결합하지 않고 흘러나온 분획(flow-throug, FT)을 각각 의미한다. 세포 파쇄액은 0.5 M NaCl이 포함된 완충액으로 투석하여 준비하였다. 투석한 세포 파쇄액을 헤파린 수지에 통과시켜 정제한 결과, 1.2 M NaCl의 용출 분획에서 고순도의 캡시드 단백질을 확인하였다. 캡시드 단백질을 포함하는 헤파린 크로마토그래피 분획을 농축한 후 0.5 M NaCl이 포함된 완충액에 대해 투석하였다. 6 is a result of performing heparin chromatography under optimized binding conditions based on the result of FIG. 4. LS and FT refer to a loading sample (LS) loaded on heparin resin, and a flow-throug (FT) flowed out without binding. Cell lysates were prepared by dialysis with a buffer containing 0.5 M NaCl. The purified cell lysate was passed through heparin resin and purified, and the high purity capsid protein was confirmed in the elution fraction of 1.2 M NaCl. The heparin chromatography fraction containing the capsid protein was concentrated and dialyzed against a buffer containing 0.5 M NaCl.
도 7은 정제를 완료한 노다바이러스의 캡시드 단백질 6 μg을 SDS-PAGE로 전개한 후 은-염색(패널 A)과 웨스턴 블로팅(패널 B)으로 확인한 결과이다. 캡시드 단백질은 37 kDa 밴드가 주요 밴드로 확인되었으며, 110 kDa 밴드도 확인되었다. 이는 기존에 공지된 노다바이러스 캡시드 단백질의 SDS-PAGE 결과와 일치한다[19]. FIG. 7 shows the results of 6 μg of the purified nodavirus capsid protein developed by SDS-PAGE, followed by silver staining (Panel A) and Western blotting (Panel B). Capsid protein was identified as the major band 37 kDa band, 110 kDa band was also identified. This is consistent with the SDS-PAGE results of previously known nodavirus capsid proteins [19].
도 8은 정제한 캡시드 단백질을 투과 전자현미경 (80 kv)으로 관찰한 결과이다. 캡시드 단백질이 노다바이러스의 크기와 유사한 25 - 30 nm 크기의 바이러스 유사입자를 형성함을 확인하였다. 8 shows the results of observing the purified capsid protein with a transmission electron microscope (80 kv). It was confirmed that the capsid protein forms a virus analog of 25-30 nm size similar to that of nodavirus.
도 9는 정제한 캡시드 단백질을 에너지 투과 전자현미경(120 kv)으로 확인한 결과이다. 에너지 투과 전자현미경 측정 결과에서도 캡시드 단백질이 노다바이러스의 크기와 유사한 25 - 30 nm 크기의 바이러스 유사입자를 형성함을 확인하였다. 9 is a result of confirming the purified capsid protein by an energy transmission electron microscope (120 kv). The results of energy transmission electron microscopy also confirmed that the capsid protein forms a virus like particle of 25-30 nm size similar to that of nodavirus.
도 10은 정제된 캡시드 단백질의 다이나믹 광산란 분석 결과를 보여준다. 다이나믹 광산란 분석은 용액상태에 존재하는 캡시드 단백질의 크기를 보여준다. 다이나믹 광산란 분석에서 캡시드 단백질은 평균 103 nm의 크기를 가지는 것으로 확인되었다.10 shows the results of dynamic light scattering analysis of purified capsid proteins. Dynamic light scattering analysis shows the size of capsid proteins present in solution. In dynamic light scattering analysis, the capsid protein was found to have an average size of 103 nm.
도 11은 RGNNV 캡시드 단백질을 발현하는 재조합 사카로마이세스 세레비지애(Saccharomyces cerevisiae; rS)와 RGNNV 캡시드 단백질을 발현하는 재조합 야로위아 리폴리티카(Yarrowia lipolytica; rY)의 RGNNV 캡시드 단백질 발현양을 웨스턴 블럿으로 분석한 결과이다. 패널 (a)와 (b)는 rS와 rY의 발현양 분석 결과를 보여준다. 48 μg의 rS는 200 ng의 RGNNV 캡시드 단백질을 포함하는 것으로 확인되었다. 140 μg의 rY는 60 ng의 RGNNV 캡시드 단백질을 포함하는 것으로 확인되었다. 따라서 1 mg의 rS는 4.1 μg의 RGNNV 캡시드 단백질을 포함하고 1 mg의 rY는 0.4 μg의 RGNNV 캡시드 단백질을 포함하는 것으로 확인되었다.FIG. 11 shows Western RGNNV capsid protein expression levels of recombinant Saccharomyces cerevisiae (rs) expressing RGNNV capsid protein and recombinant Yarrowia lipolytica (rY) expressing RGNNV capsid protein. This is the result of the blot analysis. Panels (a) and (b) show the results of rS and rY expression analysis. 48 μg of rS was found to contain 200 ng of RGNNV capsid protein. 140 μg of rY was found to contain 60 ng of RGNNV capsid protein. Thus, 1 mg of rS contained 4.1 μg of RGNNV capsid protein and 1 mg of rY contained 0.4 μg of RGNNV capsid protein.
도 12는 3차와 4차 면역후 마우스의 혈중 항-RGNNV capsid protein IgG 역가를 보여준다. PBS는 phosphate buffered saline (PBS)을 경구로 면역한 그룹, rS는 RGNNV 캡시드 단백질을 발현하는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 경구로 면역시킨 그룹을 의미한다. rY는 RGNNV 캡시드 단백질을 발현하는 야로위아 리폴리티카(Yarrowia lipolytica)를 경구로 면역시킨 그룹을 의미한다. VLP-S와 VLP-Y는 rS와 rY 그룹에 투여된 캡시드 단백질의 양에 맞추어 정제된 캡시드 단백질을 경구로 투여한 그룹을 의미한다.12 shows anti-RGNNV capsid protein IgG titers in blood of mice after the 3rd and 4th immunization. PBS means orally immunized phosphate buffered saline (PBS), rS means orally immunized Saccharomyces cerevisiae expressing the RGNNV capsid protein. rY refers to a group orally immunized Yarrowia lipolytica expressing the RGNNV capsid protein. VLP-S and VLP-Y refer to a group orally administered capsid proteins purified according to the amount of capsid proteins administered to the rS and rY groups.
도 13은 4차 경구 면역 후 마우스 혈청의 RGNNV에 대한 중화활성 측정 결과를 보여 준다. PBS, VLP-S, VLP-Y 그룹의 혈청을 RGNNV와 반응시킨 후 E-11 세포에 감염시킨 경우 세포 병변(cytopathic effect, CPE)이 관찰되었다. 반면 rS, rY그룹의 혈청을 RGNNV와 반응시킨 후 E-11세포에 감염시킨 경우 세포 병변이 관찰되지 않았다. 따라서 rS와 rY가 RGNNV에 대한 중화항체를 효과적으로 유도하였음이 확인되었다.Figure 13 shows the result of neutralizing activity against RGNNV of mouse serum after the fourth oral immunization. Cytopathic effect (CPE) was observed when serum of PBS, VLP-S and VLP-Y groups were reacted with RGNNV and then infected with E-11 cells. On the other hand, when the serum of the rS and rY groups were reacted with RGNNV and then infected with E-11 cells, no cell lesion was observed. Therefore, it was confirmed that rS and rY effectively induced neutralizing antibodies against RGNNV.
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 노다바이러스 바이러스 유사입자의 생산 방법을 제공한다: (a) 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열을 포함하는 발현벡터로 형질전환되어 상기 노다바이러스 캡시드 단백질을 발현하는 효모 세포를 배양하는 단계; (b) 상기 배양된 효모 세포를 용해시켜 세포 용해물을 얻는 단계; 및 (c) 상기 세포 용해물에 대해 크로마토그래피(chromatography)를 행하여 노다바이러스 캡시드 단백질을 정제하는 단계. According to one aspect of the present invention, the present invention provides a method for producing a nodavirus virus analogous particle comprising the steps of: (a) transformed with an expression vector comprising a DNA sequence encoding a nodavirus capsid protein Culturing yeast cells expressing the nodavirus capsid protein; (b) lysing the cultured yeast cells to obtain cell lysates; And (c) subjecting the cell lysate to chromatography to purify the nodavirus capsid protein.
이하에서 본 발명의 방법을 각 단계에 따라 상세히 설명한다. Hereinafter, the method of the present invention will be described in detail with each step.
(a) 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열을 포함하는 발현벡터로 형질전환되어 상기 노다바이러스 캡시드 단백질을 발현하는 효모 세포를 배양하는 단계. (a) culturing yeast cells transformed with an expression vector comprising a DNA sequence encoding the nodavirus capsid protein to express the nodavirus capsid protein.
본 명세서에서 용어 “노다바이러스”는 노다바이러스과(nodaviridae family)에 속하는 바이러스로서 곤충을 숙주로 하는 알파노다바이러스(alphanodavirus)와 어류에 감염하는 베타노다바이러스(betanodavirus)를 모두 포함한다. 노다바이러스는 엔벨로프(envelope)를 갖지 않으며, 비리온의 크기는 29 - 35 nm이며, 캡시드(capsid)는 32개의 캡소머(capsomer)으로 구성된다. 노다바이러스의 지놈(genome)은 선형(linear)이며 포지티브 센스(positive sense)이고, RNA 1와 RNA 2의 2개의 부위로 구성된, 약 4500 뉴클레오타이드로 이루어진 단일쇄 RNA이다. As used herein, the term “nodavirus” is a virus belonging to the nodaviridae family and includes both an alphanodavirus that hosts insects and a betanodavirus that infects fish. Nodaviruses do not have an envelope, the virion is 29-35 nm in size, and the capsid consists of 32 capsomers. The genome of nodaviruses is a linear, positive sense, single-stranded RNA of about 4500 nucleotides, consisting of two sites of RNA 1 and RNA 2.
약 3.1 kb 크기의 RNA 1은 다중성 기능의 도메인을 갖는 단백질을 코딩하며, 상기 다중성 기능 도메인은 미토콘드리아 타겟팅 도메인, 막통과 도메인(transmembrane domain), RNA-의존성 RNA 중합효소(RdRp) 도메인, 자기-상호작용 도메인 및 RNA 캡핑 도메인이다. 또한, RNA 1은 RNA 침묵(RNA silencing) 억제자인 단백질 B2로 번역되는 서브 지놈 RNA3를 코딩한다. RNA 1, about 3.1 kb in size, encodes a protein with a multi-functional domain, wherein the multi-functional domain comprises a mitochondrial targeting domain, a transmembrane domain, an RNA-dependent RNA polymerase (RdRp) domain, self-interaction Functional domain and RNA capping domain. RNA 1 also encodes a subgenomic RNA3 translated to protein B2, which is an RNA silencing inhibitor.
약 1.4 kb 크기의 RNA 2는 바이러스 캡시드 단백질 전구체인 단백질 α를 코딩하며, 단백질 α는 바이러스 조립이 이루어지는 동안에 2개의 성숙 단백질인 38 kDa β 단백질과 5 kDa γ 단백질로 절단된다. About 1.4 kb of RNA 2 encodes protein α, a viral capsid protein precursor, which is cleaved into two mature proteins, 38 kDa β protein and 5 kDa γ protein, during viral assembly.
바람직하게는 본 발명의 “노다바이러스”는 어류에 감염하는 베타노다바이러스(betanodavirus)이며, 상기 베타노다바이러스는 SJNNV(striped jack nervous necrosis virus), BFNNV(barfin flounder nervous necrosis virus), TPNNV(tiger puffer nervous necrosis virus), RGNNV(red spotted grouper nervous necrosis virus), MGNNV(malabaricus grouper nervous necrosis virus), 및 DGNNV(dragon grouper nervous necrosis virus)를 포함하나, 이에 한정되지 않는다. Preferably the "nodavirus" of the present invention is a beta nodavirus (betanodavirus) that infects fish, the beta noda virus is SJNNV (striped jack nervous necrosis virus), BFNNV (barfin flounder nervous necrosis virus), TPNNV (tiger puffer) nervous necrosis virus (RGNNV), red spotted grouper nervous necrosis virus (RGNNV), malabaricus grouper nervous necrosis virus (MGNNV), and dragon grouper nervous necrosis virus (DGNNV).
본 발명에서 “노다바이러스 캡시드 단백질을 코딩하는 DNA 서열”은 당업계에 공지된 적합한 방법을 통해 얻을 수 있다. 예컨대, 총 바이러스 RNA를 주형으로 하여 적합한 프라이머(primer)와 역전사 중합효소연쇄반응(reverse-transcriptase polymerase chain reaction, RT-PCR)을 통해 cDNA로 증폭할 수 있다. 총 바이러스 RNA는 예컨대 노다바이러스에 감염된 어류의 뇌로부터 분리할 수 있다. 클로닝한 cDNA는 적합한 발현벡터안으로 삽입시키고, 캡시드 단백질의 발현을 위해 숙주세포에 형질전환시킨다. In the present invention, "a DNA sequence encoding nodavirus capsid protein" can be obtained through a suitable method known in the art. For example, total viral RNA can be used as a template for amplification into cDNA through suitable primers and reverse-transcriptase polymerase chain reaction (RT-PCR). Total viral RNA can be isolated from, for example, the brains of fish infected with nodaviruses. The cloned cDNA is inserted into a suitable expression vector and transformed into host cells for expression of the capsid protein.
본 발명에서 상기 “노다바이러스 캡시드 단백질”은 서열번호 2의 아미노산 서열, 이 서열과 적어도 70% 동일성, 적어도 80% 동일성, 적어도 90% 동일성, 적어도 95% 동일성, 또는 적어도 99% 동일성을 갖는 아미노산 서열로 구성되는 노다바이러스 캡시드 단백질로 이루어진다. In the present invention, the “nodavirus capsid protein” is an amino acid sequence of SEQ ID NO: 2, an amino acid sequence having at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, or at least 99% identity with this sequence It consists of a nodavirus capsid protein.
본 발명의 다른 바람직한 구현예에 의하면, 본 발명의 “노다바이러스 캡시드 단백질을 코딩하는 DNA 서열”은 사카로마이세스 세레비지애(S. cerevisiae)에서 발현을 위해 코돈 최적화된 서열번호 1의 염기서열로 구성된다. According to another preferred embodiment of the present invention, the "DNA sequence encoding the nodavirus capsid protein" of the present invention is the base sequence of SEQ ID NO: 1 codon optimized for expression in S. cerevisiae (S. cerevisiae) It consists of.
본 발명의 노다바이러스 캡시드 단백질을 발현하는 벡터의 구체적인 구성은 하기 실시예에 설명되어 있으며 도 3에 예시되어 있다. The specific construction of the vector expressing the nodavirus capsid protein of the present invention is described in the following examples and illustrated in FIG. 3.
본 발명에서 숙주세포(host cell)로 이용되는 세포는 효모(yeast)이며, 바람직한 효모 균주 속(genus)에는 예를 들어, 사카로마이세스(Saccharomyces), 칸디다(Candida), 크립토코쿠스(Cryptococcus), 한세눌라(Hansenula), 클루베로마이세스(Kluyveromyces), 피치아(Pichia), 로도토룰라(Rhodotorula), 스키조사카로마이세스(Schizosaccharomyces) 및 야로위아(Yarrowia) 등이 포함되며, 보다 바람직하게는 사카로마이세스, 칸디다, 한세눌라, 피치아 및 스키조사카로마이세스이며, 가장 바람직하게는 사카로마이세스를 이용한다. In the present invention, the cell used as a host cell is a yeast, and a preferred yeast strain genus includes, for example, Saccharomyces, Candida, Cryptococcus (Cryptococcus). ), Hansenula, Kluyveromyces, Pichia, Rhodotorula, Schizosaccharomyces and Yarrowia, and more preferably. Are Saccharomyces, Candida, Hansenul, Peachia and Ski Research Carromamyses, most preferably Saccharomyces.
한편, 바람직한 효모 균주 종(species)에는 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 사카로마이세스 칼스버젠시스(Saccharomyces carlsbergensis), 칸디다 알비칸스(Candida albicans), 칸디다 케피르(Candida kefyr), 칸디다 트로피칼리스(Candida tropicalis), 크립토코쿠스 라우렌티 (Cryptococcus laurentii), 크립토코쿠스 네오포르만스(Cryptococcus neoformans), 한세눌라 아노말라(Hansenula anomala), 한세눌라 폴리모르파(Hansenula polymorpha), 클루베로마이세스 프라질리스(Kluyveromyces fragilis), 클루베로마이세스 락티스(Kluyveromyces lactis), 클루베로마이세스 마르크시아누스바르 락티스(Kluyveromyces marxianus var. lactis), 피키아 파스토리스(Pichia pastoris), 로도토룰라 루브라 (Rhodotorula rubra), 스키로사카로마이세스 폼베(Schizosaccharomyces pombe) 및 야로위아 리포리티카(Yarrowia lipolytica) 등을 포함한다. 가장 바람직하게는 본 발명의 숙주 효모는 사카로마이세스 세레비지에(Saccharomyces cerevisiae)이다. On the other hand, preferred yeast strain species (Species) Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces carlsbergensis, Candida albicans, Candida kefyr, Candida tropicalis, Cryptococcus laurentii, Cryptococcus neoformans, Hansenula anomala, Hansenula polymorpha, Klutoluco morphus Kluyveromyces fragilis, Kluyveromyces lactis, Kluyveromyces marxianus var.lactis, Pichia pastoris, Rhodotorula Rhodotorula rubra, Schizosaccharomyces pombe, Yarrowia lipolytica, and the like. Most preferably the host yeast of the present invention is Saccharomyces cerevisiae .
본 발명의 형질전환된 효모(transformed yeast)는 노다바이러스 캡시드 단백질을 성공적으로 발현시키는 발현 벡터(expression vector)로 형질전환된 효모 세포를 의미한다. 상기 발현 벡터는 당업계에 공지된 전사(transcription) 또는 트랜스레이션(translation) 조절 요소, 다른 마커 유전자를 포함할 수 있다.Transformed yeast of the present invention refers to yeast cells transformed with an expression vector that successfully expresses the nodavirus capsid protein. The expression vector may include transcriptional or translational regulatory elements and other marker genes known in the art.
본 발명의 노다바이러스 캡시드 단백질을 발현하는 형질전환된 효모는 당업계에 공지된 방법을 사용하여 용이하게 제조할 수 있으며, 이러한 방법은 미국특허 Pat. Nos. US 7250170, US 6613557, US 5888516, US 5871998, US 5618536, US5437951 등에 개시되어 있고, 이들 특허 문헌의 내용은 본 명세서에 참조로 포함된다. Transformed yeasts expressing the nodavirus capsid proteins of the invention can be readily prepared using methods known in the art, such methods being described in US Pat. Nos. US 7250170, US 6613557, US 5888516, US 5871998, US 5618536, US5437951 and the like, the contents of these patent documents are incorporated herein by reference.
본 발명의 형질전환 효모의 배양은 효모 균주가 배양될 수 있는 당업자에게 공지된 배지를 사용하여 행한다. 효과적인 배지는 일반적으로 동화 가능한 탄수화물, 질소 및 포스페이트(phosphate) 원 뿐만 아니라, 적합한 염, 미네랄, 금속 및 비타민과 생장 인자와 같은 기타 영양분을 포함하는 수용성의 배지이다. 배지는 복합 영양분을 포함하거나 제한된 최소 배지일 수도 있다. 본 발명의 형질전환 효모는 생물 반응기, 플라스크, 시험관, 마이크로타이터 디쉬 및 페트리 플레이트를 포함한 다양한 용기에서 배양될 수 있으나, 이에 제한되지 않는다. 효모의 배양은 효모 세포에 적합한 온도, pH 및 산소 농도에서 수행한다. 효모 세포의 배양 조건은 당업자에게 공지되어 있으며, 예컨대 Guthrie et al. (eds.), 1991, Methods in Enzymolgy, vol.194, Academic Press, San Diego를 참조할 수 있다. Cultivation of the transformed yeast of the present invention is carried out using a medium known to those skilled in the art in which the yeast strain can be cultured. An effective medium is generally a water soluble medium containing anabolic carbohydrates, nitrogen and phosphate sources, as well as suitable salts, minerals, metals and other nutrients such as vitamins and growth factors. The medium may be a complex nutrient or a minimal minimal medium. Transformed yeast of the present invention may be cultured in a variety of vessels including, but not limited to, bioreactors, flasks, test tubes, microtiter dishes, and petri plates. Cultivation of yeast is carried out at temperatures, pH and oxygen concentrations suitable for yeast cells. Culture conditions for yeast cells are known to those skilled in the art, for example Guthrie et al. (eds.), 1991, Methods in Enzymolgy, vol. 194, Academic Press, San Diego.
(b) 상기 배양된 효모 세포를 용해시켜 세포 용해물을 얻는 단계. (b) lysing the cultured yeast cells to obtain cell lysate.
본 발명에서 배양된 효모 세포의 용해 방법은 효모 세포의 전체 용해물(lysate)을 얻을 수 있는 방법이면 좋고, 특정한 방법으로 한정되지 않는다. 본 발명에 사용될 수 있는 용해 방법은 예를 들어, 초음파 파쇄법(sonication)에 의한 파쇄, 유리 비드(glass beads)에 의한 파쇄, 계면활성제를 사용한 파쇄, 및 이들 방법의 조합을 이용할 수 있으나, 이에 한정되지 않는다. The method for lysing the yeast cells cultured in the present invention may be any method capable of obtaining a total lysate of the yeast cells, and is not limited to a specific method. Dissolution methods that can be used in the present invention may use, for example, crushing by ultrasonication, crushing by glass beads, crushing by using a surfactant, and combinations of these methods, but It is not limited.
(c) 상기 세포 용해물에 대해 크로마토그래피(chromatography)를 행하여 노다바이러스 캡시드 단백질을 정제하는 단계. (c) chromatography of the cell lysate to purify the nodavirus capsid protein.
노다바이러스 캡시드 단백질이 발현된 숙주 효모 세포를 용해시킨 후 이 용해물에 대해 크로마토그래피를 행하여 노다바이러스 캡시드 단백질을 정제한다. 종전의 방법에서는 노다바이러스의 캡시드 단백질을 정제하기 위해 수크로오스 쿠션 또는 세슘클로라이드 쿠션을 이용한 초원심분리법을 사용하였으나, 본 발명의 방법에서는 캡시드 단백질의 대량 정제를 위해 크로마토그래피법을 사용한 것에 특징이 있다.The host yeast cells expressing the nodavirus capsid protein are lysed and the lysate is chromatographed to purify the nodavirus capsid protein. In the previous method, ultracentrifugation using a sucrose cushion or cesium chloride cushion was used to purify the capsid protein of nodavirus, but the method of the present invention is characterized by using a chromatography method for mass purification of the capsid protein.
본 발명에서 사용가능한 크로마토그래피법은 양이온교환 크로마토그래피(cation-exchange chromatography), 음이온교환 크로마토그래피((anion-exchange chromatography), 친화성 크로마토그래피(affinity chromatography), 크기배제 크로마토그래피(size-exclusion chromatography)를 사용할 수 있으며, 특히 본 발명의 방법에서는 양이온교환 크로마토그래피 특성 및 친화성 크로마토그래피 특성을 모두 갖는 헤파린 크로마토그래피(heparin chromatography)를 사용할 수 있다. Chromatographic methods usable in the present invention include cation-exchange chromatography, anion-exchange chromatography, affinity chromatography and size-exclusion chromatography. In particular, the method of the present invention can be used heparin chromatography having both cation exchange chromatography characteristics and affinity chromatography characteristics.
본 발명에서 헤파린 크로마토그래피에 의해 노다바이러스 캡시드 단백질을 정제하는 경우 0.15 M- 1.2 M 농도의 NaCl을 포함하는 용출완충액(elution buffer)를 사용하는 것이 바람직하다. 보다 바람직하게는 0.5 M - 1.2 M의 NaCl을 포함하는 용출완충액을 사용하면 캡시드 단백질의 순도와 양의 면에서 효과적으로 정제할 수 있다. 본 발명에서 용출 완충액에 포함되는 NaCl의 농도는 바람직하게는 0.6 M - 1.2 M, 보다 바람직하게는 0.7 M - 1.2 M, 보다 더 바람직하게는 0.8 M - 1.2 M, 가장 바람직하게는 0.9 M - 1.2 M의 농도이다. 상기 범위의 NaCl의 농도를 갖는 용출 완충액을 사용하면 오염물질이 포함되지 않은 순수한 노다바이러스 캡시드 단백질 분획을 얻을 수 있다. In the present invention, when the nodavirus capsid protein is purified by heparin chromatography, it is preferable to use an elution buffer containing NaCl at a concentration of 0.15 M-1.2 M. More preferably, the use of an elution buffer containing 0.5 M-1.2 M NaCl can effectively purify the capsid protein in terms of purity and amount. In the present invention, the concentration of NaCl contained in the elution buffer is preferably It is at a concentration of 0.6 M-1.2 M, more preferably 0.7 M-1.2 M, even more preferably 0.8 M-1.2 M, most preferably 0.9 M-1.2 M. Elution buffers with concentrations of NaCl in this range can be used to obtain pure nodavirus capsid protein fractions that do not contain contaminants.
본 발명에서 헤파린 크로마토그래피에 의해 노다바이러스 캡시드 단백질을 정제하는 경우 결합 완충액(binding buffer)내에 포함되는 NaCl의 농도는 특별히 한정되지 않으나, 하기 구체적인 실시예에 의하면, 0.5 M 이 가장 적합하다. In the present invention, when the nodavirus capsid protein is purified by heparin chromatography, the concentration of NaCl included in the binding buffer is not particularly limited. However, 0.5 M is most suitable according to the following specific examples.
하기 구체적인 일 실시예 및 도 8 내지 도 10에 나타난 결과에 의하면, 본 발명의 생산방법에 의해 얻은 노다바이러스 캡시드 단백질은 본래 노다바이러스의 크기와 유사한 크기인 25 - 35 nm 크기의 바이러스 유사입자를 성공적으로 형성하고 있다. 따라서, 본 발명의 방법에 의하면 노다바이러스 캡시드로 구성된 바이러스 유사입자를 얻을 수 있다. According to one specific example below and the results shown in FIGS. 8 to 10, the nodavirus capsid protein obtained by the production method of the present invention successfully infected virus analog particles having a size of 25 to 35 nm, similar in size to that of the nodavirus. Formed. Therefore, according to the method of the present invention, a virus like particle composed of nodavirus capsid can be obtained.
본 발명의 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 제공한다. According to another aspect of the present invention, the present invention provides a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 포함하며, 노다바이러스에 대한 면역반응을 유발할 수 있는 면역원성 조성물(immunogenic composition)을 제공한다. According to another aspect of the present invention, the present invention comprises a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein, and is immunogenic capable of inducing an immune response against nodavirus. It provides a composition (immunogenic composition).
본 발명의 또 다른 일 양태에 따르면, 본 발명은 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주를 제공한다.According to another aspect of the present invention, the present invention provides a recombinant yeast strain expressing the nodavirus capsid protein.
본 발명의 또 다른 일 양태에 따르면, 본 발명은 (a) 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 포함하는 면역원성 조성물, 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주 또는 이의 배양물의 면역학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 백신 조성물을 제공한다. According to another aspect of the invention, the present invention (a) expresses an immunogenic composition comprising a virus-like particle (VLP) of nodavirus assembled from the nodavirus capsid protein, nodavirus capsid protein Immunologically effective amount of a recombinant yeast strain or culture thereof; And (b) a pharmaceutically acceptable carrier.
본 발명의 바람직한 구현예에 의하면, 상기 노다바이러스의 바이러스 유사입자는 상술된 본 발명의 노다바이러스 유사입자 생산 방법에 의해 제조된 것이다. According to a preferred embodiment of the present invention, the virus analog particles of the nodavirus are prepared by the method for producing nodavirus analog particles of the present invention described above.
본 발명의 바람직한 구현예에 의하면, 본 발명의 노다바이러스 유사입자는 서열번호 2의 아미노산 서열, 이 서열과 적어도 70% 동일성, 적어도 80% 동일성, 적어도 90% 동일성, 적어도 95% 동일성, 또는 적어도 99% 동일성을 갖는 아미노산 서열로 구성되는 노다바이러스 캡시드 단백질로 이루어진다. According to a preferred embodiment of the invention, the nodavirus analogue of the present invention is an amino acid sequence of SEQ ID NO: 2, at least 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, or at least 99 It consists of a nodavirus capsid protein consisting of an amino acid sequence having% identity.
본 발명의 다른 바람직한 구현예에 의하면, 본 발명의 상기 백신 조성물은 어류에서의 노다바이러스 감염증을 예방 또는 치료하기 위한 용도이다. According to another preferred embodiment of the present invention, the vaccine composition of the present invention is for preventing or treating nodavirus infection in fish.
상기 노다바이러스는 알파노다바이러스 및 베타노다바이러스를 포함하며, 보다 바람직하게는 베타노다바이러스이다. 상기 베타노다바이러스는 예를 들어 SJNNV(striped jack nervous necrosis virus), BFNNV(barfin flounder nervous necrosis virus), TPNNV(tiger puffer nervous necrosis virus), RGNNV(red spotted grouper nervous necrosis virus), MGNNV(malabaricus grouper nervous necrosis virus), 및 DGNNV(dragon grouper nervous necrosis virus)를 들 수 있으나, 이에 한정되지 않는다. The nodavirus includes alpha nodavirus and beta nodavirus, more preferably beta nodavirus. The beta nodal virus is, for example, striped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV), tiger puffer nervous necrosis virus (TPNNV), red spotted grouper nervous necrosis virus (RGNNV), or Malabaricus grouper nervous (MGNNV). necrosis virus), and dragon grouper nervous necrosis virus (DGNNV).
본 발명의 또 다른 바람직한 구현예에 의하면, 상기 백신 조성물은 어류에 대한 백신 조성물이며, 상기 어류는 능성어류, 넙치, 농어, 또는 볼락류이나, 이에 한정되지 않는다. According to another preferred embodiment of the present invention, the vaccine composition is a vaccine composition for fish, and the fish is a fish, flounder, perch, or rockfish, but is not limited thereto.
본 발명의 바람직한 구체예에 의하면, 본 발명의 면역원성 조성물은 pH 7.0 내지 8.0, 또는 pH 7.2 내지 7.6의 범위 내로 조정되거나 완충된다. According to a preferred embodiment of the invention, the immunogenic composition of the invention is adjusted or buffered within the range of pH 7.0 to 8.0, or pH 7.2 to 7.6.
본 발명의 백신 조성물은 하나 이상의 약제학적으로 허용되는 담체를 포함할 수 있다. 본 발명에서 약제학적으로 허용되는 담체는 항원인 노다바이러스의 바이러스 유사입자를 생체내 부위에 전달하는데 적합한 임의의 성분을 의미하며, 예를 들어, 물, 식염수, 인산염 완충 식염수, 링거 용액, 덱스트로스 용액, 혈청 함유 용액, 한스 용액, 기타 수용성의 생리학적 평형 용액, 오일, 에스테르 및 글리콜 등이 포함되나, 이에 한정되지 않는다. The vaccine composition of the present invention may comprise one or more pharmaceutically acceptable carriers. A pharmaceutically acceptable carrier in the present invention means any component suitable for delivering the virus analog particles of the antigen nodavirus to an in vivo site, for example, water, saline, phosphate buffered saline, Ringer's solution, dextrose. Solutions, serum-containing solutions, Hans' solutions, other water-soluble physiological equilibrium solutions, oils, esters and glycols, and the like.
본 발명의 담체는 화학적 안정성 및 등장성을 증진시키기 위해 적합한 보조 성분과 보존제를 포함할 수 있으며, 트레할로스, 글라이신, 솔비톨, 락토오스 또는 모노소듐 글루타메이트(MSG)와 같은 안정화제를 포함시켜 온도 변화 또는 동결건조에 대해 백신 조성물을 보호할 수 있다. 본 발명의 백신 조성물은 멸균수 또는 식염수(바람직하게는 완충된 식염수)와 같은 현탁 액체를 포함할 수 있다. Carriers of the present invention may include suitable auxiliary ingredients and preservatives to enhance chemical stability and isotonicity, and may include temperature stabilizers or freezes by including stabilizers such as trehalose, glycine, sorbitol, lactose or monosodium glutamate (MSG). The vaccine composition can be protected against drying. The vaccine composition of the present invention may comprise a suspension liquid, such as sterile water or saline (preferably buffered saline).
본 발명의 면역원성 조성물 또는 백신 조성물은 면역원에 대한 면역반응을 향상시키기에 충분한 양의 임의의 애쥬번트(adjuvant)를 함유할 수 있다. 적합한 애쥬번트는 문헌 Takahashi et al. (1990) Nature 344:873-875에 기술되어 있으며, 예컨대, 알루미늄염 (알루미늄 포스페이트 또는 알루미늄 히드록시드), 스쿠알렌 혼합물(SAF-1), 무라밀 펩티드, 사포닌유도체, 미코박테리아 세포벽 제조물, 모노포스포릴 지질 A, 미콜산 유도체, 비이온성 블록 공중합체 계면활성제, Quil A, 콜레라 독소 B 서브유닛, 폴리포스파젠 및 유도체, 및 면역자극 복합체 (ISCOMs)를 포함하나, 이에 한정되지는 않는다. The immunogenic composition or vaccine composition of the present invention may contain any adjuvant in an amount sufficient to enhance the immune response to the immunogen. Suitable adjuvants are described in Takahashi et al. (1990) Nature 344: 873-875, for example, aluminum salts (aluminum phosphate or aluminum hydroxide), squalene mixtures (SAF-1), muramyl peptides, saponin derivatives, mycobacterial cell wall preparations, monophos Polyl lipid A, mycolic acid derivatives, nonionic block copolymer surfactants, Quil A, cholera toxin B subunits, polyphosphazenes and derivatives, and immunostimulatory complexes (ISCOMs).
다른 모든 면역원성 조성물 또는 백신 조성물과 마찬가지로, 면역학적 유효량의 면역원은 경험적으로 결정되어야 하며, 이 경우 고려될 수 있는 인자는 면역원성, 투여 경로 및 투여되는 면역 투여 회수를 들 수 있다. As with all other immunogenic compositions or vaccine compositions, an immunologically effective amount of an immunogen should be determined empirically, in which case factors that can be considered include immunogenicity, route of administration and the number of immune doses administered.
본 발명 백신 조성물 중의 노다바이러스 바이러스 유사입자는 본 발명의 조성물내에서 다양한 농도로 존재할 수 있으나, 통상적으로, 상기 노다바이러스의 바이러스 유사입자가 생체 내에서 적절한 수준의 항체 형성을 유도하기에 필요한 농도로 포함한다. 이러한 의미에서, 본 발명의 백신조성물의 “면역학적 유효량”은 생체내에서 노다바이러스에 대한 적합한 면역반응을 유도할 수 있는 양을 의미하며, 면역원성 조성물 또는 백신 조성물은 바람직하게는 1-100 ㎍, 보다 바람직하게는 5-50 ㎍, 보다 더 바람직하게는 5-25 ㎍의 바이러스 유사입자를 포함한다. Nodavirus virus like particles in the vaccine composition of the present invention may be present in various concentrations in the composition of the present invention, but typically, the virus like particles of the nodavirus are required to induce an appropriate level of antibody formation in vivo. Include. In this sense, an “immunologically effective amount” of the vaccine composition of the invention means an amount capable of inducing a suitable immune response against nodavirus in vivo, wherein the immunogenic composition or vaccine composition is preferably 1-100 μg. , More preferably 5-50 μg, even more preferably 5-25 μg of virus analog particles.
본 발명의 백신 조성물은 전신 또는 점막 경로를 통해 상기 백신 조성물을 투여함으로써, 노다바이러스 감염에 민감한 동물을 보호하거나 치료하기 위해 사용될 수 있다. 백신 조성물의 투여는 근내, 복막내, 피내 또는 피하 경로를 통한 주사, 경구/식사, 호흡기, 비뇨생식관으로의 점막 투여를 포함할 수 있다. The vaccine composition of the present invention can be used to protect or treat animals sensitive to nodavirus infection by administering the vaccine composition via the systemic or mucosal route. Administration of the vaccine composition can include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous route, oral / meal, respiratory, mucosal administration to the genitourinary tract.
백신 또는 백신 조성물의 제조는 일반적으로 문헌 [Vaccine Design ("The subunit and adjuvant approach" (eds Powell M.F. & Newman M.J.) (1995) Plenum Press New York)]에 기술되어 있으며, 이 문헌은 본 명세서에 참조로 삽입된다.The preparation of a vaccine or vaccine composition is generally described in Vaccine Design ("The subunit and adjuvant approach" (eds Powell MF & Newman MJ) (1995) Plenum Press New York), which is hereby incorporated by reference. Is inserted into.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1 : 노다바이러스의 바이러스 유사입자(Virus-like particle, VLP)의 생산 및 정제Example 1 Production and Purification of Virus-like Particles (VLPs) of Noda Viruses
<< 실험방법 >Experiment Method>
1. 노다바이러스 캡시드 단백질 발현 벡터의 제작 및 숙주세포 형질 전환1. Construction of Nodavirus capsid protein expression vector and host cell transformation
RGNNV(red spotted grouper nervous necrosis virus)의 캡시드 단백질을 암호화하는 DNA 서열(NNVcp)은 Blueheron biotechnology Inc.(USA)에 의뢰하여 합성하였다. NNVcp는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)에서 발현이 최적화된 코돈 구성을 갖도록 제작하였다(도 1). 제작한 NNVcp는 YEGα-MCS 벡터의 HindIII와 SalI 제한효소 자리에 삽입하여 재조합 벡터 YEGα-MCS-NNVcp을 제작하였다(도 3 참조). 사카로마이세스 세레비지애(S. cerevisiae) Y2805를 숙주세포로 하여 기존에 공지된 방법[25]에 따라 상기 제작한 재조합 벡터 YEGα-MCS-NNVcp를 형질전환시켰다. 재조합 벡터 YEGα-MCS-NNVcp가 도입된 형질전환체는 우라실(uracil)이 결여된 합성 배지에 배양하여 선별하였다.DNA sequence (NNVcp) encoding capsid protein of RGNNV (red spotted grouper nervous necrosis virus) was synthesized by Blueheron biotechnology Inc. (USA). NNVcp was constructed to have codon configuration with optimized expression in Saccharomyces cerevisiae (FIG. 1). The prepared NNVcp was inserted into the HindIII and SalI restriction sites of the YEGα-MCS vector to construct a recombinant vector YEGα-MCS-NNVcp (see FIG. 3). The recombinant vector YEGα-MCS-NNVcp prepared above was transformed using Saccharomyces cerevisiae Y2805 as a host cell according to a known method [25]. The transformant into which the recombinant vector YEGα-MCS-NNVcp was introduced was selected by culturing in a synthetic medium lacking uracil.
2. 세포배양2. Cell Culture
노다바이러스 캡시드 단백질을 발현하는 사카로마이세스 세레비지애(S. cerevisiae) Y2805는 기존에 공지된 방법에 따라 배양하였다[26]. 보다 구체적으로 설명하면, 재조합 벡터 YEGα-MCS-NNVcp가 도입된 형질전환체는 상기의 방법으로 선별한 후 SD-ura 액체 배지에 접종하여 2일간 배양하였다. 배양한 세포는 1% 효모 추출물(Duchefa, Netherlands), 2% 펩톤(Duchefa), 7% 글루코오스(Duchefa) 및 1% 갈락토오스(Duchefa)를 포함하는 YPDG 배지에서 배양하였다. 배양을 완료한 후 배양한 세포를 원심분리하여 배양액을 제거하고, PBS(phosphate-buffered saline)을 사용하여 세척하였다. 세척한 세포는 원심분리를 행하여 회수하고, 단백질 정제 전까지 -70℃에 보관하였다. S. cerevisiae Y2805 expressing a nodavirus capsid protein was cultured according to a known method [26]. More specifically, the transformant into which the recombinant vector YEGα-MCS-NNVcp was introduced was selected by the above method and inoculated in SD-ura liquid medium and cultured for 2 days. The cultured cells were cultured in YPDG medium containing 1% yeast extract (Duchefa, Netherlands), 2% peptone (Duchefa), 7% glucose (Duchefa) and 1% galactose (Duchefa). After completion of the culture, the cultured cells were centrifuged to remove the culture solution, and washed with PBS (phosphate-buffered saline). The washed cells were collected by centrifugation and stored at -70 ° C until protein purification.
3. 바이러스 유사입자의 정제3. Purification of Virus Analog Particles
배양한 세포는 세포 파쇄 완충액(10 mM sodium phosphate dibasic, 0.15 M NaCl, 0.05% Tween 80 pH 7.2)와 1:1로 혼합하였다. 혼합액은 다시 0.5 mm 유리 비드(glass bead, Biospec Product, USA)와 혼합한 후 볼텍스(vortex)하여 세포를 파쇄하였다. 세포 잔여물은 12,000xg로 15분간 원심분리하여 제거하였다. 세포 잔여물이 제거된 상층액을 헤파린 크로마토그래피 결합 완충액 조성으로 만들어 주기 위해 1:5 - 1:10 (상층액 : 결합 완충액) 비율로 상층액을 혼합하거나, 결합 완충액에 대해 투석하는 방법을 사용하였다. 헤파린 결합 완충액은 10 mM Tris, 0.15 - 0.5 M NaCl, 5% 글리세롤, 0.05% Tween 80, 0.1% β-머캅토에탄올, 50 mM L-글루타민, 50 mM L-아르기닌 pH 7.2 - 8.0의 조성으로 구성하였다. The cultured cells were mixed 1: 1 with cell disruption buffer (10 mM sodium phosphate dibasic, 0.15 M NaCl, 0.05% Tween 80 pH 7.2). The mixed solution was again mixed with 0.5 mm glass beads (glass bead, Biospec Product, USA) and vortexed to crush the cells. Cell residue was removed by centrifugation for 15 min at 12,000 × g. The supernatant from which cell residues have been removed is mixed with the supernatant in a ratio of 1: 5 to 1:10 (supernatant: binding buffer) or dialyzed against binding buffer to make the composition of heparin chromatography binding buffer. It was. Heparin binding buffer consists of 10 mM Tris, 0.15-0.5 M NaCl, 5% glycerol, 0.05% Tween 80, 0.1% β-mercaptoethanol, 50 mM L-glutamine, 50 mM L-arginine pH 7.2-8.0 It was.
POROS50 HE 헤파린 수지(Applied Biosystems, USA)는 헤파린 결합 완충액을 수지 부피의 5배 이상 흘려주어 평형화하였다. 상기의 헤파린 결합 완충액 조성으로 준비된 세포 파쇄물을 헤파린 수지에 흘려준 후 결합 완충액을 수지 부피의 5배 이상 흘려주어 수지를 세척하였다. 이후 용출 완충액을 흘려주어 노다바이러스 캡시드 단백질을 용출시켰다. 용출 완충액은 10 mM Tris, 5% 글리세롤, 0.05% Tween 80, 0.1% β-머캅토에탄올, 50 mM L-글루타민, 50 mM L-아르기닌 pH 7.2 - 8.0의 완충액에 NaCl을 각각 0.65 M, 0.75 M, 0.85 M, 0.95 M, 1.2 M이 되게 준비하여 순차적으로 흘려주었다. 용출액의 캡시드 단백질은 아래 기술된 방법으로 SDS-PAGE와 웨스턴 블로팅(Western blot)으로 확인하였다. 캡시드 단백질을 포함하는 용출액은 Ultracel-100K (Millipore, USA)를 사용하여 농축하였으며, 농축액은 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 0.1% β-머캅토에탄올, 50 mM L-글루타민, 50 mM L-아르기닌 pH 8.0 완충액에 대해 투석하였다. 정제 단계별 단백질 농도는 단백질 정량 키트 (Bio-Rad, USA)를 사용하여 측정하였다.POROS50 HE heparin resin (Applied Biosystems, USA) was equilibrated by flowing heparin binding buffer at least 5 times the resin volume. The cell lysate prepared with the heparin binding buffer composition was passed through the heparin resin, and then the binding buffer was flowed at least 5 times the resin volume to wash the resin. The elution buffer was then flowed to elute the nodavirus capsid protein. Elution buffer was 10 mM Tris, 5% glycerol, 0.05% Tween 80, 0.1% β-mercaptoethanol, 50 mM L-glutamine, 50 mM L-arginine pH 7.2-8.0 in NaCl 0.65 M, 0.75 M, respectively. , 0.85 M, 0.95 M, 1.2 M was prepared to flow sequentially. The capsid protein of the eluate was identified by SDS-PAGE and Western blot by the method described below. The eluate containing the capsid protein was concentrated using Ultracel-100K (Millipore, USA), the concentrate was 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 0.1% β-mercaptoethanol, 50 mM L-glutamine, Dialysis against 50 mM L-arginine pH 8.0 buffer. Protein concentrations in purification steps were measured using a protein quantification kit (Bio-Rad, USA).
4. SDS-PAGE 및 웨스턴 블로팅4. SDS-PAGE and Western Blotting
SDS-PAGE는 Laemmli의 방법에 따라 행하였고[27], 전개된 단백질은 은 염색법(silver staining)을 통해 시각화하였다. 웨스턴 블로팅을 위해 단백질을 SDS-PAGE젤 상에서 전개한 후 PVDF 멤브레인으로(Millipore, USA) 옮겼다. PVDF 멤브레인은 5% 탈지유(skim milk; Bioworld, USA)가 함유된 PBS-T(PBS + 0.05% Tween 20)로 블로킹하였다. 노다바이러스 캡시드 단백질을 검출하기 위해 1차 항체로서 토끼의 항-베타노다바이러스 캡시드 혈청과, 2차 항체로서 염소 HRP-부착된 항-토끼 IgG 폴리클로날 항체(Bethyl, USA)를 사용하였다. 항체가 결합된 베타노다바이러스 캡시드 단백질은 ECL 키트(Santacruz, USA)를 사용하여 X-선 필름상에서 시각화하였다. 항-베타노다바이러스 캡시드 혈청은 젠닥스㈜(Gendocs Inc. South Korea)로 부터 구입하였다.SDS-PAGE was performed according to Laemmli's method [27], and the developed protein was visualized by silver staining. Proteins were run on SDS-PAGE gels for Western blotting and then transferred to PVDF membranes (Millipore, USA). PVDF membranes were blocked with PBS-T (PBS + 0.05% Tween 20) containing 5% skim milk (Bioworld, USA). To detect nodavirus capsid proteins, rabbit anti-betanodavirus capsid serum as primary antibody and goat HRP-attached anti-rabbit IgG polyclonal antibody (Bethyl, USA) were used as secondary antibody. Antibody-bound betanovirus capsid proteins were visualized on X-ray films using the ECL kit (Santacruz, USA). Anti-betanovirus virus capsid serum was purchased from Gendocs Inc. South Korea.
5. 전자현미경 분석5. Electron Microscope Analysis
정제 완료한 노다바이러스 캡시드 단백질을 카본-코팅된 그리드에 흡착시킨 후, 포스포텅스텐산(phosphotungstic acid) 또는 우라닐 아세테이트 (uranyl acetate)로 염색하였다. 투과 전자 현미경 사진은 JEM1010(JEOL, Japan)를 사용하여 촬영하였으며[25], 에너지 투과 전자 현미경은 사진은 LIBRA 120(Carl Zeiss, Germany)를 사용하여 촬영하였다.The purified nodavirus capsid protein was adsorbed onto a carbon-coated grid and then stained with phosphotungstic acid or uranyl acetate. Transmission electron micrographs were taken using JEM1010 (JEOL, Japan) [25], and energy transmission electron micrographs were taken using LIBRA 120 (Carl Zeiss, Germany).
6. 다이나믹 광산란 분석 6. Dynamic Light Scattering Analysis
노다바이러스 캡시드 단백질의 다이나믹 광산란 분석(dynamic light scattering)을 위해 정제한 캡시드 단백질은 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 50 mM L-글루타민, 50 mM L-아르기닌 pH 8.0의 완충액에 준비한 후 ELSZ-2 시스템 (Otsuka Electronics, Japan)을 사용하여 분석하였다. Purified capsid proteins for dynamic light scattering analysis of nodavirus capsid proteins were prepared in buffer of 10 mM Tris, 0.5 M NaCl, 0.05% Tween 80, 50 mM L-glutamine, 50 mM L-arginine pH 8.0. It was then analyzed using an ELSZ-2 system (Otsuka Electronics, Japan).
<< 실험결과 >Experiment Result>
1. 합성한 노다바이러스 캡시드 코딩 DNA 서열의 분석 1. Analysis of synthesized nodavirus capsid coding DNA sequence
노다바이러스 RGNNV 캡시드 단백질을 암호화하는 DNA 서열(NNVcp DNA, 1017 bp)과, NNVcp DNA로부터 번역된 아미노산 서열은 도 1과 도 2에 각각 나타내었다. 도 2의 아미노산 서열은 NCBI 참조 서열 YP_611157.1 (RGNNV의 캡시드 단백질, 338 aa)와 일치하는 것으로 확인하였다. NNVcp DNA는 YP_611157.1 아미노산 서열을 암호화하지만 코돈의 구성은 사카로마이세스 세레비지애(S. cerevisiae)에서 발현이 최적화되도록 제작하였다. 노다바이러스 캡시드 단백질 발현을 위한 재조합 발현 벡터는 상기 제작한 NNVcp DNA를 벡터 YEGα-MCS에 삽입하여 제작하였다(도 3).DNA sequences encoding nodavirus RGNNV capsid proteins (NNVcp DNA, 1017 bp) and amino acid sequences translated from NNVcp DNA are shown in FIGS. 1 and 2, respectively. The amino acid sequence of FIG. 2 was confirmed to match the NCBI reference sequence YP_611157.1 (capsid protein of RGNNV, 338 aa). The NNVcp DNA encodes the YP_611157.1 amino acid sequence, but the codon is constructed to optimize expression in S. cerevisiae . Recombinant expression vector for the expression of nodavirus capsid protein was prepared by inserting the prepared NNVcp DNA into the vector YEGα-MCS (Fig. 3).
2. 노다바이러스 캡시드 단백질의 헤파린 결합 특성 분석 2. Characterization of Heparin Binding of Nodavirus Capsid Protein
노다바이러스 캡시드 단백질이 헤파린 수지와 결합하는 특성을 분석하기 위해 배양한 세포를 파쇄한 후 0.15 M NaCl이 함유된 결합 완충액에 준비하였다. NaCl 조성 외에 결합 완충액 및 용출 완충액의 나머지 조성은 실험 방법에 제시된 것과 동일하게 하였다. 상기 완충액으로 평형화된 헤파린 수지에 세포 파쇄액을 로딩한 후 NaCl의 농도를 올려가면서 노다바이러스 캡시드가 용출되는 구간을 확인하였다(도 4). 캡시드가 결합된 헤파린 수지에 대해 0.4 M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M, 1.2 M의 NaCl이 포함된 완충액을 차례대로 흘려주었다. 도 4의 결과에서 보여지는 바와 같이, 1.2 M NaCl에서 용출된 노다바이러스 캡시드 단백질의 순도와 양이 가장 우수하였고, 0.4 - 0.5 M NaCl의 완충액으로 용출된 분획은 불순물 단백질이 많이 포함되는 것으로 확인되었다. 따라서, 도 4의 결과에 의하면, 헤파린 크로마토그래피에 있어서 노다바이러스 캡시드 단백질을 분리하기 위한 용출 완충액내의 NaCl의 이상적인 농도는 0.5 M 이상 1.2 M 이하의 농도임을 확인할 수 있었다.To characterize the binding of the nodavirus capsid protein to the heparin resin, the cultured cells were disrupted and then prepared in binding buffer containing 0.15 M NaCl. In addition to the NaCl composition, the remaining composition of the binding buffer and the elution buffer was the same as that presented in the experimental method. After loading the cell lysate in the heparin resin equilibrated with the buffer, the concentration of NaCl was confirmed while eluting the nodavirus capsid (FIG. 4). A buffer containing 0.4 M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M, 1.2 M NaCl was flowed sequentially to the capsid-bound heparin resin. As shown in the results of Figure 4, the purity and amount of the Nodavirus capsid protein eluted in 1.2 M NaCl was the best, the fraction eluted with a buffer of 0.4-0.5 M NaCl was found to contain a lot of impurity protein . Therefore, according to the results of FIG. 4, the ideal concentration of NaCl in the elution buffer for separating the nodavirus capsid protein in heparin chromatography is shown. It was confirmed that the concentration of 0.5 M or more and 1.2 M or less.
3. 헤파린 크로마토그래피를 이용한 노다바이러스 캡시드 단백질의 정제 3. Purification of Nodavirus Capsid Protein Using Heparin Chromatography
노다바이러스 캡시드 단백질의 정제 과정은 도 5에 나타내었다. 세포 파쇄물을 0.5 M NaCl이 포함된 헤파린 결합완충액에 투석하여 준비한 후, 헤파린 수지에 로딩하였다. 헤파린 결합완충액 내 NaCl의 농도는 도 4의 결과에 기초하여 0.5 M NaCl 조건으로 결정하였다. 도 6의 결과에서 보는 바와 같이 1.2 M NaCl을 포함하는 용출완충액의 분획에서 고순도의 노다바이러스 캡시드 단백질이 확인되었다. 1.2 M NaCl을 포함하는 용출완충액 분획을 농축한 후 0.5 M NaCl 포함된 완충액에 대해 투석하였다. The purification process of the nodavirus capsid protein is shown in FIG. 5. Cell lysates were prepared by dialysis on heparin binding buffer containing 0.5 M NaCl, and then loaded on heparin resin. The concentration of NaCl in heparin binding buffer was determined under 0.5 M NaCl conditions based on the results in FIG. 4. As shown in the results of FIG. 6, high purity nodavirus capsid proteins were identified in the fraction of the elution buffer containing 1.2 M NaCl. Elution buffer fractions containing 1.2 M NaCl were concentrated and dialyzed against 0.5 M NaCl containing buffer.
최종적으로 얻은 노다바이러스 캡시드 단백질을 SDS-PAGE 상에서 확인한 결과는 도 7에 나타내었다. 도 7의 결과에서 보는 바와 같이, 37 kDa의 캡시드 단백질이 주요 밴드로 확인 되었고, 110 kDa의 밴드가 추가로 확인되었다. 110 kDa의 밴드는 도 4 및 도 6의 1.2 M NaCl 분획의 SDS-PAGE와 웨스턴 블로팅 결과에서도 보여진다. 37 kDa과 110 kDa의 밴드양상은 공지된 노다바이러스 캡시드 단백질의 밴드양상과 일치한다[19]. 결론적으로 이들 결과는 상기의 방법에 의해 정제된 노다바이러스 캡시드 단백질의 순도가 우수함을 보여준다. The finally obtained nodavirus capsid protein was confirmed on SDS-PAGE. As shown in the results of Figure 7, 37 kDa capsid protein was identified as the main band, a band of 110 kDa was further confirmed. A band of 110 kDa is also shown in the SDS-PAGE and Western blotting results of the 1.2 M NaCl fractions of FIGS. 4 and 6. The band patterns of 37 kDa and 110 kDa are consistent with the band patterns of known nodavirus capsid proteins [19]. In conclusion, these results show that the purity of the nodavirus capsid protein purified by the above method is excellent.
노다바이러스 캡시드 단백질을 발현하는 사카로마이세스 세레비지애(S. cerevisiae)를 1 L 배양하여 정제한 결과는 표 1에 나타나 있다. 표 1은 헤파린 크로마토 그래피를 거친 후 대부분의 불순물 단백질이 제거되었음을 보여준다.Saccharomyces serevisiae ( S. cerevisiae ) expressing the Nodavirus capsid protein was purified from 1 L culture results are shown in Table 1. Table 1 shows that most impurity proteins were removed after heparin chromatography.
표 1
단계 부피 (ml) 총 단백질 양 (mg)
세포 용해물(cell lysate) 90 1074
헤파린 크로마토그래피 시료 로딩 200 1072
헤파린 크로마토그래피 용출 10 8.2
최종 생산물 1 1.2
Table 1
step Volume (ml) Total protein amount (mg)
Cell lysate 90 1074
Heparin Chromatography Sample Loading 200 1072
Heparin Chromatography Elution 10 8.2
Final product One 1.2
4. 정제된 노다바이러스 캡시드 단백질의 전자현미경 분석4. Electron Microscopy Analysis of Purified Nodavirus Capsid Protein
정제된 노다바이러스 캡시드 단백질의 전자현미경 분석 결과는 도 8에 나타내었다. 도 8의 가로 막대는 100 nm의 크기를 의미한다. 정제된 노다바이러스 캡스드 단백질을 에너지투과 전자현미경을 사용하여 분석한 결과는 도 9에 나타나있다. 도 9에서 가로 막대는 50 nm 크기를 나타낸다. 전자현미경 분석결과 정제된 캡시드 단백질은 25 - 30 nm 크기의 바이러스 유사입자 형태로 관찰되었다. 이는 기존에 공지된 노다바이러스의 형태와 유사하다[5]. The results of electron microscopic analysis of the purified nodavirus capsid proteins are shown in FIG. 8. The horizontal bar in FIG. 8 means a size of 100 nm. The result of analyzing the purified nodavirus capsed protein using an energy transmission electron microscope is shown in FIG. In Figure 9, the horizontal bars represent 50 nm size. Electron microscopic analysis showed that the purified capsid proteins were in the form of virus pseudoparticles of 25-30 nm size. This is similar to the form of known nodaviruses [5].
5. 정제된 노다바이러스 캡시드 단백질의 다이나믹 광산란 분석5. Dynamic Light Scattering Analysis of Purified Nodavirus Capsid Proteins
정제된 노다바이러스 캡시드가 용액상태에 존재할 때 크기를 다이나믹 광산란(dynamic light scattering) 분석을 통해 조사하였다. 도 10에 다이나믹 광산란 분석 결과를 나타내었다. 다이나믹 광산란 분석에서 정제된 노다바이러스 캡시드 단백질의 평균 크기는 103 nm로 확인되었다. 이는 기존에 공지된 바이러스 유사입자의 다이나믹 광산란 분석 결과와 유사하다 [28].When the purified nodavirus capsid was in solution, the size was examined by dynamic light scattering analysis. 10 shows the results of the dynamic light scattering analysis. In the dynamic light scattering assay, the average size of purified nodavirus capsid protein was found to be 103 nm. This is similar to the results of dynamic light scattering analysis of known virus mimics [28].
실시예 2 : 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 세포주 제작 및 방어 면역 유도Example 2 Construction of Recombinant Yeast Cell Line Expressing Nodavirus Capsid Protein and Induction of Protective Immune
<< 실험방법 >Experiment Method>
1. RGNNV 캡시드 단백질 발현 효모의 준비1. Preparation of RGNNV Capsid Protein Expressing Yeast
본 발명에서 RGNNV 캡시드 단백질을 암호화하기 위한 핵산 서열은 도 1에 나타나 있다. 도 1의 핵산 서열을 YEG-αMCS 벡터 삽입하여 YEG-αMCS-opt-RGNNV-cp 벡터를 제작하였다. 사카로마이세스 세레비지애(S. cerevisiae) Y2805를 YEG-αMCS-opt-RGNNV-cp로 형질 전환시킨 후 uracil이 결여된 합성 배지에서 형질전환체를 선별하였다. 선별된 형질 전환체는 1% 효모 추출물(Duchefa, Netherlands), 2% 펩톤(Duchefa), 4% 글루코오스(Duchefa) 및 4% 갈락토오스(Duchefa)를 포함하는 YPDG 배지에서 배양하였다. 배양은 30℃에서 48시간 진행되었다.Nucleic acid sequences for encoding RGNNV capsid proteins in the present invention are shown in FIG. 1. YEG-αMCS-opt-RGNNV-cp vector was constructed by inserting the YEG-αMCS vector into the nucleic acid sequence of FIG. 1. Saccharomyces cerevisiae Y2805 was transformed with YEG-αMCS-opt-RGNNV-cp and transformants were selected from synthetic media lacking uracil. Selected transformants were cultured in YPDG medium containing 1% yeast extract (Duchefa, Netherlands), 2% peptone (Duchefa), 4% glucose (Duchefa) and 4% galactose (Duchefa). Incubation was for 48 hours at 30 ° C.
야로위아 리폴리티카(Yarrowia lipolytica)에서 RGNNV 캡시드 단백질을 발현시키기 위해 도 1의 핵산 서열을 pINATX2 벡터와 pIMR53 벡터에 삽입시켰다. 야로위아 리폴리티카(Yarrowia lipolytica)를 상기에서 준비한 두 벡터로 형질전환시키고 uracil과 leucine이 결여된 합성 배지에서 두 벡터를 모두 포함하는 형질전환체를 선별하였다. 선별된 형질 전환체를 1% 효모 추출물(Duchefa), 2% 펩톤(Duchefa), 2% 글루코오스(Duchefa)를 포함하는 배지에서 배양하였다. 배양은 28℃에서 48시간 진행되었다.The nucleic acid sequence of FIG. 1 was inserted into pINATX2 and pIMR53 vectors to express RGNNV capsid proteins in Yarrowia lipolytica. Yarrowia lipolytica was transformed with the two vectors prepared above, and transformants containing both vectors were selected from synthetic media lacking uracil and leucine. Selected transformants were cultured in a medium containing 1% yeast extract (Duchefa), 2% peptone (Duchefa), 2% glucose (Duchefa). Incubation was for 48 hours at 28 ℃.
2. RGNNV 캡시드 단백질 및 RGNNV 캡시드 단백질 발현 효모의 마우스 경구 면역2. Mouse Oral Immunity of RGNNV Capsid Protein and RGNNV Capsid Protein Expressing Yeast
배양된 세포는 -70℃로 얼린 후 동결건조되었다. 동결건조된 세포의 중량을 측정한 후 웨스턴 블럿으로 건조 중량당 캡시드 단백질 발현양을 측정하였다. 1 mg의 캡시드 단백질 발현 사카로마이세스 세레비지애(Saccharomyces cerevisiae; rS)는 4.1 μg의 캡시드 단백질을 발현하는 것으로 확인되었다. 1 mg의 캡시드 단백질 발현 야로위아 리폴리티카(Yarrowia lipolytica; rY)는 0.43 μg의 캡시드 단백질을 발현하는 것으로 확인되었다. 각 세포주별 캡시드 단백질 발현양은 도 11에 자세히 나타나있다. Cultured cells were lyophilized after freezing to -70 ℃. After weighing the lyophilized cells, Western blot was used to determine the amount of capsid protein expression per dry weight. 1 mg capsid protein expression Saccharomyces cerevisiae (rs) was found to express 4.1 μg of capsid protein. 1 mg of capsid protein expression Yarrowia lipolytica (rY) was found to express 0.43 μg of capsid protein. The amount of capsid protein expression for each cell line is shown in detail in FIG. 11.
rS 그룹은 1회 면역당 10 mg(건조중량)의 rS를 투여받았다. 10 mg의 rS에는 40 μg의 캡시드 단백질이 포함되어있다. rS의 투여량과 동일한 양의 캡시드 단백질을 투여하기 위해 VLP-S 그룹이 설정되었다. VLP-S 그룹은 40 μg (Bradford 단백질 정량 농도에 따름)의 정제된 캡시드 단백질을 경구로 투여한 그룹이다. rY 그룹은 1회 면역당 35 mg(건조중량)의 rY를 경구로 투여 받았다. 35 mg의 rY에는 15 μg의 캡시드 단백질이 포함되어있다. rY의 투여량과 동일한 양의 캡시드 단백질을 투여하기 위해 VLP-Y 그룹이 설정되었다. VLP-Y 그룹은 15 μg(Bradford 단백질 정량 농도에 따름)의 정제된 캡시드 단백질을 경구로 투여한 그룹이다. The rS group received 10 mg (dry weight) of rS per immunization. 10 mg rS contains 40 μg of capsid protein. The VLP-S group was set up to administer the same amount of capsid protein as the dose of rS. The VLP-S group was orally administered 40 μg of purified capsid protein (according to Bradford protein quantitative concentration). The rY group received 35 mg (dry weight) of rY orally per immunization. 35 mg rY contains 15 μg of capsid protein. The VLP-Y group was set up to administer the same amount of capsid protein as the dose of rY. The VLP-Y group was orally administered 15 μg of purified capsid protein (according to Bradford protein quantitative concentration).
1회 면역당 투여한 항원의 양은 표 2에 나타나있다. 면역은 2주간격 4회 진행되었다. 1회 면역당 각 항원은 5 mg의 사포닌(Saponin from quilaja bark, Sigma)과 혼합하여 투여되었다. 1회의 면역을 위해 3일 연속 투여 처방이 이루어졌다. 따라서 VLP-S, rS, VLP-Y, rY 그룹은 40 μg, 10 mg, 15 μg, 35 mg의 항원을 3일에 나누어 투여받았다. 3차와 4차 경구면역 후 마우스 꼬리 정맥을 통해 채혈하였다. 마우스 혈액을 12000xg로 원심분리하여 혈청을 취하고 중화항체 활성 및 항-RGNNV 캡시드 단백질 IgG 측정 전까지 -70℃에 보관하였다.The amount of antigen administered per immunization is shown in Table 2. Immunization progressed four times every two weeks. Each antigen per immunization was administered in combination with 5 mg of saponin (Saponin from quilaja bark, Sigma). Three consecutive dose regimens were made for one immunization. Therefore, the VLP-S, rS, VLP-Y, and rY groups received 40 μg, 10 mg, 15 μg, and 35 mg of antigen divided into 3 days. After the third and fourth oral immunizations, blood was collected through the tail vein of the mouse. Sera were collected by centrifuging mouse blood at 12000 × g and stored at −70 ° C. until neutralizing antibody activity and anti-RGNNV capsid protein IgG measurements.
표 2
Mouse group Dose
PBS 300 uL
VLP-S 40 ug(Bradford 단백질 정량)
rS 10 mg(건조중량)
VLP-Y 15 ug(Bradford 단백질 정량)
rY 35 mg(건조중량)
TABLE 2
Mouse group Dose
PBS 300 uL
VLP-S 40 ug (Bradford Protein Quantitation)
rS 10 mg (dry weight)
VLP-Y 15 ug (Bradford Protein Quantitation)
rY 35 mg (dry weight)
3. RGNNV 캡시드 단백질 검출을 위한 웨스턴 블럿(Western blot)3. Western blot for RGNNV capsid protein detection
정제된 RGNNV 캡시드 단백질 및 세포 파쇄액은 12% acrylamide gel 상에서 전개 된 후 PVDF 멤브레인에(Millipore, USA) transfer되었다. 단백질이 흡착된 PVDF 멤브레인은 5% skim mik(Bioworld, USA)가 포함된 완충액(0.1% Tween 20을 포함하는 tris-buffered saline, TBST)으로 블로킹 되었다. 이후 PVDF 멤브레인은 토끼 항-RGNNV 캡시드 단백질 폴리클로날 항체로 반응시켰다. 토끼 항-RGNNV 캡시드 단백질 폴리클로날 항체는 젠단스(Gendocs Inc., South Korea)로부터 증여 받았다. 멤브레인을 TBST로 10분씩 3회 세척한 후 HRP가 표지된 goat 항-토기 IgG 항체(Bethyl, USA)와 반응 시키고 10분씩 4회 세척하였다. RGNNV 캡시드 단백질은 ECL 키트(Santacruz, USA)를 사용하여 검출하였다.Purified RGNNV capsid proteins and cell lysates were transferred onto PVDF membranes (Millipore, USA) after being run on a 12% acrylamide gel. Protein-adsorbed PVDF membranes were blocked with a buffer containing 5% skim mik (Bioworld, USA) (tris-buffered saline with 0.1% Tween 20, TBST). PVDF membranes were then reacted with rabbit anti-RGNNV capsid protein polyclonal antibodies. Rabbit anti-RGNNV capsid protein polyclonal antibodies were awarded from Gendocs Inc., South Korea. The membrane was washed three times with TBST for 10 minutes, and then reacted with HRP-labeled goat anti-earth IgG antibody (Bethyl, USA) and washed four times for 10 minutes. RGNNV capsid proteins were detected using the ECL kit (Santacruz, USA).
4. 항-RGNNV 캡시드 단백질 IgG 역가 측정 4. Determination of Anti-RGNNV Capsid Protein IgG Titers
정제된 RGNNV 캡시드 단백질을 96웰 ELISA 플레이트에 웰당 200 ng 코팅(coating) 하였다. 코팅은 4℃에서 16시간 동안 진행되었다. 코팅을 위해 캡시드 단백질은 PBS에 희석되었다. 코팅 후 각 웰은 3% 우혈청 알부민이 포함된 PBS-T(0.05% Tween 20을 포함하는 PBS)로 블로킹하였다. 블로킹은 상온에서 1시간 동안 진행되었다. 이후 마우스 혈청을 0.3% 우혈청 알부민이 포함된 PBS-T으로 3배씩 연속 희석하여 웰에 적용하고 37℃에서 1시간 반응시켰다. 플레이트를 3회 PBS-T로 세척한 후 HPR가 부착된 goat 항-마우스 Ig 항체(Bethyl, USA)와 37℃에서 1시간 반응시켰다. 발색은 o-phenylenediamine dihydrochloride(Sigma, USA)를 기질로 하여 진행되었고 발색반응은 492 nm에서 측정되었다. End-point 역가는 PBS로 면역된 마우스 혈청의 optical density 수치의 1.5배로 결정되었다. Purified RGNNV capsid proteins were coated with 200 ng per well in 96 well ELISA plates. Coating was carried out at 4 ° C. for 16 hours. Capsid proteins were diluted in PBS for coating. After coating each well was blocked with PBS-T (PBS containing 0.05% Tween 20) containing 3% bovine serum albumin. Blocking was performed for 1 hour at room temperature. The mouse serum was then serially diluted three times with PBS-T containing 0.3% bovine serum albumin and applied to the wells and reacted at 37 ° C. for 1 hour. The plate was washed three times with PBS-T and then reacted with HPR attached goat anti-mouse Ig antibody (Bethyl, USA) for 1 hour at 37 ° C. Color development was carried out using o-phenylenediamine dihydrochloride (Sigma, USA) as substrate and color reaction was measured at 492 nm. End-point titers were determined to be 1.5 times the optical density values of mouse serum immunized with PBS.
5. E-11 세포를 이용한 마우스 혈청의 RGNNV 중화활성 측정5. Measurement of RGNNV Neutralizing Activity in Mouse Serum Using E-11 Cells
중화항체 역가는 기존에 공지된 방법을 변형하여 측정하였다. E-11 세포를 96웰 세포배양 플레이트에 웰당 1 x 104 cells가 되게 분주하고 25℃에서 배양하였다. 세포 배양을 위한 배지로 10% FBS와 1% penicillin-streptomycin 이 포함된 L-15 배지(Gibco, USA)를 사용하였다. 세포가 80 - 90% confluency를 형성했을 때 때 마우스 혈청과 RGNNV의 혼합액을 준비된 세포에 감염시켰다. 마우스 혈청은 5% FBS가 포함된 L-15 배지에 1:50 또는 1:200로 희석하였다. 75 μL의 마우스 혈청 희석액은 75 μL의 RGNNV(102 TCID50)와 혼합한 후 상온에서 30분 방치하였다. 혈청+RGNNV 혼합액을 세포에 감염전 E-11세포의 배양 배지를 제거하였다. 이후 마우스 혈청과 RGNNV 혼합액 75 μL 준비된 E-11 세포에 감염시키고 4일간 25℃에서 배양하였다. 배양 4일 후 세포 병변을 현미경으로 관찰하였다.Neutralizing antibody titers were determined by modifying known methods. E-11 cells were dispensed into 96 well cell culture plates at 1 × 10 4 cells per well and incubated at 25 ° C. As a medium for cell culture, L-15 medium (Gibco, USA) containing 10% FBS and 1% penicillin-streptomycin was used. When cells formed 80-90% confluency, a mixture of mouse serum and RGNNV was infected with the prepared cells. Mouse serum was diluted 1:50 or 1: 200 in L-15 medium with 5% FBS. 75 μL of mouse serum dilutions were mixed with 75 μL of RGNNV (10 2 TCID 50 ) and allowed to stand at room temperature for 30 minutes. Serum + RGNNV mixed solution was removed from the culture medium of E-11 cells prior to infection with the cells. Thereafter, 75 μL of mouse serum and RGNNV mixed solution were infected with E-11 cells, and cultured at 25 ° C. for 4 days. After 4 days of culture, the cell lesion was observed under a microscope.
<< 실험결과 >Experiment Result>
1. 마우스 경구 면역을 위한 재조합 효모 세포주의 용량 및 정제된 RGNNV 캡시드 항원의 용량 결정1.Determination of Dose of Recombinant Yeast Cell Line and Purified RGNNV Capsid Antigen for Mouse Oral Immunity
재조합 사카로마이세스 세레비지애(Saccharomyces cerevisiae; rS)와 재조합 야로위아 리폴리티카(Yarrowia lipolytica; rY)가 발현하는 RGNNV 캡시드 단백질의 양을 평가하기 위해 웨스턴블럿을 수행하였다(도 11). 재조합 효모의 발현양 확인을 위해 rS는 48, 24, 12, 6, 3 μg(건조중량)의 세포를 로딩하였으며 이들 세포에 포함된 캡시드 양을 200, 100, 50, 25, 12 ng(Bradford 단백질 정량)의 정제된 RGNNV 캡시드 단백질과 비교하였다. rY는 140, 70, 35, 17 μg(건조중량)의 세포를 로딩하였으며 이들 세포에 포함된 캡시드 양을 60, 30, 15, 7.5 ng(Bradford 단백질 정량)의 정제된 RGNNV 캡시드 단백질과 비교하였다. 48 μg의 rS는 200 ng의 캡시드 단백질을 포함하며 140 μg의 rY는 60 ng의 캡시드 단백질을 포함하는 것으로 확인되었다. 따라서 1 mg의 rS는 4.1 μg의 캡시드 단백질을 발현하며 1 mg의 rY는 0.43 μg의 캡시드 단백질을 발현하는 것으로 확인되었다. Western blot was performed to evaluate the amount of RGNNV capsid proteins expressed by recombinant Saccharomyces cerevisiae (rS) and recombinant Yarrowia lipolytica (rY) (FIG. 11). To confirm the expression level of recombinant yeast, rS was loaded with 48, 24, 12, 6, 3 μg (dry weight) of cells and the capsid amount contained in these cells was 200, 100, 50, 25, 12 ng (Bradford protein Quantitative) of purified RGNNV capsid protein. rY was loaded with 140, 70, 35, 17 μg (dry weight) of cells and the amount of capsid contained in these cells was compared with 60, 30, 15, 7.5 ng (Bradford protein quantification) of purified RGNNV capsid proteins. 48 μg of rS contained 200 ng of capsid protein and 140 μg of rY contained 60 ng of capsid protein. Thus, 1 mg of rS expresses 4.1 μg of capsid protein and 1 mg of rY expresses 0.43 μg of capsid protein.
2. 경구면역 시 정제된 RGNNV 캡시드 단백질과 RGNNV 캡시드 단백질을 발현하는 효모의 면역원성 비교2. Comparison of immunogenicity between purified RGNNV capsid protein and RGNNV capsid protein in oral immunity
도 12는 정제된 RGNNV 캡시드 단백질과 RGNNV 캡시드 단백질을 발현하는 효모(rS, rY)를 마우스 경구로 3차, 4차 면역한 후 혈중 항체역가를 측정한 결과를 보여준다. VLP-S 그룹은 rS가 발현하는 캡시드 단백질의 양에 맞추어 정제된 RGNNV 캡시드 단백질을 면역시킨 그룹이다. VLP-Y 그룹은 rY가 발현하는 캡시드 단백질 양에 맞추어 정제된 RGNNV 캡시드 단백질을 경구로 면역시킨 그룹이다. 각 마우스 그룹의 항체 역가는 중간값(median value)으로 산출하였다. 3차 경구 면역 후 항-RGNNV 캡시드 단백질 IgG 항체역가를 측정한 결과 VLP-S 그룹은 450의 항체역가를 나타낸 반면 rS 그룹은 4050항체 역가를 나타내었다. VLP-Y 그룹의 항체 역가는 0을 나타낸 반면 rY 그룹의 항체 역가는 4050을 나타내었다. 4차 면역 후 항체 역가를 측정한 결과 VLP-S와 VLP-Y 그룹은 450의 항체역가를 나타낸 반면 rS와 rY는 12150의 항체역가를 나타내었다. 따라서 RGNNV 캡시드 단백질을 발현하는 효모 세포주 자체를 경구로 면역할 경우 정제된 캡시드 단백질을 경구로 면역하였을 때보다 10배 - 30배 높은 항-RGNNV 캡시드 단백질 항체역가를 유도하는 것으로 확인되었다.12 shows the result of measuring antibody titers in blood after the third and fourth immunization of purified RGNNV capsid protein and yeast (rS, rY) expressing RGNNV capsid protein by mouse oral. The VLP-S group is a group immunized with purified RGNNV capsid protein in accordance with the amount of capsid protein expressed by rS. The VLP-Y group is an orally immunized RGNNV capsid protein purified to the amount of capsid protein expressed by rY. Antibody titers in each mouse group were calculated as median values. Anti-RGNNV capsid protein IgG antibody titers were measured after tertiary oral immunity. The VLP-S group showed an antibody titer of 450 while the rS group showed 4050 antibody titers. The antibody titer of the VLP-Y group showed 0 while the antibody titer of the rY group showed 4050. The antibody titers after the 4th immunity were found to have an antibody titer of 450 while the VLP-S and VLP-Y groups showed an antibody titer of 12150. Therefore, oral immunization of the yeast cell line expressing the RGNNV capsid protein itself was confirmed to induce anti-RGNNV capsid protein antibody titers 10 to 30 times higher than when orally immunized the purified capsid protein.
3. 정제된 RGNNV 캡시드 단백질과 RGNNV 캡시드 단백질 발현 효모의 중화항체 유도능 평가3. Evaluation of neutralizing antibody inducing ability of purified RGNNV capsid protein and RGNNV capsid protein expressing yeast
정제된 RGNNV 캡시드 단백질과 RGNNV 캡시드 단백질 발현 효모를 경구로 4차까지 면역시킨 후 마우스 혈청의 중화항체 활성을 평가하였다(도 13). PBS, VLP-S, VLP-Y 그룹의 마우스 혈청을 RGNNV와 반응 시킨후 E-11 세포에 감염시킨 결과 세포 병변이(CPE) 관찰되어 이들 그룹의 혈청에 중화활성이 없는 것으로 확인되었다. 반면 rS와 rY 그룹의 마우스 혈청을 RGNNV와 반응 시킨 후 E-11 세포에 감염시킨 결과 세포 병변이 관찰되지(CPE) 않았다. 따라서 rS와 rY를 경구로 면역 시 RGNNV를 중화시킬 수 있는 항체가 유도될 수 있음을 확인하였다. Purified RGNNV capsid protein and RGNNV capsid protein expressing yeast were orally immunized up to 4th, and neutralizing antibody activity of mouse serum was evaluated (FIG. 13). Mouse serum of the PBS, VLP-S, and VLP-Y groups were reacted with RGNNV and then infected with E-11 cells. Cell lesions (CPE) were observed, indicating that the serum of these groups had no neutralizing activity. On the other hand, when the mouse sera of the rS and rY groups were reacted with RGNNV and then infected with E-11 cells, no cell lesions were observed (CPE). Therefore, oral immunization with rS and rY confirmed that antibodies capable of neutralizing RGNNV could be induced.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
참고문헌 references
1. Schneemann A, Ball LA, Delsert C, Jonhson JE, Nishizawa T. Nodaviridae, Academic Press, London, 2004.Schneemann A, Ball LA, Delsert C, Jonhson JE, Nishizawa T. Nodaviridae, Academic Press, London, 2004.
2. Yanong RPE (2011) Viral Nervous Necrosis (Bethanodavirus) Infection in Fish. University of Florida IFAS Extension: 1-7.2. Yanong RPE (2011) Viral Nervous Necrosis (Bethanodavirus) Infection in Fish. University of Florida IFAS Extension: 1-7.
3. (2010) International Commitee on Taxonomy of Virus online. Accessed November 24.3. (2010) International Commitee on Taxonomy of Virus online. Accessed November 24.
4. Yamashita H, Mori K, Kuroda A, Nakai T (2009) Neutralizing antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunized with an inactivated virus vaccine. J Fish Dis 32: 767-775.Yamashita H, Mori K, Kuroda A, Nakai T (2009) Neutralizing antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunized with an inactivated virus vaccine. J Fish Dis 32: 767-775.
5. Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, et al. (1999) Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63: 143-146.5. Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, et al. (1999) Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63: 143-146.
6. Bigarre L, Cabon J, Baud M, Heimann M, Body A, et al. (2009) Outbreak of betanodavirus infection in tilapia, Oreochromis niloticus (L.), in fresh water. J Fish Dis 32: 667-673. 6. Bigarre L, Cabon J, Baud M, Heimann M, Body A, et al. (2009) Outbreak of betanodavirus infection in tilapia, Oreochromis niloticus (L.), in fresh water. J Fish Dis 32: 667-673.
7. David R, Treguier C, Montagnani C, Belliard C, Levy P, et al. (2010) Molecular detection of betanodavirus from the farmed fish, Platax orbicularis (Forsskal) (Ephippidae), in French Polynesia. J Fish Dis 33: 451-454.7. David R, Treguier C, Montagnani C, Belliard C, Levy P, et al. (2010) Molecular detection of betanodavirus from the farmed fish, Platax orbicularis (Forsskal) (Ephippidae), in French Polynesia. J Fish Dis 33: 451-454.
8. Chi SC, Lo BJ, Lin SC (2001) Characterization of grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 24: 3-13.8. Chi SC, Lo BJ, Lin SC (2001) Characterization of grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 24: 3-13.
9. Delsert C, Morin N, Comps M (1997) A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Archives of Virology 142: 2359-2371.9.Delsert C, Morin N, Comps M (1997) A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Archives of Virology 142: 2359-2371.
10. Ball LA, Johnson JE (1999) Reverse genetics of nodaviruses. Adv Virus Res 53: 229-244.10. Ball LA, Johnson JE (1999) Reverse genetics of nodaviruses. Adv Virus Res 53: 229-244.
11. Chen LJ, Su YC, Hong JR (2009) Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385: 444-454.Chen LJ, Su YC, Hong JR (2009) Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385: 444-454.
12. Gomez-Casado E, Estepa A, Coll JM (2011) A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29: 2657-2671.12. Gomez-Casado E, Estepa A, Coll JM (2011) A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29: 2657-2671.
13. Husgag S, Grotmol S, Hjeltnes BK, Rodseth OM, Biering E (2001) Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Dis Aquat Organ 45: 33-44.13. Husgag S, Grotmol S, Hjeltnes BK, Rodseth OM, Biering E (2001) Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Dis Aquat Organ 45: 33-44.
14. Tanaka S, Mori K, Arimoto M, Iwamoto T, Nakai T (2001) Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosis. Journal of Fish Diseases 24: 15-22.Tanaka S, Mori K, Arimoto M, Iwamoto T, Nakai T (2001) Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosis. Journal of Fish Diseases 24: 15-22.
15. Baudin-Laurencin F, Richards R (1999) Nodavirus workshop. Bull Eur Ass Fish Pathol 19: 284-285.15. Baudin-Laurencin F, Richards R (1999) Nodavirus workshop. Bull Eur Ass Fish Pathol 19: 284-285.
16. Costa JZ, Adams A, Bron JE, Thompson KD, Starkey WG, et al. (2007) Identification of B-cell epitopes on the betanodavirus capsid protein. J Fish Dis 30: 419-426.16. Costa JZ, Adams A, Bron JE, Thompson KD, Starkey WG, et al. (2007) Identification of B-cell epitopes on the betanodavirus capsid protein. J Fish Dis 30: 419-426.
17. Lin CS, Lu MW, Tang L, Liu WT, Chao CB, et al. (2001) Characterization of virus-like particles assembled in a recombinant baculovirus system expressing the capsid protein of a fish nodavirus. Virology 290: 50-58.17. Lin CS, Lu MW, Tang L, Liu WT, Chao CB, et al. (2001) Characterization of virus-like particles assembled in a recombinant baculovirus system expressing the capsid protein of a fish nodavirus. Virology 290: 50-58.
18. Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, et al. (2002) Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol 76: 6370-6375.18. Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, et al. (2002) Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol 76: 6370-6375.
19. Lu MW, Liu WT, Lin CS (2003) Infection competition against grouper nervous necrosis virus by virus-like particles produced in Escherichia coli. Journal of General Virology 84: 1577-1582.19. Lu MW, Liu WT, Lin CS (2003) Infection competition against grouper nervous necrosis virus by virus-like particles produced in Escherichia coli. Journal of General Virology 84: 1577-1582.
20. Lu MW, Lin CS (2003) Involvement of the terminus of grouper betanodavirus capsid protein in virus-like particle assembly. Archives of Virology 148: 345-355.20. Lu MW, Lin CS (2003) Involvement of the terminus of grouper betanodavirus capsid protein in virus-like particle assembly. Archives of Virology 148: 345-355.
21. Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107 Suppl: S42-48.21. Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107 Suppl: S42-48.
22. Greene JJ (2004) Host cell compatibility in protein expression. Methods Mol Biol 267: 3-14.22. Greene JJ (2004) Host cell compatibility in protein expression. Methods Mol Biol 267: 3-14.
23. Pattenden LK, Middelberg AP, Niebert M, Lipin DI (2005) Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23: 523-529.23. Pattenden LK, Middelberg AP, Niebert M, Lipin DI (2005) Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23: 523-529.
24. Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.24. Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.
25. Soni R, Carmichael JP, Murray JA (1993) Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr Genet 24: 455-459.25. Soni R, Carmichael JP, Murray JA (1993) Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr Genet 24: 455-459.
26. Kim HJ, Kwag HL, Jin Y, Kim H-J (2011) The composition of the carbon source and the time of cell harvest are critical determinants of the final yield of human papillomavirus type 16 L1 protein produced in Saccharomyces cerevisiae. Protein Expr Purif 80: 52-60.26. Kim HJ, Kwag HL, Jin Y, Kim H-J (2011) The composition of the carbon source and the time of cell harvest are critical determinants of the final yield of human papillomavirus type 16 L1 protein produced in Saccharomyces cerevisiae. Protein Expr Purif 80: 52-60.
27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
28. Chang DY, Kim HJ, Kim H-J (2012). Effect of downstream processing on structural integrity and immunogenicity in the manufacture of papillomavirus type 16 L1 virus-like particles. Biotechnology Bioprocess Engineering 17: 755-763. 28. Chang DY, Kim HJ, Kim H-J (2012). Effect of downstream processing on structural integrity and immunogenicity in the manufacture of papillomavirus type 16 L1 virus-like particles. Biotechnology Bioprocess Engineering 17: 755-763.
본 발명의 방법에 의하면, 노다바이러스의 캡시드 단백질을 효모 발현 시스템를 통해 발현시킨 후 크로마토그래피 정제 방법을 통해 정제하면, 높은 품질의 노다바이러스 바이러스 유사입자를 대량 생산할 수 있다. 또한, 제조된 노다바이러스 바이러스 유사입자는 노다바이러스 감염에 대한 백신의 항원으로 매우 유용하게 사용될 수 있다. 한편, 본 발명의 결과에 따르면 노다바이러스 캡시드 단백질을 발현하는 효모 세포주 자체를 백신 조성물로 사용할 경우 정제된 캡시드 단백질을 백신의 조성물로 사용했을 때보다 우수한 방어 면역 유도 효과를 나타내었다. 따라서 이는 캡시드 단백질을 포함하는 효모주 자체가 우수한 면역 유도능을 가지고 있음을 의미한다. 이러한 형태의 재조합 효모주를 경구 백신으로 사용할 경우 백신 항원 제조를 위한 공정을 생략할 수 있다. 또한 이를 경구 백신을 위한 용도로 사용할 경우 백신 접종을 위한 시간, 노력, 비용을 크게 절약할 수 있다.According to the method of the present invention, the capsid protein of nodavirus is expressed through a yeast expression system, and then purified through a chromatographic purification method to mass produce high quality nodavirus virus analogous particles. In addition, the prepared nodavirus virus analogous particles can be very usefully used as an antigen of a vaccine against nodavirus infection. Meanwhile, according to the results of the present invention, when the yeast cell line expressing the nodavirus capsid protein itself was used as the vaccine composition, the protective capsid protein exhibited a superior protective immune inducing effect than the vaccine composition. Therefore, this means that the yeast strain containing the capsid protein itself has excellent immune inducing ability. When using this type of recombinant yeast strain as an oral vaccine, the process for preparing the vaccine antigen can be omitted. In addition, using it for oral vaccines can save a great deal of time, effort and money for vaccination.

Claims (17)

  1. 다음의 단계를 포함하는 노다바이러스(nodavirus)의 바이러스유사입자(virus-like particle)의 생산 방법: Method for producing virus-like particles of nodavirus comprising the following steps:
    (a) 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열을 포함하는 발현벡터로 형질전환되어 상기 노다바이러스 캡시드 단백질을 발현하는 효모 세포를 배양하는 단계; (a) culturing yeast cells transformed with an expression vector comprising a DNA sequence encoding the nodavirus capsid protein to express the nodavirus capsid protein;
    (b) 상기 배양된 효모 세포를 용해시켜 세포 용해물을 얻는 단계; 및 (b) lysing the cultured yeast cells to obtain cell lysates; And
    (c) 상기 세포 용해물에 대해 크로마토그래피(chromatography)를 행하여 노다바이러스 캡시드 단백질을 정제하는 단계.(c) chromatography of the cell lysate to purify the nodavirus capsid protein.
  2. 제 1 항에 있어서, 상기 단계 (c)에서의 크로마토그래피는 양이온교환 크로마토그래피, 음이온교환 크로마토그래피, 친화성 크로마토그래피, 크기배제 크로마토그래피, 또는 이들의 조합인 것을 특징으로 하는 방법.The method of claim 1, wherein the chromatography in step (c) is cation exchange chromatography, anion exchange chromatography, affinity chromatography, size exclusion chromatography, or a combination thereof.
  3. 제 1 항에 있어서, 상기 단계 (c)에서의 크로마토그래피는 헤파린 크로마토그래피(heparin chromatography)인 것을 특징으로 하는 방법.The method of claim 1, wherein the chromatography in step (c) is heparin chromatography.
  4. 제 3 항에 있어서, 상기 단계 (c)에서의 헤파린 크로마토그래피에 의한 노다바이러스 캡시드 단백질의 정제는 0.15 - 1.2 M의 NaCl을 포함하는 용출 완충액(elution buffer)를 사용하여 행하는 것을 특징으로 하는 방법. 4. The method of claim 3, wherein the purification of the nodavirus capsid protein by heparin chromatography in step (c) is carried out using an elution buffer containing 0.15-1.2 M NaCl.
  5. 제 3 항에 있어서, 상기 단계 (c)에서의 헤파린 크로마토그래피에 의한 노다바이러스 캡시드 단백질의 정제는 0.5 M의 NaCl을 포함하는 결합 완충액(binding buffer)을 사용하여 행하는 것을 특징으로 하는 방법.4. The method of claim 3, wherein the purification of the nodavirus capsid protein by heparin chromatography in step (c) is performed using a binding buffer containing 0.5 M NaCl.
  6. 제 1 항에 있어서, 상기 단계 (a)에서의 효모는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)인 것을 특징으로 하는 방법.The method of claim 1, wherein the yeast in step (a) is Saccharomyces cerevisiae .
  7. 제 1 항에 있어서, 상기 단계 (a)의 노다바이러스 캡시드 단백질을 코딩하는 DNA 서열은 서열번호 1의 염기 서열로 이루어지는 것을 특징으로 하는 방법.The method of claim 1, wherein the DNA sequence encoding the nodavirus capsid protein of step (a) is characterized in that consisting of the nucleotide sequence of SEQ ID NO: 1.
  8. 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP).Virus-like particles (VLPs) of nodavirus assembled from nodavirus capsid proteins.
  9. 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자를 포함하며 노다바이러스에 대한 면역반응을 유발할 수 있는 면역원성 조성물(immunogenic composition).An immunogenic composition comprising viral analogs of nodavirus assembled from nodavirus capsid proteins and capable of eliciting an immune response against nodaviruses.
  10. 제 9 항에 있어서, 노다바이러스의 바이러스 유사입자는 상기 청구항 제 1 항 내지 제 7 항 중 어느 한 항 기재의 방법에 의해 제조된 것을 특징으로 하는 면역원성 조성물.10. The immunogenic composition of claim 9, wherein the virus like particle of nodavirus is prepared by the method of any one of claims 1-7.
  11. 서열번호 2로 표시되는 노다바이러스 캡시드 단백질을 발현하는 재조합 효모 균주. A recombinant yeast strain expressing the nodavirus capsid protein represented by SEQ ID NO: 2.
  12. 제 11 항에 있어서, 상기 균주는 도 3에 도시된 발현 벡터 YEGα-MCS-NNVcp로 형질전환된 것을 특징으로 하는 재조합 효모 균주.12. The recombinant yeast strain according to claim 11, wherein the strain is transformed with the expression vector YEGα-MCS-NNVcp shown in FIG.
  13. 제 11 항에 있어서, 상기 효모 균주는 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 또는 야로위아 리폴리티카(Yarrowia lipolytica)인 것을 특징으로 하는 재조합 효모 균주. 12. The recombinant yeast strain according to claim 11, wherein the yeast strain is Saccharomyces cerevisiae or Yarrowia lipolytica .
  14. (a) 노다바이러스 캡시드 단백질로부터 조립된 노다바이러스의 바이러스 유사입자(virus-like particle, VLP)를 포함하는 면역원성 조성물(immunogenic composition), 제 11 항의 재조합 효모 균주 또는 이의 배양물의 면역학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 백신 조성물.(a) an immunogenic composition comprising a virus-like particle (VLP) of nodavirus assembled from a nodavirus capsid protein, an immunologically effective amount of the recombinant yeast strain of claim 11 or a culture thereof; And (b) a pharmaceutically acceptable carrier.
  15. 제 14 항에 있어서, 상기 노다바이러스의 바이러스 유사입자는 상기 청구항 제 1 항 내지 제 7 항 중 어느 한 항 기재의 방법에 의해 제조된 것을 특징으로 하는 백신 조성물. 15. The vaccine composition according to claim 14, wherein the virus like particle of the nodavirus is prepared by the method of any one of claims 1 to 7.
  16. 제 14 항에 있어서, 상기 백신 조성물은 어류에서의 노다바이러스 감염증을 예방 또는 치료하기 위한 용도인 것을 특징으로 하는 백신 조성물. The vaccine composition according to claim 14, wherein the vaccine composition is for preventing or treating nodavirus infection in fish.
  17. 제 16 항에 있어서, 상기 어류는 능성어류, 넙치, 농어, 또는 볼락류인 것을 특징으로 하는 백신 조성물.The vaccine composition according to claim 16, wherein the fish is a fish, flounder, perch, or rockfish.
PCT/KR2013/008088 2012-09-20 2013-09-06 Method for producing virus-like particles of nodavirus, yeast cell line expressing same, and vaccine composition containing same WO2014046410A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120104489 2012-09-20
KR10-2012-0104489 2012-09-20
KR10-2013-0082891 2013-07-15
KR1020130082891A KR101608121B1 (en) 2012-09-20 2013-07-15 Method for Preparing Virus Like Particle of Nodavirus, Yeast Strain producing the Same and Vaccine Composition Comprising the Same

Publications (1)

Publication Number Publication Date
WO2014046410A1 true WO2014046410A1 (en) 2014-03-27

Family

ID=50341658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008088 WO2014046410A1 (en) 2012-09-20 2013-09-06 Method for producing virus-like particles of nodavirus, yeast cell line expressing same, and vaccine composition containing same

Country Status (1)

Country Link
WO (1) WO2014046410A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527306A (en) * 2014-08-21 2017-09-21 チュン−アン ユニヴァーシティ インダストリー−アカデミー コーポレーション ファウンデーションChung−Ang University Industry−Academy Cooperation Foundation rDNA NTS-based gene multiple insertion cassette set and GRAS grade recombinant yeast strain using the same
CN105219779B (en) * 2015-11-12 2018-06-15 厦门大学 Red claw crayfish coagulogen and preparation method and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023739A (en) * 1996-07-12 2000-04-25 리차드 에이취 리저 Method of producing particles containing nucleic acid sequences in yeast
US6180614B1 (en) * 1995-11-07 2001-01-30 Loeb Health Research Institute At The Ottawa Hospital DNA based vaccination of fish
US20030049825A1 (en) * 2001-05-30 2003-03-13 Han-You Lin Nervous necrosis virus protein
US20070160628A1 (en) * 2005-08-31 2007-07-12 Birkett Ashley J Stabilized virus-like particles and epitope display systems
KR20100136889A (en) * 2009-06-19 2010-12-29 아이진 주식회사 Vaccines for cervical cancer
US20120156237A1 (en) * 2007-02-16 2012-06-21 The Scripps Research Institute Novel Antitoxin and Vaccine Platform Based on Nodavirus VLPS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180614B1 (en) * 1995-11-07 2001-01-30 Loeb Health Research Institute At The Ottawa Hospital DNA based vaccination of fish
KR20000023739A (en) * 1996-07-12 2000-04-25 리차드 에이취 리저 Method of producing particles containing nucleic acid sequences in yeast
US20030049825A1 (en) * 2001-05-30 2003-03-13 Han-You Lin Nervous necrosis virus protein
US20070160628A1 (en) * 2005-08-31 2007-07-12 Birkett Ashley J Stabilized virus-like particles and epitope display systems
US20120156237A1 (en) * 2007-02-16 2012-06-21 The Scripps Research Institute Novel Antitoxin and Vaccine Platform Based on Nodavirus VLPS
KR20100136889A (en) * 2009-06-19 2010-12-29 아이진 주식회사 Vaccines for cervical cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 8 December 2008 (2008-12-08), accession no. P_611157.1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527306A (en) * 2014-08-21 2017-09-21 チュン−アン ユニヴァーシティ インダストリー−アカデミー コーポレーション ファウンデーションChung−Ang University Industry−Academy Cooperation Foundation rDNA NTS-based gene multiple insertion cassette set and GRAS grade recombinant yeast strain using the same
CN105219779B (en) * 2015-11-12 2018-06-15 厦门大学 Red claw crayfish coagulogen and preparation method and application

Similar Documents

Publication Publication Date Title
KR101608121B1 (en) Method for Preparing Virus Like Particle of Nodavirus, Yeast Strain producing the Same and Vaccine Composition Comprising the Same
US20240123053A1 (en) Coronavirus vaccine through nasal immunization
US9737597B2 (en) Attenuated recombinant vesicular stomatitis virus vaccine vectors comprising modified matrix proteins
CA2916789C (en) Modified matrix proteins of vesicular stomatitis virus
EP1752468A1 (en) Method for the production of empty viral capsids in yeasts, said capsids comprising proteins derived from pvp2 of the virus that causes infectious bursal disease (ibdv)
WO2014046410A1 (en) Method for producing virus-like particles of nodavirus, yeast cell line expressing same, and vaccine composition containing same
WO2023160654A1 (en) Preparation and use of recombinant multicomponent sars-cov-2 trimeric protein vaccine capable of inducing broad-spectrum neutralizing activity
KR20140039972A (en) Method for production of codon-optimized intact and n-terminal truncated noda capsid protein in the yeast yarrowia lipolytica for recombinant vaccine development
CN113896773B (en) Recombinant FCV antigen and feline calicivirus genetic engineering subunit vaccine
CN114164220B (en) Nucleotide sequence for constructing novel coronavirus vaccine and application thereof
KR102365045B1 (en) Suspension Cell Culture Adapted Vaccine Strain Derived from Foot-and-mouth disease virus of O/ME-SA/Ind-2001 Lineage and Method of Preparing the Same
WO2021215857A1 (en) Coronavirus disease 2019 (covid-19) recombinant spike protein forming trimer, method for mass producing recombinant spike protein in plants, and method for preparing vaccine composition on basis thereof
WO2022163902A1 (en) Vaccine composition for preventing human infectious sars coronavirus and alleviating infection symptoms
JP2023545524A (en) Recombinant HVT and its use
WO2022253134A1 (en) Method for improving immunogenicity/antigenic trimer stability of ecd antigen of sars-cov-2 mutant strain
WO2023244044A1 (en) Modified coronavirus spike antigen protein and uses thereof
GB2591822A (en) Extracellular assembly of virus like particles
KR20240049581A (en) Method for producing foot-and-mouth disease virus virus-like particles
KR20210123190A (en) Zika virus vaccine
KR20210055667A (en) Suspension Cell Culture Adapted Vaccine Strain Derived from Foot-and-mouth disease virus of A/ASIA/Sea-97 Lineage and Method of Preparing the Same
CN116457011A (en) Vaccine composition for treating coronavirus
Joshi et al. Immunization with a plasmid DNA expressing rinderpest virus hemagglutinin protein protects rabbits from lethal challenge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838765

Country of ref document: EP

Kind code of ref document: A1