WO2014046051A1 - Novel dna, and method for producing carotenoid using same - Google Patents

Novel dna, and method for producing carotenoid using same Download PDF

Info

Publication number
WO2014046051A1
WO2014046051A1 PCT/JP2013/074875 JP2013074875W WO2014046051A1 WO 2014046051 A1 WO2014046051 A1 WO 2014046051A1 JP 2013074875 W JP2013074875 W JP 2013074875W WO 2014046051 A1 WO2014046051 A1 WO 2014046051A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
seq
sequence
base sequence
sequence listing
Prior art date
Application number
PCT/JP2013/074875
Other languages
French (fr)
Japanese (ja)
Inventor
憲之 木崎
西村 明
拡敏 松田
清敬 原
近藤 昭彦
Original Assignee
株式会社カネカ
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立大学法人神戸大学 filed Critical 株式会社カネカ
Publication of WO2014046051A1 publication Critical patent/WO2014046051A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts

Definitions

  • the present invention relates to a novel DNA derived from an organism belonging to the genus Xanthophyllomyces, and a method for producing a carotenoid using the DNA.
  • Carotenoid is a general term for compounds having a basic structure of the chemical formula C40H56, which are pigments of yellow, red, purple, etc. possessed by plants, animals, microorganisms and the like. About 600 types of natural carotenoids are known, such as ⁇ -carotene, ⁇ -carotene, lycopene, lutein, zeaxanthin, and astaxanthin. Astaxanthin is widely used as an additive for feed for improving the color tone of cultured fish meat and skin, egg yolk of chicken eggs and the like, and has recently attracted attention as a functional food material.
  • Xanthophyllomyces dendrorous (former name: Phaffia rhodozyma) is known as a yeast that specifically produces astaxanthin, and has attracted attention as one of the means to industrially produce astaxanthin. ing.
  • Phaffia rhodozyma is known as a yeast that specifically produces astaxanthin, and has attracted attention as one of the means to industrially produce astaxanthin. ing.
  • many strain improvement studies have been carried out to obtain astaxanthin high-producing strains from Xanthophyllomyces dendrhaus, and initially random mutagenesis has been used exclusively for strain improvement. It was.
  • acquisition of a high astaxanthin-producing strain by the random mutagenesis method requires a great deal of time and labor, and recently, strain improvement studies using genetic engineering techniques have been attempted.
  • Non-Patent Document 1 discloses a transformation method in which a foreign gene is introduced into ribosomal DNA present in the chromosome of Xanthophyllomyces dendroth using homologous recombination.
  • Patent Document 1 discloses DNA encoding three types of enzymes that catalyze the reaction of geranylgeranyl pyrophosphate to ⁇ -carotene on the carotenoid biosynthetic pathway of Xanthophylomyces dendroas, and those DNAs. Disclosed is a transformant obtained by introducing an expression vector containing Xanthophyllomyces dendroth.
  • Patent Document 2 discloses 3-hydroxy-3-methylglutaryl-coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reduction on the mevalonate pathway of Xanthophylomyces dendroas.
  • Production of carotenoids comprising culturing host cells transformed with enzymes, mevalonate kinase, DNA encoding mevalonate pyrophosphate decarboxylase, and farnesyl pyrophosphate synthase, respectively, and vectors containing these DNAs The law is disclosed.
  • An object of the present invention is to provide a novel DNA and a method for producing a carotenoid using the DNA.
  • the present inventors have found a novel DNA encoding a protein involved in the production of carotenoids of Xanthophyllomyces dendroas. Furthermore, the present inventors have found that by enhancing the expression of the DNA in living cells, the carotenoid production ability of the living cells is improved, and the present invention has been completed.
  • the present invention The following (A) to (H): (A) DNA containing the base sequence shown in SEQ ID NO: 1 in the sequence listing; (B) a DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing; (C) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 1 in the Sequence Listing; (D) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 in the Sequence Listing; (E) a DNA comprising the base sequence shown in SEQ ID NO: 2 in the sequence listing; (F) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the Sequence Listing; (G) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 2 in the Sequence Listing
  • the present invention also provides the following (I) to (K): (I) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing; (J) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing; (K) a polypeptide comprising an amino acid sequence in which one or more amino acids are deleted, inserted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing; The present invention relates to a DNA encoding any of the polypeptides.
  • the present invention provides The following (L) to (S): (L) a DNA comprising the base sequence represented by SEQ ID NO: 20 in the sequence listing; (M) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing; (N) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 20 in the Sequence Listing; (O) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 20 in the Sequence Listing; (P) a DNA comprising the base sequence shown in SEQ ID NO: 21 in the sequence listing; (Q) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 21 in the Sequence Listing; (R) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 21 in the sequence
  • the present invention provides the following (T) to (V): (T) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing; (U) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing; (V) a polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing; The present invention relates to a DNA encoding any of the polypeptides.
  • the DNA is preferably derived from an organism belonging to the genus Xanthophyllomyces.
  • the organism is Xanthophyllomyces dendroas.
  • the present invention also relates to a vector comprising one or more of the DNAs.
  • the vector further includes one or more DNAs including a part or all of the base sequence of the promoter of the actin gene, the promoter of the alcohol dehydrogenase IV gene, and / or the promoter of the triose phosphate isomerase gene.
  • the present invention also relates to a transformant obtained by transforming a host cell with the vector.
  • the transformant has a carotenoid producing ability.
  • the host cell is preferably a cell of an organism belonging to the genus Xanthophyllomyces.
  • the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
  • the present invention relates to a method for producing carotenoid, which includes a step of culturing a cell to which expression of the DNA is imparted and / or enhanced and has carotenoid-producing ability using a gene recombination technique.
  • the cell having the ability to produce carotenoids is preferably a cell of an organism belonging to the genus Xanthophyllomyces.
  • the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
  • the present invention is the DNA according to any of the following (A) to (D): (A) DNA containing the base sequence shown in SEQ ID NO: 1 in the sequence listing; (B) a DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing; (C) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 1 in the Sequence Listing; (D) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 in the sequence listing.
  • the present invention is the DNA according to any one of the following (L) to (O): (L) a DNA comprising the base sequence represented by SEQ ID NO: 20 in the sequence listing; (M) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing; (N) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 20 in the Sequence Listing; (O) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 20 in the Sequence Listing.
  • DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing means the base sequence shown in SEQ ID NO: 1 in the Sequence Listing. It means DNA obtained by using colony hybridization method, plaque hybridization method, Southern hybridization method or the like under stringent conditions using DNA consisting of a complementary base sequence as a probe.
  • DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing is complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing. It means DNA obtained by using a colony hybridization method, plaque hybridization method, Southern hybridization method or the like under stringent conditions using a DNA having a typical nucleotide sequence as a probe.
  • DNA that hybridizes under stringent conditions means, for example, using a filter on which colony or plaque-derived DNA is immobilized at 65 ° C. in the presence of 0.7 to 1.0 M NaCl. After hybridization, the filter was washed under conditions of 65 ° C. using a 2 ⁇ concentration SSC solution (composition of 1 ⁇ concentration SSC solution consisting of 150 mM sodium chloride and 15 mM sodium citrate). The DNA which can be acquired can be mentioned.
  • hybridization conditions have been described as described above, the conditions are not particularly limited.
  • a plurality of factors such as temperature and salt concentration can be considered as factors affecting the stringency of hybridization, and those skilled in the art can realize optimum stringency by appropriately selecting these factors.
  • DNA that can hybridize with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing has a sequence identity of 70% or more with the DNA shown in SEQ ID NO: 1. And preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the sequence identity with the DNA shown in SEQ ID NO: 20 is 70. % Or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • sequence identity means that the two DNAs to be compared are optimally aligned, and the nucleobases (eg, A, T, C, G, U, or I) match in both sequences.
  • the number of positions is divided by the total number of comparison bases, and the result is expressed by a value obtained by multiplying by 100.
  • Sequence identity can be calculated using, for example, the following sequence analysis tools: GCG Wisconsin Package (Program Manual for The Wisconsin Package, Version 8, September 1994, Genetics Computer Group, ce. 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Ricé, The Sanger Center, Hinxton Hall, Cambridge, CB10 1Q, 1R, EnPl. Wide Web molecular biology for the server (Geneva University Hospital and University of Geneva, Geneva, Switzerland).
  • the “plurality of bases” described above is, for example, 600 or less, preferably 300 or less, more preferably 100 or less, still more preferably 50 or less, 20 or less, 10 or less, or 5
  • the following bases are meant.
  • the organism that is the origin of the DNA described in any of (A) to (D) and (L) to (O) is not particularly limited, but an organism that produces a carotenoid is preferable and belongs to the genus Xanthophyllomyces. More preferred are organisms, more preferred are organisms belonging to the species Xanthophyllomyces dendroas, and even more preferred is Xanthophyllomyces dendroas NBRC10129 strain. Xanthophyromyces Dendroas NBRC10129 strain is to be obtained from the Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation (NBRC: 2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818) Can do.
  • the method for isolating the DNA from the organism that is the origin of the DNA is not particularly limited.
  • PCR Polymerase Chain Reaction
  • the DNA can be amplified.
  • those skilled in the art can isolate the DNA by a known method. For example, it can be isolated by ligating the amplified DNA to a suitable cloning vector and introducing it into a suitable host cell.
  • primers examples include SEQ ID NO: 4 and SEQ ID NO: 5 for the DNA described in any of (A) to (D) above, and the DNA described in any of (L) to (O) above. Includes a primer combination consisting of the DNA sequences represented by SEQ ID NO: 23 and SEQ ID NO: 24.
  • the DNA thus obtained can contain an untranslated sequence such as an intron.
  • the present invention is also the DNA according to any one of the following (E) to (H):
  • H DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 2 in the Sequence Listing.
  • the present invention is further a DNA according to any one of the following (P) to (S):
  • S DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 21 in the Sequence Listing.
  • the organism that is the origin of the DNA described in any of (E) to (H) and (P) to (S) is not particularly limited, but an organism that produces carotenoid is preferable, and belongs to the genus Xanthophyllomyces. More preferred are organisms, more preferred are organisms belonging to the species Xanthophyllomyces dendroas, and even more preferred is Xanthophyllomyces dendroas NBRC10129 strain. Xanthophyromyces Dendroas NBRC10129 strain is to be obtained from the Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation (NBRC: 2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818) Can do.
  • the method for isolating the DNA from the organism that is the source of the DNA is not particularly limited.
  • PCR Polymerase Chain Reaction
  • the DNA can be amplified.
  • those skilled in the art can isolate the DNA by a known method. For example, it can be isolated by ligating the amplified DNA to a suitable cloning vector and introducing it into a suitable host cell.
  • the primer include SEQ ID NO: 4 and SEQ ID NO: 5 in the case of DNA described in any of (E) to (H) above, and the DNA described in any of (P) to (S) above.
  • the polypeptide encoded by the DNA is not particularly limited. For example, in the case of the DNA described in any of (E) to (H) above, any of SEQ ID NO: 3 and any of (P) to (S) above In the case of the described DNA, a polypeptide having the amino acid sequence represented by SEQ ID NO: 22 is exemplified.
  • DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are represented by (A ) To (D) and (L) to (O).
  • the present invention is also a DNA encoding the polypeptide according to any of the following (I) to (K): (I) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing; (J) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 3 in the Sequence Listing; (K) A polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting, and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing.
  • the present invention further relates to a DNA encoding the polypeptide according to any one of the following (T) to (V):
  • T) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing;
  • U a polypeptide comprising an amino acid sequence having 85% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 22 in the Sequence Listing;
  • V A polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing.
  • DNA encoding the polypeptide described in (K) and (V) above can be prepared according to a known method described in Current Protocols in Molecular Biology (John Wiley and Sons, Inc, 1989).
  • the highly conserved region represents a position where amino acids are matched between a plurality of sequences when amino acid sequences are optimally aligned and compared for a plurality of enzymes having different origins.
  • the highly conserved region can be confirmed by comparing the amino acid sequence shown in SEQ ID NO: 3 or 22 with the amino acid sequence of a known protein using a tool such as GENETYX.
  • amino acid sequence modified by substitution, insertion, deletion and / or addition may include only one type of modification (for example, substitution), or two or more modifications (for example, substitution and substitution). Insertion).
  • the amino acid to be substituted is preferably an amino acid having a property similar to that of the amino acid before substitution (cognate amino acid).
  • amino acids within the same group of the following groups are considered homologous amino acids: (Group 1: neutral nonpolar amino acids) Gly, Ala, Val, Leu, Ile, Met, Cys, Pro, Phe; (Group 2: neutral polar amino acids) Ser, Thr, Gln, Asn, Trp, Tyr; (Group 3: acidic amino acids) Glu, Asp; (Group 4: basic amino acids) His, Lys, Arg.
  • the “plural amino acids” described above are, for example, 100 or less, preferably 50 or less, more preferably 20 or less, still more preferably 15 or less, and even more preferably 10 or less, 5 or less. It means 4 or less, 3 or less, or 2 or less amino acids.
  • Sequence identity between the polypeptide described in (J) above and the amino acid sequence of SEQ ID NO: 3 in the sequence listing, and sequence identity between the polypeptide described in (U) above and the amino acid sequence of SEQ ID NO: 22 are: Both are 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 99% or more.
  • sequence identity of amino acid sequences is determined by comparing the amino acid sequence shown in SEQ ID NO: 3 or 22 in the sequence listing with the amino acid sequence to be evaluated, and comparing the number of amino acid matches in both sequences. It is expressed by a value obtained by dividing by 100 and multiplying by 100.
  • the DNA of the present invention may be any DNA as long as it can participate in carotenoid production in a host cell introduced according to the method described below, and may contain any untranslated region.
  • the present invention also relates to a vector comprising the DNA of the present invention.
  • the vector used in the present invention is not particularly limited as long as the DNA of the present invention can be introduced into a desired host cell.
  • it can be introduced into a plasmid vector, a phage vector, a cosmid vector, or a plurality of types of hosts.
  • a simple shuttle vector can be used.
  • the DNA of the present invention is preferably linked to a vector by adding an expression promoter, terminator and the like effective in a desired host cell. Vectors and promoters that can be used in various organisms are described in detail in "Basic Course of Microbiology 8 Genetic Engineering / Kyoritsu Shuppan".
  • promoters and terminators examples include promoters and terminators of glyceraldehyde-3-phosphate dehydrogenase gene, actin gene, glutamate dehydrogenase gene, alcohol dehydrogenase IV gene, or triose phosphate isomerase gene.
  • the promoters and terminators listed above may contain part or all of the base sequence, and can be designed in a timely manner according to the purpose of those skilled in the art if they function as promoters and terminators in the host cell.
  • (1-1) DNA comprising the base sequence shown in SEQ ID NO: 25 in the sequence listing;
  • 1-4 DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 25 in the Sequence Listing;
  • (1-5) A DNA comprising part or all of the DNA according to any one of (1-1) to (1-4) and having promoter activity in a host cell.
  • examples of the promoter of the alcohol dehydrogenase IV gene that can be used in the present invention include the DNAs described in any of the following (2-1) to (2-5).
  • examples of the promoter of the triose phosphate isomerase gene that can be used in the present invention include the DNAs described in any of (3-1) to (3-5) below.
  • (3-1) DNA comprising the base sequence shown in SEQ ID NO: 28 in the sequence listing;
  • DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are as described above in (A) to (D) and (L). The same as in (O).
  • (4-1) DNA comprising the base sequence shown in SEQ ID NO: 26 in the sequence listing;
  • examples of the terminator of the alcohol dehydrogenase IV gene that can be used in the present invention include the DNAs described in any of the following (5-1) to (5-5).
  • (5-1) DNA comprising the base sequence shown in SEQ ID NO: 29 in the sequence listing;
  • (5-4) DNA consisting of a base sequence obtained by deleting, inserting, substituting, and / or adding one or more bases in the base sequence shown in SEQ ID NO: 29 of the Sequence Listing;
  • examples of the terminator of the triose phosphate isomerase gene that can be used in the present invention include the DNAs described in any of (6-1) to (6-5) below.
  • DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are as described above in (A) to (D) and (L). The same as in (O).
  • the vector containing the DNA of the present invention is not particularly limited, an example is plasmid pUCRPKT-PT (see Example 2).
  • the present invention also relates to a transformant obtained by transforming a host cell with the vector.
  • the host cell transformed with the vector containing the DNA of the present invention is not particularly limited, and examples thereof include, for example, the genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, and the like.
  • Bacteria such as Lactobacillus genus, Rhodoco Actinomycetes such as the genus Rhodococcus and the genus Streptomyces, the genus Saccharomyces, the genus Kluyveromyces, the genus Schizosaccharomyces cerevisiae, Yarrowia genus, Trichosporon genus, Rhodosporidium genus, Pichia genus, Candida genus, and Xanthophylomyces genus, Neurospora genus, Aspergillus genus, Aspergillus Aspergillus), Cephalosporus (Cephalosporium) and molds such as Trichoderma, Algae such as Haematococcus, Chlamydomonas
  • a method for introducing the vector containing the DNA of the present invention into a host cell is not particularly limited, and a known method can be used. For example, when Xanthophylomyces dendroasu cells are used as host cells, electroporation can be used (see Example 3).
  • the DNA of the present invention may be maintained independently of the host cell chromosome or may be inserted into the host cell chromosome.
  • a plurality of rDNA sequences and the like are present in the chromosome, a plurality of rDNA sequences can be inserted into the host cell chromosome by placing the DNA of the present invention in the rDNA sequence.
  • the present invention also provides a method for producing carotenoids, comprising a step of culturing cells having the ability to express the DNA of the present invention and / or enhanced and having carotenoid-producing ability using a genetic recombination technique. is there.
  • Cells to which the ability to express the DNA of the present invention is imparted and / or enhanced using a gene recombination technique are not limited to transformants obtained by transforming host cells with a vector containing the DNA of the present invention.
  • a cell obtained by substituting, adding, destroying and / or deleting using a DNA can be obtained without transforming a host cell with a vector containing the DNA of the present invention, but is capable of expressing the DNA of the present invention.
  • the ability to express the DNA of the present invention using genetic recombination techniques is encompassed by the imparted and / or enhanced cells.
  • Cells having carotenoid production ability are not limited to cells originally having carotenoid production ability, and cells to which carotenoid production ability is imparted using a genetic recombination technique are also included.
  • Cells having the ability to express the DNA of the present invention using a gene recombination technique and / or enhanced, and having carotenoid-producing ability are not particularly limited, but preferably an organism belonging to the genus Xanthophyllomyces More preferably, it is a Xanthophyllomyces dendroas cell.
  • a method for culturing a cell having the ability to express the DNA of the present invention using a gene recombination technique and imparted and / or enhanced and having the ability to produce carotenoid is not particularly limited, and the cell grows to produce carotenoid. As long as it is possible, it may be cultured under any medium composition and culture conditions.
  • a method for obtaining carotenoids from a culture of cells that are imparted and / or enhanced with the ability to express the DNA of the present invention using a gene recombination technique and that has carotenoid production ability is not particularly limited, and is publicly known. It can be implemented using the techniques alone or in combination.
  • the carotenoid-containing dried product can be obtained by drying the culture using techniques such as spray drying, drum drying, freeze drying and the like.
  • a carotenoid-containing extract can be obtained by extracting the culture with an appropriate solvent and then distilling off the solvent.
  • a carotenoid-containing extract can be purified to obtain a highly pure carotenoid.
  • the carotenoid is not particularly limited.
  • examples thereof include nenone, zeaxanthin, canthaxanthin, fucoxanthin, anthaxanthin, violaxanthin, and astaxanthin, and astaxanthin is particularly preferable.
  • Example 1 Isolation of DNA (SEQ ID NOs: 1 and 2)
  • the DNA of the present invention was isolated from Xanthophyllomyces dendrhaus NBRC10129 strain.
  • primer 1 (5'-CTCGTCCGAGGCATCGCGGATCGCCGCGATAGCACCCCCCTATC, CCAGCGCTATC, CCACCGCTATC, CCACCGCTATC, CCACCGCTATC Primer 2 (5′-CTGCTTCGTGAGGCCTACGCGTACTAGTCCCCGGGCTACGACAATTCCCTCAAACCGGTG-3 ′) was designed and synthesized.
  • This DNA fragment was subjected to direct sequencing using BigDye Terminator Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) and Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems Japan Co., Ltd.), and the base sequence was analyzed.
  • the resulting chromosomal DNA sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • This DNA fragment was subjected to direct sequencing using BigDye Terminator Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) and Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems Japan Co., Ltd.), and the base sequence was analyzed.
  • the resulting cDNA sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • the amino acid sequence deduced from the cDNA sequence is shown in SEQ ID NO: 3 in the sequence listing.
  • primer 3 (5′-CAGGAATTCCGGCAAGTCGAGGGAACCCGAGAG-3 ′) shown in SEQ ID NO: 6 and primer 4 shown in SEQ ID NO: 7 in the sequence listing, designed with reference to WO 97/23633 pamphlet.
  • 5′-CACGAGCTCGATGGTAAGAGGTTAGAGAAGTAG-3 ′ PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and the promoter of glyceraldehyde-3-phosphate dehydrogenase Amplified. This was digested with restriction enzymes EcoRI and SacI and inserted into similarly digested plasmid pUC19 (manufactured by Takara Bio Inc.) to prepare plasmid pUC19P.
  • primer 5 (5′-CAGCTGCAGACGGTTCTCCAAAACCCTTC-3 ′) shown in SEQ ID NO: 8 and primer shown in SEQ ID NO: 9 in the sequence listing, designed with reference to WO 97/23633 pamphlet 6 (5′-CACAAGCTTTGGAAGGGCTGCTGGATGGGACTGG-3 ′) was used to perform PCR using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and glyceraldehyde-3-phosphate dehydrogenase sequence Was amplified. This was digested with restriction enzymes PstI and HindIII and inserted into the similarly digested plasmid pUC19P to prepare plasmid pUC19PT.
  • the plasmid pHSG298 PCR was carried out using TAKARA BIO INC. As a template to amplify the kanamycin resistance gene. This was digested with restriction enzymes SmaI and SalI and inserted into the similarly digested plasmid pUC19PT to prepare plasmid pUC19PKT.
  • the plasmid pUC19PKT was used as a template to amplify DNA in which a kanamycin resistance gene was inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene. This was digested with the restriction enzyme ClaI and inserted into the similarly digested plasmid pUC19R to prepare plasmid pUC19RPKT.
  • primer 13 (5′-GGTTCTCGCTTCGAACGGCAAGTCGAGGGG-3 ′) shown in SEQ ID NO: 16 in the sequence listing
  • primer 14 (5′-CTTGTTCAATCATCCCGCGGATATCGCTAGCGGATGGTATAAGAGGTpGA19TC) using the primers shown in SEQ ID NO: 17 in the sequence listing
  • primer 15 (5′-CGCCCTCTTGACCCCCGCGGATAGTACCGCGTAGGCTCTACGGGTTCTCTCCAAACCCTC-3G) used in the sequence listing
  • primer 16 (5′-CCCCCCGCTGCGTCTGCTGGCATCGpTCTGCGTGTCTGCG) was used as a template to amplify the terminator sequence of glyceraldehyde-3-phosphate dehydrogenase. This was treated with restriction enzymes ClaI and SacII to prepare DNA fragment T for insertion into plasmid pUC19RPKT.
  • pUC19RPKT was treated with the restriction enzyme ClaI, further dephosphorylated with alkaline phosphatase, and then ligated with the DNA fragment P and DNA fragment T described above to produce the plasmid pUCRPKT-PT.
  • primer 1 5′-CTCCGTCGCAGGCTCCGCGATGACCGCCGATAGCCCACCCGCTATACC-3C
  • primer 2 5′-CTGCTTCGTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and DNA with restriction enzyme SacII and SpeI recognition sequences added to both ends was amplified. This was digested with restriction enzymes SacII and SpeI and inserted into the similarly digested plasmid pUCRPKT-PT to produce plasmid pUCRPKT-PMK.
  • the plasmid pUCRPKT-PMK has a structure in which the DNA of the present invention is inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene, and functions as an expression vector for the DNA of the present invention.
  • the plasmid pUCRPKT-PMK thus prepared was digested with the restriction enzyme NdeI to obtain a linear DNA, which was used as a transformation vector.
  • Example 3 (Acquisition of transformant)
  • the transformation vector prepared in Example 2 was introduced into cells of the Xanthophyllomyces dendrohaus NBRC10129 strain by electroporation (Biotechnology techniques 1997 10: 929-932), and antibiotic G418 was introduced.
  • YM agar medium peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, glucose 1.0%, agar 2.0%, pH 6.2
  • Transformed cells were selected, transplanted onto a slant of YM agar medium supplemented with 40 mg / L of antibiotic G418 and stored.
  • the resulting transformed cells were named Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-PMK) strain.
  • Example 4 Production of astaxanthin by transformant
  • YM medium (0.5% peptone, 0.3% yeast extract, 0.3% malt extract, 1.0% glucose, pH 6.2) supplemented with 40 mg / L of antibiotic G418 Sterilized and inoculated with the strain Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-PMK). This was cultured with shaking at 22 ° C. for 2 days to obtain a preculture solution.
  • a shake flask containing 80 mL of YM medium supplemented with 40 mg / L of antibiotic G418 was autoclaved and inoculated with 0.8 mL of the above preculture solution. This was cultured with shaking at 22 ° C. for 3 days, and the astaxanthin content and cell dry matter content of the obtained culture broth were measured. The astaxanthin content was divided by the cell dry matter content to calculate the astaxanthin content in the cell dry matter. As a result, the astaxanthin content in the cell dried product was 0.28 mg / g.
  • Ki which is a transformed cell obtained by introducing pUCRPKT-PT, a plasmid obtained by removing only the DNA of the present invention from the plasmid pUCRPKT-PMK, into cells of the Xanthophyllomyces dendrrous strain NBRC10129 strain.
  • the Santophilomyces dendrohaus NBRC10129 (pUCRPKT-PT) strain was cultured in the same manner as in Example 4, and the astaxanthin content in the cell dried product was calculated. As a result, the astaxanthin content in the dried cell product was 0.25 mg / g.
  • Example 4 From the results of Example 4 and Comparative Example 1, it is considered that the amount of astaxanthin produced by the cells is increased by introducing the DNA of the present invention.
  • the astaxanthin content of the culture solution was measured as follows. 1 mL of the culture solution is dispensed into a 1.5-ml polypropylene container that can be sealed and centrifuged at about 15000 ⁇ G for 5 minutes, and then the supernatant is removed. About 1 g of glass beads (diameter 0.5 mm) and 1 ml of acetone are added thereto, and the mixture is crushed at 4 ° C. for 3 minutes using a multi-bead shocker (manufactured by Yasui Kikai Co., Ltd.).
  • the cell dry matter content of the culture solution was measured as follows. 5 mL of the culture solution is dispensed into a test tube whose tare weight has been measured in advance, and the supernatant is removed after centrifugation at about 5000 ⁇ G for 10 minutes. To this, 5 mL of water is added to resuspend the cells, and after centrifugation in the same manner, the supernatant is removed. After drying this at 110 ° C. for 12 hours, the weight is measured, and the content weight is calculated from the difference from the tare weight. Further, the cell weight is calculated by dividing the weight of the content by the amount of the first collected culture solution.
  • Example 5 Isolation of DNA (SEQ ID NOs: 20 and 21)) (Preparation of PCR primers) From the chromosomal DNA sequence information of Xanthophyllomyces dendrhaus NBRC10129 strain, primer 17 (5′-TCCCCGCGGATGCACACACGACTGCTCTCTT-3 ′) shown in SEQ ID NO: 23 and SEQ ID NO: 24 shown in SEQ ID NO: 24 Primer 18 (5′-GACTAGTTTAGAGCCCTCTGATGACGAC-3 ′) was designed and synthesized.
  • Example 6 (Construction of vector) PCR was carried out using primer 17 (5′-TCCCCGCGGATGCACACAGAACTGGCTCCTTTT-3 ′) shown in SEQ ID NO: 23 and primer 18 (5′-GACTAGTTTAGAGCCCTCTGATGGACGAC-3 ′) shown in SEQ ID NO: 24 in the sequence listing, and both ends were restricted.
  • a DNA fragment added with recognition sequences for the enzymes SacII and SpeI was amplified. This was digested with restriction enzymes SacII and SpeI and inserted into the similarly digested plasmid pUCRPKT-PT (see Example 2) to prepare plasmid pUCRPKT-AACT.
  • the plasmid pUCRPKT-AACT has a structure in which the DNA of the present invention is inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene, and functions as an expression vector for the DNA of the present invention.
  • the plasmid pUCRPKT-AACT thus prepared was digested with the restriction enzyme NdeI to obtain a linear DNA, which was used as a transformation vector.
  • Example 7 (Acquisition of transformant)
  • the transformation vector prepared in Example 6 was introduced into cells of Xanthophyllomyces dendrhaus NBRC10129 strain, and the resulting transformed cells were transformed into Xanthophyllomyces.
  • -It was named the strain Xanthophyllomyces dendrorous NBRC10129 (pUCRPKT-AACT).
  • Example 8 (Production of astaxanthin by transformant)
  • the Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-AACT) strain obtained in Example 7 was cultured in the same manner as in Example 4, and the astaxanthin content and cell dry matter content of the obtained culture broth were measured. .
  • the astaxanthin content was divided by the cell dry matter content to calculate the astaxanthin content in the cell dry matter.
  • the astaxanthin content in the dried cell product was 0.30 mg / g.
  • Example 8 From the results of Example 8 and Comparative Example 1, it is considered that the amount of astaxanthin produced by the cells is increased by introducing the DNA of the present invention.
  • Example 9 Production of astaxanthin using various promoters
  • Primer Pgdh-fw (5′-ATTAATTTAAGCGGCCCACACCGTGATATATGGCTGTACG-3 ′) shown in SEQ ID NO: 43
  • primer Pgdh-rv (5′-GGGATATCGCTAGCATGCATTGGGTGTGGAG PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the glutamate dehydrogenase gene.
  • This promoter was inserted into plasmid pKF-G418 digested with restriction enzymes NotI and NsiI using In-Fusion HD cloning Kit (manufactured by Takara Bio Inc.) to prepare plasmid pGDH.
  • a primer GFP-fw (5′-TATCCCCGCGGATAGTAGATGGTGGACAAGGGCGCCGAG-3 ′) shown in the sequence listing 41 and a primer GFP-rv (5′-GTTGATCAATTGAGGCCCTTCACTTGTACAG-3CT) shown in the sequence listing 42 are used.
  • the GFP gene was amplified using pAcGFP1 (Takara Bio Inc.) as a template. This was digested with restriction enzymes SpeI and StuI and inserted into similarly digested plasmid pGDH to prepare plasmid pGDH-GFP.
  • the primer MS1-GFP (5′-CGACTCTAGAGGATCCCGCTAGCGATATCCCCGCGGATGGGTGAGCAAGGGCGCCGAGCTCGCTGCTGCTGCTGCTGCTGCTGTCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTCGTCTGCG
  • the GFP gene was amplified using pAcGFP1 (Takara Bio Inc.) as a template. This was digested with restriction enzymes EcoRV and MluI and inserted into the similarly digested plasmid pUCRPK-PT to prepare plasmid pGPD-GFP.
  • Primer Pactin-fw (5′-CAGCCCTTCGCTGCTGCTGCTGCTGCTGTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGPCRTG PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the actin gene.
  • the primer Tactin-fw (5′-CCCGCGGATAGTAGTACCGCGTAGGCTCCAATTTGATCAACAAAGTCTCTGGCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCG PCR PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the actin terminator sequence.
  • the promoter and terminator of these actin genes were inserted into plasmid pKF-G418 digested
  • the transformation vectors pGPD-GFP, pACT-GFP, pADH-GFP, or pTPI-GFP were obtained by electroporation (BioTeChronoGy TeChiques 1997 10: 929-932) by Xanthophyllomyces Dendroas 29D YM agar medium containing 40 mg / L of antibiotic G418 (peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, glucose 1.0%, agar 2.0% , PH 6.2), transformed cells were selected, transplanted onto a slant of YM agar medium supplemented with 40 mg / L of antibiotic G418, and stored.
  • antibiotic G418 peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, glucose 1.0%, agar 2.0% , PH 6.2
  • the resulting transformed cells were transformed into Xanthophyllomyces dendrhaus NBRC10129 (pGPD-GFP) strain, Xanthophyllomyces dendrrous strain NBCTGF129P (NBPTGF129P), respectively.
  • the intensity of GFP was measured using a microplate reader.
  • the GFP intensity per cell dry substance weight was calculated by dividing the GFP intensity by the cell dry substance weight (0.3786 ⁇ absorbance). The result is shown in FIG. From FIG. 1, it is considered that the actin, alcohol dehydrogenase IV, and triose phosphate isomerase gene promoters have higher transcriptional activity than the glyceraldehyde-3-phosphate dehydrogenase gene promoter.
  • the DNA described in SEQ ID NO: 2 or 21 was placed downstream of the actin gene promoter, alcohol dehydrogenase IV gene promoter, or triose phosphate isomerase gene promoter by the method described in Examples 2 and 6, and the vector was prepared. It was constructed. A transformant was obtained by the method described in Example 3, astaxanthin was produced by the method described in Example 4, and the production amount was measured. Using actin gene promoter, alcohol dehydrogenase IV gene promoter, or triose phosphate isomerase gene promoter increases the production of astaxanthin compared to using glyceraldehyde-3-phosphate dehydrogenase gene promoter did.

Abstract

The present invention addresses the problem of providing: novel DNA; and a method for producing a carotenoid using the DNA. Provided are: novel DNA encoding a protein involved in the production of a carotenoid in Xanthophyllomyces dendrorhous; a vector carrying the DNA; a transformant produced by transforming a host cell with the vector; and a method for producing a carotenoid, comprising a step of culturing a cell which is so modified as to express the DNA at an increased level by a genetic engineering technique.

Description

新規DNA、およびそれを利用したカロテノイドの製造方法Novel DNA and method for producing carotenoid using the same
本発明は、キサントフィロマイセス(Xanthophyllomyces)属に属する生物由来の新規なDNA、およびそのDNAを利用したカロテノイドの製造方法に関する。 The present invention relates to a novel DNA derived from an organism belonging to the genus Xanthophyllomyces, and a method for producing a carotenoid using the DNA.
カロテノイドは、植物、動物、微生物などが持つ黄色、赤色、紫色などの色素で、化学式C40H56の基本構造を持つ化合物の総称である。天然のカロテノイドとしては、βカロテン、αカロテン、リコペン、ルテイン、ゼアキサンチン、アスタキサンチンなど約600種類が知られている。アスタキサンチンは、養殖魚の肉や皮膚、鶏卵の卵黄等の色調を改善するための飼料用添加物として広く用いられると共に、近年では、機能性食品素材としても注目されている。 Carotenoid is a general term for compounds having a basic structure of the chemical formula C40H56, which are pigments of yellow, red, purple, etc. possessed by plants, animals, microorganisms and the like. About 600 types of natural carotenoids are known, such as β-carotene, α-carotene, lycopene, lutein, zeaxanthin, and astaxanthin. Astaxanthin is widely used as an additive for feed for improving the color tone of cultured fish meat and skin, egg yolk of chicken eggs and the like, and has recently attracted attention as a functional food material.
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)(旧名:ファフィア・ロドジーマ(Phaffia rhodozyma))は、アスタキサンチンを特異的に生成する酵母として知られ、工業的にアスタキサンチンを生産する手段の1つとして注目されている。このような背景から、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)からアスタキサンチン高生産株を得るための菌株改良研究が多数実施されてきており、当初は専らランダム変異導入法が菌株改良に利用された。しかし、ランダム変異導入法によるアスタキサンチン高生産株の取得は、多大な時間と労力を要するため、最近では、遺伝子工学的手法を利用した菌株改良研究が試みられている。 Xanthophyllomyces dendrorous (former name: Phaffia rhodozyma) is known as a yeast that specifically produces astaxanthin, and has attracted attention as one of the means to industrially produce astaxanthin. ing. Against this background, many strain improvement studies have been carried out to obtain astaxanthin high-producing strains from Xanthophyllomyces dendrhaus, and initially random mutagenesis has been used exclusively for strain improvement. It was. However, acquisition of a high astaxanthin-producing strain by the random mutagenesis method requires a great deal of time and labor, and recently, strain improvement studies using genetic engineering techniques have been attempted.
例えば、非特許文献1は、キサントフィロマイセス・デンドロアスの染色体に存在するリボゾームDNAに、相同組換えを利用して外来遺伝子を導入する形質転換方法を開示している。 For example, Non-Patent Document 1 discloses a transformation method in which a foreign gene is introduced into ribosomal DNA present in the chromosome of Xanthophyllomyces dendroth using homologous recombination.
また、特許文献1は、キサントフィロマイセス・デンドロアスのカロテノイド生合成経路上の、ゲラニルゲラニルピロリン酸からβ-カロテンへの反応を触媒する3種類の酵素をコードするDNA、および、それらのDNAを含む発現ベクターをキサントフィロマイセス・デンドロアスに導入した形質転換体を開示している。 Patent Document 1 discloses DNA encoding three types of enzymes that catalyze the reaction of geranylgeranyl pyrophosphate to β-carotene on the carotenoid biosynthetic pathway of Xanthophylomyces dendroas, and those DNAs. Disclosed is a transformant obtained by introducing an expression vector containing Xanthophyllomyces dendroth.
さらに、特許文献2は、キサントフィロマイセス・デンドロアスのメバロン酸経路上の3-ヒドロキシ-3-メチルグルタリル-補酵素A合成酵素、3-ヒドロキシ-3-メチルグルタリル-補酵素A還元酵素、メバロン酸キナーゼ、メバロン酸ピロリン酸脱炭酸酵素、およびファルネシルピロリン酸合成酵素を各々コードするDNA、および、それらのDNAを含むベクターで形質転換した宿主細胞を培養することを含む、カロテノイドの製造法を開示している。 Further, Patent Document 2 discloses 3-hydroxy-3-methylglutaryl-coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reduction on the mevalonate pathway of Xanthophylomyces dendroas. Production of carotenoids comprising culturing host cells transformed with enzymes, mevalonate kinase, DNA encoding mevalonate pyrophosphate decarboxylase, and farnesyl pyrophosphate synthase, respectively, and vectors containing these DNAs The law is disclosed.
国際公開公報第97/23633号パンフレットInternational Publication No. 97/23633 Pamphlet 特開2000-50884号公報JP 2000-50884 A
本発明は新規なDNA、および、そのDNAを利用したカロテノイドの製造方法を提供することを課題とする。 An object of the present invention is to provide a novel DNA and a method for producing a carotenoid using the DNA.
本発明者らは、キサントフィロマイセス・デンドロアスのカロテノイド生産に関与するタンパク質をコードする新規なDNAを見出した。さらに、生物の細胞において、当該DNAの発現を増強することで、当該生物細胞のカロテノイド生産能力が向上することを見出し、本発明を完成した。 The present inventors have found a novel DNA encoding a protein involved in the production of carotenoids of Xanthophyllomyces dendroas. Furthermore, the present inventors have found that by enhancing the expression of the DNA in living cells, the carotenoid production ability of the living cells is improved, and the present invention has been completed.
即ち、本発明は、
以下の(A)~(H):
(A)配列表の配列番号1に示す塩基配列を含むDNA;
(B)配列表の配列番号1に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(C)配列表の配列番号1に示す塩基配列と85%以上の配列同一性を有するDNA;
(D)配列表の配列番号1に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(E)配列表の配列番号2に示す塩基配列を含むDNA;
(F)配列表の配列番号2に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(G)配列表の配列番号2に示す塩基配列と85%以上の配列同一性を有するDNA;
(H)配列表の配列番号2に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
のいずれかのDNAに関する。
That is, the present invention
The following (A) to (H):
(A) DNA containing the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(B) a DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
(C) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
(D) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
(E) a DNA comprising the base sequence shown in SEQ ID NO: 2 in the sequence listing;
(F) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
(G) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
(H) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
It relates to any one of DNA.
また、本発明は、以下の(I)~(K):
(I)配列表の配列番号3に示すアミノ酸配列からなるポリペプチド;
(J)配列表の配列番号3に示すアミノ酸配列と85%以上の配列同一性を有するアミノ酸配列からなるポリペプチド;
(K)配列表の配列番号3に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド;
のいずれかのポリペプチドをコードするDNAに関する。
The present invention also provides the following (I) to (K):
(I) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing;
(J) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing;
(K) a polypeptide comprising an amino acid sequence in which one or more amino acids are deleted, inserted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing;
The present invention relates to a DNA encoding any of the polypeptides.
さらに、本発明は、
以下の(L)~(S):
(L)配列表の配列番号20に示す塩基配列を含むDNA;
(M)配列表の配列番号20に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(N)配列表の配列番号20に示す塩基配列と85%以上の配列同一性を有するDNA;
(O)配列表の配列番号20に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(P)配列表の配列番号21に示す塩基配列を含むDNA;
(Q)配列表の配列番号21に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(R)配列表の配列番号21に示す塩基配列と85%以上の配列同一性を有するDNA;
(S)配列表の配列番号21に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
のいずれかのDNAに関する。
Furthermore, the present invention provides
The following (L) to (S):
(L) a DNA comprising the base sequence represented by SEQ ID NO: 20 in the sequence listing;
(M) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing;
(N) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 20 in the Sequence Listing;
(O) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 20 in the Sequence Listing;
(P) a DNA comprising the base sequence shown in SEQ ID NO: 21 in the sequence listing;
(Q) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
(R) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
(S) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
It relates to any one of DNA.
さらに、本発明は、以下の(T)~(V):
(T)配列表の配列番号22に示すアミノ酸配列からなるポリペプチド;
(U)配列表の配列番号22に示すアミノ酸配列と85%以上の配列同一性を有するアミノ酸配列からなるポリペプチド;
(V)配列表の配列番号22に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド;
のいずれかのポリペプチドをコードするDNAに関する。
Furthermore, the present invention provides the following (T) to (V):
(T) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing;
(U) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing;
(V) a polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing;
The present invention relates to a DNA encoding any of the polypeptides.
前記DNAは、キサントフィロマイセス属に属する生物に由来することが好ましい。 The DNA is preferably derived from an organism belonging to the genus Xanthophyllomyces.
前記生物が、キサントフィロマイセス・デンドロアスであることが好ましい。 It is preferable that the organism is Xanthophyllomyces dendroas.
また、本発明は、前記DNAを1つ以上含むベクターに関する。 The present invention also relates to a vector comprising one or more of the DNAs.
前記ベクターは、さらに、アクチン遺伝子のプロモーター、アルコールデヒドロゲナーゼIV遺伝子のプロモーター、及び/又はトリオースリン酸イソメラーゼ遺伝子のプロモーターの塩基配列の一部または全部を含むDNAを1つ以上含むことが好ましい。 It is preferable that the vector further includes one or more DNAs including a part or all of the base sequence of the promoter of the actin gene, the promoter of the alcohol dehydrogenase IV gene, and / or the promoter of the triose phosphate isomerase gene.
また、本発明は、前記ベクターにより宿主細胞を形質転換して得られる形質転換体に関する。 The present invention also relates to a transformant obtained by transforming a host cell with the vector.
前記形質転換体がカロテノイド生産能を有することが好ましい。 It is preferable that the transformant has a carotenoid producing ability.
前記宿主細胞がキサントフィロマイセス属に属する生物の細胞であることが好ましい。 The host cell is preferably a cell of an organism belonging to the genus Xanthophyllomyces.
前記キサントフィロマイセス属に属する生物が、キサントフィロマイセス・デンドロアスであることが好ましい。 It is preferable that the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
また、本発明は、遺伝子組換えの手法を用いて、前記DNAの発現が付与および/または増強され、且つ、カロテノイド生産能を有する細胞を培養する工程を含む、カロテノイドの製造方法に関する。 In addition, the present invention relates to a method for producing carotenoid, which includes a step of culturing a cell to which expression of the DNA is imparted and / or enhanced and has carotenoid-producing ability using a gene recombination technique.
前記カロテノイド生産能を有する細胞が、キサントフィロマイセス属に属する生物の細胞であることが好ましい。 The cell having the ability to produce carotenoids is preferably a cell of an organism belonging to the genus Xanthophyllomyces.
前記キサントフィロマイセス属に属する生物が、キサントフィロマイセス・デンドロアスであることが好ましい。 It is preferable that the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
本発明により、キサントフィロマイセス・デンドロアスのカロテノイド生産に関与するタンパク質をコードする新規なDNA、および、そのDNAを利用したカロテノイドの効率的な製造方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, there are provided a novel DNA encoding a protein involved in carotenoid production of Xanthophyllomyces dendroas, and an efficient method for producing carotenoid using the DNA.
実施例9におけるプロモーター活性の検討結果を示す図である。It is a figure which shows the examination result of the promoter activity in Example 9.
以下、本発明について実施形態を用いて詳細に説明する。なお、本発明はこれらにより限定されるものではない。 Hereinafter, the present invention will be described in detail using embodiments. In addition, this invention is not limited by these.
本発明は、以下の(A)~(D)のいずれかに記載のDNAである:
(A)配列表の配列番号1に示す塩基配列を含むDNA;
(B)配列表の配列番号1に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(C)配列表の配列番号1に示す塩基配列と85%以上の配列同一性を有するDNA;
(D)配列表の配列番号1に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA。
The present invention is the DNA according to any of the following (A) to (D):
(A) DNA containing the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(B) a DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
(C) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
(D) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 in the sequence listing.
さらに、本発明は、以下の(L)~(O)のいずれかに記載のDNAである:
(L)配列表の配列番号20に示す塩基配列を含むDNA;
(M)配列表の配列番号20に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(N)配列表の配列番号20に示す塩基配列と85%以上の配列同一性を有するDNA;
(O)配列表の配列番号20に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA。
Furthermore, the present invention is the DNA according to any one of the following (L) to (O):
(L) a DNA comprising the base sequence represented by SEQ ID NO: 20 in the sequence listing;
(M) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing;
(N) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 20 in the Sequence Listing;
(O) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 20 in the Sequence Listing.
ここで、「配列表の配列番号1に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA」とは、配列表の配列番号1に示した塩基配列と相補的な塩基配列からなるDNAをプローブとして、ストリンジェントな条件下にコロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、あるいはサザンハイブリダイゼーション法等を用いることにより得られるDNAを意味する。 Here, “DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing” means the base sequence shown in SEQ ID NO: 1 in the Sequence Listing. It means DNA obtained by using colony hybridization method, plaque hybridization method, Southern hybridization method or the like under stringent conditions using DNA consisting of a complementary base sequence as a probe.
また、「配列表の配列番号20に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA」とは、配列表の配列番号20に示した塩基配列と相補的な塩基配列からなるDNAをプローブとして、ストリンジェントな条件下にコロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、あるいはサザンハイブリダイゼーション法等を用いることにより得られるDNAを意味する。 Further, “DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing” is complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing. It means DNA obtained by using a colony hybridization method, plaque hybridization method, Southern hybridization method or the like under stringent conditions using a DNA having a typical nucleotide sequence as a probe.
ハイブリダイゼーションは、Molecular Cloning,A laboratory manual,second edition(Cold Spring Harbor Laboratory Press, 1989)等に記載されている方法に準じて行うことができる。ここで、「ストリンジェントな条件下でハイブリダイズするDNA」とは、例えば、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用い、65℃の条件下でフィルターを洗浄することにより取得できるDNAを挙げることができる。好ましくは65℃で0.5倍濃度のSSC溶液で洗浄、より好ましくは65℃で0.2倍濃度のSSC溶液で洗浄、さらに好ましくは65℃で0.1倍濃度のSSC溶液で洗浄することにより取得できるDNAである。 Hybridization can be performed according to the method described in Molecular Cloning, A laboratory manual, second edition (Cold Spring Harbor Laboratory Press, 1989) and the like. Here, “DNA that hybridizes under stringent conditions” means, for example, using a filter on which colony or plaque-derived DNA is immobilized at 65 ° C. in the presence of 0.7 to 1.0 M NaCl. After hybridization, the filter was washed under conditions of 65 ° C. using a 2 × concentration SSC solution (composition of 1 × concentration SSC solution consisting of 150 mM sodium chloride and 15 mM sodium citrate). The DNA which can be acquired can be mentioned. It is preferably washed with an SSC solution of 0.5 times concentration at 65 ° C., more preferably washed with an SSC solution of 0.2 times concentration at 65 ° C., more preferably washed with an SSC solution of 0.1 times concentration at 65 ° C. DNA that can be obtained by
以上のようにハイブリダイゼーション条件を記載したが、これらの条件に特に制限されない。ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度や塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで最適なストリンジェンシーを実現することが可能である。 Although the hybridization conditions have been described as described above, the conditions are not particularly limited. A plurality of factors such as temperature and salt concentration can be considered as factors affecting the stringency of hybridization, and those skilled in the art can realize optimum stringency by appropriately selecting these factors.
上記の条件にて、配列表の配列番号1に示す塩基配列と相補的な塩基配列を含むDNAとハイブリダイズ可能なDNAとしては、配列番号1に示されるDNAと、配列同一性が70%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上、最も好ましくは98%以上のDNAを挙げることができる。 Under the above conditions, DNA that can hybridize with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing has a sequence identity of 70% or more with the DNA shown in SEQ ID NO: 1. And preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
また、上記の条件にて、配列表の配列番号20に示す塩基配列と相補的な塩基配列を含むDNAとハイブリダイズ可能なDNAとしては、配列番号20に示されるDNAと、配列同一性が70%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上、最も好ましくは98%以上のDNAを挙げることができる。 In addition, as a DNA that can hybridize with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing under the above conditions, the sequence identity with the DNA shown in SEQ ID NO: 20 is 70. % Or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
ここで、「配列同一性(%)」とは、対比される2つのDNAを最適に整列させ、核酸塩基(例えば、A、T、C、G、U、またはI)が両方の配列で一致した位置の数を比較塩基総数で除し、そして、この結果に100を乗じた数値で表される。 Here, “sequence identity (%)” means that the two DNAs to be compared are optimally aligned, and the nucleobases (eg, A, T, C, G, U, or I) match in both sequences. The number of positions is divided by the total number of comparison bases, and the result is expressed by a value obtained by multiplying by 100.
配列同一性は、例えば、以下の配列分析用ツールを用いて算出し得る:GCG Wisconsin Package(Program Manual for The Wisconsin Package, Version8, 1994年9月, Genetics Computer Group, 575 Science Drive Medison, Wisconsin, USA 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 1RQ, England)、および、the ExPASy World Wide Web分子生物学用サーバー(Geneva University Hospital and University of Geneva, Geneva, Switzerland)。 Sequence identity can be calculated using, for example, the following sequence analysis tools: GCG Wisconsin Package (Program Manual for The Wisconsin Package, Version 8, September 1994, Genetics Computer Group, ce. 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Ricé, The Sanger Center, Hinxton Hall, Cambridge, CB10 1Q, 1R, EnPl. Wide Web molecular biology for the server (Geneva University Hospital and University of Geneva, Geneva, Switzerland).
上記で記載の「複数個の塩基」とは、例えば、600個以下、好ましくは300個以下、より好ましくは100個以下、さらに好ましくは50個以下、20個以下、10個以下、または5個以下の塩基を意味する。 The “plurality of bases” described above is, for example, 600 or less, preferably 300 or less, more preferably 100 or less, still more preferably 50 or less, 20 or less, 10 or less, or 5 The following bases are meant.
上記(A)~(D)および(L)~(O)のいずれかに記載のDNAの起源となる生物は特に限定されないが、カロテノイドを生産する生物が好ましく、キサントフィロマイセス属に属する生物がより好ましく、キサントフィロマイセス・デンドロアス種に属する生物がさらに好ましく、キサントフィロマイセス・デンドロアスNBRC10129株がさらにより好ましい。キサントフィロマイセス・デンドロアスNBRC10129株は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部 生物遺伝資源部門(NBRC:〒292-0818 千葉県木更津市かずさ鎌足2-5-8)より入手することができる。 The organism that is the origin of the DNA described in any of (A) to (D) and (L) to (O) is not particularly limited, but an organism that produces a carotenoid is preferable and belongs to the genus Xanthophyllomyces. More preferred are organisms, more preferred are organisms belonging to the species Xanthophyllomyces dendroas, and even more preferred is Xanthophyllomyces dendroas NBRC10129 strain. Xanthophyromyces Dendroas NBRC10129 strain is to be obtained from the Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation (NBRC: 2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818) Can do.
該DNAの起源となる生物から該DNAを単離する方法は特に限定されないが、例えば、該DNAの起源となる生物の染色体DNAを鋳型とし、プライマーを用いてPCR(Polymerase Chain Reaction)を実施することにより、該DNAを増幅できる。該DNAが増幅できれば、当業者であれば公知の方法で、該DNAを単離できる。例えば、増幅された該DNAを適当なクローニングベクターに連結し、適当な宿主細胞に導入することにより、単離できる。 The method for isolating the DNA from the organism that is the origin of the DNA is not particularly limited. For example, PCR (Polymerase Chain Reaction) is performed using the chromosomal DNA of the organism that is the origin of the DNA as a template and using primers. Thus, the DNA can be amplified. If the DNA can be amplified, those skilled in the art can isolate the DNA by a known method. For example, it can be isolated by ligating the amplified DNA to a suitable cloning vector and introducing it into a suitable host cell.
該プライマーの例としては、上記(A)~(D)のいずれかに記載のDNAの場合は配列番号4および配列番号5、上記(L)~(O)のいずれかに記載のDNAの場合は配列番号23および配列番号24で示されるDNA配列からなるプライマーの組合せが挙げられる。該DNAの起源となる生物が真核生物である場合、このようにして得られる該DNAは、イントロン等の非翻訳配列を含み得る。 Examples of the primer include SEQ ID NO: 4 and SEQ ID NO: 5 for the DNA described in any of (A) to (D) above, and the DNA described in any of (L) to (O) above. Includes a primer combination consisting of the DNA sequences represented by SEQ ID NO: 23 and SEQ ID NO: 24. When the organism from which the DNA is derived is a eukaryote, the DNA thus obtained can contain an untranslated sequence such as an intron.
本発明は、また、以下の(E)~(H)のいずれかに記載のDNAである:
(E)配列表の配列番号2に示す塩基配列を含むDNA;
(F)配列表の配列番号2に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(G)配列表の配列番号2に示す塩基配列と85%以上の配列同一性を有するDNA;
(H)配列表の配列番号2に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA。
The present invention is also the DNA according to any one of the following (E) to (H):
(E) a DNA comprising the base sequence shown in SEQ ID NO: 2 in the sequence listing;
(F) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
(G) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
(H) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 2 in the Sequence Listing.
本発明は、さらに、以下の(P)~(S)のいずれかに記載のDNAである:
(P)配列表の配列番号21に示す塩基配列を含むDNA;
(Q)配列表の配列番号21に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
(R)配列表の配列番号21に示す塩基配列と85%以上の配列同一性を有するDNA;
(S)配列表の配列番号21に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA。
The present invention is further a DNA according to any one of the following (P) to (S):
(P) a DNA comprising the base sequence shown in SEQ ID NO: 21 in the sequence listing;
(Q) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
(R) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
(S) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 21 in the Sequence Listing.
上記(E)~(H)および(P)~(S)のいずれかに記載のDNAの起源となる生物は特に限定されないが、カロテノイドを生産する生物が好ましく、キサントフィロマイセス属に属する生物がより好ましく、キサントフィロマイセス・デンドロアス種に属する生物がさらに好ましく、キサントフィロマイセス・デンドロアスNBRC10129株がさらにより好ましい。キサントフィロマイセス・デンドロアスNBRC10129株は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部 生物遺伝資源部門(NBRC:〒292-0818 千葉県木更津市かずさ鎌足2-5-8)より入手することができる。 The organism that is the origin of the DNA described in any of (E) to (H) and (P) to (S) is not particularly limited, but an organism that produces carotenoid is preferable, and belongs to the genus Xanthophyllomyces. More preferred are organisms, more preferred are organisms belonging to the species Xanthophyllomyces dendroas, and even more preferred is Xanthophyllomyces dendroas NBRC10129 strain. Xanthophyromyces Dendroas NBRC10129 strain is to be obtained from the Biotechnology Division, Biotechnology Headquarters, National Institute of Technology and Evaluation (NBRC: 2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818) Can do.
該DNAの起源となる生物から該DNAを単離する方法は特に限定されないが、例えば、該DNAの起源となる生物のcDNAを鋳型とし、プライマーを用いてPCR(Polymerase Chain Reaction)を実施することにより、該DNAを増幅できる。該DNAが増幅できれば、当業者であれば公知の方法で、該DNAを単離できる。例えば、増幅された該DNAを適当なクローニングベクターに連結し、適当な宿主細胞に導入することにより、単離できる。該プライマーの例としては、上記(E)~(H)のいずれかに記載のDNAの場合は配列番号4および配列番号5、上記(P)~(S)のいずれかに記載のDNAの場合は配列番号23および配列番号24で示されるDNA配列からなるプライマーの組合せが挙げられる。このようにして得られる該DNAはイントロン配列を含まないため、該DNAの塩基配列を解析することで、該DNAがコードするポリペプチドのアミノ酸配列が明らかとなる。該DNAがコードするポリペプチドは特に限定されないが、例として、上記(E)~(H)のいずれかに記載のDNAの場合は配列番号3、上記(P)~(S)のいずれかに記載のDNAの場合は配列番号22で示されるアミノ酸配列を有するポリペプチドが挙げられる。上記(E)~(H)および(P)~(S)における、ストリンジェントな条件でハイブリダイズするDNA、配列同一性、並びに、塩基の欠失、挿入、置換および/または付加は、(A)~(D)および(L)~(O)と同様である。 The method for isolating the DNA from the organism that is the source of the DNA is not particularly limited. For example, PCR (Polymerase Chain Reaction) is performed using the cDNA of the organism that is the source of the DNA as a template and using primers. Thus, the DNA can be amplified. If the DNA can be amplified, those skilled in the art can isolate the DNA by a known method. For example, it can be isolated by ligating the amplified DNA to a suitable cloning vector and introducing it into a suitable host cell. Examples of the primer include SEQ ID NO: 4 and SEQ ID NO: 5 in the case of DNA described in any of (E) to (H) above, and the DNA described in any of (P) to (S) above. Includes a primer combination consisting of the DNA sequences represented by SEQ ID NO: 23 and SEQ ID NO: 24. Since the DNA thus obtained does not contain an intron sequence, analysis of the base sequence of the DNA reveals the amino acid sequence of the polypeptide encoded by the DNA. The polypeptide encoded by the DNA is not particularly limited. For example, in the case of the DNA described in any of (E) to (H) above, any of SEQ ID NO: 3 and any of (P) to (S) above In the case of the described DNA, a polypeptide having the amino acid sequence represented by SEQ ID NO: 22 is exemplified. In the above (E) to (H) and (P) to (S), DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are represented by (A ) To (D) and (L) to (O).
本発明はまた、以下の(I)~(K)のいずれかに記載のポリペプチドをコードするDNAである:
(I)配列表の配列番号3に示すアミノ酸配列からなるポリペプチド;
(J)配列表の配列番号3に記載のアミノ酸配列と85%以上の配列同一性を持つアミノ酸配列からなるポリペプチド;
(K)配列表の配列番号3に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド。
The present invention is also a DNA encoding the polypeptide according to any of the following (I) to (K):
(I) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing;
(J) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 3 in the Sequence Listing;
(K) A polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting, and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing.
本発明は、さらに、以下の(T)~(V)のいずれかに記載のポリペプチドをコードするDNAである:
(T)配列表の配列番号22に示すアミノ酸配列からなるポリペプチド;
(U)配列表の配列番号22に記載のアミノ酸配列と85%以上の配列同一性を持つアミノ酸配列からなるポリペプチド;
(V)配列表の配列番号22に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド。
The present invention further relates to a DNA encoding the polypeptide according to any one of the following (T) to (V):
(T) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing;
(U) a polypeptide comprising an amino acid sequence having 85% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 22 in the Sequence Listing;
(V) A polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing.
上記(K)および(V)に記載のポリペプチドをコードするDNAは、Current Protocols in Molecular Biology(John Wiley and Sons, Inc, 1989)等に記載の公知の方法に準じて調製できる。 DNA encoding the polypeptide described in (K) and (V) above can be prepared according to a known method described in Current Protocols in Molecular Biology (John Wiley and Sons, Inc, 1989).
配列表の配列番号3および配列番号22に示したアミノ酸配列において、アミノ酸が置換、挿入、欠失および/または付加される場所は特に制限されないが、高度保存領域を避けるのが好ましい。ここで、高度保存領域とは、由来の異なる複数の酵素について、アミノ酸配列を最適に整列させて比較した場合に、複数の配列間でアミノ酸が一致している位置を表す。高度保存領域は、配列番号3または配列番号22に示したアミノ酸配列と、公知のタンパク質のアミノ酸配列とを、GENETYX等のツールを用いて比較することにより確認することができる。 In the amino acid sequences shown in SEQ ID NO: 3 and SEQ ID NO: 22 in the sequence listing, there are no particular restrictions on where amino acids are substituted, inserted, deleted and / or added, but it is preferable to avoid highly conserved regions. Here, the highly conserved region represents a position where amino acids are matched between a plurality of sequences when amino acid sequences are optimally aligned and compared for a plurality of enzymes having different origins. The highly conserved region can be confirmed by comparing the amino acid sequence shown in SEQ ID NO: 3 or 22 with the amino acid sequence of a known protein using a tool such as GENETYX.
置換、挿入、欠失および/または付加により改変されたアミノ酸配列としては、1種類のタイプ(例えば置換)の改変のみを含むものであっても良いし、2種以上の改変(例えば、置換と挿入)を含んでいても良い。 The amino acid sequence modified by substitution, insertion, deletion and / or addition may include only one type of modification (for example, substitution), or two or more modifications (for example, substitution and substitution). Insertion).
また、置換の場合には、置換するアミノ酸は、置換前のアミノ酸と類似の性質を有するアミノ酸(同族アミノ酸)であることが好ましい。ここでは、以下に挙げる各群の同一群内のアミノ酸を同族アミノ酸とする:
 (第1群:中性非極性アミノ酸)Gly,Ala,Val,Leu,Ile,Met,Cys,Pro,Phe;
 (第2群:中性極性アミノ酸)Ser,Thr,Gln,Asn,Trp,Tyr;
 (第3群:酸性アミノ酸)Glu,Asp;
 (第4群:塩基性アミノ酸)His,Lys,Arg。
In the case of substitution, the amino acid to be substituted is preferably an amino acid having a property similar to that of the amino acid before substitution (cognate amino acid). Here, amino acids within the same group of the following groups are considered homologous amino acids:
(Group 1: neutral nonpolar amino acids) Gly, Ala, Val, Leu, Ile, Met, Cys, Pro, Phe;
(Group 2: neutral polar amino acids) Ser, Thr, Gln, Asn, Trp, Tyr;
(Group 3: acidic amino acids) Glu, Asp;
(Group 4: basic amino acids) His, Lys, Arg.
上記で記載の「複数個のアミノ酸」とは、例えば、100個以下、好ましくは50個以下、より好ましくは20個以下、さらに好ましくは15個以下、さらにより好ましくは10個以下、5個以下、4個以下、3個以下、または2個以下のアミノ酸を意味する。 The “plural amino acids” described above are, for example, 100 or less, preferably 50 or less, more preferably 20 or less, still more preferably 15 or less, and even more preferably 10 or less, 5 or less. It means 4 or less, 3 or less, or 2 or less amino acids.
上記(J)に記載のポリペプチドと配列表の配列番号3のアミノ酸配列との配列同一性、および、上記(U)に記載のポリペプチドと配列番号22のアミノ酸配列との配列同一性は、いずれも85%以上だが、90%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましく、99%以上が最も好ましい。 Sequence identity between the polypeptide described in (J) above and the amino acid sequence of SEQ ID NO: 3 in the sequence listing, and sequence identity between the polypeptide described in (U) above and the amino acid sequence of SEQ ID NO: 22 are: Both are 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 99% or more.
アミノ酸配列の配列同一性は、配列表の配列番号3または配列番号22に示したアミノ酸配列と評価対象のアミノ酸配列とを比較し、両方の配列でアミノ酸が一致した位置の数を比較総アミノ酸数で除して、さらに100を乗じた値で表される。 The sequence identity of amino acid sequences is determined by comparing the amino acid sequence shown in SEQ ID NO: 3 or 22 in the sequence listing with the amino acid sequence to be evaluated, and comparing the number of amino acid matches in both sequences. It is expressed by a value obtained by dividing by 100 and multiplying by 100.
本発明のDNAは、後述する方法に従って導入された宿主細胞内でカロテノイド生産に関与し得るものであればいかなるものでもよく、任意の非翻訳領域を含んでいてもよい。 The DNA of the present invention may be any DNA as long as it can participate in carotenoid production in a host cell introduced according to the method described below, and may contain any untranslated region.
本発明はまた、本発明のDNAを含むベクターに関する。本発明において使用されるベクターは、本発明のDNAを所望の宿主細胞に導入できるものであれば特に限定されず、例えば、プラスミドベクター、ファージベクター、コスミドベクター、さらに、複数種の宿主へ導入可能なシャトルベクターなどが使用できる。本発明のDNAは、所望の宿主細胞内において有効な発現プロモーター、ターミネーター等を付加して、ベクターに連結することが好ましい。各種生物において利用可能なベクター、プロモーターなどに関しては、「微生物学基礎講座8遺伝子工学・共立出版」などに詳細に記述されている。 The present invention also relates to a vector comprising the DNA of the present invention. The vector used in the present invention is not particularly limited as long as the DNA of the present invention can be introduced into a desired host cell. For example, it can be introduced into a plasmid vector, a phage vector, a cosmid vector, or a plurality of types of hosts. A simple shuttle vector can be used. The DNA of the present invention is preferably linked to a vector by adding an expression promoter, terminator and the like effective in a desired host cell. Vectors and promoters that can be used in various organisms are described in detail in "Basic Course of Microbiology 8 Genetic Engineering / Kyoritsu Shuppan".
本発明において使用可能なプロモーターおよびターミネーターとして、例えば、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子、アクチン遺伝子、グルタミン酸デヒドロゲナーゼ遺伝子、アルコールデヒドロゲナーゼIV遺伝子、またはトリオースリン酸イソメラーゼ遺伝子のプロモーターおよびターミネーターが挙げられる。 Examples of promoters and terminators that can be used in the present invention include promoters and terminators of glyceraldehyde-3-phosphate dehydrogenase gene, actin gene, glutamate dehydrogenase gene, alcohol dehydrogenase IV gene, or triose phosphate isomerase gene.
上記に挙げられるプロモーター及びターミネーターは、塩基配列の一部または全部を含んでいてもよく、宿主細胞内においてプロモーター及びターミネーターとして機能すれば、当業者の目的に沿って適時設計することができる。 The promoters and terminators listed above may contain part or all of the base sequence, and can be designed in a timely manner according to the purpose of those skilled in the art if they function as promoters and terminators in the host cell.
本発明において使用可能なアクチン遺伝子のプロモーターとして、具体的には、以下の(1-1)~(1-5)のいずれかに記載のDNAが挙げられる。
(1-1)配列表の配列番号25に示す塩基配列を含むDNA;
(1-2)配列表の配列番号25に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(1-3)配列表の配列番号25に示す塩基配列と85%以上の配列同一性を有するDNA;
(1-4)配列表の配列番号25に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(1-5)(1-1)~(1-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてプロモーター活性を有するDNA。
Specific examples of the actin gene promoter that can be used in the present invention include the DNAs described in any of (1-1) to (1-5) below.
(1-1) DNA comprising the base sequence shown in SEQ ID NO: 25 in the sequence listing;
(1-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 25 in the Sequence Listing;
(1-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 25 in the sequence listing;
(1-4) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 25 in the Sequence Listing;
(1-5) A DNA comprising part or all of the DNA according to any one of (1-1) to (1-4) and having promoter activity in a host cell.
さらに、本発明において使用可能なアルコールデヒドロゲナーゼIV遺伝子のプロモーターとして、以下の(2-1)~(2-5)のいずれかに記載のDNAが挙げられる。
(2-1)配列表の配列番号27に示す塩基配列を含むDNA;
(2-2)配列表の配列番号27に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(2-3)配列表の配列番号27に示す塩基配列と85%以上の配列同一性を有するDNA;
(2-4)配列表の配列番号27に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(2-5)(2-1)~(2-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてプロモーター活性を有するDNA。
Furthermore, examples of the promoter of the alcohol dehydrogenase IV gene that can be used in the present invention include the DNAs described in any of the following (2-1) to (2-5).
(2-1) DNA comprising the base sequence shown in SEQ ID NO: 27 in the sequence listing;
(2-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 27 of the Sequence Listing;
(2-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 27 of the Sequence Listing;
(2-4) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 27 in the Sequence Listing;
(2-5) A DNA comprising a part or all of the DNA according to any one of (2-1) to (2-4) and having promoter activity in a host cell.
さらに、本発明において使用可能なトリオースリン酸イソメラーゼ遺伝子のプロモーターとして、以下の(3-1)~(3-5)のいずれかに記載のDNAが挙げられる。
(3-1)配列表の配列番号28に示す塩基配列を含むDNA;
(3-2)配列表の配列番号28に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(3-3)配列表の配列番号28に示す塩基配列と85%以上の配列同一性を有するDNA;
(3-4)配列表の配列番号28に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(3-5)(3-1)~(3-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてプロモーター活性を有するDNA。
Furthermore, examples of the promoter of the triose phosphate isomerase gene that can be used in the present invention include the DNAs described in any of (3-1) to (3-5) below.
(3-1) DNA comprising the base sequence shown in SEQ ID NO: 28 in the sequence listing;
(3-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 28 in the Sequence Listing;
(3-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 28 of the Sequence Listing;
(3-4) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 28 in the Sequence Listing;
(3-5) DNA comprising a part or all of the DNA according to any one of (3-1) to (3-4) and having promoter activity in a host cell.
ここで、前記プロモーターにおいて、ストリンジェントな条件でハイブリダイズするDNA、配列同一性、並びに、塩基の欠失、挿入、置換および/または付加は、前述した(A)~(D)および(L)~(O)と同様である。 Here, in the promoter, DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are as described above in (A) to (D) and (L). The same as in (O).
本発明において使用可能なアクチン遺伝子のターミネーターとして、具体的には、以下の(4-1)~(4-5)のいずれかに記載のDNAが挙げられる。
(4-1)配列表の配列番号26に示す塩基配列を含むDNA;
(4-2)配列表の配列番号26に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(4-3)配列表の配列番号26に示す塩基配列と85%以上の配列同一性を有するDNA;
(4-4)配列表の配列番号26に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(4-5)(4-1)~(4-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてターミネーターとして機能するDNA。
Specific examples of the actin gene terminator that can be used in the present invention include the DNAs described in any of the following (4-1) to (4-5).
(4-1) DNA comprising the base sequence shown in SEQ ID NO: 26 in the sequence listing;
(4-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 26 in the Sequence Listing;
(4-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 26 in the sequence listing;
(4-4) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 26 in the Sequence Listing;
(4-5) DNA comprising a part or all of the DNA according to any one of (4-1) to (4-4) and functioning as a terminator in the host cell.
さらに、本発明において使用可能なアルコールデヒドロゲナーゼIV遺伝子のターミネーターとして、以下の(5-1)~(5-5)のいずれかに記載のDNAが挙げられる。
(5-1)配列表の配列番号29に示す塩基配列を含むDNA;
(5-2)配列表の配列番号29に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(5-3)配列表の配列番号29に示す塩基配列と85%以上の配列同一性を有するDNA;
(5-4)配列表の配列番号29に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(5-5)(5-1)~(5-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてターミネーターとして機能するDNA。
Furthermore, examples of the terminator of the alcohol dehydrogenase IV gene that can be used in the present invention include the DNAs described in any of the following (5-1) to (5-5).
(5-1) DNA comprising the base sequence shown in SEQ ID NO: 29 in the sequence listing;
(5-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 29 of the Sequence Listing;
(5-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 29 in the Sequence Listing;
(5-4) DNA consisting of a base sequence obtained by deleting, inserting, substituting, and / or adding one or more bases in the base sequence shown in SEQ ID NO: 29 of the Sequence Listing;
(5-5) DNA comprising a part or all of the DNA according to any one of (5-1) to (5-4) and functioning as a terminator in the host cell.
さらに、本発明において使用可能なトリオースリン酸イソメラーゼ遺伝子のターミネーターとして、以下の(6-1)~(6-5)のいずれかに記載のDNAが挙げられる。
(6-1)配列表の配列番号30に示す塩基配列を含むDNA;
(6-2)配列表の配列番号30に示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA;
(6-3)配列表の配列番号30に示す塩基配列と85%以上の配列同一性を有するDNA;
(6-4)配列表の配列番号30に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
(6-5)(6-1)~(6-4)のいずれかに記載のDNAの一部または全部を含み、且つ、宿主細胞内においてターミネーターとして機能するDNA。
Furthermore, examples of the terminator of the triose phosphate isomerase gene that can be used in the present invention include the DNAs described in any of (6-1) to (6-5) below.
(6-1) DNA containing the base sequence shown in SEQ ID NO: 30 in the sequence listing;
(6-2) DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 30 in the Sequence Listing;
(6-3) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 30 in the sequence listing;
(6-4) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 30 in the Sequence Listing;
(6-5) DNA comprising a part or all of the DNA according to any one of (6-1) to (6-4) and functioning as a terminator in the host cell.
ここで、前記ターミネーターにおいて、ストリンジェントな条件でハイブリダイズするDNA、配列同一性、並びに、塩基の欠失、挿入、置換および/または付加は、前述した(A)~(D)および(L)~(O)と同様である。 Here, in the terminator, DNA that hybridizes under stringent conditions, sequence identity, and base deletion, insertion, substitution, and / or addition are as described above in (A) to (D) and (L). The same as in (O).
本発明のDNAを含むベクターは特に限定されないが、例として、プラスミドpUCRPKT-PT(実施例2参照)が挙げられる。 Although the vector containing the DNA of the present invention is not particularly limited, an example is plasmid pUCRPKT-PT (see Example 2).
本発明はまた、前記ベクターにより宿主細胞を形質転換して得られる形質転換体に関する。本発明のDNAを含むベクターにより形質転換される宿主細胞は、特に限定されないが、例えば、エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリイウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ブレバンディモナス(Brevundimonas)属、エリスロバクター(Erythrobacter)属、アグロバクテリウム(Agrobacterium)属、パラコッカス(Paracoccus)属、およびラクトバチルス(Lactobacillus)属などの細菌、ロドコッカス(Rhodococcus)属およびストレプトマイセス(Streptomyces)属などの放線菌、サッカロマイセス(Saccharomyces)属、クライベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ピキア(Pichia)属、キャンディダ(Candida)属、およびキサントフィロマイセス属などの酵母、ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、およびトリコデルマ(Trichoderma)属などのカビ、ヘマトコッカス(Haematococcus)属、クラミドモナス(Chlamydomonas)属、およびモノラフィディウム(Monoraphidium)属などの藻類、ラビリンチュラ(Labyrinthulea)属、ディプロフリス(Diplophrys)属などのラビリンチュラ(Labyrinthulea)類の各細胞が挙げられる他、タバコ、レタス、ナタネなどの植物細胞や動物細胞でもよいが、好ましい宿主細胞はキサントフィロマイセス属の細胞であり、より好ましくはキサントフィロマイセス・デンドロアスの細胞である。 The present invention also relates to a transformant obtained by transforming a host cell with the vector. The host cell transformed with the vector containing the DNA of the present invention is not particularly limited, and examples thereof include, for example, the genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, and the like. (Brevibaterium), Corynebacterium, Streptococcus, Brevundimonas, Erythrobacter, Agrobacterium, and Agrobacterium Bacteria such as Lactobacillus genus, Rhodoco Actinomycetes such as the genus Rhodococcus and the genus Streptomyces, the genus Saccharomyces, the genus Kluyveromyces, the genus Schizosaccharomyces cerevisiae, Yarrowia genus, Trichosporon genus, Rhodosporidium genus, Pichia genus, Candida genus, and Xanthophylomyces genus, Neurospora genus, Aspergillus genus, Aspergillus Aspergillus), Cephalosporus (Cephalosporium) and molds such as Trichoderma, Algae such as Haematococcus, Chlamydomonas, and Monaphidium, In addition to the cells of Labyrinthula such as (Diplophyrys), plant cells and animal cells such as tobacco, lettuce and rapeseed may be used, but preferred host cells are cells of the genus Xanthophylomyces More preferably, it is a cell of Xanthophylomyces dendroas.
本発明のDNAを含むベクターを宿主細胞に導入する方法は特に限定されず、公知の方法を利用できる。例えば、宿主細胞としてキサントフィロマイセス・デンドロアスの細胞を用いる場合は、電気穿孔法を用い得る(実施例3参照)。ベクターの導入後、本発明のDNAは宿主細胞の染色体とは独立に維持されてもよく、また、宿主細胞の染色体中に挿入されてもよい。さらに、rDNA配列等は染色体に複数存在することから、rDNA配列中に本発明のDNAを配置することによって、宿主細胞の染色体中に複数挿入することができる。 A method for introducing the vector containing the DNA of the present invention into a host cell is not particularly limited, and a known method can be used. For example, when Xanthophylomyces dendroasu cells are used as host cells, electroporation can be used (see Example 3). After the introduction of the vector, the DNA of the present invention may be maintained independently of the host cell chromosome or may be inserted into the host cell chromosome. Furthermore, since a plurality of rDNA sequences and the like are present in the chromosome, a plurality of rDNA sequences can be inserted into the host cell chromosome by placing the DNA of the present invention in the rDNA sequence.
本発明はまた、遺伝子組換えの手法を用いて、本発明のDNAを発現する能力が付与および/または増強され、且つ、カロテノイド生産能を有する細胞を培養する工程を含む、カロテノイドの製造方法である。 The present invention also provides a method for producing carotenoids, comprising a step of culturing cells having the ability to express the DNA of the present invention and / or enhanced and having carotenoid-producing ability using a genetic recombination technique. is there.
遺伝子組換えの手法を用いて本発明のDNAを発現する能力が付与および/または増強された細胞は、本発明のDNAを含むベクターにより宿主細胞を形質転換して得られる形質転換体に限定されない。例えば、本発明のDNAを元来有している細胞であって、該遺伝子の発現プロモーターとして機能するDNA、および/または、該遺伝子の発現を調節する機能を有するDNAを、遺伝子組換えの手法を用いて、置換、付加、破壊、および/または、削除して得られる細胞は、本発明のDNAを含むベクターにより宿主細胞を形質転換せずとも得られるが、本発明のDNAを発現する能力が付与および/または増強されている限りにおいて、遺伝子組換えの手法を用いて本発明のDNAを発現する能力が付与および/または増強された細胞に包含される。 Cells to which the ability to express the DNA of the present invention is imparted and / or enhanced using a gene recombination technique are not limited to transformants obtained by transforming host cells with a vector containing the DNA of the present invention. . For example, a genetic recombination technique using a cell that originally has the DNA of the present invention and that functions as an expression promoter for the gene and / or a DNA that functions to regulate the expression of the gene. A cell obtained by substituting, adding, destroying and / or deleting using a DNA can be obtained without transforming a host cell with a vector containing the DNA of the present invention, but is capable of expressing the DNA of the present invention. As long as is imparted and / or enhanced, the ability to express the DNA of the present invention using genetic recombination techniques is encompassed by the imparted and / or enhanced cells.
カロテノイド生産能を有する細胞は、元来カロテノイド生産能を有する細胞に限定されず、遺伝子組換えの手法を用いてカロテノイド生産能が付与された細胞も、これに包含される。 Cells having carotenoid production ability are not limited to cells originally having carotenoid production ability, and cells to which carotenoid production ability is imparted using a genetic recombination technique are also included.
遺伝子組換えの手法を用いて本発明のDNAを発現する能力が付与および/または増強され、且つ、カロテノイド生産能を有する細胞は特に限定されないが、好ましくは、キサントフィロマイセス属に属する生物の細胞であり、より好ましくはキサントフィロマイセス・デンドロアスの細胞である。 Cells having the ability to express the DNA of the present invention using a gene recombination technique and / or enhanced, and having carotenoid-producing ability are not particularly limited, but preferably an organism belonging to the genus Xanthophyllomyces More preferably, it is a Xanthophyllomyces dendroas cell.
遺伝子組換えの手法を用いて本発明のDNAを発現する能力が付与および/または増強され、且つ、カロテノイド生産能を有する細胞の培養方法は特に限定されず、該細胞が生育し、カロテノイドの生産が可能であれば、いかなる培地組成、培養条件で培養してもよい。 A method for culturing a cell having the ability to express the DNA of the present invention using a gene recombination technique and imparted and / or enhanced and having the ability to produce carotenoid is not particularly limited, and the cell grows to produce carotenoid. As long as it is possible, it may be cultured under any medium composition and culture conditions.
遺伝子組換えの手法を用いて本発明のDNAを発現する能力が付与および/または増強され、且つ、カロテノイド生産能を有する細胞の培養物から、カロテノイドを取得する方法は特に限定されず、公知の技術を単独で、または組み合わせて用いることで実施できる。例えば、培養物を、噴霧乾燥、ドラム乾燥、凍結乾燥等の手法を用いて乾燥することで、カロテノイド含有乾燥物を得られる。また、例えば、培養物を適当な溶媒で抽出した後、溶媒を留去することで、カロテノイド含有抽出物が得られる。さらに、カロテノイド含有抽出物を精製して、高純度のカロテノイドを取得することも可能である。 A method for obtaining carotenoids from a culture of cells that are imparted and / or enhanced with the ability to express the DNA of the present invention using a gene recombination technique and that has carotenoid production ability is not particularly limited, and is publicly known. It can be implemented using the techniques alone or in combination. For example, the carotenoid-containing dried product can be obtained by drying the culture using techniques such as spray drying, drum drying, freeze drying and the like. In addition, for example, a carotenoid-containing extract can be obtained by extracting the culture with an appropriate solvent and then distilling off the solvent. Furthermore, a carotenoid-containing extract can be purified to obtain a highly pure carotenoid.
本発明において、カロテノイドは特に限定されないが、例えば、α-カロテン、β-カロテン、γ-カロテン、δ-カロテン、リコペン、β-クリプトキサンチン、アドニキサンチン、フェニコキサンチン、ルテイン、エキネノン、ヒドロキシエキネノン、ゼアキサンチン、カンタキサンチン、フコキサンチン、アンテラキサンチン、ビオラキサンチン、および、アスタキサンチンが挙げられ、アスタキサンチンが特に好ましい。 In the present invention, the carotenoid is not particularly limited. For example, α-carotene, β-carotene, γ-carotene, δ-carotene, lycopene, β-cryptoxanthin, adonixanthin, phenicoxanthine, lutein, echinone, hydroxyexine Examples thereof include nenone, zeaxanthin, canthaxanthin, fucoxanthin, anthaxanthin, violaxanthin, and astaxanthin, and astaxanthin is particularly preferable.
以下、実施例で本発明を詳細に説明するが、本発明はこれらにより限定されるものではない。なお、以下の実施例において用いた組み換えDNA技術に関する詳細な操作方法などは、次の成書に記載されている:
Molecular Cloning 2nd Edition(Cold Spring Harbor Laboratory Press,1989)、
Current Protocols in Molecular Biology(Greene Publishing Associates and Wiley-Interscience)。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these. Detailed operation methods relating to the recombinant DNA technology used in the following examples are described in the following documents:
Molecular Cloning 2nd Edition (Cold Spring Harbor Laboratory Press, 1989),
Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience).
(実施例1)(DNA(配列番号1および2)の単離)
以下の方法に従って、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株より、本発明のDNAを単離した。
Example 1 (Isolation of DNA (SEQ ID NOs: 1 and 2))
According to the following method, the DNA of the present invention was isolated from Xanthophyllomyces dendrhaus NBRC10129 strain.
(PCRプライマーの作製)
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNA配列情報から、配列表の配列番号4に示すプライマー1(5’-CTCCGTCCGAGAGCTAGCGATATCCCGCGGATGACCGCTATAGCCACCACCGCTATATC-3’)、および、配列表の配列番号5に示すプライマー2(5’-CTGCTTCGTGAGGCCTACGCGTACTAGTCCGCGGCTACAGACATTCCCTCAAACCGGTG-3’)を設計し、合成した。
(Preparation of PCR primers)
From the chromosomal DNA sequence information of Xanthophyllomyces dendrhaus NBRC10129 strain, primer 1 (5'-CTCGTCCGAGGCATCGCGGATCGCCGCGATAGCACCCCCCTATC, CCAGCGCTATC, CCACCGCTATC, CCACCGCTATC, CCACCGCTATC Primer 2 (5′-CTGCTTCGTGAGGCCTACGCGTACTAGTCCCCGGGCTACGACAATTCCCTCAAACCGGTG-3 ′) was designed and synthesized.
(PCRによる遺伝子(配列番号1)の増幅)
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の菌体から、GenとるくんTM(タカラバイオ株式会社製)を用い、その取り扱い説明書に従って染色体DNAを抽出した。次に、上記で調製したDNAプライマーを用い、得られた染色体DNAを鋳型としてPCRを行ったところ、目的遺伝子を含むと考えられる約2.3kbpのDNA断片が増幅された。PCRは、DNAポリメラ-ゼとしてPrimeSTAR HS(タカラバイオ株式会社製)を用いて行い、反応条件はその取り扱い説明書に従った。このDNA断片について、BigDye Terminator Cycle Sequencing Kit(アプライドバイオシステムズジャパン株式会社製)およびApplied Biosystems 3130xlジェネティックアナライザ(アプライドバイオシステムズジャパン株式会社製)を用いてダイレクトシーケンスを行い、その塩基配列を解析した。その結果判明した染色体DNAの配列を、配列表の配列番号1に示した。
(Amplification of gene (SEQ ID NO: 1) by PCR)
Chromosomal DNA was extracted from the cells of Xanthophyllomyces dendrrous NBRC10129 strain using Gen Torukun TM (manufactured by Takara Bio Inc.) according to the instruction manual. Next, PCR was performed using the DNA primer prepared above and the obtained chromosomal DNA as a template. As a result, a DNA fragment of about 2.3 kbp that was considered to contain the target gene was amplified. PCR was performed using PrimeSTAR HS (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual. This DNA fragment was subjected to direct sequencing using BigDye Terminator Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) and Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems Japan Co., Ltd.), and the base sequence was analyzed. The resulting chromosomal DNA sequence is shown in SEQ ID NO: 1 in the sequence listing.
(cDNA配列(配列番号2)およびアミノ酸配列(配列番号3)の決定)
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の菌体から、RNeasyPlant Mini Kit(キアゲン社製)を用いて、その取扱い説明書に従って総RNAを調製した。この総RNAから、RNA LA PCR KIT(タカラバイオ株式会社製)を用いて、その取扱い説明書に従いcDNAを調製し、これを鋳型として上記で調製したDNAプライマーを用いてPCRを行ったところ、目的遺伝子を含むと考えられる約1.6kbpのDNA断片が増幅された。このDNA断片について、BigDye Terminator Cycle Sequencing Kit(アプライドバイオシステムズジャパン株式会社製)およびApplied Biosystems 3130xlジェネティックアナライザ(アプライドバイオシステムズジャパン株式会社製)を用いてダイレクトシーケンスを行い、その塩基配列を解析した。その結果判明したcDNA配列を、配列表の配列番号2に示した。また、該cDNA配列から推定されるアミノ酸配列を、配列表の配列番号3に示した。
(Determination of cDNA sequence (SEQ ID NO: 2) and amino acid sequence (SEQ ID NO: 3))
Total RNA was prepared from cells of Xanthophyllomyces dendrhaus NBRC10129 strain using RNeasy Plant Mini Kit (Qiagen) according to the instruction manual. From this total RNA, cDNA was prepared using RNA LA PCR KIT (manufactured by Takara Bio Inc.) according to the instruction manual, and PCR was performed using the DNA primer prepared above as a template. An approximately 1.6 kbp DNA fragment thought to contain the gene was amplified. This DNA fragment was subjected to direct sequencing using BigDye Terminator Cycle Sequencing Kit (Applied Biosystems Japan Co., Ltd.) and Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems Japan Co., Ltd.), and the base sequence was analyzed. The resulting cDNA sequence is shown in SEQ ID NO: 2 in the sequence listing. The amino acid sequence deduced from the cDNA sequence is shown in SEQ ID NO: 3 in the sequence listing.
(実施例2)(ベクターの構築)
まず、国際公開公報第97/23633号パンフレットを参考にして設計した、配列表の配列番号6に示すプライマー3(5’-CAGGAATTCCGGCAAGTCGAGGGAACCCGAGAG-3’)、および、配列表の配列番号7に示すプライマー4(5’-CACGAGCTCGATGGTAAGAGTGTTAGAGAAGTAG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、グリセルアルデヒド-3-リン酸デヒドロゲナーゼのプロモーター配列を増幅した。これを、制限酵素EcoRIおよびSacIで消化し、同様に消化したプラスミドpUC19(タカラバイオ株式会社製)に挿入して、プラスミドpUC19Pを作製した。
(Example 2) (Construction of vector)
First, primer 3 (5′-CAGGAATTCCGGCAAGTCGAGGGAACCCGAGAG-3 ′) shown in SEQ ID NO: 6 and primer 4 shown in SEQ ID NO: 7 in the sequence listing, designed with reference to WO 97/23633 pamphlet. Using (5′-CACGAGCTCGATGGTAAGAGGTTAGAGAAGTAG-3 ′), PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and the promoter of glyceraldehyde-3-phosphate dehydrogenase Amplified. This was digested with restriction enzymes EcoRI and SacI and inserted into similarly digested plasmid pUC19 (manufactured by Takara Bio Inc.) to prepare plasmid pUC19P.
次に、国際公開公報第97/23633号パンフレットを参考にして設計した、配列表の配列番号8に示すプライマー5(5’-CAGCTGCAGACGGTTCTCTCCAAACCCTCTC-3’)、および、配列表の配列番号9に示すプライマー6(5’-CACAAGCTTTGGAAGGGCTGCTGATGGACTGG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、グリセルアルデヒド-3-リン酸デヒドロゲナーゼのターミネーター配列を増幅した。これを、制限酵素PstIおよびHindIIIで消化し、同様に消化したプラスミドpUC19Pに挿入して、プラスミドpUC19PTを作製した。 Next, primer 5 (5′-CAGCTGCAGACGGTTCTCCAAAACCCTTC-3 ′) shown in SEQ ID NO: 8 and primer shown in SEQ ID NO: 9 in the sequence listing, designed with reference to WO 97/23633 pamphlet 6 (5′-CACAAGCTTTGGAAGGGCTGCTGGATGGGACTGG-3 ′) was used to perform PCR using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and glyceraldehyde-3-phosphate dehydrogenase sequence Was amplified. This was digested with restriction enzymes PstI and HindIII and inserted into the similarly digested plasmid pUC19P to prepare plasmid pUC19PT.
次に、配列表の配列番号10に示すプライマー7(5’-CAGCCCGGGATGATTGAACAAGATGGATTGCACG-3’)、および、配列表の配列番号11に示すプライマー8(5’-CACGTCGACTCAGAAGAACTCGTCAAGAAGGCG-3’)を用いて、プラスミドpHSG298(タカラバイオ株式会社製)を鋳型としてPCRを実施し、カナマイシン耐性遺伝子を増幅した。これを、制限酵素SmaIおよびSalIで消化し、同様に消化したプラスミドpUC19PTに挿入して、プラスミドpUC19PKTを作製した。 Next, using the primer 7 (5′-CAGCCCGGGATGATTGAACAAGATGGGATTGCACG-3 ′) shown in the sequence listing and the primer 8 (5′-CACGTCGAACTCAGAAGAAACTCGTCCAAGAAGGCG-3 ′) shown in the sequence listing 11 in the sequence listing, the plasmid pHSG298 PCR was carried out using TAKARA BIO INC. As a template to amplify the kanamycin resistance gene. This was digested with restriction enzymes SmaI and SalI and inserted into the similarly digested plasmid pUC19PT to prepare plasmid pUC19PKT.
次に、Gene.1997 Jan 3;184(1):89-97を参考にして設計した、配列表の配列番号12に示すプライマー9(5’-CAGCATATGTTCCGTAGGTGAACCTGCGGAAGG-3’)、および、配列表の配列番号13に示すプライマー10(5’-CACCATATGCTTTTCCTCCGCTTATTGATATGC-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、リボゾーマルDNAの一部を増幅した。これを、制限酵素NdeIで消化し、同様に消化したプラスミドpUC19に挿入して、プラスミドpUC19Rを作製した。 Next, Gene. 1997 Jan 3; 184 (1): 89-97, the primer 9 (5′-CAGCATATGTTCCGTAGGTGAACCTGCGGAAGG-3 ′) shown in the sequence listing and the primer shown in the sequence listing 13 in the sequence listing. PCR was carried out using 10 (5′-CACCATATGCTTTTCCTCCCGCTTATTGATATGC-3 ′) using the chromosomal DNA of Xanthophyllomyces dendrrous NBRC10129 strain as a template to amplify a part of the ribosomal DNA. This was digested with restriction enzyme NdeI and inserted into similarly digested plasmid pUC19 to prepare plasmid pUC19R.
次に、配列表の配列番号14に示すプライマー11(5’-CAGATCGATCGGCAAGTCGAGGGAACCCGAGAG-3’)、および、配列表の配列番号15に示すプライマー12(5’-CACATCGATTGGAAGGGCTGCTGATGGACTGG-3’)を用いて、プラスミドpUC19PKTを鋳型としてPCRを実施し、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターとターミネーターの間にカナマイシン耐性遺伝子が挿入されたDNAを増幅した。これを、制限酵素ClaIで消化し、同様に消化したプラスミドpUC19Rに挿入して、プラスミドpUC19RPKTを作製した。 Next, using the primer 11 (5′-CAGATCGATCCGGCAGAGTCGAGGGAACCCGAGAG-3 ′) shown in the sequence listing and the primer 12 (5′-CACATCGATTTGGAAGGCTGCTGATGGGACTGG-3 ′) shown in the sequence listing 15 in the sequence listing, the plasmid pUC19PKT Was used as a template to amplify DNA in which a kanamycin resistance gene was inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene. This was digested with the restriction enzyme ClaI and inserted into the similarly digested plasmid pUC19R to prepare plasmid pUC19RPKT.
次に、配列表の配列番号16に示すプライマー13(5’-GGTTCTCGCTTCGAACGGCAAGTCGAGGG-3’)、および、配列表の配列番号17に示すプライマー14(5’-CTTGTTCAATCATCCGCGGGATATCGCTAGCGATGGTAAGAGTGTTAGAGAAG-3’)を用いて、プラスミドpUC19RPKTを鋳型としてPCRを実施し、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーター配列を増幅した。これを、制限酵素BstBIおよびSacIIで処理して、プラスミドpUC19RPKTに挿入するためのDNA断片Pを作製した。 Next, using primer 13 (5′-GGTTCTCGCTTCGAACGGCAAGTCGAGGGG-3 ′) shown in SEQ ID NO: 16 in the sequence listing and primer 14 (5′-CTTGTTCAATCATCCCGCGGATATCGCTAGCGGATGGTATAAGAGGTpGA19TC) using the primers shown in SEQ ID NO: 17 in the sequence listing Was used as a template to amplify the promoter sequence of the glyceraldehyde-3-phosphate dehydrogenase gene. This was treated with restriction enzymes BstBI and SacII to prepare DNA fragment P for insertion into plasmid pUC19RPKT.
次に、配列表の配列番号18に示すプライマー15(5’-CGCCTTCTTGACCCGCGGACTAGTACGCGTAGGCCTACGGTTCTCTCCAAACCCTC-3’)、および、配列表の配列番号19に示すプライマー16(5’-CCCCCCGCTGCGTTCTTCATCGATTGGAAGGGCTGCTG-3’)を用いて、プラスミドpUC19RPKTを鋳型としてPCRを実施し、グリセルアルデヒド-3-リン酸デヒドロゲナーゼのターミネーター配列を増幅した。これを、制限酵素ClaIおよびSacIIで処理して、プラスミドpUC19RPKTに挿入するためのDNA断片Tを作製した。 Next, primer 15 (5′-CGCCCTCTTGACCCCCGCGGATAGTACCGCGTAGGCTCTACGGGTTCTCTCCAAACCCTC-3G) used in the sequence listing, and primer 16 (5′-CCCCCCGCTGCGTCTGCTGGCATCGpTCTGCGTGTCTGCG) Was used as a template to amplify the terminator sequence of glyceraldehyde-3-phosphate dehydrogenase. This was treated with restriction enzymes ClaI and SacII to prepare DNA fragment T for insertion into plasmid pUC19RPKT.
次に、pUC19RPKTを制限酵素ClaIで処理し、さらにアルカリホスファターゼで脱リン酸化処理した後、上述のDNA断片PおよびDNA断片Tと連結することにより、プラスミドpUCRPKT-PTを作製した。 Next, pUC19RPKT was treated with the restriction enzyme ClaI, further dephosphorylated with alkaline phosphatase, and then ligated with the DNA fragment P and DNA fragment T described above to produce the plasmid pUCRPKT-PT.
次に、配列表の配列番号4に示すプライマー1(5’-CTCCGTCCGAGAGCTAGCGATATCCCGCGGATGACCGCTATAGCCACCACCGCTATATC-3’)、および、配列表の配列番号5に示すプライマー2(5’-CTGCTTCGTGAGGCCTACGCGTACTAGTCCGCGGCTACAGACATTCCCTCAAACCGGTG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、両端に制限酵素SacIIおよびSpeIの認識配列を付加したDNAを増幅した。これを、制限酵素SacIIおよびSpeIで消化し、同様に消化したプラスミドpUCRPKT-PTに挿入して、プラスミドpUCRPKT-PMKを作製した。プラスミドpUCRPKT-PMKは、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターとターミネーターの間に本発明のDNAが挿入された構造を有し、本発明のDNAの発現ベクターとして機能する。このように作製したプラスミドpUCRPKT-PMKを制限酵素NdeIで消化し、線状DNAとしたものを、形質転換用ベクターとした。 Next, using primer 1 (5′-CTCCGTCGCAGGCTCCGCGATGACCGCCGATAGCCCACCCGCTATACC-3C) and SEQ ID NO: 5 shown in SEQ ID NO: 5 in the sequence listing, primer 2 (5′-CTGCTTCGTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template, and DNA with restriction enzyme SacII and SpeI recognition sequences added to both ends was amplified. This was digested with restriction enzymes SacII and SpeI and inserted into the similarly digested plasmid pUCRPKT-PT to produce plasmid pUCRPKT-PMK. The plasmid pUCRPKT-PMK has a structure in which the DNA of the present invention is inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene, and functions as an expression vector for the DNA of the present invention. The plasmid pUCRPKT-PMK thus prepared was digested with the restriction enzyme NdeI to obtain a linear DNA, which was used as a transformation vector.
(実施例3)(形質転換体の取得)
実施例2で作製した形質転換用ベクターを、電気穿孔法(Biotechnology techiques 1997 10:929-932)により、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の細胞に導入し、抗生物質G418を40mg/L添加したYM寒天培地(ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、グルコース1.0%、寒天2.0%、pH6.2)のプレート上で、形質転換細胞を選択し、抗生物質G418を40mg/L添加したYM寒天培地のスラント上に移植して保存した。得られた形質転換細胞をキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pUCRPKT-PMK)株と命名した。
(Example 3) (Acquisition of transformant)
The transformation vector prepared in Example 2 was introduced into cells of the Xanthophyllomyces dendrohaus NBRC10129 strain by electroporation (Biotechnology techniques 1997 10: 929-932), and antibiotic G418 was introduced. On a plate of YM agar medium (peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, glucose 1.0%, agar 2.0%, pH 6.2) supplemented with 40 mg / L, Transformed cells were selected, transplanted onto a slant of YM agar medium supplemented with 40 mg / L of antibiotic G418 and stored. The resulting transformed cells were named Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-PMK) strain.
(実施例4)(形質転換体によるアスタキサンチンの生産)
抗生物質G418を40mg/L添加したYM培地(ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、グルコース1.0%、pH6.2)5mLを入れた試験管をオートクレーブ殺菌し、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pUCRPKT-PMK)株を接種した。これを22℃で2日間振盪培養し、前培養液とした。次に、抗生物質G418を40mg/L添加したYM培地80mLを入れた振盪フラスコをオートクレーブ殺菌し、上述の前培養液0.8mLを接種した。これを、22℃で3日間振盪培養し、得られた培養液のアスタキサンチン含量および細胞乾燥物含量を測定した。アスタキサンチン含量を細胞乾燥物含量で除し、細胞乾燥物中のアスタキサンチン含量を算出した。その結果、細胞乾燥物中のアスタキサンチン含量は0.28mg/gであった。
(Example 4) (Production of astaxanthin by transformant)
Autoclave a test tube containing 5 mL of YM medium (0.5% peptone, 0.3% yeast extract, 0.3% malt extract, 1.0% glucose, pH 6.2) supplemented with 40 mg / L of antibiotic G418 Sterilized and inoculated with the strain Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-PMK). This was cultured with shaking at 22 ° C. for 2 days to obtain a preculture solution. Next, a shake flask containing 80 mL of YM medium supplemented with 40 mg / L of antibiotic G418 was autoclaved and inoculated with 0.8 mL of the above preculture solution. This was cultured with shaking at 22 ° C. for 3 days, and the astaxanthin content and cell dry matter content of the obtained culture broth were measured. The astaxanthin content was divided by the cell dry matter content to calculate the astaxanthin content in the cell dry matter. As a result, the astaxanthin content in the cell dried product was 0.28 mg / g.
(比較例1)
プラスミドpUCRPKT-PMKから、本発明のDNAのみを除去したプラスミドであるpUCRPKT-PTを、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の細胞に導入して得られた形質転換細胞であるキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pUCRPKT-PT)株を、実施例4と同様に培養し、細胞乾燥物中のアスタキサンチン含量を算出した。その結果、細胞乾燥物中のアスタキサンチン含量は0.25mg/gであった。
(Comparative Example 1)
Ki which is a transformed cell obtained by introducing pUCRPKT-PT, a plasmid obtained by removing only the DNA of the present invention from the plasmid pUCRPKT-PMK, into cells of the Xanthophyllomyces dendrrous strain NBRC10129 strain. The Santophilomyces dendrohaus NBRC10129 (pUCRPKT-PT) strain was cultured in the same manner as in Example 4, and the astaxanthin content in the cell dried product was calculated. As a result, the astaxanthin content in the dried cell product was 0.25 mg / g.
実施例4と比較例1の結果から、本発明のDNAを導入することにより、細胞によるアスタキサンチンの生産量が増加すると考えられる。 From the results of Example 4 and Comparative Example 1, it is considered that the amount of astaxanthin produced by the cells is increased by introducing the DNA of the present invention.
なお、培養液のアスタキサンチン含量は、以下のように測定した。培養液1mLを密栓可能な1.5ml容のポリプロピレン製容器に分取し、約15000×Gで5分間遠心分離後に上清を除去する。これに約1gのガラスビーズ(直径0.5mm)、1mlのアセトンを加え、マルチビーズショッカー(安井器械株式会社製)を用いて4℃で3分間破砕処理する。破砕物をフィルターろ過(コスモナイスフィルターS、0.45μm;ミリポア社製)して、固形物とガラスビーズを除去し、HPLCを用いてアスタキサンチン含量を測定する。HPLCを用いたアスタキサンチンの定量は、以下の条件で実施する。カラム:Develosil ODS-HG-5 φ4.6×250mm(野村化学株式会社製)、カラム温度:25℃、移動相:アセトニトリル/メタノール/イソプロパノール=85/10/5(体積比)、流速:0.8mL/分、検出波長:471nm。 In addition, the astaxanthin content of the culture solution was measured as follows. 1 mL of the culture solution is dispensed into a 1.5-ml polypropylene container that can be sealed and centrifuged at about 15000 × G for 5 minutes, and then the supernatant is removed. About 1 g of glass beads (diameter 0.5 mm) and 1 ml of acetone are added thereto, and the mixture is crushed at 4 ° C. for 3 minutes using a multi-bead shocker (manufactured by Yasui Kikai Co., Ltd.). The crushed material is filtered (Cosmonis filter S, 0.45 μm; manufactured by Millipore) to remove solids and glass beads, and the astaxanthin content is measured using HPLC. Quantification of astaxanthin using HPLC is carried out under the following conditions. Column: Develosil ODS-HG-5 φ4.6 × 250 mm (manufactured by Nomura Chemical Co., Ltd.), column temperature: 25 ° C., mobile phase: acetonitrile / methanol / isopropanol = 85/10/5 (volume ratio), flow rate: 0. 8 mL / min, detection wavelength: 471 nm.
培養液の細胞乾燥物含量は、以下のように測定した。予め風袋重量を測定した試験管に培養液5mLを分取し、約5000×Gで10分間遠心分離後に上清を除去する。これに、水5mLを添加して細胞を再懸濁し、同様に遠心分離した後、上清を除去する。これを110℃で12時間乾燥した後重量を測定し、風袋重量との差から内容物重量を算出する。さらに、内容物重量を最初に分取した培養液量で除し、細胞乾燥物含量を算出する。 The cell dry matter content of the culture solution was measured as follows. 5 mL of the culture solution is dispensed into a test tube whose tare weight has been measured in advance, and the supernatant is removed after centrifugation at about 5000 × G for 10 minutes. To this, 5 mL of water is added to resuspend the cells, and after centrifugation in the same manner, the supernatant is removed. After drying this at 110 ° C. for 12 hours, the weight is measured, and the content weight is calculated from the difference from the tare weight. Further, the cell weight is calculated by dividing the weight of the content by the amount of the first collected culture solution.
(実施例5)(DNA(配列番号20および21)の単離)
(PCRプライマーの作製)
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNA配列情報から、配列表の配列番号23に示すプライマー17(5’-TCCCCGCGGATGCACACAGACTGGCTCCTT-3’)、および、配列表の配列番号24に示すプライマー18(5’-GACTAGTTTAGAGCCTCTGGATGACGAC-3’)を設計し、合成した。
(Example 5) (Isolation of DNA (SEQ ID NOs: 20 and 21))
(Preparation of PCR primers)
From the chromosomal DNA sequence information of Xanthophyllomyces dendrhaus NBRC10129 strain, primer 17 (5′-TCCCCGCGGATGCACACACGACTGCTCTCTT-3 ′) shown in SEQ ID NO: 23 and SEQ ID NO: 24 shown in SEQ ID NO: 24 Primer 18 (5′-GACTAGTTTAGAGCCCTCTGATGACGAC-3 ′) was designed and synthesized.
(PCRによる遺伝子(配列番号20)の増幅)
キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の菌体から、実施例1と同様に、染色体DNAを抽出した。次に、上記で調製したDNAプライマーを用い、得られた染色体DNAを鋳型として、実施例1と同様にPCRを行ったところ、目的遺伝子を含むと考えられる約1.9kbpのDNA断片が増幅された。このDNA断片の塩基配列を、実施例1と同様に解析した。その結果判明した染色体DNAの配列を、配列番号20に示した。
(Amplification of gene (SEQ ID NO: 20) by PCR)
In the same manner as in Example 1, chromosomal DNA was extracted from the cells of Xanthophyllomyces dendrrous NBRC10129 strain. Next, PCR was performed in the same manner as in Example 1 using the DNA primer prepared above and the obtained chromosomal DNA as a template. As a result, a DNA fragment of about 1.9 kbp, which is considered to contain the target gene, was amplified. It was. The base sequence of this DNA fragment was analyzed in the same manner as in Example 1. The resulting chromosomal DNA sequence is shown in SEQ ID NO: 20.
(cDNA配列(配列番号21)の決定)
実施例1と同様に調製した、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株のcDNAを鋳型として、上記で調製したDNAプライマーを用いてPCRを行ったところ、目的遺伝子を含むと考えられる約1.3kbpのDNA断片Dが増幅された。実施例1と同様にこのDNA断片の塩基配列を解析し、判明したcDNA配列を配列表の配列番号21に示した。また、該cDNA配列から推定されるアミノ酸配列を、配列表の配列番号22に示した。
(Determination of cDNA sequence (SEQ ID NO: 21))
PCR was performed using the DNA primer prepared as described above using the Xanthophyllomyces dendrhaus NBRC10129 strain template prepared in the same manner as in Example 1, and it is considered that the target gene was included. About 1.3 kbp of DNA fragment D was amplified. The base sequence of this DNA fragment was analyzed in the same manner as in Example 1, and the found cDNA sequence was shown in SEQ ID NO: 21 in the Sequence Listing. The amino acid sequence deduced from the cDNA sequence is shown in SEQ ID NO: 22 in the sequence listing.
(実施例6)(ベクターの構築)
配列表の配列番号23に示すプライマー17(5’-TCCCCGCGGATGCACACAGACTGGCTCCTT-3’)と配列表の配列番号24に示すプライマー18(5’-GACTAGTTTAGAGCCTCTGGATGACGAC-3’)を用い、PCRを実施し、両端に制限酵素SacIIおよびSpeIの認識配列を付加したDNA断片を増幅した。これを、制限酵素SacIIおよびSpeIで消化し、同様に消化したプラスミドpUCRPKT-PT(実施例2参照)に挿入して、プラスミドpUCRPKT-AACTを作製した。プラスミドpUCRPKT-AACTはグリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターとターミネーターの間に本発明のDNAが挿入された構造を有し、本発明のDNAの発現ベクターとして機能する。このように作製したプラスミドpUCRPKT-AACTを制限酵素NdeIで消化し、線状DNAとしたものを、形質転換用ベクターとした。
(Example 6) (Construction of vector)
PCR was carried out using primer 17 (5′-TCCCCGCGGATGCACACAGAACTGGCTCCTTTT-3 ′) shown in SEQ ID NO: 23 and primer 18 (5′-GACTAGTTTAGAGCCCTCTGATGGACGAC-3 ′) shown in SEQ ID NO: 24 in the sequence listing, and both ends were restricted. A DNA fragment added with recognition sequences for the enzymes SacII and SpeI was amplified. This was digested with restriction enzymes SacII and SpeI and inserted into the similarly digested plasmid pUCRPKT-PT (see Example 2) to prepare plasmid pUCRPKT-AACT. The plasmid pUCRPKT-AACT has a structure in which the DNA of the present invention is inserted between the promoter and terminator of the glyceraldehyde-3-phosphate dehydrogenase gene, and functions as an expression vector for the DNA of the present invention. The plasmid pUCRPKT-AACT thus prepared was digested with the restriction enzyme NdeI to obtain a linear DNA, which was used as a transformation vector.
(実施例7)(形質転換体の取得)
実施例6で作製した形質転換用ベクターを、実施例3と同様に、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の細胞に導入し、得られた形質転換細胞をキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pUCRPKT-AACT)株と命名した。
(Example 7) (Acquisition of transformant)
In the same manner as in Example 3, the transformation vector prepared in Example 6 was introduced into cells of Xanthophyllomyces dendrhaus NBRC10129 strain, and the resulting transformed cells were transformed into Xanthophyllomyces. -It was named the strain Xanthophyllomyces dendrorous NBRC10129 (pUCRPKT-AACT).
(実施例8)(形質転換体によるアスタキサンチンの生産)
実施例7で取得したキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pUCRPKT-AACT)株を実施例4と同様に培養し、得られた培養液のアスタキサンチン含量および細胞乾燥物含量を測定した。アスタキサンチン含量を細胞乾燥物含量で除し、細胞乾燥物中のアスタキサンチン含量を算出した。その結果、細胞乾燥物中のアスタキサンチン含量は0.30mg/gであった。
(Example 8) (Production of astaxanthin by transformant)
The Xanthophyllomyces dendrhaus NBRC10129 (pUCRPKT-AACT) strain obtained in Example 7 was cultured in the same manner as in Example 4, and the astaxanthin content and cell dry matter content of the obtained culture broth were measured. . The astaxanthin content was divided by the cell dry matter content to calculate the astaxanthin content in the cell dry matter. As a result, the astaxanthin content in the dried cell product was 0.30 mg / g.
実施例8と比較例1の結果から、本発明のDNAを導入することにより、細胞によるアスタキサンチンの生産量が増加すると考えられる。 From the results of Example 8 and Comparative Example 1, it is considered that the amount of astaxanthin produced by the cells is increased by introducing the DNA of the present invention.
(実施例9)(各種プロモーターを利用したアスタキサンチンの生産)
(GFP遺伝子を含むベクターの作製、及び前記ベクターへのグリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターの導入)
配列表の配列番号43に示すプライマーPgdh-fw(5’-ATTAATTAAGCGGCCGCACACGTGATATATGGCTGTACG-3’)、および、配列表の配列番号44に示すプライマーPgdh-rv(5’-GGGATATCGCTAGCATGCATCATGGTTGATGGAAGATGTGG-3’) を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、グルタミン酸デヒドロゲナーゼ遺伝子のプロモーター配列を増幅した。このプロモーターをIn-Fusion HD cloning Kit(タカラバイオ株式会社製)を使用して、制限酵素NotIおよびNsiIで消化したプラスミドpKF-G418に挿入し、プラスミドpGDHを作製した。
(Example 9) (Production of astaxanthin using various promoters)
(Preparation of vector containing GFP gene and introduction of glyceraldehyde-3-phosphate dehydrogenase gene promoter into the vector)
Primer Pgdh-fw (5′-ATTAATTTAAGCGGCCCACACCGTGATATATGGCTGTACG-3 ′) shown in SEQ ID NO: 43 and primer Pgdh-rv (5′-GGGATATCGCTAGCATGCATTGGGTGTGTGGAG PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the glutamate dehydrogenase gene. This promoter was inserted into plasmid pKF-G418 digested with restriction enzymes NotI and NsiI using In-Fusion HD cloning Kit (manufactured by Takara Bio Inc.) to prepare plasmid pGDH.
次に配列表の配列番号41に示すプライマーGFP-fw(5’-TATCCCGCGGACTAGTATGGTGAGCAAGGGCGCCGAG-3’)、および、配列表の配列番号42に示すプライマーGFP-rv(5’-GTTGATCAATTGAGGCCTTCACTTGTACAGCTCATCCATG-3’)を用いて、pAcGFP1(タカラバイオ株式会社製)を鋳型としてGFP遺伝子を増幅した。これを、制限酵素SpeIおよびStuIで消化し、同様に消化したプラスミドpGDHに挿入して、プラスミドpGDH-GFPを作製した。また、配列表の配列番号39に示すプライマーMS1-GFP(5’-CGACTCTAGAGGATCCCGCTAGCGATATCCCGCGGATGGTGAGCAAGGGCGCCGAGC-3’)、および、配列表の配列番号40に示すプライマーGFP-MS2(5’-CCGGCGCTCAGAGGCCTACGCGTACTAGTCCGCGGTCACTTGTACAGCTCATCC-3’)を用いて、pAcGFP1(タカラバイオ株式会社製)を鋳型としてGFP遺伝子を増幅した。これを、制限酵素EcoRVおよびMluIで消化し、同様に消化したプラスミドpUCRPK-PTに挿入して、プラスミドpGPD-GFPを作製した。 Next, a primer GFP-fw (5′-TATCCCCGCGGATAGTAGATGGTGGACAAGGGCGCCGAG-3 ′) shown in the sequence listing 41 and a primer GFP-rv (5′-GTTGATCAATTGAGGCCCTTCACTTGTACAG-3CT) shown in the sequence listing 42 are used. The GFP gene was amplified using pAcGFP1 (Takara Bio Inc.) as a template. This was digested with restriction enzymes SpeI and StuI and inserted into similarly digested plasmid pGDH to prepare plasmid pGDH-GFP. In addition, the primer MS1-GFP (5′-CGACTCTAGAGGATCCCGCTAGCGATATCCCCGCGGATGGGTGAGCAAGGGCGCCGAGCTCGCTGCTGCTGCTGCTGCTGCTGCTGCTGTCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTCGTCTGCG The GFP gene was amplified using pAcGFP1 (Takara Bio Inc.) as a template. This was digested with restriction enzymes EcoRV and MluI and inserted into the similarly digested plasmid pUCRPK-PT to prepare plasmid pGPD-GFP.
(アクチン遺伝子のプロモーターの取得、及び前記プロモーターのGFP遺伝子を含むベクターへの導入)
配列表の配列番号31に示すプライマーPactin-fw(5’-CAGCCCTTCCAATCGTTCGAATTAATTAAGCGGCCGCGAAGACGATGTGTGCATTGA-3’)、および、配列表の配列番号31に示すプライマーPactin-rv(5’-CGTACTAGTCCGCGGGATATCGCTAGCATGCATGGTGGGCTATGCTGTTTCTTTT-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、アクチン遺伝子のプロモーター配列を増幅した。また、配列表の配列番号33に示すプライマーTactin-fw(5’-CCGCGGACTAGTACGCGTAGGCCTCAATTGATCAACAAAGTCTTTCTATC-3’)、および、配列表の配列番号34に示すプライマーTactin-rv(5’-CTGCGTTCTTCATCGATCGATGGCCGGCCGCTGAGGACCTGCCGGAGCTGAAGCTG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、アクチンのターミネーター配列を増幅した。これらアクチン遺伝子のプロモーターおよびターミネーターをIn-Fusion HD cloning Kit(タカラバイオ株式会社製)を使用して、制限酵素CiaIで消化したプラスミドpKF-G418に挿入し、プラスミドpACTを作製した。そして、pGPD-GFPを制限酵素SacIIで消化して得たGFP遺伝子断片を、同様に消化したプラスミドpACTに挿入して、プラスミドpACT-GFPを作製した。
(Acquisition of actin gene promoter and introduction of the promoter into a vector containing the GFP gene)
Primer Pactin-fw (5′-CAGCCCTTCGCTGCTGCTGCTGCTGCTGTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the actin gene. Further, the primer Tactin-fw (5′-CCCGCGGATAGTAGTACCGCGTAGGCTCCAATTTGATCAACAAAGTCTCTGGCTGCGTCTGCGTCTGCGTCTGCGTCTGCGTCTGCG PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the actin terminator sequence. The promoter and terminator of these actin genes were inserted into plasmid pKF-G418 digested with restriction enzyme CiaI using In-Fusion HD cloning Kit (manufactured by Takara Bio Inc.) to prepare plasmid pACT. Then, a GFP gene fragment obtained by digesting pGPD-GFP with the restriction enzyme SacII was inserted into a similarly digested plasmid pACT to prepare plasmid pACT-GFP.
(アルコールデヒドロゲナーゼIV遺伝子のプロモーターの取得、及び前記プロモーターのGFP遺伝子を含むベクターへの導入)
配列表の配列番号35に示すプライマーPadhIV-fw(5’-ATTAATTAAGCGGCCGCGGTAAAGAAAAGAAAGTCGAC-3’)、および、配列表の配列番号36に示すプライマーPadhIV-rv(5’-GCGGGATATCGCTAGCTGTGGGGTTCAGATGATGTG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、アルコールデヒドロゲナーゼIV遺伝子のプロモーター配列を増幅した。これをIn-Fusion HD cloning Kit(タカラバイオ株式会社製)を使用して、制限酵素NotIおよびNheIで消化したプラスミドpGDH-GFPに挿入し、プラスミドpADH-GFPを作製した。
(Acquisition of promoter of alcohol dehydrogenase IV gene and introduction of the promoter into a vector containing the GFP gene)
Using the primer PadhIV-fw (5′-ATTAATTTAAGCGGCCGCGGTAAAGAAAAGAAAAGTCGAC-3 ′) shown in SEQ ID NO: 35 in the sequence listing and the primer PadhIV-rv (5′-GCGGGATATCGCTGCTGTGGATKITGTGTGG) in the sequence listing 36 shown in the sequence listing PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the alcohol dehydrogenase IV gene. This was inserted into plasmid pGDH-GFP digested with restriction enzymes NotI and NheI using In-Fusion HD cloning Kit (manufactured by Takara Bio Inc.) to prepare plasmid pADH-GFP.
(トリオースリン酸イソメラーゼ遺伝子のプロモーターの取得、及び前記プロモーターのGFP遺伝子を含むベクターへの導入)
配列表の配列番号37に示すプライマーPtpi-fw(5’-ATTAATTAAGCGGCCGCATGCCTGTTGCACATTGTAG-3’)、および、配列表の配列番号38に示すプライマーPtpi-rv(5’-GCGGGATATCGCTAGCGATGAATAGATATGAAGAGTTG-3’)を用いて、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の染色体DNAを鋳型としてPCRを実施し、トリオースリン酸イソメラーゼ遺伝子のプロモーター配列を増幅した。これをIn-Fusion HD cloning Kit(タカラバイオ株式会社製)を使用して、制限酵素NotIおよびNheIで消化したプラスミドpGDH-GFPに挿入し、プラスミドpTPI-GFPを作製した。
(Acquisition of promoter of triose phosphate isomerase gene and introduction of the promoter into a vector containing GFP gene)
Using primer Ptpi-fw (5′-ATTAATTTAAGCGGCCGCATGCCTGTTGCACATTGTAG-3 ′) shown in SEQ ID NO: 37 in the sequence listing and primer Ptpi-rv (5′-GCGGGATATCGCTAGCGATGAATAGTATGAGAGTGT) shown in SEQ ID NO: 38 in the sequence listing PCR was performed using the chromosomal DNA of Xanthophyllomyces dendrhaus NBRC10129 strain as a template to amplify the promoter sequence of the triose phosphate isomerase gene. This was inserted into plasmid pGDH-GFP digested with restriction enzymes NotI and NheI using In-Fusion HD cloning Kit (manufactured by Takara Bio Inc.) to prepare plasmid pTPI-GFP.
(形質転換体の取得)
形質転換用ベクターpGPD-GFP、pACT-GFP、pADH-GFP、またはpTPI-GFPを、電気穿孔法(BioTeChnoloGy TeChiques 1997 10:929-932)により、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129株の細胞に導入し、抗生物質G418を40mg/L添加したYM寒天培地(ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、グルコース1.0%、寒天2.0%、pH6.2)のプレート上で、形質転換細胞を選択し、抗生物質G418を40mg/L添加したYM寒天培地のスラント上に移植して保存した。得られた形質転換細胞を、それぞれ、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pGPD-GFP)株、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pACT-GFP)株、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pADH-GFP)株、およびキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pTPI-GFP)株と命名した。
(Acquisition of transformant)
The transformation vectors pGPD-GFP, pACT-GFP, pADH-GFP, or pTPI-GFP were obtained by electroporation (BioTeChronoGy TeChiques 1997 10: 929-932) by Xanthophyllomyces Dendroas 29D YM agar medium containing 40 mg / L of antibiotic G418 (peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, glucose 1.0%, agar 2.0% , PH 6.2), transformed cells were selected, transplanted onto a slant of YM agar medium supplemented with 40 mg / L of antibiotic G418, and stored. The resulting transformed cells were transformed into Xanthophyllomyces dendrhaus NBRC10129 (pGPD-GFP) strain, Xanthophyllomyces dendrrous strain NBCTGF129P (NBPTGF129P), respectively. The strain Xanthophyllomyces dendrrous NBRC10129 (pADH-GFP) and the strain Xanthophyllomyces dendrrous NBRC10129 (pTPI-GFP).
(形質転換体におけるGFPの強度測定)
抗生物質G418を40mg/L添加したYM培地(ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、グルコース1.0%、pH6.2)5mLを入れた試験管をオートクレーブ殺菌し、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pGPD-GFP)株、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pACT-GFP)株、キサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pADH-GFP)株、またはキサントフィロマイセス・デンドロアス(Xanthophyllomyces dendrorhous)NBRC10129(pTPI-GFP)株を接種した。これを22℃で1日間振盪培養し、前培養液とした。次に、抗生物質G418を40mg/L添加したYM培地80mLを入れた振盪フラスコをオートクレーブ殺菌し、上述の前培養液を600nmにおける吸光度が0.03になるように接種した。これを、22℃で72時間振盪培養し、24時間おきに培養液を1mL分取した。得られた培養液1mLを密栓可能な1.5ml容のポリプロピレン製容器に分取し、約8000×gで3分間遠心分離後に上清を除去した。滅菌水を1mL添加し混合した。GFPの強度は、マイクロプレートリーダーを用いて測定した。GFP強度を細胞乾燥物重量(0.3786×吸光度)で除し、細胞乾燥物重量あたりのGFP強度を算出した。その結果を図1に示す。図1から、アクチン、アルコールデヒドロゲナーゼIV、およびトリオースリン酸イソメラーゼ遺伝子のプロモーターが、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターよりも高い転写活性を有すると考えられる。
(Measurement of GFP intensity in transformants)
Autoclave a test tube containing 5 mL of YM medium (0.5% peptone, 0.3% yeast extract, 0.3% malt extract, 1.0% glucose, pH 6.2) supplemented with 40 mg / L of antibiotic G418 Sterilized, Xanthophyllomyces dendrorous NBRC10129 (pGPD-GFP) strain, Xanthophyllomyces dendrorous NBRC10129 (pACT-GFP dendrohaus) dendrhouse) NBRC10129 (pADH-GFP) strain, or Xanthophyllo They were inoculated with yces dendrorhous) NBRC10129 (pTPI-GFP) strain. This was cultured with shaking at 22 ° C. for 1 day to obtain a preculture solution. Next, a shake flask containing 80 mL of YM medium supplemented with 40 mg / L of antibiotic G418 was autoclaved, and the above-mentioned preculture was inoculated so that the absorbance at 600 nm was 0.03. This was cultured with shaking at 22 ° C. for 72 hours, and 1 mL of the culture solution was collected every 24 hours. 1 mL of the obtained culture solution was dispensed into a 1.5-ml polypropylene container capable of being sealed and centrifuged at about 8000 × g for 3 minutes, and the supernatant was removed. 1 mL of sterilized water was added and mixed. The intensity of GFP was measured using a microplate reader. The GFP intensity per cell dry substance weight was calculated by dividing the GFP intensity by the cell dry substance weight (0.3786 × absorbance). The result is shown in FIG. From FIG. 1, it is considered that the actin, alcohol dehydrogenase IV, and triose phosphate isomerase gene promoters have higher transcriptional activity than the glyceraldehyde-3-phosphate dehydrogenase gene promoter.
実施例2および6に記載の方法で、アクチン遺伝子のプロモーター、アルコールデヒドロゲナーゼIV遺伝子のプロモーター、またはトリオースリン酸イソメラーゼ遺伝子のプロモーターの下流に、配列番号2または21に記載のDNAを配置して、ベクターを構築した。実施例3に記載の方法で形質転換体を取得し、実施例4に記載の方法でアスタキサンチンを生産し、生産量を測定した。アクチン遺伝子のプロモーター、アルコールデヒドロゲナーゼIV遺伝子のプロモーター、またはトリオースリン酸イソメラーゼ遺伝子のプロモーターを使用することにより、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子のプロモーターを使用した場合よりも、アスタキサンチンの生産量が増加した。 The DNA described in SEQ ID NO: 2 or 21 was placed downstream of the actin gene promoter, alcohol dehydrogenase IV gene promoter, or triose phosphate isomerase gene promoter by the method described in Examples 2 and 6, and the vector was prepared. It was constructed. A transformant was obtained by the method described in Example 3, astaxanthin was produced by the method described in Example 4, and the production amount was measured. Using actin gene promoter, alcohol dehydrogenase IV gene promoter, or triose phosphate isomerase gene promoter increases the production of astaxanthin compared to using glyceraldehyde-3-phosphate dehydrogenase gene promoter did.

Claims (15)

  1. 以下の(A)~(H):
    (A)配列表の配列番号1に示す塩基配列を含むDNA;
    (B)配列表の配列番号1に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
    (C)配列表の配列番号1に示す塩基配列と85%以上の配列同一性を有するDNA;
    (D)配列表の配列番号1に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
    (E)配列表の配列番号2に示す塩基配列を含むDNA;
    (F)配列表の配列番号2に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
    (G)配列表の配列番号2に示す塩基配列と85%以上の配列同一性を有するDNA;
    (H)配列表の配列番号2に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
    のいずれかのDNA。
    The following (A) to (H):
    (A) DNA containing the base sequence shown in SEQ ID NO: 1 in the sequence listing;
    (B) a DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
    (C) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
    (D) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 1 in the Sequence Listing;
    (E) a DNA comprising the base sequence shown in SEQ ID NO: 2 in the sequence listing;
    (F) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
    (G) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
    (H) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 2 in the Sequence Listing;
    DNA of any one of.
  2. 以下の(I)~(K):
    (I)配列表の配列番号3に示すアミノ酸配列からなるポリペプチド;
    (J)配列表の配列番号3に示すアミノ酸配列と85%以上の配列同一性を有するアミノ酸配列からなるポリペプチド;
    (K)配列表の配列番号3に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド;
    のいずれかのポリペプチドをコードするDNA。
    The following (I) to (K):
    (I) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing;
    (J) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing;
    (K) a polypeptide comprising an amino acid sequence in which one or more amino acids are deleted, inserted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing;
    DNA encoding any of the polypeptides.
  3. 以下の(L)~(S):
    (L)配列表の配列番号20に示す塩基配列を含むDNA;
    (M)配列表の配列番号20に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
    (N)配列表の配列番号20に示す塩基配列と85%以上の配列同一性を有するDNA;
    (O)配列表の配列番号20に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
    (P)配列表の配列番号21に示す塩基配列を含むDNA;
    (Q)配列表の配列番号21に示す塩基配列と相補的な塩基配列を含むDNAとストリンジェントな条件下でハイブリダイズするDNA;
    (R)配列表の配列番号21に示す塩基配列と85%以上の配列同一性を有するDNA;
    (S)配列表の配列番号21に示す塩基配列において、1もしくは複数個の塩基が欠失、挿入、置換および/または付加した塩基配列からなるDNA;
    のいずれかのDNA。
    The following (L) to (S):
    (L) a DNA comprising the base sequence represented by SEQ ID NO: 20 in the sequence listing;
    (M) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 20 in the sequence listing;
    (N) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 20 in the Sequence Listing;
    (O) DNA consisting of a base sequence in which one or more bases are deleted, inserted, substituted and / or added in the base sequence shown in SEQ ID NO: 20 in the Sequence Listing;
    (P) a DNA comprising the base sequence shown in SEQ ID NO: 21 in the sequence listing;
    (Q) DNA that hybridizes under stringent conditions with a DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
    (R) DNA having a sequence identity of 85% or more with the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
    (S) DNA consisting of a base sequence obtained by deleting, inserting, substituting and / or adding one or more bases in the base sequence shown in SEQ ID NO: 21 in the Sequence Listing;
    DNA of any one of.
  4. 以下の(T)~(V):
    (T)配列表の配列番号22に示すアミノ酸配列からなるポリペプチド;
    (U)配列表の配列番号22に示すアミノ酸配列と85%以上の配列同一性を有するアミノ酸配列からなるポリペプチド;
    (V)配列表の配列番号22に示すアミノ酸配列において、1もしくは複数個のアミノ酸が欠失、挿入、置換および/または付加したアミノ酸配列からなるポリペプチド;
    のいずれかのポリペプチドをコードするDNA。
    The following (T) to (V):
    (T) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 22 of the Sequence Listing;
    (U) a polypeptide comprising an amino acid sequence having 85% or more sequence identity to the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing;
    (V) a polypeptide comprising an amino acid sequence obtained by deleting, inserting, substituting and / or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 22 in the Sequence Listing;
    DNA encoding any of the polypeptides.
  5. キサントフィロマイセス属に属する生物に由来する、請求項1~4のいずれかに記載のDNA。 The DNA according to any one of claims 1 to 4, which is derived from an organism belonging to the genus Xanthophyllomyces.
  6. 前記キサントフィロマイセス属に属する生物が、キサントフィロマイセス・デンドロアスである請求項5に記載のDNA。 The DNA according to claim 5, wherein the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
  7. 請求項1~6のいずれかに記載のDNAを1つ以上含むベクター。 A vector comprising one or more DNAs according to any one of claims 1 to 6.
  8. さらに、アクチン遺伝子のプロモーター、アルコールデヒドロゲナーゼIV遺伝子のプロモーター、及び/又はトリオースリン酸イソメラーゼ遺伝子のプロモーターの塩基配列の一部または全部を含むDNAを1つ以上含む請求項7に記載のベクター。 The vector according to claim 7, further comprising one or more DNAs comprising a part or all of a base sequence of an actin gene promoter, an alcohol dehydrogenase IV gene promoter, and / or a triose phosphate isomerase gene promoter.
  9. 請求項7または8に記載のベクターにより宿主細胞を形質転換して得られる形質転換体。 A transformant obtained by transforming a host cell with the vector according to claim 7 or 8.
  10. カロテノイド生産能を有する、請求項9に記載の形質転換体。 The transformant according to claim 9, which has a carotenoid production ability.
  11. 前記宿主細胞がキサントフィロマイセス属に属する生物の細胞である、請求項9または10に記載の形質転換体。 The transformant according to claim 9 or 10, wherein the host cell is a cell of an organism belonging to the genus Xanthophyllomyces.
  12. 前記キサントフィロマイセス属に属する生物が、キサントフィロマイセス・デンドロアスである、請求項11に記載の形質転換体。 The transformant according to claim 11, wherein the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces dendroas.
  13. 遺伝子組換えの手法を用いて、請求項1~6のいずれかに記載のDNAの発現が付与および/または増強され、且つ、カロテノイド生産能を有する細胞を培養する工程を含む、カロテノイドの製造方法。 A method for producing a carotenoid, comprising a step of culturing a cell to which the expression of the DNA according to any one of claims 1 to 6 is imparted and / or enhanced and has a carotenoid producing ability using a gene recombination technique. .
  14. 前記カロテノイド生産能を有する細胞が、キサントフィロマイセス属に属する生物の細胞である、請求項13に記載の製造方法。 The production method according to claim 13, wherein the cell having the ability to produce carotenoid is a cell of an organism belonging to the genus Xanthophyllomyces.
  15. 前記キサントフィロマイセス属に属する生物が、キサントフィロマイセス・デンドロアスである、請求項14に記載の製造方法。 The production method according to claim 14, wherein the organism belonging to the genus Xanthophyllomyces is Xanthophyllomyces Dendroas.
PCT/JP2013/074875 2012-09-24 2013-09-13 Novel dna, and method for producing carotenoid using same WO2014046051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-209749 2012-09-24
JP2012209749A JP2015226469A (en) 2012-09-24 2012-09-24 Novel dna, and production method for carotenoid using same

Publications (1)

Publication Number Publication Date
WO2014046051A1 true WO2014046051A1 (en) 2014-03-27

Family

ID=50341364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074875 WO2014046051A1 (en) 2012-09-24 2013-09-13 Novel dna, and method for producing carotenoid using same

Country Status (2)

Country Link
JP (1) JP2015226469A (en)
WO (1) WO2014046051A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050884A (en) * 1998-05-06 2000-02-22 F Hoffmann La Roche Ag Improved production of isoprenoid
JP2000507087A (en) * 1995-12-22 2000-06-13 ギスト ブロカデス ベスローテン ファンノートシャップ Improved method for transforming Phaffia strain, transformed Phaffia strain thus obtained, and recombinant DNA in said method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507087A (en) * 1995-12-22 2000-06-13 ギスト ブロカデス ベスローテン ファンノートシャップ Improved method for transforming Phaffia strain, transformed Phaffia strain thus obtained, and recombinant DNA in said method
JP2000050884A (en) * 1998-05-06 2000-02-22 F Hoffmann La Roche Ag Improved production of isoprenoid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALBRECHT, M. ET AL.: "Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids beta-carotene and zeaxanthin", BIOTECHNOLOGY LETTERS, vol. 21, 1999, pages 791 - 795 *
TOSHIHIKO MORITA ET AL.: "Improvement of astaxanthin production using engineered Xanthophyllomyces dendrorhous", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 64, 25 September 2012 (2012-09-25), JAPAN, pages 63 *

Also Published As

Publication number Publication date
JP2015226469A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US20210115454A1 (en) Compositions and methods of biosynthesizing carotenoids and their derivatives
KR102205236B1 (en) Acetyl transferases and their use for producing carotenoids
US7999151B2 (en) Method of producing astaxanthin or metabolic product thereof by using carotenoid ketolase and carotenoid hydroxylase genes
WO2017150304A1 (en) Fermentation product of ergothioneine
Papp et al. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides
Choi et al. Characterization of β-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli
Papp et al. Canthaxanthin production with modified Mucor circinelloides strains
Kot et al. Sporobolomyces and Sporidiobolus–non-conventional yeasts for use in industries
Ide et al. Enhanced production of astaxanthin in Paracoccus sp. strain N-81106 by using random mutagenesis and genetic engineering
Li et al. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four-and five-step dehydrogenation of phytoene
Li et al. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway
Naz et al. Genetic modification of Mucor circinelloides for canthaxanthin production by heterologous expression of β-carotene ketolase gene
TWI681052B (en) Recombinant polynucleotide sequence for producing astaxanthin and uses thereof
WO2020231426A1 (en) Production of mycosporine-like amino acids employing enhanced production strains and novel enzymes
ES2787225T3 (en) Methods for adjusting carotenoid production levels and compositions in Rhodosporidium and Rhodotorula genera
WO2020167834A1 (en) Compositions and methods of biosynthesizing carotenoids and their derivatives
JP2006500055A (en) Method for producing zeaxanthin by Phaffia
US20180105839A1 (en) Compositions and methods of biosynthesizing xanthophylls
WO2014046051A1 (en) Novel dna, and method for producing carotenoid using same
US9453237B2 (en) Organism with altered carotenoid content and method of producing same
Matselyukh et al. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content
RU2576001C2 (en) Structures of nucleic acids containing cluster of genes of pyripyropene biosynthesis, and marker
Csernetics et al. expression of a bacterial β-carotene hydroxylase in canthaxanthin producing mutant Mucor circinelloides strains
KR20100050634A (en) Yeast recombinant vector comprising genes involved in lycopene biosynthesis and yeast transformed with the recombinant vector
Choi et al. Molecular cloning and overexpression of phytoene desaturase (CrtI) from Paracoccus haeundaensis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP