WO2014045811A1 - Chip, analysis device and analysis system - Google Patents

Chip, analysis device and analysis system Download PDF

Info

Publication number
WO2014045811A1
WO2014045811A1 PCT/JP2013/072827 JP2013072827W WO2014045811A1 WO 2014045811 A1 WO2014045811 A1 WO 2014045811A1 JP 2013072827 W JP2013072827 W JP 2013072827W WO 2014045811 A1 WO2014045811 A1 WO 2014045811A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
absorber
chip
path
air hole
Prior art date
Application number
PCT/JP2013/072827
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 北川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014045811A1 publication Critical patent/WO2014045811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements

Definitions

  • the present invention relates to a chip, an analysis apparatus, and an analysis system, and more particularly, to a chip having an absorber that absorbs a liquid, an analysis apparatus that analyzes the chip, and an analysis system that includes the chip and the analysis apparatus.
  • POCT point-of-care testing
  • test paper as described in Patent Document 1 is used.
  • a sample such as blood or urine is supplied to the test paper, and the reagent and the sample contained in the test paper are reacted to cause coloration.
  • the substance contained in the specimen can be quantified by irradiating the colored area with light and measuring the reflected light.
  • a chip equipped with an absorbent such as a test paper is used to perform quicker measurement.
  • the above-described chip has a problem that it is difficult to make the supply amount of the sample to the test paper constant, the measurement result becomes inaccurate, and the measurement accuracy is lowered.
  • FIG. 21A and 21B are cross-sectional views showing the chip 200 described in Patent Document 2.
  • the chip 200 includes a sample introduction channel 213 and a test paper 221 that can absorb a sample 321 such as blood.
  • the sample 321 is introduced from the sample inlet 211 into the sample introduction channel 213 and supplied to the test paper 221 through the sample introduction channel 213.
  • the components in the specimen 321 react with the reagent carried on the test paper 221, and the test paper 221 is colored.
  • the light emitted from the light emitting element 251 is applied to the test paper 221, and the reflected light is received by the light receiving element 252.
  • an extra sample flows into the sample reservoir 216.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is a chip capable of performing an accurate analysis with a constant amount of liquid introduced into a flow path (flow path structure). Is to provide.
  • a chip includes a flow path for moving a liquid and an introduction path having one end connected to one end side of the flow path.
  • An introduction path provided with an inlet for introducing the liquid into the flow path at the other end of the path, and an open path having one end connected to the other end side of the flow path,
  • An open path having an air hole that is open to the atmosphere at the other end of the open path, and an absorber that is disposed inside the flow path or inside the open path and absorbs the liquid.
  • the absorber has a hydrophobic region having a higher hydrophobicity than the other regions of the absorber on the surface close to the air hole in the path connecting the inlet to the air hole. It is characterized by.
  • the chip of the present invention includes an absorber, and the absorber has a hydrophobic region on the surface close to the air hole, which has a hydrophobic region having higher hydrophobicity than other regions of the absorber.
  • FIG. 1 shows a chip according to Embodiment 1 of the present invention, where (a) is a top view and (b) is a cross-sectional view taken along line A-A ′ of (a).
  • FIG. It is the schematic explaining absorption of the liquid by the absorber with which the chip
  • region is shown, (a) is a top view, (b) is sectional drawing in A-A 'of (a).
  • FIG. 5A and 4B show a chip according to Embodiment 2 of the present invention, where FIG. 5A is a top view and FIG. 5B is a cross-sectional view taken along line A-A ′ in FIG. 4A and 4B show a chip according to Embodiment 3 of the present invention, where FIG. 5A is a top view and FIG.
  • 5B is a cross-sectional view taken along line A-A ′ in FIG. It is the schematic explaining absorption of the liquid by the absorber with which the chip
  • region is shown, (a) is a top view, (b) is sectional drawing in A-A 'of (a). It is the schematic explaining absorption of the liquid by the absorber which does not have a hydrophobic region.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a chip 1a according to the present embodiment.
  • FIG. 1A is a top view illustrating an example of a schematic configuration of a chip 1a, and FIG. ) Is a cross-sectional view taken along the line AA ′ of FIG.
  • the chip 1a according to this embodiment includes a flow path 13 for moving a liquid, an introduction path 11 connected to one end side of the flow path 13, an open path 12 connected to the other end side of the flow path 13, And it is the structure provided with the absorber 21 which absorbs a liquid.
  • the chip 1a according to the present embodiment enables analysis of a liquid introduced into the chip 1a and analysis of a substance contained in the liquid.
  • the flow path 13, the introduction path 11, and the open path 12 are collectively referred to as a “flow path structure”.
  • these analyzes are performed by inserting the chip 1a into an analyzer 50 described later.
  • the introduction path 11 the flow path 13, the open path 12, the absorber 21, the first substrate 41, and the second And a substrate 42.
  • liquid indicates a liquid to be analyzed or a liquid containing a substance to be analyzed. Although it does not specifically limit as said liquid, For example, blood, urine, saliva, tears, a runny nose etc. are mentioned.
  • the introduction path 11 has one end connected to one end side of the flow path 13 and introduces a liquid to be analyzed into the flow path 13.
  • the introduction path 11 is provided with an introduction port 14 at the other end, and the introduction port 14 is open to the atmosphere.
  • the introduction port 14 is for introducing a liquid to be analyzed into the introduction path 11. That is, the liquid to be analyzed is introduced from the introduction port 14 and flows into the flow path 13 through the introduction path 11.
  • the introduction path 11 has a cylindrical shape, and its inner diameter R (diameter in the cross section in the plane shown in FIG. 1A) is about 0.5 to 10 mm, and its height (thickness, ie, FIG. 1). (Length in the vertical direction of the paper surface) H shown in (b) is about 0.1 to 10 mm.
  • Open road 12 One end of the open path 12 is connected to the other end side of the flow path 13, and an air hole 15 is provided at the other end of the open path 12. That is, the open path 12 is connected to one end of the flow path 13 opposite to the end to which the introduction path 11 is connected.
  • the air hole 15 is open to the atmosphere like the introduction port 14, and has a structure that promotes liquid feeding from the introduction port 14 toward the air hole 15.
  • the open path 12 has a cylindrical shape, and its inner diameter R (diameter in the cross section in the plane shown in FIG. 1A) is about 0.5 to 10 mm, and its height (thickness, that is, FIG. 1). (Length in the vertical direction of the paper surface) H shown in (b) is about 0.1 to 10 mm.
  • the flow path 13 enables the analysis of the liquid introduced from the introduction port 14 and the analysis of the substance contained in the liquid.
  • One end is connected to the introduction path 11 and the other end is connected to the open path 12.
  • the width w of the flow path 13 (the length in the vertical direction on the paper in FIG. 1A) is 1 to 5000 ⁇ m, preferably 100 to 2000 ⁇ m, and its depth (the vertical direction on the paper in FIG. 1B).
  • the length is 1 to 1000 ⁇ m, preferably 10 to 300 ⁇ m.
  • the flow path 13 has a structure that generates capillary force as power for feeding the liquid introduced into the flow path 13 by being formed with the above size (micrometer order). It can be said that.
  • the liquid introduced into the flow path 13 can flow in one direction without requiring power generated by a mechanism other than the flow path 13.
  • the inlet 14 side in the path connecting the inlet 14 to the air hole 15, the inlet 14 side may be referred to as “upstream” and the air hole 15 side may be referred to as “downstream”.
  • the first substrate 41 functions as a pedestal of the chip 1a and as the bottom of the introduction path 11, the flow path 13, and the open path 12, and can be made of glass, resin, or the like.
  • the second substrate 42 defines the shape of each member formed on the chip 1 a. Specifically, the side surface of the introduction path 11 and the introduction port 14, the side surface of the open path 12, and the air hole 15. , And the side surface and upper portion (region facing the bottom portion) of the flow path 13 are formed.
  • the second substrate 42 may be made of glass, resin, or the like.
  • the processing and positional relationship of the first substrate 41 and the second substrate 42 are examples, and partial processing to the first substrate 41 and the second substrate 42, change in the vertical arrangement, and arrangement in the horizontal direction And other modifications using known methods can be made.
  • the first substrate 41 and / or the second substrate 42 may be formed by combining a plurality of members.
  • the introduction path 11 and the introduction port 14, the release path 12 and the air hole 15, and the flow path 13 are formed by excavating one substrate. It may be formed.
  • Each configuration of the introduction path 11, the introduction port 14, the open path 12, the air hole 15, and the flow path 13 in the chip 1a can be formed by wet etching, dry etching, molding using a mold, and machining.
  • the absorber 21 absorbs the liquid introduced into the flow path 13 and is disposed, for example, in the open path 12 connected to the flow path 13 as shown in FIG.
  • the absorber 21 may be arranged so that the liquid can flow up to a region where it is possible to analyze the liquid or its components.
  • the absorber 21 does not necessarily need to be provided at the bottom of the open path 12.
  • the liquid may be provided on the downstream side of the region where the liquid is analyzed in the liquid feeding direction. That is, the position of the absorber 21 can be inside the flow path 13 or inside the open path 12.
  • the absorber 21 has an effect of promoting liquid feeding of the liquid introduced from the introduction port 14 to the air hole 15 side.
  • the pore (hole) diameter, the type of material, etc. at least the amount of liquid introduced into the flow channel structure can be adjusted, so the amount of liquid required for analysis (sample Amount) can be set.
  • the absorber 21 has a hydrophobic region 110 having a lower hydrophilicity than the other regions of the absorber 21 on the surface close to the air hole 15 in the path connecting the inlet 14 to the air hole 15. Yes. That is, when the absorber 21 is disposed inside the flow path 13, it can be said that the hydrophobic area 110 is provided on the surface close to the connection surface between the flow path 13 and the open path 12. Further, it can be said that the hydrophobic region 110 has higher hydrophobicity than the other regions of the absorber 21.
  • FIG. 2 is a schematic diagram for explaining liquid absorption by the absorber provided in the chip according to the present embodiment.
  • 2A is a cross-sectional view of the absorbent body 21 before absorbing the liquid
  • FIG. 2B is a cross-sectional view of the absorbent body 22 that has absorbed the liquid.
  • FIG. 2A even if the liquid 121 exceeding the saturated absorption amount of the absorber 21 is supplied to the absorber 21 having the hydrophobic region 110, the surface of the absorber 21 is not affected. Due to the decrease in hydrophilicity (in other words, improvement in hydrophobicity), bleeding of the liquid is suppressed. That is, as shown in FIG.
  • the liquid does not ooze out on the surface of the absorber 22 beyond the hydrophobic region 110 of the absorber 22 that has absorbed the liquid.
  • the “saturated absorption amount” of the absorber means the maximum amount of liquid that can be absorbed by the absorber.
  • FIG. 3 is a schematic diagram illustrating the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 1a according to the present embodiment.
  • the “relatively small amount” means, for example, a case where the volume of the liquid is less than (the saturated absorption amount of the absorber + the volume of the channel from the absorber to the introduction channel side + the volume of the introduction channel).
  • FIG. 3 (a) is a cross-sectional view of the chip 1a before the absorber absorbs the liquid
  • FIG. 3 (b) is a cross-sectional view of the chip 1a after the absorber has absorbed the liquid.
  • FIG. 4 is a schematic diagram illustrating the flow of liquid when a relatively large amount of liquid is introduced into the flow path structure in the chip 1a according to the present embodiment.
  • the “relatively large amount” indicates, for example, the case where the volume of the liquid exceeds (the saturated absorption amount of the absorber + the volume of the channel on the introduction path side from the absorber + the volume of the introduction path).
  • FIG. 4 (a) is a cross-sectional view of the chip 1a before the absorber absorbs the liquid
  • FIG. 4 (b) is a cross-sectional view of the chip 1a after the absorber absorbs the liquid.
  • the amount of liquid absorbed by the absorber 21 is accurately quantified regardless of the water head pressure. Therefore, the amount of the liquid 121 introduced into the channel structure is quantified. That is, the upper limit of the volume of the liquid introduced into the channel structure is (saturated absorption amount of the absorber + volume of the channel from the absorber to the introduction channel side + volume of the introduction channel) regardless of the liquid head pressure. It is prescribed.
  • FIG. 5 shows a chip 2a provided with an absorber 31 that does not have a hydrophobic region.
  • FIG. 5 (a) is a top view
  • FIG. 5 (b) is an AA ′ line in FIG. 5 (a).
  • FIG. FIG. 6 is a schematic diagram for explaining the absorption of the liquid by the absorber having no hydrophobic region.
  • 6A is a cross-sectional view of the absorber 31 before absorbing the liquid
  • FIG. 6B is a cross-sectional view of the absorber 32 that has absorbed the liquid.
  • FIG. 7 is a schematic diagram for explaining the flow of a liquid when a relatively small amount of liquid is introduced into the flow channel structure in the chip 2a having an absorber that does not have a hydrophobic region.
  • 7A is a cross-sectional view of the chip 2a before the absorber absorbs the liquid
  • FIG. 7B is a cross-sectional view of the chip 2a after the absorber absorbs the liquid.
  • FIG. 8 is a schematic diagram for explaining the flow of liquid when a relatively large amount of liquid is introduced into the flow path structure in the chip 2a having the absorber that does not have a hydrophobic region.
  • . 8A is a cross-sectional view of the chip 2a before the absorber absorbs the liquid
  • FIG. 8B is a cross-sectional view of the chip 2a after the absorber absorbs the liquid.
  • the hydrophobic region 110 is preferably formed so as to cover the entire movement path of the liquid 121 when viewed from the air hole 15 side in the path connecting the inlet 14 to the air hole 15. According to the above configuration, the liquid migration path is completely blocked by the hydrophobic region, thereby preventing the liquid absorbed by the absorber from exuding to the air hole side. That is, for example, when the absorber 21 is disposed inside the open path 15, as shown in FIG. 1A, the hydrophobic region 110 is formed so as to cover the inside of the open path 15 as viewed from above. It is preferable.
  • the hydrophobic region 110 can be formed by using the surface of the absorbent body 21 (the surface close to the air hole 15 in the path connecting the inlet 14 to the air hole 15). ) To improve the hydrophobicity.
  • the material of the hydrophilic absorbent body 21 for example, a material having absorptivity such as a polymer film, a collagen film, a cellulose fiber, a glass fiber, a polymer fiber, or a porous body is used.
  • a material having absorptivity such as a polymer film, a collagen film, a cellulose fiber, a glass fiber, a polymer fiber, or a porous body is used.
  • hydrophilic fibers such as cellulose fibers, glass fibers, and polymer fibers.
  • fluorine-based hydrophobic agent As treatment for increasing hydrophobicity, application of a hydrophobic resin material, application of a fluorine-based hydrophobic agent, surface treatment with a fluorine-based gas, or the like can be used.
  • fluorine-based hydrophobic agent and the fluorine-based gas may be referred to as “fluorine-based material”.
  • the hydrophobic resin material include fluorine resin, epoxy resin, polypropylene, polystyrene, polyimide, siloxane, silicone, and silane.
  • fluorine-based hydrophobic agents include perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), and ethylene / chlorotrifluoro.
  • PFA perfluoroalkoxy fluororesin
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • chlorotrifluoro examples include a solvent containing ethylene copolymer (ECTFE) or the like as a component.
  • fluorine-based gas examples include tetrafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), octafluoropropane (C 3 F 8 ), hexafluoro 1,3 butadiene (C 4 F 6 ), Examples thereof include perfluorocarbon (PFC) gas such as perfluorocyclobutane (C 4 F 8 ), octafluorocyclopentene (C 5 F 8 ), sulfur hexafluoride (SF 6 ), and the like.
  • PFC perfluorocarbon
  • the absorbent body 21 is formed of hydrophilic fibers such as cellulosic fibers, glass fibers, and polymer fibers, and a fluorine-based material is applied or chemically deposited on the surface of the hydrophilic fibers. It is preferable that the hydrophobic region is formed. According to the said structure, the oozing-out to the air hole side of the liquid absorbed by the absorber can be prevented more effectively.
  • the absorbent body 21 itself is a hydrophobic material
  • a material of the hydrophobic absorber 21 for example, a fluorine resin film, a siloxane resin film, a water-repellent gas permeable film, or the like can be used.
  • application of a material containing a surfactant, treatment with plasma, treatment with UV irradiation, treatment with application of a photocatalyst material, or the like can be used.
  • FIG. 9 shows a chip 1b according to the present embodiment, where FIG. 9A is a top view and FIG. 9B is a cross-sectional view taken along line AA ′ of FIG.
  • the chip 1b according to the present embodiment includes a reaction unit 135 and a detection unit 136.
  • the amount of the liquid flowing into the flow path structure is accurately quantified in the chip 1b, the amount of the liquid passing through the reaction unit 135 and the detection unit 136 is constant, and a constant amount in the reaction unit 135 is obtained. It is possible to perform a reaction using the liquid and measurement related to a certain amount of liquid in the detection unit 136.
  • the reaction unit 135 is for causing a substance contained in the liquid to perform a predetermined reaction, and is provided between the introduction port and the detection unit in a path connecting the introduction port to the air hole. Has been placed. According to the above configuration, the reaction using the specific substance contained in the liquid is performed before the detection by the detection unit, and the substance after the reaction can be detected by the detection unit. That is, the reaction unit 135 performs preprocessing for detecting the substance contained in the liquid by the detection unit 136.
  • the configuration of the reaction unit 135 is not particularly limited, and may be configured according to the detection method.
  • the reaction unit 135 may have a configuration in which a reagent used for an antigen-antibody reaction or an enzyme substrate reaction of a substance contained in the liquid is directly immobilized in the flow path.
  • the reaction unit 135 may be formed of the same material as that of the absorber 21, and the reaction unit 135 may carry the reagent.
  • the reagent may contain a substance that reacts with a substance contained in the liquid, and may contain, for example, an antigen, an antibody, an enzyme, or a substrate.
  • a substance that reacts with a substance contained in the liquid for example, when the liquid is blood and cholesterol in blood is measured by the detection unit 136, cholesterol esterase, cholesterol oxidase, peroxidase, 3,5-dimethoxy-N-ethyl-N Examples thereof include a color former mainly composed of sodium (2-hydroxy-3-sulfopropyl) -aniline, 4-aminoantipyrine, and ascorbate oxidase.
  • uricase, peroxidase, 4-aminoantipyrine lipoprotein lipase a color former mainly composed of ascorbate oxidase and the like can be mentioned.
  • the detection unit 136 is for detecting a substance contained in the liquid, and is disposed between the introduction path 11 and the absorber 21.
  • the volume of the liquid introduced into the flow channel structure is defined in a specific range regardless of the liquid head pressure. Therefore, according to the above configuration, the detection unit 136 has a specific volume. The substance contained in the liquid can be detected.
  • the configuration of the detection unit 136 is not particularly limited, and may be configured according to the detection method.
  • the working electrode, the reference electrode, and the counter electrode are preferably provided in the detection unit 136.
  • the substrate 41 or 42 is preferably formed of a transparent material. According to the above configuration, it is possible to detect color development, coloration, luminescence, fluorescence, and the like due to the substance. Further, light can be emitted from a light emitting element described later to the detection unit 136, and reflected light, scattered light, or transmitted light can be measured by a light receiving element described later.
  • the substance generated by the reaction in the reaction unit 135 provided on the upstream side is detected by the detection unit 136 provided on the downstream side. It is also possible to have a configuration including only the detection unit 136 without including the detector. For example, when the substance contained in the liquid can be detected by the detection unit 136 without requiring pretreatment, the reaction unit 135 may not be provided. In addition, the reaction unit 135 may not be provided even when a liquid that has been subjected to pretreatment necessary for detection is introduced into the flow path.
  • both the reaction and the detection may be performed by the detection unit 136. That is, even if the reagent is immobilized on the detection unit 136 and a reaction is performed in the detection unit 136, current, voltage or impedance generated by the reaction, color development, coloration, luminescence, fluorescence, or the like is detected. Good.
  • the reagent may be directly immobilized on the flow path, or may be immobilized on the same material as that of the absorber 21.
  • FIG. 10 shows the chip 1c according to the present embodiment, where FIG. 10A is a top view and FIG. 10B is a cross-sectional view taken along the line A-A 'of FIG.
  • the absorber 23 includes a detection unit for detecting a substance contained in the liquid. That is, the absorber 23 has the functions of the absorber 21, the reaction unit 135, and the detection unit 136 in FIG.
  • transduced in a flow-path structure is prescribed
  • the absorber 23 can be formed by the same material and method as the absorber 21 described above.
  • the phrase “the absorber 23 includes a detection unit” means that, for example, the above-described reagent is immobilized on the absorber 23. Therefore, when the liquid is absorbed by the absorber 23, the substance contained in the liquid reacts with the reagent to exhibit color development, coloration, light emission, fluorescence, and the like.
  • the light emitting element 51 provided in the analyzer described later irradiates the detection unit with light, and the reflected light, scattered light, or transmitted light is received by the light receiving element 52 described later, whereby the above color development or coloration is achieved. What is necessary is just to detect.
  • FIG. 11 is a schematic diagram for explaining liquid absorption by the absorber provided in the chip 1c according to the present embodiment.
  • FIG. 11A shows a cross-sectional view of the absorbent body 23 before absorbing the liquid
  • FIG. 11B shows a cross-sectional view of the absorbent body 24 after absorbing the liquid.
  • the deterioration of the property suppresses the liquid from exuding. That is, as shown in FIG. 11B, the liquid does not ooze out over the surface beyond the hydrophobic region 110 of the absorber 24 that has absorbed the liquid. Therefore, the fluctuation of the liquid level due to the exuded liquid does not occur, and reflected light, scattered light, transmitted light or the like can be accurately detected using the light emitting element 51 and the light receiving element 52, for example.
  • FIG. 12 is a schematic diagram illustrating the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 1c according to the present embodiment.
  • 12A is a cross-sectional view of the chip 1c before the absorber absorbs the liquid
  • FIG. 12B is a cross-sectional view of the chip 1c after the absorber has absorbed the liquid.
  • FIG. 13 is a schematic diagram illustrating the flow of liquid when a relatively large amount of liquid is introduced into the flow channel structure in the chip 1c according to the present embodiment.
  • 13A is a cross-sectional view of the chip 1c before the absorber absorbs the liquid
  • FIG. 13B is a cross-sectional view of the chip 1c after the absorber absorbs the liquid.
  • the liquid 121 passes over the hydrophobic region 110 of the absorber 24 that has absorbed the liquid. Will not ooze out. Therefore, the amount of liquid absorbed by the absorber 23 is accurately quantified regardless of the water head pressure. Therefore, the amount of the liquid 121 flowing into the flow path 13 is quantified. That is, the upper limit of the volume of the liquid introduced into the channel structure is (saturated absorption amount of the absorber + volume of the channel from the absorber to the introduction channel side + volume of the introduction channel) regardless of the liquid head pressure. It is prescribed. Further, since the liquid level does not change due to the exuded liquid, for example, reflected light, scattered light, transmitted light, or the like can be accurately detected using the light emitting element 51 and the light receiving element 52.
  • FIG. 14 shows a chip 2b having an absorbent body 33 that does not have a hydrophobic region.
  • FIG. 14 (a) is a top view
  • FIG. 14 (b) is an AA ′ line in FIG. 14 (a).
  • FIG. The absorber 33 is provided with a detection unit in the same manner as the absorber 23 in FIG.
  • FIG. 15 is a schematic view for explaining absorption of a liquid by an absorber that does not have a hydrophobic region.
  • FIG. 15A shows a cross-sectional view of the absorbent body 33 before absorbing the liquid
  • FIG. 15B shows a cross-sectional view of the absorbent body 34 that has absorbed the liquid.
  • the excess liquid 123 oozes out on the surface of the absorber 34 that has absorbed the liquid.
  • the substance contained in the liquid absorbed by the absorber 34 and / or the substance contained in the extra liquid 123 exhibits color development or coloration, for example, even if the light emitting element 51 and the light receiving element 52 are used, the extra Accurate detection cannot be performed due to the fluctuation of the liquid level of the liquid 123.
  • FIG. 16 is a schematic diagram for explaining the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 2b having an absorber that does not have a hydrophobic region.
  • 16A is a cross-sectional view of the chip 2b before the absorber absorbs the liquid
  • FIG. 16B is a cross-sectional view of the chip 2b when the absorber absorbs the liquid.
  • FIG. 17 is a schematic diagram for explaining the flow of a liquid when a relatively large amount of liquid is introduced into the flow channel structure in the chip 2b including an absorber that does not have a hydrophobic region.
  • 17A is a cross-sectional view of the chip 2b before the absorber absorbs the liquid
  • FIG. 17B is a cross-sectional view of the chip 2b after the absorber absorbs the liquid.
  • FIGS. 18 to 19 are schematic views of an analysis system 500 including the chip 1b or 1c and the analysis apparatus 50 according to Embodiment 4 of the present invention.
  • the analysis device 50 is an analysis device for analyzing the chip according to the present invention, and includes a receiving unit that receives a signal emitted from a detection unit included in the chip, and the chip based on the signal. And an analysis unit 53 for analyzing a substance contained in the introduced liquid.
  • the signal emitted from the detection unit included in the chip can be received by the reception unit.
  • the absorber since the absorber has a hydrophobic region on the air hole side, the liquid absorbed by the absorber is prevented from seeping out to the air hole side and introduced into the flow channel structure.
  • the volume of the liquid is defined within a certain range.
  • a substance contained in a specific volume of liquid can be detected.
  • a substance contained in a specific volume of liquid can be analyzed in the analysis unit.
  • the absorbent body of the chip includes a detection unit, the liquid level is not changed due to the liquid that has oozed out on the surface of the absorbent body, so that the detection can be performed accurately.
  • the analysis system 500 includes a chip according to the present invention and an analysis apparatus 50 according to the present invention.
  • the absorber of the chip includes a detection unit
  • the surface of the absorber provided in the chip has no fluctuation of the liquid level due to the leaked liquid, and therefore a system that can analyze more accurately realizable.
  • FIG. 18 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that optically detect a substance contained in a liquid using the chip 1b according to the second embodiment of the present invention.
  • the chip 1b may or may not include the reaction unit 135.
  • the analyzer 50 may include a light emitting element 51 and a light receiving element 52 as a receiving unit, for example.
  • the light emitting element 51 is composed of, for example, an LED or the like, and irradiates the detection unit 136 with light.
  • the light receiving element 52 receives a signal such as reflected light, scattered light, or transmitted light emitted from the detection unit 136 as a result of irradiating the detection unit 136 with light.
  • the positional relationship between the light emitting element 51 and the light receiving element 52 may be determined as appropriate. For example, as shown in FIG. 18A, light is emitted from the light emitting element 51 to the upper surface of the chip 1b and emitted from the detection unit 136. The reflected light or scattered light may be received by the light receiving element 52. Further, as shown in FIG. 18B, light may be emitted from the light emitting element 51 to the bottom surface of the chip 1 b, and reflected light or scattered light emitted from the detection unit 136 may be received by the light receiving element 52. Further, as shown in FIG. 18A, light is emitted from the light emitting element 51 to the upper surface of the chip 1b and emitted from the detection unit 136. The reflected light or scattered light may be received by the light receiving element 52. Further, as shown in FIG. 18B, light may be emitted from the light emitting element 51 to the bottom surface of the chip 1 b, and reflected light or scattered light emitted from the detection unit 136 may be
  • light is emitted from the light emitting element 51 to the bottom surface of the chip 1b, and transmitted light emitted from the detection unit 136 is opposite to the light emitting element 51 across the chip 1b.
  • the light may be received by the light receiving element 52 provided in.
  • the analysis unit 53 When optically detecting a substance contained in a liquid, the analysis unit 53 analyzes the substance contained in the liquid based on, for example, a signal transmitted from the light receiving element 52. For example, the analysis unit 53 obtains the concentration of the substance in the liquid by analyzing the color development state in the detection unit 136.
  • FIG. 19 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that electrically detect a substance contained in a liquid using the chip 1b according to Embodiment 2 of the present invention.
  • the analyzer 50 may include a current measuring unit 54 as a receiving unit, for example, as shown in FIG.
  • the current measurement unit 54 measures the current value detected by the detection unit 136 and transmits the current value to the analysis unit 53.
  • the analysis device 50 may include a voltage measurement unit 55 as a reception unit.
  • the voltage measurement unit 55 measures the voltage value detected by the detection unit 136 and transmits the voltage value to the analysis unit 53.
  • FIG. 19 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that electrically detect a substance contained in a liquid using the chip 1b according to Embodiment 2 of the present invention.
  • the analyzer 50 may include a current measuring unit 54 as a receiving unit, for example, as shown in FIG.
  • the current measurement unit 54 measures the current value detected by the detection unit 136 and transmits the
  • the analysis device 50 may include an impedance measurement unit 56 as a reception unit.
  • the impedance measurement unit 56 measures the impedance value detected by the detection unit 136 and transmits the impedance value to the analysis unit 53.
  • the analysis unit 53 obtains the concentration and the like of the substance contained in the liquid based on the current value, voltage value, or impedance value.
  • FIG. 20 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that optically detect substances contained in a liquid using the chip 1c according to the third embodiment of the present invention.
  • light is emitted from the light emitting element 51 to the upper surface of the chip 1c, and emitted from the detection unit provided in the absorber 23.
  • the reflected light or scattered light may be received by the light receiving element 52.
  • light is emitted from the light emitting element 51 to the bottom surface of the chip 1 b, and reflected light or scattered light emitted from the detection unit provided in the absorber 23 is received by the light receiving element 52. It may receive light.
  • light is emitted from the light emitting element 51 to the bottom surface of the chip 1c, and transmitted light emitted from the detection unit provided in the absorber 23 is emitted across the chip 1c.
  • Light may be received by the light receiving element 52 provided on the side opposite to the element 51.
  • the analysis unit 53 obtains the concentration of the substance in the liquid by analyzing the color development state in the detection unit provided in the absorber 23 based on, for example, a signal transmitted from the light receiving element 52.
  • a chip is a flow path for moving a liquid and an introduction path having one end connected to one end side of the flow path, and the liquid is supplied to the other end of the introduction path.
  • An introduction path provided with an inlet for introduction into the flow path, and an open path having one end connected to the other end of the flow path, and is open to the atmosphere at the other end of the open path.
  • An open path having an air hole, and an absorber that is disposed inside the flow path or inside the open path and that absorbs the liquid, and the absorber includes the inlet In the path from the air hole to the air hole, the surface close to the air hole has a hydrophobic region having higher hydrophobicity than other regions of the absorber.
  • the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. That is, the upper limit of the volume of the liquid to be introduced is defined as (saturated absorption amount of the absorber + volume of the channel on the side of the introduction channel from the absorber + volume of the introduction channel).
  • the hydrophobic region covers the entire movement path of the liquid when viewed from the air hole side in a path connecting the introduction port to the air hole. It may be formed.
  • the absorber is formed of hydrophilic fibers, and the surface of the hydrophilic fibers is coated or chemically vapor-deposited to form the above-described absorber.
  • a hydrophobic region may be formed.
  • a detection unit for detecting a substance contained in the liquid may be provided between the introduction path and the absorber.
  • the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. Therefore, the detection unit can detect a substance contained in a specific volume of liquid.
  • the absorber may include a detection unit for detecting a substance contained in the liquid.
  • the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. Therefore, the detection unit can detect a specific substance contained in a specific volume of liquid. Furthermore, since the seepage of the liquid absorbed by the absorber to the air hole side is suppressed, the liquid level does not fluctuate due to the exuded liquid, and the detection by the detection unit can be performed accurately. .
  • a predetermined reaction is performed on a substance contained in the liquid between the introduction port and the detection unit in a path from the introduction port to the air hole.
  • the reaction part for making it may be provided.
  • the reaction with the specific substance contained in the liquid is performed before the detection by the detection unit, and the substance after the reaction can be detected by the detection unit.
  • An analyzer is an analyzer for analyzing a chip according to the present invention, and includes a receiver (a light receiving element 52, a current measuring unit 54) that receives a signal emitted from a detector included in the chip. , A voltage measuring unit 55 or an impedance measuring unit 56) and an analyzing unit for analyzing a substance contained in the liquid introduced into the chip based on the signal.
  • the signal emitted from the detection unit included in the chip can be received by the reception unit.
  • the absorber has a hydrophobic region on the air hole side, so that the liquid absorbed by the absorber is prevented from seeping out to the air hole side, and the volume of the introduced liquid is reduced. It is defined in a specific range.
  • a substance contained in a specific volume of liquid can be detected.
  • a substance contained in a specific volume of liquid can be analyzed in the analysis unit.
  • the absorbent body of the chip includes a detection unit, the surface of the absorbent body does not fluctuate due to the exuded liquid, so that detection can be performed accurately.
  • An analysis system includes a chip according to the present invention and an analysis apparatus according to the present invention.
  • the absorber of the chip includes a detection unit
  • the surface of the absorber provided in the chip has no fluctuation of the liquid level due to the leaked liquid, and therefore a system that can analyze more accurately realizable.
  • the present invention provides a chip or the like capable of accurately quantifying and analyzing a liquid.
  • the present invention can be suitably used for a chip for quantifying and analyzing blood, urine, and the like, for example.

Abstract

Provided is a chip which enables accurate measurement by defining the volume of liquid to be introduced into a flow path within a specified range. A chip (1a) is provided with an absorber (21) which is disposed inside a flow path (13) or inside an open path (12) and absorbs liquid, and the absorber (21) has a hydrophobic region (110) having high hydrophobicity at the surface thereof close to an air hole (15).

Description

チップ、分析装置および分析システムChip, analyzer and analysis system
 本発明はチップ、分析装置および分析システムに関し、より詳細には液体を吸収する吸収体を備えたチップ、該チップを分析する分析装置、該チップと該分析装置とを含んでいる分析システムに関する。 The present invention relates to a chip, an analysis apparatus, and an analysis system, and more particularly, to a chip having an absorber that absorbs a liquid, an analysis apparatus that analyzes the chip, and an analysis system that includes the chip and the analysis apparatus.
 近年、病院のベッドサイドや家庭内などの患者に近いところで実施される臨床検査POCT(Point Of Care Testing)に対する関心が高まっている。POCTであれば、検査結果を迅速に患者の治療に活かすことができるとともに、質の高い治療を患者に提供することができる。POCTを実施するためには、簡便な操作によって迅速な分析を行うことが可能な小型の分析装置が必要となる。 In recent years, there has been an increasing interest in point-of-care testing (POCT), a clinical test performed near patients such as hospital bedsides and homes. If it is POCT, while being able to utilize a test result for a patient's treatment rapidly, a high quality treatment can be provided to a patient. In order to carry out POCT, a small analyzer capable of performing a quick analysis with a simple operation is required.
 このような分析を行うために、例えば特許文献1に記載されているような試験紙が用いられる。特許文献1に記載されている試験紙では、該試験紙に血液または尿等の検体を供給し、試験紙に含まれる試薬と検体とを反応させて呈色させる。さらに上記呈色した領域に光を照射し、反射光を測定することによって、検体に含まれる物質を定量することができる。 In order to perform such an analysis, for example, a test paper as described in Patent Document 1 is used. In the test paper described in Patent Document 1, a sample such as blood or urine is supplied to the test paper, and the reagent and the sample contained in the test paper are reacted to cause coloration. Furthermore, the substance contained in the specimen can be quantified by irradiating the colored area with light and measuring the reflected light.
 しかしながら、特許文献1に記載されているような試験紙では、検体を試験紙上に供給および展開して反応させ、さらに別の測定機械によって測定を行うため、測定に時間を要するという問題があった。 However, in the test paper as described in Patent Document 1, there is a problem that it takes time to measure because the specimen is supplied and developed on the test paper, reacted and further measured by another measuring machine. .
 そこで、より迅速な測定を行うために、試験紙等の吸収体を備えたチップが使用されている。しかし、上記のようなチップでは、試験紙への検体の供給量を一定にすることが難しく、測定結果が不正確となり、測定精度が低下するという問題があった。 Therefore, a chip equipped with an absorbent such as a test paper is used to perform quicker measurement. However, the above-described chip has a problem that it is difficult to make the supply amount of the sample to the test paper constant, the measurement result becomes inaccurate, and the measurement accuracy is lowered.
 そこで、特許文献2に記載のチップでは、上記問題を解決するために、試験紙の周りに検体溜りが備えられている。図21の(a)および(b)は特許文献2に記載のチップ200を示す断面図である。図21の(a)に示すように、チップ200は、検体導入流路213と、血液等の検体321を吸収可能な試験紙221とを備えている。チップ200では、検体321は、検体流入口211から検体導入流路213へ導入され、検体導入流路213を通って試験紙221に供給される。検体321中の成分と試験紙221に担持された試薬とが反応し、試験紙221は呈色する。発光素子251から発せられた光は試験紙221に照射され、その反射光は受光素子252によって受光される。チップ200では、余分な検体は検体溜り216に流入するようになっている。 Therefore, in the chip described in Patent Document 2, a sample reservoir is provided around the test paper in order to solve the above problem. 21A and 21B are cross-sectional views showing the chip 200 described in Patent Document 2. FIG. As shown in FIG. 21A, the chip 200 includes a sample introduction channel 213 and a test paper 221 that can absorb a sample 321 such as blood. In the chip 200, the sample 321 is introduced from the sample inlet 211 into the sample introduction channel 213 and supplied to the test paper 221 through the sample introduction channel 213. The components in the specimen 321 react with the reagent carried on the test paper 221, and the test paper 221 is colored. The light emitted from the light emitting element 251 is applied to the test paper 221, and the reflected light is received by the light receiving element 252. In the chip 200, an extra sample flows into the sample reservoir 216.
日本国公開特許公報「特開2006-275716号公報(2006年10月12日公開)」Japanese Patent Publication “JP-A-2006-275716 (published on October 12, 2006)” 日本国公開特許公報「特開2005-10167号公報(2005年1月13日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-10167 (published on January 13, 2005)”
 しかしながら、上述のような従来技術は、流路(流路構造)に導入される液体の量を一定とすることができず、結果として正確な分析を行うことができないという問題がある。 However, the conventional techniques as described above have a problem that the amount of liquid introduced into the flow path (flow path structure) cannot be made constant, and as a result, accurate analysis cannot be performed.
 具体的には、特許文献2に記載のチップ200では、図21の(b)に示すように、検体溜り216の容量を上回る量の余分な検体が導入された場合には、試験紙221に検体が過剰に流れ込み、検体を吸収した試験紙222の表面に余分な検体323が染み出す。従って、検体導入流路213に流れ込む検体量を一定とすることができず、チップ200によって正確な測定を行うことができない。 Specifically, in the chip 200 described in Patent Document 2, as shown in FIG. 21B, when an excessive amount of sample exceeding the capacity of the sample reservoir 216 is introduced, the test paper 221 is loaded. The sample flows excessively, and the excess sample 323 oozes out on the surface of the test paper 222 that has absorbed the sample. Therefore, the amount of sample flowing into the sample introduction channel 213 cannot be made constant, and accurate measurement cannot be performed by the chip 200.
 本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、流路(流路構造)に導入される液体の量を一定とし、正確な分析を行うことができるチップを提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object thereof is a chip capable of performing an accurate analysis with a constant amount of liquid introduced into a flow path (flow path structure). Is to provide.
 上記の課題を解決するために、本発明の一態様に係るチップは、液体を移動させるための流路と、上記流路の一端側に一端が連結されている導入路であって、当該導入路の他端に上記液体を上記流路の内部へ導入するための導入口が備えられている導入路と、上記流路の他端側に一端が連結されている開放路であって、当該開放路の他端に大気開放されている空気穴を有する開放路と、上記流路の内部または上記開放路の内部に配置されているとともに、上記液体を吸収する吸収体と、を備えており、上記吸収体は、上記導入口から上記空気穴までを結ぶ経路において上記空気穴に近い表面に、上記吸収体の他の領域と比較して疎水性が高い疎水性領域を有していることを特徴としている。 In order to solve the above problems, a chip according to one embodiment of the present invention includes a flow path for moving a liquid and an introduction path having one end connected to one end side of the flow path. An introduction path provided with an inlet for introducing the liquid into the flow path at the other end of the path, and an open path having one end connected to the other end side of the flow path, An open path having an air hole that is open to the atmosphere at the other end of the open path, and an absorber that is disposed inside the flow path or inside the open path and absorbs the liquid. The absorber has a hydrophobic region having a higher hydrophobicity than the other regions of the absorber on the surface close to the air hole in the path connecting the inlet to the air hole. It is characterized by.
 本発明のチップは、吸収体を備え、上記吸収体は、空気穴に近い表面に、上記吸収体の他の領域と比較して疎水性が高い疎水性領域を有している構成である。 The chip of the present invention includes an absorber, and the absorber has a hydrophobic region on the surface close to the air hole, which has a hydrophobic region having higher hydrophobicity than other regions of the absorber.
 そのため、吸収体に吸収された液体の空気穴側への染み出しが抑制される。よって、液体の水頭圧に関わらず、流路構造内に導入される液体の体積が特定の範囲に規定され、正確な分析を行うことができるという効果を奏する。 Therefore, seepage of the liquid absorbed by the absorber to the air hole side is suppressed. Therefore, regardless of the water head pressure of the liquid, the volume of the liquid introduced into the flow channel structure is defined within a specific range, and an accurate analysis can be performed.
本発明の実施形態1に係るチップを示し、(a)は上面図、(b)は(a)のA-A’における断面図である。1 shows a chip according to Embodiment 1 of the present invention, where (a) is a top view and (b) is a cross-sectional view taken along line A-A ′ of (a). FIG. 本発明の実施形態1に係るチップに備えられた吸収体による液体の吸収を説明する概略図である。It is the schematic explaining absorption of the liquid by the absorber with which the chip | tip concerning Embodiment 1 of this invention was equipped. 本発明の実施形態1に係るチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip which concerns on Embodiment 1 of this invention. 疎水性領域を有していない吸収体を備えたチップを示し、(a)は上面図、(b)は(a)のA-A’における断面図である。The chip | tip provided with the absorber which does not have a hydrophobic area | region is shown, (a) is a top view, (b) is sectional drawing in A-A 'of (a). 疎水性領域を有していない吸収体による液体の吸収を説明する概略図である。It is the schematic explaining absorption of the liquid by the absorber which does not have a hydrophobic region. 疎水性領域を有していない吸収体を備えたチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip provided with the absorber which does not have a hydrophobic area | region. 疎水性領域を有していない吸収体を備えたチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip provided with the absorber which does not have a hydrophobic area | region. 本発明の実施形態2に係るチップを示し、(a)は上面図、(b)は(a)のA-A’における断面図である。4A and 4B show a chip according to Embodiment 2 of the present invention, where FIG. 5A is a top view and FIG. 5B is a cross-sectional view taken along line A-A ′ in FIG. 本発明の実施形態3に係るチップを示し、(a)は上面図、(b)は(a)のA-A’における断面図である。4A and 4B show a chip according to Embodiment 3 of the present invention, where FIG. 5A is a top view and FIG. 5B is a cross-sectional view taken along line A-A ′ in FIG. 本発明の実施形態3に係るチップに備えられた吸収体による液体の吸収を説明する概略図である。It is the schematic explaining absorption of the liquid by the absorber with which the chip | tip which concerns on Embodiment 3 of this invention was equipped. 本発明の実施形態3に係るチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係るチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip which concerns on Embodiment 3 of this invention. 疎水性領域を有していない吸収体を備えたチップを示し、(a)は上面図、(b)は(a)のA-A’における断面図である。The chip | tip provided with the absorber which does not have a hydrophobic area | region is shown, (a) is a top view, (b) is sectional drawing in A-A 'of (a). 疎水性領域を有していない吸収体による液体の吸収を説明する概略図である。It is the schematic explaining absorption of the liquid by the absorber which does not have a hydrophobic region. 疎水性領域を有していない吸収体を備えたチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip provided with the absorber which does not have a hydrophobic area | region. 疎水性領域を有していない吸収体を備えたチップにおける液体の流れを説明する概略図である。It is the schematic explaining the flow of the liquid in the chip | tip provided with the absorber which does not have a hydrophobic area | region. 本発明の実施形態4に係る、チップおよび分析装置を含む分析システムの変形例を示す概略図である。It is the schematic which shows the modification of the analysis system containing the chip | tip and the analyzer based on Embodiment 4 of this invention. 本発明の実施形態4に係る、チップおよび分析装置を含む分析システムの変形例を示す概略図である。It is the schematic which shows the modification of the analysis system containing the chip | tip and the analyzer based on Embodiment 4 of this invention. 本発明実施形態4に係る、チップおよび分析装置を含む分析システムの変形例を示す概略図である。It is the schematic which shows the modification of the analysis system containing the chip | tip and analyzer based on Embodiment 4 of this invention. 従来のチップを示す断面図である。It is sectional drawing which shows the conventional chip | tip.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明するが、本発明は、これらに限定されない。なお、説明の便宜上、同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. For convenience of explanation, members having the same function are denoted by the same reference numerals and description thereof is omitted.
 〔実施形態1〕
 本発明の実施形態1について図1~4に基づいて説明する。
[Embodiment 1]
Embodiment 1 of the present invention will be described with reference to FIGS.
 <チップ1a>
 図1は、本実施の形態に係るチップ1aの概略構成の一例を示す図であり、図1の(a)は、チップ1aの概略構成の一例を示す上面図であり、図1の(b)は、図1の(a)のA-A’における断面図である。本実施形態に係るチップ1aは、液体を移動させるための流路13、流路13の一端側に連結されている導入路11、流路13の他端側に連結されている開放路12、および、液体を吸収する吸収体21を備えた構成である。本実施形態に係るチップ1aは、チップ1a内に導入された液体の分析、および該液体に含まれる物質の分析を行うことを可能とするものである。なお、本明細書では、流路13、導入路11および開放路12を合わせて「流路構造」とも称する。
<Chip 1a>
FIG. 1 is a diagram illustrating an example of a schematic configuration of a chip 1a according to the present embodiment. FIG. 1A is a top view illustrating an example of a schematic configuration of a chip 1a, and FIG. ) Is a cross-sectional view taken along the line AA ′ of FIG. The chip 1a according to this embodiment includes a flow path 13 for moving a liquid, an introduction path 11 connected to one end side of the flow path 13, an open path 12 connected to the other end side of the flow path 13, And it is the structure provided with the absorber 21 which absorbs a liquid. The chip 1a according to the present embodiment enables analysis of a liquid introduced into the chip 1a and analysis of a substance contained in the liquid. In the present specification, the flow path 13, the introduction path 11, and the open path 12 are collectively referred to as a “flow path structure”.
 例えば、これらの分析は、チップ1aが後述する分析装置50に挿入されることにより行われる。チップ1aは、その分析を実現するために、例えば図1に示すように、導入路11と、流路13と、開放路12と、吸収体21と、第1の基板41と、第2の基板42とを備えている。 For example, these analyzes are performed by inserting the chip 1a into an analyzer 50 described later. In order to realize the analysis of the chip 1a, for example, as shown in FIG. 1, the introduction path 11, the flow path 13, the open path 12, the absorber 21, the first substrate 41, and the second And a substrate 42.
 本明細書において、「液体」とは分析の対象となる液体、または分析の対象となる物質を含んでいる液体を示す。上記液体としては、特に限定されないが、例えば血液、尿、唾液、涙、鼻水等が挙げられる。 In this specification, “liquid” indicates a liquid to be analyzed or a liquid containing a substance to be analyzed. Although it does not specifically limit as said liquid, For example, blood, urine, saliva, tears, a runny nose etc. are mentioned.
 <導入路11>
 導入路11は、一端が流路13の一端側に連結されており、分析対象となる液体を流路13の内部へ導入するものである。また、導入路11は他端に導入口14が備えられており、導入口14は大気に開放された構造となっている。導入口14は分析対象となる液体を導入路11の内部に導入するためのものである。すなわち、分析対象となる液体は導入口14から導入され、導入路11を介して流路13へと流入する。
<Introduction path 11>
The introduction path 11 has one end connected to one end side of the flow path 13 and introduces a liquid to be analyzed into the flow path 13. The introduction path 11 is provided with an introduction port 14 at the other end, and the introduction port 14 is open to the atmosphere. The introduction port 14 is for introducing a liquid to be analyzed into the introduction path 11. That is, the liquid to be analyzed is introduced from the introduction port 14 and flows into the flow path 13 through the introduction path 11.
 例えば、導入路11は、その形状が円柱であり、その内径R(図1の(a)に示す平面での断面における直径)が0.5~10mm程度、その高さ(厚み、すなわち図1の(b)に示す紙面上下方向の長さ)Hが0.1~10mm程度である。 For example, the introduction path 11 has a cylindrical shape, and its inner diameter R (diameter in the cross section in the plane shown in FIG. 1A) is about 0.5 to 10 mm, and its height (thickness, ie, FIG. 1). (Length in the vertical direction of the paper surface) H shown in (b) is about 0.1 to 10 mm.
 <開放路12>
 開放路12は、一端が流路13の他端側に連結されており、当該開放路12の他端には空気穴15が備えられている。すなわち、開放路12は、流路13の、導入路11が連結している一端とは反対側の一端に連結している。空気穴15は、導入口14と同様、大気に開放されており、導入口14から導入された液体の空気穴15側への送液を促進する構造となっている。
<Open road 12>
One end of the open path 12 is connected to the other end side of the flow path 13, and an air hole 15 is provided at the other end of the open path 12. That is, the open path 12 is connected to one end of the flow path 13 opposite to the end to which the introduction path 11 is connected. The air hole 15 is open to the atmosphere like the introduction port 14, and has a structure that promotes liquid feeding from the introduction port 14 toward the air hole 15.
 例えば、開放路12は、その形状が円柱であり、その内径R(図1の(a)に示す平面での断面における直径)が0.5~10mm程度、その高さ(厚み、すなわち図1の(b)に示す紙面上下方向の長さ)Hが0.1~10mm程度である。 For example, the open path 12 has a cylindrical shape, and its inner diameter R (diameter in the cross section in the plane shown in FIG. 1A) is about 0.5 to 10 mm, and its height (thickness, that is, FIG. 1). (Length in the vertical direction of the paper surface) H shown in (b) is about 0.1 to 10 mm.
 <流路13>
 流路13は、導入口14から導入された液体の分析、および該液体に含まれる物質の分析を可能とするものであり、一端が導入路11に、他端が開放路12に連結されている。流路13の幅w(図1の(a)において紙面上下方向の長さ)は、1~5000μm、好ましくは100~2000μmであり、その深さ(図1の(b)において紙面上下方向の長さ)は1~1000μm、好ましくは10~300μmである。このように、流路13は、上記のような大きさ(マイクロメートルオーダー)で形成されることにより、当該流路13に導入された液体を送液する動力として毛細管力を生じさせる構造を有しているといえる。上記構成によれば、流路13以外の機構によって発生させた動力を必要とせずに、該流路13内に導入された液体を一方向に流すことができる。
<Flow path 13>
The flow path 13 enables the analysis of the liquid introduced from the introduction port 14 and the analysis of the substance contained in the liquid. One end is connected to the introduction path 11 and the other end is connected to the open path 12. Yes. The width w of the flow path 13 (the length in the vertical direction on the paper in FIG. 1A) is 1 to 5000 μm, preferably 100 to 2000 μm, and its depth (the vertical direction on the paper in FIG. 1B). The length) is 1 to 1000 μm, preferably 10 to 300 μm. Thus, the flow path 13 has a structure that generates capillary force as power for feeding the liquid introduced into the flow path 13 by being formed with the above size (micrometer order). It can be said that. According to the above configuration, the liquid introduced into the flow path 13 can flow in one direction without requiring power generated by a mechanism other than the flow path 13.
 なお、本明細書では、導入口14から空気穴15を結ぶ経路において、導入口14側を「上流」と称し、空気穴15側を「下流」と称する場合もある。 In this specification, in the path connecting the inlet 14 to the air hole 15, the inlet 14 side may be referred to as “upstream” and the air hole 15 side may be referred to as “downstream”.
 <第1の基板41および第2の基板42>
 第1の基板41は、チップ1aの台座として、また、導入路11、流路13および開放路12の底部として機能するものであり、ガラスや樹脂などからなるものであり得る。また、第2の基板42は、チップ1aに形成される各部材の形状を規定するものであり、具体的には、導入路11の側面および導入口14、開放路12の側面および空気穴15、ならびに流路13の側面および上部(底部に対向する領域)を形成する。第2の基板42も、第1の基板41と同様、ガラスや樹脂などからなるものであり得る。
<First substrate 41 and second substrate 42>
The first substrate 41 functions as a pedestal of the chip 1a and as the bottom of the introduction path 11, the flow path 13, and the open path 12, and can be made of glass, resin, or the like. The second substrate 42 defines the shape of each member formed on the chip 1 a. Specifically, the side surface of the introduction path 11 and the introduction port 14, the side surface of the open path 12, and the air hole 15. , And the side surface and upper portion (region facing the bottom portion) of the flow path 13 are formed. Similarly to the first substrate 41, the second substrate 42 may be made of glass, resin, or the like.
 第1の基板41および第2の基板42の加工、位置関係は一例であり、第1の基板41および第2の基板42への部分的な加工、上下方向の配置の変更、左右方向の配置の変更、その他既知の方法を用いた変更を加えることができる。例えば、複数の部材を組み合わせて第1の基板41および/または第2の基板42を形成してもよい。また、第1の基板41と第2の基板42とを貼り合せる構成ではなく、1つの基板を掘削することによって導入路11および導入口14、開放路12および空気穴15、ならびに流路13を形成してもよい。 The processing and positional relationship of the first substrate 41 and the second substrate 42 are examples, and partial processing to the first substrate 41 and the second substrate 42, change in the vertical arrangement, and arrangement in the horizontal direction And other modifications using known methods can be made. For example, the first substrate 41 and / or the second substrate 42 may be formed by combining a plurality of members. In addition, instead of a configuration in which the first substrate 41 and the second substrate 42 are bonded together, the introduction path 11 and the introduction port 14, the release path 12 and the air hole 15, and the flow path 13 are formed by excavating one substrate. It may be formed.
 チップ1aにおける導入路11、導入口14、開放路12、空気穴15および流路13の各構成は、ウェットエッチング、ドライエッチング、金型を用いた成形、機械加工によって形成することができる。 Each configuration of the introduction path 11, the introduction port 14, the open path 12, the air hole 15, and the flow path 13 in the chip 1a can be formed by wet etching, dry etching, molding using a mold, and machining.
 <吸収体21>
 吸収体21は、流路13に導入された液体を吸収するものであり、例えば、図1の(b)に示すように流路13に接続された開放路12内に配置されている。なお本発明に係るチップでは、液体またはその成分の分析を行うことを可能とする領域まで当該液体を流すことができるように、吸収体21を配置すればよい。
<Absorber 21>
The absorber 21 absorbs the liquid introduced into the flow path 13 and is disposed, for example, in the open path 12 connected to the flow path 13 as shown in FIG. In the chip according to the present invention, the absorber 21 may be arranged so that the liquid can flow up to a region where it is possible to analyze the liquid or its components.
 そのため、吸収体21は、開放路12の底部に設けられている必要は必ずしもなく、例えば液体またはその成分の分析を行う領域が流路13の途中に存在する場合には、流路13内において、送液する方向に対して、液体の分析を行う領域よりも下流側に設けられていてもよい。すなわち、吸収体21の位置は、流路13の内部または開放路12の内部であり得る。 Therefore, the absorber 21 does not necessarily need to be provided at the bottom of the open path 12. For example, when a region for analyzing a liquid or its component exists in the middle of the flow path 13, The liquid may be provided on the downstream side of the region where the liquid is analyzed in the liquid feeding direction. That is, the position of the absorber 21 can be inside the flow path 13 or inside the open path 12.
 これにより、吸収体21は空気穴15と同様、導入口14から導入された液体の空気穴15側への送液を促進する効果を奏する。吸収体21のサイズ、ポア(穴)径、材料の種類等を調整することにより、少なくとも流路構造内に導入される液体の量を調節できるため、分析のために必要となる液体量(サンプル量)を設定することが可能となる。 Thereby, like the air hole 15, the absorber 21 has an effect of promoting liquid feeding of the liquid introduced from the introduction port 14 to the air hole 15 side. By adjusting the size of the absorber 21, the pore (hole) diameter, the type of material, etc., at least the amount of liquid introduced into the flow channel structure can be adjusted, so the amount of liquid required for analysis (sample Amount) can be set.
 さらに、吸収体21は、導入口14から空気穴15までを結ぶ経路において空気穴15に近い表面に、吸収体21の他の領域よりも親水性を低下させた疎水性領域110を有している。すなわち、吸収体21が流路13の内部に配置されている場合は、流路13と開放路12との連結面に近い表面に疎水性領域110を有しているとも言える。また、疎水性領域110では吸収体21の他の領域と比較して疎水性が高められているとも言える。 Furthermore, the absorber 21 has a hydrophobic region 110 having a lower hydrophilicity than the other regions of the absorber 21 on the surface close to the air hole 15 in the path connecting the inlet 14 to the air hole 15. Yes. That is, when the absorber 21 is disposed inside the flow path 13, it can be said that the hydrophobic area 110 is provided on the surface close to the connection surface between the flow path 13 and the open path 12. Further, it can be said that the hydrophobic region 110 has higher hydrophobicity than the other regions of the absorber 21.
 図2は本実施形態に係るチップに備えられた吸収体による液体の吸収を説明する概略図である。図2の(a)は液体を吸収する前の吸収体21の断面図、図2の(b)は液体を吸収した吸収体22の断面図を示している。図2の(a)に示すように、疎水性領域110を有している吸収体21に対して、吸収体21の飽和吸収量を超える液体121が供給されても、吸収体21の表面の親水性低下(換言すれば、疎水性向上)により、液体の染み出しが抑制される。すなわち、図2の(b)に示すように、液体を吸収した吸収体22の疎水性領域110を越えて、吸収体22の表面に液体が染み出すことはない。吸収体の「飽和吸収量」とは吸収体が吸収し得る液体の最大量を意味する。 FIG. 2 is a schematic diagram for explaining liquid absorption by the absorber provided in the chip according to the present embodiment. 2A is a cross-sectional view of the absorbent body 21 before absorbing the liquid, and FIG. 2B is a cross-sectional view of the absorbent body 22 that has absorbed the liquid. As shown in FIG. 2A, even if the liquid 121 exceeding the saturated absorption amount of the absorber 21 is supplied to the absorber 21 having the hydrophobic region 110, the surface of the absorber 21 is not affected. Due to the decrease in hydrophilicity (in other words, improvement in hydrophobicity), bleeding of the liquid is suppressed. That is, as shown in FIG. 2B, the liquid does not ooze out on the surface of the absorber 22 beyond the hydrophobic region 110 of the absorber 22 that has absorbed the liquid. The “saturated absorption amount” of the absorber means the maximum amount of liquid that can be absorbed by the absorber.
 図3は本実施形態に係るチップ1aにおいて、比較的少ない量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。「比較的少ない量」とは、例えば、液体の体積が(吸収体の飽和吸収量+吸収体から導入路側の流路の容積+導入路の容積)に満たない場合を意味する。 FIG. 3 is a schematic diagram illustrating the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 1a according to the present embodiment. The “relatively small amount” means, for example, a case where the volume of the liquid is less than (the saturated absorption amount of the absorber + the volume of the channel from the absorber to the introduction channel side + the volume of the introduction channel).
 図3の(a)は吸収体が液体を吸収する前のチップ1aの断面図、図3の(b)は吸収体が液体を吸収した後のチップ1aの断面図である。図3の(a)に示すように液体121が比較的少ない量で流路構造内に導入された場合は、当然のことながら、図3の(b)に示すように、液体を吸収した吸収体22の疎水性領域110を越えて液体121が染み出すことはない。 3 (a) is a cross-sectional view of the chip 1a before the absorber absorbs the liquid, and FIG. 3 (b) is a cross-sectional view of the chip 1a after the absorber has absorbed the liquid. When the liquid 121 is introduced into the flow channel structure in a relatively small amount as shown in FIG. 3A, it is a matter of course that absorption by absorbing the liquid is performed as shown in FIG. The liquid 121 does not exude beyond the hydrophobic region 110 of the body 22.
 図4は本実施形態に係るチップ1aにおいて、比較的多い量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。「比較的多い量」とは、例えば、液体の体積が、(吸収体の飽和吸収量+吸収体から導入路側の流路の容積+導入路の容積)を上回る場合を示す。 FIG. 4 is a schematic diagram illustrating the flow of liquid when a relatively large amount of liquid is introduced into the flow path structure in the chip 1a according to the present embodiment. The “relatively large amount” indicates, for example, the case where the volume of the liquid exceeds (the saturated absorption amount of the absorber + the volume of the channel on the introduction path side from the absorber + the volume of the introduction path).
 図4の(a)は吸収体が液体を吸収する前のチップ1aの断面図、図4の(b)は吸収体が液体を吸収した後のチップ1aの断面図である。図4の(a)に示すように液体121が比較的多い量で流路構造内に導入される場合、吸収体21が疎水性領域を有していなければ吸収体21の表面を越えて液体が染み出す程の水頭圧が導入口14を介して液体121に加わる。しかし、チップ1aには疎水性領域110を有している吸収体が備えられているので、図4の(b)に示すように、液体を吸収した吸収体22の疎水性領域110を越えて液体121が染み出すことはない。従って、吸収体21で吸収される液体の量が水頭圧に関わらず精密に定量化される。よって、流路構造内に導入される液体121の量が定量化される。すなわち、流路構造内に導入される液体の体積の上限が、液体の水頭圧に関わらず、(吸収体の飽和吸収量+吸収体から導入路側の流路の容積+導入路の容積)に規定される。 4 (a) is a cross-sectional view of the chip 1a before the absorber absorbs the liquid, and FIG. 4 (b) is a cross-sectional view of the chip 1a after the absorber absorbs the liquid. When the liquid 121 is introduced into the flow path structure in a relatively large amount as shown in FIG. 4A, the liquid passes over the surface of the absorber 21 unless the absorber 21 has a hydrophobic region. The water head pressure so that it oozes out is applied to the liquid 121 through the inlet 14. However, since the chip 1a is provided with the absorber having the hydrophobic region 110, as shown in FIG. 4B, the tip 1a exceeds the hydrophobic region 110 of the absorber 22 that has absorbed the liquid. The liquid 121 does not ooze out. Therefore, the amount of liquid absorbed by the absorber 21 is accurately quantified regardless of the water head pressure. Therefore, the amount of the liquid 121 introduced into the channel structure is quantified. That is, the upper limit of the volume of the liquid introduced into the channel structure is (saturated absorption amount of the absorber + volume of the channel from the absorber to the introduction channel side + volume of the introduction channel) regardless of the liquid head pressure. It is prescribed.
 図5は疎水性領域を有していない吸収体31を備えたチップ2aを示し、図5の(a)は上面図、図5の(b)は図5の(a)のA-A’における断面図である。また、図6は疎水性領域を有していない吸収体による液体の吸収を説明する概略図である。図6の(a)は液体を吸収する前の吸収体31の断面図、図6の(b)は液体を吸収した吸収体32の断面図を示している。 FIG. 5 shows a chip 2a provided with an absorber 31 that does not have a hydrophobic region. FIG. 5 (a) is a top view, and FIG. 5 (b) is an AA ′ line in FIG. 5 (a). FIG. FIG. 6 is a schematic diagram for explaining the absorption of the liquid by the absorber having no hydrophobic region. 6A is a cross-sectional view of the absorber 31 before absorbing the liquid, and FIG. 6B is a cross-sectional view of the absorber 32 that has absorbed the liquid.
 図6の(a)に示すように疎水性領域を有していない吸収体31に対して、吸収体31の飽和吸収量を超える液体121が供給された場合、図6の(b)に示すように、液体を吸収した吸収体32の表面に余分な液体122が染み出す。 When the liquid 121 exceeding the saturated absorption amount of the absorber 31 is supplied to the absorber 31 that does not have the hydrophobic region as shown in FIG. Thus, the excess liquid 122 oozes out on the surface of the absorber 32 that has absorbed the liquid.
 図7は、疎水性領域を有していない吸収体を備えたチップ2aにおいて、比較的少ない量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図7の(a)は吸収体が液体を吸収する前のチップ2aの断面図、図7の(b)は吸収体が液体を吸収した後のチップ2aの断面図である。図7の(a)に示すように液体121が比較的少ない量で流路構造内に導入された場合は、図7の(b)に示すように、液体を吸収した吸収体32の表面に液体121が染み出すことはない。 FIG. 7 is a schematic diagram for explaining the flow of a liquid when a relatively small amount of liquid is introduced into the flow channel structure in the chip 2a having an absorber that does not have a hydrophobic region. 7A is a cross-sectional view of the chip 2a before the absorber absorbs the liquid, and FIG. 7B is a cross-sectional view of the chip 2a after the absorber absorbs the liquid. When the liquid 121 is introduced into the flow channel structure in a relatively small amount as shown in FIG. 7A, as shown in FIG. 7B, the surface of the absorber 32 that has absorbed the liquid is used. The liquid 121 does not ooze out.
 一方、図8は、疎水性領域を有していない吸収体を備えたチップ2aにおいて、比較的多い量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図8の(a)は吸収体が液体を吸収する前のチップ2aの断面図、図8の(b)は吸収体が液体を吸収した後のチップ2aの断面図である。図8の(a)に示すように液体121が比較的多い量で流路構造内に導入される場合、吸収体31の表面を越えて液体が染み出す程の水頭圧が導入口14を介して液体121に加わる。従って、図8の(b)に示すように、液体を吸収した吸収体32の表面を越えて余分な液体122が染み出す。 On the other hand, FIG. 8 is a schematic diagram for explaining the flow of liquid when a relatively large amount of liquid is introduced into the flow path structure in the chip 2a having the absorber that does not have a hydrophobic region. . 8A is a cross-sectional view of the chip 2a before the absorber absorbs the liquid, and FIG. 8B is a cross-sectional view of the chip 2a after the absorber absorbs the liquid. When the liquid 121 is introduced into the flow path structure in a relatively large amount as shown in FIG. 8A, the water head pressure so that the liquid oozes over the surface of the absorber 31 passes through the inlet 14. To the liquid 121. Therefore, as shown in FIG. 8B, excess liquid 122 oozes over the surface of the absorber 32 that has absorbed the liquid.
 図7および8にて説明したように、疎水性領域を有していない吸収体を備えたチップ2aの場合、導入口14から導入された液体の量に差異があると、液体の水頭圧が変わり、水頭圧の大小によって、吸収体に吸収される(吸収体に流れこむ)液体の量が変化してしまう。 As described with reference to FIGS. 7 and 8, in the case of the chip 2 a having an absorber that does not have a hydrophobic region, if there is a difference in the amount of liquid introduced from the inlet 14, the liquid head pressure is increased. The amount of liquid absorbed by the absorber (flowing into the absorber) changes depending on the magnitude of the water head pressure.
 疎水性領域110は、導入口14から空気穴15までを結ぶ経路において空気穴15側から見た場合に、液体121の移動経路の全体を覆うように形成されていることが好ましい。上記構成によれば、液体の移動経路を完全に疎水性領域によって塞ぐことによって、吸収体に吸収された液体の空気穴側への染み出しを完全に防ぐことができる。すなわち、例えば吸収体21が開放路15の内部に配置されている場合、図1の(a)に示すように、上面から見て疎水性領域110が開放路15の内部を覆うように形成されていることが好ましい。 The hydrophobic region 110 is preferably formed so as to cover the entire movement path of the liquid 121 when viewed from the air hole 15 side in the path connecting the inlet 14 to the air hole 15. According to the above configuration, the liquid migration path is completely blocked by the hydrophobic region, thereby preventing the liquid absorbed by the absorber from exuding to the air hole side. That is, for example, when the absorber 21 is disposed inside the open path 15, as shown in FIG. 1A, the hydrophobic region 110 is formed so as to cover the inside of the open path 15 as viewed from above. It is preferable.
 吸収体21が吸水性(親水性)の材料である場合、疎水性領域110の形成方法としては、吸収体21の表面(導入口14から空気穴15までを結ぶ経路において空気穴15に近い表面)に疎水性を高める処理を行うと良い。 When the absorbent body 21 is a water-absorbing (hydrophilic) material, the hydrophobic region 110 can be formed by using the surface of the absorbent body 21 (the surface close to the air hole 15 in the path connecting the inlet 14 to the air hole 15). ) To improve the hydrophobicity.
 親水性の吸収体21の材料としては、例えば、高分子性膜、コラーゲン膜、セルロース系繊維、ガラス繊維、高分子系繊維、多孔質体などの吸収性を有するものが用いられる。上記材料の中でも、セルロース系繊維、ガラス繊維、高分子系繊維等の親水性の繊維を用いることが好ましい。 As the material of the hydrophilic absorbent body 21, for example, a material having absorptivity such as a polymer film, a collagen film, a cellulose fiber, a glass fiber, a polymer fiber, or a porous body is used. Among the above materials, it is preferable to use hydrophilic fibers such as cellulose fibers, glass fibers, and polymer fibers.
 疎水性を高める処理としては、疎水性樹脂材料の塗布、フッ素系の疎水剤の塗布、フッ素系ガスによる表面処理等を用いることができる。本明細書では、フッ素系の疎水剤およびフッ素系ガスを「フッ素系材料」と称する場合もある。疎水性樹脂材料としては例えばフッ素樹脂、エポキシ樹脂、ポリプロピレン、ポリスチレン、ポリイミド、シロキサン、シリコーン、シラン等が挙げられる。フッ素系の疎水剤としては例えばペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)等を成分に含む溶剤が挙げられる。フッ素系ガスとしては例えば四フッ化メタン(CF)、六フッ化エタン(C)、八フッ化プロパン(C)、ヘキサフルオロ1,3ブタジエン(C)、パーフルオロシクロブタン(C)、オクタフルオロシクロペンテン(C)、六フッ化硫黄(SF)等のパーフルオロカーボン(PFC)ガスが挙げられる。 As treatment for increasing hydrophobicity, application of a hydrophobic resin material, application of a fluorine-based hydrophobic agent, surface treatment with a fluorine-based gas, or the like can be used. In this specification, the fluorine-based hydrophobic agent and the fluorine-based gas may be referred to as “fluorine-based material”. Examples of the hydrophobic resin material include fluorine resin, epoxy resin, polypropylene, polystyrene, polyimide, siloxane, silicone, and silane. Examples of fluorine-based hydrophobic agents include perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), and ethylene / chlorotrifluoro. Examples thereof include a solvent containing ethylene copolymer (ECTFE) or the like as a component. Examples of the fluorine-based gas include tetrafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), octafluoropropane (C 3 F 8 ), hexafluoro 1,3 butadiene (C 4 F 6 ), Examples thereof include perfluorocarbon (PFC) gas such as perfluorocyclobutane (C 4 F 8 ), octafluorocyclopentene (C 5 F 8 ), sulfur hexafluoride (SF 6 ), and the like.
 特に、吸収体21は、セルロース系繊維、ガラス繊維、高分子系繊維等の親水性の繊維によって形成されており、上記親水性の繊維の表面に対してフッ素系材料を塗布または化学蒸着することによって、上記疎水性領域が形成されていることが好ましい。上記構成によれば、吸収体に吸収された液体の空気穴側への染み出しを、より効果的に防ぐことができる。 In particular, the absorbent body 21 is formed of hydrophilic fibers such as cellulosic fibers, glass fibers, and polymer fibers, and a fluorine-based material is applied or chemically deposited on the surface of the hydrophilic fibers. It is preferable that the hydrophobic region is formed. According to the said structure, the oozing-out to the air hole side of the liquid absorbed by the absorber can be prevented more effectively.
 また、吸収体21自体が疎水性の材料である場合は、吸収体21の表面(導入口14から空気穴15までを結ぶ経路において空気穴15に近い表面)以外の領域に親水性を高める処理を行うと良い。疎水性の吸収体21の材料としては、例えば、フッ素系樹脂膜、シロキサン系樹脂膜、撥水性のガス透過膜等を用いることができる。親水性を高める処理には、界面活性剤を含む材料の塗布、プラズマによる処理、UV照射による処理、光触媒材料の塗布による処理等を用いることができる。 Further, when the absorbent body 21 itself is a hydrophobic material, treatment for increasing hydrophilicity in a region other than the surface of the absorbent body 21 (surface close to the air hole 15 in the path connecting the inlet 14 to the air hole 15). Good to do. As a material of the hydrophobic absorber 21, for example, a fluorine resin film, a siloxane resin film, a water-repellent gas permeable film, or the like can be used. For the treatment for increasing hydrophilicity, application of a material containing a surfactant, treatment with plasma, treatment with UV irradiation, treatment with application of a photocatalyst material, or the like can be used.
 〔実施形態2〕
 本発明の実施形態2について図9に基づいて説明する。図9は本実施形態に係るチップ1bを示し、図9の(a)は上面図、図9の(b)は(a)のA-A’における断面図である。本実施形態に係るチップ1bは、反応部135および検出部136を備えている。上記構成によれば、チップ1bでは流路構造内に流れ込む液体の量が正確に定量化されるため、反応部135および検出部136を通過する液体の量が一定となり、反応部135における一定量の液体を用いた反応、および、検出部136における一定量の液体に関する測定が可能となる。その他の構成については、実施形態1に係るチップ1aと同様であって、これらの構成に関する説明は省略する。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIG. FIG. 9 shows a chip 1b according to the present embodiment, where FIG. 9A is a top view and FIG. 9B is a cross-sectional view taken along line AA ′ of FIG. The chip 1b according to the present embodiment includes a reaction unit 135 and a detection unit 136. According to the above configuration, since the amount of the liquid flowing into the flow path structure is accurately quantified in the chip 1b, the amount of the liquid passing through the reaction unit 135 and the detection unit 136 is constant, and a constant amount in the reaction unit 135 is obtained. It is possible to perform a reaction using the liquid and measurement related to a certain amount of liquid in the detection unit 136. About another structure, it is the same as that of the chip | tip 1a based on Embodiment 1, The description regarding these structures is abbreviate | omitted.
 <反応部135>
 反応部135は、上記液体中に含まれる物質に所定の反応を行わせるためのものであって、上記導入口から上記空気穴までを結ぶ経路において、上記導入口と上記検出部との間に配置されている。上記構成によれば、検出部での検出の前に、液体中に含まれる特定の物質を用いた反応を行い、反応後の物質を検出部にて検出することができる。すなわち、反応部135は、上記液体中に含まれる物質を検出部136にて検出するための前処理を行うものである。
<Reaction unit 135>
The reaction unit 135 is for causing a substance contained in the liquid to perform a predetermined reaction, and is provided between the introduction port and the detection unit in a path connecting the introduction port to the air hole. Has been placed. According to the above configuration, the reaction using the specific substance contained in the liquid is performed before the detection by the detection unit, and the substance after the reaction can be detected by the detection unit. That is, the reaction unit 135 performs preprocessing for detecting the substance contained in the liquid by the detection unit 136.
 反応部135の構成は特に限定されず、検出方法に応じた構成とすればよい。例えば、反応部135は、上記液体中に含まれる物質の抗原抗体反応または酵素基質反応等に用いられる試薬が流路内に直接固定化されている構成であってもよい。また、反応部135を吸収体21と同様の材料によって形成し、上記試薬を反応部135に担持させる構成であってもよい。 The configuration of the reaction unit 135 is not particularly limited, and may be configured according to the detection method. For example, the reaction unit 135 may have a configuration in which a reagent used for an antigen-antibody reaction or an enzyme substrate reaction of a substance contained in the liquid is directly immobilized in the flow path. Alternatively, the reaction unit 135 may be formed of the same material as that of the absorber 21, and the reaction unit 135 may carry the reagent.
 上記試薬は、液体中に含まれる物質と反応する物質が含まれているものであり得、例えば抗原、抗体、酵素または基質が含まれているものであり得る。上記試薬としては、例えば、上記液体が血液であり、検出部136にて血液中のコレステロールの測定を行う場合には、コレステロールエステラーゼ、コレステロールオキシダーゼ、ペルオキシダーゼ、3,5-ジメトキシ-N-エチル-N-(2-ハイドロキシ-3-スルホプロピル)-アニリンナトリウム、4-アミノアンチピリン、アスコルビン酸オキシダーゼを主成分とする発色剤などが挙げられる。また、尿酸値の測定を行う場合には、ウリカーゼ、ペルオキシダーゼ、4-アミノアンチピリンリポプロテインリパーゼ、アスコルビン酸オキシダーゼを主成分とする発色剤などが挙げられる。 The reagent may contain a substance that reacts with a substance contained in the liquid, and may contain, for example, an antigen, an antibody, an enzyme, or a substrate. As the reagent, for example, when the liquid is blood and cholesterol in blood is measured by the detection unit 136, cholesterol esterase, cholesterol oxidase, peroxidase, 3,5-dimethoxy-N-ethyl-N Examples thereof include a color former mainly composed of sodium (2-hydroxy-3-sulfopropyl) -aniline, 4-aminoantipyrine, and ascorbate oxidase. In the case of measuring the uric acid level, uricase, peroxidase, 4-aminoantipyrine lipoprotein lipase, a color former mainly composed of ascorbate oxidase and the like can be mentioned.
 <検出部136>
 検出部136は、上記液体中に含まれる物質を検出するためのものであって、導入路11と吸収体21との間に配置されている。本発明に係るチップでは、液体の水頭圧に関わらず、流路構造内に導入される液体の体積が特定の範囲に規定されるため、上記構成によれば、検出部136では、特定の体積の液体中に含まれる物質を検出することができる。
<Detection unit 136>
The detection unit 136 is for detecting a substance contained in the liquid, and is disposed between the introduction path 11 and the absorber 21. In the chip according to the present invention, the volume of the liquid introduced into the flow channel structure is defined in a specific range regardless of the liquid head pressure. Therefore, according to the above configuration, the detection unit 136 has a specific volume. The substance contained in the liquid can be detected.
 検出部136の構成は特に限定されず、検出方法に応じた構成とすればよい。例えば、上記液体中に含まれる物質を電気的に検出する場合は、作用電極、参照電極および対向電極が検出部136に設けられていることが好ましい。また、上記物質を光学的に検出する場合は、基板41または42が透明な材料で形成されていることが好ましい。上記構成によれば、上記物質による発色、呈色、発光、蛍光等を検出することができる。また、後述する発光素子から検出部136に対して光を照射し、反射光、散乱光または透過光を後述する受光素子によって測定することもできる。 The configuration of the detection unit 136 is not particularly limited, and may be configured according to the detection method. For example, when the substance contained in the liquid is electrically detected, the working electrode, the reference electrode, and the counter electrode are preferably provided in the detection unit 136. In addition, when the substance is optically detected, the substrate 41 or 42 is preferably formed of a transparent material. According to the above configuration, it is possible to detect color development, coloration, luminescence, fluorescence, and the like due to the substance. Further, light can be emitted from a light emitting element described later to the detection unit 136, and reflected light, scattered light, or transmitted light can be measured by a light receiving element described later.
 図9に示されているチップ1bでは、上流側に備えられた反応部135における反応によって生じた物質を、下流側に備えられた検出部136によって検出する構成となっているが、反応部135を備えずに検出部136のみを備える構成であってもよい。例えば、前処理を必要とせずに、液体中に含まれる物質を検出部136にて検出することが可能である場合は、反応部135が備えられていなくてもよい。また、検出に必要な前処理を事前に施した液体を流路に導入する場合も、反応部135が備えられていなくてもよい。 In the chip 1b shown in FIG. 9, the substance generated by the reaction in the reaction unit 135 provided on the upstream side is detected by the detection unit 136 provided on the downstream side. It is also possible to have a configuration including only the detection unit 136 without including the detector. For example, when the substance contained in the liquid can be detected by the detection unit 136 without requiring pretreatment, the reaction unit 135 may not be provided. In addition, the reaction unit 135 may not be provided even when a liquid that has been subjected to pretreatment necessary for detection is introduced into the flow path.
 また、検出部136にて反応および検出の両方が行われてもよい。すなわち、検出部136に上記試薬が固定化されており、検出部136において反応が行われ、該反応によって生じた電流、電圧もしくはインピーダンス、または発色、呈色、発光、蛍光等が検出されてもよい。上記試薬は、流路に直接固定化されていてもよいし、吸収体21と同様の材料に固定化されていてもよい。 Further, both the reaction and the detection may be performed by the detection unit 136. That is, even if the reagent is immobilized on the detection unit 136 and a reaction is performed in the detection unit 136, current, voltage or impedance generated by the reaction, color development, coloration, luminescence, fluorescence, or the like is detected. Good. The reagent may be directly immobilized on the flow path, or may be immobilized on the same material as that of the absorber 21.
 〔実施形態3〕
 本発明の実施形態3について図10~13に基づいて説明する。
[Embodiment 3]
A third embodiment of the present invention will be described with reference to FIGS.
 図10は、本実施形態に係るチップ1cを示し、図10の(a)は上面図、図10の(b)は図10の(a)のA-A’における断面図である。本実施形態では、吸収体23が、上記液体中に含まれる物質を検出するための検出部を備えている。すなわち、吸収体23は図9における吸収体21、反応部135および検出部136の機能を兼ね備えている。上記構成によれば、液体の水頭圧に関わらず、流路構造内に導入される液体の体積が特定の範囲に規定される。従って、検出部では、特定の体積の液体中に含まれる特定の物質を検出することができる。さらに、吸収体に吸収された液体の空気穴側への染み出しが抑制されるために、染み出した液体による液面の変動が発生せず、検出部での検出を正確に行うことができる。 FIG. 10 shows the chip 1c according to the present embodiment, where FIG. 10A is a top view and FIG. 10B is a cross-sectional view taken along the line A-A 'of FIG. In the present embodiment, the absorber 23 includes a detection unit for detecting a substance contained in the liquid. That is, the absorber 23 has the functions of the absorber 21, the reaction unit 135, and the detection unit 136 in FIG. According to the said structure, the volume of the liquid introduce | transduced in a flow-path structure is prescribed | regulated to a specific range irrespective of the liquid head pressure of a liquid. Therefore, the detection unit can detect a specific substance contained in a specific volume of liquid. Furthermore, since the seepage of the liquid absorbed by the absorber to the air hole side is suppressed, the liquid level does not fluctuate due to the exuded liquid, and the detection by the detection unit can be performed accurately. .
 吸収体23は上述した吸収体21と同様の材料および方法によって形成することができる。吸収体23が「検出部を備えている」とは、吸収体23に例えば上述した試薬が固定化されていることを意味する。よって、液体が吸収体23に吸収されると、液体中に含まれる物質と試薬とが反応し、発色、呈色、発光、蛍光等を示す。例えば、後述する分析装置に備えられた発光素子51から検出部に対して光を照射し、反射光、散乱光または透過光を後述する受光素子52によって受光することによって、上記発色または呈色を検出すればよい。 The absorber 23 can be formed by the same material and method as the absorber 21 described above. The phrase “the absorber 23 includes a detection unit” means that, for example, the above-described reagent is immobilized on the absorber 23. Therefore, when the liquid is absorbed by the absorber 23, the substance contained in the liquid reacts with the reagent to exhibit color development, coloration, light emission, fluorescence, and the like. For example, the light emitting element 51 provided in the analyzer described later irradiates the detection unit with light, and the reflected light, scattered light, or transmitted light is received by the light receiving element 52 described later, whereby the above color development or coloration is achieved. What is necessary is just to detect.
 図11は本実施形態に係るチップ1cに備えられた吸収体による液体の吸収を説明する概略図である。図11の(a)は液体を吸収する前の吸収体23の断面図、図11の(b)は液体を吸収した後の吸収体24の断面図を示している。図11の(a)に示すように疎水性領域110を有している吸収体23に対して、吸収体23の飽和吸収量を超える液体121が供給されても、吸収体23の表面の親水性低下(換言すれば、疎水性向上)により、液体の染み出しが抑制される。すなわち、図11の(b)に示すように、液体を吸収した吸収体24の疎水性領域110を越えて表面に液体が染み出すことはない。従って、染み出した液体による液面の変動が発生せず、例えば発光素子51および受光素子52を用いて反射光、散乱光または透過光等を正確に検出することができる。 FIG. 11 is a schematic diagram for explaining liquid absorption by the absorber provided in the chip 1c according to the present embodiment. FIG. 11A shows a cross-sectional view of the absorbent body 23 before absorbing the liquid, and FIG. 11B shows a cross-sectional view of the absorbent body 24 after absorbing the liquid. Even if the liquid 121 exceeding the saturated absorption amount of the absorber 23 is supplied to the absorber 23 having the hydrophobic region 110 as shown in FIG. The deterioration of the property (in other words, the improvement in hydrophobicity) suppresses the liquid from exuding. That is, as shown in FIG. 11B, the liquid does not ooze out over the surface beyond the hydrophobic region 110 of the absorber 24 that has absorbed the liquid. Therefore, the fluctuation of the liquid level due to the exuded liquid does not occur, and reflected light, scattered light, transmitted light or the like can be accurately detected using the light emitting element 51 and the light receiving element 52, for example.
 図12は本実施形態に係るチップ1cにおいて、比較的少ない量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図12の(a)は吸収体が液体を吸収する前のチップ1cの断面図、図12の(b)は吸収体が液体を吸収した後のチップ1cの断面図である。図12の(a)に示すように液体121が比較的少ない量で流路構造内に導入された場合は、当然のことながら、図12の(b)に示すように、液体を吸収した吸収体24の疎水性領域110を越えて液体121が染み出すことはない。 FIG. 12 is a schematic diagram illustrating the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 1c according to the present embodiment. 12A is a cross-sectional view of the chip 1c before the absorber absorbs the liquid, and FIG. 12B is a cross-sectional view of the chip 1c after the absorber has absorbed the liquid. When the liquid 121 is introduced into the flow channel structure in a relatively small amount as shown in FIG. 12 (a), naturally, as shown in FIG. 12 (b), absorption by absorbing the liquid. The liquid 121 does not exude beyond the hydrophobic region 110 of the body 24.
 図13は本実施形態に係るチップ1cにおいて、比較的多い量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図13の(a)は吸収体が液体を吸収する前のチップ1cの断面図、図13の(b)は吸収体が液体を吸収した後のチップ1cの断面図である。図13の(a)に示すように液体121が比較的多い量で流路構造内に導入される場合、吸収体23が疎水性領域を有していなければ吸収体23の表面を越えて液体が染み出す程の水頭圧が導入口14を介して液体121に加わる。しかし、チップ1aは疎水性領域110を有している吸収体を備えているので、図13の(b)に示すように、液体を吸収した吸収体24の疎水性領域110を越えて液体121が染み出すことはない。従って、吸収体23で吸収される液体の量が水頭圧に関わらず精密に定量化される。よって、流路13内に流れ込む液体121の量が定量化される。すなわち、流路構造内に導入される液体の体積の上限が、液体の水頭圧に関わらず、(吸収体の飽和吸収量+吸収体から導入路側の流路の容積+導入路の容積)に規定される。さらに、染み出した液体による液面の変動が発生しないため、例えば発光素子51および受光素子52を用いて反射光、散乱光または透過光等を正確に検出することができる。 FIG. 13 is a schematic diagram illustrating the flow of liquid when a relatively large amount of liquid is introduced into the flow channel structure in the chip 1c according to the present embodiment. 13A is a cross-sectional view of the chip 1c before the absorber absorbs the liquid, and FIG. 13B is a cross-sectional view of the chip 1c after the absorber absorbs the liquid. When the liquid 121 is introduced into the flow channel structure in a relatively large amount as shown in FIG. 13A, the liquid exceeds the surface of the absorber 23 unless the absorber 23 has a hydrophobic region. The water head pressure so that it oozes out is applied to the liquid 121 through the inlet 14. However, since the chip 1a includes the absorber having the hydrophobic region 110, as shown in FIG. 13B, the liquid 121 passes over the hydrophobic region 110 of the absorber 24 that has absorbed the liquid. Will not ooze out. Therefore, the amount of liquid absorbed by the absorber 23 is accurately quantified regardless of the water head pressure. Therefore, the amount of the liquid 121 flowing into the flow path 13 is quantified. That is, the upper limit of the volume of the liquid introduced into the channel structure is (saturated absorption amount of the absorber + volume of the channel from the absorber to the introduction channel side + volume of the introduction channel) regardless of the liquid head pressure. It is prescribed. Further, since the liquid level does not change due to the exuded liquid, for example, reflected light, scattered light, transmitted light, or the like can be accurately detected using the light emitting element 51 and the light receiving element 52.
 図14は疎水性領域を有していない吸収体33を備えたチップ2bを示し、図14の(a)は上面図、図14の(b)は図14の(a)のA-A’における断面図である。吸収体33は、図10における吸収体23と同様に検出部を備えている。また、図15は疎水性領域を有していない吸収体による液体の吸収を説明する概略図である。図15の(a)は液体を吸収する前の吸収体33の断面図、図15の(b)は液体を吸収した吸収体34の断面図を示している。 FIG. 14 shows a chip 2b having an absorbent body 33 that does not have a hydrophobic region. FIG. 14 (a) is a top view, and FIG. 14 (b) is an AA ′ line in FIG. 14 (a). FIG. The absorber 33 is provided with a detection unit in the same manner as the absorber 23 in FIG. FIG. 15 is a schematic view for explaining absorption of a liquid by an absorber that does not have a hydrophobic region. FIG. 15A shows a cross-sectional view of the absorbent body 33 before absorbing the liquid, and FIG. 15B shows a cross-sectional view of the absorbent body 34 that has absorbed the liquid.
 図15の(a)に示すように疎水性領域を有していない吸収体33に対して、吸収体33の飽和吸収量を超える液体121が供給された場合、図15の(b)に示すように、液体を吸収した吸収体34の表面に余分な液体123が染み出す。吸収体34に吸収された液体中に含まれる物質および/または余分な液体123に含まれる物質が発色または呈色等を示している場合、例えば発光素子51および受光素子52を用いても、余分な液体123の液面の変動によって正確な検出を行うことができない。 When the liquid 121 exceeding the saturated absorption amount of the absorber 33 is supplied to the absorber 33 having no hydrophobic region as shown in FIG. Thus, the excess liquid 123 oozes out on the surface of the absorber 34 that has absorbed the liquid. In the case where the substance contained in the liquid absorbed by the absorber 34 and / or the substance contained in the extra liquid 123 exhibits color development or coloration, for example, even if the light emitting element 51 and the light receiving element 52 are used, the extra Accurate detection cannot be performed due to the fluctuation of the liquid level of the liquid 123.
 図16は、疎水性領域を有していない吸収体を備えたチップ2bにおいて、比較的少ない量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図16の(a)は吸収体が液体を吸収する前のチップ2bの断面図、図16の(b)は吸収体が液体を吸収した場合のチップ2bの断面図である。図16の(a)に示すように液体121が比較的少ない量で流路構造内に導入された場合は、図16の(b)に示すように、液体を吸収した吸収体34の表面に液体121が染み出すことはない。 FIG. 16 is a schematic diagram for explaining the flow of liquid when a relatively small amount of liquid is introduced into the flow path structure in the chip 2b having an absorber that does not have a hydrophobic region. 16A is a cross-sectional view of the chip 2b before the absorber absorbs the liquid, and FIG. 16B is a cross-sectional view of the chip 2b when the absorber absorbs the liquid. When the liquid 121 is introduced into the flow channel structure in a relatively small amount as shown in FIG. 16A, the surface of the absorber 34 that has absorbed the liquid is used as shown in FIG. The liquid 121 does not ooze out.
 図17は、疎水性領域を有していない吸収体を備えたチップ2bにおいて、比較的多い量の液体が流路構造内に導入された場合の液体の流れを説明する概略図である。図17の(a)は吸収体が液体を吸収する前のチップ2bの断面図、図17の(b)は吸収体が液体を吸収した後のチップ2bの断面図である。図17の(a)に示すように液体121が比較的多い量で流路構造内に導入される場合、吸収体33の表面を越えて液体が染み出す程の水頭圧が導入口14を介して液体121に加わる。従って、図17の(b)に示すように、液体を吸収した吸収体34の表面を越えて余分な液体123が染み出す。よって、導入口14から導入された液体の量に差異があると、液体の水頭圧が変わり、水頭圧の大小によって、吸収体に吸収される(吸収体に流れこむ)液体の量が変化してしまう。さらに、余分な液体123の液面の変動によって、正確な検出を行うことができない。 FIG. 17 is a schematic diagram for explaining the flow of a liquid when a relatively large amount of liquid is introduced into the flow channel structure in the chip 2b including an absorber that does not have a hydrophobic region. 17A is a cross-sectional view of the chip 2b before the absorber absorbs the liquid, and FIG. 17B is a cross-sectional view of the chip 2b after the absorber absorbs the liquid. When the liquid 121 is introduced into the flow path structure in a relatively large amount as shown in FIG. 17A, the water head pressure so that the liquid oozes over the surface of the absorber 33 is introduced through the inlet 14. To the liquid 121. Therefore, as shown in FIG. 17B, excess liquid 123 oozes out over the surface of the absorber 34 that has absorbed the liquid. Therefore, if there is a difference in the amount of liquid introduced from the inlet 14, the head pressure of the liquid changes, and the amount of liquid absorbed by the absorber (flows into the absorber) changes depending on the magnitude of the head pressure. End up. Furthermore, accurate detection cannot be performed due to fluctuations in the liquid level of the excess liquid 123.
 〔実施形態4〕
 本発明の実施形態4について図18~20に基づいて説明する。図18~19は、本発明の実施形態4に係るチップ1bもしくは1c、並びに分析装置50を含む分析システム500の概略図である。
[Embodiment 4]
A fourth embodiment of the present invention will be described with reference to FIGS. 18 to 19 are schematic views of an analysis system 500 including the chip 1b or 1c and the analysis apparatus 50 according to Embodiment 4 of the present invention.
 <分析装置50および分析システム500>
 本発明に係る分析装置50は、本発明に係るチップを分析するための分析装置であって、上記チップが備える検出部が発する信号を受信する受信部と、上記信号に基づいて、上記チップに導入された液体中に含まれる物質を分析する分析部53と、を備えている。
<Analyzer 50 and Analysis System 500>
The analysis device 50 according to the present invention is an analysis device for analyzing the chip according to the present invention, and includes a receiving unit that receives a signal emitted from a detection unit included in the chip, and the chip based on the signal. And an analysis unit 53 for analyzing a substance contained in the introduced liquid.
 上記構成によれば、チップが備える検出部が発する信号を受信部によって受信することができる。上記チップでは、吸収体が空気穴側に疎水性領域を有しているために、吸収体に吸収された液体の空気穴側への染み出しが抑制されており、流路構造内に導入される液体の体積が特定の範囲に規定される。よって、特定の体積の液体中に含まれる物質を検出することができる。その結果、分析部において特定の体積の液体中に含まれる物質について分析することができる。 According to the above configuration, the signal emitted from the detection unit included in the chip can be received by the reception unit. In the above chip, since the absorber has a hydrophobic region on the air hole side, the liquid absorbed by the absorber is prevented from seeping out to the air hole side and introduced into the flow channel structure. The volume of the liquid is defined within a certain range. Thus, a substance contained in a specific volume of liquid can be detected. As a result, a substance contained in a specific volume of liquid can be analyzed in the analysis unit.
 また、上記チップの吸収体が検出部を備える場合、吸収体表面において、染み出した液体による液面の変動が発生しないため、検出を正確に行うことができる。 In addition, when the absorbent body of the chip includes a detection unit, the liquid level is not changed due to the liquid that has oozed out on the surface of the absorbent body, so that the detection can be performed accurately.
 分析システム500は、本発明に係るチップと、本発明に係る分析装置50とを含むことを特徴としている。 The analysis system 500 includes a chip according to the present invention and an analysis apparatus 50 according to the present invention.
 上記構成によれば、上記チップと上記分析装置を含むため、特定の体積の液体中に含まれる特定の物質を検出し、分析することが可能なシステムを実現できる。 According to the above configuration, since the chip and the analyzer are included, a system capable of detecting and analyzing a specific substance contained in a specific volume of liquid can be realized.
 また、上記チップの吸収体が検出部を備える場合、上記チップに備えられた吸収体表面において、染み出した液体による液面の変動がないために、より正確に分析することが可能なシステムを実現できる。 In addition, when the absorber of the chip includes a detection unit, the surface of the absorber provided in the chip has no fluctuation of the liquid level due to the leaked liquid, and therefore a system that can analyze more accurately realizable.
 受信部および分析部の構成は、検出方法に応じて適宜決定すればよい。図18は、本発明の実施形態2に係るチップ1bを用いて、液体中に含まれる物質を光学的に検出する分析装置50および分析システム500の概略図を示している。なお、チップ1bは反応部135を備えていてもよいし、備えていなくてもよい。液体中に含まれる物質を光学的に検出する場合には、分析装置50は例えば発光素子51を備えるとともに、受信部として受光素子52を備えていてもよい。発光素子51は、例えばLED等で構成され、検出部136に光を照射するものである。受光素子52は、検出部136に光が照射された結果、検出部136が発する反射光、散乱光または透過光等の信号を受信する。 The configuration of the receiving unit and the analyzing unit may be appropriately determined according to the detection method. FIG. 18 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that optically detect a substance contained in a liquid using the chip 1b according to the second embodiment of the present invention. The chip 1b may or may not include the reaction unit 135. When optically detecting a substance contained in a liquid, the analyzer 50 may include a light emitting element 51 and a light receiving element 52 as a receiving unit, for example. The light emitting element 51 is composed of, for example, an LED or the like, and irradiates the detection unit 136 with light. The light receiving element 52 receives a signal such as reflected light, scattered light, or transmitted light emitted from the detection unit 136 as a result of irradiating the detection unit 136 with light.
 発光素子51および受光素子52の位置関係は適宜決定されればよく、例えば図18の(a)に示すように発光素子51からチップ1bの上面に対して光を照射し、検出部136から発せられる反射光または散乱光を受光素子52によって受光してもよい。また、図18の(b)に示すように発光素子51からチップ1bの底面に対して光を照射し、検出部136から発せられる反射光または散乱光を受光素子52によって受光してもよい。さらに、図18の(c)に示すように発光素子51からチップ1bの底面に対して光を照射し、検出部136から発せられる透過光を、チップ1bを挟んで発光素子51とは反対側に備えられた受光素子52によって受光してもよい。 The positional relationship between the light emitting element 51 and the light receiving element 52 may be determined as appropriate. For example, as shown in FIG. 18A, light is emitted from the light emitting element 51 to the upper surface of the chip 1b and emitted from the detection unit 136. The reflected light or scattered light may be received by the light receiving element 52. Further, as shown in FIG. 18B, light may be emitted from the light emitting element 51 to the bottom surface of the chip 1 b, and reflected light or scattered light emitted from the detection unit 136 may be received by the light receiving element 52. Further, as shown in FIG. 18 (c), light is emitted from the light emitting element 51 to the bottom surface of the chip 1b, and transmitted light emitted from the detection unit 136 is opposite to the light emitting element 51 across the chip 1b. The light may be received by the light receiving element 52 provided in.
 液体中に含まれる物質を光学的に検出する場合、分析部53は、例えば受光素子52から送信された信号に基づいて、液体中に含まれる物質について分析を行う。例えば、分析部53は検出部136における発色状態を解析することにより、液体中の物質の濃度を求める。 When optically detecting a substance contained in a liquid, the analysis unit 53 analyzes the substance contained in the liquid based on, for example, a signal transmitted from the light receiving element 52. For example, the analysis unit 53 obtains the concentration of the substance in the liquid by analyzing the color development state in the detection unit 136.
 図19は、本発明の実施形態2に係るチップ1bを用いて、液体中に含まれる物質を電気的に検出する分析装置50および分析システム500の概略図を示している。液体中に含まれる物質を電気的に検出する場合には、分析装置50は例えば、図19の(a)に示すように、受信部として電流計測部54を備えていてもよい。電流計測部54では、検出部136において検出された電流値を計測し、当該電流値を分析部53へ送信する。また、図19の(b)に示すように、分析装置50は受信部として電圧計測部55を備えていてもよい。電圧計測部55では、検出部136において検出された電圧値を計測し、当該電圧値を分析部53へ送信する。さらに、図19の(c)に示すように、分析装置50は受信部としてインピーダンス計測部56を備えていてもよい。インピーダンス計測部56では、検出部136において検出されたインピーダンス値を計測し、当該インピーダンス値を分析部53へ送信する。分析部53は、電流値、電圧値、またはインピーダンス値に基づいて、液体中に含まれる物質の濃度等を求める。 FIG. 19 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that electrically detect a substance contained in a liquid using the chip 1b according to Embodiment 2 of the present invention. In the case where a substance contained in a liquid is electrically detected, the analyzer 50 may include a current measuring unit 54 as a receiving unit, for example, as shown in FIG. The current measurement unit 54 measures the current value detected by the detection unit 136 and transmits the current value to the analysis unit 53. Further, as illustrated in FIG. 19B, the analysis device 50 may include a voltage measurement unit 55 as a reception unit. The voltage measurement unit 55 measures the voltage value detected by the detection unit 136 and transmits the voltage value to the analysis unit 53. Furthermore, as illustrated in FIG. 19C, the analysis device 50 may include an impedance measurement unit 56 as a reception unit. The impedance measurement unit 56 measures the impedance value detected by the detection unit 136 and transmits the impedance value to the analysis unit 53. The analysis unit 53 obtains the concentration and the like of the substance contained in the liquid based on the current value, voltage value, or impedance value.
 図20は、本発明の実施形態3に係るチップ1cを用いて、液体中に含まれる物質を光学的に検出する分析装置50および分析システム500の概略図を示している。チップ1bを用いて分析する場合と同様に、例えば図20の(a)に示すように発光素子51からチップ1cの上面に対して光を照射し、吸収体23に備えられた検出部から発せられる反射光または散乱光を受光素子52によって受光してもよい。また、図20の(b)に示すように発光素子51からチップ1bの底面に対して光を照射し、吸収体23に備えられた検出部から発せられる反射光または散乱光を受光素子52によって受光してもよい。さらに、図20の(c)に示すように発光素子51からチップ1cの底面に対して光を照射し、吸収体23に備えられた検出部から発せられる透過光を、チップ1cを挟んで発光素子51とは反対側に備えられた受光素子52によって受光してもよい。分析部53は、例えば受光素子52から送信された信号に基づいて、吸収体23に備えられた検出部における発色状態を解析することにより、液体中の物質の濃度を求める。 FIG. 20 shows a schematic diagram of an analysis apparatus 50 and an analysis system 500 that optically detect substances contained in a liquid using the chip 1c according to the third embodiment of the present invention. As in the case of analysis using the chip 1b, for example, as shown in FIG. 20 (a), light is emitted from the light emitting element 51 to the upper surface of the chip 1c, and emitted from the detection unit provided in the absorber 23. The reflected light or scattered light may be received by the light receiving element 52. Further, as shown in FIG. 20B, light is emitted from the light emitting element 51 to the bottom surface of the chip 1 b, and reflected light or scattered light emitted from the detection unit provided in the absorber 23 is received by the light receiving element 52. It may receive light. Furthermore, as shown in FIG. 20 (c), light is emitted from the light emitting element 51 to the bottom surface of the chip 1c, and transmitted light emitted from the detection unit provided in the absorber 23 is emitted across the chip 1c. Light may be received by the light receiving element 52 provided on the side opposite to the element 51. The analysis unit 53 obtains the concentration of the substance in the liquid by analyzing the color development state in the detection unit provided in the absorber 23 based on, for example, a signal transmitted from the light receiving element 52.
 〔まとめ〕
 本発明の一態様に係るチップは、液体を移動させるための流路と、上記流路の一端側に一端が連結されている導入路であって、当該導入路の他端に上記液体を上記流路の内部へ導入するための導入口が備えられている導入路と、上記流路の他端側に一端が連結されている開放路であって、当該開放路の他端に大気開放されている空気穴を有する開放路と、上記流路の内部または上記開放路の内部に配置されているとともに、上記液体を吸収する吸収体と、を備えており、上記吸収体は、上記導入口から上記空気穴までを結ぶ経路において上記空気穴に近い表面に、上記吸収体の他の領域と比較して疎水性が高い疎水性領域を有していることを特徴としている。
[Summary]
A chip according to an aspect of the present invention is a flow path for moving a liquid and an introduction path having one end connected to one end side of the flow path, and the liquid is supplied to the other end of the introduction path. An introduction path provided with an inlet for introduction into the flow path, and an open path having one end connected to the other end of the flow path, and is open to the atmosphere at the other end of the open path. An open path having an air hole, and an absorber that is disposed inside the flow path or inside the open path and that absorbs the liquid, and the absorber includes the inlet In the path from the air hole to the air hole, the surface close to the air hole has a hydrophobic region having higher hydrophobicity than other regions of the absorber.
 上記の構成によれば、吸収体が空気穴に近い表面に疎水性領域を有しているために、導入路から液体を導入した場合に、吸収体に吸収された液体の空気穴側への染み出しが抑制される。よって、水頭圧に関わらず、導入される液体の体積が特定の範囲に規定される。すなわち、導入される液体の体積の上限が、(吸収体の飽和吸収量+吸収体から導入路側の流路の容積+導入路の容積)に規定される。 According to the above configuration, since the absorber has a hydrophobic region on the surface close to the air hole, when the liquid is introduced from the introduction path, the liquid absorbed by the absorber toward the air hole side. Exudation is suppressed. Therefore, the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. That is, the upper limit of the volume of the liquid to be introduced is defined as (saturated absorption amount of the absorber + volume of the channel on the side of the introduction channel from the absorber + volume of the introduction channel).
 さらに、本発明の一態様に係るチップでは、上記疎水性領域は、上記導入口から上記空気穴までを結ぶ経路において上記空気穴側から見た場合に、上記液体の移動経路の全体を覆うように形成されていてもよい。 Furthermore, in the chip according to one aspect of the present invention, the hydrophobic region covers the entire movement path of the liquid when viewed from the air hole side in a path connecting the introduction port to the air hole. It may be formed.
 上記の構成によれば、液体の移動経路を完全に疎水性領域によって塞ぐことによって、吸収体に吸収された液体の空気穴側への染み出しを完全に防ぐことができる。 According to the above configuration, it is possible to completely prevent the liquid absorbed by the absorber from exuding to the air hole side by completely closing the liquid movement path with the hydrophobic region.
 さらに、本発明の一態様に係るチップでは、上記吸収体は、親水性の繊維によって形成されており、上記親水性の繊維の表面に対してフッ素系材料を塗布または化学蒸着することによって、上記疎水性領域が形成されていてもよい。 Furthermore, in the chip according to an aspect of the present invention, the absorber is formed of hydrophilic fibers, and the surface of the hydrophilic fibers is coated or chemically vapor-deposited to form the above-described absorber. A hydrophobic region may be formed.
 上記構成によれば、吸収体に吸収された液体の空気穴側への染み出しを、より効果的に防ぐことができる。 According to the above configuration, it is possible to more effectively prevent the liquid absorbed by the absorber from exuding to the air hole side.
 さらに、本発明の一態様に係るチップでは、上記導入路と上記吸収体との間に、上記液体中に含まれる物質を検出するための検出部が備えられていてもよい。 Furthermore, in the chip according to one aspect of the present invention, a detection unit for detecting a substance contained in the liquid may be provided between the introduction path and the absorber.
 上記構成によれば、水頭圧に関わらず、導入される液体の体積が特定の範囲に規定される。従って、検出部では、特定の体積の液体中に含まれる物質を検出することができる。 According to the above configuration, the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. Therefore, the detection unit can detect a substance contained in a specific volume of liquid.
 さらに、本発明の一態様に係るチップでは、上記吸収体は、上記液体中に含まれる物質を検出するための検出部を備えていてもよい。 Furthermore, in the chip according to one aspect of the present invention, the absorber may include a detection unit for detecting a substance contained in the liquid.
 上記構成によれば、水頭圧に関わらず、導入される液体の体積が特定の範囲に規定される。従って、検出部では、特定の体積の液体中に含まれる特定の物質を検出することができる。さらに、吸収体に吸収された液体の空気穴側への染み出しが抑制されるために、染み出した液体による液面の変動が発生せず、検出部での検出を正確に行うことができる。 According to the above configuration, the volume of the liquid to be introduced is defined within a specific range regardless of the water head pressure. Therefore, the detection unit can detect a specific substance contained in a specific volume of liquid. Furthermore, since the seepage of the liquid absorbed by the absorber to the air hole side is suppressed, the liquid level does not fluctuate due to the exuded liquid, and the detection by the detection unit can be performed accurately. .
 さらに、本発明の一態様に係るチップでは、上記導入口から上記空気穴までを結ぶ経路において、上記導入口と上記検出部との間に、上記液体中に含まれる物質に所定の反応を行わせるための反応部を備えていてもよい。 Furthermore, in the chip according to one aspect of the present invention, a predetermined reaction is performed on a substance contained in the liquid between the introduction port and the detection unit in a path from the introduction port to the air hole. The reaction part for making it may be provided.
 上記構成によれば、検出部での検出の前に、液体中に含まれる特定の物質と反応を行い、反応後の物質を検出部にて検出することができる。 According to the above configuration, the reaction with the specific substance contained in the liquid is performed before the detection by the detection unit, and the substance after the reaction can be detected by the detection unit.
 本発明の一態様に係る分析装置は、本発明に係るチップを分析するための分析装置であって、上記チップが備える検出部が発する信号を受信する受信部(受光素子52、電流計測部54、電圧計測部55またはインピーダンス計測部56)と、上記信号に基づいて、上記チップに導入された液体中に含まれる物質を分析する分析部と、を備えていることを特徴としている。 An analyzer according to an aspect of the present invention is an analyzer for analyzing a chip according to the present invention, and includes a receiver (a light receiving element 52, a current measuring unit 54) that receives a signal emitted from a detector included in the chip. , A voltage measuring unit 55 or an impedance measuring unit 56) and an analyzing unit for analyzing a substance contained in the liquid introduced into the chip based on the signal.
 上記構成によれば、チップが備える検出部が発する信号を受信部によって受信することができる。上記チップでは、吸収体が空気穴側に疎水性領域を有しているために、吸収体に吸収された液体の空気穴側への染み出しが抑制されており、導入される液体の体積が特定の範囲に規定される。よって、特定の体積の液体中に含まれる物質を検出することができる。その結果、分析部において特定の体積の液体中に含まれる物質について分析することができる。 According to the above configuration, the signal emitted from the detection unit included in the chip can be received by the reception unit. In the above chip, the absorber has a hydrophobic region on the air hole side, so that the liquid absorbed by the absorber is prevented from seeping out to the air hole side, and the volume of the introduced liquid is reduced. It is defined in a specific range. Thus, a substance contained in a specific volume of liquid can be detected. As a result, a substance contained in a specific volume of liquid can be analyzed in the analysis unit.
 また、上記チップの吸収体が検出部を備える場合、吸収体表面において、染み出した液体による液面の変動が発生しないため、検出を正確に行うことができる。 In addition, when the absorbent body of the chip includes a detection unit, the surface of the absorbent body does not fluctuate due to the exuded liquid, so that detection can be performed accurately.
 本発明の一態様に係る分析システムは、本発明に係るチップと、本発明に係る分析装置とを含むことを特徴としている。 An analysis system according to one aspect of the present invention includes a chip according to the present invention and an analysis apparatus according to the present invention.
 上記構成によれば、上記チップと上記分析装置を含むため、特定の体積の液体中に含まれる特定の物質を検出し、分析することが可能なシステムを実現できる。 According to the above configuration, since the chip and the analyzer are included, a system capable of detecting and analyzing a specific substance contained in a specific volume of liquid can be realized.
 また、上記チップの吸収体が検出部を備える場合、上記チップに備えられた吸収体表面において、染み出した液体による液面の変動がないために、より正確に分析することが可能なシステムを実現できる。 In addition, when the absorber of the chip includes a detection unit, the surface of the absorber provided in the chip has no fluctuation of the liquid level due to the leaked liquid, and therefore a system that can analyze more accurately realizable.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、液体を正確に定量および分析することが可能なチップ等を提供する。本発明は、例えば血液、尿等を定量および分析するチップに好適に利用することができる。 The present invention provides a chip or the like capable of accurately quantifying and analyzing a liquid. The present invention can be suitably used for a chip for quantifying and analyzing blood, urine, and the like, for example.
 1a、1b、1c ・・・チップ
 11 ・・・導入路
 12 ・・・開放路
 13 ・・・流路
 14 ・・・導入口
 15 ・・・空気穴
 21、22、23、24 ・・・吸収体
 41 ・・・第1の基板
 42 ・・・第2の基板
 50 ・・・分析装置
 51 ・・・発光素子
 52 ・・・受光素子
 53 ・・・分析部
 54 ・・・電流計測部
 55 ・・・電圧計測部
 56 ・・・インピーダンス計測部
 110 ・・・疎水性領域
 121 ・・・液体
 122、123 ・・・余分な液体
 135 ・・・反応部
 136 ・・・検出部
 500 ・・・分析システム
DESCRIPTION OF SYMBOLS 1a, 1b, 1c ... chip | tip 11 ... introduction path 12 ... open path 13 ... flow path 14 ... introduction port 15 ... air hole 21, 22, 23, 24 ... absorption Body 41 ・ ・ ・ first substrate 42 ・ ・ ・ second substrate 50 ・ ・ ・ analyzer 51 ・ ・ ・ light emitting element 52 ・ ・ ・ light receiving element 53 ・ ・ ・ analyzing unit 54 ・ ・ ・ current measuring unit 55 ・・ ・ Voltage measurement unit 56 ・ ・ ・ Impedance measurement unit 110 ・ ・ ・ Hydrophobic region 121 ・ ・ ・ Liquid 122, 123 ・ ・ ・ Excess liquid 135 ・ ・ ・ Reaction unit 136 ・ ・ ・ Detection unit 500 ・ ・ ・ Analysis system

Claims (8)

  1.  液体を移動させるための流路と、
     上記流路の一端側に一端が連結されている導入路であって、当該導入路の他端に上記液体を上記流路の内部へ導入するための導入口が備えられている導入路と、
     上記流路の他端側に一端が連結されている開放路であって、当該開放路の他端に大気開放されている空気穴を有する開放路と、
     上記流路の内部または上記開放路の内部に配置されているとともに、上記液体を吸収する吸収体と、を備えており、
     上記吸収体は、上記導入口から上記空気穴までを結ぶ経路において上記空気穴に近い表面に、上記吸収体の他の領域と比較して疎水性が高い疎水性領域を有していることを特徴とするチップ。
    A flow path for moving the liquid;
    An introduction path in which one end is connected to one end side of the flow path, and the other end of the introduction path includes an introduction port for introducing the liquid into the flow path; and
    An open path having one end connected to the other end side of the flow path, and having an air hole open to the atmosphere at the other end of the open path;
    The liquid absorber is disposed inside the flow path or the open path, and absorbs the liquid.
    The absorber has a hydrophobic region having a higher hydrophobicity than the other regions of the absorber on the surface close to the air hole in a path connecting the inlet to the air hole. A featured chip.
  2.  上記疎水性領域は、上記導入口から上記空気穴までを結ぶ経路において上記空気穴側から見た場合に、上記液体の移動経路の全体を覆うように形成されていることを特徴とする請求項1に記載のチップ。 The hydrophobic region is formed so as to cover the entire movement path of the liquid when viewed from the air hole side in a path connecting the introduction port to the air hole. The chip according to 1.
  3.  上記吸収体は、親水性の繊維によって形成されており、
     上記親水性の繊維の表面に対してフッ素系材料を塗布または化学蒸着することによって、上記疎水性領域が形成されていることを特徴とする請求項1または2に記載のチップ。
    The absorber is formed of hydrophilic fibers,
    3. The chip according to claim 1, wherein the hydrophobic region is formed by applying or chemical vapor-depositing a fluorine-based material on the surface of the hydrophilic fiber.
  4.  上記導入路と上記吸収体との間に、上記液体中に含まれる物質を検出するための検出部が備えられていることを特徴とする請求項1~3の何れか1項に記載のチップ。 The chip according to any one of claims 1 to 3, further comprising a detection unit for detecting a substance contained in the liquid between the introduction path and the absorber. .
  5.  上記吸収体は、上記液体中に含まれる物質を検出するための検出部を備えていることを特徴とする請求項1~3の何れか1項に記載のチップ。 The chip according to any one of claims 1 to 3, wherein the absorber includes a detection unit for detecting a substance contained in the liquid.
  6.  上記導入口から上記空気穴までを結ぶ経路において、上記導入口と上記検出部との間に、上記液体中に含まれる物質に所定の反応を行わせるための反応部を備えていることを特徴とする請求項4または5に記載のチップ。 In the path from the introduction port to the air hole, a reaction unit for causing a substance contained in the liquid to perform a predetermined reaction is provided between the introduction port and the detection unit. The chip according to claim 4 or 5.
  7.  請求項4~6の何れか1項に記載のチップを分析するための分析装置であって、
     上記チップが備える検出部が発する信号を受信する受信部と、
     上記信号に基づいて、上記チップに導入された液体中に含まれる物質を分析する分析部と、を備えていることを特徴とする分析装置。
    An analysis device for analyzing a chip according to any one of claims 4 to 6,
    A receiving unit that receives a signal emitted by a detection unit included in the chip;
    An analyzer that analyzes a substance contained in the liquid introduced into the chip based on the signal.
  8.  請求項4~6の何れか1項に記載のチップと、請求項7に記載の分析装置とを含むことを特徴とする分析システム。 An analysis system comprising the chip according to any one of claims 4 to 6 and the analyzer according to claim 7.
PCT/JP2013/072827 2012-09-19 2013-08-27 Chip, analysis device and analysis system WO2014045811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-206346 2012-09-19
JP2012206346A JP2015222177A (en) 2012-09-19 2012-09-19 Chip, analysis device and analysis system

Publications (1)

Publication Number Publication Date
WO2014045811A1 true WO2014045811A1 (en) 2014-03-27

Family

ID=50341134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072827 WO2014045811A1 (en) 2012-09-19 2013-08-27 Chip, analysis device and analysis system

Country Status (2)

Country Link
JP (1) JP2015222177A (en)
WO (1) WO2014045811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3775950A4 (en) * 2018-04-11 2022-11-09 Mars Sciences Limited Superparamagnetic particle imaging and its applications in quantitative multiplex stationary phase diagnostic assays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170840A (en) * 2005-12-19 2007-07-05 Asahi Kasei Corp Analysis device
JP2008309642A (en) * 2007-06-14 2008-12-25 Nec Corp Microchip and analytical method using the same
WO2009136477A1 (en) * 2008-05-07 2009-11-12 パナソニック株式会社 Biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170840A (en) * 2005-12-19 2007-07-05 Asahi Kasei Corp Analysis device
JP2008309642A (en) * 2007-06-14 2008-12-25 Nec Corp Microchip and analytical method using the same
WO2009136477A1 (en) * 2008-05-07 2009-11-12 パナソニック株式会社 Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3775950A4 (en) * 2018-04-11 2022-11-09 Mars Sciences Limited Superparamagnetic particle imaging and its applications in quantitative multiplex stationary phase diagnostic assays
US11585882B2 (en) 2018-04-11 2023-02-21 Mars Sciences Limited Superparamagnetic particle imaging and its applications in quantitative multiplex stationary phase diagnostic assays

Also Published As

Publication number Publication date
JP2015222177A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
US8252163B2 (en) Analysis apparatus for capillary electrophoresis
US20160139049A1 (en) Optical sensor and measuring apparatus for quantitatively detecting an analyte in a sample
MXPA97005535A (en) Carrier of diagnostic test independent of the volume and methods in which they are used to determine an analyst or substance that goes to anali
US20110027873A1 (en) Micro-nano fluidic biochip for assaying biological sample
CN1737566A (en) Analytical test strip with control zone
NO320085B1 (en) Diagnostic test device for determining an analyte from whole blood by means of a reagent system contained in the device, and method for determining an analyte by means thereof.
US7846716B2 (en) Microchip and analysis method using the same
JP2007248101A (en) Inspection instrument of liquid fluid and inspection method using it
KR20100053500A (en) Liquid fluid testing instrument and testing method
JP2022545722A (en) Devices and methods for evaluating fluid samples with single-use, multi-analyte consumables
US20150147769A1 (en) Method of testing sample and microfluidic device
WO2014045811A1 (en) Chip, analysis device and analysis system
JP5137007B2 (en) Microchip
US20060233667A1 (en) Joint-diagnostic spectroscopic and biosensor apparatus
JP2013210336A (en) Channel structure, channel chip and analyzer
JP2014092486A (en) Analysis chip and analysis device
TW201102654A (en) Assay device
CN102469969B (en) Test element for analyzing body fluid
JP2007132837A (en) Cell electrophysiological sensor and its manufacturing method
JPH09127106A (en) Liquid sample analyzing tool and analyzing method
JP4945709B2 (en) Liquid fluid inspection instrument and inspection method
KR20110110191A (en) System and method for analyzing a body fluid
WO2014149547A2 (en) Hybrid strip
US10782232B2 (en) Quality control material, system and method
JP2009174891A (en) Microchip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP