WO2014045644A1 - Illumination device and illumination lens - Google Patents

Illumination device and illumination lens Download PDF

Info

Publication number
WO2014045644A1
WO2014045644A1 PCT/JP2013/065277 JP2013065277W WO2014045644A1 WO 2014045644 A1 WO2014045644 A1 WO 2014045644A1 JP 2013065277 W JP2013065277 W JP 2013065277W WO 2014045644 A1 WO2014045644 A1 WO 2014045644A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
illumination
lens
illumination lens
Prior art date
Application number
PCT/JP2013/065277
Other languages
French (fr)
Japanese (ja)
Inventor
修 小野
英男 太田
横田 昌広
信雄 川村
高橋 健
大川 猛
修介 森田
西村 孝司
松田 秀三
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2014045644A1 publication Critical patent/WO2014045644A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Embodiment described here is related with the illuminating device and the lens for illumination used for this illuminating device.
  • the lighting device is required not only to illuminate the space but also to suppress glare.
  • a lighting device of a type that irradiates from the ceiling side to the floor side it has been required to suppress the light intensity leaking in the oblique side direction in which the angle from the vertical direction of the lighting device is greater than 60 degrees.
  • a lighting device that irradiates a specific area in front of the lighting device such as a desk light or a spotlight, light leaking in the oblique side surface direction is wasted, so that it is desired to block the light.
  • an illuminating device including a diffusion plate has been proposed in order to suppress the light intensity leaking in the oblique side surface direction.
  • a configuration has been proposed in which a plurality of walls facing the vertical direction are installed in front of the lighting device to suppress the light intensity leaking in the oblique side surface direction.
  • LEDs light emitting diodes
  • JP 04-267001 A Japanese Patent Laid-Open No. 04-87204 Japanese Patent Laid-Open No. 06-20503 Japanese Utility Model Publication No. 06-28725 JP 2003-264317 A JP 2005-228623 A
  • the LED light source In a normal desk light, light emitted from an LED light source with an angle ⁇ of about 60 degrees or more is not irradiated on the desk, and is wasted light.
  • the LED light source has directivity in which the luminous intensity is attenuated in proportion to cos ⁇ . Therefore, the amount of light flux with ⁇ of 60 degrees or more is about 20% of the amount of light flux emitted from the LED light source, which greatly deteriorates the light use efficiency of the desk light.
  • the LED light source is a very small light source and therefore has a very high luminance.
  • the desk light is often placed slightly above the eye level. Therefore, since the LED light source can be directly seen from the lateral direction, a great discomfort is given.
  • the object to be illuminated is a flat surface such as a floor or a desk
  • the present invention has been made in view of the above points, and its problems are to improve the light use efficiency, reduce unpleasant glare, and make the illuminance uniform. To provide a lens.
  • the illumination device includes a light source, and an illumination lens that receives the light emitted from the light source and controls the incident light to be emitted toward the irradiated surface.
  • the illumination lens has a recess formed in a lower central portion for receiving light from the light source, an outer upper surface for emitting the incident light, and an outer wall surface, and the recess has an inner upper surface and an inner surface. And at least part of the light incident on the inner wall surface from the light source is mainly refracted and emitted upward from the outer wall surface, and the light incident from the inner upper surface is mainly the Outgoes from the outer top surface.
  • FIG. 1 is a perspective view showing an illumination apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the illumination device along line AA in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a part of the illumination device.
  • FIG. 4 is an enlarged cross-sectional view illustrating a lens portion for explaining the lens action of the illumination lens in the illumination device.
  • FIG. 5 is a view showing a luminous intensity distribution of the illumination device according to the first embodiment.
  • FIG. 6 is an enlarged cross-sectional view illustrating a part of the lighting apparatus according to the second embodiment.
  • FIG. 7 is a view showing a luminous intensity distribution of the illumination device according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a part of the lighting apparatus according to the third embodiment.
  • FIG. 9 is an enlarged cross-sectional view illustrating a part of the illumination device according to the fourth embodiment.
  • FIG. 1 is a perspective view showing an appearance of the illumination device according to the first embodiment
  • FIG. 2 is a cross-sectional view of the illumination device along line AA in FIG. 1
  • FIG. 3 is an enlarged view of an illumination lens. It is sectional drawing shown.
  • the lighting device 10 covers a substrate 12, a plurality of light sources mounted on the substrate 12, for example, a plurality of LEDs 14, the substrate 12 and the light sources, and a plurality of LEDs. And a lens cover 18 having a plurality of illumination lenses 16.
  • the substrate 12 is formed in, for example, a thin disk shape.
  • a heat radiating plate 20 having substantially the same shape and dimensions as this substrate is provided and is in close contact with the substrate 12.
  • the plurality of LEDs 14 are arranged side by side at appropriate intervals over almost the entire surface of the substrate 12. The LED 14 is turned on by drive power generated by a drive circuit (not shown) connected to the substrate 12.
  • the LED 14 emits strong light in the normal direction perpendicular to the substrate 12, that is, the central axis direction of the LED, and when the angle from the normal direction is ⁇ , the light intensity in the side surface direction becomes weaker in proportion to cos ⁇ . It has the directivity to go. Therefore, when there is no illumination lens 16, the light distribution is such that light leaks even in an oblique side surface direction with an angle ⁇ of 60 degrees or more, and the user feels dazzling.
  • the lens cover 18 including the plurality of illumination lenses 16 is formed in a disk shape with a transparent resin such as polycarbonate or acrylic.
  • the peripheral edge of the lens cover 18 is engaged with and supported by the substrate 12 and the heat sink 20. Accordingly, the lens cover 18 faces the substrate 12 and the plurality of LEDs 14 with a gap therebetween, and covers the plurality of LEDs 14.
  • the plurality of lenses 16 formed integrally with the lens cover 18 are disposed to face the front surfaces of the corresponding LEDs 14, respectively.
  • the unit of one LED 14 and the lens 16 has a shape obtained by rotating the cross section shown in FIGS. 2 and 3 with respect to the central axis.
  • each lens 16 that controls incident light and emits it toward the irradiated surface is formed in a substantially truncated cone shape or a cylindrical shape, and is placed on the substrate 12 and the LED 14. Are arranged coaxially with the LED 14.
  • the lens 16 includes a concave portion 24 in which light from the LED 14 enters a central portion on the lower surface side facing the LED 14, an outer upper surface 22a extending substantially parallel to the substrate 12, and a concave portion extending from the outer upper surface 22a toward the lens lower end surface 22c. 24 and an outer wall surface 22b located around 24.
  • the outer wall surface 22b is formed in a substantially truncated cone shape having a small diameter on the LED 14 side, for example.
  • the light that enters the lens 16 from the recess 24 is emitted from the outer upper surface 22a and the outer wall surface 22b.
  • the recess 24 is opposed to the LED 14 with a gap and is substantially parallel to the substrate 12 and has a substantially circular inner upper surface 24a, and a substantially frustoconical shape extending from the periphery of the inner upper surface 24a to the lower end surface 22c of the lens 16. And an inner wall surface 24b.
  • the recess 24 is formed and arranged coaxially with the optical axis or the central axis of the LED 14.
  • the inner upper surface 24a and the inner wall surface 24b defining the recess 24 when the angle formed with the direction perpendicular to the LED 14 (normal direction) is ⁇ , at least a portion located in a region where ⁇ is 60 degrees or more, The inner wall surface 24b is used.
  • the light beam incident from the LED 14 draws a locus as shown in FIG. That is, at least a part or all of the light that has entered the lens 16 from the inner wall surface 24b is refracted by the inner wall surface 24b and the outer wall surface 22b, bent upward (in a direction away from the substrate 12), and emitted.
  • the light that has entered the lens 16 from the inner upper surface 24a is refracted from the inner upper surface 24a and the outer upper surface 22a and is emitted upward.
  • the angles of the inner wall surface 24b and the outer wall surface 22b of the lens 16 are adjusted so that light incident from the inner wall surface 24b is bent upward by about 20 to 30 degrees.
  • the lens 16 mainly functions to deflect light emitted from the LEDs 14 in the oblique side surface direction with an angle ⁇ of 60 degrees or more so that the angle ⁇ is within 60 degrees. Further, the lens 16 functions to emit light incident from the inner upper surface 24a by following the incident angle as it is.
  • the light distribution of the illumination device 10 has the light intensity distribution shown in FIG. 5, and the light emitted in the lateral direction with the angle ⁇ of 60 degrees or more can be greatly reduced. Therefore, the light that is not irradiated on the desk can be significantly reduced, and the illumination device 10 that is not dazzling when viewed from the side can be obtained.
  • the emitted light becomes a spot beam concentrated in the substantially vertical direction, and leaks in the lateral direction with an angle ⁇ of 60 degrees or more. Although light is lost, it is difficult to realize a light intensity distribution in which the irradiation angle is expanded to about 90 degrees as shown in FIG.
  • the incident light is refracted and emitted from the outer wall surface 22b of the lens 16 as shown in the present embodiment.
  • a lens having a function to be used is preferable.
  • the illuminating lens capable of improving the use efficiency of the light emitted to the irradiation region and reducing unpleasant glare, and the illuminating device including the same Can be provided.
  • LED was used as a light source, it is good also as a structure using single LED.
  • these LEDs may be arranged linearly, in an annular shape, or arranged in a lattice shape.
  • FIG. 6 is an enlarged cross-sectional view showing one lens unit of the illumination device 10 according to the second embodiment.
  • the basic configuration of the illumination device 10 is the same as that of the first embodiment, and the shape of the illumination lens 16 is partially different.
  • the inner upper surface 24a of the lens 16 is not a flat surface, but forms a convex portion 26 protruding slightly toward the outer upper surface 22a.
  • the diverging action of the light beam passing through the convex portion 26 can be strengthened, and as shown in FIG. 7, the luminous intensity distribution is such that the luminous intensity at the angle ⁇ of 45 degrees is the maximum luminous intensity. That is, the lens 16 is formed so that the angle ⁇ at which the maximum luminous intensity is between 20 and 60 degrees, and the illuminance on the floor surface or the desk surface to be irradiated is shifted from the position directly below the lighting device 10. However, it is possible to obtain a substantially uniform illuminance.
  • the illuminance distribution on the surface to be irradiated by a normal LED light source is a light intensity distribution proportional to cos ⁇ , so that the central light intensity is large and the illuminance at the center of the surface to be irradiated is large due to the short irradiation distance.
  • the result is a non-uniform illumination distribution that gets darker.
  • the illuminating device 10 of this embodiment since light distribution becomes the light intensity distribution mentioned above, this illuminance distribution can be compensated and a substantially uniform illuminance distribution can be obtained.
  • the light use efficiency and the glare reduction are the same as in the first embodiment because the light emitted in the lateral direction is greatly reduced as in the first embodiment. It goes without saying that the effect of can be obtained.
  • the inner upper surface 24a of the lens 16 has a convex shape that is convex upward.
  • the outer upper surface 22a of the lens 16 may have a concave shape that is recessed toward the LED 14 side.
  • the divergent action can be strengthened. Therefore, as in the third embodiment shown in FIG. 8, the inner upper surface 24a of the illumination lens 16 may be a flat surface and the outer upper surface 22a may be recessed.
  • the inner wall surface 24 b of the illumination lens 16 is not limited to a truncated cone-shaped tapered surface, and may be a curved surface.
  • the third and fourth embodiments described above it is possible to obtain the same operational effects as those of the first embodiment described above.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the number and type of light sources are not particularly specified, and the action of the present invention can be applied to any light source having strong directivity in the front.
  • the entire lens surface or at least a part of it may be subjected to embossing or knurling.
  • a thin milky white may be obtained by mixing a slight diffusion filler into the resin material forming the lens cover and the illumination lens.
  • the lens is densely formed with wrinkles or knurls, or if the lens is dark milky white, the lens effect deteriorates, so it is necessary to keep it to the minimum necessary.
  • the substrate and the lens cover of the lighting device are not limited to a circular shape, and various shapes such as a rectangular shape, a polygonal shape, and an elliptical shape can be selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

According to an embodiment, an illumination device is provided with a light source (14) and an illumination lens (16) for introducing light emitted from the light source, controlling the introduced light, and emitting the light towards a surface being irradiated. The illumination lens has a concave part (24) to which the light from the light source and which is formed in the center part of the lower side, an outside upper surface (22a) for emitting the introduced light, and an outside wall surface (22b). The concave part (24) is formed by an inside upper surface (24a) and an inside wall surface (24b). At least a part of the light introduced from the light source to the inside wall surface is refracted and emitted upward toward the outside upper surface primarily at the outside wall surface, and light introduced from the inside upper surface is primarily emitted from the outside upper surface.

Description

照明装置および照明用レンズIllumination device and illumination lens
 ここで述べる実施形態は、照明装置およびこの照明装置に用いる照明用レンズに関する。 Embodiment described here is related with the illuminating device and the lens for illumination used for this illuminating device.
 照明装置には、空間を照明するだけでなく、眩しさを抑制することが求められている。特に、天井側から床側へ照射するタイプの照明装置では、照明装置の鉛直方向からの角度が60度より大きい斜め側面方向へ漏れる光度を抑制することが求められてきた。また、デスクライトやスポットライトのように照明装置の前方の特定領域を照射する照明装置においても、斜め側面方向へ漏れる光は無駄となるため、遮光することが望まれている。 The lighting device is required not only to illuminate the space but also to suppress glare. In particular, in a lighting device of a type that irradiates from the ceiling side to the floor side, it has been required to suppress the light intensity leaking in the oblique side direction in which the angle from the vertical direction of the lighting device is greater than 60 degrees. Further, in a lighting device that irradiates a specific area in front of the lighting device, such as a desk light or a spotlight, light leaking in the oblique side surface direction is wasted, so that it is desired to block the light.
 そこで、斜め側面方向へ漏れる光度を抑制するために拡散板を備える照明装置が提案されている。また、照明装置の前方に鉛直方向を向いた壁を複数設置して斜め側面方向へ漏れる光度を抑制する構成が提案されている。 Therefore, an illuminating device including a diffusion plate has been proposed in order to suppress the light intensity leaking in the oblique side surface direction. In addition, a configuration has been proposed in which a plurality of walls facing the vertical direction are installed in front of the lighting device to suppress the light intensity leaking in the oblique side surface direction.
 近年、従来の蛍光灯や白熱電球に代わって発光ダイオード(LED)などの点状の光源が使われはじめている。LEDにレンズを取り付け、側面方向に出る光を前方へ全反射させる構成が提案されている。 In recent years, point-like light sources such as light emitting diodes (LEDs) have begun to be used in place of conventional fluorescent lamps and incandescent lamps. There has been proposed a configuration in which a lens is attached to an LED so that light emitted in the lateral direction is totally reflected forward.
特開平04-267001号公報JP 04-267001 A 特開平04-87204号公報Japanese Patent Laid-Open No. 04-87204 特開平06-20503号公報Japanese Patent Laid-Open No. 06-20503 実公平06-28725号公報Japanese Utility Model Publication No. 06-28725 特開2003-264317号公報JP 2003-264317 A 特開2005-228623号公報JP 2005-228623 A
 通常のデスクライトでは、LED光源から出射する光のうちθが60度程度以上の角度をもって出射する光は机上には照射されず、無駄な光となる。一方、上述したようにLED光源は、cosθに比例して光度が減衰する指向性を有している。従って、θが60度以上の光束量は、LED光源から出射する光束量の約20%あり、デスクライトの光の利用効率を大幅に劣化させている。 In a normal desk light, light emitted from an LED light source with an angle θ of about 60 degrees or more is not irradiated on the desk, and is wasted light. On the other hand, as described above, the LED light source has directivity in which the luminous intensity is attenuated in proportion to cos θ. Therefore, the amount of light flux with θ of 60 degrees or more is about 20% of the amount of light flux emitted from the LED light source, which greatly deteriorates the light use efficiency of the desk light.
 また、LED光源は、白熱電球や蛍光灯とは異なり、非常に小さな光源であるため、輝度が非常に高い。通常、デスクライトは、目の高さよりやや上の位置に置かれることが多い。よって、横方向からLED光源が直接見えてしまうため、大きな不快感を与えることとなる。 Also, unlike incandescent bulbs and fluorescent lamps, the LED light source is a very small light source and therefore has a very high luminance. Usually, the desk light is often placed slightly above the eye level. Therefore, since the LED light source can be directly seen from the lateral direction, a great discomfort is given.
 また、照明する対象が床や机のように平面である場合は、照明装置の直下に対してやや斜め方向にずれた場合でも照度を一定とする配光分布が望ましい。 In addition, when the object to be illuminated is a flat surface such as a floor or a desk, it is desirable to have a light distribution that keeps the illuminance constant even when the object is slightly inclined with respect to the position directly below the lighting device.
 この発明は以上の点を鑑みてなされたもので、その課題は、光の利用効率を向上させ、不快なグレアを軽減させ、照度を均一とすることができる照明装置および照明装置に用いる照明用レンズを提供することにある。 The present invention has been made in view of the above points, and its problems are to improve the light use efficiency, reduce unpleasant glare, and make the illuminance uniform. To provide a lens.
 実施形態によれば、照明装置は、光源と、前記光源から出射した光を入光し、入光した光を制御し被照射面に向かって出射させる照明用レンズと、を備え、 
 前記照明用レンズは、下側中央部に形成され前記光源からの光が入光する凹部と、入光した光を出射する外側上面と、外側壁面とを有し、前記凹部は内側上面と内側壁面とにより形成され、前記光源から前記内側壁面に入光した光の少なくとも一部は、主に前記外側壁面から上方に屈折して出射し、前記内側上面より入光した光は、主に前記外側上面より出射する。
According to the embodiment, the illumination device includes a light source, and an illumination lens that receives the light emitted from the light source and controls the incident light to be emitted toward the irradiated surface.
The illumination lens has a recess formed in a lower central portion for receiving light from the light source, an outer upper surface for emitting the incident light, and an outer wall surface, and the recess has an inner upper surface and an inner surface. And at least part of the light incident on the inner wall surface from the light source is mainly refracted and emitted upward from the outer wall surface, and the light incident from the inner upper surface is mainly the Outgoes from the outer top surface.
図1は、第1の実施形態に係る照明装置を示す斜視図。FIG. 1 is a perspective view showing an illumination apparatus according to the first embodiment. 図2は、図1の線A-Aに沿った照明装置の断面図。FIG. 2 is a cross-sectional view of the illumination device along line AA in FIG. 図3は、前記照明装置の一部を拡大して示す断面図。FIG. 3 is an enlarged cross-sectional view showing a part of the illumination device. 図4は、前記照明装置における照明用レンズのレンズ作用を説明するためのレンズ部分を拡大して示す断面図。FIG. 4 is an enlarged cross-sectional view illustrating a lens portion for explaining the lens action of the illumination lens in the illumination device. 図5は、第1の実施形態に係る照明装置の光度分布を示す図。FIG. 5 is a view showing a luminous intensity distribution of the illumination device according to the first embodiment. 図6は、第2の実施形態に係る照明装置の一部を拡大して示す断面図。FIG. 6 is an enlarged cross-sectional view illustrating a part of the lighting apparatus according to the second embodiment. 図7は、第2の実施形態に係る照明装置の光度分布を示す図。FIG. 7 is a view showing a luminous intensity distribution of the illumination device according to the second embodiment. 図8は、第3の実施形態に係る照明装置の一部を拡大して示す断面図。FIG. 8 is an enlarged cross-sectional view of a part of the lighting apparatus according to the third embodiment. 図9は、第4の実施形態に係る照明装置の一部を拡大して示す断面図。FIG. 9 is an enlarged cross-sectional view illustrating a part of the illumination device according to the fourth embodiment.
 以下、図面を参照しながら、種々の実施形態に係る照明装置について説明する。 
(第1の実施形態) 
 図1は、第1の実施形態に係る照明装置の外観を示す斜視図、図2は、図1の線A-Aに沿った照明装置の断面図、図3は、照明用のレンズを拡大して示す断面図である。
Hereinafter, illumination devices according to various embodiments will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing an appearance of the illumination device according to the first embodiment, FIG. 2 is a cross-sectional view of the illumination device along line AA in FIG. 1, and FIG. 3 is an enlarged view of an illumination lens. It is sectional drawing shown.
 図1および図2に示すように、照明装置10は、基板12と、基板12上に実装された複数の光源、例えば、複数のLED14と、基板12および光源を覆っているとともに、複数のLEDに対する複数の照明用のレンズ16を有するレンズカバー18と、を備えている。 As shown in FIGS. 1 and 2, the lighting device 10 covers a substrate 12, a plurality of light sources mounted on the substrate 12, for example, a plurality of LEDs 14, the substrate 12 and the light sources, and a plurality of LEDs. And a lens cover 18 having a plurality of illumination lenses 16.
 基板12は、例えば、薄い円板形状に形成されている。基板12の裏面側には、この基板とほぼ同一形状および同一寸法の放熱板20が設けられ、基板12に密着している。複数のLED14は、基板12のほぼ全面に亘って、互いに適当な間隔を置いて並んで配置されている。LED14は、基板12に接続された図示しない駆動回路により発生する駆動電力により点灯される。 The substrate 12 is formed in, for example, a thin disk shape. On the back side of the substrate 12, a heat radiating plate 20 having substantially the same shape and dimensions as this substrate is provided and is in close contact with the substrate 12. The plurality of LEDs 14 are arranged side by side at appropriate intervals over almost the entire surface of the substrate 12. The LED 14 is turned on by drive power generated by a drive circuit (not shown) connected to the substrate 12.
 LED14は、基板12に垂直な法線方向、すなわちLEDの中心軸方向に強い光を照射し、法線方向からの角度をθとするとき、cosθに比例して側面方向への光度が弱くなっていく指向性を有している。従って、照明用のレンズ16が無い場合は、角度θが60度以上の斜め側面方向にも光が漏れて眩しさを感じる配光分布となる。 The LED 14 emits strong light in the normal direction perpendicular to the substrate 12, that is, the central axis direction of the LED, and when the angle from the normal direction is θ, the light intensity in the side surface direction becomes weaker in proportion to cos θ. It has the directivity to go. Therefore, when there is no illumination lens 16, the light distribution is such that light leaks even in an oblique side surface direction with an angle θ of 60 degrees or more, and the user feels dazzling.
 複数の照明用のレンズ16を含むレンズカバー18は、例えば、ポリカーボネートやアクリル等の透明樹脂により円板状に形成されている。レンズカバー18の周縁部は、基板12および放熱板20に係合し支持されている。これにより、レンズカバー18は、基板12および複数のLED14に隙間を置いて対向し、複数のLED14を覆っている。 The lens cover 18 including the plurality of illumination lenses 16 is formed in a disk shape with a transparent resin such as polycarbonate or acrylic. The peripheral edge of the lens cover 18 is engaged with and supported by the substrate 12 and the heat sink 20. Accordingly, the lens cover 18 faces the substrate 12 and the plurality of LEDs 14 with a gap therebetween, and covers the plurality of LEDs 14.
 レンズカバー18に一体に形成されている複数のレンズ16は、それぞれ対応するLED14の前面に対向して配置されている。1つのLED14およびレンズ16のユニットは、図2および図3に示す断面を中心軸に対して回転させた形状を有している。 The plurality of lenses 16 formed integrally with the lens cover 18 are disposed to face the front surfaces of the corresponding LEDs 14, respectively. The unit of one LED 14 and the lens 16 has a shape obtained by rotating the cross section shown in FIGS. 2 and 3 with respect to the central axis.
 図2および図3に示すように、入光した光を制御し被照射面に向かって出射させる各レンズ16は、ほぼ円錐台形状あるいは円柱形状に形成され、基板12およびLED14の上部に被せられ、LED14と同軸的に配置されている。レンズ16は、LED14と対向する下面側中央部にLED14からの光が入光する凹部24と、基板12とほぼ平行に延びる外側上面22aと、外側上面22aからレンズ下端面22cに向かって延び凹部24の周囲に位置する外側壁面22bと、を有している。本実施形態において、外側壁面22bは、例えば、LED14側が小径となるほぼ円錐台形状に形成されている。凹部24からレンズ16に入光した光は、外側上面22aおよび外側壁面22bから出射する。 As shown in FIGS. 2 and 3, each lens 16 that controls incident light and emits it toward the irradiated surface is formed in a substantially truncated cone shape or a cylindrical shape, and is placed on the substrate 12 and the LED 14. Are arranged coaxially with the LED 14. The lens 16 includes a concave portion 24 in which light from the LED 14 enters a central portion on the lower surface side facing the LED 14, an outer upper surface 22a extending substantially parallel to the substrate 12, and a concave portion extending from the outer upper surface 22a toward the lens lower end surface 22c. 24 and an outer wall surface 22b located around 24. In the present embodiment, the outer wall surface 22b is formed in a substantially truncated cone shape having a small diameter on the LED 14 side, for example. The light that enters the lens 16 from the recess 24 is emitted from the outer upper surface 22a and the outer wall surface 22b.
 また、凹部24は、LED14と隙間を置いて対向しているとともに基板12とほぼ平行でほぼ円形の内側上面24aと、内側上面24aの周縁からレンズ16の下端面22cまで延びるほぼ円錐台形状の内側壁面24bと、により形成されている。凹部24は、LED14の光軸あるいは中心軸と、同軸的に形成および配置されている。 The recess 24 is opposed to the LED 14 with a gap and is substantially parallel to the substrate 12 and has a substantially circular inner upper surface 24a, and a substantially frustoconical shape extending from the periphery of the inner upper surface 24a to the lower end surface 22c of the lens 16. And an inner wall surface 24b. The recess 24 is formed and arranged coaxially with the optical axis or the central axis of the LED 14.
 凹部24を規定している内側上面24aおよび内側壁面24bにおいて、LED14に垂直な方向(法線方向)と成す角度をθとするとき、少なくともθが60度以上となる領域に位置する部分を、内側壁面24bとしている。 In the inner upper surface 24a and the inner wall surface 24b defining the recess 24, when the angle formed with the direction perpendicular to the LED 14 (normal direction) is θ, at least a portion located in a region where θ is 60 degrees or more, The inner wall surface 24b is used.
 このように構成された照明装置10においては、LED14から入光した光線は、レンズ16により図4に示したような軌跡を描く。すなわち、内側壁面24bよりレンズ16に入光した少なくとも一部あるいは全部の光は、内側壁面24bと外側壁面22bで屈折して外側壁面22bから上方に(基板12から離れる方向)曲げられ出射する。内側上面24aよりレンズ16に入光した光は、内側上面24aおよび外側上面22aより屈折して上方へ出射する。 In the illuminating device 10 configured in this way, the light beam incident from the LED 14 draws a locus as shown in FIG. That is, at least a part or all of the light that has entered the lens 16 from the inner wall surface 24b is refracted by the inner wall surface 24b and the outer wall surface 22b, bent upward (in a direction away from the substrate 12), and emitted. The light that has entered the lens 16 from the inner upper surface 24a is refracted from the inner upper surface 24a and the outer upper surface 22a and is emitted upward.
 本実施形態では、内側壁面24bから入光した光は、20~30度程度上方に曲げるようにレンズ16の内側壁面24bおよび外側壁面22bの角度を調整している。レンズ16は、LED14から主に角度θが60度以上で斜め側面方向に出射される光を角度θが60度以内に入るよう偏向するように機能する。また、レンズ16は、内側上面24aから入光する光を、入射角度をそのまま踏襲して出射するように機能する。レンズ16のこのような作用により、照明装置10の配光は、図5に示す光度分布となり、角度θが60度以上の横方向に出射する光を大幅に削減することができる。そのため、机上に照射されない光を大幅に削減でき、また、横から見ても眩しくない照明装置10とすることができる。 In this embodiment, the angles of the inner wall surface 24b and the outer wall surface 22b of the lens 16 are adjusted so that light incident from the inner wall surface 24b is bent upward by about 20 to 30 degrees. The lens 16 mainly functions to deflect light emitted from the LEDs 14 in the oblique side surface direction with an angle θ of 60 degrees or more so that the angle θ is within 60 degrees. Further, the lens 16 functions to emit light incident from the inner upper surface 24a by following the incident angle as it is. With such an action of the lens 16, the light distribution of the illumination device 10 has the light intensity distribution shown in FIG. 5, and the light emitted in the lateral direction with the angle θ of 60 degrees or more can be greatly reduced. Therefore, the light that is not irradiated on the desk can be significantly reduced, and the illumination device 10 that is not dazzling when viewed from the side can be obtained.
 従来技術に示されたようなLEDから側面方向に出る光を全反射させるレンズでは、出射する光は、ほぼ鉛直方向に集約されたスポット光線となり、角度θが60度以上の横方向への漏れ光は無くなるものの図5に示すような照射角度が90度程度に拡がった光度分布を実現することが難しい。照射角度を集約せずに角度θが60度以上の横方向への漏れ光を無くすには、本実施形態に示したように、入光した光をレンズ16の外側壁面22bから屈折して出射させる機能をもったレンズが好ましい。すなわち、本実施形態に係る照明装置および照明用レンズによれば、照射領域に出射される光の利用効率を向上でき、かつ、不快なグレアを軽減させた照明用レンズおよびこれを備えた照明装置を提供することができる。 In a lens that totally reflects the light emitted from the LED in the lateral direction as shown in the prior art, the emitted light becomes a spot beam concentrated in the substantially vertical direction, and leaks in the lateral direction with an angle θ of 60 degrees or more. Although light is lost, it is difficult to realize a light intensity distribution in which the irradiation angle is expanded to about 90 degrees as shown in FIG. In order to eliminate the leakage light in the lateral direction where the angle θ is 60 degrees or more without consolidating the irradiation angles, the incident light is refracted and emitted from the outer wall surface 22b of the lens 16 as shown in the present embodiment. A lens having a function to be used is preferable. That is, according to the illuminating device and the illuminating lens according to the present embodiment, the illuminating lens capable of improving the use efficiency of the light emitted to the irradiation region and reducing unpleasant glare, and the illuminating device including the same Can be provided.
 なお、本実施形態では、光源として複数のLEDを用いたが、単一のLEDを用いた構成としてもよい。また、複数LEDを用いる場合、これらのLEDを直線状に、あるいは円環状に配置し、あるいは、格子状に配列してもよい。 In addition, in this embodiment, although several LED was used as a light source, it is good also as a structure using single LED. When a plurality of LEDs are used, these LEDs may be arranged linearly, in an annular shape, or arranged in a lattice shape.
 次に、他の実施形態に係る照明装置について説明する。後述する他の実施形態において、前述した第1の実施形態と同一の部分には同一の参照符号を付してその詳細な説明を省略する。 Next, lighting devices according to other embodiments will be described. In other embodiments to be described later, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
(第2の実施形態) 
 図6は、第2の実施形態に係る照明装置10の1つのレンズユニットを拡大して示す断面図である。照明装置10の基本的な構成は第1の実施形態と同じであり、照明用レンズ16の形状が一部相違している。第2の実施形態では、レンズ16の内側上面24aは平面ではなく、やや外側上面22a側に出っ張った凸状部26を成している。
(Second Embodiment)
FIG. 6 is an enlarged cross-sectional view showing one lens unit of the illumination device 10 according to the second embodiment. The basic configuration of the illumination device 10 is the same as that of the first embodiment, and the shape of the illumination lens 16 is partially different. In the second embodiment, the inner upper surface 24a of the lens 16 is not a flat surface, but forms a convex portion 26 protruding slightly toward the outer upper surface 22a.
 この構成によれば、凸状部26を通過する光線の発散作用を強めることができ、図7に示すように、角度θが45度の光度が最大光度となる光度分布となる。すなわち、最大光度となる角度θが20~60度の間になるようにレンズ16を形成し、照射される床面あるいは机面の平面上の照度が照明装置10の直下に対してずれた位置でも略均一な照度を得られるようにしている。 According to this configuration, the diverging action of the light beam passing through the convex portion 26 can be strengthened, and as shown in FIG. 7, the luminous intensity distribution is such that the luminous intensity at the angle θ of 45 degrees is the maximum luminous intensity. That is, the lens 16 is formed so that the angle θ at which the maximum luminous intensity is between 20 and 60 degrees, and the illuminance on the floor surface or the desk surface to be irradiated is shifted from the position directly below the lighting device 10. However, it is possible to obtain a substantially uniform illuminance.
 通常のLED光源による被照射面の照度分布は、cosθに比例した光度分布のため中心光度が大きいことと、照射距離が近いこととが相まって、被照射面の中心部の照度が大きく、端にいくほど暗くなる不均一な照度分布となる。これに対して、本実施形態の照明装置10によれば、配光が上述した光度分布となるため、この照度分布を補償しほぼ均一な照度分布を得ることができる。 The illuminance distribution on the surface to be irradiated by a normal LED light source is a light intensity distribution proportional to cos θ, so that the central light intensity is large and the illuminance at the center of the surface to be irradiated is large due to the short irradiation distance. The result is a non-uniform illumination distribution that gets darker. On the other hand, according to the illuminating device 10 of this embodiment, since light distribution becomes the light intensity distribution mentioned above, this illuminance distribution can be compensated and a substantially uniform illuminance distribution can be obtained.
 なお、第2の実施形態においても、光の利用効率およびグレア低減については、第1の実施形態と同様に横方向に出射する光を大幅に削減しているため、第1の実施形態と同様の効果が得られることは言うまでもない。 Also in the second embodiment, the light use efficiency and the glare reduction are the same as in the first embodiment because the light emitted in the lateral direction is greatly reduced as in the first embodiment. It goes without saying that the effect of can be obtained.
 また、第2の実施形態においては、レンズ16の内側上面24aを上方に向かって凸となる凸形状としているが、代わりに、レンズ16の外側上面22aをLED14側に凹んだ凹形状としても同様に発散作用を強めることができる。そのため、図8に示す第3の実施形態のように、照明用レンズ16の内側上面24aを平面とし、外側上面22aを凹んだ形状としてもよい。 In the second embodiment, the inner upper surface 24a of the lens 16 has a convex shape that is convex upward. Alternatively, the outer upper surface 22a of the lens 16 may have a concave shape that is recessed toward the LED 14 side. The divergent action can be strengthened. Therefore, as in the third embodiment shown in FIG. 8, the inner upper surface 24a of the illumination lens 16 may be a flat surface and the outer upper surface 22a may be recessed.
 図9に示す第4の実施形態のように、照明用レンズ16の内側壁面24bは、円錐台形状のテーパ面に限らず、曲面形状としてもよい。 
 上述した第3および第4の実施形態においても、前述した第1の実施形態と同様の作用効果を得ることができる。
As in the fourth embodiment shown in FIG. 9, the inner wall surface 24 b of the illumination lens 16 is not limited to a truncated cone-shaped tapered surface, and may be a curved surface.
In the third and fourth embodiments described above, it is possible to obtain the same operational effects as those of the first embodiment described above.
 本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 例えば、光源の数や種類を特に規定するものではなく、前方に強い指向性のある光源であれば本発明の作用を適用することができる。また、レンズによる色ムラや輝度ムラをぼかすため、レンズ表面全体あるいは少なくとも一部にシボ加工やローレット加工を施しても良い。また、レンズカバーおよび照明用レンズを形成する樹脂材料に若干の拡散フィラを混ぜて薄い乳白としてもよい。ただし、レンズにシボやローレットを密に形成し、あるいは、レンズを濃い乳白とすると、レンズ効果が劣化するため、必要最小限に留めることが必要である。照明装置の基板およびレンズカバーは、円形に限らず、矩形状、多角形形状、楕円形状等、種々の形状を選択可能である。
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
For example, the number and type of light sources are not particularly specified, and the action of the present invention can be applied to any light source having strong directivity in the front. In addition, in order to blur color unevenness and luminance unevenness due to the lens, the entire lens surface or at least a part of it may be subjected to embossing or knurling. Further, a thin milky white may be obtained by mixing a slight diffusion filler into the resin material forming the lens cover and the illumination lens. However, if the lens is densely formed with wrinkles or knurls, or if the lens is dark milky white, the lens effect deteriorates, so it is necessary to keep it to the minimum necessary. The substrate and the lens cover of the lighting device are not limited to a circular shape, and various shapes such as a rectangular shape, a polygonal shape, and an elliptical shape can be selected.

Claims (10)

  1.  光源と、前記光源から出射した光を入光し、入光した光を制御し被照射面に向かって出射させる照明用レンズと、を備え、
     前記照明用レンズは、下側中央部に形成され前記光源からの光が入光する凹部と、入光した光を出射する外側上面と、外側壁面とを有し、前記凹部は内側上面と内側壁面とにより形成され、前記光源から前記内側壁面に入光した光の少なくとも一部は、主に前記外側壁面から上方に屈折して出射し、前記内側上面より入光した光は、主に前記外側上面より出射することを特徴とする照明装置。
    A light source and an illumination lens that receives light emitted from the light source, controls the incident light, and emits the light toward the irradiated surface,
    The illumination lens has a recess formed in a lower central portion for receiving light from the light source, an outer upper surface for emitting the incident light, and an outer wall surface, and the recess has an inner upper surface and an inner surface. At least part of the light incident on the inner wall surface from the light source is mainly refracted and emitted upward from the outer wall surface, and the light incident from the inner upper surface is mainly An illumination device that emits light from an outer upper surface.
  2.  前記照明用レンズは、前記光源に垂直な方向となす角度をθとするとき、少なくともθが60度以上の横方向に向かう光線の一部をθが60度以内に屈折して前記外側壁面から出射させることを特徴とする請求項1に記載の照明装置。 The illumination lens refracts a part of a light beam traveling in the lateral direction at least θ of 60 degrees or more when θ is an angle perpendicular to the light source, and θ is within 60 degrees. The illumination device according to claim 1, wherein the illumination device emits light.
  3.  前記光源に垂直な方向となす角度をθとするとき、前記照明用レンズは、最大光度を与える角度θが20度から60度範囲の斜め方向となるように、前記外側上面より出射される光を拡散することを特徴とする請求項2に記載の照明装置。 When the angle perpendicular to the light source is θ, the illumination lens emits light from the outer upper surface so that the angle θ giving the maximum luminous intensity is an oblique direction in the range of 20 degrees to 60 degrees. The illuminating device according to claim 2, wherein the illuminating device diffuses.
  4.  前記内側上面の少なくとも一部が前記外側上面に向かって凸形状に形成されていることを特徴とする請求項1ないし3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, wherein at least a part of the inner upper surface is formed in a convex shape toward the outer upper surface.
  5.  前記外側上面の少なくとも一部が凹形状に形成されることを特徴とする請求項1ないし3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, wherein at least a part of the outer upper surface is formed in a concave shape.
  6.  前記照明用レンズの少なくとも一部の表面にシボが形成されていることを特徴とする請求項1ないし3のいずれか1項に記載の照明装置。 4. The illumination device according to claim 1, wherein a texture is formed on at least a part of the surface of the illumination lens.
  7.  前記照明用レンズの少なくとも一部の表面にローレット加工が施されていることを特徴とする請求項1ないし3に記載の照明装置。 4. The illumination device according to claim 1, wherein a knurling process is applied to at least a part of the surface of the illumination lens.
  8.  前記照明用レンズは、少なくとも一部に散乱フィラを含有していることを特徴とする請求項1ないし3のいずれか1項に記載の照明装置。 4. The illumination device according to claim 1, wherein the illumination lens contains a scattering filler at least in part.
  9.  光源から出射した光を入光し、入光した光を制御し被照射面に向かって出射させる照明用レンズであって、
     下側中央部に形成され前記光源からの光が入光する凹部と、入光した光を出射する外側上面と、外側壁面とを有し、前記凹部は、前記光源に対向する内側上面と内側壁面とにより形成され、前記光源から前記内側壁面に入光した光の少なくとも一部は、主に前記外側壁面から上方に屈折して出射し、前記内側上面より入光した光は、主に前記外側上面より出射することを特徴とする照明用レンズ。
    An illumination lens that receives light emitted from a light source, controls the incident light, and emits the light toward an irradiated surface.
    A recess formed in the lower central portion for receiving light from the light source, an outer upper surface for emitting the incident light, and an outer wall surface, the recess having an inner upper surface and an inner surface facing the light source At least part of the light incident on the inner wall surface from the light source is mainly refracted and emitted upward from the outer wall surface, and the light incident from the inner upper surface is mainly An illumination lens that emits light from an outer upper surface.
  10.  前記光源に垂直な方向となす角度をθとするとき、少なくともθが60度以上の横方向に向かう光線の一部をθが60度以内に屈折して前記外側壁面から出射させることを特徴とする請求項9に記載の照明用レンズ。 When θ is an angle with respect to a direction perpendicular to the light source, at least θ is partially refracted within 60 degrees in the lateral direction where θ is 60 degrees or more and emitted from the outer wall surface. The illumination lens according to claim 9.
PCT/JP2013/065277 2012-09-21 2013-05-31 Illumination device and illumination lens WO2014045644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208260 2012-09-21
JP2012208260A JP2014063651A (en) 2012-09-21 2012-09-21 Illuminating device and lens for illumination

Publications (1)

Publication Number Publication Date
WO2014045644A1 true WO2014045644A1 (en) 2014-03-27

Family

ID=50340976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065277 WO2014045644A1 (en) 2012-09-21 2013-05-31 Illumination device and illumination lens

Country Status (2)

Country Link
JP (1) JP2014063651A (en)
WO (1) WO2014045644A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050444B (en) * 2019-02-01 2021-04-09 靳鹏 Method for simulating CIE standard illuminant by using multi-channel LED and illumination system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148803U (en) * 2008-06-30 2009-03-05 一品光学工業股▲ふん▼有限公司 Optical lens of aspherical positive irradiation angle light emitting diode and light emitting diode component constituting the same
JP2010177028A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Optical lens, and road luminaire
JP2012003845A (en) * 2010-06-14 2012-01-05 Nittoh Kogaku Kk Light-emitting device
JP2012028619A (en) * 2010-07-26 2012-02-09 Endo Lighting Corp Led light distribution lens, led illumination module provided with the led light distribution lens, and lighting equipment provided with the led illumination module
WO2012060319A1 (en) * 2010-11-04 2012-05-10 コニカミノルタオプト株式会社 Optical element and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148803U (en) * 2008-06-30 2009-03-05 一品光学工業股▲ふん▼有限公司 Optical lens of aspherical positive irradiation angle light emitting diode and light emitting diode component constituting the same
JP2010177028A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Optical lens, and road luminaire
JP2012003845A (en) * 2010-06-14 2012-01-05 Nittoh Kogaku Kk Light-emitting device
JP2012028619A (en) * 2010-07-26 2012-02-09 Endo Lighting Corp Led light distribution lens, led illumination module provided with the led light distribution lens, and lighting equipment provided with the led illumination module
WO2012060319A1 (en) * 2010-11-04 2012-05-10 コニカミノルタオプト株式会社 Optical element and lighting device

Also Published As

Publication number Publication date
JP2014063651A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP6208680B2 (en) Lighting device
JP2008300203A (en) Luminaire
JP4970172B2 (en) lighting equipment
JP2017228490A (en) Vehicular lighting fixture
CA2947033C (en) Wall wash lighting system
JP6304538B2 (en) lighting equipment
US10697611B2 (en) Non-circular optic for distributing light
KR101866812B1 (en) Lighting apparatus with indirect lighting type
JP2010123344A (en) Luminaire
WO2014045644A1 (en) Illumination device and illumination lens
JP5967574B2 (en) lighting equipment
JP2012243680A (en) Lighting system
JP2010146806A (en) Lighting apparatus
JP5364042B2 (en) lighting equipment
CN203500893U (en) Illuminating lamp and optical module for illumination
JP2012119140A (en) Lighting fixture
JP2011134509A (en) Lighting fixture
JP5565775B2 (en) LED lighting device
JP2006012499A (en) Lighting system
JP5677538B2 (en) lighting equipment
JP2008166184A (en) Illumination device
JP4540014B1 (en) Surface emitting method of LED surface emitting illumination tube and illumination tube thereof
JP6457045B2 (en) lighting equipment
TWI386597B (en) Optical lens and lighting device comprising the same
JP2015011894A (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839696

Country of ref document: EP

Kind code of ref document: A1