WO2014045488A1 - Radio transmitting apparatus, standing wave ratio measuring device and standing wave ratio measuring method - Google Patents

Radio transmitting apparatus, standing wave ratio measuring device and standing wave ratio measuring method Download PDF

Info

Publication number
WO2014045488A1
WO2014045488A1 PCT/JP2013/002826 JP2013002826W WO2014045488A1 WO 2014045488 A1 WO2014045488 A1 WO 2014045488A1 JP 2013002826 W JP2013002826 W JP 2013002826W WO 2014045488 A1 WO2014045488 A1 WO 2014045488A1
Authority
WO
WIPO (PCT)
Prior art keywords
time constant
circuit
detection voltage
signal
transmission signal
Prior art date
Application number
PCT/JP2013/002826
Other languages
French (fr)
Japanese (ja)
Inventor
拓志 望月
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014536555A priority Critical patent/JP5888424B2/en
Publication of WO2014045488A1 publication Critical patent/WO2014045488A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • G01R27/06Measuring reflection coefficients; Measuring standing-wave ratio

Definitions

  • the present invention relates to a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method.
  • Patent Documents 1 to 9 disclose techniques relating to VSWR measurement.
  • Patent Document 10 discloses an antenna monitoring device that can detect an incident wave and a reflected wave even if the temperature changes.
  • Patent Document 11 discloses a monitoring device that can eliminate erroneous detection due to wraparound from an antenna of another system and can correctly monitor the antenna and the antenna feeding system.
  • FIG. 5A is a configuration diagram showing a VSWR detection circuit according to Patent Document 1.
  • the power amplifier 101 amplifies the input signal, and the directional coupler 102 monitors the output level.
  • the directional coupler 103 performs level monitoring of the reflected wave power reflected from the load circuit connected to one end of the transmission line 110.
  • the phase shifter 104 is provided between the directional couplers 102 and 103 and applies phase rotation to the traveling wave and the reflected wave.
  • the detectors 105 and 106 detect traveling wave power and reflected wave power, respectively.
  • the arithmetic unit 107 calculates VSWR from the detection voltage output from the detectors 105 and 106. From the above, the VSWR detection circuit calculates VSWR.
  • FIG. 5B is a configuration diagram showing a VSWR measurement circuit according to Patent Document 2.
  • the VSWR measurement circuit gives a microwave signal (sin ⁇ ) to the device under test 201 from the signal generator 203 through the directional coupler 202.
  • the VSWR measurement circuit is reflected by the DUT 201 and reflected from the output end 222 of the directional coupler 202 (msin ⁇ ), and the signal generator 203 outputs the input 221 of the directional coupler 202.
  • the leakage wave (Asin ⁇ ) is synthesized. Then, the VSWR measurement circuit measures the standing wave ratio of the DUT 201 while displaying the DC voltage obtained by detecting the synthesized signal with the detector 204 on the display 205.
  • FIG. 5C is a configuration diagram showing a VSWR monitor circuit according to Patent Document 3.
  • a high frequency transmission signal is input to the input terminal 301.
  • the traveling wave (transmission signal traveling wave) 321 of the high-frequency transmission signal amplified by the amplifier 303 via the first directional coupler 302 is output to the output terminal 317 via the second directional coupler 304.
  • the transmission signal reflected wave 322 travels in the opposite direction to the transmission signal traveling wave 321 and is observed as a standing wave between the transmission lines with the amplifier 303.
  • the branch signal of the transmission signal traveling wave 321 is output to one branch port A of the second directional coupler 304, and the branch signal of the transmission signal reflected wave 322 is mainly output to the other port B.
  • a part of the strong transmitted signal traveling wave 321 is output as leakage power to the other port B of the second directional coupler 304.
  • the amount of power may reach the same level as the branch signal of the transmission signal reflected wave 322, which is usually weak.
  • the other port B has a leakage power of a part of the transmission signal traveling wave 321 with respect to the power of the branch signal of the transmission signal reflected wave 322 (in the same direction as the branch signal of the transmission signal reflected wave 322). Power with different phases) is superimposed.
  • the branch signal of the transmission signal traveling wave 321 is output to one branch port A of the second directional coupler 304, but part of the branch signal of the transmission signal reflected wave 322 is also output as leakage power. Although the amount of power is almost negligible because it is output from the ISO (suppression) port of the transmission signal reflected wave 322, one branch port A has power relative to the power of the branch signal of the transmission signal traveling wave 321. The leakage power of the transmission signal reflected wave 322 is superimposed. In other words, in one branch port A, a small amount of power having a phase different from that of the branch signal of the transmission signal traveling wave 321 is superimposed on the power of the branch signal of the transmission signal traveling wave 321.
  • the transmitted signal traveling wave before amplification branched by the first directional coupler 302 is further branched by the first distributor 306 via the first vector adjuster 305.
  • the branched transmission signal traveling wave 321 is combined with the branched signal output from the second directional coupler 304 by the first coupler 307.
  • the output of the first coupler 307 is DC detected by the detector 310, and the detected information is digitized by the A / D converter 312 and sent to the vector controller 314.
  • the vector controller 314 adjusts the first vector adjuster 305 corresponding to the input detection voltage.
  • the vector controller 314 automatically controls the first vector adjuster 305 so that the output of the first coupler 307 is minimized, that is, the detection voltage of the detector 310 is minimized.
  • the control voltage of the vector controller 314 is a digital signal because it is processed by a CPU (Central (Processing Unit), but the first vector adjuster 305 operates with an analog signal. Therefore, the control voltage is sent out in an analog state via the D / A converter 315.
  • the branch signal output from the branch port B of the second directional coupler 304 is a signal in which the transmission signal reflected wave 322 and the leakage power of the transmission signal traveling wave 321 are superimposed.
  • the transmission signal traveling waves 321 before amplification that are branched by the first distributor 306 those that are not input to the first combiner 307 are sent to the second combiner 309 via the second vector adjuster 308. Is output.
  • This signal and the branch signal output from the branch port B are coupled by the second coupler 309.
  • a second vector adjuster 308 for adjusting the phase amount and the attenuation amount is installed between the first distributor 306 and the second coupler 309.
  • the branch signal (reflected wave) of the transmission signal reflected wave 322 is digitized by the detector 311 and the A / D converter 313 and sent to the VSWR monitor 316 as reflected wave information.
  • the VSWR monitor 316 outputs detection information of the transmission signal reflected wave to the processing circuit of the high frequency transmission device via the internal interface terminal 318.
  • FIG. 5D is a configuration diagram showing an antenna port monitoring system according to Patent Document 4.
  • the antenna port monitoring system includes a transmission amplifier 401, a reflected power detection circuit 402, an A / D converter 403, a transmission power detection circuit 404, an A / D converter 405, a normal value sampling circuit 408, an abnormal value sampling circuit 409, A value sampling circuit 410, a write instruction circuit 412, a reflected wave characteristic storage circuit 411, a threshold determination circuit 413, an ALM determination circuit 414, a test signal generation circuit 407, a signal selection circuit 406, and a CPU 415 are provided.
  • the transmission amplification unit 401 amplifies the transmission signal of the wireless communication device.
  • the reflected power detection circuit 402 measures the reflected power.
  • the A / D converter 403 converts the detected reflected power value into a digital value.
  • the transmission power detection circuit 404 measures transmission power.
  • the A / D converter 405 converts the detected transmission power value into a digital value.
  • the normal value sampling circuit 408 temporarily holds the transmission power value and the reflected power value at the normal time.
  • the abnormal value sampling circuit 409 temporarily holds the transmission power value and the reflected power value at the time of abnormality.
  • the current value sampling circuit 410 temporarily holds the current transmission power value and reflected power value.
  • the write instruction circuit 412 instructs these holding timings.
  • the reflected wave characteristic storage circuit 411 stores these temporarily held values.
  • the threshold determination circuit 413 determines a threshold value based on the value read from the reflected wave characteristic storage circuit 411 and information set by the CPU 415.
  • the ALM determination circuit 414 finally determines the VSWR alarm based on these values.
  • the test signal generation circuit 407 generates a test signal.
  • the signal selection circuit 406 selects whether to transmit a test signal or an operation signal.
  • the CPU 415 controls the whole. In this way, the wireless communication device can generate a VSWR alarm.
  • FIG. 6 is a configuration diagram illustrating an example of a related wireless transmission device.
  • the wireless transmission device 500 includes a MAC (Media Access Controller) 501, a baseband signal generator (BB signal generator) 502, a modulator 503, a local oscillator 504, a high output amplifier 505, a filter 506, a directional coupler 507, an antenna. 508, a VSWR measurement circuit 509, and a VSWR display unit 517.
  • the VSWR measurement circuit 509 includes a traveling wave detector 510, a reflected wave detector 511, a fixed time constant circuit 512, a fixed time constant circuit 513, a difference detector 514, a VSWR calculator 515, and a VSWR averager 516.
  • the data signal generated by the MAC 501 is modulated by the baseband signal generator 502 into an I / Q axis signal that is a modulated baseband signal. That is, the baseband signal generator 502 performs I / Q modulation.
  • the I / Q axis signal is converted into an RF (Radio Frequency) band modulated downlink signal by the modulator 503 and the local oscillator 504.
  • the power of the RF band modulation downlink signal is raised to a predetermined transmission power by the high power amplifier 505.
  • the RF band modulation downlink signal output from the high power amplifier 505 is output to the antenna 508 via the filter 506 for reducing transmission spurious.
  • the antenna 508 radiates an RF band modulation downlink signal as a radio signal to space.
  • the VSWR measurement circuit 509 is provided in front of the antenna 508. This is because the VSWR measurement circuit 509 measures the VSWR considering the influence of the antenna 508 to confirm that the spatial radiation from the antenna is performed without any problem.
  • a directional coupler 507 for detecting a traveling wave and a reflected wave is inserted for VSWR measurement.
  • the directional coupler 507 is inserted before the antenna 508.
  • the traveling wave detector 510 detects the traveling wave voltage output in the direction of the antenna 508 in the wireless transmission device 500 by the directional coupler 507.
  • the reflected wave voltage output in the opposite direction to the antenna 508 is detected by the reflected wave detector 511.
  • the voltage detected by the traveling wave detector 510 is output to the difference detector 514 via the fixed time constant circuit 512 having a fixed time constant. Is done.
  • the voltage detected by the reflected wave detector 511 is detected by a differential detector via a fixed time constant circuit 513 having a fixed time constant. It is output to 514.
  • FIG. 7 is a configuration diagram showing an example of a fixed time constant circuit 512 (integration circuit).
  • the fixed time constant circuit 512 includes a resistor 518 and a capacitor 519.
  • the resistor 518 has one end connected to the traveling wave detector 510 side and the other end connected to the difference detector 514 side.
  • One end of the capacitor 519 is connected between the resistor 518 and the difference detector 514, and the other end is grounded.
  • is set to a relatively long time of several times to about 10 times the Symbol length.
  • the fixed time constant circuit 513 has the same configuration as the fixed time constant circuit 512.
  • the difference detector 514 detects the difference between the traveling wave voltage output from the fixed time constant circuit 512 and the reflected wave voltage output from the fixed time constant circuit 513. Based on the difference detection voltage detected by the difference detector 514, the VSWR calculator 515 calculates the VSWR of the wireless transmission device 500.
  • the VSWR measured by the VSWR calculator 515 is smoothed by the VSWR averager 516.
  • the wireless transmission device 500 outputs and displays the VSWR smoothed by the VSWR averager 516 as it is on the VSWR display unit 517 as the final report value. As described above, the wireless transmission device 500 measures the VSWR.
  • Patent Documents 5 to 10 disclose wireless transmission devices that can eliminate VSWR measurement errors.
  • FIG. 8A is a configuration diagram showing an example of an antenna communication device according to Patent Document 6.
  • the antenna communication device includes transmitters Tx1 to Txn, a combiner 611, an antenna monitoring device 601, an antenna filter F0, and an antenna 613.
  • the combiner 611 includes isolators I1 to In and band pass filters F1 to Fn.
  • the antenna monitoring device 601 includes a directional coupler 612, band pass filters 621 and 622, detection circuits 614 and 615, an arithmetic circuit 616 and a display device 617.
  • the antenna monitoring apparatus 601 measures VSWR with the above configuration.
  • the directional coupler 612 is inserted between an antenna filter F0 (bandpass filter) connected to an antenna and a transmitter in order to detect traveling waves and reflected waves.
  • F0 bandpass filter
  • a transmission line is branched from the directional coupler 612.
  • a band-pass filter 621 is inserted in the transmission line between the directional coupler 612 and the traveling wave detection circuit 614.
  • a band pass filter 622 is inserted in the transmission line between the directional coupler 612 and the detection circuit 615 for reflected waves.
  • the bandpass filters 621 and 622 can sufficiently suppress out-of-band interference waves and jamming waves before detection. As described above, the antenna communication apparatus according to FIG. 8A can eliminate the measurement error of VSWR.
  • FIG. 8B is a configuration diagram showing an example of another antenna communication device according to Patent Document 6.
  • the antenna communication device includes transmitters Tx1 to Txn, a combiner 711, an antenna monitoring device 701, an antenna filter F0, and an antenna 713.
  • the combiner 711 includes isolators I1 to In and band pass filters F1 to Fn.
  • the antenna monitoring device 701 includes a directional coupler 712, a local oscillation circuit 723a, mixer circuits 724 and 725, band pass filters 726 and 727, intermediate frequency filters 728 and 729, detection circuits 714 and 715, an arithmetic circuit 716, and a display device 717.
  • Have The antenna monitoring apparatus 701 measures VSWR with the above configuration.
  • the local oscillation circuit 723a and the mixer circuit 724, and the local oscillation circuit 723a and the mixer circuit 725 each constitute a down converter.
  • Each of the traveling wave path and the reflected wave path branched by the directional coupler 712 is provided with the down converter.
  • the local oscillation circuit 723a changes the local oscillator frequency, thereby changing the pass band targeted by the down converter.
  • the antenna communication apparatus After the signal output from the directional coupler 712 is down-converted, it passes through a narrower band filter than a down-converter in which a baseband or IF (Intermediate Frequency) frequency is set. As a result, the antenna communication apparatus can more rapidly attenuate the external out-of-band interference wave or jamming wave, and reduce the error in the VSWR measurement value due to these interference wave / jamming wave.
  • IF Intermediate Frequency
  • JP 2005-092331 A Japanese Patent Laid-Open No. 03-051772 JP 2004-286632 A JP 2004-096689 A Japanese Patent Laid-Open No. 05-157781 Japanese Patent Laid-Open No. 04-357471 Japanese Patent Laid-Open No. 04-310872 Japanese Patent Laying-Open No. 2005-0117138 JP 2002-043957 A Japanese Utility Model Publication No. 05-073576 Japanese Patent Laid-Open No. 05-172879
  • FIG. 9A is a schematic diagram illustrating a state where the wireless transmission device 500 is applied.
  • FIG. 9A shows a state in which the base station wireless transmitter of its own system and the base station wireless transmitter of another system are coupled.
  • the two wireless transmission devices communicate using an OFDM (Orthogonal-Frequency-Division-Multiplexing) method such as LTE (Long-Term Evolution) using a shared antenna.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • FIG. 9A shows that an interference wave from a wireless transmission device of another system is input to the wireless transmission device of the own system.
  • own system base station transmission section 800 outputs the signal of A [dBm] to antenna 802 via antenna duplexer 801.
  • Other system base station transmission section 803 outputs the signal of B [dBm] to antenna 802 via antenna duplexer 801.
  • the transmission signal of BX [dBm] is output to own system base station transmission section 800 via antenna duplexer 801.
  • X [dBm] is the isolation amount of the antenna duplexer 801.
  • FIG. 9B is a diagram showing a signal level between the own system base station transmission unit 800 and the antenna duplexer 801.
  • the horizontal axis in FIG. 9B indicates the frequency f.
  • the signal (transmission signal 1) output from the own system base station transmission unit 800 has the strength of A [dBm]
  • the signal (transmission signal 2) output from the other system base station transmission unit 803 is AX It has a strength of [dBm].
  • the signal originally output from the other system base station transmission section 803 is A [dBm]
  • A B.
  • IM (Inter Modulation) 1 and IM2 are intermodulation distortions caused by the backflow waves of the transmission base station transmission signal and the transmission base station transmission signal of the other system.
  • FIG. 10 is a diagram showing a time waveform of the LTE downlink signal.
  • E-TM1.1 in FIG. 10 is a test signal, and is a signal mainly communicated by QPSK (Quadrature Phase Shift Keying) -OFDMA (Orthogonal Frequency Division Multiple Access) system.
  • E-TM2 is a test signal, and is a signal communicated in a 64QAM (Quadrature amplitude modulation) Single RB (Resource Block) system.
  • These E-TM1.1 and E-TM2 are normal data signals in which signals exist densely on the time axis. That is, E-TM1.1 and E-TM2 are signals having a long output period.
  • the vertical axis represents dB (relative ratio of various signals), and the horizontal axis represents time.
  • the control channel signal in FIG. 10 is the sparsest signal among the actual operation signals in a state where there is no link between the own system base station transmission unit 800 and the mobile terminal.
  • the control channel signal includes broadcast information (Broadcast information) and a reference signal (reference signal).
  • the control channel signal is a control signal that is transmitted to the mobile terminal through the control channel and is necessary for connection control by the mobile terminal.
  • the broadcast information is a signal including a location number, neighboring cell information, information for performing transmission restriction control, and the like necessary for determining whether or not location registration is necessary in the mobile terminal.
  • the reference signal is a training signal on the terminal side, and is a signal having a pattern determined in advance on the base station side and the mobile terminal side. On the portable terminal side, processing such as estimation of the channel (attenuation amount and phase rotation amount) is executed from the reference signal.
  • the output period of each signal is shorter than that of a normal data signal, and the output period of each signal is further longer than that of the notification information.
  • a short reference signal exists sparsely on the time axis.
  • FIG. 11 shows a DL signal level between two frames (20 msec), a DL reflected wave signal level, and a VSWR when a dense test signal E-TM2 is transmitted as a DL (downlink) signal from the wireless transmission device 500. It is the figure which showed the measured value.
  • the DL reflected wave assumes a reflection state when RL (Return Loss) is 15 dB (the same applies to FIGS. 12 and 13).
  • 11 indicates the dynamic range of the detector (the same applies to FIGS. 12 and 13).
  • the DL signal level varies, but the variation is within the dynamic range of the detector.
  • the fixed time constant circuits 512 and 513 sufficiently smooth the fluctuation. Therefore, the VSWR measurement value always shows a correct value (1.5 in this case).
  • FIG. 12 shows increase / decrease in DL signal level, DL reflected wave signal level, and VSWR measurement value during two frames (20 msec) when a sparse control channel during operation is transmitted as a DL signal from the wireless transmission device 500.
  • FIG. 12 shows increase / decrease in DL signal level, DL reflected wave signal level, and VSWR measurement value during two frames (20 msec) when a sparse control channel during operation is transmitted as a DL signal from the wireless transmission device 500.
  • the period of the reference signal as a DL signal that frequently repeats ON / OFF is too short compared to the time constant ⁇ of the fixed time constant circuits 512 and 513.
  • both the traveling wave signal and the reflected wave signal fall before the detection voltage does not fully rise and falls within the dynamic range. Therefore, the accuracy of the VSWR measurement value is deteriorated.
  • the signal density becomes high (a signal with a long output period of each signal is output), so the VSWR measurement value is correct. Indicates the value.
  • FIG. 13 shows a case where a sparse control channel during operation is transmitted as a DL signal from the wireless transmission device 500, and a continuously disturbing wave from another system flows backward and is input to the wireless transmission device 500. It is the figure which showed increase / decrease in the DL signal level between 2 frames (20msec), the signal level of DL reflected wave, and the VSWR measured value.
  • the reflected wave detector 511 detects the interference wave as a reflected wave.
  • the interference wave is detected as a signal level in the vicinity of ⁇ 30 dB in FIG.
  • the output period of the interference wave is sufficiently longer than the time constant ⁇ of the fixed time constant circuit 512. Therefore, the fixed time constant circuit 512 outputs a detection voltage for the interference wave.
  • the detection voltage due to the disturbing wave is mistakenly detected as the detection voltage due to the reflected wave and is measured.
  • the detection voltage due to the interference wave is stabilized at a higher signal level. For this reason, the error in the detection voltage of the reflected wave greatly increases.
  • the fixed time constant circuit 513 The same applies to the fixed time constant circuit 513.
  • the traveling wave falls before the detection voltage rises. This is because the period of the reference signal is too short compared to the time constant ⁇ of the fixed time constant circuit.
  • the detection voltage of the traveling wave is measured low, whereas the detection voltage of the reflected wave is measured high. For this reason, the accuracy of the VSWR to be measured is further deteriorated. Depending on the level of the interference wave, the accuracy of the VSWR is fixed to the worst. However, only in the period in which the notification information is output (the area circled in FIG. 13), the signal density becomes high, and the VSWR measurement value shows a correct value.
  • the VSWR measurement value deteriorates. Furthermore, if there is a backflow of interference from other systems coupled by a shared antenna, the VSWR report value will be further deteriorated. In such a case, a report misunderstood as a total reflection aspect is made as a VSWR report when the antenna is expected, and an error alarm or the like is activated at the monitoring station, so that the own system is stopped. There was concern that it would.
  • Patent Documents 1 to 4 do not disclose any circuit configuration for eliminating the VSWR measurement error, and thus the above-described problem occurs.
  • the present invention has been made to solve such a problem, and provides a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method capable of suppressing a measurement error of a voltage standing wave ratio.
  • the purpose is to provide.
  • the first aspect of the present invention includes a wireless transmission device.
  • the wireless transmission device includes a transmission signal generation device, a detection circuit, and a standing wave ratio measurement circuit.
  • the transmission signal generating device generates and outputs a transmission signal.
  • the detection circuit is provided between transmission lines of the transmission signal generation device and the antenna, and detects a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal.
  • the standing wave ratio measuring circuit measures the voltage standing wave ratio based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit.
  • the detection circuit includes a detection unit and a time constant circuit. The detection unit detects the detection voltage of the traveling wave and the detection voltage of the reflected wave.
  • the time constant circuit averages temporal variations with respect to each of the traveling wave detection voltage detected by the detection unit and the reflected wave detection voltage.
  • the time constant is set shorter in the state where the transmission signal rises than in the state where the transmission signal falls.
  • the second aspect of the present invention includes a standing wave ratio measuring device.
  • the standing wave ratio measuring device is provided in a wireless transmission device that generates and outputs a transmission signal.
  • the standing wave ratio measuring device includes a detection circuit and a standing wave ratio measurement circuit.
  • the detection circuit is provided between a transmission line between the generation device that generates the transmission signal and the antenna, and detects a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal.
  • the standing wave ratio measuring circuit measures the voltage standing wave ratio based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit.
  • the detection circuit includes a detection unit and a time constant circuit. The detection unit detects the detection voltage of the traveling wave and the detection voltage of the reflected wave.
  • the time constant circuit averages temporal variations with respect to each of the traveling wave detection voltage detected by the detection unit and the reflected wave detection voltage.
  • the time constant is set shorter in the state where the transmission signal rises than in the state where the transmission signal falls.
  • the third aspect of the present invention includes a standing wave ratio measuring method.
  • This standing wave ratio measuring method is a standing wave ratio measuring method in which a voltage standing wave ratio is measured in a wireless transmission device that generates and outputs a transmission signal.
  • the standing wave ratio measuring method includes the following steps (a) to (d). (A) detecting a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal; (B) detecting a detection voltage of the traveling wave and a detection voltage of the reflected wave; (C) averaging time fluctuations for each of the traveling wave detection voltage and the reflected wave detection voltage detected by the detection unit; and (d) the transmission signal in a state where the transmission signal rises. Set the time constant of the time constant circuit short compared to the state where the signal falls.
  • the present invention it is possible to provide a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method capable of suppressing the measurement error of the voltage standing wave ratio.
  • FIG. 1 is a configuration diagram illustrating an example of a wireless communication device according to a first exemplary embodiment
  • FIG. 3 is a block diagram showing a configuration example of a detection circuit according to the first exemplary embodiment
  • FIG. 3 is a configuration diagram illustrating an example of a wireless communication apparatus according to a second embodiment
  • FIG. 6 is a configuration diagram illustrating an example of a multiple time constant circuit according to a second exemplary embodiment
  • It is the block diagram which showed the VSWR detection circuit concerning related technology.
  • a sparse control channel during operation when a sparse control channel during operation is transmitted from a wireless transmission device, it is a diagram illustrating a DL signal level polled in two frames, a DL reflected wave signal level, and a VSWR measurement value.
  • the DL signal level polled in two frames when a sparse control channel during operation is transmitted from a wireless transmission device and an interference wave from another system is added, the DL signal level polled in two frames, the signal level of the DL reflected wave, and the VSWR It is the figure which showed the measured value.
  • Embodiment 1 The first embodiment will be described below with reference to the drawings.
  • FIG. 1 is a configuration diagram of an example of a wireless transmission device according to the first embodiment.
  • the wireless transmission device 10 includes a transmission signal generation device 11, an antenna 12, a detection circuit 13, and a standing wave ratio measurement circuit 14.
  • the transmission signal generator 11 generates and outputs a transmission signal.
  • the transmission signal generation device 11 may output one type of transmission signal, or may output a plurality of types of transmission signals having different periods.
  • the antenna 12 transmits the transmission signal output from the transmission signal generation device 11 as a radio signal.
  • a reflected wave of the output signal of the transmission signal generation device 11 flows from the antenna 12 to the transmission signal generation device 11.
  • the detection circuit 13 is provided between the transmission lines of the transmission signal generation device 11 and the antenna 12, and detects the detection voltage of the traveling wave and the detection voltage of the reflected wave corresponding to the transmission signal.
  • FIG. 2 is a block diagram showing a configuration example of the detection circuit 13.
  • the detection circuit 13 includes a detection unit 15 and a time constant circuit 16.
  • Detecting unit 15 detects a traveling wave detection voltage and a reflected wave detection voltage. For example, the detection unit 15 detects the detection voltages of the traveling wave and the reflected wave by separating and extracting the traveling wave and the reflected wave flowing between the transmission lines.
  • the time constant circuit 16 averages temporal fluctuations for each of the traveling wave detection voltage and the reflected wave detection voltage detected by the detection unit 15.
  • the time constant set in the time constant circuit 16 is a time during which the detection voltage output from the time constant circuit 16 is about 63% of the input detection voltage. That is, the time constant is a parameter indicating the speed of response of the time constant circuit 16.
  • the time constant is set shorter when the transmission signal rises than when the transmission signal falls.
  • one time constant circuit 16 may be provided for each traveling wave and reflected wave. Note that the time constants of the respective circuits may be the same or different within an error or a numerical value within an allowable range.
  • the standing wave ratio measuring circuit 14 measures a VSWR (voltage standing wave ratio) based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit.
  • the time constant circuit 16 is set shorter when the transmission signal rises than when the transmission signal falls. That is, in the state where the transmission signal rises, the rising of the detection voltage output from the time constant circuit 16 can be accelerated. Therefore, the detection voltage output from the time constant circuit 16 can sufficiently rise (response quickly) before the traveling wave and the reflected wave in the transmission signal become off-edge. This can be realized regardless of the length of the output period of each signal in the transmission signal. Therefore, the wireless transmission device 10 can suppress the measurement error of the traveling wave and the reflected wave even while the transmission signal having a short output period of each signal is output. In this way, the wireless transmission device 10 can suppress the VSWR measurement error.
  • the first embodiment can also be understood as an invention of a standing wave ratio measuring device including the detection circuit 13 and the standing wave ratio measuring circuit 14.
  • the processing of the detection circuit 13 and the standing wave ratio measurement circuit 14 can also be understood as an invention of the standing wave ratio measurement method.
  • Embodiment 2 The second embodiment will be described below with reference to the drawings.
  • FIG. 3 is a configuration diagram of an example of the wireless transmission device 20 according to the second embodiment.
  • the wireless transmission device 20 includes a MAC 21, a baseband (BB) signal generator 22, a modulator 23, a local oscillator 24, a high power amplifier 25, a filter 26, a directional coupler 27, an antenna 28, a VSWR measurement device 29, and a VSWR display.
  • the unit 37 is provided.
  • the MAC 21 to the local oscillator 24 and the antenna 28 correspond to the transmission signal generation device 11 and the antenna 12 according to FIG.
  • the wireless transmission device 20 uses the antenna 28 to perform communication based on an OFDM (Orthogonal Frequency Division Multiplexing) scheme such as LTE (Long Term Evolution).
  • the wireless transmission device 20 is provided in a base station that performs wireless communication with a mobile terminal, and generates a signal for wireless communication with the mobile terminal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC 21 generates a data signal to be wirelessly transmitted and outputs it to the baseband signal generator 22.
  • the MAC 21 corresponds to a lower sublayer of the data link layer (second layer) in the OSI reference model, and is a part that defines and executes a frame (data transmission / reception unit) transmission / reception method, frame format, error detection method, and the like. In other words, the MAC 21 is a major part necessary for data generation.
  • the MAC 21 outputs a reference signal (second transmission signal) that repeats ON / OFF in a low period, in addition to a normal data signal and broadcast information (first transmission signal). The details of the data signal, the broadcast information, and the reference signal are as described above.
  • the baseband signal generator 22 modulates the data signal output from the MAC 21 to generate a modulated baseband signal (I / Q axis signal). This modulated baseband signal is output to the modulator 23.
  • the modulator 23 modulates the frequency of the input modulated baseband signal according to the frequency of the signal output from the local oscillator 24, and outputs the modulated baseband signal as an RF band modulated downlink signal.
  • the local oscillator 24 outputs a signal having a frequency used for frequency modulation of the modulator 23. Note that the frequency of the signal output from the local oscillator 24 may be changed according to the situation.
  • the high-power amplifier 25 amplifies the voltage of the RF band modulation downlink signal output from the modulator 23 and increases the signal power to a predetermined transmission power required for wireless transmission.
  • the high output amplifier 25 outputs the amplified signal to the filter 26.
  • the filter 26 is a filter provided to reduce spurious transmission signals transmitted from the antenna.
  • the filter 26 includes at least one of a low pass filter, a high pass filter, a band pass filter, and the like.
  • the transmission signal output from the filter 26 is radiated to the space as a radio signal by the antenna 28 via the directional coupler 27.
  • the directional coupler 27 is inserted in front of the antenna 28 so that the VSWR measuring device 29 detects the traveling wave and the reflected wave of the transmission signal.
  • the directional coupler 27 is provided between the transmission lines of the signal generation device and the antenna.
  • the directional coupler 27 outputs a signal corresponding only to traveling wave power to the traveling wave detector 30 and outputs a signal corresponding only to reflected wave power to the reflected wave detector 31.
  • the VSWR measuring device 29 is provided in front of the antenna 28 in order to measure the VSWR that is expected to be affected by the antenna 28 and to confirm that the spatial radiation from the antenna 28 is performed without any problem.
  • the VSWR measuring device 29 includes a traveling wave detector 30, a reflected wave detector 31, a plurality of time constant circuits 32, a plurality of time constant circuits 33, a difference detector 34, a VSWR calculator 35, and a VSWR averager 36.
  • the traveling wave detector 30 to the plurality of time constant circuits 33 correspond to the detection circuit 13 according to FIG. 1, and the difference detector 34 to the VSWR averager 36 correspond to the standing wave ratio measurement circuit 14 according to FIG.
  • the traveling wave detector 30 and the reflected wave detector 31 correspond to the detector 15 according to FIG. 2, and the plurality of time constant circuits 32 and 33 correspond to the time constant circuit 16 according to FIG.
  • the traveling wave detector 30 detects the traveling wave voltage corresponding to the transmission signal, and outputs the detected voltage to the multiple time constant circuit 32.
  • the reflected wave detector 31 detects the voltage of the reflected wave corresponding to the transmission signal and outputs the detected voltage to the multiple time constant circuit 33.
  • the multiple time constant circuit 32 averages (smooths) the temporal fluctuation of the input traveling wave detection voltage and outputs it to the difference detector 34.
  • the time constant of the multiple time constant circuit 32 either the long time constant ⁇ L or the short time constant ⁇ S is set.
  • the long time constant ⁇ L is set as the time constant of the multiple time constant circuit 32 during the period when the radio transmission apparatus 20 falls (does not transmit) the signal.
  • the short time constant ⁇ S is set as the time constant of the multiple time constant circuit 32 during a period in which the wireless transmission device 20 starts up and transmits a transmission signal (normal data signal, broadcast information, reference signal, etc.).
  • the multiple time constant circuit 33 averages the temporal variation of the detection voltage of the input reflected wave and outputs it to the difference detector 34.
  • the time constant of the multiple time constant circuit 33 either the long time constant ⁇ L or the short time constant ⁇ S is set.
  • the long time constant ⁇ L is set as the time constant of the multiple time constant circuit 33 during the period when the radio transmission apparatus 20 falls (does not transmit) the signal.
  • the short time constant ⁇ S is set as the time constant of the multiple time constant circuit 33 during a period in which the wireless transmission device 20 starts up and transmits a transmission signal (normal data signal, broadcast information, reference signal, etc.).
  • FIG. 4 is a configuration diagram showing a configuration example of the multiple time constant circuit 32.
  • the multiple time constant circuit 32 is an RC circuit having resistors 38 and 39, a capacitor 40 and a diode 41.
  • the resistor (first resistor) 38 has one end connected to the traveling wave detector 30 side and the other end connected to the difference detector 34 side.
  • the resistor (second resistor) 39 is connected in parallel with the resistor 38, one end connected to the traveling wave detector 30 side, and the other end connected to the anode of the diode 41.
  • the resistor 38 is conductive, while the resistor 39 is a resistor capable of switching the conductive state.
  • the capacitor 40 has one end connected between the resistor 38 and the difference detector 34 and the other end grounded. One end of the capacitor 40 is also connected to the cathode of the diode 41.
  • the diode 41 has an anode connected to the other end of the resistor 39 and a cathode connected between the resistor 38 and the differential detector 34. The diode 41 causes a current to flow when a predetermined voltage (forward voltage) is applied.
  • the resistance value of the resistor 38 is R1
  • the resistance value of the resistor 39 is R2
  • the capacitance value of the capacitor 40 is C.
  • ⁇ L is set to a relatively long time of several times to about 10 times the Symbol length.
  • R ′ is a combined resistance
  • R ′ (R1 * R2) / (R1 + R2).
  • R ′ always takes a smaller value than R1 (in other words, the combined resistance value of the time constant circuit is made smaller). Therefore, the fixed time constant ⁇ S is a time constant shorter than the fixed time constant ⁇ L.
  • the value of the fixed time constant ⁇ S can be greatly reduced from the fixed time constant ⁇ L by providing the resistor 39 having a resistance value R2 that is significantly lower than the resistance value R1.
  • the radio transmission device 20 transmits a signal (even when outputting a transmission signal that repeats ON / OFF in a low period like a reference signal), a detection voltage higher than a predetermined voltage is applied to the diode 41 at the rising edge of the signal. Thereby, the diode 41 is turned on. That is, the current path of the resistor 39 connected in parallel with the resistor 38 is conducted by the diode 41 when the traveling wave voltage rises. Thereby, the rising of the detection voltage can be accelerated. It is desirable that the short time constant ⁇ S is set to a length of around 1 Symbol because it corresponds to the shortest 1 Symbol length period in the reference signal.
  • the resistance values R1, R2 and the capacitance value C are determined such that the short time constant ⁇ S is set to a length around 1 Symbol and the long time constant ⁇ L is set to a length of several times to about 10 times the Symbol length. .
  • the multiple time constant circuit 33 has the same configuration as the multiple time constant circuit 32, the description thereof is omitted.
  • the difference detector 34 detects the difference between the detection voltage of the traveling wave output from the multiple time constant circuit 32 and the detection voltage of the reflected wave output from the multiple time constant circuit 33, and outputs the difference detection voltage.
  • VSWR calculator (VSWR calculator) 35 calculates the VSWR of the wireless transmission device 20 based on the difference detection voltage detected by the difference detector 34.
  • the wireless transmission device 20 outputs and displays the VSWR smoothed by the VSWR averager 36 on the VSWR display unit 37 as a final report value. As described above, the wireless transmission device 20 measures the VSWR.
  • the multiple time constant circuits 32 and 33 can suppress fluctuations in the detection voltage when the wireless transmission device 20 does not output a transmission signal (the long time constant ⁇ L is set to be equal to that of the multiple time constant circuits 32 and 33).
  • the effect of setting the time constant when the wireless transmission device 20 outputs a transmission signal (for example, when outputting a signal that repeats ON / OFF in a low period such as a reference signal), the detection voltage can be designed to rise sufficiently even in a short time. (Effect of setting the short time constant ⁇ S as the time constant of the plurality of time constant circuits 32 and 33).
  • the detection voltage of both the traveling wave and the reflected wave can be set to rise immediately and with a sufficient voltage value.
  • the wireless transmission device 20 can appropriately average temporal variations in the detection voltage even when the types of transmission signals are different. Therefore, the wireless transmission device 20 can suppress the measurement error of the voltage standing wave ratio.
  • the wireless transmission device 20 is provided in a base station that performs wireless communication with a mobile terminal, and outputs broadcast information and a reference signal as a transmission signal. For this reason, the measurement error of the voltage standing wave ratio can be suppressed in the base station that performs wireless communication with the mobile terminal.
  • the wireless transmission device 20 uses the antenna 28 in common with the other system base station transmission unit as shown in FIG. 6, the same direction as the reflected wave from the other system base station transmission unit via the antenna 28.
  • Interference wave interference wave
  • the radio transmission apparatus 20 may prevent the true reflected wave voltage from being masked by the reflected wave voltage due to the backflow of the constant disturbance wave from the outside in the reflected wave detection voltage input to the difference detector 34. can do.
  • the radio transmission device 20 can improve the accuracy of traveling wave detection and reflected wave detection, adverse effects on VSWR measurement due to interference waves can be suppressed (ie, the accuracy of VSWR measurement can be improved).
  • the wireless transmission device 20 improves the responsiveness and stability of the VSWR measurement. It is possible to achieve both safety.
  • the wireless transmission device 20 can accurately calculate the VSWR expecting the outside of the antenna regardless of the transmission state of the own system (transmission density shading).
  • the wireless transmission device 20 performs wireless communication by an OFDM scheme such as LTE.
  • a VSWR alarm or the like due to a malfunction does not occur, and a problem actually occurs in the antenna itself or in connection with the antenna.
  • the alarm is activated only when VSWR deteriorates. For this reason, the precision of the maintenance inspection of the wireless transmitter 20 can be improved.
  • Patent Documents 5 to 7 are effective when the frequency band of the external interference wave / jamming wave is far from the desired transmission band. However, when the transmission band of the own system and the interference band from other systems are close, or when the transmission band and the interference band overlap, the interference wave / jamming wave due to the frequency selectivity of the filter It cannot be expected that sufficient filtering will be done. For this reason, these wireless transmission devices cannot eliminate the VSWR measurement error.
  • the multiple time constant circuits 32 and 33 are connected in parallel with the resistor 38 that is conducting, and the resistor 39 that can switch the conducting state according to the rise and fall of the transmission signal.
  • RC circuit having By switching the conduction state of the resistor 39, the value of the time constant in each time constant circuit can be changed. For this reason, the wireless transmission device 20 can change the time constant by a time constant circuit having a simple configuration.
  • the cost of the time constant circuit can be reduced by making the combined resistance value variable instead of the combined capacitance value of the time constant circuit.
  • the multiple time constant circuits 32 and 33 switch the conduction state of the resistor 39 by the diode 41 according to the rising and falling edges of the transmission signal.
  • the multiple time constant circuits 32 and 33 can be configured in a simple manner.
  • the value of the time constant is changed by changing the conduction state of one of the two resistors.
  • three or more resistors may be provided in a plurality of time constant circuits.
  • the multiple time constant circuit may include a plurality of resistors that can change the conduction state. By making the conduction states of the plurality of resistors variable, three or more types of combined resistance values in the plurality of time constant circuits can be changed. Therefore, the value of the time constant in the multiple time constant circuit can be changed to three or more types. This makes it possible to set a finer time constant in the time constant circuit, and the radio communication apparatus 20 can suppress a VSWR measurement error.
  • Only one of the multiple time constant circuits 32 and 33 may have the configuration shown in FIG.
  • the present invention is applied not only to a communication system related to LTE but also to a communication system related to a communication standard of the fourth generation or higher (for example, LTE-Advanced, IMT (International Mobile Telecommunications) -Advanced, WiMAX (Worldwide Interoperability for Microwave Access) 2). May be.
  • LTE-Advanced International Mobile Telecommunications
  • IMT International Mobile Telecommunications
  • WiMAX Worldwide Interoperability for Microwave Access
  • the present invention can be applied to all wireless communication apparatuses, and can be applied to, for example, a transmission apparatus portion of a base station system apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transmitters (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A radio transmitting apparatus is provided with a transmission signal generating device, a detection circuit, and a standing wave ratio measuring circuit. The detection circuit detects traveling wave detection voltage and reflected wave detection voltage that correspond to a transmission signal. The standing wave ratio measuring circuit measures the voltage standing wave ratio on the basis of the traveling wave detection voltage and the reflected wave detection voltage. The detection circuit comprises a detection unit and a time constant circuit. The detection circuit detects the traveling wave detection voltage and the reflected wave detection voltage. The time constant circuit averages the respective temporal variations of the traveling wave detection voltage and the reflected wave detection voltage that have been detected by the detection unit. In the time constant circuit, the time constant is set shorter in the state where the transmission signal rises than in the state where the transmission signal falls.

Description

無線送信装置、定在波比測定装置及び定在波比測定方法Wireless transmission device, standing wave ratio measuring device, and standing wave ratio measuring method
 本発明は無線送信装置、定在波比測定装置及び定在波比測定方法に関する。 The present invention relates to a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method.
 無線送信装置において、VSWR(Voltage Standing Wave Ratio;電圧定在波比)を測定することは、無線送信装置の特性を把握するのに重要である。特許文献1~9においては、VSWR測定に関する技術が開示されている。関連技術として、特許文献10においては、温度が変化しても入射波及び反射波の検出ができるアンテナ監視装置が開示されている。特許文献11においては、他システムのアンテナからの回りこみによる誤検知をなくし、アンテナ及びアンテナ給電系を正しく監視できる監視装置が開示されている。 In the wireless transmission device, measuring VSWR (Voltage Standing Wave Ratio) is important for grasping the characteristics of the wireless transmission device. Patent Documents 1 to 9 disclose techniques relating to VSWR measurement. As a related technique, Patent Document 10 discloses an antenna monitoring device that can detect an incident wave and a reflected wave even if the temperature changes. Patent Document 11 discloses a monitoring device that can eliminate erroneous detection due to wraparound from an antenna of another system and can correctly monitor the antenna and the antenna feeding system.
 図5Aは、特許文献1にかかるVSWR検出回路を示した構成図である。電力増幅部101は入力信号を増幅し、方向性結合器102はその出力をレベルモニタする。方向性結合器103は、伝送線路110の一端に接続された負荷回路より反射された反射波電力をレベルモニタする。位相器104は、方向性結合器102、103の間に設けられ、進行波及び反射波に位相回転を与える。検波器105、106は、進行波電力及び反射波電力をそれぞれ検波する。演算装置107は、検波器105、106から出力された検波電圧からVSWRを算出する。以上より、VSWR検出回路はVSWRを算出する。 FIG. 5A is a configuration diagram showing a VSWR detection circuit according to Patent Document 1. The power amplifier 101 amplifies the input signal, and the directional coupler 102 monitors the output level. The directional coupler 103 performs level monitoring of the reflected wave power reflected from the load circuit connected to one end of the transmission line 110. The phase shifter 104 is provided between the directional couplers 102 and 103 and applies phase rotation to the traveling wave and the reflected wave. The detectors 105 and 106 detect traveling wave power and reflected wave power, respectively. The arithmetic unit 107 calculates VSWR from the detection voltage output from the detectors 105 and 106. From the above, the VSWR detection circuit calculates VSWR.
 図5Bは、特許文献2にかかるVSWR測定回路を示した構成図である。VSWR測定回路は、被測定物201に対し、信号発生器203から方向性結合器202を通してマイクロ波信号(sinθ)を与える。VSWR測定回路は、被測定物201で反射して方向性結合器202の出力端222から来る反射波(msinθ)と、信号発生器203が出力した、方向性結合器202の入力端221から来る漏洩波(Asinθ)とを合成する。そして、VSWR測定回路は、その合成した信号を検波器204で検波して得た直流電圧を表示器205に表示しながら被測定物201の定在波比を測定する。 FIG. 5B is a configuration diagram showing a VSWR measurement circuit according to Patent Document 2. The VSWR measurement circuit gives a microwave signal (sin θ) to the device under test 201 from the signal generator 203 through the directional coupler 202. The VSWR measurement circuit is reflected by the DUT 201 and reflected from the output end 222 of the directional coupler 202 (msinθ), and the signal generator 203 outputs the input 221 of the directional coupler 202. The leakage wave (Asin θ) is synthesized. Then, the VSWR measurement circuit measures the standing wave ratio of the DUT 201 while displaying the DC voltage obtained by detecting the synthesized signal with the detector 204 on the display 205.
 図5Cは、特許文献3にかかるVSWRモニタ回路を示した構成図である。入力端子301には、高周波送信信号が入力される。第1の方向性結合器302を介して増幅器303で増幅された高周波送信信号の進行波(送信信号進行波)321は、第2の方向性結合器304を介して出力端子317に出力される。送信信号反射波322は、送信信号進行波321とは逆方向に向かって進行し、増幅器303との伝送線路間では定在波として観測される。 FIG. 5C is a configuration diagram showing a VSWR monitor circuit according to Patent Document 3. A high frequency transmission signal is input to the input terminal 301. The traveling wave (transmission signal traveling wave) 321 of the high-frequency transmission signal amplified by the amplifier 303 via the first directional coupler 302 is output to the output terminal 317 via the second directional coupler 304. . The transmission signal reflected wave 322 travels in the opposite direction to the transmission signal traveling wave 321 and is observed as a standing wave between the transmission lines with the amplifier 303.
 第2の方向性結合器304の一方の分岐ポートAには送信信号進行波321の分岐信号が出力され、他方のポートBには送信信号反射波322の分岐信号が主に出力される。この時、第2の方向性結合器304の他方のポートBには強力な送信信号進行波321の一部が漏れ電力として出力される。なお、その電力量は、通常は微弱な送信信号反射波322の分岐信号と同レベルにまでに達することもある。このようにして、他方のポートBには、送信信号反射波322の分岐信号の電力に対し、送信信号進行波321の一部の漏れ電力(送信信号反射波322の分岐信号とは同方向の位相の異なる電力)が重畳する。 The branch signal of the transmission signal traveling wave 321 is output to one branch port A of the second directional coupler 304, and the branch signal of the transmission signal reflected wave 322 is mainly output to the other port B. At this time, a part of the strong transmitted signal traveling wave 321 is output as leakage power to the other port B of the second directional coupler 304. Note that the amount of power may reach the same level as the branch signal of the transmission signal reflected wave 322, which is usually weak. In this manner, the other port B has a leakage power of a part of the transmission signal traveling wave 321 with respect to the power of the branch signal of the transmission signal reflected wave 322 (in the same direction as the branch signal of the transmission signal reflected wave 322). Power with different phases) is superimposed.
 第2の方向性結合器304の一方の分岐ポートAには送信信号進行波321の分岐信号が出力されるが、送信信号反射波322の分岐信号の一部も漏れ電力として出力される。その電力量は送信信号反射波322のISO(抑圧)ポートからの出力となるから殆ど無視できる電力量であるものの、一方の分岐ポートAには、送信信号進行波321の分岐信号の電力に対し、送信信号反射波322の漏れ電力が重畳する。換言すれば、一方の分岐ポートAには、送信信号進行波321の分岐信号の電力に対し、送信信号進行波321の分岐信号とは同方向の位相の異なる僅かな電力が重畳する。 The branch signal of the transmission signal traveling wave 321 is output to one branch port A of the second directional coupler 304, but part of the branch signal of the transmission signal reflected wave 322 is also output as leakage power. Although the amount of power is almost negligible because it is output from the ISO (suppression) port of the transmission signal reflected wave 322, one branch port A has power relative to the power of the branch signal of the transmission signal traveling wave 321. The leakage power of the transmission signal reflected wave 322 is superimposed. In other words, in one branch port A, a small amount of power having a phase different from that of the branch signal of the transmission signal traveling wave 321 is superimposed on the power of the branch signal of the transmission signal traveling wave 321.
 第1の方向性結合器302で分岐された増幅前の送信信号進行波は、第1ベクトル調整器305を介して第1分配器306でさらに分岐される。そして、分岐された送信信号進行波321は、第2の方向性結合器304から出力された分岐信号と第1の結合器307で結合される。 The transmitted signal traveling wave before amplification branched by the first directional coupler 302 is further branched by the first distributor 306 via the first vector adjuster 305. The branched transmission signal traveling wave 321 is combined with the branched signal output from the second directional coupler 304 by the first coupler 307.
 次に、第1の結合器307の出力は検波器310で直流検波され、検波された情報はA/D変換器312でデジタル化されてベクトル制御器314に送出される。ベクトル制御器314は、入力された検波電圧に対応して第1ベクトル調整器305を調整する。ベクトル制御器314は、第1の結合器307の出力が最小になる、すなわち検波器310の検波電圧が最小になるように第1ベクトル調整器305を自動制御する。なおベクトル制御器314の制御電圧はCPU(Central Processing Unit)で処理するためデジタル信号であるが、第1ベクトル調整器305はアナログ信号で動作する。そのため、その制御電圧はD/A変換器315を介してアナログ化された状態で送出される。 Next, the output of the first coupler 307 is DC detected by the detector 310, and the detected information is digitized by the A / D converter 312 and sent to the vector controller 314. The vector controller 314 adjusts the first vector adjuster 305 corresponding to the input detection voltage. The vector controller 314 automatically controls the first vector adjuster 305 so that the output of the first coupler 307 is minimized, that is, the detection voltage of the detector 310 is minimized. The control voltage of the vector controller 314 is a digital signal because it is processed by a CPU (Central (Processing Unit), but the first vector adjuster 305 operates with an analog signal. Therefore, the control voltage is sent out in an analog state via the D / A converter 315.
 上述の通り、第2の方向性結合器304の分岐ポートBから出力される分岐信号は、送信信号反射波322と送信信号進行波321の漏れ電力とが重畳された信号である。そして、第1分配器306で分岐される増幅前の送信信号進行波321のうち、第1の結合器307に入力されないものは、第2ベクトル調整器308を介して第2の結合器309に出力される。この信号と、分岐ポートBから出力される分岐信号とは第2の結合器309で結合される。 As described above, the branch signal output from the branch port B of the second directional coupler 304 is a signal in which the transmission signal reflected wave 322 and the leakage power of the transmission signal traveling wave 321 are superimposed. Of the transmission signal traveling waves 321 before amplification that are branched by the first distributor 306, those that are not input to the first combiner 307 are sent to the second combiner 309 via the second vector adjuster 308. Is output. This signal and the branch signal output from the branch port B are coupled by the second coupler 309.
 第1分配器306と第2の結合器309との間には、位相量と減衰量を調整するための第2ベクトル調整器308が設置される。送信信号反射波322の分岐信号(反射波)は、検波器311およびA/D変換器313でデジタル化され、VSWRモニタ316に反射波情報として送られる。VSWRモニタ316は、送信信号反射波の検波情報を、内部インタフェース端子318を介して高周波送信装置の処理回路に出力する。 Between the first distributor 306 and the second coupler 309, a second vector adjuster 308 for adjusting the phase amount and the attenuation amount is installed. The branch signal (reflected wave) of the transmission signal reflected wave 322 is digitized by the detector 311 and the A / D converter 313 and sent to the VSWR monitor 316 as reflected wave information. The VSWR monitor 316 outputs detection information of the transmission signal reflected wave to the processing circuit of the high frequency transmission device via the internal interface terminal 318.
 図5Dは、特許文献4にかかるアンテナポート監視システムを示した構成図である。アンテナポート監視システムは、送信増幅部401、反射電力用検波回路402、A/Dコンバータ403、送信電力用検波回路404、A/Dコンバータ405、正常値サンプリング回路408、異常値サンプリング回路409、現在値サンプリング回路410、書き込み指示回路412、反射波特性記憶回路411、スレッショルド決定回路413、ALM判定回路414、試験信号発生回路407、信号選択回路406及びCPU415を備える。 FIG. 5D is a configuration diagram showing an antenna port monitoring system according to Patent Document 4. The antenna port monitoring system includes a transmission amplifier 401, a reflected power detection circuit 402, an A / D converter 403, a transmission power detection circuit 404, an A / D converter 405, a normal value sampling circuit 408, an abnormal value sampling circuit 409, A value sampling circuit 410, a write instruction circuit 412, a reflected wave characteristic storage circuit 411, a threshold determination circuit 413, an ALM determination circuit 414, a test signal generation circuit 407, a signal selection circuit 406, and a CPU 415 are provided.
 送信増幅部401は、無線通信装置の送信信号を増幅する。反射電力用検波回路402は、反射電力を測定する。A/Dコンバータ403は、検波された反射電力値をデジタル値に変換する。送信電力用検波回路404は、送信電力を測定する。A/Dコンバータ405は、検波された送信電力値をデジタル値に変換する。正常値サンプリング回路408は、正常時の送信電力値及び反射電力値を一時的に保持する。異常値サンプリング回路409は、異常時の送信電力値及び反射電力値を一時的に保持する。現在値サンプリング回路410は、現在の送信電力値及び反射電力値を一時的に保持する。書き込み指示回路412は、これらの保持タイミングを指示する。反射波特性記憶回路411は、これらの一時的に保持された値を格納する。スレッショルド決定回路413は、反射波特性記憶回路411から読み出した値とCPU415から設定された情報を基にスレッショルド値を決定する。ALM判定回路414は、これらの値に基づいて最終的にVSWRアラームを判定する。試験信号発生回路407は、試験信号を発生する。信号選択回路406は、試験信号を送信するか運用信号を送信するかを選択する。CPU415は、全体を制御する。このようにして、無線通信装置は、VSWRアラームを発生させることができる。 The transmission amplification unit 401 amplifies the transmission signal of the wireless communication device. The reflected power detection circuit 402 measures the reflected power. The A / D converter 403 converts the detected reflected power value into a digital value. The transmission power detection circuit 404 measures transmission power. The A / D converter 405 converts the detected transmission power value into a digital value. The normal value sampling circuit 408 temporarily holds the transmission power value and the reflected power value at the normal time. The abnormal value sampling circuit 409 temporarily holds the transmission power value and the reflected power value at the time of abnormality. The current value sampling circuit 410 temporarily holds the current transmission power value and reflected power value. The write instruction circuit 412 instructs these holding timings. The reflected wave characteristic storage circuit 411 stores these temporarily held values. The threshold determination circuit 413 determines a threshold value based on the value read from the reflected wave characteristic storage circuit 411 and information set by the CPU 415. The ALM determination circuit 414 finally determines the VSWR alarm based on these values. The test signal generation circuit 407 generates a test signal. The signal selection circuit 406 selects whether to transmit a test signal or an operation signal. The CPU 415 controls the whole. In this way, the wireless communication device can generate a VSWR alarm.
 図6は、関連する無線送信装置の例を示した構成図である。無線送信装置500は、MAC(Media Access Controller)501、ベースバンド信号発生器(BB信号発生器)502、変調器503、局部発振器504、高出力増幅器505、フィルタ506、方向性結合器507、アンテナ508、VSWR測定回路509及びVSWR表示部517を備える。VSWR測定回路509は、進行波検出器510、反射波検出器511、固定時定数回路512、固定時定数回路513、差分検出器514、VSWR計算器515及びVSWR平均化器516を備える。 FIG. 6 is a configuration diagram illustrating an example of a related wireless transmission device. The wireless transmission device 500 includes a MAC (Media Access Controller) 501, a baseband signal generator (BB signal generator) 502, a modulator 503, a local oscillator 504, a high output amplifier 505, a filter 506, a directional coupler 507, an antenna. 508, a VSWR measurement circuit 509, and a VSWR display unit 517. The VSWR measurement circuit 509 includes a traveling wave detector 510, a reflected wave detector 511, a fixed time constant circuit 512, a fixed time constant circuit 513, a difference detector 514, a VSWR calculator 515, and a VSWR averager 516.
 MAC501で生成されたデータ信号は、ベースバンド信号発生器502で変調ベースバンド信号であるI/Q軸信号に変調される。すなわち、ベースバンド信号発生器502はI/Q変調を実行する。 The data signal generated by the MAC 501 is modulated by the baseband signal generator 502 into an I / Q axis signal that is a modulated baseband signal. That is, the baseband signal generator 502 performs I / Q modulation.
 I/Q軸信号は、変調器503と局部発振器504によりRF(Radio Frequency)帯変調ダウンリンク信号に変換される。RF帯変調ダウンリンク信号の電力は、高出力増幅器505により所定の送信電力まで高められる。高出力増幅器505が出力したRF帯変調ダウンリンク信号は、送信スプリアス低減の為のフィルタ506を介して、アンテナ508に出力される。アンテナ508は、RF帯変調ダウンリンク信号を無線信号として空間に放射する。 The I / Q axis signal is converted into an RF (Radio Frequency) band modulated downlink signal by the modulator 503 and the local oscillator 504. The power of the RF band modulation downlink signal is raised to a predetermined transmission power by the high power amplifier 505. The RF band modulation downlink signal output from the high power amplifier 505 is output to the antenna 508 via the filter 506 for reducing transmission spurious. The antenna 508 radiates an RF band modulation downlink signal as a radio signal to space.
 なお、無線送信装置においてVSWR測定回路509はアンテナ508の前段に設けられる。これは、VSWR測定回路509がアンテナ508の影響を見込んだVSWRを測定することにより、アンテナからの空間放射が問題無く行なわれている事を確認するためである。 Note that in the wireless transmission device, the VSWR measurement circuit 509 is provided in front of the antenna 508. This is because the VSWR measurement circuit 509 measures the VSWR considering the influence of the antenna 508 to confirm that the spatial radiation from the antenna is performed without any problem.
 フィルタ506とアンテナ508の間には、VSWR測定のために進行波と反射波を検出する方向性結合器507が挿入されている。換言すれば、アンテナ508前段に方向性結合器507が挿入されている。方向性結合器507により、無線送信装置500においてアンテナ508方向に出力される進行波の電圧は進行波検出器510にて検出される。同様に、アンテナ508と反対方向に出力される反射波の電圧は反射波検出器511にて検出される。 Between the filter 506 and the antenna 508, a directional coupler 507 for detecting a traveling wave and a reflected wave is inserted for VSWR measurement. In other words, the directional coupler 507 is inserted before the antenna 508. The traveling wave detector 510 detects the traveling wave voltage output in the direction of the antenna 508 in the wireless transmission device 500 by the directional coupler 507. Similarly, the reflected wave voltage output in the opposite direction to the antenna 508 is detected by the reflected wave detector 511.
 進行波の検波電圧瞬時値の時間的変動を平均化するため、進行波検出器510にて検出された電圧は、固定の時定数を有する固定時定数回路512を介して差分検出器514に出力される。同様に、反射波の検波電圧瞬時値の時間的変動を平均化するため、反射波検出器511にて検出された電圧は、固定の時定数を有する固定時定数回路513を介して差分検出器514に出力される。 In order to average the temporal fluctuation of the instantaneous value of the detection voltage of the traveling wave, the voltage detected by the traveling wave detector 510 is output to the difference detector 514 via the fixed time constant circuit 512 having a fixed time constant. Is done. Similarly, in order to average the temporal fluctuation of the detection voltage instantaneous value of the reflected wave, the voltage detected by the reflected wave detector 511 is detected by a differential detector via a fixed time constant circuit 513 having a fixed time constant. It is output to 514.
 図7は、固定時定数回路512(積分回路)の例を示した構成図である。固定時定数回路512は、抵抗518及びコンデンサ519を有する。抵抗518は、一端が進行波検出器510側に接続され、他端が差分検出器514側に接続されている。コンデンサ519は、抵抗518と差分検出器514との間にその一端が接続され、その他端は接地されている。 FIG. 7 is a configuration diagram showing an example of a fixed time constant circuit 512 (integration circuit). The fixed time constant circuit 512 includes a resistor 518 and a capacitor 519. The resistor 518 has one end connected to the traveling wave detector 510 side and the other end connected to the difference detector 514 side. One end of the capacitor 519 is connected between the resistor 518 and the difference detector 514, and the other end is grounded.
 抵抗518の抵抗値をR、コンデンサ519の容量値をCとすると、固定時定数回路512における固定時定数τはτ=RCとなる。ここで、通常Symbol毎に変わる検波電圧を十分平滑化するため、τはSymbol長の数倍から10倍程度の比較的長い時間に設定される。 When the resistance value of the resistor 518 is R and the capacitance value of the capacitor 519 is C, the fixed time constant τ in the fixed time constant circuit 512 is τ = RC. Here, in order to sufficiently smooth the detection voltage that normally changes for each Symbol, τ is set to a relatively long time of several times to about 10 times the Symbol length.
 固定時定数回路513も、固定時定数回路512と同様の構成を有する。 The fixed time constant circuit 513 has the same configuration as the fixed time constant circuit 512.
 図6に戻り、無線通信装置の説明を続ける。差分検出器514は、固定時定数回路512から出力された進行波の電圧と、固定時定数回路513から出力された反射波の電圧との差分を検出する。差分検出器514が検出した差分検出電圧に基づいて、VSWR計算器515は無線送信装置500のVSWRを計算する。VSWR計算器515が測定したVSWRは、VSWR平均化器516で平滑化される。VSWR平均化器516で平滑化されたVSWRを、無線送信装置500は最終報告値としてVSWR表示部517にそのまま出力表示する。以上のようにして、無線送信装置500はVSWRを測定する。 Returning to FIG. 6, the description of the wireless communication device will be continued. The difference detector 514 detects the difference between the traveling wave voltage output from the fixed time constant circuit 512 and the reflected wave voltage output from the fixed time constant circuit 513. Based on the difference detection voltage detected by the difference detector 514, the VSWR calculator 515 calculates the VSWR of the wireless transmission device 500. The VSWR measured by the VSWR calculator 515 is smoothed by the VSWR averager 516. The wireless transmission device 500 outputs and displays the VSWR smoothed by the VSWR averager 516 as it is on the VSWR display unit 517 as the final report value. As described above, the wireless transmission device 500 measures the VSWR.
 特に、特許文献5~10においては、VSWRの測定誤差を解消することが可能な無線送信装置が開示されている。 In particular, Patent Documents 5 to 10 disclose wireless transmission devices that can eliminate VSWR measurement errors.
 図8Aは、特許文献6にかかるアンテナ通信装置の例を示した構成図である。アンテナ通信装置は、送信機Tx1~Txn、コンバイナ611、アンテナ監視装置601、アンテナフィルタF0及びアンテナ613を備える。コンバイナ611は、アイソレータI1~In及び帯域通過フィルタF1~Fnを有する。アンテナ監視装置601は、方向性結合器612、バンドパスフィルタ621、622、検波回路614、615、演算回路616及び表示装置617を有する。アンテナ監視装置601は、以上の構成により、VSWRを測定する。 FIG. 8A is a configuration diagram showing an example of an antenna communication device according to Patent Document 6. The antenna communication device includes transmitters Tx1 to Txn, a combiner 611, an antenna monitoring device 601, an antenna filter F0, and an antenna 613. The combiner 611 includes isolators I1 to In and band pass filters F1 to Fn. The antenna monitoring device 601 includes a directional coupler 612, band pass filters 621 and 622, detection circuits 614 and 615, an arithmetic circuit 616 and a display device 617. The antenna monitoring apparatus 601 measures VSWR with the above configuration.
 方向性結合器612は、進行波と反射波を検波するため、アンテナに接続されたアンテナフィルタF0(バンドパスフィルタ)と送信機との間に挟んで挿入される。このように方向性結合器612を設けることにより、アンテナフィルタF0によって帯域外にある反射波が減衰することが期待できる。 The directional coupler 612 is inserted between an antenna filter F0 (bandpass filter) connected to an antenna and a transmitter in order to detect traveling waves and reflected waves. By providing the directional coupler 612 in this way, it can be expected that the reflected wave outside the band is attenuated by the antenna filter F0.
 方向性結合器612からは、伝送線路が分岐される。方向性結合器612と進行波用の検波回路614との間の伝送線路には、バンドパスフィルタ621が挿入される。方向性結合器612と反射波用の検波回路615との間の伝送線路には、バンドパスフィルタ622が挿入される。バンドパスフィルタ621及び622により、帯域外の干渉波・妨害波を検波前に十分抑圧することができる。以上により、図8Aにかかるアンテナ通信装置は、VSWRの測定誤差を解消することができる。 A transmission line is branched from the directional coupler 612. A band-pass filter 621 is inserted in the transmission line between the directional coupler 612 and the traveling wave detection circuit 614. A band pass filter 622 is inserted in the transmission line between the directional coupler 612 and the detection circuit 615 for reflected waves. The bandpass filters 621 and 622 can sufficiently suppress out-of-band interference waves and jamming waves before detection. As described above, the antenna communication apparatus according to FIG. 8A can eliminate the measurement error of VSWR.
 図8Bは、特許文献6にかかる他のアンテナ通信装置の例を示した構成図である。アンテナ通信装置は、送信機Tx1~Txn、コンバイナ711、アンテナ監視装置701、アンテナフィルタF0及びアンテナ713を備える。コンバイナ711は、アイソレータI1~In及び帯域通過フィルタF1~Fnを有する。アンテナ監視装置701は、方向性結合器712、局部発振回路723a、ミキサ回路724、725、帯域通過フィルタ726、727、中間周波フィルタ728、729、検波回路714、715、演算回路716及び表示装置717を有する。アンテナ監視装置701は、以上の構成により、VSWRを測定する。 FIG. 8B is a configuration diagram showing an example of another antenna communication device according to Patent Document 6. The antenna communication device includes transmitters Tx1 to Txn, a combiner 711, an antenna monitoring device 701, an antenna filter F0, and an antenna 713. The combiner 711 includes isolators I1 to In and band pass filters F1 to Fn. The antenna monitoring device 701 includes a directional coupler 712, a local oscillation circuit 723a, mixer circuits 724 and 725, band pass filters 726 and 727, intermediate frequency filters 728 and 729, detection circuits 714 and 715, an arithmetic circuit 716, and a display device 717. Have The antenna monitoring apparatus 701 measures VSWR with the above configuration.
 局部発振回路723a及びミキサ回路724、局部発振回路723a及びミキサ回路725は、それぞれダウンコンバータを構成する。方向性結合器712で分岐された進行波経路と反射波経路には、それぞれ当該ダウンコンバータが設けられている。局部発振回路723aが局部発振器周波数を変えることにより、ダウンコンバータが対象とする通過帯域を変えている。 The local oscillation circuit 723a and the mixer circuit 724, and the local oscillation circuit 723a and the mixer circuit 725 each constitute a down converter. Each of the traveling wave path and the reflected wave path branched by the directional coupler 712 is provided with the down converter. The local oscillation circuit 723a changes the local oscillator frequency, thereby changing the pass band targeted by the down converter.
 方向性結合器712から出力された信号は、ダウンコンバートされた後に、ベースバンド又はIF(Intermediate Frequency)周波数が設定されたダウンコンバータよりも狭帯域のフィルタを通過する。これにより、アンテナ通信装置は更に急峻に外来の帯域外干渉波又は妨害波を減衰させ、これらの干渉波・妨害波によるVSWR測定値の誤差を低減することができる。 After the signal output from the directional coupler 712 is down-converted, it passes through a narrower band filter than a down-converter in which a baseband or IF (Intermediate Frequency) frequency is set. As a result, the antenna communication apparatus can more rapidly attenuate the external out-of-band interference wave or jamming wave, and reduce the error in the VSWR measurement value due to these interference wave / jamming wave.
特開2005-049231号公報JP 2005-092331 A 特開平03-051772号公報Japanese Patent Laid-Open No. 03-051772 特開2004-286632号公報JP 2004-286632 A 特開2004-096689号公報JP 2004-096689 A 特開平05-157781号公報Japanese Patent Laid-Open No. 05-157781 特開平04-357471号公報Japanese Patent Laid-Open No. 04-357471 特開平04-310872号公報Japanese Patent Laid-Open No. 04-310872 特開2005-017138号公報Japanese Patent Laying-Open No. 2005-0117138 特開2002-043957号公報JP 2002-043957 A 実開平05-073576号公報Japanese Utility Model Publication No. 05-073576 特開平05-172879号公報Japanese Patent Laid-Open No. 05-172879
 図6にかかる無線送信装置500は、以下の環境時において、VSWR測定に大きな誤差が生じてしまう。 6 has a large error in the VSWR measurement under the following environment.
 図9Aは、無線送信装置500が適用される状態を示した概略図である。図9Aでは、自システムの基地局系無線送信装置と他システムの基地局系無線送信装置とが結合している状態が示されている。ここでは、2つの無線送信装置は共用アンテナを用いて、LTE(Long Term Evolution)等のOFDM(Orthogonal Frequency Division Multiplexing)方式からなる通信をする。 FIG. 9A is a schematic diagram illustrating a state where the wireless transmission device 500 is applied. FIG. 9A shows a state in which the base station wireless transmitter of its own system and the base station wireless transmitter of another system are coupled. Here, the two wireless transmission devices communicate using an OFDM (Orthogonal-Frequency-Division-Multiplexing) method such as LTE (Long-Term Evolution) using a shared antenna.
 図9Aでは、他システムの無線送信装置からの干渉波が自システムの無線送信装置に入力されることが示されている。ここで、自システム基地局送信部800は、A[dBm]の信号を、アンテナ共用器801を介してアンテナ802に出力する。他システム基地局送信部803は、B[dBm]の信号を、アンテナ共用器801を介してアンテナ802に出力する。このとき、他システム基地局送信部803の出力した送信信号のうち、B-X[dBm]の送信信号がアンテナ共用器801を介して自システム基地局送信部800に出力される。なお、X[dBm]はアンテナ共用器801のアイソレーション量である。 FIG. 9A shows that an interference wave from a wireless transmission device of another system is input to the wireless transmission device of the own system. Here, own system base station transmission section 800 outputs the signal of A [dBm] to antenna 802 via antenna duplexer 801. Other system base station transmission section 803 outputs the signal of B [dBm] to antenna 802 via antenna duplexer 801. At this time, among the transmission signals output from other system base station transmission section 803, the transmission signal of BX [dBm] is output to own system base station transmission section 800 via antenna duplexer 801. X [dBm] is the isolation amount of the antenna duplexer 801.
 図9Bは、自システム基地局送信部800とアンテナ共用器801との間における信号レベルを示した図である。図9Bの横軸は周波数fを示す。自システム基地局送信部800が出力する信号(送信信号1)は、A[dBm]の強さを有し、他システム基地局送信部803が出力する信号(送信信号2)は、A-X[dBm]の強さを有する。ここで、元々他システム基地局送信部803が出力する信号はA[dBm]であり、A=Bである。なお、IM(Inter Modulation)1とIM2は、自システム基地局送信信号と他システム基地局送信信号の逆流波により生ずる相互変調ひずみである。 FIG. 9B is a diagram showing a signal level between the own system base station transmission unit 800 and the antenna duplexer 801. The horizontal axis in FIG. 9B indicates the frequency f. The signal (transmission signal 1) output from the own system base station transmission unit 800 has the strength of A [dBm], and the signal (transmission signal 2) output from the other system base station transmission unit 803 is AX It has a strength of [dBm]. Here, the signal originally output from the other system base station transmission section 803 is A [dBm], and A = B. IM (Inter Modulation) 1 and IM2 are intermodulation distortions caused by the backflow waves of the transmission base station transmission signal and the transmission base station transmission signal of the other system.
 図10は、LTEダウンリンク信号の時間波形を示す図である。図10におけるE-TM1.1はテスト信号であり、主にQPSK(Quadrature Phase Shift Keying)-OFDMA(Orthogonal Frequency Division Multiple Access)方式で通信される信号である。E-TM2はテスト信号であり、64QAM(Quadrature amplitude modulation)Single RB(Resource Block)方式で通信される信号である。このE-TM1.1やE-TM2は、時間軸上密に信号が存在している通常のデータ信号である。すなわち、E-TM1.1及びE-TM2は、出力期間が長い信号である。図10において縦軸はdB(各種信号の相対比)であり、横軸は時間を表している。 FIG. 10 is a diagram showing a time waveform of the LTE downlink signal. E-TM1.1 in FIG. 10 is a test signal, and is a signal mainly communicated by QPSK (Quadrature Phase Shift Keying) -OFDMA (Orthogonal Frequency Division Multiple Access) system. E-TM2 is a test signal, and is a signal communicated in a 64QAM (Quadrature amplitude modulation) Single RB (Resource Block) system. These E-TM1.1 and E-TM2 are normal data signals in which signals exist densely on the time axis. That is, E-TM1.1 and E-TM2 are signals having a long output period. In FIG. 10, the vertical axis represents dB (relative ratio of various signals), and the horizontal axis represents time.
 図10における制御チャネル信号は、自システム基地局送信部800と携帯端末とのリンクが無い状態において、実運用信号の中で最も疎な信号である。制御チャネル信号には、報知情報(Broadcast情報)と、リファレンス信号(基準信号)とが含まれる。 The control channel signal in FIG. 10 is the sparsest signal among the actual operation signals in a state where there is no link between the own system base station transmission unit 800 and the mobile terminal. The control channel signal includes broadcast information (Broadcast information) and a reference signal (reference signal).
 ここで、制御チャネル信号は、制御チャネルによって携帯端末に送信される、携帯端末が接続制御に必要な制御信号である。報知情報とは、移動端末における位置登録要否の判断に必要となる位置番号、周辺セル情報、発信規制制御を行うための情報等を含む信号である。リファレンス信号とは、端末側でのトレーニング信号であり、あらかじめ基地局側と携帯端末側で定められたパターンの信号である。携帯端末側では、そのリファレンス信号からチャネル(減衰量及び位相回転量)の推定等の処理を実行する。 Here, the control channel signal is a control signal that is transmitted to the mobile terminal through the control channel and is necessary for connection control by the mobile terminal. The broadcast information is a signal including a location number, neighboring cell information, information for performing transmission restriction control, and the like necessary for determining whether or not location registration is necessary in the mobile terminal. The reference signal is a training signal on the terminal side, and is a signal having a pattern determined in advance on the base station side and the mobile terminal side. On the portable terminal side, processing such as estimation of the channel (attenuation amount and phase rotation amount) is executed from the reference signal.
 図10における1フレーム(=10サブフレーム・10msec)中には、個々の信号の出力期間が通常のデータ信号に比較して短い報知情報と、報知情報に比べて個々の信号の出力期間が更に短いリファレンス信号とが、時間軸上疎らに存在する。 In one frame in FIG. 10 (= 10 subframes · 10 msec), the output period of each signal is shorter than that of a normal data signal, and the output period of each signal is further longer than that of the notification information. A short reference signal exists sparsely on the time axis.
 以下、図6に示した無線送信装置500を、図9Aに示した自システム基地局送信部800として用いた場合において、各種環境下でVSWRを測定した場合の課題を説明する。 Hereinafter, a problem when VSWR is measured under various environments when the wireless transmission device 500 shown in FIG. 6 is used as the own system base station transmission unit 800 shown in FIG. 9A will be described.
 図11は、密度のあるテスト信号E-TM2がDL(ダウンリンク)信号として無線送信装置500から送信される場合の、2フレーム(20msec)間のDL信号レベル、DL反射波の信号レベル及びVSWR測定値を示した図である。ここでDL反射波は、RL(Return Loss)を15dBとした場合の反射状態を想定したものである(図12、図13においても同様である)。なお図11中の縦軸方向の矢印は、検波器のダイナミックレンジを示している(図12、図13においても同様である)。 FIG. 11 shows a DL signal level between two frames (20 msec), a DL reflected wave signal level, and a VSWR when a dense test signal E-TM2 is transmitted as a DL (downlink) signal from the wireless transmission device 500. It is the figure which showed the measured value. Here, the DL reflected wave assumes a reflection state when RL (Return Loss) is 15 dB (the same applies to FIGS. 12 and 13). 11 indicates the dynamic range of the detector (the same applies to FIGS. 12 and 13).
 図11においては、DL信号レベルは変動するが、その変動は検波器のダイナミックレンジ内の変動である。かつ、固定時定数回路512、513により変動の平滑化が十分に成される。そのため、VSWR測定値は常に正しい値(この場合1.5)を示す。 In FIG. 11, the DL signal level varies, but the variation is within the dynamic range of the detector. In addition, the fixed time constant circuits 512 and 513 sufficiently smooth the fluctuation. Therefore, the VSWR measurement value always shows a correct value (1.5 in this case).
 図12は、運用時の疎な制御チャネルがDL信号として無線送信装置500から送信される場合の、2フレーム(20msec)間のDL信号レベル、DL反射波の信号レベル及びVSWR測定値の増減を示した図である。 FIG. 12 shows increase / decrease in DL signal level, DL reflected wave signal level, and VSWR measurement value during two frames (20 msec) when a sparse control channel during operation is transmitted as a DL signal from the wireless transmission device 500. FIG.
 この場合には、ON/OFFを頻繁に繰り返すDL信号としてのリファレンス信号の期間が、固定時定数回路512、513の時定数τに比して短すぎる状態となる。 In this case, the period of the reference signal as a DL signal that frequently repeats ON / OFF is too short compared to the time constant τ of the fixed time constant circuits 512 and 513.
 従って、検波電圧が立ち上がりきらず、ダイナミックレンジ内に至らないうちに、進行波・反射波両信号ともに立ち下がってしまう。そのため、VSWR測定値の精度が悪化してしまう。ただし、報知情報が出力される期間(図12において丸で囲まれた領域)のみでは、信号密度が高くなる(個々の信号の出力期間が長い信号が出力される)ため、VSWR測定値は正しい値を示す。 Therefore, both the traveling wave signal and the reflected wave signal fall before the detection voltage does not fully rise and falls within the dynamic range. Therefore, the accuracy of the VSWR measurement value is deteriorated. However, only in the period in which the notification information is output (the area circled in FIG. 12), the signal density becomes high (a signal with a long output period of each signal is output), so the VSWR measurement value is correct. Indicates the value.
 図13は、運用時の疎な制御チャネルがDL信号として無線送信装置500から送信され、かつ、他システムから恒常的に継続した妨害波が逆流して無線送信装置500に入力された場合の、2フレーム(20msec)間のDL信号レベル、DL反射波の信号レベル及びVSWR測定値の増減を示した図である。 FIG. 13 shows a case where a sparse control channel during operation is transmitted as a DL signal from the wireless transmission device 500, and a continuously disturbing wave from another system flows backward and is input to the wireless transmission device 500. It is the figure which showed increase / decrease in the DL signal level between 2 frames (20msec), the signal level of DL reflected wave, and the VSWR measured value.
 このとき、反射波検出器511によって妨害波が反射波として検出されてしまう。妨害波は、図13において、-30dB近辺の信号レベルとして検出される。妨害波の出力期間は固定時定数回路512の有する時定数τに比較して十分に長い。従って、固定時定数回路512は妨害波についての検波電圧を出力してしまう。換言すれば、測定回路509において、妨害波による検波電圧が反射波による検波電圧として誤認されて測定されてしまう。妨害波による検波電圧は、高めの信号レベルで安定する。そのため、反射波の検波電圧の誤差が大幅に拡大してしまう。これは固定時定数回路513においても同様である。 At this time, the reflected wave detector 511 detects the interference wave as a reflected wave. The interference wave is detected as a signal level in the vicinity of −30 dB in FIG. The output period of the interference wave is sufficiently longer than the time constant τ of the fixed time constant circuit 512. Therefore, the fixed time constant circuit 512 outputs a detection voltage for the interference wave. In other words, in the measurement circuit 509, the detection voltage due to the disturbing wave is mistakenly detected as the detection voltage due to the reflected wave and is measured. The detection voltage due to the interference wave is stabilized at a higher signal level. For this reason, the error in the detection voltage of the reflected wave greatly increases. The same applies to the fixed time constant circuit 513.
 これに対して進行波は、検波電圧が立ち上がりきらないうちに、進行波が立ち下がってしまう。これは、リファレンス信号の期間が固定時定数回路の時定数τに比して短すぎるためである。 On the other hand, the traveling wave falls before the detection voltage rises. This is because the period of the reference signal is too short compared to the time constant τ of the fixed time constant circuit.
 結果として、進行波の検波電圧が低く測定されてしまうのに対して、反射波の検波電圧が高く測定されてしまう。そのため、測定するVSWRの精度がさらに悪化してしまう。妨害波のレベルによっては、VSWRの精度は最悪に固定されてしまうこととなる。ただし、報知情報が出力される期間(図13において丸で囲まれた領域)のみでは、信号密度が高くなるため、VSWR測定値は正しい値を示す。 As a result, the detection voltage of the traveling wave is measured low, whereas the detection voltage of the reflected wave is measured high. For this reason, the accuracy of the VSWR to be measured is further deteriorated. Depending on the level of the interference wave, the accuracy of the VSWR is fixed to the worst. However, only in the period in which the notification information is output (the area circled in FIG. 13), the signal density becomes high, and the VSWR measurement value shows a correct value.
 以上のように、実環境下で、出力する信号密度が疎な場合においては、VSWR測定値は劣化してしまう。更に、共用アンテナで結合した他システムからの妨害波逆流がある場合は、VSWR報告値はますます劣化してしまう。このような場合には、アンテナを見込んだ場合のVSWR報告として全反射様相と誤認された報告がなされてしまう事で、監視局の方で誤アラーム等が発動することにより、自システムが停波してしまうとの懸念があった。 As described above, in a real environment, when the output signal density is sparse, the VSWR measurement value deteriorates. Furthermore, if there is a backflow of interference from other systems coupled by a shared antenna, the VSWR report value will be further deteriorated. In such a case, a report misunderstood as a total reflection aspect is made as a VSWR report when the antenna is expected, and an error alarm or the like is activated at the monitoring station, so that the own system is stopped. There was concern that it would.
 特許文献1~4にかかる無線送信装置では、VSWRの測定誤差を解消するための回路構成等は何ら開示されていないため、上述の問題が発生してしまう。 The wireless transmitters according to Patent Documents 1 to 4 do not disclose any circuit configuration for eliminating the VSWR measurement error, and thus the above-described problem occurs.
 特許文献5~10にかかる無線送信装置では、VSWRの測定誤差を解消するための回路構成等がとられているものの、以上に示した課題については解消することができない。特許文献11についても同様である。従って、やはり上述の問題が発生してしまう。 In the wireless transmission devices according to Patent Documents 5 to 10, although the circuit configuration for eliminating the measurement error of VSWR is taken, the above-described problems cannot be solved. The same applies to Patent Document 11. Therefore, the above-mentioned problem occurs again.
 本発明は、このような問題点を解決するためになされたものであり、電圧定在波比の測定誤差を抑制可能な無線送信装置、定在波比測定装置及び定在波比測定方法を提供することを目的とする。 The present invention has been made to solve such a problem, and provides a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method capable of suppressing a measurement error of a voltage standing wave ratio. The purpose is to provide.
 本発明の第一の態様は、無線送信装置を含む。無線送信装置は、送信信号生成装置、検波回路及び定在波比測定回路を備える。送信信号生成装置は、送信信号を生成し、出力する。検波回路は、前記送信信号生成装置とアンテナとの伝送線路間に設けられ、前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出する。定在波比測定回路は、前記検波回路によって検出された進行波の検波電圧と反射波の検波電圧に基づいて電圧定在波比を測定する。検波回路は、検出部及び時定数回路を有する。検出部は、前記進行波の検波電圧と前記反射波の検波電圧を検出する。時定数回路は、前記検出部により検出された進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化する。ここで、時定数回路においては、前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して時定数が短く設定される。 The first aspect of the present invention includes a wireless transmission device. The wireless transmission device includes a transmission signal generation device, a detection circuit, and a standing wave ratio measurement circuit. The transmission signal generating device generates and outputs a transmission signal. The detection circuit is provided between transmission lines of the transmission signal generation device and the antenna, and detects a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal. The standing wave ratio measuring circuit measures the voltage standing wave ratio based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit. The detection circuit includes a detection unit and a time constant circuit. The detection unit detects the detection voltage of the traveling wave and the detection voltage of the reflected wave. The time constant circuit averages temporal variations with respect to each of the traveling wave detection voltage detected by the detection unit and the reflected wave detection voltage. Here, in the time constant circuit, the time constant is set shorter in the state where the transmission signal rises than in the state where the transmission signal falls.
 本発明の第二の態様は、定在波比測定装置を含む。定在波比測定装置は、送信信号を生成し、出力する無線送信装置に設けられる。定在波比測定装置は、検波回路及び定在波比測定回路を備える。検波回路は、前記送信信号を生成する生成装置とアンテナとの伝送線路間に設けられ、前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出する。定在波比測定回路は、前記検波回路によって検出された進行波の検波電圧と反射波の検波電圧に基づいて電圧定在波比を測定する。検波回路は、検出部及び時定数回路を備える。検出部は、前記進行波の検波電圧と前記反射波の検波電圧を検出する。時定数回路は、前記検出部により検出された進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化する。ここで、時定数回路においては、前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して時定数が短く設定される。 The second aspect of the present invention includes a standing wave ratio measuring device. The standing wave ratio measuring device is provided in a wireless transmission device that generates and outputs a transmission signal. The standing wave ratio measuring device includes a detection circuit and a standing wave ratio measurement circuit. The detection circuit is provided between a transmission line between the generation device that generates the transmission signal and the antenna, and detects a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal. The standing wave ratio measuring circuit measures the voltage standing wave ratio based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit. The detection circuit includes a detection unit and a time constant circuit. The detection unit detects the detection voltage of the traveling wave and the detection voltage of the reflected wave. The time constant circuit averages temporal variations with respect to each of the traveling wave detection voltage detected by the detection unit and the reflected wave detection voltage. Here, in the time constant circuit, the time constant is set shorter in the state where the transmission signal rises than in the state where the transmission signal falls.
 本発明の第三の態様は、定在波比測定方法を含む。この定在波比測定方法は、送信信号を生成し、出力する無線送信装置において電圧定在波比を測定する定在波比測定方法である。ここで、定在波比測定方法は、以下のステップ(a)~(d)を含む。
(a)前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出すること、
(b)前記進行波の検波電圧と前記反射波の検波電圧を検出すること、
(c)前記検出部により検出された進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化すること、及び
(d)前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して前記時定数回路の時定数を短く設定すること。
The third aspect of the present invention includes a standing wave ratio measuring method. This standing wave ratio measuring method is a standing wave ratio measuring method in which a voltage standing wave ratio is measured in a wireless transmission device that generates and outputs a transmission signal. Here, the standing wave ratio measuring method includes the following steps (a) to (d).
(A) detecting a detection voltage of a traveling wave and a detection voltage of a reflected wave corresponding to the transmission signal;
(B) detecting a detection voltage of the traveling wave and a detection voltage of the reflected wave;
(C) averaging time fluctuations for each of the traveling wave detection voltage and the reflected wave detection voltage detected by the detection unit; and (d) the transmission signal in a state where the transmission signal rises. Set the time constant of the time constant circuit short compared to the state where the signal falls.
 本発明により、電圧定在波比の測定誤差を抑制可能な無線送信装置、定在波比測定装置及び定在波比測定方法を提供することができる。 According to the present invention, it is possible to provide a wireless transmission device, a standing wave ratio measuring device, and a standing wave ratio measuring method capable of suppressing the measurement error of the voltage standing wave ratio.
実施の形態1にかかる無線通信装置の例を示した構成図である。1 is a configuration diagram illustrating an example of a wireless communication device according to a first exemplary embodiment; 実施の形態1にかかる検波回路の構成例を示したブロック図である。FIG. 3 is a block diagram showing a configuration example of a detection circuit according to the first exemplary embodiment; 実施の形態2にかかる無線通信装置の例を示した構成図である。FIG. 3 is a configuration diagram illustrating an example of a wireless communication apparatus according to a second embodiment; 実施の形態2にかかる複数時定数回路の例を示した構成図である。FIG. 6 is a configuration diagram illustrating an example of a multiple time constant circuit according to a second exemplary embodiment; 関連技術にかかるVSWR検出回路を示した構成図である。It is the block diagram which showed the VSWR detection circuit concerning related technology. 関連技術にかかるVSWR測定回路を示した構成図である。It is the block diagram which showed the VSWR measurement circuit concerning related technology. 関連技術にかかるVSWRモニタ回路を示した構成図である。It is the block diagram which showed the VSWR monitor circuit concerning related technology. 関連技術にかかるアンテナポート監視システムを示す構成図である。It is a block diagram which shows the antenna port monitoring system concerning related technology. 関連技術にかかる無線送信装置の例を示した構成図である。It is the block diagram which showed the example of the radio | wireless transmission apparatus concerning related technology. 関連技術にかかる固定時定数回路の例を示した構成図である。It is the block diagram which showed the example of the fixed time constant circuit concerning related technology. 関連技術にかかるアンテナ通信装置の例を示した構成図である。It is the block diagram which showed the example of the antenna communication apparatus concerning related technology. 関連技術にかかる他のアンテナ通信装置の例を示した構成図である。It is the block diagram which showed the example of the other antenna communication apparatus concerning related technology. 関連技術にかかる無線送信装置が適用される状態を示した概略図である。It is the schematic which showed the state to which the radio | wireless transmission apparatus concerning related technology is applied. 関連技術において、自システム基地局送信部とアンテナ共用器との間における信号レベルを示した図である。In related technology, it is the figure which showed the signal level between a self-system base station transmission part and an antenna sharing device. 関連技術にかかるLTEダウンリンク信号の時間波形を示す図である。It is a figure which shows the time waveform of the LTE downlink signal concerning related technology. 関連技術において、密度のあるテスト信号が無線送信装置から送信される場合に、2フレームにおいてポーリングしたDL信号レベル、DL反射波の信号レベル及びVSWR測定値を示した図である。In related technology, when a dense test signal is transmitted from a wireless transmission device, it is a diagram showing a DL signal level polled in two frames, a DL reflected wave signal level, and a VSWR measurement value. 関連技術において、運用時の疎な制御チャネルが無線送信装置から送信される場合に、2フレームにおいてポーリングしたDL信号レベル、DL反射波の信号レベル及びVSWR測定値を示した図である。In related technology, when a sparse control channel during operation is transmitted from a wireless transmission device, it is a diagram illustrating a DL signal level polled in two frames, a DL reflected wave signal level, and a VSWR measurement value. 関連技術において、運用時の疎な制御チャネルが無線送信装置から送信され、かつ、他システムからの妨害波が加わった場合に、2フレームにおいてポーリングしたDL信号レベル、DL反射波の信号レベル及びVSWR測定値を示した図である。In related technology, when a sparse control channel during operation is transmitted from a wireless transmission device and an interference wave from another system is added, the DL signal level polled in two frames, the signal level of the DL reflected wave, and the VSWR It is the figure which showed the measured value.
 実施の形態1
 以下、図面を参照して実施の形態1について説明する。
Embodiment 1
The first embodiment will be described below with reference to the drawings.
 図1は、実施の形態1にかかる無線送信装置の一例を示す構成図である。無線送信装置10は、送信信号生成装置11、アンテナ12、検波回路13及び定在波比測定回路14を備える。 FIG. 1 is a configuration diagram of an example of a wireless transmission device according to the first embodiment. The wireless transmission device 10 includes a transmission signal generation device 11, an antenna 12, a detection circuit 13, and a standing wave ratio measurement circuit 14.
 送信信号生成装置11は、送信信号を生成し、出力する。なお送信信号生成装置11は、1種類の送信信号を出力してもよいし、期間が異なる複数種類の送信信号を出力してもよい。 The transmission signal generator 11 generates and outputs a transmission signal. The transmission signal generation device 11 may output one type of transmission signal, or may output a plurality of types of transmission signals having different periods.
 アンテナ12は、送信信号生成装置11が出力した送信信号を無線信号として送信する。ここで、アンテナ12から送信信号生成装置11に対して、送信信号生成装置11の出力信号の反射波が流れる。 The antenna 12 transmits the transmission signal output from the transmission signal generation device 11 as a radio signal. Here, a reflected wave of the output signal of the transmission signal generation device 11 flows from the antenna 12 to the transmission signal generation device 11.
 検波回路13は、送信信号生成装置11とアンテナ12との伝送線路間に設けられ、送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出する。 The detection circuit 13 is provided between the transmission lines of the transmission signal generation device 11 and the antenna 12, and detects the detection voltage of the traveling wave and the detection voltage of the reflected wave corresponding to the transmission signal.
 図2は、検波回路13の構成例を示したブロック図である。検波回路13は、検出部15及び時定数回路16を有する。 FIG. 2 is a block diagram showing a configuration example of the detection circuit 13. The detection circuit 13 includes a detection unit 15 and a time constant circuit 16.
 検出部15は、進行波の検波電圧と反射波の検波電圧を検出する。例えば検出部15は、伝送線路間に流れる進行波と反射波とを分離して取り出すことにより、進行波及び反射波のそれぞれの検波電圧を検出する。 Detecting unit 15 detects a traveling wave detection voltage and a reflected wave detection voltage. For example, the detection unit 15 detects the detection voltages of the traveling wave and the reflected wave by separating and extracting the traveling wave and the reflected wave flowing between the transmission lines.
 時定数回路16は、検出部15により検出された進行波の検波電圧と、反射波の検波電圧のそれぞれに対して時間的変動を平均化する。時定数回路16において設定される時定数は、時定数回路16が出力する検波電圧が、入力された検波電圧の約63%になる時間である。すなわち、時定数は時定数回路16の応答の早さを示すパラメータである。ここで、時定数回路16においては、送信信号が立ち上がる状態では送信信号が立ち下がる状態と比較して時定数が短く設定される。 The time constant circuit 16 averages temporal fluctuations for each of the traveling wave detection voltage and the reflected wave detection voltage detected by the detection unit 15. The time constant set in the time constant circuit 16 is a time during which the detection voltage output from the time constant circuit 16 is about 63% of the input detection voltage. That is, the time constant is a parameter indicating the speed of response of the time constant circuit 16. Here, in the time constant circuit 16, the time constant is set shorter when the transmission signal rises than when the transmission signal falls.
 ここで、時定数回路16は、進行波と反射波毎に1つずつ回路が設けられていてもよい。なお、それぞれの回路の時定数は誤差又は許容範囲内の数値内において同一であってもよいし、異なる値であってもよい。 Here, one time constant circuit 16 may be provided for each traveling wave and reflected wave. Note that the time constants of the respective circuits may be the same or different within an error or a numerical value within an allowable range.
 図1に戻り、説明を続ける。定在波比測定回路14は、検波回路によって検出された進行波の検波電圧と反射波の検波電圧に基づいて、VSWR(電圧定在波比)を測定する。 Returning to Fig. 1, the explanation will be continued. The standing wave ratio measuring circuit 14 measures a VSWR (voltage standing wave ratio) based on the detection voltage of the traveling wave and the detection voltage of the reflected wave detected by the detection circuit.
 以上のように無線送信装置10が構成されることにより、以下の効果を奏する。時定数回路16においては、送信信号が立ち上がる状態では送信信号が立ち下がる状態と比較して時定数が短く設定される。すなわち、送信信号が立ち上がる状態では時定数回路16が出力する検波電圧の立ち上がりを早くすることができる。そのため、送信信号における進行波及び反射波がオフエッジになる前に、時定数回路16が出力する検波電圧が十分に立ち上がる(早く応答する)ことができる。これは、送信信号における個々の信号の出力期間の長短にかかわらず実現できる。従って、個々の信号の出力期間が短い送信信号が出力される間においても、無線送信装置10は進行波及び反射波の測定誤差を抑制することができる。このようにして、無線送信装置10は、VSWRの測定誤差を抑制することができる。 By configuring the wireless transmission device 10 as described above, the following effects are obtained. In the time constant circuit 16, the time constant is set shorter when the transmission signal rises than when the transmission signal falls. That is, in the state where the transmission signal rises, the rising of the detection voltage output from the time constant circuit 16 can be accelerated. Therefore, the detection voltage output from the time constant circuit 16 can sufficiently rise (response quickly) before the traveling wave and the reflected wave in the transmission signal become off-edge. This can be realized regardless of the length of the output period of each signal in the transmission signal. Therefore, the wireless transmission device 10 can suppress the measurement error of the traveling wave and the reflected wave even while the transmission signal having a short output period of each signal is output. In this way, the wireless transmission device 10 can suppress the VSWR measurement error.
 なお、実施の形態1は、検波回路13及び定在波比測定回路14を含む定在波比測定装置の発明として捉えることもできる。また、検波回路13及び定在波比測定回路14の処理は、定在波比測定方法の発明として捉えることもできる。 The first embodiment can also be understood as an invention of a standing wave ratio measuring device including the detection circuit 13 and the standing wave ratio measuring circuit 14. The processing of the detection circuit 13 and the standing wave ratio measurement circuit 14 can also be understood as an invention of the standing wave ratio measurement method.
 実施の形態2
 以下、図面を参照して実施の形態2について説明する。
Embodiment 2
The second embodiment will be described below with reference to the drawings.
 図3は、実施の形態2にかかる無線送信装置20の一例を示す構成図である。無線送信装置20は、MAC21、ベースバンド(BB)信号発生器22、変調器23、局部発振器24、高出力増幅器25、フィルタ26、方向性結合器27、アンテナ28、VSWR測定装置29及びVSWR表示部37を備える。MAC21~局部発振器24、アンテナ28は、それぞれ図1にかかる送信信号生成装置11、アンテナ12に対応する。ここで無線送信装置20はアンテナ28を用いて、LTE(Long Term Evolution)等のOFDM(Orthogonal Frequency Division Multiplexing)方式からなる通信をする。無線送信装置20は、携帯端末との無線通信を実行する基地局に設けられており、携帯端末に無線通信する信号を生成する。 FIG. 3 is a configuration diagram of an example of the wireless transmission device 20 according to the second embodiment. The wireless transmission device 20 includes a MAC 21, a baseband (BB) signal generator 22, a modulator 23, a local oscillator 24, a high power amplifier 25, a filter 26, a directional coupler 27, an antenna 28, a VSWR measurement device 29, and a VSWR display. The unit 37 is provided. The MAC 21 to the local oscillator 24 and the antenna 28 correspond to the transmission signal generation device 11 and the antenna 12 according to FIG. Here, the wireless transmission device 20 uses the antenna 28 to perform communication based on an OFDM (Orthogonal Frequency Division Multiplexing) scheme such as LTE (Long Term Evolution). The wireless transmission device 20 is provided in a base station that performs wireless communication with a mobile terminal, and generates a signal for wireless communication with the mobile terminal.
 MAC21は、無線送信するデータ信号を生成し、ベースバンド信号発生器22に出力する。MAC21は、OSI参照モデルにおいてデータリンク層(第2層)の下位副層に当たり、フレーム(データの送受信単位)の送受信方法やフレームの形式、誤り検出方法などを規定・実行する部分である。換言すれば、MAC21はデータ生成の為に必要な大元の部分である。ここでMAC21は、通常のデータ信号や報知情報(第1の送信信号)の他、低期間でON/OFFを繰り返すリファレンス信号(第2の送信信号)を出力する。なお、データ信号、報知情報及びリファレンス信号の詳細については前述の通りである。 The MAC 21 generates a data signal to be wirelessly transmitted and outputs it to the baseband signal generator 22. The MAC 21 corresponds to a lower sublayer of the data link layer (second layer) in the OSI reference model, and is a part that defines and executes a frame (data transmission / reception unit) transmission / reception method, frame format, error detection method, and the like. In other words, the MAC 21 is a major part necessary for data generation. Here, the MAC 21 outputs a reference signal (second transmission signal) that repeats ON / OFF in a low period, in addition to a normal data signal and broadcast information (first transmission signal). The details of the data signal, the broadcast information, and the reference signal are as described above.
 ベースバンド信号発生器22は、MAC21から出力されたデータ信号を変調して変調ベースバンド信号(I/Q軸信号)を生成する。この変調ベースバンド信号は変調器23に出力される。 The baseband signal generator 22 modulates the data signal output from the MAC 21 to generate a modulated baseband signal (I / Q axis signal). This modulated baseband signal is output to the modulator 23.
 変調器23は、入力された変調ベースバンド信号を、局部発振器24が出力する信号の周波数に応じて周波数を変調し、RF帯変調ダウンリンク信号として出力する。 The modulator 23 modulates the frequency of the input modulated baseband signal according to the frequency of the signal output from the local oscillator 24, and outputs the modulated baseband signal as an RF band modulated downlink signal.
 局部発振器24は、変調器23の周波数変調に用いる周波数を有する信号を出力する。なお、局部発振器24が出力する信号の周波数は、状況に応じて変更してもよい。 The local oscillator 24 outputs a signal having a frequency used for frequency modulation of the modulator 23. Note that the frequency of the signal output from the local oscillator 24 may be changed according to the situation.
 高出力増幅器25は、変調器23が出力したRF帯変調ダウンリンク信号の電圧を増幅し、信号の電力を、無線送信に必要な所定の送信電力まで高める。高出力増幅器25は、フィルタ26に増幅した信号を出力する。 The high-power amplifier 25 amplifies the voltage of the RF band modulation downlink signal output from the modulator 23 and increases the signal power to a predetermined transmission power required for wireless transmission. The high output amplifier 25 outputs the amplified signal to the filter 26.
 フィルタ26は、アンテナから送信する送信信号のスプリアスを低減するために設けられたフィルタである。フィルタ26は、ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ等の少なくともいずれかにより構成される。 The filter 26 is a filter provided to reduce spurious transmission signals transmitted from the antenna. The filter 26 includes at least one of a low pass filter, a high pass filter, a band pass filter, and the like.
 フィルタ26から出力された送信信号は、方向性結合器27を介し、アンテナ28によって無線信号として空間に放射される。 The transmission signal output from the filter 26 is radiated to the space as a radio signal by the antenna 28 via the directional coupler 27.
 方向性結合器27は、VSWR測定装置29が送信信号の進行波と反射波を検出するため、アンテナ28の前段に挿入されている。換言すれば、方向性結合器27は、信号生成装置とアンテナとの伝送線路間に設けられている。方向性結合器27は、進行波電力のみに対応する信号を進行波検出器30に出力するとともに、反射波電力のみに対応する信号を反射波検出器31に出力する。 The directional coupler 27 is inserted in front of the antenna 28 so that the VSWR measuring device 29 detects the traveling wave and the reflected wave of the transmission signal. In other words, the directional coupler 27 is provided between the transmission lines of the signal generation device and the antenna. The directional coupler 27 outputs a signal corresponding only to traveling wave power to the traveling wave detector 30 and outputs a signal corresponding only to reflected wave power to the reflected wave detector 31.
 VSWR測定装置29は、アンテナ28による影響が見込まれるVSWRを測定し、アンテナ28からの空間放射が問題なく行なわれていることを確認するため、アンテナ28前段に設けられる。 The VSWR measuring device 29 is provided in front of the antenna 28 in order to measure the VSWR that is expected to be affected by the antenna 28 and to confirm that the spatial radiation from the antenna 28 is performed without any problem.
 VSWR測定装置29は、進行波検出器30、反射波検出器31、複数時定数回路32、複数時定数回路33、差分検出器34、VSWR計算器35及びVSWR平均化器36を備える。 The VSWR measuring device 29 includes a traveling wave detector 30, a reflected wave detector 31, a plurality of time constant circuits 32, a plurality of time constant circuits 33, a difference detector 34, a VSWR calculator 35, and a VSWR averager 36.
 進行波検出器30~複数時定数回路33は図1にかかる検波回路13に対応し、差分検出器34~VSWR平均化器36は図1にかかる定在波比測定回路14に対応する。進行波検出器30及び反射波検出器31は図2にかかる検出部15に対応し、複数時定数回路32、33は図2にかかる時定数回路16に対応する。 The traveling wave detector 30 to the plurality of time constant circuits 33 correspond to the detection circuit 13 according to FIG. 1, and the difference detector 34 to the VSWR averager 36 correspond to the standing wave ratio measurement circuit 14 according to FIG. The traveling wave detector 30 and the reflected wave detector 31 correspond to the detector 15 according to FIG. 2, and the plurality of time constant circuits 32 and 33 correspond to the time constant circuit 16 according to FIG.
 進行波検出器30は、送信信号に対応する進行波の電圧を検出し、検波電圧を複数時定数回路32に出力する。反射波検出器31は、送信信号に対応する反射波の電圧を検出し、検波電圧を複数時定数回路33に出力する。 The traveling wave detector 30 detects the traveling wave voltage corresponding to the transmission signal, and outputs the detected voltage to the multiple time constant circuit 32. The reflected wave detector 31 detects the voltage of the reflected wave corresponding to the transmission signal and outputs the detected voltage to the multiple time constant circuit 33.
 複数時定数回路32は、入力された進行波の検波電圧の時間的変動を平均化(平滑化)して、差分検出器34に出力する。複数時定数回路32の時定数は、長時定数τL又は短時定数τSのいずれかの時定数が設定される。無線送信装置20が信号を立ち下げる(送信しない)期間には、長時定数τLが複数時定数回路32の時定数として設定される。無線送信装置20が送信信号(通常のデータ信号や報知情報、リファレンス信号など)を立ち上げて送信する期間には、短時定数τSが複数時定数回路32の時定数として設定される。 The multiple time constant circuit 32 averages (smooths) the temporal fluctuation of the input traveling wave detection voltage and outputs it to the difference detector 34. As the time constant of the multiple time constant circuit 32, either the long time constant τL or the short time constant τS is set. The long time constant τL is set as the time constant of the multiple time constant circuit 32 during the period when the radio transmission apparatus 20 falls (does not transmit) the signal. The short time constant τS is set as the time constant of the multiple time constant circuit 32 during a period in which the wireless transmission device 20 starts up and transmits a transmission signal (normal data signal, broadcast information, reference signal, etc.).
 複数時定数回路33は、入力された反射波の検波電圧の時間的変動を平均化して、差分検出器34に出力する。複数時定数回路33の時定数は、長時定数τL又は短時定数τSのいずれかの時定数が設定される。無線送信装置20が信号を立ち下げる(送信しない)期間には、長時定数τLが複数時定数回路33の時定数として設定される。無線送信装置20が送信信号(通常のデータ信号や報知情報、リファレンス信号など)を立ち上げて送信する期間には、短時定数τSが複数時定数回路33の時定数として設定される。 The multiple time constant circuit 33 averages the temporal variation of the detection voltage of the input reflected wave and outputs it to the difference detector 34. As the time constant of the multiple time constant circuit 33, either the long time constant τL or the short time constant τS is set. The long time constant τL is set as the time constant of the multiple time constant circuit 33 during the period when the radio transmission apparatus 20 falls (does not transmit) the signal. The short time constant τS is set as the time constant of the multiple time constant circuit 33 during a period in which the wireless transmission device 20 starts up and transmits a transmission signal (normal data signal, broadcast information, reference signal, etc.).
 図4は、複数時定数回路32の構成例を示す構成図である。複数時定数回路32は、抵抗38、39、コンデンサ40及びダイオード41を有するRC回路である。 FIG. 4 is a configuration diagram showing a configuration example of the multiple time constant circuit 32. The multiple time constant circuit 32 is an RC circuit having resistors 38 and 39, a capacitor 40 and a diode 41.
 抵抗(第1の抵抗)38は、一端が進行波検出器30側に接続され、他端が差分検出器34側に接続されている。抵抗(第2の抵抗)39は、抵抗38と並列に接続されており、一端が進行波検出器30側に接続され、他端がダイオード41のアノードに接続されている。抵抗38は導通しているのに対し、抵抗39は導通状態を切り替えることが可能な抵抗である。 The resistor (first resistor) 38 has one end connected to the traveling wave detector 30 side and the other end connected to the difference detector 34 side. The resistor (second resistor) 39 is connected in parallel with the resistor 38, one end connected to the traveling wave detector 30 side, and the other end connected to the anode of the diode 41. The resistor 38 is conductive, while the resistor 39 is a resistor capable of switching the conductive state.
 コンデンサ40は、抵抗38と差分検出器34との間にその一端が接続され、その他端は接地されている。なおコンデンサ40の一端は、ダイオード41のカソードにも接続されている。ダイオード41は、アノードが抵抗39の他端に接続され、カソードが抵抗38と差分検出器34との間に接続されている。ダイオード41は、所定の電圧(順方向電圧)がかかると、電流を流す。 The capacitor 40 has one end connected between the resistor 38 and the difference detector 34 and the other end grounded. One end of the capacitor 40 is also connected to the cathode of the diode 41. The diode 41 has an anode connected to the other end of the resistor 39 and a cathode connected between the resistor 38 and the differential detector 34. The diode 41 causes a current to flow when a predetermined voltage (forward voltage) is applied.
 図4において、抵抗38の抵抗値をR1、抵抗39の抵抗値をR2、コンデンサ40の容量値をCとする。ダイオード41がオフである間に、複数時定数回路32における固定時定数τLはτL=R1*Cとなる。ここで、通常Symbol毎に変化する進行波の検波電圧を十分平滑化するため、τLはSymbol長の数倍から10倍程度の比較的長い時間に設定される。 4, the resistance value of the resistor 38 is R1, the resistance value of the resistor 39 is R2, and the capacitance value of the capacitor 40 is C. While the diode 41 is off, the fixed time constant τL in the multiple time constant circuit 32 is τL = R1 * C. Here, in order to sufficiently smooth the detection voltage of the traveling wave that normally changes for each Symbol, τL is set to a relatively long time of several times to about 10 times the Symbol length.
 ダイオード41がオンである間に、複数時定数回路32における固定時定数τSはτS=R'*Cとなる。R'は合成抵抗であり、R'=(R1*R2)/(R1+R2)である。ここでR'は、R1よりも必ず小さい値をとる(換言すれば、時定数回路の合成抵抗値を小さい値にする。)。そのため、固定時定数τSは、固定時定数τLよりも短い時定数である。複数時定数回路32の設計時において、抵抗値R2が抵抗値R1よりも大幅に低い抵抗39を設けることにより、固定時定数τSの値を固定時定数τLよりも大幅に下げることができる。 While the diode 41 is on, the fixed time constant τS in the multiple time constant circuit 32 is τS = R ′ * C. R ′ is a combined resistance, and R ′ = (R1 * R2) / (R1 + R2). Here, R ′ always takes a smaller value than R1 (in other words, the combined resistance value of the time constant circuit is made smaller). Therefore, the fixed time constant τS is a time constant shorter than the fixed time constant τL. At the time of designing the multiple time constant circuit 32, the value of the fixed time constant τS can be greatly reduced from the fixed time constant τL by providing the resistor 39 having a resistance value R2 that is significantly lower than the resistance value R1.
 無線送信装置20が信号を送信する場合(リファレンス信号の様に低期間でON/OFFを繰り返す送信信号を出力する場合でも)、信号の立ち上がりにおいてダイオード41に所定の電圧以上の検波電圧がかかる。それにより、ダイオード41がオンになる。つまり、抵抗38と並列接続された抵抗39の電流経路は、進行波の電圧が立ち上がるときに、ダイオード41により導通する。これにより、検波電圧の立ち上がりを早めることができる。なお短時定数τSは、リファレンス信号における最短1Symbol長の期間に対応するため、1Symbol前後の長さに設定される事が望ましい。 When the radio transmission device 20 transmits a signal (even when outputting a transmission signal that repeats ON / OFF in a low period like a reference signal), a detection voltage higher than a predetermined voltage is applied to the diode 41 at the rising edge of the signal. Thereby, the diode 41 is turned on. That is, the current path of the resistor 39 connected in parallel with the resistor 38 is conducted by the diode 41 when the traveling wave voltage rises. Thereby, the rising of the detection voltage can be accelerated. It is desirable that the short time constant τS is set to a length of around 1 Symbol because it corresponds to the shortest 1 Symbol length period in the reference signal.
 これに対して、低期間で存在するリファレンス信号のOFF Edge以降の検波電圧を保持するためには、長時定数τLをSymbol長の数倍から10倍程度の比較的長い時間に設定する必要がある。信号が送信されない場合の長めの期間での通常検波電圧の変動を十分平滑化するためにも、長時定数τLをSymbol長の数倍から10倍程度の比較的長い時間に設定する必要がある。無線送信装置20が送信信号を立ち下げる(出力しない)場合には、所定の電圧以上の検波電圧はダイオード41に流れない。そのため、抵抗38と並列接続された抵抗39の電流経路はダイオード41がオフにされることにより遮断され、抵抗38とコンデンサ40のみが接続される。そのため、複数時定数回路32の時定数は、長時定数τL(=RC)となる。 On the other hand, in order to hold the detection voltage after the OFF edge of the reference signal existing in a low period, it is necessary to set the long time constant τL to a relatively long time of several times to about 10 times the Symbol length. is there. In order to sufficiently smooth the fluctuation of the normal detection voltage in a long period when the signal is not transmitted, it is necessary to set the long time constant τL to a relatively long time of several times to 10 times the Symbol length. . When the wireless transmission device 20 causes the transmission signal to fall (not output), a detection voltage equal to or higher than a predetermined voltage does not flow to the diode 41. Therefore, the current path of the resistor 39 connected in parallel with the resistor 38 is cut off when the diode 41 is turned off, and only the resistor 38 and the capacitor 40 are connected. Therefore, the time constant of the multiple time constant circuit 32 is the long time constant τL (= RC).
 抵抗値R1、R2及び容量値Cは、短時定数τSが1Symbol前後の長さに設定され、長時定数τLがSymbol長の数倍から10倍程度の長さに設定されるように定められる。 The resistance values R1, R2 and the capacitance value C are determined such that the short time constant τS is set to a length around 1 Symbol and the long time constant τL is set to a length of several times to about 10 times the Symbol length. .
 複数時定数回路33も、複数時定数回路32と同様の構成を有するため、説明を省略する。 Since the multiple time constant circuit 33 has the same configuration as the multiple time constant circuit 32, the description thereof is omitted.
 以下、図3に戻り、無線送信装置20各部の説明を続ける。差分検出器34は、複数時定数回路32が出力した進行波の検波電圧と、複数時定数回路33が出力した反射波の検波電圧との差分を検出し、差分検出電圧として出力する。 Hereinafter, returning to FIG. 3, the description of each part of the wireless transmission device 20 will be continued. The difference detector 34 detects the difference between the detection voltage of the traveling wave output from the multiple time constant circuit 32 and the detection voltage of the reflected wave output from the multiple time constant circuit 33, and outputs the difference detection voltage.
 VSWR計算器(VSWR算出器)35は、差分検出器34が検出した差分検出電圧に基づいて、無線送信装置20のVSWRを計算する。 VSWR calculator (VSWR calculator) 35 calculates the VSWR of the wireless transmission device 20 based on the difference detection voltage detected by the difference detector 34.
 無線送信装置20は、そのようにしてVSWR平均化器36で平滑化されたVSWRを、最終報告値としてVSWR表示部37に出力表示する。以上のようにして、無線送信装置20はVSWRを測定する。 The wireless transmission device 20 outputs and displays the VSWR smoothed by the VSWR averager 36 on the VSWR display unit 37 as a final report value. As described above, the wireless transmission device 20 measures the VSWR.
 以上のように、複数時定数回路32、33は、無線送信装置20が送信信号を出力しないときには、検波電圧の変動抑圧を図ることができる(長時定数τLを複数時定数回路32、33の時定数に設定したことによる効果)。逆に、無線送信装置20が送信信号を出力するとき(例えばリファレンス信号の様な低期間でON/OFFを繰り返す信号を出力するとき)には、短時間でも検波電圧が十分立ち上がる様に設計できる(短時定数τSを複数時定数回路32、33の時定数に設定したことによる効果)。従って、無線送信装置20がどのような信号を出力する場合にも、進行波・反射波共にその検波電圧が即座に、かつ十分な電圧値をもって立ち上がるように設定することができる。換言すれば、無線送信装置20は送信信号の種類が異なる場合であっても、検波電圧の時間的変動を適切に平均化することができる。そのため、無線送信装置20は電圧定在波比の測定誤差を抑制することができる。 As described above, the multiple time constant circuits 32 and 33 can suppress fluctuations in the detection voltage when the wireless transmission device 20 does not output a transmission signal (the long time constant τL is set to be equal to that of the multiple time constant circuits 32 and 33). The effect of setting the time constant). On the contrary, when the wireless transmission device 20 outputs a transmission signal (for example, when outputting a signal that repeats ON / OFF in a low period such as a reference signal), the detection voltage can be designed to rise sufficiently even in a short time. (Effect of setting the short time constant τS as the time constant of the plurality of time constant circuits 32 and 33). Therefore, no matter what signal the wireless transmission device 20 outputs, the detection voltage of both the traveling wave and the reflected wave can be set to rise immediately and with a sufficient voltage value. In other words, the wireless transmission device 20 can appropriately average temporal variations in the detection voltage even when the types of transmission signals are different. Therefore, the wireless transmission device 20 can suppress the measurement error of the voltage standing wave ratio.
 また、無線送信装置20は、携帯端末との無線通信を実行する基地局に設けられており、報知情報やリファレンス信号を送信信号として出力する。このため、携帯端末との無線通信を実行する基地局において、電圧定在波比の測定誤差を抑制することができる。 Further, the wireless transmission device 20 is provided in a base station that performs wireless communication with a mobile terminal, and outputs broadcast information and a reference signal as a transmission signal. For this reason, the measurement error of the voltage standing wave ratio can be suppressed in the base station that performs wireless communication with the mobile terminal.
 特に、無線送信装置20が図6のように他システム基地局送信部と共用でアンテナ28を使用している場合には、他システム基地局送信部からアンテナ28を介して、反射波と同じ方向の妨害波(干渉波)が伝送路間に流れる。その場合でも、無線送信装置20は差分検出器34に入力される反射波の検波電圧において、外部からの恒常的な妨害波の逆流による反射波電圧に、真の反射波電圧がマスクされない様にすることができる。このようにして、無線送信装置20は進行波検波と反射波検波の精度を上げることができるため、妨害波によるVSWR測定への悪影響を抑えられる(即ちVSWR測定の確度を改善する)ことができる。また、送信信号を立ち上げる(出力する)場合と立ち下げる(出力しない)場合とで時定数回路の時定数の値を切り替えることができるため、無線送信装置20はVSWR測定の即応性改善と安定性確保を両立させることができる。 In particular, when the wireless transmission device 20 uses the antenna 28 in common with the other system base station transmission unit as shown in FIG. 6, the same direction as the reflected wave from the other system base station transmission unit via the antenna 28. Interference wave (interference wave) flows between the transmission lines. Even in such a case, the radio transmission apparatus 20 may prevent the true reflected wave voltage from being masked by the reflected wave voltage due to the backflow of the constant disturbance wave from the outside in the reflected wave detection voltage input to the difference detector 34. can do. In this way, since the radio transmission device 20 can improve the accuracy of traveling wave detection and reflected wave detection, adverse effects on VSWR measurement due to interference waves can be suppressed (ie, the accuracy of VSWR measurement can be improved). . In addition, since the time constant value of the time constant circuit can be switched between when the transmission signal is raised (output) and when it is lowered (not output), the wireless transmission device 20 improves the responsiveness and stability of the VSWR measurement. It is possible to achieve both safety.
 換言すれば、無線送信装置20は自システムの送信状態(送信密度の濃淡)によらず、精度良くアンテナ外部を見込んだVSWRを算出することができる。なお無線送信装置20は、例えばLTE等のOFDM方式によって無線通信を実行する。 In other words, the wireless transmission device 20 can accurately calculate the VSWR expecting the outside of the antenna regardless of the transmission state of the own system (transmission density shading). Note that the wireless transmission device 20 performs wireless communication by an OFDM scheme such as LTE.
 例えば、VSWRが所定の値を超えた場合にアラームが発生する装置を無線送信装置20に取り付けた場合、誤動作によるVSWRアラーム等は発生せず、本当にアンテナ自身やアンテナとの接続に問題が発生し、VSWRが劣化した際のみアラームが発動される。このため、無線送信装置20の保守点検の精度を高めることができる。 For example, when a device that generates an alarm when the VSWR exceeds a predetermined value is attached to the wireless transmission device 20, a VSWR alarm or the like due to a malfunction does not occur, and a problem actually occurs in the antenna itself or in connection with the antenna. The alarm is activated only when VSWR deteriorates. For this reason, the precision of the maintenance inspection of the wireless transmitter 20 can be improved.
 特許文献5~7に開示された無線送信装置においては、外来の干渉波・妨害波の周波数帯域が希望送信帯域から離れている場合に効果が奏する。しかし、自システムの送信帯域と他システムからの干渉帯域が近接していたり、送信帯域と干渉帯域とがオーバーラップしたりするような場合には、フィルタの周波数選択度による干渉波・妨害波のフィルタリングが十分になされることが期待できない。そのため、これらの無線送信装置はVSWRの測定誤差を解消することができない。 The wireless transmission devices disclosed in Patent Documents 5 to 7 are effective when the frequency band of the external interference wave / jamming wave is far from the desired transmission band. However, when the transmission band of the own system and the interference band from other systems are close, or when the transmission band and the interference band overlap, the interference wave / jamming wave due to the frequency selectivity of the filter It cannot be expected that sufficient filtering will be done. For this reason, these wireless transmission devices cannot eliminate the VSWR measurement error.
 特許文献5~7に開示された無線送信装置において、上述の問題を解決するためには、フィルタ回路においてより急峻なフィルタ特性が必要となる。そのため、無線送信装置の設計難易度が格段に上がり、装置形状や価格増加に繋がるという課題が生じる。固定帯域のフィルタを検波計に挿入するように測定回路を構成することも考えられるが、フィルタが設定する周波数を可変にすることができなくなるため、測定回路の融通性(汎用性)がなくなってしまう。しかしながら、無線送信装置20においては測定回路の融通性(汎用性)を保つことができる。 In the wireless transmission devices disclosed in Patent Documents 5 to 7, in order to solve the above-mentioned problem, a steeper filter characteristic is required in the filter circuit. Therefore, the design difficulty level of the wireless transmission device is significantly increased, and there is a problem that the device shape and the price increase. Although it is conceivable to configure the measurement circuit so that a fixed-band filter is inserted into the detector, since the frequency set by the filter cannot be made variable, the flexibility (general versatility) of the measurement circuit is lost. End up. However, in the wireless transmission device 20, the flexibility (general versatility) of the measurement circuit can be maintained.
 なお、外来の妨害波については図3のフィルタ26で減衰させ、フィルタ26の前段に方向性結合器27を挿入する無線送信装置20の構成も考えられる(図3では、フィルタ26の後段に方向性結合器27が挿入されている)。しかしながら、自システムのダウンリンク送信帯域と、他システムのダウンリンク送信帯域が近接している場合は、フィルタ26における妨害波の減衰は期待出来ない。そういった環境条件においても、図3に示した無線送信装置20においては、妨害波によるVSWRの測定精度の悪化を抑制することができる。 Note that a configuration of the wireless transmission device 20 in which extraneous interference waves are attenuated by the filter 26 in FIG. 3 and the directional coupler 27 is inserted in front of the filter 26 can be considered (in FIG. Sex coupler 27 is inserted). However, when the downlink transmission band of the own system and the downlink transmission band of another system are close to each other, attenuation of the interference wave in the filter 26 cannot be expected. Even under such environmental conditions, the wireless transmission device 20 shown in FIG. 3 can suppress the deterioration of the VSWR measurement accuracy due to the interference wave.
 複数時定数回路32、33は、図4に記載した通り、導通する抵抗38と、抵抗38と並列に接続され、送信信号の立ち上がり及び立ち下がりに応じて導通状態を切り替えることが可能な抵抗39を有するRC回路である。抵抗39の導通状態が切り替わることにより、それぞれの時定数回路における時定数の値を変化させることができる。このため、無線送信装置20は簡単な構成の時定数回路によって、時定数を変化させることができる。 As shown in FIG. 4, the multiple time constant circuits 32 and 33 are connected in parallel with the resistor 38 that is conducting, and the resistor 39 that can switch the conducting state according to the rise and fall of the transmission signal. RC circuit having By switching the conduction state of the resistor 39, the value of the time constant in each time constant circuit can be changed. For this reason, the wireless transmission device 20 can change the time constant by a time constant circuit having a simple configuration.
 さらに、時定数回路の合成容量値ではなく合成抵抗値を可変にすることにより、時定数回路におけるコスト削減を図ることができる。 Furthermore, the cost of the time constant circuit can be reduced by making the combined resistance value variable instead of the combined capacitance value of the time constant circuit.
 複数時定数回路32、33は、ダイオード41により、抵抗39の導通状態を前記送信信号の立ち上がり及び立ち下がりに応じて切り替えている。ここでダイオード41を用いることにより、複数時定数回路32、33を簡易な構成にすることができる。 The multiple time constant circuits 32 and 33 switch the conduction state of the resistor 39 by the diode 41 according to the rising and falling edges of the transmission signal. Here, by using the diode 41, the multiple time constant circuits 32 and 33 can be configured in a simple manner.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 図4に示した複数時定数回路の構成では、2つある抵抗のうちの1つの導通状態を変えることにより、時定数の値を変更した。しかし、抵抗は3つ以上複数時定数回路に設けられていてもよい。さらに、複数時定数回路には、導通状態を可変にできる抵抗が複数あってもよい。複数の抵抗の導通状態を可変にすることにより、複数時定数回路における合成抵抗値を3種類以上変化させることができる。そのため、複数時定数回路における時定数の値も3種類以上に変化させることができる。これにより、時定数回路におけるより細かい時定数の設定をすることが可能となり、無線通信装置20はVSWRの測定誤差を抑制することができる。 In the configuration of the multiple time constant circuit shown in FIG. 4, the value of the time constant is changed by changing the conduction state of one of the two resistors. However, three or more resistors may be provided in a plurality of time constant circuits. Furthermore, the multiple time constant circuit may include a plurality of resistors that can change the conduction state. By making the conduction states of the plurality of resistors variable, three or more types of combined resistance values in the plurality of time constant circuits can be changed. Therefore, the value of the time constant in the multiple time constant circuit can be changed to three or more types. This makes it possible to set a finer time constant in the time constant circuit, and the radio communication apparatus 20 can suppress a VSWR measurement error.
 なお複数時定数回路32、33のいずれかのみが、図4に示した構成を有していてもよい。 Only one of the multiple time constant circuits 32 and 33 may have the configuration shown in FIG.
 本発明は、LTEに関する通信システムだけではなく、第4世代以上の通信規格(例えば LTE-Advanced、IMT(International Mobile Telecommunications)-Advanced、WiMAX(Worldwide Interoperability for Microwave Access)2)に関する通信システムに適用しても良い。 The present invention is applied not only to a communication system related to LTE but also to a communication system related to a communication standard of the fourth generation or higher (for example, LTE-Advanced, IMT (International Mobile Telecommunications) -Advanced, WiMAX (Worldwide Interoperability for Microwave Access) 2). May be.
 この出願は、2012年9月18日に出願された日本出願特願2012-204212を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-204212 filed on September 18, 2012, the entire disclosure of which is incorporated herein.
 本発明は、無線通信装置全般に応用可能であり、例えば、基地局系装置の送信装置部分に適用することができる。 The present invention can be applied to all wireless communication apparatuses, and can be applied to, for example, a transmission apparatus portion of a base station system apparatus.
10 無線通信装置
11 送信信号生成装置
12 アンテナ
13 検波回路
14 定在波比測定回路
15 検出部
16 時定数回路
21 MAC
22 ベースバンド信号発生器
23 変調器
24 局部発振器
25 高出力増幅器
26 フィルタ
27 方向性結合器
28 アンテナ
29 VSWR測定装置
30 進行波検出器
31 反射波検出器
32、33 複数時定数回路
34 差分検出器
35 VSWR計算器
36 VSWR平均化器
37 VSWR表示部
38、39 抵抗
40 コンデンサ
41 ダイオード
DESCRIPTION OF SYMBOLS 10 Radio communication apparatus 11 Transmission signal generation apparatus 12 Antenna 13 Detection circuit 14 Standing wave ratio measurement circuit 15 Detection part 16 Time constant circuit 21 MAC
22 Baseband signal generator 23 Modulator 24 Local oscillator 25 High-power amplifier 26 Filter 27 Directional coupler 28 Antenna 29 VSWR measuring device 30 Traveling wave detector 31 Reflected wave detector 32, 33 Multiple time constant circuit 34 Difference detector 35 VSWR Calculator 36 VSWR Averager 37 VSWR Display 38, 39 Resistor 40 Capacitor 41 Diode

Claims (7)

  1.  送信信号を生成し、出力する送信信号生成装置と、
     前記送信信号生成装置とアンテナとの伝送線路間に設けられ、前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出する検波回路と、
     前記検波回路によって検出された進行波の検波電圧と反射波の検波電圧に基づいて電圧定在波比を測定する定在波比測定回路とを備え、
     前記検波回路は、
     前記進行波の検波電圧と前記反射波の検波電圧を検出する検出手段と、
     前記検出手段により検出された進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化し、前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して時定数が短く設定される時定数回路と、を有する
     無線送信装置。
    A transmission signal generating device that generates and outputs a transmission signal; and
    A detection circuit for detecting a detection voltage of a traveling wave and a detection voltage of a reflected wave, which is provided between transmission lines of the transmission signal generation device and the antenna, and corresponding to the transmission signal;
    A standing wave ratio measuring circuit for measuring a voltage standing wave ratio based on a detection voltage of a traveling wave and a detection voltage of a reflected wave detected by the detection circuit;
    The detection circuit includes:
    Detecting means for detecting the detection voltage of the traveling wave and the detection voltage of the reflected wave;
    The time variation is averaged with respect to each of the detection voltage of the traveling wave detected by the detection means and the detection voltage of the reflected wave, and in a state where the transmission signal rises, compared to a state where the transmission signal falls. And a time constant circuit in which the time constant is set short.
  2.  前記無線送信装置は、携帯端末との無線通信を実行する基地局に設けられ、
     前記基地局は、前記無線送信装置以外の他の無線送信装置をさらに有し、前記無線送信装置は、前記他の無線送信装置とアンテナを共用して無線送信を実行する、
     請求項1に記載の無線送信装置。
    The wireless transmission device is provided in a base station that performs wireless communication with a mobile terminal,
    The base station further includes another wireless transmission device other than the wireless transmission device, and the wireless transmission device performs wireless transmission by sharing an antenna with the other wireless transmission device.
    The wireless transmission device according to claim 1.
  3.  前記無線送信装置は、LTEのOFDM方式により無線送信を実行する、
     請求項1又は2のいずれか一項に記載の無線送信装置。
    The wireless transmission device performs wireless transmission by an LTE OFDM scheme.
    The wireless transmission device according to claim 1 or 2.
  4.  前記時定数回路は、導通する第1の抵抗と、前記第1の抵抗と並列に接続され、前記送信信号の立ち上がり及び立ち下がりに応じて導通状態を切り替えることが可能な第2の抵抗と、を有するRC回路である、
     請求項1ないし3のいずれか一項に記載の無線送信装置。
    The time constant circuit includes a first resistor that is conductive, a second resistor that is connected in parallel with the first resistor, and that can switch a conductive state in response to rising and falling of the transmission signal; An RC circuit having
    The wireless transmission device according to any one of claims 1 to 3.
  5.  前記時定数回路は、前記第2の抵抗の導通状態を前記送信信号の立ち上がり及び立ち下がりに応じて切り替えるダイオードをさらに有する、
     請求項4に記載の無線送信装置。
    The time constant circuit further includes a diode that switches a conduction state of the second resistor according to a rising edge and a falling edge of the transmission signal.
    The wireless transmission device according to claim 4.
  6.  送信信号を生成し、出力する無線送信装置に設けられた定在波比測定装置であって、
     前記送信信号を生成する生成装置とアンテナとの伝送線路間に設けられ、前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出する検波回路と、
     前記検波回路によって検出された進行波の検波電圧と反射波の検波電圧に基づいて電圧定在波比を測定する定在波比測定回路とを備え、
     前記検波回路は、
     前記進行波の検波電圧と前記反射波の検波電圧を検出する検出手段と、
     前記検出手段により検出された進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化し、前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して時定数が長く設定される時定数回路と、を有する
     定在波比測定装置。
    A standing wave ratio measuring device provided in a wireless transmission device that generates and outputs a transmission signal,
    A detection circuit for detecting a detection voltage of a traveling wave, a detection voltage of a reflected wave, and a detection voltage of a traveling wave corresponding to the transmission signal, provided between a transmission line of the generation device that generates the transmission signal and an antenna;
    A standing wave ratio measuring circuit for measuring a voltage standing wave ratio based on a detection voltage of a traveling wave and a detection voltage of a reflected wave detected by the detection circuit;
    The detection circuit includes:
    Detecting means for detecting the detection voltage of the traveling wave and the detection voltage of the reflected wave;
    The time variation is averaged with respect to each of the detection voltage of the traveling wave detected by the detection means and the detection voltage of the reflected wave, and in a state where the transmission signal rises, compared to a state where the transmission signal falls. A standing wave ratio measuring device having a time constant circuit in which a time constant is set long.
  7.  送信信号を生成し、出力する無線送信装置において電圧定在波比を測定する定在波比測定方法であって、
     前記送信信号に対応する進行波の検波電圧と、反射波の検波電圧を検出し、
     時定数回路において、検出された前記進行波の検波電圧と、前記反射波の検波電圧のそれぞれに対して時間的変動を平均化し、
     前記送信信号が立ち上がる状態では前記送信信号が立ち下がる状態と比較して前記時定数回路の時定数を短く設定する、
     定在波比測定方法。
    A standing wave ratio measuring method for measuring a voltage standing wave ratio in a wireless transmission device that generates and outputs a transmission signal,
    Detecting the detection voltage of the traveling wave corresponding to the transmission signal and the detection voltage of the reflected wave;
    In the time constant circuit, the detected voltage of the traveling wave and the detected voltage of the reflected wave are averaged over time,
    In the state where the transmission signal rises, the time constant of the time constant circuit is set shorter than the state where the transmission signal falls.
    Standing wave ratio measurement method.
PCT/JP2013/002826 2012-09-18 2013-04-25 Radio transmitting apparatus, standing wave ratio measuring device and standing wave ratio measuring method WO2014045488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536555A JP5888424B2 (en) 2012-09-18 2013-04-25 Wireless transmission device, standing wave ratio measuring device, and standing wave ratio measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-204212 2012-09-18
JP2012204212 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045488A1 true WO2014045488A1 (en) 2014-03-27

Family

ID=50340831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002826 WO2014045488A1 (en) 2012-09-18 2013-04-25 Radio transmitting apparatus, standing wave ratio measuring device and standing wave ratio measuring method

Country Status (2)

Country Link
JP (1) JP5888424B2 (en)
WO (1) WO2014045488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954838A (en) * 2014-04-14 2014-07-30 中船重工中南装备有限责任公司 Hand-held standing wave ratio measurer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002322A1 (en) * 1998-07-07 2000-01-13 Mitsubishi Denki Kabushiki Kaisha Power controller
JP2008193719A (en) * 2008-03-17 2008-08-21 Hitachi Kokusai Electric Inc Radio transmitter
JP2011010120A (en) * 2009-06-26 2011-01-13 Fujitsu Ltd Wireless communication apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002322A1 (en) * 1998-07-07 2000-01-13 Mitsubishi Denki Kabushiki Kaisha Power controller
JP2008193719A (en) * 2008-03-17 2008-08-21 Hitachi Kokusai Electric Inc Radio transmitter
JP2011010120A (en) * 2009-06-26 2011-01-13 Fujitsu Ltd Wireless communication apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954838A (en) * 2014-04-14 2014-07-30 中船重工中南装备有限责任公司 Hand-held standing wave ratio measurer

Also Published As

Publication number Publication date
JPWO2014045488A1 (en) 2016-08-18
JP5888424B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
EP3487078B1 (en) Interface device providing power management and load termination in distributed antenna system
US9113367B2 (en) Method, apparatus and system for determining voltage standing wave ratio in a downlink period of radio communication
WO2017166168A1 (en) Fault detection method and fault detection device for external antennas
US8918060B2 (en) 2G, 2.5G RF loopback arrangement for mobile device self-testing
US20160344483A1 (en) Antenna Calibration in Communications
KR102099602B1 (en) A detection system for inout-output signal in 5g milimeter wave bandwidth
US10123282B2 (en) Distributed antenna system interface tray
CN102647196A (en) RF feedback receiver arrangement, RF transmit arrangement and RF transceiver arrangement
US9287904B2 (en) Interference reduction
JP5888424B2 (en) Wireless transmission device, standing wave ratio measuring device, and standing wave ratio measuring method
CN112118055A (en) Standing wave detection device and communication equipment
EP3195645B1 (en) Method and arrangement for multi band communication
JP5831644B2 (en) Wireless transmission device, VSWR determination device, and VSWR determination method
WO2018227921A1 (en) Dpd loop detection method and device
US20170302389A1 (en) Wireless communication device and abnormality detection method
JP2008035286A (en) Radio communication device and the failure estimation method
JP5647540B2 (en) Wireless terminal and control method thereof
US9391729B2 (en) Method and apparatus for monitoring performance, and remote radio unit
JP5790886B2 (en) Wireless transmission device, VSWR measurement device, and VSWR measurement method
JP2012239009A (en) Wireless communication device
JP5752005B2 (en) Transmitter
JP2010109546A (en) Radio equipment and control method therefor
KR100721248B1 (en) System of controlling an electronic power amp at a orthogonal frequency division multiplex access comunication system
JP2013070147A (en) Base station device and base station control method
JP2013258462A (en) Base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839950

Country of ref document: EP

Kind code of ref document: A1