WO2014044405A1 - Heat-transfer fluid composition - Google Patents

Heat-transfer fluid composition Download PDF

Info

Publication number
WO2014044405A1
WO2014044405A1 PCT/EP2013/002852 EP2013002852W WO2014044405A1 WO 2014044405 A1 WO2014044405 A1 WO 2014044405A1 EP 2013002852 W EP2013002852 W EP 2013002852W WO 2014044405 A1 WO2014044405 A1 WO 2014044405A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer fluid
ethylene glycol
water
volume
heat transfer
Prior art date
Application number
PCT/EP2013/002852
Other languages
French (fr)
Inventor
Kamel Azzouz
Georges De Pelsemaeker
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2014044405A1 publication Critical patent/WO2014044405A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Definitions

  • the present invention relates to the field of heat transfer fluid compositions, and more particularly the heat transfer fluid compositions used in a low temperature heat exchange loop.
  • heat energy is generally taken from a heat source by means of a heat exchanger and is dissipated by means of a heat sink or radiator. Transport of the heat energy between the heat source and the radiator is carried out by n heat transfer fluid.
  • so-called low temperature heat exchange loops for example for the cooling of the intake air of an internal combustion engine, it is common to use a heat transfer fluid composition comprising a mixture of water and ethylene glycol.
  • the thermal conductivity of a coolant composed of a Water / ethylene glycol mixture varies between 0.4 and 0.55 W / mK depending on the proportions of each of these two elements.
  • the thermal conductivity of a mixture of 50% water and 50% ethylene glycol is 0.44 W / mK at a temperature of 60 ° C.
  • thermal conductivities are relatively low and may not be sufficient for a suitable heat transfer in a low temperature heat exchanger loop of a motor vehicle whose flow rate of heat transfer fluid can reach 1200I / I1.
  • a known solution is to dope the water / ethylene glycol mixture with additives and in particular with spherical alumina nanoparticles (Al 2 O 3 ) having a diameter greater than or equal to 1 ⁇ m. Nevertheless, such doped heat transfer fluid compositions do not make it possible to achieve a thermal conductivity sufficient for satisfactory heat transfer at low temperature and with a high flow rate.
  • one of the aims of the present invention is to at least partially meet the disadvantages of the prior art and to propose a heat transfer fluid composition for a heat exchange loop with an exchange temperature of between 40 and 95 ° C. improved thermal conductivity.
  • the present invention therefore relates to a heat transfer fluid composition for an exchange heat exchange loop of between 40 and 95 ° C., said heat transfer fluid comprising a water / ethylene glycol mixture as well as alumina nanoparticles:
  • composition comprising in proportion 1 to 1.3% by volume of alumina nanoparticles, each of circular section, said nanoparticles of alumina having a mean diameter of the order of 5 nm, and
  • the water / ethylene glycol mixture comprising in proportion 50 to 65% of water and 50 to 35% of ethylene glycol, by volume.
  • the present heat transfer fluid composition makes it possible, because of the presence of alumina nanoparticles, each of circular section and of average diameter of 5 nm, a large increase in thermal conductivity and the proportions chosen make it possible to limit the increase in viscosity. of the composition and especially allows an increase in the optimal thermal conductivity by limiting the manufacturing costs. According to one aspect of the invention:
  • composition may comprise in proportion 1% by volume of alumina nanoparticles, each of circular section, and
  • the water / ethylene glycol mixture may comprise, in proportion, 50% of water and 50% of ethylene glycol, by volume.
  • composition may comprise in a proportion of 1.14% by volume of alumina nanoparticles, each of circular section, and
  • the water / ethylene glycol mixture may comprise, in a proportion of 60% of water and 40% of ethylene glycol, by volume.
  • composition may comprise in proportion 1.3% by volume of alumina nanoparticles, each of circular section, and
  • the water / ethylene glycol mixture may comprise in proportion 65% of water and 35% of ethylene glycol, by volume.
  • the nanoparticles are spherical or cylindrical.
  • the cylindrical nanoparticles have a length of between 1 and 10 nm, respectively.
  • a design reduces manufacturing costs which allows its use in mass production.
  • the invention also relates to the use of a heat transfer fluid composition as described above in a heat exchange loop of a motor vehicle.
  • FIG. 1 shows a graph of the evolution of the thermal conductivity of different heat transfer fluid compositions as a function of the volume proportion of nanoparticles present in said compositions
  • FIG. 2 shows a graph of the evolution of the increase of the thermal conductivity of different heat transfer fluid compositions as a function of the volume proportion of nanoparticles present in said compositions
  • FIG. 3 shows a graph of the evolution of the viscosity of a heat transfer fluid composition as a function of the volume proportion of nanoparticles present in said composition.
  • the values expressed in% are based on a percentage by volume of the composition in question.
  • the heat exchange fluid composition for a heat exchange loop with an exchange temperature of between 40 and 95 ° C proposed comprises:
  • Such a heat transfer fluid composition comprises nanoparticles of circular section, which facilitates its flow within the circuit forming all or part of the heat exchange loop.
  • each nanoparticle is spherical or cylindrical.
  • each nanoparticle has a length of between 1 and 10 nm, preferably of the order of 5 nm.
  • the nanoparticles may also be in the form of a pellet.
  • the present composition is particularly suitable for use in a low-temperature heat exchange loop of a motor vehicle, for example for the cooling of intake air of a combustion engine.
  • FIG. 1 shows a graph describing the evolution of the thermal conductivity of two heat transfer fluid compositions as a function of the proportion of alumina nanoparticles (Al 2 O 3 ) for an exchange temperature of between 40 and 95 ° C.
  • a first curve describes in particular the evolution of the thermal conductivity of a known heat transfer fluid composition, comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which nanoparticles of alumina are added. with an average diameter of 40nm. For a volume proportion of nanoparticles between 0 and 1%, the thermal conductivity increases sharply to reach an increase of about 32.7% with respect to a mixture of water and pure ethylene glycol according to a proportion of the order 50% water and 50% ethylene glycol, by volume.
  • a second curve describes in particular the evolution of the thermal conductivity of a heat transfer fluid composition according to the invention, comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which nanoparticles are added.
  • alumina with a mean diameter of the order of 5 nm For a proportion of nanoparticles between 0 and 1%, the thermal conductivity increases strongly to reach an increase of about 87.3% compared to a mixture of water and ethylene. pure glycol, in a proportion of about 50% water and 50% ethylene glycol.
  • alumina nanoparticles of average diameter of the order of snm gives said composition a much higher thermal conductivity.
  • FIG. 2 shows a graph describing the evolution of the increase of the thermal conductivity of three heat transfer fluid compositions with respect to the thermal conductivity of a mixture of water and pure ethylene glycol (i.e. say with the same proportions of water and ethylene glycol as in the measured heat transfer fluid composition), as a function of the volume proportion of alumina nanoparticles of average diameter of the order of snm.
  • the choice of these three heat transfer fluid compositions, in particular the proportions of water and ethylene glycol, is dictated by the specifications of the manufacturers.
  • a first curve of FIG. 2 describes the increase of the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which are added with nanoparticles of alumina of average diameter of the order of snm.
  • the proportion of nanoparticles for which the value Optimum increase in thermal conductivity of 81.8% is reached is i.
  • a second curve of FIG. 2 describes the increase of the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 60% by volume and of ethylene glycol at 40% by volume to which nanoparticles have been added. alumina of average diameter of the order of 5 nm. The proportion of nanoparticles for which the optimum value for increasing the thermal conductivity of 81.8% is reached is 1.14%.
  • a third curve of FIG. 2 describes the increase in the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 65% by volume and 35% by volume of ethylene glycol to which nanoparticles of alumina of average diameter of the order of 5 nm.
  • the proportion of nanoparticles for which the optimum value for increasing the thermal conductivity of 81.8% is reached is 1.31%.
  • FIG. 3 shows a graph describing the evolution of the increase in the viscosity of a heat transfer fluid, as a function of the proportion of nanoparticles of alumina with a mean diameter of the order of one nm. Note then that for the proportions of nanoparticles described above, the increase in viscosity is only:
  • the heat transfer fluid composition for a heat exchange loop at an exchange temperature of between 50 and 95 ° C allows a significant increase in thermal conductivity while maintaining a low viscosity and limiting the costs associated with the addition of nanoparticles of alumina of average diameter of the order of snm.

Abstract

The present invention relates to a heat-transfer fluid composition for a heat-exchange loop at an exchange temperature between 50 and 95°C, wherein said heat-transfer fluid includes a water/ethylene glycol mixture as well as alumina nanoparticles, the composition comprising 1 to 1.3 % in alumina nanoparticle content, said alumina nanoparticles having a circular cross-section and a mean diameter of about 5 nm; and the water/ethylene glycol mixture comprises 50 to 65 % in water content and 50 to 35 % of ethylene glycol in content.

Description

COMPOSITION DE FLUIDE CALOPORTEUR.  COMPOSITION OF HEAT TRANSFER FLUID.
La présente invention concerne le domaine des compositions de fluide caloporteur, et plus particulièrement les compositions de fluide caloporteur utilisé dans une boucle d'échange de chaleur à basse température. The present invention relates to the field of heat transfer fluid compositions, and more particularly the heat transfer fluid compositions used in a low temperature heat exchange loop.
Dans une boucle d'échange de chaleur, de l'énergie calorifique est généralement prélevée au niveau d'une source de chaleur au moyen d'un échangeur de chaleur et est dissipée au moyen d'un dissipateur ou radiateur. Le transport de l'énergie calorifique entre la source de chaleur et le radiateur est réalisé par n fluide caloporteur. In a heat exchange loop, heat energy is generally taken from a heat source by means of a heat exchanger and is dissipated by means of a heat sink or radiator. Transport of the heat energy between the heat source and the radiator is carried out by n heat transfer fluid.
Dans des boucles d'échange de chaleur dite à basse température, par exemple pour le refroidissement de l'air d'admission d'un moteur à explosion, il est commun d'utiliser une composition de fluide caloporteur comportant un mélange d'eau et d'éthylène glycol. Cependant, dans la plage de température d'échange d'une boucle d'échange de chaleur dite à basse température, c'est-à- dire de 40 à 95°C, la conductivité thermique d'un fluide caloporteur composé d'un mélange eau/éthylène glycol varie entre 0.4 et 0.55 W/mK selon les proportions de chacun de ces deux éléments. Par exemple, la conductivité thermique d'un mélange composé de 50% d'eau et de 50% d'éthylène glycol est de 0.44 W/mK à une température de 6o°C. Ces conductivités thermiques sont relativement faibles et peuvent ne pas être suffisantes pour un transfert de chaleur convenable dans une boucle d'échangeur de chaleur à basse température d'un véhicule automobile dont le débit de circulation du fluide caloporteur peut atteindre 1200I/I1. Une solution connue est de doper le mélange eau/éthylène glycol avec des additifs et notamment avec des nanoparticules sphériques d'alumine (A1203) ayant un diamètre supérieur ou égale à îonm. Néanmoins, de telles compositions de fluide caloporteur dopé ne permettent pas d'atteindre une conductivité thermique suffisante pour des transferts de chaleur satisfaisants à basse température et avec un fort débit. In so-called low temperature heat exchange loops, for example for the cooling of the intake air of an internal combustion engine, it is common to use a heat transfer fluid composition comprising a mixture of water and ethylene glycol. However, in the heat exchange temperature range of a so-called low temperature heat exchange loop, that is to say from 40 to 95 ° C, the thermal conductivity of a coolant composed of a Water / ethylene glycol mixture varies between 0.4 and 0.55 W / mK depending on the proportions of each of these two elements. For example, the thermal conductivity of a mixture of 50% water and 50% ethylene glycol is 0.44 W / mK at a temperature of 60 ° C. These thermal conductivities are relatively low and may not be sufficient for a suitable heat transfer in a low temperature heat exchanger loop of a motor vehicle whose flow rate of heat transfer fluid can reach 1200I / I1. A known solution is to dope the water / ethylene glycol mixture with additives and in particular with spherical alumina nanoparticles (Al 2 O 3 ) having a diameter greater than or equal to 1 μm. Nevertheless, such doped heat transfer fluid compositions do not make it possible to achieve a thermal conductivity sufficient for satisfactory heat transfer at low temperature and with a high flow rate.
Ainsi, un des buts de la présente invention est de répondre au moins partiellement aux inconvénients de l'art antérieur et de proposer une composition de fluide caloporteur pour boucle d'échange de chaleur à température d'échange comprise entre 40 et 95°C à conductivité thermique améliorée. Thus, one of the aims of the present invention is to at least partially meet the disadvantages of the prior art and to propose a heat transfer fluid composition for a heat exchange loop with an exchange temperature of between 40 and 95 ° C. improved thermal conductivity.
La présente invention concerne donc une composition de fluide caloporteur pour boucle d'échange de chaleur à température d'échange comprise entre 40 et 95°C, ledit fluide caloporteur comprenant un mélange eau/éthylène glycol ainsi que des nanoparticules d'alumine : The present invention therefore relates to a heat transfer fluid composition for an exchange heat exchange loop of between 40 and 95 ° C., said heat transfer fluid comprising a water / ethylene glycol mixture as well as alumina nanoparticles:
- la composition comportant en proportion 1 à 1.3% en volume de nanoparticules d'alumine, chacune de section circulaire, lesdites nanoparticules d'alumine ayant un diamètre moyen de l'ordre de 5nm, et the composition comprising in proportion 1 to 1.3% by volume of alumina nanoparticles, each of circular section, said nanoparticles of alumina having a mean diameter of the order of 5 nm, and
- le mélange eau/éthylène glycol comportant en proportion 50 à 65% d'eau et 50 à 35% d'éthylène glycol, en volume.  the water / ethylene glycol mixture comprising in proportion 50 to 65% of water and 50 to 35% of ethylene glycol, by volume.
La présente composition de fluide caloporteur permet, du fait de la présence de nanoparticules d'alumine, chacune de section circulaire et de diamètre moyen de 5nm, une forte augmentation de la conductivité thermique et les proportions choisies permettent de limiter l'augmentation de la viscosité de la composition et surtout permette une augmentation de la conductivité thermique optimale en limitant les coûts de fabrication. Selon un aspect de l'invention : The present heat transfer fluid composition makes it possible, because of the presence of alumina nanoparticles, each of circular section and of average diameter of 5 nm, a large increase in thermal conductivity and the proportions chosen make it possible to limit the increase in viscosity. of the composition and especially allows an increase in the optimal thermal conductivity by limiting the manufacturing costs. According to one aspect of the invention:
- la composition peut comporter en proportion 1% en volume de nanoparticules d'alumine, chacune de section circulaire, etthe composition may comprise in proportion 1% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol peut comporter en proportion 50% d'eau et 50% d'éthylène glycol, en volume. the water / ethylene glycol mixture may comprise, in proportion, 50% of water and 50% of ethylene glycol, by volume.
Selon un autre aspect de l'invention : According to another aspect of the invention:
- la composition peut comporter en proportion 1,14% en volume de nanoparticules d'alumine, chacune de section circulaire, etthe composition may comprise in a proportion of 1.14% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol peut comporter en proportion 60% d'eau et 40% d'éthylène glycol, en volume. the water / ethylene glycol mixture may comprise, in a proportion of 60% of water and 40% of ethylene glycol, by volume.
Selon un autre aspect de l'invention : According to another aspect of the invention:
- la composition peut comporter en proportion 1.3% en volume de nanoparticules d'alumine, chacune de section circulaire, etthe composition may comprise in proportion 1.3% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol peut comporter en proportion 65% d'eau et 35% d'éthylène glycol, en volume. the water / ethylene glycol mixture may comprise in proportion 65% of water and 35% of ethylene glycol, by volume.
Selon un autre aspect de l'invention, les nanoparticules sont sphériques ou cylindriques. According to another aspect of the invention, the nanoparticles are spherical or cylindrical.
Selon un mode de réalisation préféré, les nanoparticules cylindriques ont respectivement une longueur comprise entre 1 et 10 nm. De manière avantageuse, une telle conception réduit les coûts de fabrication ce qui en permet son utilisation en grande série. According to a preferred embodiment, the cylindrical nanoparticles have a length of between 1 and 10 nm, respectively. Advantageously, such a design reduces manufacturing costs which allows its use in mass production.
L'invention concerne également l'utilisation d'une composition de fluide caloporteur comme décrit ci-dessus dans une boucle d'échange de chaleur d'un véhicule automobile. D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels : The invention also relates to the use of a heat transfer fluid composition as described above in a heat exchange loop of a motor vehicle. Other features and advantages of the invention will emerge more clearly on reading the following description, given by way of illustrative and nonlimiting example, and the appended drawings among which:
la figure 1 montre un graphique de l'évolution de la conductivité thermique de différentes compositions de fluide caloporteur en fonction de la proportion en volume de nanoparticules présentes dans lesdites compositions, la figure 2 montre un graphique de l'évolution de l'augmentation de la conductivité thermique de différentes compositions de fluide caloporteur en fonction de la proportion en volume de nanoparticules présentes dans lesdites compositions,  FIG. 1 shows a graph of the evolution of the thermal conductivity of different heat transfer fluid compositions as a function of the volume proportion of nanoparticles present in said compositions, FIG. 2 shows a graph of the evolution of the increase of the thermal conductivity of different heat transfer fluid compositions as a function of the volume proportion of nanoparticles present in said compositions,
la figure 3 montre un graphique de l'évolution de la viscosité d'une composition de fluide caloporteur en fonction de la proportion en volume de nanoparticules présentes dans ladite composition. Dans ce qui suit, tout comme sur les figures, les valeurs exprimées en % s'entendent selon un pourcentage en volume de la composition considérée.  FIG. 3 shows a graph of the evolution of the viscosity of a heat transfer fluid composition as a function of the volume proportion of nanoparticles present in said composition. In what follows, as in the figures, the values expressed in% are based on a percentage by volume of the composition in question.
La composition de fluide caloporteur pour boucle d'échange de chaleur à température d'échange comprise entre 40 et 95°C, proposée comprend : The heat exchange fluid composition for a heat exchange loop with an exchange temperature of between 40 and 95 ° C, proposed comprises:
- en proportion 1 à 1.3% en volume de nanoparticules d'alumine in proportion 1 to 1.3% by volume of alumina nanoparticles
(AI2O3), lesdites nanoparticules d'alumine ayant un diamètre moyen de l'ordre de 5nm, et (Al2O3), said alumina nanoparticles having a mean diameter of the order of 5 nm, and
- un mélange eau/éthylène glycol comportant en proportion de 50 à  a water / ethylene glycol mixture comprising in proportion of 50 to
65% d'eau et de 50 à 35% d'éthylène glycol, en volume.  65% water and 50 to 35% ethylene glycol, by volume.
Une telle composition de fluide caloporteur comprend des nanoparticules de section circulaire, ce qui en facilite son écoulement au sein du circuit formant tout ou partie de la boucle de d'échange de chaleur. Such a heat transfer fluid composition comprises nanoparticles of circular section, which facilitates its flow within the circuit forming all or part of the heat exchange loop.
Préférentiellement, chaque nanoparticule est sphérique ou cylindrique. Dans ce dernier cas, chaque nanoparticule a une longueur comprise entre l et îo nm, de préférence de l'ordre de 5 nm. Les nanoparticules peuvent aussi avoir la forme d'une pastille. La présente composition est particulièrement adaptée pour une utilisation dans une boucle d'échange de chaleur à basse température d'un véhicule automobile, par exemple pour le refroidissement d'air d'admission d'un moteur à explosion. La figure 1 montre un graphique décrivant l'évolution de la conductivité thermique de deux compositions de fluide caloporteur en fonction de la proportion de nanoparticules d'alumine (A1203) pour une température d'échange comprise entre 40 et 95°C. Une première courbe décrit notamment l'évolution de la conductivité thermique d'une composition de fluide caloporteur connu, comprenant un mélange d'eau à 50% en volume et d'éthylène glycol à 50% en volume auquel sont ajoutées des nanoparticules d'alumine d'un diamètre moyen de 40nm. Pour une proportion en volume de nanoparticules comprise entre o et 1% la conductivité thermique augmente fortement pour atteindre une augmentation de l'ordre de 32.7% par rapport à un mélange d'eau et d'éthylène glycol pur selon une proportion de l'ordre de 50% d'eau et de 50% d'éthylène glycol, en volume. Une seconde courbe décrit notamment l'évolution de la conductivité thermique d'une composition de fluide caloporteur selon l'invention, comprenant un mélange d'eau à 50 % en volume et d'éthylène glycol à 50 % en volume auquel sont ajoutées des nanoparticules d'alumine d'un diamètre moyen de l'ordre de 5nm. Pour une proportion de nanoparticules comprise entre o et 1% la conductivité thermique augmente fortement pour atteindre une augmentation de l'ordre de 87.3% par rapport à un mélange d'eau et d'éthylène glycol pur, selon une proportion de l'ordre de 50% d'eau et de 50% d'éthylène glycol. Ainsi, on voit bien que l'utilisation dans la composition de fluide caloporteur de nanoparticules d'alumine de diamètre moyen de l'ordre de snm, confère à ladite composition une conductivité thermique nettement supérieure. Preferably, each nanoparticle is spherical or cylindrical. In the latter case, each nanoparticle has a length of between 1 and 10 nm, preferably of the order of 5 nm. The nanoparticles may also be in the form of a pellet. The present composition is particularly suitable for use in a low-temperature heat exchange loop of a motor vehicle, for example for the cooling of intake air of a combustion engine. FIG. 1 shows a graph describing the evolution of the thermal conductivity of two heat transfer fluid compositions as a function of the proportion of alumina nanoparticles (Al 2 O 3 ) for an exchange temperature of between 40 and 95 ° C. A first curve describes in particular the evolution of the thermal conductivity of a known heat transfer fluid composition, comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which nanoparticles of alumina are added. with an average diameter of 40nm. For a volume proportion of nanoparticles between 0 and 1%, the thermal conductivity increases sharply to reach an increase of about 32.7% with respect to a mixture of water and pure ethylene glycol according to a proportion of the order 50% water and 50% ethylene glycol, by volume. A second curve describes in particular the evolution of the thermal conductivity of a heat transfer fluid composition according to the invention, comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which nanoparticles are added. alumina with a mean diameter of the order of 5 nm. For a proportion of nanoparticles between 0 and 1%, the thermal conductivity increases strongly to reach an increase of about 87.3% compared to a mixture of water and ethylene. pure glycol, in a proportion of about 50% water and 50% ethylene glycol. Thus, it is clear that the use in the heat transfer fluid composition of alumina nanoparticles of average diameter of the order of snm, gives said composition a much higher thermal conductivity.
La figure 2 montre un graphique décrivant l'évolution de l'augmentation de la conductivité thermique de trois compositions de fluide caloporteur par rapport à la conductivité thermique d'un mélange d'eau et d'éthylène glycol pur (c'est-à-dire avec les mêmes proportions d'eau et d'éthylène glycol que dans la composition de fluide caloporteur mesurée), en fonction de la proportion en volume de nanoparticules d'alumine de diamètre moyen de l'ordre de snm. Le choix de ces trois compositions de fluide caloporteur, notamment des proportions d'eau et d'éthylène glycol, est dicté par les cahiers des charges des constructeurs. FIG. 2 shows a graph describing the evolution of the increase of the thermal conductivity of three heat transfer fluid compositions with respect to the thermal conductivity of a mixture of water and pure ethylene glycol (i.e. say with the same proportions of water and ethylene glycol as in the measured heat transfer fluid composition), as a function of the volume proportion of alumina nanoparticles of average diameter of the order of snm. The choice of these three heat transfer fluid compositions, in particular the proportions of water and ethylene glycol, is dictated by the specifications of the manufacturers.
Pour étudier ces courbes, il convient de définir une valeur optimale d'augmentation de la conductivité thermique au delà de laquelle la tangente de la courbe tend vers o. Au delà de ce point pour avoir une valeur d'augmentation de la conductivité thermique supérieure, il est nécessaire d'augmenter fortement la proportion de nanoparticules dans la composition ce qui est peu intéressent d'un point de vue économique et peut même entraîner des problèmes de viscosité trop importante. De plus, les nanoparticules d'alumine sont onéreuses et limiter leur proportion permet également de limiter les coûts de fabrication de la composition. Cette valeur optimale d'augmentation de la conductivité thermique est ici de 81.8%. To study these curves, it is necessary to define an optimal value of increase of the thermal conductivity beyond which the tangent of the curve tends towards o. Beyond this point to have an increase value of the higher thermal conductivity, it is necessary to greatly increase the proportion of nanoparticles in the composition which is of little interest from an economic point of view and may even cause problems. too much viscosity. Moreover, alumina nanoparticles are expensive and limiting their proportion also makes it possible to limit the manufacturing costs of the composition. This optimum value for increasing the thermal conductivity is here 81.8%.
Une première courbe de la figure 2 décrit l'augmentation de la conductivité thermique d'une composition de fluide caloporteur comprenant une mélange d'eau à 50% en volume et d'éthylène glycol à 50% en volume auquel sont ajoutées avec des nanoparticules d'alumine de diamètre moyen de l'ordre de snm. La proportion de nanoparticules pour laquelle la valeur optimale d'augmentation de la conductivité thermique de 81.8% est atteinte est de i . A first curve of FIG. 2 describes the increase of the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 50% by volume and of ethylene glycol at 50% by volume to which are added with nanoparticles of alumina of average diameter of the order of snm. The proportion of nanoparticles for which the value Optimum increase in thermal conductivity of 81.8% is reached is i.
Une seconde courbe de la figure 2 décrit l'augmentation de la conductivité thermique d'une composition de fluide caloporteur comprenant un mélange d'eau à 60 % en volume et d'éthylène glycol à 40 % en volume auquel ont été ajoutées des nanoparticules d'alumine de diamètre moyen de l'ordre de 5nm. La proportion de nanoparticules pour laquelle la valeur optimale d'augmentation de la conductivité thermique de 81.8% est atteinte est de 1.14%. A second curve of FIG. 2 describes the increase of the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 60% by volume and of ethylene glycol at 40% by volume to which nanoparticles have been added. alumina of average diameter of the order of 5 nm. The proportion of nanoparticles for which the optimum value for increasing the thermal conductivity of 81.8% is reached is 1.14%.
Une troisième courbe de la figure 2 décrit l'augmentation de la conductivité thermique d'une composition de fluide caloporteur comprenant une mélange d'eau à 65 % en volume et d'éthylène glycol à 35 % en volume auquel sont ajoutées des nanoparticules d'alumine de diamètre moyen de l'ordre de 5nm. La proportion de nanoparticules pour laquelle la valeur optimale d'augmentation de la conductivité thermique de 81.8% est atteinte est de 1.31%. A third curve of FIG. 2 describes the increase in the thermal conductivity of a heat transfer fluid composition comprising a mixture of water at 65% by volume and 35% by volume of ethylene glycol to which nanoparticles of alumina of average diameter of the order of 5 nm. The proportion of nanoparticles for which the optimum value for increasing the thermal conductivity of 81.8% is reached is 1.31%.
La figure 3 montre un graphique décrivant l'évolution de l'augmentation de la viscosité d'un fluide caloporteur, en fonction de la proportion de nanoparticules d'alumine de diamètre moyen de l'ordre de snm. On remarque alors que pour les proportions de nanoparticules décrites plus haut, l'augmentation de la viscosité n'est que de : FIG. 3 shows a graph describing the evolution of the increase in the viscosity of a heat transfer fluid, as a function of the proportion of nanoparticles of alumina with a mean diameter of the order of one nm. Note then that for the proportions of nanoparticles described above, the increase in viscosity is only:
- 8.5% pour une proportion de 1% de nanoparticules, dans le cas d'une composition de fluide caloporteur avec un mélange d'eau à 50 % en volume et d'éthylène glycol à 50 % en volume,  8.5% for a proportion of 1% of nanoparticles, in the case of a heat transfer fluid composition with a mixture of water at 50% by volume and of ethylene glycol at 50% by volume,
- 10% pour une proportion de 1.14% de nanoparticules, dans le cas d'une composition de fluide caloporteur avec un mélange d'eau à 60% en volume et d'éthylène glycol à 40% en volume, et - 11.5% pour une proportion de 1.31% de nanoparticules, dans le cas d'une composition de fluide caloporteur avec un mélange d'eau à 65% en volume et d'éthylène glycol à 35% en volume. - 10% for a proportion of 1.14% of nanoparticles, in the case of a heat transfer fluid composition with a mixture of water at 60% by volume and of ethylene glycol at 40% by volume, and 11.5% for a proportion of 1.31% of nanoparticles, in the case of a heat transfer fluid composition with a mixture of water at 65% by volume and ethylene glycol at 35% by volume.
L'application de telle proportion en volume de nanoparticules permet ainsi de limiter l'augmentation de la viscosité et donc la composition de fluide caloporteur selon l'invention peut circuler facilement dans la boucle d'échange de chaleur. The application of such volume proportion of nanoparticles thus makes it possible to limit the increase in viscosity and therefore the heat transfer fluid composition according to the invention can flow easily in the heat exchange loop.
Ainsi On voit bien que la composition de fluide caloporteur pour boucle d'échange de chaleur à température d'échange comprise entre 50 et 95°C selon l'invention permet une augmentation significative de la conductivité thermique tout en conservant une faible viscosité et en limitant les coûts liés à l'ajout de nanoparticules d'alumine de diamètre moyen de l'ordre de snm. Thus it is clear that the heat transfer fluid composition for a heat exchange loop at an exchange temperature of between 50 and 95 ° C according to the invention allows a significant increase in thermal conductivity while maintaining a low viscosity and limiting the costs associated with the addition of nanoparticles of alumina of average diameter of the order of snm.

Claims

REVENDICATIONS
1. Composition de fluide caloporteur pour boucle d'échange de chaleur à température d'échange comprise entre 50 et 95°C, ledit fluide caloporteur comprenant un mélange eau/éthylène glycol ainsi que des nanoparticules d'alumine, caractérisé en ce que : 1. Composition of heat transfer fluid for a heat exchange loop at an exchange temperature between 50 and 95°C, said heat transfer fluid comprising a water/ethylene glycol mixture as well as alumina nanoparticles, characterized in that:
- la composition comporte en proportion 1 à 1.3% en volume de nanoparticules d'alumine, chacune de section circulaire, lesdites nanoparticules d'alumine ayant un diamètre moyen de l'ordre de 5nm, et - the composition comprises in proportion 1 to 1.3% by volume of alumina nanoparticles, each of circular section, said alumina nanoparticles having an average diameter of the order of 5nm, and
- le mélange eau/éthylène glycol comporte de 50 à 65% d'eau et de 50 à 35% d'éthylène glycol en volume. - the water/ethylene glycol mixture contains 50 to 65% water and 50 to 35% ethylene glycol by volume.
2. Composition de fluide caloporteur selon la revendication 1 caractérisé en ce que : 2. Heat transfer fluid composition according to claim 1 characterized in that:
- la composition comporte en proportion 1% en volume de nanoparticules d'alumine, chacune de section circulaire, et- the composition contains a proportion of 1% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol comporte en proportion 50% d'eau et 50% d'éthylène glycol en volume. - the water/ethylene glycol mixture contains a proportion of 50% water and 50% ethylene glycol by volume.
3. Composition de fluide caloporteur selon la revendication 1 caractérisé en ce que : 3. Heat transfer fluid composition according to claim 1 characterized in that:
- la composition comporte en proportion 1,14% en volume de nanoparticules d'alumine, chacune de section circulaire, et- the composition contains a proportion of 1.14% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol comporte en proportion 60% d'eau et 40% d'éthylène glycol en volume. - the water/ethylene glycol mixture contains a proportion of 60% water and 40% ethylene glycol by volume.
Composition de fluide caloporteur selon la revendication 1 caractérisé en Heat transfer fluid composition according to claim 1 characterized in
- la composition comporte en proportion 1.3% en volume de nanoparticules d'alumine, chacune de section circulaire, et- the composition contains a proportion of 1.3% by volume of alumina nanoparticles, each of circular section, and
- le mélange eau/éthylène glycol comporte en proportion 65% d'eau et - the water/ethylene glycol mixture contains a proportion of 65% water and
35% d'éthylène glycol en volume. 35% ethylene glycol by volume.
5. Composition de fluide caloporteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les nanoparticules sont sphériques et/ ou cylindriques. 5. Heat transfer fluid composition according to any one of claims 1 to 4, characterized in that the nanoparticles are spherical and/or cylindrical.
6. Composition de fluide caloporteur selon la revendication 5 caractérisé en ce que les nanoparticules cylindriques ont respectivement une longueur comprise entre 1 et 10 nïiï. 6. Heat transfer fluid composition according to claim 5 characterized in that the cylindrical nanoparticles respectively have a length of between 1 and 10 nïiï.
7. Utilisation de la composition de fluide caloporteur selon l'une des revendications 1 à 6 dans une boucle d'échange de chaleur d'un véhicule automobile. 7. Use of the heat transfer fluid composition according to one of claims 1 to 6 in a heat exchange loop of a motor vehicle.
PCT/EP2013/002852 2012-09-24 2013-09-23 Heat-transfer fluid composition WO2014044405A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1258927A FR2995907A1 (en) 2012-09-24 2012-09-24 COMPOSITION OF HEAT TRANSFER FLUID.
FR1258927 2012-09-24
FR1350452 2013-01-18
FR1350452A FR2995908B1 (en) 2012-09-24 2013-01-18 COMPOSITION OF HEAT TRANSFER FLUID.

Publications (1)

Publication Number Publication Date
WO2014044405A1 true WO2014044405A1 (en) 2014-03-27

Family

ID=47594907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002852 WO2014044405A1 (en) 2012-09-24 2013-09-23 Heat-transfer fluid composition

Country Status (2)

Country Link
FR (2) FR2995907A1 (en)
WO (1) WO2014044405A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723927B1 (en) * 2019-09-20 2020-07-28 Ht Materials Science (Ip) Limited Heat transfer mixture
US10723928B1 (en) * 2019-09-20 2020-07-28 Ht Materials Science (Ip) Limited Heat transfer mixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218370A1 (en) * 2002-11-05 2005-10-06 Shishiai-Kabushikigaisha Heat transfer medium liquid composition
US20080011978A1 (en) * 2006-03-29 2008-01-17 Denso Corporation Heat transport medium with fine-particle dispersion
US20080017827A1 (en) * 2005-02-18 2008-01-24 Shishiai-Kabushikigaisha Heat transfer medium composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218370A1 (en) * 2002-11-05 2005-10-06 Shishiai-Kabushikigaisha Heat transfer medium liquid composition
US20080017827A1 (en) * 2005-02-18 2008-01-24 Shishiai-Kabushikigaisha Heat transfer medium composition
US20080011978A1 (en) * 2006-03-29 2008-01-17 Denso Corporation Heat transport medium with fine-particle dispersion

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MICHAEL P BECK ET AL: "The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures", JOURNAL OF NANOPARTICLE RESEARCH ; AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 12, no. 4, 31 July 2009 (2009-07-31), pages 1469 - 1477, XP019793511, ISSN: 1572-896X *
RAFATI M ET AL: "Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids)", APPLIED THERMAL ENGINEERING, PERGAMON, OXFORD, GB, vol. 45, 16 March 2012 (2012-03-16), pages 9 - 14, XP028511262, ISSN: 1359-4311, [retrieved on 20120330], DOI: 10.1016/J.APPLTHERMALENG.2012.03.028 *
TIMOFEEVA ELENA ET AL: "Particle shape effects on thermophysical properties of alumina nanofluids", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 106, no. 1, 6 July 2009 (2009-07-06), pages 14304 - 14304, XP012123462, ISSN: 0021-8979, DOI: 10.1063/1.3155999 *
YU W; XIE H-Q; LI Y; CHEN L: "Rheological behaviour and heat transfer of Al2O3 nanoparticles dispersed in ethylene glycol and water mixture", PROCEEDINGS OF 2009 US-EU-CHINA THERMOPHYSICS CONFERENCE - RENEWABLE ENERGY : BEIJING UNIVERSITY OF TECHNOLOGY, BEIJING, CHINA, MAY 28 - 30, 2009, 2009, XP008162634 *

Also Published As

Publication number Publication date
FR2995908A1 (en) 2014-03-28
FR2995908B1 (en) 2016-05-27
FR2995907A1 (en) 2014-03-28

Similar Documents

Publication Publication Date Title
FR3056290B1 (en) THERMAL CONTROL DEVICE
EP3273181B1 (en) Motor vehicle air conditioning loop and methods of operating such a loop
EP2831514B1 (en) Electrical heating device for a motor vehicle, and associated heating, ventilation and/or air conditioning apparatus
WO2014044405A1 (en) Heat-transfer fluid composition
EP2507337B1 (en) Colloidal dispersion of aluminium oxide
EP2999937B1 (en) Heat dissipator and associated thermal management circuit
EP3513134B1 (en) Motor vehicle thermal management circuit
FR3088705A1 (en) DEVICE FOR THE INVERSIBLE THERMAL MANAGEMENT OF A MOTOR VEHICLE
FR2884864A1 (en) Cooling device for e.g. petrol engine, has auxiliary cooling circuit with cooler and pump, such that when thermostatic valve of main coolant circuit is closed, pump circulates coolant inside cooler and across radiator of coolant circuit
FR3006007A1 (en) COOLING AIR COOLER AND ASSOCIATED AIR SUPPLY CIRCUIT.
FR3056722A1 (en) THERMAL EXCHANGER COMPRISING PHASE CHANGE MATERIAL
FR3058786B1 (en) THERMAL EXCHANGER AND DEVICE FOR COOLING LUBRICATING OIL IN A THERMAL ENGINE
EP2952706B1 (en) Heat-exchange device, exhaust line of a combustion engine and thermoelectric module including such a device
EP2993436B1 (en) Thermal management device with phase-shift material for motor vehicle
FR3056720A1 (en) THERMAL EXCHANGER COMPRISING PHASE CHANGE MATERIAL
FR2997487A1 (en) COLLECTOR BOX FOR A HEAT EXCHANGER, IN PARTICULAR A MOTOR VEHICLE ENGINE SUPERVISING AIR COOLER
FR3056721A1 (en) THERMAL EXCHANGER COMPRISING PHASE CHANGE MATERIAL
FR3067755A1 (en) SYSTEM FOR OPTIMIZING THE TEMPERATURE OF CATALYSTS WITH SELECTIVE CATALYTIC REDUCTION SCR
WO2018060601A1 (en) Tube with reservoir of phase change material for an evaporator, associated evaporator and air conditioning assembly
WO2023031149A1 (en) Thermal management device for batteries for an electric or hybrid vehicle
FR3058210A1 (en) HEAT EXCHANGER
FR3131709A1 (en) Thermal regulation device
FR2974408A1 (en) Heat pump evaporator for e.g. electric car, has heat-exchanging surface that exchanges heat with external medium and is subjected to surface treatment using composite material to form superhydrophobic heat-exchanging surface
WO2023099826A1 (en) Thermal system for a solid polymer electrolyte battery, method and vehicle based on such a system
FR3081937A1 (en) DEVICE FOR THERMAL MANAGEMENT OF THE INTAKE AIR OF AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798560

Country of ref document: EP

Kind code of ref document: A1