WO2014044048A1 - 中性点分散接地式两端直流双极输电系统 - Google Patents

中性点分散接地式两端直流双极输电系统 Download PDF

Info

Publication number
WO2014044048A1
WO2014044048A1 PCT/CN2013/073929 CN2013073929W WO2014044048A1 WO 2014044048 A1 WO2014044048 A1 WO 2014044048A1 CN 2013073929 W CN2013073929 W CN 2013073929W WO 2014044048 A1 WO2014044048 A1 WO 2014044048A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
wire
grounding
conductor
polar
Prior art date
Application number
PCT/CN2013/073929
Other languages
English (en)
French (fr)
Inventor
李伟性
梁伟昕
赵忠华
颜才升
张富春
郑晓
范敏
Original Assignee
中国南方电网有限责任公司超高压输电公司广州局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司广州局 filed Critical 中国南方电网有限责任公司超高压输电公司广州局
Publication of WO2014044048A1 publication Critical patent/WO2014044048A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to the technical field of transmission systems, in particular to a neutral point distributed grounded two-terminal DC bipolar transmission system. Background technique
  • the two-terminal DC bipolar transmission system has two lines: the ground system, the two-wire system and the three-wire system. All three methods need to construct a special grounding pole address near the converter station during the line design, and erect Dedicated grounding line for the neutral point of the converter station to the grounding pole.
  • the high-voltage lines are also relatively dense, the land resources are very tight, and the grounding poles are large. It is extremely difficult to apply for the grounding of the poles to the local government for the ecological benefits of land-inflow into the ground and strict development restrictions.
  • FIG. 1 is a schematic structural diagram of a conventional two-wire-ground two-terminal DC bipolar transmission system.
  • the two-wire--ground system has a single-maximum loop operation mode, and two ground poles need to be built.
  • Site set up two grounding pole lines. In normal operation, the currents of the two poles are opposite in magnitude, and there is no DC current in the earth return.
  • the solid arrow in Table 1 indicates the current loop in normal.
  • FIG. 2 is a schematic structural diagram of the existing two-wire DC bipolar transmission system.
  • the two-wire system cancels the grounding point of the one-end converter station, saving one ground. Investment in the pole address and a grounding pole line.
  • it does not have the function of single-maximum loop operation, which increases the risk of bipolar blocking during tripping. It must be restarted after the DC system is completely stopped or switched to the unipolar metal loop of another non-defective pole.
  • FIG. 3 is a schematic structural diagram of the existing three-wire DC bipolar transmission system.
  • the three-wire system is further provided with a ground insulated wire as a reflow circuit, and their grounding points are only Used as a fixed ground potential.
  • the function of the single-pole neutral metal circuit can be realized when the line fails, the total length of the ultra-high voltage DC line is often thousands of kilometers, and the investment cost of adding a set of wires and its subsidiary insulators, tower structure and foundation improvement is often More two lines - the ground system is higher.
  • the two-pole two-wire system and the two-pole three-wire system can continue to operate in a single-line system with the smooth line (as shown by the dotted line in Figure 1).
  • the power in the loop increases, and its value is equal to the pole current.
  • the bipolar two-wire system must temporarily increase the grounding point in a converter station that is not grounded, otherwise it will not operate when one pole fails.
  • the circuit of this pole can also be connected as a return circuit, which operates in a single-pole two-wire system to avoid large currents flowing through the earth loop. From the perspective of system safety and comprehensive cost, the two-line--ground system is more suitable for China's national conditions.
  • the present invention explores the possibility of further reducing costs on the basis of fully realizing the functions of the two-line system. Summary of the invention
  • the object of the present invention is to provide a new type of two-terminal DC bipolar transmission system using a DC system distributed grounding method instead of a dedicated pole.
  • a neutral point distributed grounding type two-terminal DC bipolar power transmission system which comprises a pole-conductor and a pole-conductor which are symmetrically arranged according to the power transmission, and form a loop.
  • An inverter is connected between one end of the pole wire and one end of the adjacent pole wire, and the other end of the pole wire and the other end of the adjacent pole wire, and the converter is symmetrically arranged;
  • the two sides of the circuit formed by the pole one pole and the pole two conductor are respectively symmetrically arranged with a grounding pole and a grounding pole two wires respectively; and further comprising a DC system at both ends, which are respectively connected to the grounding pole and the conductor Ground the pole between the two wires and keep them symmetrically set.
  • the grounding pole two conductors are erected with the tower, the first insulator string is symmetrically arranged on both sides of the upper end of the tower, and the pole one pole and the pole two conductors are respectively symmetrically connected a lower end of the insulator string; a second insulator string is symmetrically arranged on both sides of the middle of the tower, the grounding pole and the grounding pole are respectively connected to the lower end of the second insulator string, and further comprises a balancing resistor, one end of which passes through the insulated copper wire Connect the grounding pole to the grounding conductor and the grounding pole two conductors, and connect the other end to the tower grounding grid through the insulated copper wire.
  • grounding pole address Although the grounding resistance is small (generally
  • the decentralized large grounding system not only saves two grounding poles, but also calculates the neutral point equivalent resistance (generally around 0.25 ohms), which greatly reduces power loss.
  • the invention has the following advantages:
  • the neutral point distributed grounded DC bipolar transmission system current is relatively evenly dispersed into the ground through more towers, forming a new grounding system, and the neutral point equivalent resistance of the DC system is greatly reduced. Single-maximum loop operation is more stable, greatly reducing power loss.
  • the neutral point distributed grounded DC bipolar transmission system greatly enhances the current shunt under overload conditions, even if the local tower grounding line is suspended or the grounding down conductor is completely broken, causing the tower to be grounded.
  • the infinite resistance is simply to transfer the tower split effect to other towers without affecting the overall split.
  • the decentralized grounding system forms a long-distance large-scale grounding system. If the avoiding station or a certain section has an important cross-over effect, the local impedance of the corresponding section grounding line is partially insulated, and the overall resistance and uniform shunting of the large grounding system are not affected.
  • the neutral point distributed grounded DC bipolar transmission system can greatly reduce the single ground current value and single phase grounding of the most serious converter station terminal tower. Polar current value.
  • the grounding wire will not induce excessive voltage to form excessively high induced current, so the inductive power will not cause unbalance effect, and the DC system will be prevented from bipolar blocking.
  • the grounding pole of the low resistance (the overall grounding resistance is also better) is located below the DC pole line, which acts as a good coupling grounding shunt and greatly improves the lightning resistance level of the line. Reduces the incidence of DC single-pole blocking failures.
  • the neutral point distributed grounded DC bipolar transmission system not only saves the investment of two grounding poles, but also the DC pole and the grounding pole are erected on the same pole, saving The investment of two grounding pole lines ensures the rational use of land resources and avoids the contradiction between line construction and government planning land.
  • the grounding pole line has good lightning protection capability, eliminating the investment in lightning protection system installed by installing lightning arresters along the line, reducing the capital investment in line construction.
  • FIG. 1 is a schematic structural view of a conventional two-wire one-ground two-terminal DC bipolar power transmission system
  • FIG. 2 is a schematic structural view of a two-wire two-terminal DC bipolar power transmission system
  • FIG. 3 is a schematic structural view of a conventional three-wire two-terminal DC bipolar transmission system
  • Figure 4 is an overall structural diagram of a DC distributed grounding method, wherein the DC pole and the grounding pole are shown on a plurality of transmission towers;
  • Figure 5 is the same tower design structure of the grounding pole line and the DC line in the DC distributed grounding mode, indicating the grounding mode of the grounding pole line;
  • 5--grounding pole one conductor 6--grounding pole two conductor; 7--balanced resistance; 8--iron tower grounding grid; 9--insulator string;
  • the neutral point distributed grounded DC bipolar power transmission system includes a pole 1 and a pole 2, which are formed in a symmetrical manner according to the power transmission, and form a loop.
  • An inverter 2 is connected between one end and one end of the adjacent pole two wires 4, and the other end of the pole one wire 3 and the other end of the adjacent pole two wires 4, and the inverter 2 is symmetrically arranged.
  • the two sides of the circuit are symmetrically arranged with a grounding pole one wire 5 and a grounding pole two wire 6 respectively; further comprising a DC system 1 at both ends, which are respectively connected Between the grounding pole one wire 5 and the grounding pole two wire 6, and maintain a symmetrical setting.
  • the pole one wire 3 and the pole two wire 4 are different according to different line lengths, and it is even possible that a commutation station (converting alternating current into direct current for transmission) and a power receiving section of the power receiving section are shown on the sides of several thousand kilometers long ( The direct current is converted into alternating current, which is sent to thousands of households through the substation to reduce the voltage, but the transmission structure is symmetrically arranged.
  • the pole one wire 3 In the pole one wire 3, the pole two wire 4, and the grounding pole one wire 5, the grounding pole two wire 6 are erected with the iron tower 11, the first insulator string 9 is arranged symmetrically on both sides of the upper end of the iron tower 11, the pole one wire 3 and The pole two wires 4 are respectively symmetrically connected to the lower end of the first insulator string 9; a second insulator string 91 is symmetrically arranged on both sides of the middle portion of the tower 11, and the ground pole one conductor 5 and the ground pole two conductors 6 are respectively connected to the second insulator string
  • the lower end of the 91 further includes a balancing resistor 7, one end of which is connected to the grounding pole one wire 5 and the grounding pole two wire 6 through the insulated copper wire 10, and the other end is connected to the iron tower grounding net 8 through the insulated copper wire 10.
  • the DC system at both ends is a form of transmission system, which is different from AC transmission and is suitable for long-distance large-capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

提供了一种中性点分散接地式两端直流双极输电系统,该系统包括对称设置并形成一回路的极一导线(3)和极二导线(4),极一导线(3)的一端和相邻的极二导线(4)的一端之间、以及极一导线(3)的另一端和相邻的极二导线(4)的另一端之间分别连接有换流器(2),换流器(2)为对称布置;在极一导线(3)和极二导线(4)构成的回路内的两侧分别对称地设有相互连接的接地极一导线(5)和接地极二导线(6)。该输电系统还包括有两端直流系统(1),其分别连接在接地极一导线(5)和接地极二导线(6)之间,并保持对称设置。该输电系统降低了电能损耗,具有良好的分流转移作用,并取消了接地极极址。

Description

中性点分散接地式两端直流双极输电系统
技术领域
本发明涉及到输电系统技术领域,尤其是一种中性点分散接地式两端直流双 极输电系统。 背景技术
目前两端直流双极输电系统有两线--地制、 两线制和三线制三种构成方式, 三种方式都需要在线路设计时在换流站附近建设专用接地极极址,并架设换流站 中性点至接地极极址的专用接地极线路。但在实际的线路建设中由于线路所经地 域经济发达、居民区密集工业和旅游区域日渐成熟用地规划也逐步趋于完善, 高 压线路也较为密集, 土地资源十分紧张, 加上接地极极址大入地电流集中入地的 生态效益及严格的发展限制, 向地方政府申请接地极极址的用地异常困难。为节 约土地资源, 国内电力系统不得不采用多个直流系统共用一个接地极极址的措 施,这一措施无法实现接地极就近选址的原则,往往又增加了接地极线路的长度。 为节约路径, 部分线路已经采用了同杆架设直流极线和接地极线的线路的方法, 但不论采取何种措施,绝缘配置较低的接地极线路与绝缘配置极高的直流线路将 在单极大地回路运行方式下串联运行,在防雷上有天然的劣势, 越长问题暴露越 明显。
请参阅图 1所示, 其为现有两线-地制两端直流双极输电系统的构成结构示 意图, 两线- -地制具备单极大地回路运行方式功能, 需要修建两个接地极极址, 架设两条接地极线路。在正常运行时, 两个极的电流方向相反大小相等, 大地回 路中无直流电流, 表 1中用实线的箭头符号表示正常时的电流回路。
请参阅图 2所示, 其为现有两线制两端直流双极输电系统的构成结构示意 图, 为避免大地回路引起的问题, 两线制取消一端换流站的接地点, 节约了一个 接地极极址和一条接地极线路的投资。 但是不具备单极大地回路运行方式功能, 增加了跳闸时双极闭锁的风险,必须在直流系统完全停运后重新启动或者转换到 另一非故障极线的的单极金属回路上。
请参阅图 3 所示, 其为现有三线制两端直流双极输电系统的构成结构示意 图,三线制则在此基础上再增设一条地绝缘导线作为回流电路, 它们的接地点仅 作为固定对地电位之用。 虽然可以实现线路故障时转单极中性线金属回路的功 能,但超特高压直流线路全长往往达上千公里, 增加一组导线及其附属绝缘子金 具、 铁塔结构及基础改进的投资费用往往较两线- -地制更高。
在这三种方式中, 当一个极的线路发生故障时, 双极两线 --地制和双极三线 制可用健全极线路分别以单一线 地制继续运行 (如图 1中虚线所示) 但此时回 路中的电力增大,其值与极导线电流相等。双极两线制系统则必须在原来不接地 的一个换流站中暂时增加接地点, 否则一个极发生故障时不能运行。 当一个极的 换流器故障或检修时, 也可将这个极的线路改接, 作为回流电路, 以单极两线制 运行, 以此避免大地回路有大电流通过。 从系统安全和综合造价上, 两线- -地制 比较适合我国国情, 本发明在完全实现两线 地制搭建方式功能的基础上探讨进 一步降低成本的可能。 发明内容
本发明的目的在于提出利用直流系统分散接地方式替代专用极址的一种新 的两端直流双极输电系统的结构方式。
为实现以上目的,本发明采取了以下的技术方案: 中性点分散接地式两端直 流双极输电系统,包括有依据输电构成为对称设置, 并形成一回路的极一导线和 极二导线, 极一导线的一端和相邻的极二导线的一端之间、 以及极一导线的另一 端和相邻的极二导线的另一端之间分别连接有换流器, 换流器为对称布置; 在极 一导线和极二导线构成的回路内的两侧对称的分别设有相互连接的接地极一导 线和接地极二导线; 还包括有两端直流系统, 其分别连接在接地极一导线和接地 极二导线之间, 并保持对称设置。
在极一导线、 极二导线, 和, 接地极一导线、 接地极二导线同塔架设铁塔, 铁塔上端两侧对称的布置有第一绝缘子串,极一导线和极二导线分别对称连接在 第一绝缘子串下端; 在铁塔中部两侧对称布置有第二绝缘子串, 所述接地极一导 线和接地极二导线分别连接在第二绝缘子串下端,还包括有平衡电阻, 其一端通 过绝缘铜线连接接地极一导线和接地极二导线,另一端通过绝缘铜线与铁塔接地 网连接。
接地极线所有杆塔完全接地, 构建一个新的分散式大型接地系统, 不存在 绝缘性能引起的防雷能力薄弱问题。 专用接地极极址虽然接地电阻很小 (一般
0.5欧左右), 但较长接地极线路本身阻抗较大(一般 0.05欧 /公里, 全段有时可 达 4欧左右), 综合中性点电阻也并不小 (一般 2.5欧左右), 带来一定电能损 耗。 分散式大型接地系统不仅节约了两个接地极极址投资, 而且计算中性点等 效电阻极低 (一般为 0.25欧左右) , 大大降低了电能损耗。
本发明与现有技术相比, 具有如下优点:
1、 降低电能损耗: 中性点分散接地式两端直流双极输电系统电流通过较多 杆塔相对均匀的分散入地, 构成一个新的接地系统, 直流系统中性点等效电阻大 为降低, 单极大地回路运行更加稳定, 极大降低电能损耗。
2、 良好的分流转移作用: 中性点分散接地式两端直流双极输电系统极大地 增强了过负荷情况下的电流分流作用,即使局部杆塔接地线悬空或者接地引下线 全部断裂造成杆塔接地电阻无穷大, 只是使该塔分流效应转移至其它塔, 并不影 响整体分流。分散接地系统形成 1个长距离的大接地系统, 若回避站内或某段重 要跨越影响,通过将相应区段接地极线局部绝缘, 也不影响大接地系统的整体电 阻和均匀分流。
3、 提高线路防雷能力: 在过负荷条件下, 中性点分散接地式两端直流双极 输电系统可极大地降低了最严重的换流站终端塔单根地线电流值及单相接地极 线电流值。 同时, 按以上方式接地后, 由于良好的分流作用, 接地极线不会感应 出过高的电压形成过高感应电流, 因此不会发生感应电导致不平衡效应, 防止了 直流系统双极闭锁。 而且低电阻(整体接地电阻也更加良好)的接地极线位于直 流极线下方, 起到很好的耦合地线分流作用, 大大提高线路耐雷水平。 降低了直 流单极闭锁故障发生率。
4、 大大降低线路建设的投入: 中性点分散接地式两端直流双极输电系统较 传统工程不仅节约了两个接地极极址的投资而且直流极线和接地极线同杆架设, 节约了两条接地极线路的投资,保证了土地资源的合理使用, 避免了线路建设与 政府规划用地之间的矛盾。接地极线路良好地防雷能力, 免去了通过沿线加装避 雷器的防雷保护系统建设投资, 降低了线路建设的资金投入。
5、 对生态环境的影响改善: 即使在很高的过负荷电流情况下, 由于大面积 杆塔的分流作用,每基杆塔流入大地的电流只能形成较小的跨步电压, 不足以威 胁人畜。
最重要的是, 接地极极址的取消极大的保护原规划接地极址地区生态。 附图说明
图 1为现有两线一地制两端直流双极输电系统的构成结构示意图; 图 2为现有两线制两端直流双极输电系统的构成结构示意图;
图 3为现有三线制两端直流双极输电系统的构成结构示意图;
图 4为直流分散接地方式的整体结构图,其所示的直流极线和接地极线架设 在若干个输电铁塔上;
图 5为在直流分散接地方式中接地极线路与直流线路同塔设计结构,标示了 接地极线的接地方式;
附图标记说明: 1--两端交流系统; 2--换流器; 3--极一导线; 4--极二导线;
5--接地极一导线; 6--接地极二导线; 7--平衡电阻; 8--铁塔接地网; 9--绝缘子串;
91-第二绝缘子串; 10--绝缘铜线; 11--铁塔。 具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
请参阅图 4所示, 中性点分散接地式两端直流双极输电系统, 包括有依据输 电构成为对称设置, 并形成一回路的极一导线 3和极二导线 4, 极一导线 3的一 端和相邻的极二导线 4的一端之间、以及极一导线 3的另一端和相邻的极二导线 4的另一端之间分别连接有换流器 2, 换流器 2为对称布置; 在极一导线 3和极 二导线 4构成的回路内的两侧对称的分别设有相互连接的接地极一导线 5和接地 极二导线 6; 还包括有两端直流系统 1, 其分别连接在接地极一导线 5和接地极 二导线 6之间, 并保持对称设置。
极一导线 3和极二导线 4根据不同线路长度不同,甚至有可能几千公里长两 边所示为送电端的换流站(将交流电转化成直流电进行输送)和受电段的逆变站 (将直流电转化成交流电, 通过变电站降低电压后送入千家万户), 但其输电的 构成为对称布置。 在极一导线 3、 极二导线 4, 和, 接地极一导线 5、 接地极二导线 6同塔架 设铁塔 11, 铁塔 11上端两侧对称的布置有第一绝缘子串 9, 极一导线 3和极二 导线 4分别对称连接在第一绝缘子串 9下端; 在铁塔 11中部两侧对称布置有第 二绝缘子串 91, 所述接地极一导线 5和接地极二导线 6分别连接在第二绝缘子 串 91下端, 还包括有平衡电阻 7, 其一端通过绝缘铜线 10连接接地极一导线 5 和接地极二导线 6, 另一端通过绝缘铜线 10与铁塔接地网 8连接。 两端直流系 统是输电系统的一种构成方式, 区别于交流输电, 适合于远距离大容量输电。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制 本发明的专利范围, 凡未脱离本发明所为的等效实施或变更, 均应包含于本案的 专利范围中。

Claims

权利要求书
1、 中性点分散接地式两端直流双极输电系统, 其特征在于: 包括有依据输 电构成为对称设置, 并形成一回路的极一导线 (3) 和极二导线 (4), 极一导线 (3) 的一端和相邻的极二导线 (4) 的一端之间、 以及极一导线 (3) 的另一端 和相邻的极二导线 (4) 的另一端之间分别连接有换流器(2), 换流器(2) 为对 称布置; 在极一导线 (3)和极二导线 (4)构成的回路内的两侧对称的分别设有 相互连接的接地极一导线(5)和接地极二导线(6);还包括有两端直流系统(1 ), 其分别连接在接地极一导线 (5) 和接地极二导线 (6) 之间, 并保持对称设置。
2、中性点分散接地式两端直流双极输电系统,其特征在于:在极一导线(3)、 极二导线(4), 和, 接地极一导线(5)、接地极二导线(6) 同塔架设铁塔(11 ), 铁塔 (11 ) 上端两侧对称的布置有第一绝缘子串 (9), 极一导线 (3) 和极二导 线 (4) 分别对称连接在第一绝缘子串 (9)下端; 在铁塔 (11 ) 中部两侧对称布 置有第二绝缘子串 (91 ), 所述接地极一导线 (5) 和接地极二导线 (6) 分别连 接在第二绝缘子串(91 )下端,还包括有平衡电阻(7),其一端通过绝缘铜线(10) 连接接地极一导线 (5) 和接地极二导线 (6), 另一端通过绝缘铜线 (10) 与铁 塔接地网 (8) 连接。
PCT/CN2013/073929 2012-09-24 2013-04-09 中性点分散接地式两端直流双极输电系统 WO2014044048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210358400.0 2012-09-24
CN2012103584000A CN102904243A (zh) 2012-09-24 2012-09-24 中性点分散接地式两端直流双极输电系统

Publications (1)

Publication Number Publication Date
WO2014044048A1 true WO2014044048A1 (zh) 2014-03-27

Family

ID=47576355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073929 WO2014044048A1 (zh) 2012-09-24 2013-04-09 中性点分散接地式两端直流双极输电系统

Country Status (2)

Country Link
CN (1) CN102904243A (zh)
WO (1) WO2014044048A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904243A (zh) * 2012-09-24 2013-01-30 中国南方电网有限责任公司超高压输电公司广州局 中性点分散接地式两端直流双极输电系统
CN104753062A (zh) * 2015-04-09 2015-07-01 国家电网公司 一种城市配电网多直流逆变站共用接地极的设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101268586A (zh) * 2005-09-19 2008-09-17 Abb技术有限公司 接地电极
CN102611096A (zh) * 2012-03-13 2012-07-25 浙江大学 一种具有直流故障自清除能力的双极直流输电系统
CN102904243A (zh) * 2012-09-24 2013-01-30 中国南方电网有限责任公司超高压输电公司广州局 中性点分散接地式两端直流双极输电系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019363A1 (en) * 1996-10-28 1998-05-07 Abb Power Systems Ab Sea electrode for a high voltage direct current transmission system
CN201044358Y (zh) * 2007-04-30 2008-04-02 中国电力工程顾问集团中南电力设计院 高压直流输电分体式接地极
CN201933831U (zh) * 2011-03-04 2011-08-17 广东省电力设计研究院 ±800kV直流线路与接地极线路共塔的输电铁塔
CN102611095B (zh) * 2012-03-08 2015-04-29 中国电力科学研究院 一种用于超/特高压直流输电系统的广域接地方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101268586A (zh) * 2005-09-19 2008-09-17 Abb技术有限公司 接地电极
CN102611096A (zh) * 2012-03-13 2012-07-25 浙江大学 一种具有直流故障自清除能力的双极直流输电系统
CN102904243A (zh) * 2012-09-24 2013-01-30 中国南方电网有限责任公司超高压输电公司广州局 中性点分散接地式两端直流双极输电系统

Also Published As

Publication number Publication date
CN102904243A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
CN108832607B (zh) 一种对称双极柔性直流工程换流站绝缘配合方法及系统
CN203654846U (zh) 输电线路电缆终端钢管杆
CN105102090A (zh) 利用架空地线和特高压中性线的兼用线的具有特高压中性线和低压中性线的分离设置结构的配电线路的施工方法
CN103323751A (zh) 一种高压短电缆绝缘终端局部放电测试装置及使用方法
CN102290775A (zh) 一种10kV架空绝缘线路防雷击断线的方法
WO2014044048A1 (zh) 中性点分散接地式两端直流双极输电系统
CN207813168U (zh) 双回路单开断π型铁塔
CN107742881B (zh) 一种高压直流架空输电线路上虚拟正极诱导式避雷线防雷装置
Wang et al. The electric energy loss in overhead ground wires of 110kV six-circuit transmission line on the same tower
CN201946983U (zh) 一种采用门型构架的串联补偿系统
CN201699327U (zh) 基于单母线分段的变电站主接线系统
CN204905168U (zh) 一种用于超导限流式直流断路器
CN109659851B (zh) 750kV同塔四回路输电线路直线杆塔塔型及其相序选择方法及装置
CN110380340B (zh) 一种变电站配电装置
CN210779513U (zh) 一种变电站配电装置
CN102882176B (zh) 一种10kV配电架空线路避雷线架设高度选定方法
Wang et al. Coupling characteristics between MMC-HVDC and AC transmission lines on the same tower and their impact on protective relaying
CN205583827U (zh) 同塔双回线路串联电抗器的布置结构
CN219477255U (zh) 一种接地变及中性点电阻柜的连接方式
CN219477434U (zh) 一种变电站出线紧凑型布置结构
CN203312638U (zh) 一种220千伏户外配电装置螺旋式出线构架布置结构
CN207819403U (zh) 一种三相换相结构
CN203026884U (zh) 10kV配网相间隔离防护装置
CN203631987U (zh) 转轴双调节并联间隙的绝缘子防雷装置
CN114039319B (zh) 一种gis式带保护远跳功能的高压电缆临时跳通装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838730

Country of ref document: EP

Kind code of ref document: A1