WO2014043451A1 - Protective helmets - Google Patents

Protective helmets Download PDF

Info

Publication number
WO2014043451A1
WO2014043451A1 PCT/US2013/059626 US2013059626W WO2014043451A1 WO 2014043451 A1 WO2014043451 A1 WO 2014043451A1 US 2013059626 W US2013059626 W US 2013059626W WO 2014043451 A1 WO2014043451 A1 WO 2014043451A1
Authority
WO
WIPO (PCT)
Prior art keywords
cushioning
shell
spacer layer
foam
hard
Prior art date
Application number
PCT/US2013/059626
Other languages
French (fr)
Other versions
WO2014043451A4 (en
Inventor
Yochanan COHEN
Original Assignee
Cohen Yochanan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/617,663 external-priority patent/US8640267B1/en
Priority claimed from US13/670,961 external-priority patent/US20140123360A1/en
Application filed by Cohen Yochanan filed Critical Cohen Yochanan
Priority to US14/427,825 priority Critical patent/US20150223546A1/en
Priority to US14/171,283 priority patent/US9578917B2/en
Publication of WO2014043451A1 publication Critical patent/WO2014043451A1/en
Publication of WO2014043451A4 publication Critical patent/WO2014043451A4/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/125Cushioning devices with a padded structure, e.g. foam
    • A42B3/127Cushioning devices with a padded structure, e.g. foam with removable or adjustable pads

Definitions

  • the present disclosure relates to helmets. More particularly, the present disclosure relates to protective helmets having enhanced protective performance characteristics.
  • the present disclosure has application to football helmets, ice-hockey helmets, baseball helmets, motorcycle helmets, riot helmets, military helmets and other similar helmets, although it is not limited thereto.
  • Head trauma resulting from sports and other activities is a common occurrence.
  • head trauma occurs when an object impacts the head, thereby transferring energy to the head.
  • the most common head trauma resulting from sports is a concussion, which occurs when the brain bangs inside the skull and is bruised.
  • concussion To reduce the incidence of concussion, it is common practice to wear a protective helmet.
  • Protective helmets are ostensibly designed to deflect and absorb energy transmitted by impact to the helmet, thereby diminishing the risk of head and brain injury resulting from the impact.
  • TBI head trauma resulting in traumatic brain injury
  • TBI injuries fall into several categories that may have different symptoms.
  • Mild TBI commonly referred to as a concussion, is a brief loss of consciousness or disorientation ranging up to thirty minutes.
  • brain damage may not be visible on an MRI or CAT scan, common symptoms of MTBI include headache, confusion, lightheadedness, dizziness, blurred vision, ringing in the ears, fatigue or lethargy, behavioral or mood changes, and trouble with memory, concentration or attention.
  • Severe traumatic brain injury is associated with loss of consciousness for over thirty minutes or amnesia.
  • TBI Symptoms of severe TBI include all those of MTBI as well as headaches that increase in severity or do not abate, repeated vomiting or nausea, convulsions or seizures, dilation of the eye pupils, slurred speech, weakness or numbness in the extremities, loss of coordination, and increased confusion or agitation. TBI injuries can cause lasting physical and cognitive damage.
  • the U.S. army utilizes the Advanced Combat Helmet (ACH) that incorporates ballistic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE), TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands), or ultra-high-molecular- weight polyethylene (UHMWPE) .
  • the ACH has a suspension system including a rear suspension system to which a ballistic "nape pad" is attached. The nape pad is intended to reduce solider deaths from shrapnel wounds to the neck and lower head.
  • a protective helmet includes a multilayered system including a cushioning outer shell, a hard inner structure, a cushioning spacer layer between the cushioning outer shell and the hard inner structure, with the cushioning spacer layer arranged relative to the hard inner structure to redirect energy transmitted from the cushioning outer shell along a circuitous path to air and to the hard inner structure, and plurality of innermost cushioning pads coupled to the inside of the hard inner structure.
  • the cushioning outer shell is covered by a flexible thin cover.
  • the flexible thin cover may be a fabric, film, foil, or other cover.
  • the fiexible thin cover may be cosmetic and may provide a surface for printing graphics.
  • the fiexible thin cover may also protect the cushioning outer shell from damage.
  • the hard inner structure is an integral structure that includes a plurality of lateral and horizontal frame members which define a plurality of spaces.
  • One function of the hard inner structure is to provide a structural integrity for the helmet.
  • the spaces between the members are maximized in size to reduce the weight of the structure while still maintaining structural integrity.
  • the cushioning spacer layer includes a plurality of elements glued or otherwise attached to the cushioning outer shell and to the hard inner structure.
  • the cushioning spacer layer comprises a single member defining a plurality of spaces.
  • the cushioning spacer layer elements or member may include a plurality of layers of different densities.
  • the cushioning spacer layer member or elements at least partially overlie the spaces defined by the hard inner structure.
  • one or more of cushioning layers or elements is formed from a foam material such as an elastomeric, cellular foam material.
  • one or more of the cushioning layers is made of thermoplastic polyurethane (TPU).
  • a military helmet includes a multilayered system including a cushioning outer shell, a hard ballistic resistant inner shell, a cushioning spacer layer between the cushioning outer shell and the hard inner shell, with the cushioning spacer layer arranged relative to the hard inner shell to redirect energy transmitted from the cushioning outer shell along a circuitous path to air and to the hard inner shell, and plurality of innermost cushioning pads coupled to the inside of the hard inner shell.
  • the cushioning outer shell of the military helmet serves the purpose of absorbing or deflecting an acoustic shock wave that can impact the military helmet in advance of the impact of a projectile (e.g., bullet).
  • a projectile e.g., bullet
  • the cushioning outer shell of the military helmet is covered by a flexible thin cover.
  • the flexible thin cover may be a fabric, film, foil, or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the ACH.
  • the flexible thin cover may provide a surface for printing graphics (e.g.,
  • the flexible thin cover may also protect the cushioning outer shell from damage.
  • the hard ballistic resistant inner shell is formed from a ballistic fiber composite material such as KEVLAR.
  • FIG. 1 is a perspective exploded view of a first embodiment of a helmet.
  • Fig. 2 is a front perspective view of the first embodiment.
  • Fig. 3 is an inside perspective view of the first embodiment.
  • Fig. 4 is a side view of the first embodiment.
  • Fig. 5 is a cross-sectional view of the first embodiment.
  • Fig. 6a is a perspective view of an alternative cushioning spacer layer.
  • Fig. 6b is a perspective view of an alternative hard inner structure.
  • FIGs. 7a and 7b are bottom and perspective views of an embodiment of a football helmet.
  • Fig. 8 is a perspective exploded view of an embodiment of a military helmet.
  • Fig. 9 is a side view of the military helmet embodiment.
  • Fig. 10 is a cross-sectional view of military helmet embodiment.
  • Fig. 11 is a perspective view of an alternative cushioning spacer layer for the military helmet.
  • Fig. 12 is a perspective view of a military helmet including straps and accessories.
  • Fig. 13 is a perspective exploded view of an embodiment of a riot helmet.
  • Fig. 14 is a perspective view of the cushioning spacer layer for the riot helmet of Fig. 13.
  • Fig. 15 is a view of an alternate cushioning spacer layer for the riot helmet.
  • Fig. 16 is a cross-sectional view of the riot helmet of Fig. 13.
  • Fig. 17 is a perspective exploded view of an embodiment of a helmet utilizing the alternate cushioning spacer layer of Fig. 15.
  • Helmet 10 includes a multilayered system including an optional outermost cover 15, a cushioning outer shell 20 having an outer surface 22 and an inner surface 24, a hard inner structure 40 with an outer surface 42 and an inner surface 44, a cushioning spacer layer 30 located between and separating the cushioning outer shell 20 and the hard inner structure 40, and one or more innermost cushioning pads 50 coupled to the inside surface 44 of the hard inner structure 40.
  • the innermost cushioning pads 50 may be covered by another fabric layer 55.
  • the cushioning spacer layer 30 separates the cushioning outer shell 20 from the hard inner structure 40 and redirects energy transmitted from the cushioning outer shell along a circuitous path to air gaps and to the hard inner structure, thereby causing dissipation of pressure wave energy. Pressure wave energy that does reach the hard inner structure 40 is further dissipated by the innermost cushioning pads 50 before reaching the head of the helmet user (not shown).
  • the material of the hard inner structure 40 is considerably harder than the material(s) of the cushioning outer shell layer 20 and the cushioning spacer layer 30.
  • the material(s) of the cushioning outer shell layer 20 and the cushioning spacer layer are resilient.
  • the cushioning spacer layer defines gaps that are nonuniform in shape and/or in size.
  • the cushioning outer shell 20 will absorb and/or distribute some or all of the energy.
  • the energy may be absorbed by (resilient) deflection of the foam cushioning. If some of the energy passes through the cushioning outer shell 20 it can either pass into the cushioning spacers 30 or into the air between the cushioning spacers. Again, if the energy pass into the cushioning spacers, the energy may be absorbed by (resilient) deflection of the cushioning spacers.
  • the energy may be absorbed in the air between the cushioning spacers.
  • Energy passing through the cushioning spacer level will reach the hard inner structure 40 or air gaps therein where it can be one or more of reflected, distributed, absorbed or transmitted.
  • the hard inner structure 40 will not absorb much energy.
  • the function of the hard inner structure 40 is primarily one of lending structural integrity to the helmet 10. Any energy passing through the hard inner structure or the air gaps therein will be passed to the innermost cushioning pads 50 (also typically resilient) or the air gaps between the pads where the energy again may be absorbed by (resilient) deflection of the cushioning pads 50 or by the air gaps therein.
  • a first cross section at location A through the helmet shows a fabric cover 15, the cushioning shell 20, a cushioning spacer pad 30, a hard inner structure 40, an inner cushioning pad 50, and an inner fabric cover 55 for the inner cushioning pad 50.
  • Location B shows the cover 15, cushioning shell 20, space 35 (e.g., air between the cushioning spacer pads 30), the hard inner structure 40, an inner cushioning pad 50, and an inner fabric cover 55 for the inner cushioning pad 50.
  • Location C includes cover 15, the cushioning shell 20, a cushioning pad 30, space 45 (e.g., air at gaps in the hard shell 40), and additional space 55 (e.g., air at gaps between the inner cushioning pads 50).
  • Location D shows the cover 15, the cushioning shell 20, space 35 (e.g., air between the cushioning spacer pads 30), additional space (e.g., air at gaps in the hard shell 40), an inner cushioning pad 50, and fabric cover 55.
  • Location E includes the cover 15, the cushioning shell 20, the cushioning spacer pad 30, the hard inner structure 40, and space 55 (e.g., air gap between the inner cushioning pads 50).
  • Location F shows the cover 15, the cushioning shell 20, space 35 between the cushioning spacer pads 30, space 45 (air gaps in the hard shell), an inner cushioning pad 50 and fabric cover 55.
  • the described cross-sections give certain energy paths through the helmet 10, but that many other exist, and it is not necessary that all of these paths exist simultaneously in a helmet.
  • energy waves will generally take a path of least resistance through a substance which may not correspond exactly to any of the cross-sections. Because harder substances will generally transmit energy waves more readily than air, the air gaps will cause the energy to travel and spread radially through the cushioning shell 20 and the hard inner structure 40. However, travel through a longer distance in the cushioning shell 20 and the hard inner structure 40 causes further attenuation of the energy.
  • the flexible thin cover 15 may be a fabric, film, foil, leather, or other cover.
  • the flexible thin cover may be cosmetic and may provide a surface for printing graphics.
  • the flexible thin cover may also protect the cushioning outer shell from damage.
  • the flexible thin cover may extend around the periphery of the helmet (as suggested in Fig. 5 but not shown in Figs. 2 and 3) to protect the periphery of the cushioning shell 20 and the cushioning spacer layer 30 and optionally the hard inner structure 40 and even the innermost cushioning pads 50.
  • a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 20, the spacer layer 30 and optionally the hard layer 40.
  • the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas).
  • the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric.
  • the flexible thin cover is made from leather or artificial leather.
  • the flexible thin cover is made from a polyester fabric.
  • the flexible thin cover is made from non-woven fabric.
  • the flexible thin cover is made from a printable film.
  • the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker.
  • the flexible thin cover may be between 0.3mm and 3.25mm thick.
  • the flexible thin cover may be between 1.0mm and 1.5mm thick.
  • the thin cover 15 may be attached at one or more places to the cushioning shell 20, so that the cover may be removed from the shell 20 without damaging the shell.
  • attachment may be made by use of Velcro (a trademark of Velcro USA Inc., Manchester, New Hampshire).
  • the thin cover may be glued, tacked or sewn to the shell 20.
  • the thin cover 15 covers the entire cushioning shell 20.
  • the cushioning shell 20 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU) (i.e., having a Shore hardness considerably below the Shore hardness of the hard inner structure).
  • TPU thermoplastic polyurethane
  • the cushioning shell is comprised of open-cell
  • the cushioning shell is comprised of closed cell polyolefm foam.
  • the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam.
  • the outer surface 22 of the cushioning shell 20 is generally (hemi)-spherical in shape.
  • the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker.
  • the cushioning shell may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 25 lbs/ ft 3 (approximately 0.4 g/cm 3 ), although it may be more dense or less dense.
  • the cushioning spacer layer 30 comprises a plurality of pads 31.
  • the pads 31 may be circular in shape or may be formed in other shapes. Multiple shapes may be used together.
  • the spacer layer may include a strip of material 33 (seen in Fig. 1) around the peripheral edge of the helmet between the shell 20 and the hard inner structure 40 that can prevent foreign material from entering between the shell 20 and the hard inner structure 40.
  • the cushioning spacer layer is a single pad 30a defining multiple cut-outs 35a (i.e., the equivalent of multiple connected pads).
  • the spacer layer 30 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning spacer layer is comprised of a soft resilient thermoplastic polyurethane (TPU) that is considerably softer than the hard inner structure 40.
  • the cushioning spacer layer is comprised of open-cell polyurethane.
  • the cushioning spacer layer is comprised of closed cell polyolefm foam.
  • the cushioning spacer layer is comprised of a microcellular urethane foam such as PORON (a trademark of Rogers Corporation).
  • the cushioning spacer layer is comprised of polyethylene foam which may be a high or low density polyethylene foam.
  • the cushioning spacer layer 30 has multiple layers formed from different materials.
  • the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker.
  • the cushioning spacer layer may be between 6 and 13mm thick.
  • the cushioning spacer layer may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 30 lbs/ ft 3 (approximately 0.48 g/cm 3 ), although it may be more dense or less dense.
  • the spacer layer 30 covers approximately fifty percent of the inner surface area of the shell 20. In another embodiment, the spacer layer 30 covers between twenty percent and ninety-five percent of the inner surface area of the shell. The spacer layer 30 should cover sufficient area between the shell 20 and the hard inner structure 40 so that upon most expected impacts to the helmet 10, the shell 20 does not directly come into contact with the hard inner structure 40. Regardless of the material and arrangement of the cushioning spacer layer 30, in one embodiment the cushioning material is affixed to the shell 20 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means. [0047] In one embodiment, the hard inner structure 40 is comprised of a polycarbonate shell.
  • the hard inner structure 40 is comprised of a different hard plastic such a polypropylene. In another embodiment, the hard inner structure 40 is comprised of ABS resin. In another embodiment, the hard inner structure 40 is made of carbon fiber or fiberglass. In another embodiment, the hard inner structure is made of a polypropylene which is considerably harder than the materials of the cushioning layer 20 and spacer layer 30.
  • the hardness of the hard inner structure may be characterized by a hardness on the Shore D Durometer scale (typically Shore D 75 and over), whereas generally, the hardness of the materials of the cushioning layer 20 and the spacer layer 30 are characterized by a hardness on the Shore A Durometer scale (typically Shore A 60 and under, and even more typically Shore A 30 and under).
  • the hard inner structure 40 defines a plurality of cut-outs 45. In one embodiment at least one of the cut-outs 45 is at least partially covered by a cushioning spacer pad 30. In another embodiment, at least one of the cut-outs 45 is at least partially covered by an inner cushioning pad 50.
  • the hard inner structure 40 is affixed to the spacer layer 30. Affixation can be done with glue, Velcro or any other affixation means.
  • the hard inner structure is between 1.5mm and 6.0mm thick, although it may be thinner or thicker.
  • the hard inner structure 40 is between 2.5mm and 3.1mm thick.
  • the one or more innermost cushioning pad(s) 50 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning pad(s) 50 is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning pad(s) is comprised of open-cell polyurethane.
  • the cushioning pad(s) is comprised of closed cell polyolefin foam.
  • the cushioning pad(s) is comprised of polyethylene foam which may be a high or low density polyethylene foam.
  • the innermost cushioning pad 50 is a single pad defining multiple cut-outs (i.e., the equivalent of multiple connected pads). In another embodiment, a plurality of innermost cushioning pads 50 are provided. Regardless, the single pad with the cut-outs or the multiple pads are arranged in a desired configuration and are affixed to the hard inner structure 40. Affixation can be done with glue, Velcro or any other affixation means.
  • the innermost cushioning layer may be between 3mm and 26mm thick, although it may be thinner or thicker.
  • the innermost cushioning pads may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 25 lbs/ ft 3 (approximately 0.4 g/cm 3 ), although they may be more dense or less dense.
  • the innermost cushioning pad(s) 50 is covered by a fabric layer 55 (seen in Fig. 5).
  • fabric layer 55 is absorbent.
  • fabric layer 55 is removable from the foam pad(s) 50.
  • the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas).
  • the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric.
  • the flexible thin cover is made from leather or an artificial leather.
  • the flexible thin cover is made from a polyester fabric.
  • the flexible thin cover is made from non-woven fabric.
  • the thin cover may be between 0.3mm and 3.25mm thick, although it may be thinner or thicker.
  • the flexible thin cover may be between 1.0mm and 1.5mm thick.
  • Hard inner structure 40a includes a plurality of horizontal frame members 47a and lateral frame members 49a that together define spaces 45 a.
  • hard inner structure 40a effectively defines a lattice for support of the remainder of the helmet.
  • the spaces 45a are roughly equal in area to one-half the area taken by the frame members 47a and 49a.
  • the spaces 45 a are roughly equal to between one-quarter and twice the area taken by the frame members 47a and 49a.
  • a riot helmet can have a polycarbonate face extending from the front face of the helmet.
  • a football helmet 110 is provided with the layered structure described above with reference to Figs.
  • the face guard 190 is of the type that can break away from the remainder of the helmet 110 when subjected to excessive twisting forces.
  • the football helmet 110 has a thickness of between 20mm and 50mm, although it may be thinner or thicker.
  • Helmet 210 includes a multilayered system including an optional outermost cover 215, a cushioning outer shell 220 having a convex outer surface 222 and a concave inner surface 224, a hard ballistic- resistant inner shell 240 with a convex outer surface 242 and a concave inner surface 244, a cushioning spacer layer 230 located between and separating the cushioning outer shell 220 and the hard inner shell 240, and one or more innermost cushioning pads 250 coupled to the inside surface 244 of the hard inner shell 240.
  • the innermost cushioning pads 250 may be covered by another fabric layer 260.
  • the cushioning spacer layer 230 separates the cushioning outer shell 220 from the ballistic-resistant inner shell 240 and redirects energy transmitted from the cushioning outer shell along a circuitous path to air gaps and to the ballistic-resistant inner shell, thereby causing dissipation of shock (pressure) wave energy.
  • Pressure wave energy that does reach the ballistic-resistant inner shell 240 is further dissipated by the innermost cushioning pads 250 before reaching the head of the helmet user (not shown).
  • an energy wave hits the helmet.
  • This energy wave can be a significant percentage of the total energy (energy or shock wave energy plus projectile energy) that impacts the helmet. In fact, in some circumstances, it is possible that only a shock wave is received, in which case, the shock wave is 100% of the total energy impacting the helmet.
  • the military helmet 210 is designed to lessen the total energy impact on its user in two separate manners. First, the energy wave can take various paths. For example, it should be appreciated that the cushioning outer shell 220 will absorb and/or distribute some or all of the energy. The energy may be absorbed by deflection of the foam cushioning.
  • the energy passes through the cushioning outer shell 220 it can either pass into the cushioning spacers 230 or into the air between the cushioning spacers. Again, if the energy passes into the cushioning spacers, the energy may be absorbed by deflection of the cushioning spacers. Alternatively or in addition, the energy may be absorbed in the air between the cushioning spacers. Energy passing through the cushioning spacer level will reach the hard inner shell where it can be one or more of reflected, distributed, absorbed or transmitted. Energy passing through the hard inner ballistic-resistant will be passed to the innermost cushioning pads 250 or the air gaps between the pads where the energy again may be absorbed by deflection of the cushioning pads 250 or by the air gaps therein.
  • the energy imparted by the energy shock wave will be significantly dissipated before reaching the head of the user.
  • the resistance to the energy shock waves by the helmet is increased. In this manner, the incidence of brain concussions of wearers of the military helmet 210 can be reduced.
  • the military helmet 210 is also adapted to lessen the impact of the projectile itself.
  • the cushioning outer shell 220 and the cushioning spacer layer 230 will not appreciably stop the projectile
  • the hard inner shell 240 formed from a ballistic-resistant material will act to stop the projectile in the manner of the previously described with reference to the Advanced Combat Helmet.
  • FIG. 10 shows three different cross-sectional paths through the military helmet.
  • a first cross section at location A through the military helmet shows a fabric cover 215, the cushioning shell 220, a cushioning spacer pad 230, a ballistic-resistant inner shell 240, an inner cushioning pad 250, and an inner fabric cover 260 for the inner cushioning pad 250.
  • Location B shows the cover 215, cushioning shell 220, space 235 (e.g., air between the cushioning spacer pads 230), the ballistic-resistant inner shell 240, an inner cushioning pad 250, and an inner fabric cover 260 for the inner cushioning pad 250.
  • Location C includes the cover 215, the cushioning shell 220, the cushioning spacer pad2 30, the ballistic-resistant inner shell 240, and space 255 (e.g., air gap between the inner cushioning pads 50).
  • the described cross-sections give certain energy paths through the military helmet 210, but that many other exist, and it is not necessary that all of these paths exist simultaneously in a military helmet.
  • energy waves will generally take a path of least resistance through a substance that may not correspond exactly to any of the cross-sections. Because harder substances will generally transmit energy waves more readily than air, the air gaps will cause the energy to travel and spread radially through the cushioning shell 220 and the hard inner shell 240. However, travel through a longer distance in the cushioning shell 220 and the ballistic-resistant inner shell 240 causes further attenuation of the energy.
  • the flexible thin cover 215 may be a fabric, film, foil, or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the ACH.
  • the flexible thin cover may provide a surface for printing graphics, e.g., camouflage (see Fig. 12).
  • the flexible thin cover may also protect the cushioning outer shell from damage.
  • the flexible thin cover may extend around the periphery of the helmet (as suggested in Fig. 10) to protect the periphery of the cushioning shell 220 and the cushioning spacer layer 230 and optionally the hard inner shell 240 and even the innermost cushioning pads 250.
  • a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 220, the spacer layer 230 and optionally the hard shell 240.
  • the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket weave such as Cordura (a trademark of Invista, Wichita, Kansas).
  • the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric.
  • the flexible thin cover is made from a polyester fabric.
  • the flexible thin cover is made from leather or artificial leather.
  • the flexible thin cover is made from non-woven fabric.
  • the flexible thin cover is made from a printable film.
  • the flexible thin cover is made from a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE).
  • the flexible thin cover comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands).
  • the flexible thin cover is made from a ultra-high-molecular-weight polyethylene.
  • the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker.
  • the flexible thin cover may be between 0.3mm and 3.25mm thick.
  • the flexible thin cover may be between 1.0mm and 1.5mm thick.
  • the thin cover 215 may be attached at one or more places to the cushioning shell 220, so that the cover may be removed from the shell 220 without damaging the shell.
  • attachment may be made by use of Velcro (a trademark of Velcro USA Inc., Manchester, New Hampshire).
  • the thin cover may be glued, tacked or sewn to the shell 220.
  • the thin cover 215 covers the entire cushioning shell 220.
  • the cushioning shell 220 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning shell is comprised of open-cell polyurethane.
  • the cushioning shell is comprised of closed cell polyolefm foam.
  • the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam.
  • the hardness of the cushioning shell is much lower than the hardness of the ballistic-resistant inner shell 240.
  • the hardness of the cushioning shell is typically described by the Shore A
  • Durometer scale typically Shore A 60 and under, and even more typically Shore A 30 and under
  • Shore D Durometer scale typically Shore A 60 and under, and even more typically Shore A 30 and under
  • the outer surface 222 of the cushioning shell 220 is generally (hemi-)spherical in shape.
  • the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker.
  • the cushioning shell may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 25 lbs/ ft 3 (approximately 0.4 g/cm 3 ), although it may be more dense or less dense.
  • the cushioning spacer layer 230 comprises a plurality of pads 231.
  • the pads 231 may be circular in shape or may be formed in other shapes. Multiple shapes may be used together.
  • the spacer layer may include a strip of material 233 (seen in Fig. 8) around the peripheral edge of the military helmet between the shell 220 and the hard inner shell 240 that can prevent foreign material from entering between the shell 220 and the hard inner shell 240.
  • the cushioning spacer layer is a single pad 230a defining multiple cut-outs 235a (i.e., the equivalent of multiple connected pads).
  • the spacer layer 230 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning spacer layer is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning spacer layer is comprised of open- cell polyurethane.
  • the cushioning spacer layer is comprised of closed cell polyolefin foam.
  • the cushioning spacer layer is comprised of polyethylene foam which may be a high density or low density polyethylene foam.
  • the cushioning spacer layer 230 has multiple layers formed from different materials. In all embodiments, the hardness of the cushioning spacer layer material is much lower than the hardness of the ballistic-resistant inner shell.
  • the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker. As another example, the cushioning spacer layer may be between 6 and 13mm thick.
  • the cushioning spacer layer may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 25 lbs/ ft 3 (approximately 0.4 g/cm 3 ), although it may be more dense or less dense.
  • the spacer layer 230 covers approximately fifty percent of the inner surface area of the shell 220. In another embodiment, the spacer layer 230 covers between twenty percent and eighty percent of the inner surface area of the shell. The spacer layer 230 should cover sufficient area between the shell 220 and the hard inner shell 240 so that upon most expected impacts to the helmet 210, the shell 220 does not directly come into contact with the hard inner shell 240. Regardless of the material and arrangement of the cushioning spacer layer 230, in one embodiment the cushioning material is affixed to the shell 220 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means.
  • the hard ballistic-resistant inner shell 240 is comprised of a ballistic-resistant fibrous material.
  • the inner shell material comprises a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE).
  • the inner shell material comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands).
  • the inner shell material comprises ultra-high-molecular-weight polyethylene.
  • the hard ballistic-resistant shell 240 is affixed to the spacer layer 230. Affixation can be done with glue, Velcro or any other affixation means.
  • the hard ballistic-resistant shell is between 2mm and 20mm thick, although it may be thinner or thicker.
  • the hard inner ballistic-resistant shell 240 is between 7mm and 12mm thick.
  • the one or more innermost cushioning pad(s) 250 is comprised of foam.
  • the foam may be an elastomeric, cellular foam or any other desirable foam.
  • the cushioning pad(s) 250 is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning pad(s) is comprised of open-cell polyurethane.
  • the cushioning pad(s) is comprised of closed cell polyolefm foam.
  • the cushioning pad(s) is comprised of polyethylene foam which may be a high or low density polyethylene foam. In all embodiments, the hardness of the material innermost cushioning pad(s) is considerably lower than the hardness of the ballistic-resistant inner shell 240.
  • the innermost cushioning pad 250 is a single pad defining multiple cut-outs (i.e., the equivalent of multiple connected pads). In another embodiment, a plurality of innermost cushioning pads 250 are provided. Regardless, the single pad with the cut-outs or the multiple pads are arranged in a desired configuration and are affixed to the hard inner structure 240. Affixation can be done with glue, Velcro or any other affixation means.
  • the innermost cushioning layer may be between 3mm and 26mm thick, although it may be thinner or thicker.
  • the innermost cushioning pads may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 25 lbs/ ft 3 (approximately 0.4 g/cm 3 ), although they may be more dense or less dense.
  • the innermost cushioning pad(s) 250 is covered by a fabric layer 260 (seen in Fig. 10).
  • fabric layer 260 is absorbent.
  • fabric layer 260 is removable from the foam pad(s) 250.
  • the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas).
  • the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric.
  • the flexible thin cover is made from a polyester fabric.
  • the flexible thin cover is made from non-woven fabric.
  • the thin cover may be between 0.3mm and 3.25mm thick, although it may be thinner or thicker.
  • the flexible thin cover may be between 1.0mm and 1.5mm thick.
  • the military helmet 210 is adapted to be compatible with night vision devices (NVDs), communication packages, Nuclear, Biological and Chemical (NBC) defense equipment and body armor.
  • NBDs night vision devices
  • NBC Nuclear, Biological and Chemical
  • the military helmet 10 provides an unobstructed field of view and increased ambient hearing capabilities.
  • the military helmet 210 is provided with a chin strap retention system 295 (Fig. 12).
  • the military helmet 210 is provided with an armor nape pad (not shown).
  • the armor nape pad (not shown) is provided with a cushioning outer layer, a hard ballistic-resistant inner layer, a cushioning spacer layer located between and separating the cushioning outer layer and the hard ballistic-resistant inner layer, and a cushioning pad coupled to the inside surface of the hard ballistic-resistant inner layer.
  • the outer surface of the cushioning outer layer of the nape pad and/or the inner surface of the cushioning pad coupled to the inside surface of the hard ballistic-resistant inner layer of the nape pad may be provided with a fabric layer.
  • small holes are drilled in one or both of the cushioning shell and in the anti-ballistic hard shell for ventilation purposes and/or for attaching straps or other structures.
  • the attachment holes may be covered by ballistic screws, nuts or bolts. Regardless, it will be appreciated that the size and number of holes in the anti-ballistic hard shell is kept to a minimum to limit the potential of penetration of projectiles through the holes. For purposes of the claims, a shell structure having holes for these purposes should still be considered a "continuous shell".
  • the military helmet 210 has a concave outer surface and a convex inner surface. As seen in Fig. 10, the shape of the military helmet is adapted to cover the back, top, and sides of a soldier's head without blocking vision or hearing. As such, the bottom rim of the helmet angles upward from the back of the helmet toward the front of the helmet at a first angle a, and then angles a steeper angle ⁇ at about the ear area, and then extends substantially horizontally ⁇ at the forehead area. [0069]
  • the military helmets described are particularly suited for military use although they may be used for other purposes such as, by way of example only and not by way of limitation, a protective police helmet or an explosive ordinance disposal (EOD) helmet.
  • EOD explosive ordinance disposal
  • Riot helmet 310 includes a multilayered system including an optional outermost cover 315, a cushioning outer shell 320 having a convex outer surface and a concave inner surface, a hard inner shell 340 with a convex outer surface and a concave inner surface, a cushioning spacer layer 330 located between and separating the cushioning outer shell 320 and the hard inner shell 340, and optional innermost cushioning pads (not shown) coupled to the inside surface of the hard inner shell 340.
  • the flexible thin cover 315 may be a fabric, film, foil, leather (actual or imitation) or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the helmet.
  • the flexible thin cover may provide a surface for printing graphics.
  • the flexible thin cover may also protect the cushioning outer shell from damage. If desired, the flexible thin cover may extend around the periphery of the helmet to protect the periphery of the cushioning shell 320 and the cushioning spacer layer 330 and optionally the hard inner shell 340.
  • a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 320, the spacer layer 330 and optionally the hard shell 340.
  • the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker.
  • the flexible thin cover may be between 0.3mm and 3.25mm thick.
  • the flexible thin cover may be between 1.0mm and 1.5mm thick.
  • the thin cover 315 may be attached at one or more places to the cushioning shell 320, so that the cover may be removed from the shell 320 without damaging the shell. Alternatively, the thin cover may be glued, tacked or sewn to the shell 320. In one embodiment, the thin cover 315 covers the entire cushioning shell 320.
  • the cushioning shell 320 is comprised of foam.
  • the foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning shell is comprised of open-cell polyurethane.
  • the cushioning shell is comprised of closed cell polyolefm foam.
  • the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam.
  • the hardness of the cushioning shell is much lower than the hardness of the inner shell 340.
  • the hardness of the cushioning shell is typically described by the Shore A Durometer scale (typically Shore A 60 and under, and even more typically Shore A 30 and under), whereas the hardness of the inner shell is described by the Shore D Durometer scale.
  • the outer surface of the cushioning shell 320 is generally (hemispherical in shape.
  • the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker.
  • the cushioning shell may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 30 lbs/ ft 3 (approximately 0.48 g/cm 3 ), although it may be more dense or less dense.
  • the cushioning spacer layer 330 comprises either a plurality of pads 331 that are coupled together by a thin underlay er 331a (indicated by dashed line in Fig. 16), or a single pad with multiple channels 331b (shown in Fig. 14) that define multiple pad areas 331.
  • the pads 331 may assume multiple shapes and sizes.
  • the cushioning spacer layer 330 comprises a plurality of separated pads.
  • the spacer layer 330 is comprised of a microcellular open cell urethane foam; e.g., PORON XPvD, a trademark of Rogers Corporaton, Rogers, Connecticut.
  • a microcellular open cell urethane foam e.g., PORON XPvD, a trademark of Rogers Corporaton, Rogers, Connecticut.
  • the spacer layer 330 comprises a foam that may be an elastomeric, cellular (including microcellular) foam or any other desirable foam.
  • the cushioning spacer layer 330 is comprised of a soft resilient thermoplastic polyurethane (TPU).
  • the cushioning spacer layer is comprised of open-cell polyurethane.
  • the cushioning spacer layer is comprised of closed cell polyolefm foam.
  • the cushioning spacer layer is comprised of polyethylene foam which may be a high density or low density polyethylene foam.
  • the cushioning spacer layer 330 has multiple layers formed from different materials.
  • the hardness of the cushioning spacer layer material is much lower than the hardness of the ballistic-resistant inner shell.
  • the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker.
  • the cushioning spacer layer may be between 6 and 13mm thick.
  • the cushioning spacer layer may have a density of between 3.4 lbs/ft 3 (approximately 0.016 g/cm 3 ) and 30 lbs/ ft 3 (approximately 0.48 g/cm 3 ), although it may be more dense or less dense.
  • the cushioning spacer layer has a hardness of between 2 and 30 on the Shore A scale.
  • the spacer layer 330 covers approximately ninety- five percent of the inner surface area of the shell 320 and one hundred percent of the outer surface of the hard shell 340 (with underlayer 331a). In another embodiment, the spacer layer 330 covers between twenty percent and eighty percent of the inner surface area of the shell.
  • the cushioning material is affixed to the shell 320 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means.
  • Spacer layer 330d is seen in Fig. 15.
  • Spacer layer 330d may be made from any of the materials previously described with respect to spacer layer 330.
  • Spacer layer 330d is shown cut from sheet material, such that spacer layer 330d takes the form of a flower with a central area 330e and petals 330f.
  • Grooves 330g extending into, but not completely through the material of spacer layer 330d are formed in the petals and the central area and add to the flexibility of the spacer layer 330d so that it may be placed between the formed cushioning shell 320 and the formed hard shell 340 and assume a three-dimensional position with the petals 300f either touching each other or more closely spaced.
  • the hard inner shell 340 is comprised of a carbon fiber material.
  • the inner shell material comprises a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE).
  • the inner shell material comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands).
  • the inner shell material comprises ultra-high-molecular-weight polyethylene.
  • the hard shell 340 is affixed to the spacer layer 330 (or 330d). Affixation can be done with glue, Velcro or any other affixation means.
  • the hard shell is between 2mm and 20mm thick, although it may be thinner or thicker.
  • the hard inner shell 340 is between 7mm and 12mm thick.
  • FIG. 17 is a perspective exploded view of an embodiment of a helmet 410 utilizing aspects of the other helmet embodiments with like parts having like numbers separated by one hundred, two hundred, three hundred or four hundred.
  • Helmet 410 includes an optional outermost cover 415, a cushioning outer shell 420 having a convex outer surface and a concave inner surface, a hard inner shell 440 with a convex outer surface and a concave inner surface, a cushioning spacer layer 43 Od located between and separating the cushioning outer shell 420 and the hard inner shell 440.
  • Helmet 410 combines aspects of previously described embodiments.
  • outermost cover 415 is provided with chin straps 495 (similar to the military helmet 210 of Fig. 12), and the cushioning spacer layer 430d is substantially the same as the alternate cushioning spacer layer 330d of the riot helmet of Fig. 15.
  • Cushioning spacer layer 430d is shown in a partly rounded configuration in Fig. 17, and when assembled, the leaves 430f will assume a configuration where they are more closely adjacent each other at their circumferences.
  • the materials and other aspects of the layers are as previously described with respect to the other embodiments.

Abstract

Embodiments of a protective helmet have a shell formed from a cushioning material, a cushioning spacer layer coupled to the shell and only partially covering an inner surface of the shell, and a hard inner structure having an outer surface attached to the cushioning spacer layer and an inner surface. An innermost cushioning pad layer may be attached to the inner surface of the hard inner structure. A flexible thin cover extending around an outer surface of said shell and with or without graphics may be provided.

Description

PROTECTIVE HELMETS
This application claims priority from U.S. Serial No. 13/617,663 filed on September 14, 2012 and from U.S. Serial No. 13/670,961 filed on November 7, 2012 which are hereby incorporated by reference in their entirety herein.
BACKGROUND
1. Field
[0001 ] The present disclosure relates to helmets. More particularly, the present disclosure relates to protective helmets having enhanced protective performance characteristics. The present disclosure has application to football helmets, ice-hockey helmets, baseball helmets, motorcycle helmets, riot helmets, military helmets and other similar helmets, although it is not limited thereto.
2. State of the Art
[0002] Head trauma resulting from sports and other activities is a common occurrence. Generally, head trauma occurs when an object impacts the head, thereby transferring energy to the head. The most common head trauma resulting from sports is a concussion, which occurs when the brain bangs inside the skull and is bruised. To reduce the incidence of concussion, it is common practice to wear a protective helmet. Protective helmets are ostensibly designed to deflect and absorb energy transmitted by impact to the helmet, thereby diminishing the risk of head and brain injury resulting from the impact.
[0003] Protective athletic helmets have been worn for almost a century, and have evolved from sewn leather, to helmets having molded plastic outer shells with suspension webbing or other head fitting structures such as foam pads, air bladders, or padded molding on their interior. Despite the evolution of the protective helmets, the reported rate of concussions has been increasing amongst student and professional athletes in many sports. While some experts have attributed this increase to better reporting and diagnosis, other experts have attributed the increase to increased forces generated as competitive athletes continue to increase in size (mass) and increase their ability to accelerate. [0004] What has not been necessarily considered is that the increase in concussions actually may be attributable to the structure of the evolved protective helmets. In particular, the molded hard plastic helmets have not been shown to absorb energy effectively as they tend to transmit pressure waves, and in helmet to helmet contact situations may actually add to trauma. In addition, the evolved protective helmets have a considerable weight that may lead to other injuries.
[0005] It is also known that head trauma resulting in traumatic brain injury (TBI) has become a common occurrence in the military. A common cause of TBI is damage caused by explosive devices such as improvised explosive devices (IEDs).
[0006] TBI injuries fall into several categories that may have different symptoms. Mild TBI (MTBI), commonly referred to as a concussion, is a brief loss of consciousness or disorientation ranging up to thirty minutes. Although brain damage may not be visible on an MRI or CAT scan, common symptoms of MTBI include headache, confusion, lightheadedness, dizziness, blurred vision, ringing in the ears, fatigue or lethargy, behavioral or mood changes, and trouble with memory, concentration or attention. Severe traumatic brain injury is associated with loss of consciousness for over thirty minutes or amnesia. Symptoms of severe TBI include all those of MTBI as well as headaches that increase in severity or do not abate, repeated vomiting or nausea, convulsions or seizures, dilation of the eye pupils, slurred speech, weakness or numbness in the extremities, loss of coordination, and increased confusion or agitation. TBI injuries can cause lasting physical and cognitive damage.
[0007] Presently, the U.S. army utilizes the Advanced Combat Helmet (ACH) that incorporates ballistic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE), TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands), or ultra-high-molecular- weight polyethylene (UHMWPE) . The ACH has a suspension system including a rear suspension system to which a ballistic "nape pad" is attached. The nape pad is intended to reduce solider deaths from shrapnel wounds to the neck and lower head.
[0008] Despite the introduction of the ACH, TBI injuries continue to be a major cause of concern. SUMMARY
[0009] This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
[0010] A protective helmet includes a multilayered system including a cushioning outer shell, a hard inner structure, a cushioning spacer layer between the cushioning outer shell and the hard inner structure, with the cushioning spacer layer arranged relative to the hard inner structure to redirect energy transmitted from the cushioning outer shell along a circuitous path to air and to the hard inner structure, and plurality of innermost cushioning pads coupled to the inside of the hard inner structure.
[0011] In one embodiment, the cushioning outer shell is covered by a flexible thin cover. The flexible thin cover may be a fabric, film, foil, or other cover. The fiexible thin cover may be cosmetic and may provide a surface for printing graphics. The fiexible thin cover may also protect the cushioning outer shell from damage.
[0012] In one embodiment, the hard inner structure is an integral structure that includes a plurality of lateral and horizontal frame members which define a plurality of spaces. One function of the hard inner structure is to provide a structural integrity for the helmet. In one embodiment, the spaces between the members are maximized in size to reduce the weight of the structure while still maintaining structural integrity.
[0013] In one embodiment, the cushioning spacer layer includes a plurality of elements glued or otherwise attached to the cushioning outer shell and to the hard inner structure. In another embodiment, the cushioning spacer layer comprises a single member defining a plurality of spaces. The cushioning spacer layer elements or member may include a plurality of layers of different densities.
[0014] In one embodiment the cushioning spacer layer member or elements at least partially overlie the spaces defined by the hard inner structure. [0015] In one embodiment one or more of cushioning layers or elements is formed from a foam material such as an elastomeric, cellular foam material. In another embodiment, one or more of the cushioning layers is made of thermoplastic polyurethane (TPU).
[0016] A military helmet includes a multilayered system including a cushioning outer shell, a hard ballistic resistant inner shell, a cushioning spacer layer between the cushioning outer shell and the hard inner shell, with the cushioning spacer layer arranged relative to the hard inner shell to redirect energy transmitted from the cushioning outer shell along a circuitous path to air and to the hard inner shell, and plurality of innermost cushioning pads coupled to the inside of the hard inner shell.
[0017] In one aspect, the cushioning outer shell of the military helmet serves the purpose of absorbing or deflecting an acoustic shock wave that can impact the military helmet in advance of the impact of a projectile (e.g., bullet).
[0018] In one embodiment, the cushioning outer shell of the military helmet is covered by a flexible thin cover. The flexible thin cover may be a fabric, film, foil, or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the ACH. The flexible thin cover may provide a surface for printing graphics (e.g.,
camouflage). The flexible thin cover may also protect the cushioning outer shell from damage.
[0019] In one embodiment, the hard ballistic resistant inner shell is formed from a ballistic fiber composite material such as KEVLAR.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Fig. 1 is a perspective exploded view of a first embodiment of a helmet.
[0021] Fig. 2 is a front perspective view of the first embodiment.
[0022] Fig. 3 is an inside perspective view of the first embodiment.
[0023] Fig. 4 is a side view of the first embodiment.
[0024] Fig. 5 is a cross-sectional view of the first embodiment.
[0025] Fig. 6a is a perspective view of an alternative cushioning spacer layer. [0026] Fig. 6b is a perspective view of an alternative hard inner structure.
[0027] Figs. 7a and 7b are bottom and perspective views of an embodiment of a football helmet.
[0028] Fig. 8 is a perspective exploded view of an embodiment of a military helmet.
[0029] Fig. 9 is a side view of the military helmet embodiment.
[0030] Fig. 10 is a cross-sectional view of military helmet embodiment.
[0031] Fig. 11 is a perspective view of an alternative cushioning spacer layer for the military helmet.
[0032] Fig. 12 is a perspective view of a military helmet including straps and accessories.
[0033] Fig. 13 is a perspective exploded view of an embodiment of a riot helmet.
[0034] Fig. 14 is a perspective view of the cushioning spacer layer for the riot helmet of Fig. 13.
[0035] Fig. 15 is a view of an alternate cushioning spacer layer for the riot helmet.
[0036] Fig. 16 is a cross-sectional view of the riot helmet of Fig. 13.
[0037] Fig. 17 is a perspective exploded view of an embodiment of a helmet utilizing the alternate cushioning spacer layer of Fig. 15.
DETAILED DESCRIPTION
[0038] One embodiment of a protective helmet 10 is seen in Figs. 1-5. Helmet 10 includes a multilayered system including an optional outermost cover 15, a cushioning outer shell 20 having an outer surface 22 and an inner surface 24, a hard inner structure 40 with an outer surface 42 and an inner surface 44, a cushioning spacer layer 30 located between and separating the cushioning outer shell 20 and the hard inner structure 40, and one or more innermost cushioning pads 50 coupled to the inside surface 44 of the hard inner structure 40. The innermost cushioning pads 50 may be covered by another fabric layer 55. As will be discussed in more detail hereinafter, the cushioning spacer layer 30 separates the cushioning outer shell 20 from the hard inner structure 40 and redirects energy transmitted from the cushioning outer shell along a circuitous path to air gaps and to the hard inner structure, thereby causing dissipation of pressure wave energy. Pressure wave energy that does reach the hard inner structure 40 is further dissipated by the innermost cushioning pads 50 before reaching the head of the helmet user (not shown).
[0039] In one aspect, the material of the hard inner structure 40 is considerably harder than the material(s) of the cushioning outer shell layer 20 and the cushioning spacer layer 30. In another aspect, the material(s) of the cushioning outer shell layer 20 and the cushioning spacer layer are resilient. In one embodiment, the cushioning spacer layer defines gaps that are nonuniform in shape and/or in size.
[0040] With the structure of helmet 10, when the helmet is hit by a projectile, the energy imparted by the projectile to the helmet can take various paths. First, it should be appreciated that the cushioning outer shell 20 will absorb and/or distribute some or all of the energy. The energy may be absorbed by (resilient) deflection of the foam cushioning. If some of the energy passes through the cushioning outer shell 20 it can either pass into the cushioning spacers 30 or into the air between the cushioning spacers. Again, if the energy pass into the cushioning spacers, the energy may be absorbed by (resilient) deflection of the cushioning spacers.
Alternatively or in addition, the energy may be absorbed in the air between the cushioning spacers. Energy passing through the cushioning spacer level will reach the hard inner structure 40 or air gaps therein where it can be one or more of reflected, distributed, absorbed or transmitted. Typically, the hard inner structure 40 will not absorb much energy. As a result, the function of the hard inner structure 40 is primarily one of lending structural integrity to the helmet 10. Any energy passing through the hard inner structure or the air gaps therein will be passed to the innermost cushioning pads 50 (also typically resilient) or the air gaps between the pads where the energy again may be absorbed by (resilient) deflection of the cushioning pads 50 or by the air gaps therein. With all of these possible paths, it will be appreciated that the energy imparted by impact to the helmet will be significantly dissipated before reaching the head of the user. In addition, by forcing the energy through a tortuous path due to the use of cushioning and multiple layers with air gaps, the resistance to the energy shock waves by the helmet is increased. In this manner, the incidence of brain concussions of wearers of the helmet 10 can be reduced. [0041 ] Some of the energy paths through the helmet can be seen by reference to the Fig. 5 which shows six different cross-sectional paths through the helmet. A first cross section at location A through the helmet shows a fabric cover 15, the cushioning shell 20, a cushioning spacer pad 30, a hard inner structure 40, an inner cushioning pad 50, and an inner fabric cover 55 for the inner cushioning pad 50. Location B shows the cover 15, cushioning shell 20, space 35 (e.g., air between the cushioning spacer pads 30), the hard inner structure 40, an inner cushioning pad 50, and an inner fabric cover 55 for the inner cushioning pad 50. Location C includes cover 15, the cushioning shell 20, a cushioning pad 30, space 45 (e.g., air at gaps in the hard shell 40), and additional space 55 (e.g., air at gaps between the inner cushioning pads 50). Location D shows the cover 15, the cushioning shell 20, space 35 (e.g., air between the cushioning spacer pads 30), additional space (e.g., air at gaps in the hard shell 40), an inner cushioning pad 50, and fabric cover 55. Location E includes the cover 15, the cushioning shell 20, the cushioning spacer pad 30, the hard inner structure 40, and space 55 (e.g., air gap between the inner cushioning pads 50). Location F shows the cover 15, the cushioning shell 20, space 35 between the cushioning spacer pads 30, space 45 (air gaps in the hard shell), an inner cushioning pad 50 and fabric cover 55.
[0042] It should be appreciated that the described cross-sections give certain energy paths through the helmet 10, but that many other exist, and it is not necessary that all of these paths exist simultaneously in a helmet. In fact, it will be appreciated that energy waves will generally take a path of least resistance through a substance which may not correspond exactly to any of the cross-sections. Because harder substances will generally transmit energy waves more readily than air, the air gaps will cause the energy to travel and spread radially through the cushioning shell 20 and the hard inner structure 40. However, travel through a longer distance in the cushioning shell 20 and the hard inner structure 40 causes further attenuation of the energy.
[0043] In one embodiment, the flexible thin cover 15 may be a fabric, film, foil, leather, or other cover. The flexible thin cover may be cosmetic and may provide a surface for printing graphics. The flexible thin cover may also protect the cushioning outer shell from damage. If desired, the flexible thin cover may extend around the periphery of the helmet (as suggested in Fig. 5 but not shown in Figs. 2 and 3) to protect the periphery of the cushioning shell 20 and the cushioning spacer layer 30 and optionally the hard inner structure 40 and even the innermost cushioning pads 50. Alternatively, if desired, a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 20, the spacer layer 30 and optionally the hard layer 40. In one embodiment, the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas). In another embodiment, the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric. In another embodiment, the flexible thin cover is made from leather or artificial leather. In another embodiment, the flexible thin cover is made from a polyester fabric. In another embodiment, the flexible thin cover is made from non-woven fabric. In another embodiment, the flexible thin cover is made from a printable film. By way of example only, the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker. By way of another example, the flexible thin cover may be between 0.3mm and 3.25mm thick. By way of another example, the flexible thin cover may be between 1.0mm and 1.5mm thick. The thin cover 15 may be attached at one or more places to the cushioning shell 20, so that the cover may be removed from the shell 20 without damaging the shell. By way of example only, attachment may be made by use of Velcro (a trademark of Velcro USA Inc., Manchester, New Hampshire). Alternatively, the thin cover may be glued, tacked or sewn to the shell 20. In one embodiment, the thin cover 15 covers the entire cushioning shell 20.
[0044] In one embodiment the cushioning shell 20 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU) (i.e., having a Shore hardness considerably below the Shore hardness of the hard inner structure). In another embodiment, the cushioning shell is comprised of open-cell
polyurethane. In another embodiment, the cushioning shell is comprised of closed cell polyolefm foam. In another embodiment, the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam. In one embodiment, the outer surface 22 of the cushioning shell 20 is generally (hemi)-spherical in shape. By way of example and not by way of limitation, the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker. By way of example, and not by way of limitation, the cushioning shell may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 25 lbs/ ft3 (approximately 0.4 g/cm3), although it may be more dense or less dense. [0045] In one embodiment the cushioning spacer layer 30 comprises a plurality of pads 31. The pads 31 may be circular in shape or may be formed in other shapes. Multiple shapes may be used together. In one embodiment, the spacer layer may include a strip of material 33 (seen in Fig. 1) around the peripheral edge of the helmet between the shell 20 and the hard inner structure 40 that can prevent foreign material from entering between the shell 20 and the hard inner structure 40. In another embodiment (seen in Fig. 6a) the cushioning spacer layer is a single pad 30a defining multiple cut-outs 35a (i.e., the equivalent of multiple connected pads). In one embodiment the spacer layer 30 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning spacer layer is comprised of a soft resilient thermoplastic polyurethane (TPU) that is considerably softer than the hard inner structure 40. In another embodiment, the cushioning spacer layer is comprised of open-cell polyurethane. In another embodiment, the cushioning spacer layer is comprised of closed cell polyolefm foam. In another embodiment, the cushioning spacer layer is comprised of a microcellular urethane foam such as PORON (a trademark of Rogers Corporation). In another embodiment, the cushioning spacer layer is comprised of polyethylene foam which may be a high or low density polyethylene foam. In another embodiment, the cushioning spacer layer 30 has multiple layers formed from different materials. By way of example and not by way of limitation, the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker. As another example, the cushioning spacer layer may be between 6 and 13mm thick. By way of example, and not by way of limitation, the cushioning spacer layer may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 30 lbs/ ft3 (approximately 0.48 g/cm3), although it may be more dense or less dense.
[0046] According to one embodiment, the spacer layer 30 covers approximately fifty percent of the inner surface area of the shell 20. In another embodiment, the spacer layer 30 covers between twenty percent and ninety-five percent of the inner surface area of the shell. The spacer layer 30 should cover sufficient area between the shell 20 and the hard inner structure 40 so that upon most expected impacts to the helmet 10, the shell 20 does not directly come into contact with the hard inner structure 40. Regardless of the material and arrangement of the cushioning spacer layer 30, in one embodiment the cushioning material is affixed to the shell 20 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means. [0047] In one embodiment, the hard inner structure 40 is comprised of a polycarbonate shell. In another embodiment, the hard inner structure 40 is comprised of a different hard plastic such a polypropylene. In another embodiment, the hard inner structure 40 is comprised of ABS resin. In another embodiment, the hard inner structure 40 is made of carbon fiber or fiberglass. In another embodiment, the hard inner structure is made of a polypropylene which is considerably harder than the materials of the cushioning layer 20 and spacer layer 30.
Generally, the hardness of the hard inner structure may be characterized by a hardness on the Shore D Durometer scale (typically Shore D 75 and over), whereas generally, the hardness of the materials of the cushioning layer 20 and the spacer layer 30 are characterized by a hardness on the Shore A Durometer scale (typically Shore A 60 and under, and even more typically Shore A 30 and under). In one embodiment, as shown in Fig. 1 and 5, the hard inner structure 40 defines a plurality of cut-outs 45. In one embodiment at least one of the cut-outs 45 is at least partially covered by a cushioning spacer pad 30. In another embodiment, at least one of the cut-outs 45 is at least partially covered by an inner cushioning pad 50. As previously mentioned, in one embodiment the hard inner structure 40 is affixed to the spacer layer 30. Affixation can be done with glue, Velcro or any other affixation means. By way of example and not by way of limitation, the hard inner structure is between 1.5mm and 6.0mm thick, although it may be thinner or thicker. As another example, the hard inner structure 40 is between 2.5mm and 3.1mm thick.
[0048] In one embodiment, the one or more innermost cushioning pad(s) 50 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning pad(s) 50 is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning pad(s) is comprised of open-cell polyurethane. In another embodiment, the cushioning pad(s) is comprised of closed cell polyolefin foam. In another embodiment, the cushioning pad(s) is comprised of polyethylene foam which may be a high or low density polyethylene foam. In one embodiment the innermost cushioning pad 50 is a single pad defining multiple cut-outs (i.e., the equivalent of multiple connected pads). In another embodiment, a plurality of innermost cushioning pads 50 are provided. Regardless, the single pad with the cut-outs or the multiple pads are arranged in a desired configuration and are affixed to the hard inner structure 40. Affixation can be done with glue, Velcro or any other affixation means. By way of example and not by way of limitation, the innermost cushioning layer may be between 3mm and 26mm thick, although it may be thinner or thicker. By way of example, and not by way of limitation, the innermost cushioning pads may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 25 lbs/ ft3 (approximately 0.4 g/cm3), although they may be more dense or less dense.
[0049] In one embodiment, the innermost cushioning pad(s) 50 is covered by a fabric layer 55 (seen in Fig. 5). In one embodiment, fabric layer 55 is absorbent. In one embodiment fabric layer 55 is removable from the foam pad(s) 50. In one embodiment, the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas). In another embodiment, the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric. In another embodiment, the flexible thin cover is made from leather or an artificial leather. In another embodiment, the flexible thin cover is made from a polyester fabric. In another embodiment, the flexible thin cover is made from non-woven fabric. By way of example only, the thin cover may be between 0.3mm and 3.25mm thick, although it may be thinner or thicker. By way of another example, the flexible thin cover may be between 1.0mm and 1.5mm thick.
[0050] Turning to Fig. 6b, an alternative hard inner structure 40a is shown. Hard inner structure 40a includes a plurality of horizontal frame members 47a and lateral frame members 49a that together define spaces 45 a. As will be appreciated, hard inner structure 40a effectively defines a lattice for support of the remainder of the helmet. However, by using less material, the weight of the hard inner structure and hence the helmet may be reduced. In the embodiment of Fig. 6b, the spaces 45a are roughly equal in area to one-half the area taken by the frame members 47a and 49a. In another embodiment, the spaces 45 a are roughly equal to between one-quarter and twice the area taken by the frame members 47a and 49a.
[0051 ] The helmets previously described may be used as or in conjunction with football helmets, ice-hockey helmets, baseball helmets, motorcycle helmets, riot helmets, and other similar helmets, although they are not limited thereto. Thus, for example, a riot helmet can have a polycarbonate face extending from the front face of the helmet. As seen in Figs. 7a and 7b, a football helmet 110 is provided with the layered structure described above with reference to Figs. 1-5 (outermost cover 115, a cushioning outer shell 120, a hard inner structure 140, a cushioning spacer layer 130 located between and separating the cushioning outer shell 120 and the hard inner structure 140, and one or more innermost cushioning pads 150 coupled to the inside surface of the hard inner structure 140) in conjunction with a face guard 190. In one embodiment, the face guard 190 is of the type that can break away from the remainder of the helmet 110 when subjected to excessive twisting forces.
[0052] In one embodiment, the football helmet 110 has a thickness of between 20mm and 50mm, although it may be thinner or thicker.
[0053] One embodiment of a military helmet 210 is seen in Figs. 8-10. Helmet 210 includes a multilayered system including an optional outermost cover 215, a cushioning outer shell 220 having a convex outer surface 222 and a concave inner surface 224, a hard ballistic- resistant inner shell 240 with a convex outer surface 242 and a concave inner surface 244, a cushioning spacer layer 230 located between and separating the cushioning outer shell 220 and the hard inner shell 240, and one or more innermost cushioning pads 250 coupled to the inside surface 244 of the hard inner shell 240. The innermost cushioning pads 250 may be covered by another fabric layer 260. As will be discussed in more detail hereinafter, the cushioning spacer layer 230 separates the cushioning outer shell 220 from the ballistic-resistant inner shell 240 and redirects energy transmitted from the cushioning outer shell along a circuitous path to air gaps and to the ballistic-resistant inner shell, thereby causing dissipation of shock (pressure) wave energy. Pressure wave energy that does reach the ballistic-resistant inner shell 240 is further dissipated by the innermost cushioning pads 250 before reaching the head of the helmet user (not shown).
[0054] When a projectile is shot at the helmet, before the projectile reaches the helmet, an energy wave hits the helmet. This energy wave can be a significant percentage of the total energy (energy or shock wave energy plus projectile energy) that impacts the helmet. In fact, in some circumstances, it is possible that only a shock wave is received, in which case, the shock wave is 100% of the total energy impacting the helmet. The military helmet 210 is designed to lessen the total energy impact on its user in two separate manners. First, the energy wave can take various paths. For example, it should be appreciated that the cushioning outer shell 220 will absorb and/or distribute some or all of the energy. The energy may be absorbed by deflection of the foam cushioning. If some of the energy passes through the cushioning outer shell 220 it can either pass into the cushioning spacers 230 or into the air between the cushioning spacers. Again, if the energy passes into the cushioning spacers, the energy may be absorbed by deflection of the cushioning spacers. Alternatively or in addition, the energy may be absorbed in the air between the cushioning spacers. Energy passing through the cushioning spacer level will reach the hard inner shell where it can be one or more of reflected, distributed, absorbed or transmitted. Energy passing through the hard inner ballistic-resistant will be passed to the innermost cushioning pads 250 or the air gaps between the pads where the energy again may be absorbed by deflection of the cushioning pads 250 or by the air gaps therein. With all of these possible paths, it will be appreciated that the energy imparted by the energy shock wave will be significantly dissipated before reaching the head of the user. In addition, by forcing the energy wave through a tortuous path due to the use of cushioning and multiple layers with air gaps, the resistance to the energy shock waves by the helmet is increased. In this manner, the incidence of brain concussions of wearers of the military helmet 210 can be reduced.
[0055] The military helmet 210 is also adapted to lessen the impact of the projectile itself. In particular, while the cushioning outer shell 220 and the cushioning spacer layer 230 will not appreciably stop the projectile, the hard inner shell 240 formed from a ballistic-resistant material will act to stop the projectile in the manner of the previously described with reference to the Advanced Combat Helmet.
[0056] Some of the energy paths through the helmet can be seen by reference to Fig. 10 which shows three different cross-sectional paths through the military helmet. A first cross section at location A through the military helmet shows a fabric cover 215, the cushioning shell 220, a cushioning spacer pad 230, a ballistic-resistant inner shell 240, an inner cushioning pad 250, and an inner fabric cover 260 for the inner cushioning pad 250. Location B shows the cover 215, cushioning shell 220, space 235 (e.g., air between the cushioning spacer pads 230), the ballistic-resistant inner shell 240, an inner cushioning pad 250, and an inner fabric cover 260 for the inner cushioning pad 250. Location C includes the cover 215, the cushioning shell 220, the cushioning spacer pad2 30, the ballistic-resistant inner shell 240, and space 255 (e.g., air gap between the inner cushioning pads 50).
[0057] It should be appreciated that the described cross-sections give certain energy paths through the military helmet 210, but that many other exist, and it is not necessary that all of these paths exist simultaneously in a military helmet. In fact, it will be appreciated that energy waves will generally take a path of least resistance through a substance that may not correspond exactly to any of the cross-sections. Because harder substances will generally transmit energy waves more readily than air, the air gaps will cause the energy to travel and spread radially through the cushioning shell 220 and the hard inner shell 240. However, travel through a longer distance in the cushioning shell 220 and the ballistic-resistant inner shell 240 causes further attenuation of the energy.
[0058] In one embodiment, the flexible thin cover 215 may be a fabric, film, foil, or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the ACH. The flexible thin cover may provide a surface for printing graphics, e.g., camouflage (see Fig. 12). The flexible thin cover may also protect the cushioning outer shell from damage. If desired, the flexible thin cover may extend around the periphery of the helmet (as suggested in Fig. 10) to protect the periphery of the cushioning shell 220 and the cushioning spacer layer 230 and optionally the hard inner shell 240 and even the innermost cushioning pads 250. Alternatively, if desired, a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 220, the spacer layer 230 and optionally the hard shell 240. In one embodiment, the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket weave such as Cordura (a trademark of Invista, Wichita, Kansas). In another embodiment, the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric. In another embodiment, the flexible thin cover is made from a polyester fabric. In another embodiment, the flexible thin cover is made from leather or artificial leather. In another embodiment, the flexible thin cover is made from non-woven fabric. In another embodiment, the flexible thin cover is made from a printable film. In another embodiment, the flexible thin cover is made from a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE). In another embodiment the flexible thin cover comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands). In another embodiment, the flexible thin cover is made from a ultra-high-molecular-weight polyethylene. By way of example only, the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker. By way of another example, the flexible thin cover may be between 0.3mm and 3.25mm thick. By way of another example, the flexible thin cover may be between 1.0mm and 1.5mm thick. The thin cover 215 may be attached at one or more places to the cushioning shell 220, so that the cover may be removed from the shell 220 without damaging the shell. By way of example only, attachment may be made by use of Velcro (a trademark of Velcro USA Inc., Manchester, New Hampshire). Alternatively, the thin cover may be glued, tacked or sewn to the shell 220. In one embodiment, the thin cover 215 covers the entire cushioning shell 220.
[0059] In one embodiment the cushioning shell 220 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning shell is comprised of open-cell polyurethane. In another embodiment, the cushioning shell is comprised of closed cell polyolefm foam. In another embodiment, the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam. In all embodiments, the hardness of the cushioning shell is much lower than the hardness of the ballistic-resistant inner shell 240. For example, the hardness of the cushioning shell is typically described by the Shore A
Durometer scale (typically Shore A 60 and under, and even more typically Shore A 30 and under), whereas the hardness of the ballistic-resistant inner shell is described by the Shore D Durometer scale.
[0060] In one embodiment, the outer surface 222 of the cushioning shell 220 is generally (hemi-)spherical in shape. By way of example and not by way of limitation, the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker. By way of example, and not by way of limitation, the cushioning shell may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 25 lbs/ ft3 (approximately 0.4 g/cm3), although it may be more dense or less dense.
[0061] In one embodiment the cushioning spacer layer 230 comprises a plurality of pads 231. The pads 231 may be circular in shape or may be formed in other shapes. Multiple shapes may be used together. In one embodiment, the spacer layer may include a strip of material 233 (seen in Fig. 8) around the peripheral edge of the military helmet between the shell 220 and the hard inner shell 240 that can prevent foreign material from entering between the shell 220 and the hard inner shell 240. In another embodiment (seen in Fig. 11) the cushioning spacer layer is a single pad 230a defining multiple cut-outs 235a (i.e., the equivalent of multiple connected pads). In one embodiment the spacer layer 230 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning spacer layer is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning spacer layer is comprised of open- cell polyurethane. In another embodiment, the cushioning spacer layer is comprised of closed cell polyolefin foam. In another embodiment, the cushioning spacer layer is comprised of polyethylene foam which may be a high density or low density polyethylene foam. In another embodiment, the cushioning spacer layer 230 has multiple layers formed from different materials. In all embodiments, the hardness of the cushioning spacer layer material is much lower than the hardness of the ballistic-resistant inner shell. By way of example and not by way of limitation, the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker. As another example, the cushioning spacer layer may be between 6 and 13mm thick. By way of example, and not by way of limitation, the cushioning spacer layer may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 25 lbs/ ft3 (approximately 0.4 g/cm3), although it may be more dense or less dense.
[0062] According to one embodiment, the spacer layer 230 covers approximately fifty percent of the inner surface area of the shell 220. In another embodiment, the spacer layer 230 covers between twenty percent and eighty percent of the inner surface area of the shell. The spacer layer 230 should cover sufficient area between the shell 220 and the hard inner shell 240 so that upon most expected impacts to the helmet 210, the shell 220 does not directly come into contact with the hard inner shell 240. Regardless of the material and arrangement of the cushioning spacer layer 230, in one embodiment the cushioning material is affixed to the shell 220 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means.
[0063] In one embodiment, the hard ballistic-resistant inner shell 240 is comprised of a ballistic-resistant fibrous material. In one embodiment the inner shell material comprises a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE). In another embodiment the inner shell material comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands). In another embodiment, the inner shell material comprises ultra-high-molecular-weight polyethylene. As previously mentioned, in one embodiment the hard ballistic-resistant shell 240 is affixed to the spacer layer 230. Affixation can be done with glue, Velcro or any other affixation means. By way of example and not by way of limitation, the hard ballistic-resistant shell is between 2mm and 20mm thick, although it may be thinner or thicker. As another example, the hard inner ballistic-resistant shell 240 is between 7mm and 12mm thick.
[0064] In one embodiment, the one or more innermost cushioning pad(s) 250 is comprised of foam. The foam may be an elastomeric, cellular foam or any other desirable foam. In another embodiment, the cushioning pad(s) 250 is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning pad(s) is comprised of open-cell polyurethane. In another embodiment, the cushioning pad(s) is comprised of closed cell polyolefm foam. In another embodiment, the cushioning pad(s) is comprised of polyethylene foam which may be a high or low density polyethylene foam. In all embodiments, the hardness of the material innermost cushioning pad(s) is considerably lower than the hardness of the ballistic-resistant inner shell 240. In one embodiment the innermost cushioning pad 250 is a single pad defining multiple cut-outs (i.e., the equivalent of multiple connected pads). In another embodiment, a plurality of innermost cushioning pads 250 are provided. Regardless, the single pad with the cut-outs or the multiple pads are arranged in a desired configuration and are affixed to the hard inner structure 240. Affixation can be done with glue, Velcro or any other affixation means. By way of example and not by way of limitation, the innermost cushioning layer may be between 3mm and 26mm thick, although it may be thinner or thicker. By way of example, and not by way of limitation, the innermost cushioning pads may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 25 lbs/ ft3 (approximately 0.4 g/cm3), although they may be more dense or less dense.
[0065] In one embodiment, the innermost cushioning pad(s) 250 is covered by a fabric layer 260 (seen in Fig. 10). In one embodiment, fabric layer 260 is absorbent. In one embodiment fabric layer 260 is removable from the foam pad(s) 250. In one embodiment, the flexible thin cover is made from ballistic nylon, a high denier nylon thread with a dense basket wave such as Cordura (a trademark of Invista, Wichita, Kansas). In another embodiment, the flexible thin cover is made from a Neoprene (a trademark of DuPont, Delaware) rubber (polychloroprene) fabric. In another embodiment, the flexible thin cover is made from a polyester fabric. In another embodiment, the flexible thin cover is made from non-woven fabric. By way of example only, the thin cover may be between 0.3mm and 3.25mm thick, although it may be thinner or thicker. By way of another example, the flexible thin cover may be between 1.0mm and 1.5mm thick.
[0066] In one embodiment, and as suggested by Fig. 12, the military helmet 210 is adapted to be compatible with night vision devices (NVDs), communication packages, Nuclear, Biological and Chemical (NBC) defense equipment and body armor. In one embodiment, the military helmet 10 provides an unobstructed field of view and increased ambient hearing capabilities. In one embodiment, the military helmet 210 is provided with a chin strap retention system 295 (Fig. 12). In one embodiment, the military helmet 210 is provided with an armor nape pad (not shown). In one embodiment, the armor nape pad (not shown) is provided with a cushioning outer layer, a hard ballistic-resistant inner layer, a cushioning spacer layer located between and separating the cushioning outer layer and the hard ballistic-resistant inner layer, and a cushioning pad coupled to the inside surface of the hard ballistic-resistant inner layer. The outer surface of the cushioning outer layer of the nape pad and/or the inner surface of the cushioning pad coupled to the inside surface of the hard ballistic-resistant inner layer of the nape pad may be provided with a fabric layer.
[0067] In one embodiment small holes are drilled in one or both of the cushioning shell and in the anti-ballistic hard shell for ventilation purposes and/or for attaching straps or other structures. The attachment holes may be covered by ballistic screws, nuts or bolts. Regardless, it will be appreciated that the size and number of holes in the anti-ballistic hard shell is kept to a minimum to limit the potential of penetration of projectiles through the holes. For purposes of the claims, a shell structure having holes for these purposes should still be considered a "continuous shell".
[0068] The military helmet 210 has a concave outer surface and a convex inner surface. As seen in Fig. 10, the shape of the military helmet is adapted to cover the back, top, and sides of a soldier's head without blocking vision or hearing. As such, the bottom rim of the helmet angles upward from the back of the helmet toward the front of the helmet at a first angle a, and then angles a steeper angle β at about the ear area, and then extends substantially horizontally γ at the forehead area. [0069] The military helmets described are particularly suited for military use although they may be used for other purposes such as, by way of example only and not by way of limitation, a protective police helmet or an explosive ordinance disposal (EOD) helmet.
[0070] Turning now to Figs. 13, 14 and 16 a riot helmet 310 is seen. Riot helmet 310 includes a multilayered system including an optional outermost cover 315, a cushioning outer shell 320 having a convex outer surface and a concave inner surface, a hard inner shell 340 with a convex outer surface and a concave inner surface, a cushioning spacer layer 330 located between and separating the cushioning outer shell 320 and the hard inner shell 340, and optional innermost cushioning pads (not shown) coupled to the inside surface of the hard inner shell 340.
[0071] In one embodiment, the flexible thin cover 315 may be a fabric, film, foil, leather (actual or imitation) or other cover such as a ballistic nylon (a high denier nylon thread with a dense basket weave) that is used as a cover for the helmet. The flexible thin cover may provide a surface for printing graphics. The flexible thin cover may also protect the cushioning outer shell from damage. If desired, the flexible thin cover may extend around the periphery of the helmet to protect the periphery of the cushioning shell 320 and the cushioning spacer layer 330 and optionally the hard inner shell 340. Alternatively, if desired, a flexible band may be used to extend around the periphery and cover the peripheral edge of cushioning shell 320, the spacer layer 330 and optionally the hard shell 340. By way of example only, the thin cover may be between 0.1mm and 10mm thick, although it may be thinner or thicker. By way of another example, the flexible thin cover may be between 0.3mm and 3.25mm thick. By way of another example, the flexible thin cover may be between 1.0mm and 1.5mm thick. The thin cover 315 may be attached at one or more places to the cushioning shell 320, so that the cover may be removed from the shell 320 without damaging the shell. Alternatively, the thin cover may be glued, tacked or sewn to the shell 320. In one embodiment, the thin cover 315 covers the entire cushioning shell 320.
[0072] In one embodiment the cushioning shell 320 is comprised of foam. The foam may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning shell is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning shell is comprised of open-cell polyurethane. In another embodiment, the cushioning shell is comprised of closed cell polyolefm foam. In another embodiment, the cushioning shell is comprised of polyethylene foam which may be a high or low density polyethylene foam. In all embodiments, the hardness of the cushioning shell is much lower than the hardness of the inner shell 340. For example, the hardness of the cushioning shell is typically described by the Shore A Durometer scale (typically Shore A 60 and under, and even more typically Shore A 30 and under), whereas the hardness of the inner shell is described by the Shore D Durometer scale.
[0073] In one embodiment, the outer surface of the cushioning shell 320 is generally (hemispherical in shape. By way of example and not by way of limitation, the cushioning shell may be between 3mm and 13mm thick, although it may be thinner or thicker. By way of example, and not by way of limitation, the cushioning shell may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 30 lbs/ ft3 (approximately 0.48 g/cm3), although it may be more dense or less dense.
[0074] As shown in Figs. 13, 14 and 16, the cushioning spacer layer 330 comprises either a plurality of pads 331 that are coupled together by a thin underlay er 331a (indicated by dashed line in Fig. 16), or a single pad with multiple channels 331b (shown in Fig. 14) that define multiple pad areas 331. The pads 331 may assume multiple shapes and sizes. In another embodiment, the cushioning spacer layer 330 comprises a plurality of separated pads. In one embodiment the spacer layer 330 is comprised of a microcellular open cell urethane foam; e.g., PORON XPvD, a trademark of Rogers Corporaton, Rogers, Connecticut. In another
embodiment, the spacer layer 330 comprises a foam that may be an elastomeric, cellular (including microcellular) foam or any other desirable foam. In another embodiment, the cushioning spacer layer 330 is comprised of a soft resilient thermoplastic polyurethane (TPU). In another embodiment, the cushioning spacer layer is comprised of open-cell polyurethane. In another embodiment, the cushioning spacer layer is comprised of closed cell polyolefm foam. In another embodiment, the cushioning spacer layer is comprised of polyethylene foam which may be a high density or low density polyethylene foam. In another embodiment, the cushioning spacer layer 330 has multiple layers formed from different materials. In all embodiments, the hardness of the cushioning spacer layer material is much lower than the hardness of the ballistic-resistant inner shell. By way of example and not by way of limitation, the cushioning spacer layer may be between 3mm and 26mm thick, although it may be thinner or thicker. As another example, the cushioning spacer layer may be between 6 and 13mm thick. By way of example, and not by way of limitation, the cushioning spacer layer may have a density of between 3.4 lbs/ft3 (approximately 0.016 g/cm3) and 30 lbs/ ft3 (approximately 0.48 g/cm3), although it may be more dense or less dense. By way of example, and not by way of limitation, the cushioning spacer layer has a hardness of between 2 and 30 on the Shore A scale.
[0075] As shown in Figs. 13, 14, and 16, the spacer layer 330 covers approximately ninety- five percent of the inner surface area of the shell 320 and one hundred percent of the outer surface of the hard shell 340 (with underlayer 331a). In another embodiment, the spacer layer 330 covers between twenty percent and eighty percent of the inner surface area of the shell. In one embodiment the cushioning material is affixed to the shell 320 and to the hard inner structure. Affixation can be done with glue, Velcro or any other affixation means.
[0076] An alternative spacer layer 330d is seen in Fig. 15. Spacer layer 330d may be made from any of the materials previously described with respect to spacer layer 330. Spacer layer 330d is shown cut from sheet material, such that spacer layer 330d takes the form of a flower with a central area 330e and petals 330f. Grooves 330g extending into, but not completely through the material of spacer layer 330d are formed in the petals and the central area and add to the flexibility of the spacer layer 330d so that it may be placed between the formed cushioning shell 320 and the formed hard shell 340 and assume a three-dimensional position with the petals 300f either touching each other or more closely spaced.
[0077] In one embodiment, the hard inner shell 340 is comprised of a carbon fiber material. In one embodiment the inner shell material comprises a para-aramid synthetic fiber such as KEVLAR (a trademark of DuPont of Wilmington, DE). In another embodiment the inner shell material comprises TWARON (a trademark of Teijin Twaron, B.V. of the Netherlands). In another embodiment, the inner shell material comprises ultra-high-molecular-weight polyethylene. In one embodiment the hard shell 340 is affixed to the spacer layer 330 (or 330d). Affixation can be done with glue, Velcro or any other affixation means. By way of example and not by way of limitation, the hard shell is between 2mm and 20mm thick, although it may be thinner or thicker. As another example, the hard inner shell 340 is between 7mm and 12mm thick.
[0078] Additional pads (not shown) may be provided inside the hard inner shell 340. [0079] Fig. 17 is a perspective exploded view of an embodiment of a helmet 410 utilizing aspects of the other helmet embodiments with like parts having like numbers separated by one hundred, two hundred, three hundred or four hundred. Helmet 410 includes an optional outermost cover 415, a cushioning outer shell 420 having a convex outer surface and a concave inner surface, a hard inner shell 440 with a convex outer surface and a concave inner surface, a cushioning spacer layer 43 Od located between and separating the cushioning outer shell 420 and the hard inner shell 440. Helmet 410 combines aspects of previously described embodiments. Thus, outermost cover 415 is provided with chin straps 495 (similar to the military helmet 210 of Fig. 12), and the cushioning spacer layer 430d is substantially the same as the alternate cushioning spacer layer 330d of the riot helmet of Fig. 15. Cushioning spacer layer 430d is shown in a partly rounded configuration in Fig. 17, and when assembled, the leaves 430f will assume a configuration where they are more closely adjacent each other at their circumferences. The materials and other aspects of the layers are as previously described with respect to the other embodiments.
[0080] There have been described and illustrated herein several embodiments of a helmet. While particular embodiments have been described, it is not intended that the claims be limited thereto, as it is intended that the claims be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials for cushioning layers have been disclosed, it will be appreciated that other materials may be used as well. Similarly, while particular types of materials have been disclosed for the hard structural layer, it will be understood that other materials can be used. Also, while particular types of materials for the cover layers have been described, other materials can be used. In addition, while the shell was shown as being continuous, it will be appreciated that small holes may be drilled in the shell structure for ventilation purposes and for attaching straps or other structures. For purposes of the claims, such a shell should still be considered "continuous". It will therefore be appreciated by those skilled in the art that yet other modifications could be made without deviating from the spirit and scope of the claims.

Claims

WHAT IS CLAIMED IS:
1. A protective helmet comprising: a continuous cushioning shell layer formed from a cushioning material and having an inner surface; a cushioning spacer layer coupled to said inner surface of said shell layer, said cushioning spacer layer only partially covering said inner surface of said shell and including cushioning structure defining gaps; and a hard inner structure having an outer surface and an inner surface, said outer surface of said hard inner structure attached to said cushioning spacer layer, said hard inner structure formed from material that is substantially harder than said cushioning material of said shell layer and said cushioning structure of said cushioning spacer layer.
2. A protective helmet according to claim 1, further comprising: an innermost cushioning pad layer attached to said inner surface of said hard inner structure.
3. A protective helmet according to either of claims 1 or 2, wherein: at least one of said shell and said cushioning spacer layer are formed from foam.
4. A protective helmet according to any preceding claim, wherein: said hard inner structure is formed from at least one polycarbonate, hard plastic, ABS resin, polypropylene, carbon fiber, fiberglass, para-aramid synthetic fiber, and ultra-high-molecular- weight polyethylene.
5. A protective helmet according to claim 4, wherein: said hard inner structure defines a plurality of cut-outs or includes a plurality of horizontal frame members and a plurality of lateral frame members that define spaces.
6. A protective helmet according to claim 4, wherein: said hard inner structure is continuous.
7. A protective helmet according to any preceding claim, wherein: said cushioning spacer layer comprises one spacer.
8. A protective helmet according to claim 7, wherein: said one spacer has a plurality of grooves defining spacer areas connected by an inner spacer layer, said inner spacer layer substantially completely covering said outer surface of said hard inner structure.
9. A protective helmet according to any of claim 1-6, wherein: said cushioning spacer layer comprises a plurality of separate spacers.
10. A protective helmet according to any preceding claim, further comprising: a flexible thin cover extending around an outer surface of said cushioning shell layer and constituting an outermost layer of said protective helmet.
11. A protective helmet according to claim 10, wherein: said flexible thin cover comprises one of a fabric, film and foil, leather, artificial leather, ballistic nylon, polychloroprene, polyester fabric, para-aramid synthetic fiber, and ultra-high-molecular-weight polyethylene.
12. A protective helmet according to claim 10, wherein: said flexible thin cover is adapted to be removable from said shell without damaging said shell.
13. A protective helmet, comprising: a continuous shell formed from a resilient cushioning foam material, said continuous shell having an outer surface and an inner surface; a flexible thin cover extending around said outer surface of said shell; a cushioning foam spacer layer coupled to and only partially covering said inner surface of said shell, said cushioning spacer layer including at least one resilient pad defining first spaces; a hard inner structure having an outer surface attached to said cushioning foam spacer layer, and an inner surface, said hard inner structure being substantially harder than said shell and said cushioning foam spacer layer, and said hard inner structure defining second spaces; an innermost cushioning pad layer attached to said inner surface of said hard inner structure and formed from foam elements.
14. A protective helmet according to claim 13, wherein: said hard inner structure is formed from at least one polycarbonate, hard plastic, ABS resin, polypropylene, and fiberglass, and said innermost cushioning pad layer comprises a plurality of innermost pads defining third spaces therebetween.
15. A protective helmet, comprising: a continuous cushioning shell formed from at least one of foam and resilient thermoplastic polyurethane, said continuous cushioning shell having a convex outer surface and a concave inner surface; a cushioning spacer layer coupled to and only partially covering said concave inner surface of said cushioning shell, said cushioning spacer layer including at least one pad defining first spaces and formed from at least one of foam and resilient thermoplastic polyurethane; a continuous ballistic-resistant inner shell having a convex outer surface and a concave inner surface, said convex outer surface of said ballistic-resistant inner shell attached to said cushioning spacer layer and formed from at least one of a para-aramid synthetic fiber and ultra- high-molecular-weight polyethylene, said continuous ballistic-resistant inner shell being harder than said continuous cushioning shell and said cushioning spacer layer; an innermost cushioning pad layer attached to said concave inner surface of said ballistic-resistant inner shell and formed from at least one of foam, resilient thermoplastic polyurethane, and open-cell polyurethane.
16. A protective helmet according to claim 15, further comprising: a flexible thin cover extending around said outer convex surface of said cushioning shell.
17. A protective helmet according to claim 16, wherein: said flexible thin cover is adapted to camouflage said helmet.
18. A protective helmet, comprising: a continuous shell formed from a resilient cushioning foam material, said continuous shell having an outer surface and an inner surface; a flexible thin cover extending around said outer surface of said shell; a cushioning foam spacer layer coupled to and only partially covering said inner surface of said shell, said cushioning spacer layer including at least one resilient foam pad; and a hard inner structure having an outer surface attached to said cushioning foam spacer layer, and an inner surface, said hard inner structure being substantially harder than said shell and said cushioning foam spacer layer.
19. A protective helmet according to claim 18, wherein: said cushioning foam spacer layer is formed from sheet material with a central area, and a plurality of petals extending from said central area, said central area and said plurality of petals including a plurality of grooves.
20. A protective helmet according to claim 18, wherein: said cushioning foam spacer layer is formed from open cell polyurethane microcellular foam having a Shore A hardness of at most 30, and said hard inner structure is formed from carbon fiber.
PCT/US2013/059626 2012-09-14 2013-09-13 Protective helmets WO2014043451A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/427,825 US20150223546A1 (en) 2012-09-14 2013-09-13 Protective Helmets
US14/171,283 US9578917B2 (en) 2012-09-14 2014-02-03 Protective helmets

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/617,663 2012-09-14
US13/617,663 US8640267B1 (en) 2012-09-14 2012-09-14 Protective helmet
US13/670,961 2012-11-07
US13/670,961 US20140123360A1 (en) 2012-11-07 2012-11-07 Military Helmet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/617,663 Continuation-In-Part US8640267B1 (en) 2012-09-14 2012-09-14 Protective helmet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/171,283 Continuation-In-Part US9578917B2 (en) 2012-09-14 2014-02-03 Protective helmets

Publications (2)

Publication Number Publication Date
WO2014043451A1 true WO2014043451A1 (en) 2014-03-20
WO2014043451A4 WO2014043451A4 (en) 2014-06-19

Family

ID=50278706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/059626 WO2014043451A1 (en) 2012-09-14 2013-09-13 Protective helmets

Country Status (1)

Country Link
WO (1) WO2014043451A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475878A (en) * 1992-11-04 1995-12-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Protective helmet assembly
US5956777A (en) * 1998-07-22 1999-09-28 Grand Slam Cards Helmet
US7328462B1 (en) * 2004-02-17 2008-02-12 Albert E Straus Protective helmet
US20110047678A1 (en) * 2009-08-27 2011-03-03 Uwe Barth Protective helmet having a hard inner cap and a shock-absorbing inner fitment
US20130125294A1 (en) * 2011-11-22 2013-05-23 Xenith, Llc Magnetic impact absorption in protective body gear
US20130340147A1 (en) * 2012-06-11 2013-12-26 Tate Technology, Llc Enhanced recoil attenuating safety helmet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475878A (en) * 1992-11-04 1995-12-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Protective helmet assembly
US5956777A (en) * 1998-07-22 1999-09-28 Grand Slam Cards Helmet
US7328462B1 (en) * 2004-02-17 2008-02-12 Albert E Straus Protective helmet
US20110047678A1 (en) * 2009-08-27 2011-03-03 Uwe Barth Protective helmet having a hard inner cap and a shock-absorbing inner fitment
US20130125294A1 (en) * 2011-11-22 2013-05-23 Xenith, Llc Magnetic impact absorption in protective body gear
US20130340147A1 (en) * 2012-06-11 2013-12-26 Tate Technology, Llc Enhanced recoil attenuating safety helmet

Also Published As

Publication number Publication date
WO2014043451A4 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US9578917B2 (en) Protective helmets
US20150223546A1 (en) Protective Helmets
US8640267B1 (en) Protective helmet
US20140123360A1 (en) Military Helmet
US11033797B2 (en) Football helmet having improved impact absorption
US10470515B2 (en) Football helmet with pressable front section
CA3137920C (en) Helmet impact attenuation liner
US8069498B2 (en) Protective arrangement
US6282724B1 (en) Apparatus for enhancing absorption and dissipation of impact forces for all helmets and protective equipment
US7062795B2 (en) Lightweight impact resistant helmet system
US9603408B2 (en) Football helmet having improved impact absorption
WO2013055743A1 (en) Helmet impact liner system
JP2004534161A5 (en)
US20180140037A1 (en) Helmet Impact Attenuation Article
US10743600B2 (en) Pressure attenuating helmet
US20120192337A1 (en) Blunt force protection headgear technology
US20160278467A1 (en) Safety Helmet
WO2015116750A1 (en) Protective helmets
US20190000173A1 (en) Full-Flex Helmet System
US20240000182A1 (en) Lattice Structure for Impact Attenuation
US20170303617A1 (en) Protective cap
WO2014043451A1 (en) Protective helmets
US11540585B2 (en) Pressure attenuating helmet
KR20200041690A (en) Helmet for head guard
RU204150U1 (en) ARMOR MADE OF LAYERED POLYMER COMPOSITES WITH A BALLISTIC LAYER IN A MICROSPHERIC MEDIUM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837763

Country of ref document: EP

Kind code of ref document: A1