WO2014042081A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2014042081A1
WO2014042081A1 PCT/JP2013/074023 JP2013074023W WO2014042081A1 WO 2014042081 A1 WO2014042081 A1 WO 2014042081A1 JP 2013074023 W JP2013074023 W JP 2013074023W WO 2014042081 A1 WO2014042081 A1 WO 2014042081A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment
display device
crystal display
substrate
Prior art date
Application number
PCT/JP2013/074023
Other languages
French (fr)
Japanese (ja)
Inventor
竹井 美智子
岡崎 敢
久保木 剣
研二 中西
柴崎 明
雄祐 西原
橋本 義人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014042081A1 publication Critical patent/WO2014042081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal display device.
  • the liquid crystal display device used suitably as a liquid crystal display device provided with a touch panel.
  • Liquid crystal display devices are very popular as display devices that can achieve light weight, thinness, and low power consumption, and are indispensable for daily life and business, such as mobile applications, various monitors, and large televisions. .
  • development is being promoted so as to further improve the display quality by realizing a wide viewing angle and an improved contrast, and to have more functions.
  • demand for smartphones and tablet PCs (personal computers) equipped with a touch panel is increasing in mobile applications and the like.
  • liquid crystal panels of various display modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied. .
  • a vertically aligned liquid crystal layer a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and a first electrode and a second substrate provided on the liquid crystal layer side of the first substrate
  • a second electrode provided on the liquid crystal layer side and at least one alignment film provided so as to be in contact with the liquid crystal layer, wherein the pixel region is in a layer plane of the liquid crystal layer when a voltage is applied
  • a first liquid crystal domain in which a tilt direction of liquid crystal molecules near the center in the thickness direction is a predetermined first direction
  • the first substrate or the second substrate has a light shielding member
  • the light shielding member Discloses a liquid crystal display device including at least one light shielding portion that selectively shields at least a part of the dark region (see, for example, Patent Document 1).
  • each pixel region has a pixel region arranged in a matrix having rows and columns, and each pixel region includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, A pixel electrode provided on the liquid crystal layer side of the first substrate; a counter electrode facing the pixel electrode; and a pair of alignment films provided so as to be in contact with the liquid crystal layer; A first liquid crystal domain in which the tilt direction of liquid crystal molecules in the layer plane of the liquid crystal layer and the vicinity of the center in the thickness direction when a voltage is applied is a predetermined first direction, and a second liquid crystal in a second direction.
  • the method for manufacturing a liquid crystal display device is a first region having a first pretilt direction on one of the pair of alignment films in the pixel region of the first substrate, and the first pretilt direction.
  • a method of manufacturing a liquid crystal display device comprising: a step of forming by light irradiation, the step of forming a boundary line between the third region and the fourth region so as to be parallel to the row direction. Disclosed (for example, (See Patent Document 2).
  • a liquid crystal display device having a pair of substrates and a liquid crystal layer sandwiched between the substrates, the liquid crystal display device having four or more orientations in one pixel when the substrate main surface is viewed in plan view.
  • a region is divided into regions and a plurality of pixels are divided into units.
  • One unit of the alignment divisions is that the alignment direction of one alignment region in at least one pixel is the other.
  • a liquid crystal display device in which the positional relationship in the vertical and horizontal directions in the pixel is different from the alignment direction of the same alignment region (for example, see Patent Document 3).
  • a tilt angle can be imparted by irradiating the photo-alignment film with ultraviolet rays.
  • irradiation is performed so that the direction of light irradiation changes in each region obtained by dividing one pixel (one picture element) into a plurality of areas (hereinafter also referred to as mask exposure).
  • mask exposure a tilt angle in the direction is given.
  • the viewing angle characteristics of the liquid crystal panel can be improved.
  • some force is applied to the surface of the liquid crystal panel, there is a phenomenon that the trace is not easily recovered.
  • the cause is, for example, the following.
  • An overlap also referred to as a double exposure portion
  • the alignment direction of the liquid crystal is canceled and the tilt angle is not given (small).
  • the invention described in the above-mentioned Patent Document 1 uses a light-shielding film in a dark line region in which alignment disorder occurs in order to suppress alignment disorder of a vertical alignment (VA) structure having four domains in one pixel. Cover with.
  • VA vertical alignment
  • concealing a region where the alignment is disturbed with a light-shielding film affects the transmittance. Therefore, it has been more desirable to reduce the region.
  • the present invention has been made in view of the above situation, and in a liquid crystal display device that can satisfy the characteristics of a wide viewing angle and adopts an alignment division method with excellent display quality, external stress such as pressing is applied to the liquid crystal panel. It is an object of the present invention to provide a liquid crystal display device that can quickly return a pressing impression generated by such a process. That is, the area where the tilt angle is difficult to be applied is reduced, and the boundary is reduced, so that stray light from the edge of the mask can be reduced, and the return of the tilt angle due to the influence of stray light can be sufficiently reduced. it can. By these synergistic effects, it is possible to greatly improve the return of the tilt and improve the return of the pressing impression.
  • the present inventors have studied various methods that can quickly return the impression marks caused by external stress such as pressing, and the light exposure. Double the mask width for the same so that it is equivalent to the length of the picture element pitch, and by shifting the exposure so that only half of the picture element is exposed, the orientation of each picture element maintains 4 domains. However, we focused on the same alignment of liquid crystal molecules between adjacent alignment regions between adjacent picture elements. Also, in order to minimize the boundary between changes in the direction of light irradiation in mask exposure, and to change the orientation within one pixel, the width of the opening of the mask is doubled from the conventional pixel pitch. It has been found that the double exposure portion does not come in the region between the picture elements, and the area of the double exposure portion is halved from the conventional one so that it exists at every picture element pitch.
  • the inventors of the present invention have a component in one direction along the pixel row in the alignment region where the liquid crystal molecules are adjacent between the pixel rows, and / or are adjacent between the pixel columns. It has been found that the alignment region has a component in one direction along the pixel row.
  • a liquid crystal display device having a plurality of picture elements arranged in a matrix, wherein the liquid crystal display device includes a pair of substrates and a liquid crystal sandwiched between the pair of substrates. Each of the pair of substrates is opposed to each other, and each has a photo-alignment film on the liquid crystal layer side.
  • the liquid crystal display device includes four layers in one picture element when the substrate main surface is viewed in plan view. The alignment region is divided into the above alignment regions, the liquid crystal layer contains liquid crystal molecules, and the major axis direction of the liquid crystal molecules below the threshold voltage in the vicinity of the photo alignment film is the main substrate on which the photo alignment film is provided.
  • the orientation direction of the liquid crystal molecules at a pretilt angle with respect to the surface and less than the threshold voltage of the liquid crystal layer is the same in two orientation regions adjacent to each other between the pixel rows when the main surface of the substrate is viewed in plan view. , And one direction along the pixel rows in the alignment region adjacent between the pixel rows And / or in the same direction in two alignment regions adjacent between the pixel rows and in one alignment direction along the pixel row in the alignment regions adjacent between the pixel rows. It may be a liquid crystal display device.
  • the alignment direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer is the same in two alignment regions adjacent to each other between the pixel rows when the main surface of the substrate is viewed in plan, and is adjacent between the pixel rows.
  • the alignment region has a component in one direction along the pixel row, and is the same direction in two alignment regions adjacent between the pixel columns, and in the alignment region adjacent between the pixel columns. It is preferable to have a component in one direction along the matrix.
  • the pretilt angle is preferably 85 ° or more and less than 90 °.
  • the photo-alignment film preferably has two alignment regions whose alignment directions are different from each other by approximately 180 ° within one picture element.
  • the photo-alignment film is preferably formed by irradiating polarized ultraviolet light with a photo-alignment film material using a mask.
  • FIG. 3 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view showing a mask in a mask exposure process for obtaining the liquid crystal display device of Embodiment 1, and a pretilt application direction of an alignment film of a TFT substrate and a pretilt application direction of an alignment film of a CF substrate.
  • FIG. 3 is a schematic plan view showing the orientation of liquid crystal molecules in an intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a simulation diagram illustrating dark lines according to the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a simulation diagram illustrating alignment directions of liquid crystal molecules according to the liquid crystal display device of Embodiment 1.
  • 6 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 2.
  • FIG. FIG. 6 is a schematic plan view illustrating the orientation of liquid crystal molecules in an intermediate portion in the layer thickness direction of a liquid crystal layer according to the liquid crystal display device of Embodiment 2.
  • 10 is a simulation diagram showing dark lines according to the liquid crystal display device of Embodiment 2.
  • 6 is a simulation diagram illustrating the alignment direction of liquid crystal molecules according to the liquid crystal display device of Embodiment 2.
  • 6 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 3.
  • FIG. FIG. 6 is a schematic plan view showing the orientation of liquid crystal molecules in an intermediate part in the layer thickness direction of a liquid crystal layer according to a liquid crystal display device of Embodiment 3.
  • FIG. 4 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Comparative Example 1.
  • FIG. FIG. 6 is a schematic plan view showing a mask in a mask exposure step for obtaining a liquid crystal display device according to Comparative Example 1, a pretilt application direction of an alignment film of a TFT substrate, and a pretilt application direction of an alignment film of a CF substrate. It is a plane schematic diagram which shows the orientation direction of the liquid crystal molecule of the intermediate part in the layer thickness direction of the liquid-crystal layer which concerns on the liquid crystal display device of the comparative form 1.
  • the substrate on which the thin film transistor element (TFT) is arranged is also referred to as a TFT substrate.
  • the substrate on which the color filter (CF) is disposed is also referred to as a CF substrate.
  • the difference in the angle of the other alignment direction with respect to one alignment direction is represented by an angle (°) for rotating the one alignment direction clockwise to coincide with the other alignment direction.
  • the picture element means a sub-pixel used to indicate a single color.
  • stray light refers to light that exposes the edge of a region where light from a mask opening leaks from a mask edge and is masked.
  • the voltage threshold applied to the liquid crystal layer means, for example, a voltage value that gives a transmittance of 5% when the light transmittance is set to 100%.
  • the tilt improvement region is a region where the return of the pressing impression is improved by the configuration of the embodiment.
  • the liquid crystal display device provided with a touch panel is not limited to the one provided with the touch panel separately from the pair of substrates holding the liquid crystal, and may be any device having a touch panel function. Further, in the present specification, unless the contents of the alignment direction of the liquid crystal molecules in the liquid crystal layer or the alignment direction of the alignment region are clearly indicated, the alignment of the liquid crystal molecules in the intermediate portion in the layer thickness direction of the liquid crystal layer is not specified. Say the direction.
  • An alignment region adjacent between pixel rows refers to an alignment region adjacent to each other between two adjacent pixel element rows, and two alignment regions arranged along a pixel row. Is arranged for each picture element along the picture element line. Note that it is not necessary for all of the alignment regions to have a component in one direction along the pixel rows, and as long as the effects of the present invention are sufficiently exhibited, substantially all of the alignment regions are in one direction along the pixel rows. What is necessary is just to have this component. The same applies to the “alignment regions adjacent between the pixel rows”.
  • “having a component in one direction along the picture element row” means that the directions along the picture element row are two directions different from each other by 180 °, and are aligned in any one direction, in other words, any one direction. Say to have a positive component to. The same applies to “having a component in one direction along the pixel array”.
  • the direction in which the alignment film imparts a pretilt to liquid crystal molecules is indicated by arrows (FIGS. 1, 2, 6, 10, 12, 13, and 22).
  • the direction in which the alignment film imparts pretilt to the liquid crystal molecules refers to the direction in which the alignment film imparts pretilt to the liquid crystal molecules with respect to the alignment film surface (for example, the direction of the solid arrow shown in FIG. 22 and the arrow of the broken line) Direction.)
  • the direction in which the alignment film imparts pretilt to the liquid crystal molecules is also referred to as the pretilt imparting direction of the alignment film.
  • represents the pretilt angle
  • LC represents liquid crystal molecules
  • the alternate long and short dash line represents the normal direction to the alignment film surface.
  • represents the pretilt angle
  • LC represents liquid crystal molecules
  • the alternate long and short dash line represents the normal direction to the alignment film surface.
  • the pretilt application direction of the alignment film on the TFT substrate is the same as the pretilt direction of the liquid crystal (also referred to as the alignment direction of the liquid crystal molecules), but the pretilt application direction of the alignment film on the CF substrate is the pretilt direction of the liquid crystal.
  • FIGS. 1 and 3. show the direction of the pretilt of the liquid crystal of the liquid crystal display device manufactured using both substrates shown in FIG. 1).
  • FIG. 1 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 1.
  • the upper side of FIG. 1 shows the direction in which the TFT substrate and the photo-alignment film on the TFT substrate align liquid crystal molecules by two pixels.
  • the lower side of FIG. 1 indicates the direction in which the CF substrate and the photo-alignment film on the CF substrate align liquid crystal molecules by two pixels.
  • the pretilt application direction of the photo-alignment films on both substrates of the liquid crystal display device of Embodiment 1 is obtained by translating one of the picture element on the TFT substrate side and the picture element on the CF substrate side shown in FIG. This is the same as a superposition of both picture elements.
  • the pretilt application direction of the alignment film on the TFT substrate (TFT side) is indicated by a solid line arrow
  • the pretilt application direction of the alignment film on the CF substrate (CF side) is indicated by a broken line arrow. The same applies to the drawings described later.
  • FIG. 2 is a schematic plan view showing a mask in a mask exposure process for obtaining the liquid crystal display device of Embodiment 1, and a pretilt application direction of the alignment film of the TFT substrate and a pretilt application direction of the alignment film of the CF substrate.
  • the mask exposure step is performed on at least one substrate so as to cover a part (half) of each of the adjacent picture elements.
  • the mask opening O used in the TFT side substrate is twice as wide as the mask opening according to comparative embodiment 1 described later (in FIG. 2, the length of the short side of one pixel and the interval between the pixels).
  • the irradiation process is shifted by half a pixel, and the alignment process for the right half of one pixel and the alignment process for the left half of the pixel adjacent to the right of the pixel are performed. Do it at the same time. By doing so, there is no double exposure portion where the tilt is reduced between the picture elements, and it is possible to prevent the tilt from being reduced. Since the region with a small tilt (not attached) can be halved, the return time of the trace can be improved by the pressure test. In addition, since the opening is widened and the number of boundaries is reduced, the yield is increased and stray light at the mask edge can be reduced.
  • the mask M covers the right half of the left picture element and the left half of the right picture element, as shown in the upper left of FIG.
  • the left half of the left picture element and the right half of the right picture element overlap with the opening O of the mask when the substrate main surface is viewed in plan.
  • polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface.
  • the obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
  • the mask M covers the upper half of each of the left picture element and the right picture element, as shown in the lower left of FIG.
  • the lower half of each of the left picture element and the right picture element overlaps the opening O of the mask when the substrate main surface is viewed in plan.
  • polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface.
  • the obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
  • the mask M covers the left half of the left picture element and the right half of the right picture element, as shown in the upper right of FIG.
  • the right half of the left picture element and the left half of the right picture element overlap with the opening O of the mask when the substrate main surface is viewed in plan.
  • polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface.
  • the obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
  • the TFT-side orientation is changed as shown in FIG. 2 in order to reduce the area with a small tilt (not attached) as compared to the first comparative embodiment.
  • the CF side has the same orientation as that of Comparative Example 1.
  • the mask M covers the lower half of each of the left and right picture elements, as shown in the lower right of FIG.
  • the upper half of each of the left picture element and the right picture element overlaps the opening O of the mask when the substrate main surface is viewed in plan.
  • polarized ultraviolet rays are incident from an oblique direction with respect to the normal of the substrate surface to form a photo-alignment film.
  • the obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
  • the width of the opening of the mask is at least the sum of the sides of one picture element along the width and the interval between picture elements.
  • FIG. 3 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 1.
  • the four alignment regions of 2 rows and 2 columns shown on the left side of FIG. 3 and the 4 alignment regions of 2 rows and 2 columns shown on the right side of FIG. 3 each represent one picture element. That is, in the first embodiment, in order to improve the viewing angle, a total of four tilts are formed in each of the four alignment regions in one picture element, and the alignment is divided.
  • the liquid crystal display device is a vertical alignment mode liquid crystal display device in which liquid crystal molecules are aligned in a substantially vertical direction with respect to the main surface of the substrate at a voltage lower than a threshold voltage, but a pretilt angle is given by the photo-alignment film.
  • the tilt angle azimuth is determined by separately exposing the pixel on the TFT side and the CF side defined by the ultraviolet irradiation direction using a mask, and the liquid crystal in the liquid crystal layer is used for viewing angle compensation.
  • Four domains are formed in which the molecules are twisted.
  • D indicated by the cone cone indicates the tilt direction of the liquid crystal molecules.
  • the divided exposure end portion is a region where the exposure regions overlap on the order of several ⁇ m (double exposure) Part).
  • the tilt angle of the double exposure portion is almost vertical (tilt angle 0 °) because the direction differs by 180 ° between the first exposure and the second exposure.
  • the double exposure portion is formed both between each of the four alignment regions (cross shape) in the picture element and between the picture element electrodes ITO (indium tin oxide).
  • the double-exposed portion (tilt angle 0 ° region) present in the panel formed by this technique has a problem that it takes time to recover the alignment because the alignment is disturbed when some pressure is applied.
  • the pitch (width) of the UV-irradiated mask on the TFT side is changed from a 1 ⁇ 2 pixel width in comparative embodiment 1 described later to one pixel width.
  • the overlapping region (double exposure portion) of the irradiation that does not have a tilt is set only at the center of the pixel, and a tilt is provided between the pixel electrodes ITO.
  • the alignment direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer is the same in two alignment regions adjacent to each other between the pixel columns when the substrate main surface is viewed in plan.
  • the two alignment regions adjacent to each other between the pixel columns are not the two alignment regions adjacent to each other in the pixel columns, but the alignment regions of the pixel columns and the alignment regions of the pixel columns adjacent to the pixel columns. And what is next to each other.
  • the present technology also has the advantage that the width of the opening of the mask can be increased, so that the yield can be increased, and stray light can be reduced because the number of double exposure portions is reduced.
  • the upper two alignment directions are the upper left side and the lower side. These two orientation directions are on the upper right side.
  • all the alignment regions adjacent between the pixel rows are aligned in one direction (upward direction) along the pixel row.
  • the alignment regions adjacent to each other between the pixel rows shown in FIG. 3 have a positive component (upper component) in one direction along the pixel row, and a positive component on the opposite side (lower). No side component).
  • the positive component on the opposite side (lower component) is included, There is no positive component (upper component) in the one direction. In this way, for every alignment region adjacent between the pixel columns, all of the alignment regions may have a positive component in one direction along the pixel column. This is one mode in which the effects of the present invention can be sufficiently exhibited.
  • the voltage applied to the liquid crystal molecules is less than the threshold voltage, and the liquid crystal molecules are aligned in a direction substantially perpendicular to the substrate surface.
  • a negative type liquid crystal having a negative dielectric anisotropy is usually used, and when the voltage is less than the threshold voltage (for example, no voltage is applied), the liquid crystal molecules are moved relative to the substrate surface.
  • the liquid crystal molecule having negative dielectric anisotropy refers to a liquid crystal molecule having a larger dielectric constant in the minor axis direction than in the major axis direction.
  • a high contrast ratio can be obtained by using the vertical alignment mode.
  • the liquid crystal molecules aligned in the substantially vertical direction are those that are substantially perpendicular to the main surface of the substrate to the extent that they are generally evaluated as a vertical alignment mode in the technical field of liquid crystal display panels. It may have a pretilt angle.
  • the liquid crystal display device of Embodiment 1 preferably includes an active matrix substrate using thin film transistors. Thereby, the alignment regulating force of the liquid crystal can be further strengthened, and the display quality can be improved.
  • electrodes such as a gate electrode connected to the gate line (scanning line), a source electrode connected to the source line (signal line), a drain electrode connected to the pixel electrode, and an auxiliary capacitance electrode. Formed on a substrate.
  • the gate line and the source line are arranged so as to cross each other, and a thin film transistor (TFT) as a switching element is arranged at the intersecting portion, and the TFT is a gate connected to the gate line.
  • the electrode is formed from a source electrode connected to the source line, a source electrode connected to the source line, a drain electrode connected to the pixel electrode, and an island (island) semiconductor layer. An elementary electrode structure can be taken.
  • the configuration of the liquid crystal display device according to the first embodiment is as described above.
  • the liquid crystal display device and the liquid crystal display device may usually include other components. Good. Such other components are not particularly limited.
  • a photosensitive resin that transmits light corresponding to each color
  • the material of the black matrix is not particularly limited as long as it has a light shielding property, and a resin material containing a black pigment or a metal material having a light shielding property is preferably used.
  • FIG. 3 shows a display area of a circuit board.
  • a gate wiring and a source wiring are provided on a glass substrate (not shown) so as to be substantially orthogonal to each other.
  • a picture element (picture element electrode) is provided for each area surrounded by.
  • the method using photo-alignment is most practical as a method of giving a slight inclination (for example, 85 ° or more and less than 90 ° to the main surface of the substrate) to the vertically aligned liquid crystal molecules.
  • the display quality is excellent.
  • the pretilt application direction of the alignment film for each region can be suitably controlled.
  • the direction in which the alignment film on the TFT array substrate aligns the liquid crystal molecules is substantially orthogonal to the direction in which the alignment film on the CF substrate aligns the liquid crystal molecules.
  • the first embodiment relates to a liquid crystal display device in which liquid crystal is sandwiched between two substrates each having an active matrix element array formed on at least one substrate.
  • the liquid crystal material has a negative dielectric anisotropy and exhibits a nematic phase in a certain temperature range.
  • this liquid crystal material has a slight inclination in a certain direction for each alignment region in a state where no voltage is applied to each substrate, but is aligned substantially vertically.
  • the first embodiment when a force is applied to the vertical alignment mode liquid crystal panel, it is possible to sufficiently solve the problem of poor return of the pressing impression. If the tilt is small, the return of the pressing indentation is poor, and this is considered to be one of the causes of the tilt in the panel.
  • the gray portion appears as a dark line, but in the first embodiment, it looks like a saddle shape and an 8-digit shape of Arabic numerals.
  • FIG. 4 is a simulation diagram illustrating dark lines according to the liquid crystal display device of the first embodiment.
  • FIG. 5 is a simulation diagram illustrating the alignment direction of the liquid crystal molecules according to the liquid crystal display device of the first embodiment. The simulation was performed under the condition that 5 V was applied to the pixel electrode.
  • FIG. 4 is a simulation diagram showing a portion that appears as a dark line when viewed with a linear polarizing plate.
  • FIG. 4 shows three picture elements, and the dark lines in the left and right picture elements have a saddle shape, and the dark line in the middle picture element looks like the figure 8 of the Arabic numeral.
  • the saddle shape may be a port shape or a starboard shape.
  • the figure 8 is a shape inclined normally in the rectangular alignment area
  • FIG. 6 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 2.
  • FIG. 7 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of the second embodiment.
  • the width of the mask opening for alignment of the alignment film on the TFT side is doubled and the irradiation is shifted by half a pixel.
  • the alignment film for alignment on the CF side is used for alignment.
  • the mask is irradiated with the width of the opening doubled and shifted by half a pixel.
  • the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 2 is the same as the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 1 described above.
  • FIG. 8 is a simulation diagram illustrating dark lines according to the liquid crystal display device of the second embodiment.
  • FIG. 9 is a simulation diagram illustrating the alignment direction of the liquid crystal molecules according to the liquid crystal display device of the second embodiment. The simulation was performed under the condition that 5 V was applied to the pixel electrode.
  • FIG. 8 is a simulation diagram showing a portion that appears as a dark line when viewed with a linear polarizing plate.
  • FIG. 8 shows four picture elements.
  • the dark line in the upper left picture element and the lower right picture element has an 8-digit shape of Arabic numerals, and the dark line in the lower left picture element and the upper right picture element has a bowl shape. become.
  • FIG. 10 is a schematic plan view illustrating the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 3.
  • FIG. 11 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 3.
  • the alignment mask of the CF-side alignment film is similarly irradiated with the width of the opening doubled and shifted by half a pixel.
  • the return of the pressing impression can be further improved as in the picture element shown in the second embodiment.
  • the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 3 is the same as the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 1 described above.
  • FIG. 12 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Comparative Example 1.
  • FIG. 13 is a schematic plan view showing a mask at the time of a mask exposure process for obtaining the liquid crystal display device of Comparative Example 1, and the pretilt application direction of the alignment film of the TFT substrate and the pretilt application direction of the alignment film of the CF substrate.
  • FIG. 14 is a schematic plan view showing the orientation direction of the liquid crystal molecules in the intermediate portion in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Comparative Embodiment 1.
  • the alignment film is exposed to light at a half-pixel pitch using a mask having a width that is half the width of the pixel on both the TFT side and the CF side. Thereby, the double exposure part was formed in both between each orientation area
  • the liquid crystal panel according to the first embodiment When the liquid crystal panel according to the first embodiment is viewed through a linear polarizing plate, the liquid crystal panel according to the first comparative embodiment appears to be a combination of a saddle shape and an 8-digit shape of Arabic numerals. When viewed through the board, only the dark-line-shaped dark line can be seen as shown in FIG.
  • FIG. 15 is a simulation diagram illustrating dark lines according to the liquid crystal display device of Comparative Embodiment 1.
  • FIG. 16 is a simulation diagram illustrating the alignment direction of liquid crystal molecules according to the liquid crystal display device of Comparative Example 1. The simulation was performed under the condition that 5 V was applied to the pixel electrode.
  • FIG. 15 shows three picture elements, and the dark lines in the left picture element, the middle picture element, and the right picture element all have a bowl shape.
  • FIG. 17 and 18 are diagrams for explaining the pressing pressure test. As shown in FIG. 17, the panel surface is pushed while maintaining a constant pressure. Or trace. Then, as shown in FIG. 18, the pressing impression T becomes thinner and disappears as time elapses. The time until the pressing impression T completely disappears can be measured to evaluate the return of the pressing impression.
  • FIG. 19 is an exploded perspective schematic view showing a liquid crystal display panel and a backlight of the liquid crystal display device of the present invention.
  • the substrate 20 on the CF side of the liquid crystal panel and the circuit board 10 sandwich the liquid crystal 30.
  • the CF-side substrate 20 and the circuit substrate 10 are each divided in orientation within the picture element region when the main surface of the substrate is viewed in plan.
  • the liquid crystal display device includes a polarizing plate 20 p on the observation surface side of the CF-side substrate 20 and a polarizing plate 10 p on the back surface of the circuit substrate 10.
  • the liquid crystal display device includes a backlight 40 on the back surface of the polarizing plate 10p.
  • the light of the backlight 40 passes through the polarizing plate 10p, the circuit board 10, the liquid crystal 30, the CF side substrate 20, and the polarizing plate 20p in this order, and the light passing / non-transmitting is controlled by the orientation control of the liquid crystal 30. .
  • FIG. 20 and 21 are exploded perspective schematic views showing an example of the liquid crystal display device of the present invention.
  • FIG. 20 shows a smartphone
  • FIG. 21 shows a tablet PC.
  • the liquid crystal display device of the present invention can be particularly suitably used for a liquid crystal display device including such a touch panel.
  • Embodiment 1 shows an example in which exposure is performed so as to cover each half of adjacent picture elements in the alignment film on the TFT substrate, but instead of the alignment film on the TFT substrate.
  • the same exposure can be performed on the alignment film on the color filter substrate.
  • the two alignment regions adjacent between the pixel rows have the same direction, and the alignment regions adjacent between the pixel rows have a component in one direction along the pixel row.
  • Two alignment regions adjacent between the pixel rows may have the same direction, and the alignment regions adjacent between the pixel rows may have a component in one direction along the pixel row.
  • an alignment region adjacent between the pixel rows has a component in one direction along the pixel row means that for each alignment region adjacent between the pixel rows, all of the alignment regions are in one direction along the pixel row. Any material having a positive component to the above may be used.
  • the counter substrate including the black matrix and the color filter is referred to as a CF substrate.
  • the black matrix and the color filter may be provided on the TFT substrate side instead of the counter substrate side. Even when colors such as RGB are displayed in a single color, almost a predetermined effect can be obtained.
  • a transparent conductive material such as indium zinc oxide (IZO), zinc oxide (ZnO), tin oxide (SnO), and IGZO (indium-gallium-zinc-oxygen) can be used.
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • SnO tin oxide
  • IGZO indium-gallium-zinc-oxygen
  • a high-resistance semiconductor layer (i layer) made of amorphous silicon, polysilicon, or the like, and a low-resistance semiconductor layer (n made of n + amorphous silicon doped with an impurity such as phosphorus in amorphous silicon) + Layers) can be used.
  • An oxide semiconductor such as IGZO (indium-gallium-zinc-oxygen) is preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal display device that can recover excellently from pressing impressions for a liquid crystal display device with superior display quality that can satisfy wide viewing angle characteristics. This liquid crystal display device is a liquid crystal display device in which, when a substrate main surface is viewed in a plane view, the orientation directions of liquid crystal molecules at a voltage less than a threshold value for a liquid crystal layer are identical in two adjacent alignment regions in the picture element row direction and have a component in one direction along a picture element row in adjacent alignment regions in the picture element row direction, and/or are identical in two adjacent alignment regions in the picture element column direction and have a component in one direction along a picture element column in adjacent alignment regions in the picture element column direction.

Description

液晶表示装置Liquid crystal display
本発明は、液晶表示装置に関する。より詳しくは、タッチパネルを備える液晶表示装置として好適に用いられる液晶表示装置に関する。 The present invention relates to a liquid crystal display device. In more detail, it is related with the liquid crystal display device used suitably as a liquid crystal display device provided with a touch panel.
液晶表示装置は、軽量・薄型・低消費電力を実現することができる表示装置として大いに普及し、モバイル用途や各種のモニター、大型テレビ等、日常生活やビジネスに欠かすことのできないものとなっている。このような液晶表示装置においては、視野角拡大、コントラスト向上を実現して表示品位を更に向上し、また、より多くの機能を持たすことができるようにする開発が進められている。また、近年においてはモバイル用途等において、タッチパネルを備えたスマートフォンやタブレットPC(パーソナルコンピュータ)の需要が増大している。このような様々な用途に対応して種々の表示特性を発揮させるために、液晶層の光学特性を変化させるための電極配置や基板の設計等に係る各種表示モードの液晶パネルが検討されている。 Liquid crystal display devices are very popular as display devices that can achieve light weight, thinness, and low power consumption, and are indispensable for daily life and business, such as mobile applications, various monitors, and large televisions. . In such a liquid crystal display device, development is being promoted so as to further improve the display quality by realizing a wide viewing angle and an improved contrast, and to have more functions. In recent years, demand for smartphones and tablet PCs (personal computers) equipped with a touch panel is increasing in mobile applications and the like. In order to exhibit various display characteristics corresponding to such various uses, liquid crystal panels of various display modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied. .
このような液晶パネルにおいて、垂直配向モードの液晶表示装置において、光配向膜へ紫外線照射することでチルト角を付与する技術が開示されている。 In such a liquid crystal panel, a technique for providing a tilt angle by irradiating the photo-alignment film with ultraviolet rays in a vertical alignment mode liquid crystal display device is disclosed.
例えば、垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板と、前記第1基板の前記液晶層側に設けられた第1電極および前記第2基板の前記液晶層側に設けられた第2電極と、前記液晶層に接するように設けられた少なくとも1つの配向膜とを有し、画素領域は、電圧が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向が予め決められた第1方向である第1液晶ドメインを有し、前記第1基板または前記第2基板は遮光部材を有し、前記遮光部材は、前記暗い領域の少なくとも一部を選択的に遮光する少なくとも1つの遮光部を含む、液晶表示装置が開示されている(例えば、特許文献1参照。)。 For example, a vertically aligned liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and a first electrode and a second substrate provided on the liquid crystal layer side of the first substrate A second electrode provided on the liquid crystal layer side and at least one alignment film provided so as to be in contact with the liquid crystal layer, wherein the pixel region is in a layer plane of the liquid crystal layer when a voltage is applied And a first liquid crystal domain in which a tilt direction of liquid crystal molecules near the center in the thickness direction is a predetermined first direction, wherein the first substrate or the second substrate has a light shielding member, and the light shielding member Discloses a liquid crystal display device including at least one light shielding portion that selectively shields at least a part of the dark region (see, for example, Patent Document 1).
また行および列を有するマトリクス状に配列された画素領域を有し、それぞれの画素領域は、垂直配向型の液晶層と、前記液晶層を介して互いに対向する第1基板および第2基板と、前記第1基板の前記液晶層側に設けられた画素電極と、前記画素電極と対向する対向電極と、前記液晶層に接するように設けられた一対の配向膜を有し、前記画素領域は、電圧が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向が予め決められた第1方向である第1液晶ドメインと、第2方向である第2液晶ドメインと、第3方向である第3液晶ドメインと、第4方向である第4液晶ドメインとを有し、前記第1方向、第2方向、第3方向および第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向である、液晶表示装置の製造方法であって、前記第1基板の前記画素領域内の前記一対の配向膜の一方に、第1プレチルト方向を有する第1領域と前記第1プレチルト方向と反平行な第2プレチルト方向を有する第2領域を光照射によって形成する工程であって、前記第1領域と前記第2領域との境界線が前記列の方向に平行になるように形成する工程と、前記第2基板の前記画素領域内の前記一対の配向膜の他方に、第3プレチルト方向を有する第3領域と前記第3プレチルト方向と反平行な第4プレチルト方向を有する第4領域を光照射によって形成する工程であって、前記第3領域と前記第4領域との境界線が前記行の方向に平行になるように形成する工程と、を包含する、液晶表示装置の製造方法が開示されている(例えば、特許文献2参照。)。 In addition, each pixel region has a pixel region arranged in a matrix having rows and columns, and each pixel region includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, A pixel electrode provided on the liquid crystal layer side of the first substrate; a counter electrode facing the pixel electrode; and a pair of alignment films provided so as to be in contact with the liquid crystal layer; A first liquid crystal domain in which the tilt direction of liquid crystal molecules in the layer plane of the liquid crystal layer and the vicinity of the center in the thickness direction when a voltage is applied is a predetermined first direction, and a second liquid crystal in a second direction. A third liquid crystal domain that is a third direction and a fourth liquid crystal domain that is a fourth direction, and the first direction, the second direction, the third direction, and the fourth direction are any two Difference in direction is approximately equal to an integral multiple of 90 ° 4 The method for manufacturing a liquid crystal display device is a first region having a first pretilt direction on one of the pair of alignment films in the pixel region of the first substrate, and the first pretilt direction. Forming a second region having an antiparallel second pretilt direction by light irradiation, wherein a boundary line between the first region and the second region is formed to be parallel to the direction of the row; And a third region having a third pretilt direction and a fourth region having a fourth pretilt direction antiparallel to the third pretilt direction on the other of the pair of alignment films in the pixel region of the second substrate. A method of manufacturing a liquid crystal display device, comprising: a step of forming by light irradiation, the step of forming a boundary line between the third region and the fourth region so as to be parallel to the row direction. Disclosed (for example, (See Patent Document 2).
更に、一対の基板及び該基板間に挟持された液晶層を有する液晶表示装置であって、該液晶表示装置は、基板主面を平面視したときに、1つの画素内で4つ以上の配向領域に配向分割がなされ、かつ、複数の画素を一単位とした配向分割がなされたものであり、該配向分割の一単位は、少なくとも1つの画素における1つの配向領域の配向方向が、他の画素における画素内の上下左右の位置関係が同じ配向領域の配向方向と異なる液晶表示装置が開示されている(例えば、特許文献3参照。)。 Furthermore, a liquid crystal display device having a pair of substrates and a liquid crystal layer sandwiched between the substrates, the liquid crystal display device having four or more orientations in one pixel when the substrate main surface is viewed in plan view. A region is divided into regions and a plurality of pixels are divided into units. One unit of the alignment divisions is that the alignment direction of one alignment region in at least one pixel is the other There has been disclosed a liquid crystal display device in which the positional relationship in the vertical and horizontal directions in the pixel is different from the alignment direction of the same alignment region (for example, see Patent Document 3).
国際公開第2006/132369号International Publication No. 2006/132369 特開2008-145700号公報JP 2008-145700 A 国際公開第2011/142144号International Publication No. 2011/142144
閾値電圧未満で液晶分子が基板主面に対して略垂直方向に配向する垂直配向モードの液晶パネルにおいて、光配向膜へ紫外線を照射することによりチルト角を付与することができる。マスクを用いて、1画素(1絵素)内を複数に分割したそれぞれの領域で光照射の方向が変わるようにして照射し(以下、マスク露光とも言う。)、1絵素内で複数の方向へのチルト角を付与する。これにより液晶パネルの視野角特性を良くすることができる。しかしながら、液晶パネル表面に何らかの力を付与するとその痕跡がなかなか回復しないという現象がある。この現象は、近年のモバイル用途等の拡大に伴って、パネル面に指押し等によって触れたり圧力がかかったりする等、パネル面上に外部応力等の負荷が加えられることが増えており、大きな問題となる。上述したような配向分割された高品位液晶表示装置においても、そのような使用環境でも安定した性能を発揮できることが望まれるところである。 In a vertical alignment mode liquid crystal panel in which liquid crystal molecules are aligned in a direction substantially perpendicular to the main surface of the substrate at a voltage lower than the threshold voltage, a tilt angle can be imparted by irradiating the photo-alignment film with ultraviolet rays. Using a mask, irradiation is performed so that the direction of light irradiation changes in each region obtained by dividing one pixel (one picture element) into a plurality of areas (hereinafter also referred to as mask exposure). A tilt angle in the direction is given. Thereby, the viewing angle characteristics of the liquid crystal panel can be improved. However, when some force is applied to the surface of the liquid crystal panel, there is a phenomenon that the trace is not easily recovered. This phenomenon is greatly increased due to the expansion of mobile applications in recent years, such as when the panel surface is touched or pressed by finger pressing, etc., and loads such as external stress are applied to the panel surface. It becomes a problem. Even in the above-described high-definition liquid crystal display device in which alignment is divided, it is desired that stable performance can be exhibited even in such a use environment.
その原因は、例えば、以下のものが挙げられる。上述したように、1絵素の中で、マスクを用いて光照射の方向を変えるとき、光照射領域がずれた場合であっても光照射されない領域を生じにくくするために、マスク露光における光照射と該光照射される領域に隣接する領域に対する、該光照射とは異なる光照射との境目で重なり(二重露光部とも言う。)が生じるようにする。この二重露光部では液晶の配向方向が相殺されてチルト角が付与されない(小さい)。何らかの力を加えると配向の乱れが発生するが、液晶分子にチルト角が付与された領域は液晶分子の配向が戻るのが比較的早いのに対し、液晶分子にチルト角が付与されていない領域は液晶分子の配向の回復に時間がかかり、力を加えた痕跡の戻りが悪くなる。このような、押し圧痕の戻りが悪い点については大きな問題になっている。 The cause is, for example, the following. As described above, when changing the direction of light irradiation using a mask in one picture element, even if the light irradiation area is shifted, light in the mask exposure is less likely to be generated. An overlap (also referred to as a double exposure portion) is generated at the boundary between the irradiation and a region adjacent to the region irradiated with the light, which is different from the light irradiation. In this double exposure portion, the alignment direction of the liquid crystal is canceled and the tilt angle is not given (small). When some force is applied, the alignment is disturbed, but in the region where the tilt angle is given to the liquid crystal molecules, the alignment of the liquid crystal molecules returns relatively quickly, whereas the region where the tilt angle is not given to the liquid crystal molecules Takes time to recover the alignment of liquid crystal molecules, and the return of traces of force applied is worse. Such a bad return of the pressing indentation is a big problem.
また上記特許文献1に記載の発明は、1絵素に4方向のドメインをもつ垂直配向(VA:Vertical Alignment)モードの構造の配向乱れを抑制するために、配向乱れの生じる暗線領域を遮光膜で覆う。しかしながら、配向乱れの生じる領域を遮光膜で隠すと透過率に影響するため、その領域を減らすことがより望まれるところであった。 In addition, the invention described in the above-mentioned Patent Document 1 uses a light-shielding film in a dark line region in which alignment disorder occurs in order to suppress alignment disorder of a vertical alignment (VA) structure having four domains in one pixel. Cover with. However, concealing a region where the alignment is disturbed with a light-shielding film affects the transmittance. Therefore, it has been more desirable to reduce the region.
上述した、絵素間で液晶分子にチルト角が付与されなかった(小さかった)領域のチルト等を改善し、押し圧の痕跡の回復時間を改善するための工夫の余地があった。 There has been room for improvement in improving the recovery time of the trace of the pressing pressure by improving the tilt of the region where the tilt angle is not imparted to the liquid crystal molecules between the picture elements (small).
本発明は、上記現状に鑑みてなされたものであり、広視野角の特性を満足でき、表示品位に優れた配向分割手法が採用された液晶表示装置において、押圧等の外部応力が液晶パネルにかかることによって生じた押し圧痕を、すぐに戻すことができる液晶表示装置を提供することを目的とする。すなわち、チルト角が付与されにくい領域を低減させるとともに、上記境目が減ることからマスク端からの迷光を減らすことができ、迷光の影響によってチルト角が元に戻ってしまうことも充分に減らすことができる。これらの相乗的な効果により、チルトの戻りを大きく改善することが可能になり、押し圧痕の戻りを改善することができる。 The present invention has been made in view of the above situation, and in a liquid crystal display device that can satisfy the characteristics of a wide viewing angle and adopts an alignment division method with excellent display quality, external stress such as pressing is applied to the liquid crystal panel. It is an object of the present invention to provide a liquid crystal display device that can quickly return a pressing impression generated by such a process. That is, the area where the tilt angle is difficult to be applied is reduced, and the boundary is reduced, so that stray light from the edge of the mask can be reduced, and the return of the tilt angle due to the influence of stray light can be sufficiently reduced. it can. By these synergistic effects, it is possible to greatly improve the return of the tilt and improve the return of the pressing impression.
本発明者らは、1つの絵素内で複数の配向分割がなされた液晶表示装置において、押圧等の外部応力によって生じた押し痕をすぐに戻すことができる手法を種々検討したところ、光露光のためのマスク幅を従来から2倍にして絵素ピッチの長さと同等とし、絵素の半分だけに露光されるようにしながらずらして露光することで、各絵素の配向は4ドメインを維持しながら、隣接する絵素間の隣接する配向領域間の液晶分子の配向を同じものにすることに着目した。また、マスク露光における光照射の方向が変わる境目をなるべく絵素内にならないようにし、かつ1絵素内で配向を変えるために、マスクの開口部の幅を従来から2倍にして絵素ピッチの長さと同等とし、絵素間領域に二重露光部がこないようにするとともに、二重露光部の面積を従来から半分にし、絵素ピッチごとに存在するようにすることを見出した。 In the liquid crystal display device in which a plurality of alignment divisions are made in one picture element, the present inventors have studied various methods that can quickly return the impression marks caused by external stress such as pressing, and the light exposure. Double the mask width for the same so that it is equivalent to the length of the picture element pitch, and by shifting the exposure so that only half of the picture element is exposed, the orientation of each picture element maintains 4 domains. However, we focused on the same alignment of liquid crystal molecules between adjacent alignment regions between adjacent picture elements. Also, in order to minimize the boundary between changes in the direction of light irradiation in mask exposure, and to change the orientation within one pixel, the width of the opening of the mask is doubled from the conventional pixel pitch. It has been found that the double exposure portion does not come in the region between the picture elements, and the area of the double exposure portion is halved from the conventional one so that it exists at every picture element pitch.
更に、本発明者らは、液晶分子の配向方向が、絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有するか、及び/又は、該絵素列間で隣接する配向領域で、該絵素列に沿う1方向への成分を有するものとすることを見出した。 Further, the inventors of the present invention have a component in one direction along the pixel row in the alignment region where the liquid crystal molecules are adjacent between the pixel rows, and / or are adjacent between the pixel columns. It has been found that the alignment region has a component in one direction along the pixel row.
すなわち、本発明の一態様によれば、マトリクス状に配置された複数の絵素を有する液晶表示装置であって、上記液晶表示装置は、一対の基板及び該一対の基板間に挟持された液晶層を有し、上記一対の基板は、互いに対向し、それぞれ液晶層側に光配向膜を備え、上記液晶表示装置は、基板主面を平面視したときに、1つの絵素内で4つ以上の配向領域に配向分割がなされ、上記液晶層は、液晶分子を含み、上記光配向膜近傍にある閾値電圧未満での液晶分子の長軸方向は、該光配向膜が設けられた基板主面に対してプレチルト角をなし、上記液晶層の閾値電圧未満での液晶分子の配向方向は、基板主面を平面視したときに、絵素行間で隣接する2つの配向領域で同じ方向であり、かつ絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有するか、及び/又は、絵素列間で隣接する2つの配向領域で同じ方向であり、かつ絵素列間で隣接する配向領域で、絵素列に沿う1方向への成分を有する液晶表示装置であってもよい。 That is, according to one embodiment of the present invention, a liquid crystal display device having a plurality of picture elements arranged in a matrix, wherein the liquid crystal display device includes a pair of substrates and a liquid crystal sandwiched between the pair of substrates. Each of the pair of substrates is opposed to each other, and each has a photo-alignment film on the liquid crystal layer side. The liquid crystal display device includes four layers in one picture element when the substrate main surface is viewed in plan view. The alignment region is divided into the above alignment regions, the liquid crystal layer contains liquid crystal molecules, and the major axis direction of the liquid crystal molecules below the threshold voltage in the vicinity of the photo alignment film is the main substrate on which the photo alignment film is provided. The orientation direction of the liquid crystal molecules at a pretilt angle with respect to the surface and less than the threshold voltage of the liquid crystal layer is the same in two orientation regions adjacent to each other between the pixel rows when the main surface of the substrate is viewed in plan view. , And one direction along the pixel rows in the alignment region adjacent between the pixel rows And / or in the same direction in two alignment regions adjacent between the pixel rows and in one alignment direction along the pixel row in the alignment regions adjacent between the pixel rows. It may be a liquid crystal display device.
上記液晶層の閾値電圧未満での液晶分子の配向方向は、基板主面を平面視したときに、絵素行間で隣接する2つの配向領域で同じ方向であり、かつ該絵素行間で隣接する配向領域で、該絵素行に沿う1方向への成分を有し、及び、絵素列間で隣接する2つの配向領域で同じ方向であり、かつ絵素列間で隣接する配向領域で、絵素列に沿う1方向への成分を有することが好ましい。 The alignment direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer is the same in two alignment regions adjacent to each other between the pixel rows when the main surface of the substrate is viewed in plan, and is adjacent between the pixel rows. The alignment region has a component in one direction along the pixel row, and is the same direction in two alignment regions adjacent between the pixel columns, and in the alignment region adjacent between the pixel columns. It is preferable to have a component in one direction along the matrix.
上記プレチルト角は、85°以上、90°未満であることが好ましい。 The pretilt angle is preferably 85 ° or more and less than 90 °.
上記光配向膜は、1絵素内で、配向方向が互いに略180°異なる2つの配向領域をもつことが好ましい。 The photo-alignment film preferably has two alignment regions whose alignment directions are different from each other by approximately 180 ° within one picture element.
上記光配向膜は、光配向膜材料にマスクを用いて偏光紫外線を照射することにより形成されたものであることが好ましい。 The photo-alignment film is preferably formed by irradiating polarized ultraviolet light with a photo-alignment film material using a mask.
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each form mentioned above may be combined suitably in the range which does not deviate from the gist of the present invention.
本発明によれば、広視野角の特性を満足でき、表示品位に優れた配向分割手法が採用された液晶表示装置において、押し圧痕を良好に修復することができる。 According to the present invention, it is possible to satisfactorily restore a pressing impression in a liquid crystal display device that can satisfy the characteristics of a wide viewing angle and employs an alignment division method with excellent display quality.
実施形態1の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。3 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 1. FIG. 実施形態1の液晶表示装置を得るためのマスク露光工程時のマスク、並びに、TFT基板の配向膜のプレチルト付与方向及びCF基板の配向膜のプレチルト付与方向を示す平面模式図である。FIG. 3 is a schematic plan view showing a mask in a mask exposure process for obtaining the liquid crystal display device of Embodiment 1, and a pretilt application direction of an alignment film of a TFT substrate and a pretilt application direction of an alignment film of a CF substrate. 実施形態1の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。FIG. 3 is a schematic plan view showing the orientation of liquid crystal molecules in an intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 1. 実施形態1の液晶表示装置に係る暗線を示すシミュレーション図である。3 is a simulation diagram illustrating dark lines according to the liquid crystal display device of Embodiment 1. FIG. 実施形態1の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。FIG. 3 is a simulation diagram illustrating alignment directions of liquid crystal molecules according to the liquid crystal display device of Embodiment 1. 実施形態2の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。6 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 2. FIG. 実施形態2の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。FIG. 6 is a schematic plan view illustrating the orientation of liquid crystal molecules in an intermediate portion in the layer thickness direction of a liquid crystal layer according to the liquid crystal display device of Embodiment 2. 実施形態2の液晶表示装置に係る暗線を示すシミュレーション図である。10 is a simulation diagram showing dark lines according to the liquid crystal display device of Embodiment 2. FIG. 実施形態2の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。FIG. 6 is a simulation diagram illustrating the alignment direction of liquid crystal molecules according to the liquid crystal display device of Embodiment 2. 実施形態3の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。6 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Embodiment 3. FIG. 実施形態3の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。FIG. 6 is a schematic plan view showing the orientation of liquid crystal molecules in an intermediate part in the layer thickness direction of a liquid crystal layer according to a liquid crystal display device of Embodiment 3. 比較形態1の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。4 is a schematic plan view showing a pretilt application direction of an alignment film on a TFT substrate (TFT side) and a pretilt application direction of an alignment film on a CF substrate (CF side) according to the liquid crystal display device of Comparative Example 1. FIG. 比較形態1の液晶表示装置を得るためのマスク露光工程時のマスク、並びに、TFT基板の配向膜のプレチルト付与方向、及び、CF基板の配向膜のプレチルト付与方向を示す平面模式図である。FIG. 6 is a schematic plan view showing a mask in a mask exposure step for obtaining a liquid crystal display device according to Comparative Example 1, a pretilt application direction of an alignment film of a TFT substrate, and a pretilt application direction of an alignment film of a CF substrate. 比較形態1の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。It is a plane schematic diagram which shows the orientation direction of the liquid crystal molecule of the intermediate part in the layer thickness direction of the liquid-crystal layer which concerns on the liquid crystal display device of the comparative form 1. 比較形態1の液晶表示装置に係る暗線を示すシミュレーション図である。It is a simulation figure which shows the dark line concerning the liquid crystal display device of the comparative form 1. 比較形態1の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。It is a simulation figure which shows the orientation direction of the liquid crystal molecule which concerns on the liquid crystal display device of the comparative form 1. 押し圧試験を説明する図である。It is a figure explaining a pressing pressure test. 押し圧試験を説明する図である。It is a figure explaining a pressing pressure test. 本発明の液晶表示装置の液晶表示パネル及びバックライトを示す分解斜視模式図である。It is a disassembled perspective schematic diagram which shows the liquid crystal display panel and backlight of the liquid crystal display device of this invention. 本発明の液晶表示装置の一例を示す分解斜視模式図である。It is a disassembled perspective schematic diagram which shows an example of the liquid crystal display device of this invention. 本発明の液晶表示装置の一例を示す分解斜視模式図である。It is a disassembled perspective schematic diagram which shows an example of the liquid crystal display device of this invention. 配向膜のプレチルト付与方向、及び、プレチルト角を付与された液晶分子を示す模式図である。It is a schematic diagram which shows the liquid crystal molecule to which the pretilt provision direction and pretilt angle of the alignment film were provided.
実施形態において薄膜トランジスタ素子(TFT)が配置される基板は、TFT基板ともいう。実施形態においてカラーフィルタ(CF)が配置される基板は、CF基板ともいう。なお、本明細書中、一方の配向方向に対する他方の配向方向の角度の相違は、一方の配向方向を時計回りに回転させて他方の配向方向に一致させるための角度(°)で表す。絵素は、カラー液晶表示装置においては、単色を示すのに用いられるサブ画素を意味する。
また、迷光は、マスク開口部からの光がマスクエッジ部から漏れてマスクしている領域端を露光する光を言う。なお、液晶層(液晶分子)に印加する電圧の閾値とは、例えば、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。また、チルト改善領域とは、実施形態の構成により押し圧痕の戻りが改善された領域である。タッチパネルを備える液晶表示装置とは、液晶を挟持する一対の基板とは別個にタッチパネルを備えるものに限定されるのではなく、タッチパネル機能を有するものであればよい。更に、本明細書中、液晶層の液晶分子の配向方向、又は、配向領域の配向方向とは、特に相違する内容を明示しない限り、液晶層の層厚方向における中間部の液晶分子の配向の向きを言う。「配向方向が同じ方向」とは、本発明の技術分野において実質的に同じ方向と言えるものであればよい。「絵素行間で隣接する配向領域」とは、隣接する2つの絵素行間における、該2つの絵素行間を介して隣接する配向領域を言い、絵素列に沿って2つ並んだ配向領域が絵素行に沿って絵素ごとに配置されるものを言う。なお、当該配向領域の全部が絵素行に沿う1方向への成分を有する必要はなく、本発明の効果を充分に発揮する限り、当該配向領域の実質的に全部が絵素行に沿う1方向への成分を有するものであればよい。「絵素列間で隣接する配向領域」も同様である。また、「絵素行に沿う1方向への成分を有する」とは、絵素行に沿う方向が互いに180°異なる2方向あるところ、いずれか1方向に揃っていること、言い換えれば、いずれか1方向への正の成分を有することを言う。「絵素列に沿う1方向への成分を有する」も同様である。
In the embodiment, the substrate on which the thin film transistor element (TFT) is arranged is also referred to as a TFT substrate. In the embodiment, the substrate on which the color filter (CF) is disposed is also referred to as a CF substrate. In this specification, the difference in the angle of the other alignment direction with respect to one alignment direction is represented by an angle (°) for rotating the one alignment direction clockwise to coincide with the other alignment direction. In the color liquid crystal display device, the picture element means a sub-pixel used to indicate a single color.
Further, stray light refers to light that exposes the edge of a region where light from a mask opening leaks from a mask edge and is masked. The voltage threshold applied to the liquid crystal layer (liquid crystal molecules) means, for example, a voltage value that gives a transmittance of 5% when the light transmittance is set to 100%. The tilt improvement region is a region where the return of the pressing impression is improved by the configuration of the embodiment. The liquid crystal display device provided with a touch panel is not limited to the one provided with the touch panel separately from the pair of substrates holding the liquid crystal, and may be any device having a touch panel function. Further, in the present specification, unless the contents of the alignment direction of the liquid crystal molecules in the liquid crystal layer or the alignment direction of the alignment region are clearly indicated, the alignment of the liquid crystal molecules in the intermediate portion in the layer thickness direction of the liquid crystal layer is not specified. Say the direction. The “direction in which the alignment directions are the same” may be anything that can be said to be substantially the same direction in the technical field of the present invention. “An alignment region adjacent between pixel rows” refers to an alignment region adjacent to each other between two adjacent pixel element rows, and two alignment regions arranged along a pixel row. Is arranged for each picture element along the picture element line. Note that it is not necessary for all of the alignment regions to have a component in one direction along the pixel rows, and as long as the effects of the present invention are sufficiently exhibited, substantially all of the alignment regions are in one direction along the pixel rows. What is necessary is just to have this component. The same applies to the “alignment regions adjacent between the pixel rows”. In addition, “having a component in one direction along the picture element row” means that the directions along the picture element row are two directions different from each other by 180 °, and are aligned in any one direction, in other words, any one direction. Say to have a positive component to. The same applies to “having a component in one direction along the pixel array”.
本図面中、配向膜が液晶分子にプレチルトを付与する方向を矢印で示す(図1、図2、図6、図10、図12、図13、図22)。配向膜が液晶分子にプレチルトを付与する方向とは、配向膜が配向膜面に対して液晶分子にプレチルトを付与する方向(例えば、図22に示した実線の矢印の方向、及び、破線の矢印の方向。)を意味する。本明細書中、簡単のため、配向膜が液晶分子にプレチルトを付与する方向を、配向膜のプレチルト付与方向とも言う。なお、図22中、θは、プレチルト角を示し、LCは、液晶分子を示し、一点鎖線は、配向膜面に対する法線方向を示す。
例えば図1、図6、図10、図12等では、TFT基板とCF基板それぞれの配向膜の液晶分子にプレチルトを付与する方向を矢印で示す。また、図3、図7、図11、図14では、これら両基板を使って作製した液晶表示装置の液晶の配向を示す。
In this drawing, the direction in which the alignment film imparts a pretilt to liquid crystal molecules is indicated by arrows (FIGS. 1, 2, 6, 10, 12, 13, and 22). The direction in which the alignment film imparts pretilt to the liquid crystal molecules refers to the direction in which the alignment film imparts pretilt to the liquid crystal molecules with respect to the alignment film surface (for example, the direction of the solid arrow shown in FIG. 22 and the arrow of the broken line) Direction.) In the present specification, for the sake of simplicity, the direction in which the alignment film imparts pretilt to the liquid crystal molecules is also referred to as the pretilt imparting direction of the alignment film. In FIG. 22, θ represents the pretilt angle, LC represents liquid crystal molecules, and the alternate long and short dash line represents the normal direction to the alignment film surface.
For example, in FIG. 1, FIG. 6, FIG. 10, FIG. 12, etc., the direction in which the pretilt is applied to the liquid crystal molecules of the alignment films of the TFT substrate and the CF substrate is indicated by arrows. 3, FIG. 7, FIG. 11, and FIG. 14 show the alignment of the liquid crystal of a liquid crystal display device manufactured using these two substrates.
付言すれば、TFT基板における配向膜のプレチルト付与方向は、そのまま液晶のプレチルトの方向(液晶分子の配向の向きとも言う。)になるが、CF基板における配向膜のプレチルト付与方向は、液晶のプレチルトの方向とは反対になる(例えば、図1及び図3を参照。図3は、図1に示した両基板を使って作製した液晶表示装置の液晶のプレチルトの方向を示す。)。 In other words, the pretilt application direction of the alignment film on the TFT substrate is the same as the pretilt direction of the liquid crystal (also referred to as the alignment direction of the liquid crystal molecules), but the pretilt application direction of the alignment film on the CF substrate is the pretilt direction of the liquid crystal. (For example, refer to FIGS. 1 and 3. FIG. 3 shows the direction of the pretilt of the liquid crystal of the liquid crystal display device manufactured using both substrates shown in FIG. 1).
以下に実施形態を掲げ、本発明を、図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments are listed below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments.
実施形態1
図1は、実施形態1の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。
図1の上側(「TFT側」と記載されている。)は、TFT基板及びTFT基板上の光配向膜が液晶分子を配向させる方向を2絵素分示す。また、図1の下側(「CF側」と記載されている。)は、CF基板及びCF基板上の光配向膜が液晶分子を配向させる方向を2絵素分示す。なお、実施形態1の液晶表示装置の両基板の光配向膜のプレチルト付与方向は、図1に示したTFT基板側の絵素及びCF基板側の絵素の一方を上下方向に平行移動して両絵素を重ね合わせたものと同様である。また、図1では、TFT基板(TFT側)の配向膜のプレチルト付与方向を実線の矢印で示し、CF基板(CF側)の配向膜のプレチルト付与方向を破線の矢印で示している。後述する図においても同様である。
Embodiment 1
FIG. 1 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 1.
The upper side of FIG. 1 (described as “TFT side”) shows the direction in which the TFT substrate and the photo-alignment film on the TFT substrate align liquid crystal molecules by two pixels. In addition, the lower side of FIG. 1 (described as “CF side”) indicates the direction in which the CF substrate and the photo-alignment film on the CF substrate align liquid crystal molecules by two pixels. The pretilt application direction of the photo-alignment films on both substrates of the liquid crystal display device of Embodiment 1 is obtained by translating one of the picture element on the TFT substrate side and the picture element on the CF substrate side shown in FIG. This is the same as a superposition of both picture elements. In FIG. 1, the pretilt application direction of the alignment film on the TFT substrate (TFT side) is indicated by a solid line arrow, and the pretilt application direction of the alignment film on the CF substrate (CF side) is indicated by a broken line arrow. The same applies to the drawings described later.
図2は、実施形態1の液晶表示装置を得るためのマスク露光工程時のマスク、並びに、TFT基板の配向膜のプレチルト付与方向及びCF基板の配向膜のプレチルト付与方向を示す平面模式図である。マスク露光工程は、少なくとも1方の基板について、マスクが隣接する絵素のそれぞれの一部(半分)を覆っておこなう。実施形態1では、TFT側基板で用いるマスク開口部Oを、後述する比較形態1に係るマスク開口部の2倍の幅(図2では、1絵素の短辺の長さと、絵素間の長さとの合計の長さ)にし、かつ照射の範囲を半絵素分ずらすことにより、1絵素の右半分の配向処理と該絵素の右隣の絵素の左半分の配向処理とを同時に行う。そうすることで、絵素間で、チルトが小さくなる二重露光部が無くなり、チルトが小さくなることを防ぐことができる。チルトの小さい(付かない)領域を半減させることができるので、押し圧試験で痕跡の戻り時間を改善することができる。また開口部が広くなり上記境目の数が減るため、歩留まりが高くなるとともに、マスク端の迷光も減らすことができる。 FIG. 2 is a schematic plan view showing a mask in a mask exposure process for obtaining the liquid crystal display device of Embodiment 1, and a pretilt application direction of the alignment film of the TFT substrate and a pretilt application direction of the alignment film of the CF substrate. . The mask exposure step is performed on at least one substrate so as to cover a part (half) of each of the adjacent picture elements. In the first embodiment, the mask opening O used in the TFT side substrate is twice as wide as the mask opening according to comparative embodiment 1 described later (in FIG. 2, the length of the short side of one pixel and the interval between the pixels). And the irradiation process is shifted by half a pixel, and the alignment process for the right half of one pixel and the alignment process for the left half of the pixel adjacent to the right of the pixel are performed. Do it at the same time. By doing so, there is no double exposure portion where the tilt is reduced between the picture elements, and it is possible to prevent the tilt from being reduced. Since the region with a small tilt (not attached) can be halved, the return time of the trace can be improved by the pressure test. In addition, since the opening is widened and the number of boundaries is reduced, the yield is increased and stray light at the mask edge can be reduced.
先ず、図2の左側に示した、マスク露光工程の前半部分を説明する。なお、図2の説明における上、下、右、左とは、図2に記載された文字の向きが正しくなるように紙面を横長にして見たときのものを示す。TFT基板では、マスクMは、図2の左上に示されるように、左側の絵素の右半分と右側の絵素の左半分とを覆う。左側の絵素の左半分と右側の絵素の右半分は、基板主面を平面視したときに、マスクの開口部Oと重畳する。このときに、偏光紫外線を基板面の法線に対して斜め方向から入射して、基板面に予め塗布された光配向膜材料から光配向膜を形成する。得られた光配向膜は、マスクの開口部Oに対応する箇所の液晶分子を配向させる(プレチルトさせる)。 First, the first half of the mask exposure process shown on the left side of FIG. 2 will be described. Note that “up”, “down”, “right”, and “left” in the description of FIG. 2 are those when the paper is viewed in landscape orientation so that the orientation of the characters shown in FIG. 2 is correct. In the TFT substrate, the mask M covers the right half of the left picture element and the left half of the right picture element, as shown in the upper left of FIG. The left half of the left picture element and the right half of the right picture element overlap with the opening O of the mask when the substrate main surface is viewed in plan. At this time, polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface. The obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
CF基板では、マスクMは、図2の左下に示されるように、左側の絵素及び右側の絵素のそれぞれの上半分を覆う。左側の絵素及び右側の絵素のそれぞれの下半分は、基板主面を平面視したときに、マスクの開口部Oと重畳する。このときに、偏光紫外線を基板面の法線に対して斜め方向から入射して、基板面に予め塗布された光配向膜材料から、光配向膜を形成する。得られた光配向膜は、マスクの開口部Oに対応する箇所の液晶分子を配向させる(プレチルトさせる)。 In the CF substrate, the mask M covers the upper half of each of the left picture element and the right picture element, as shown in the lower left of FIG. The lower half of each of the left picture element and the right picture element overlaps the opening O of the mask when the substrate main surface is viewed in plan. At this time, polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface. The obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
次いで、図2の右側に示した、マスク露光工程の後半部分を説明する。TFT基板では、マスクMは、図2の右上に示されるように、左側の絵素の左半分と右側の絵素の右半分とを覆う。左側の絵素の右半分と右側の絵素の左半分は、基板主面を平面視したときに、マスクの開口部Oと重畳する。このときに、偏光紫外線を基板面の法線に対して斜め方向から入射して、基板面に予め塗布された光配向膜材料から光配向膜を形成する。得られた光配向膜は、マスクの開口部Oに対応する箇所の液晶分子を配向させる(プレチルトさせる)。実施形態1は、後述する比較形態1に対して、チルトの小さい(付かない)領域を減らすために、TFT側の配向を図2のように変更したものである。なお、CF側は比較形態1と同じ配向である。 Next, the latter half of the mask exposure process shown on the right side of FIG. 2 will be described. In the TFT substrate, the mask M covers the left half of the left picture element and the right half of the right picture element, as shown in the upper right of FIG. The right half of the left picture element and the left half of the right picture element overlap with the opening O of the mask when the substrate main surface is viewed in plan. At this time, polarized ultraviolet light is incident from an oblique direction with respect to the normal of the substrate surface, and a photo-alignment film is formed from a photo-alignment film material previously applied to the substrate surface. The obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask. In the first embodiment, the TFT-side orientation is changed as shown in FIG. 2 in order to reduce the area with a small tilt (not attached) as compared to the first comparative embodiment. Note that the CF side has the same orientation as that of Comparative Example 1.
CF基板では、マスクMは、図2の右下に示されるように、左側の絵素及び右側の絵素のそれぞれの下半分を覆う。左側の絵素及び右側の絵素のそれぞれの上半分は、基板主面を平面視したときに、マスクの開口部Oと重畳する。このときに、偏光紫外線を基板面の法線に対して斜め方向から入射して、光配向膜を形成する。得られた光配向膜は、マスクの開口部Oに対応する箇所の液晶分子を配向させる(プレチルトさせる)。 In the CF substrate, the mask M covers the lower half of each of the left and right picture elements, as shown in the lower right of FIG. The upper half of each of the left picture element and the right picture element overlaps the opening O of the mask when the substrate main surface is viewed in plan. At this time, polarized ultraviolet rays are incident from an oblique direction with respect to the normal of the substrate surface to form a photo-alignment film. The obtained photo-alignment film aligns (pretilts) the liquid crystal molecules at a location corresponding to the opening O of the mask.
実施形態1に係るマスク露光工程は、マスクの開口部の幅が、少なくとも該幅が沿う1絵素の辺、及び、絵素間間隔の合計以上である。 In the mask exposure process according to the first embodiment, the width of the opening of the mask is at least the sum of the sides of one picture element along the width and the interval between picture elements.
図3は、実施形態1の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。図3の左側に示した、2行2列の4つの配向領域、及び、図3の右側に示した、2行2列の4つの配向領域は、それぞれ1絵素を示す。すなわち、実施形態1では、視野角改善のため、1つの絵素内で4つの配向領域それぞれに合計4方向のチルトが形成され、配向分割がなされている。実施形態1に係る液晶表示装置は、閾値電圧未満で液晶分子が基板主面に対して略垂直方向に配向される垂直配向モードの液晶表示装置であるが、光配向膜によりプレチルト角が付与される。上述したように、紫外線照射方向で規定されるTFT側、及び、CF側の絵素内を、マスクを用いて分割露光することでチルト角方位が決まり、視野角補償のため液晶層中で液晶分子がツイストした4つのドメインが形成される。なお、図3、後述する図7、図11及び図14では、コーン状円錐で示されるDは液晶分子のチルトの向きを示す。 FIG. 3 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 1. The four alignment regions of 2 rows and 2 columns shown on the left side of FIG. 3 and the 4 alignment regions of 2 rows and 2 columns shown on the right side of FIG. 3 each represent one picture element. That is, in the first embodiment, in order to improve the viewing angle, a total of four tilts are formed in each of the four alignment regions in one picture element, and the alignment is divided. The liquid crystal display device according to the first embodiment is a vertical alignment mode liquid crystal display device in which liquid crystal molecules are aligned in a substantially vertical direction with respect to the main surface of the substrate at a voltage lower than a threshold voltage, but a pretilt angle is given by the photo-alignment film. The As described above, the tilt angle azimuth is determined by separately exposing the pixel on the TFT side and the CF side defined by the ultraviolet irradiation direction using a mask, and the liquid crystal in the liquid crystal layer is used for viewing angle compensation. Four domains are formed in which the molecules are twisted. In FIG. 3, FIG. 7, FIG. 11 and FIG. 14 to be described later, D indicated by the cone cone indicates the tilt direction of the liquid crystal molecules.
上述したように、光照射領域がずれた場合であっても光照射されない領域を生じにくくし、歩留まりを確保するために、分割露光端部は数μmオーダーで露光領域が重なる領域(二重露光部)を発生させる技術がある。二重露光部のチルト角は、1回目露光と2回目露光とで方向が180°異なるためほぼ垂直(チルト角0°)となる。二重露光部は、従来では、絵素内の4つに分かれた各配向領域間(十字形)と、絵素電極ITO(酸化インジウム錫)間との両方に形成されていた。 As described above, even if the light irradiation region is shifted, in order to make it difficult to produce a region that is not irradiated with light and to secure a yield, the divided exposure end portion is a region where the exposure regions overlap on the order of several μm (double exposure) Part). The tilt angle of the double exposure portion is almost vertical (tilt angle 0 °) because the direction differs by 180 ° between the first exposure and the second exposure. Conventionally, the double exposure portion is formed both between each of the four alignment regions (cross shape) in the picture element and between the picture element electrodes ITO (indium tin oxide).
この技術で形成したパネルに存在する二重露光部(チルト角0°領域)は、何らかの圧力がかかると配向が乱れるため、配向回復に時間を要するという問題があった。実施形態1では、配向が乱れるチルト0°域を減らすために、TFT側の紫外線照射のマスクのピッチ(幅)を、後述する比較形態1の1/2絵素幅から1絵素幅に変更し、かつ半絵素幅分ずらすことにより、チルトの付かない、照射の重なり領域(二重露光部)を絵素中央のみにし、絵素電極ITO間にはチルトが付くようにしている。 The double-exposed portion (tilt angle 0 ° region) present in the panel formed by this technique has a problem that it takes time to recover the alignment because the alignment is disturbed when some pressure is applied. In the first embodiment, in order to reduce the tilt 0 ° region in which the orientation is disturbed, the pitch (width) of the UV-irradiated mask on the TFT side is changed from a ½ pixel width in comparative embodiment 1 described later to one pixel width. In addition, by shifting by the half-pixel width, the overlapping region (double exposure portion) of the irradiation that does not have a tilt is set only at the center of the pixel, and a tilt is provided between the pixel electrodes ITO.
上記液晶層の閾値電圧未満での液晶分子の配向方向は、基板主面を平面視したときに、絵素列間で隣接する2つの配向領域で同じ方向である。絵素列間で隣接する2つの配向領域とは、絵素列内で隣接する2つの配向領域ではなく、絵素列の配向領域と、該絵素列に隣接する絵素列の配向領域であって、互いに隣接するものを言う。 The alignment direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer is the same in two alignment regions adjacent to each other between the pixel columns when the substrate main surface is viewed in plan. The two alignment regions adjacent to each other between the pixel columns are not the two alignment regions adjacent to each other in the pixel columns, but the alignment regions of the pixel columns and the alignment regions of the pixel columns adjacent to the pixel columns. And what is next to each other.
二重露光部が従来の半分になるという点で、チルトの付かない領域が半減するため、特に図3に示したチルト改善領域において、圧力を加えられた後の配向乱れの回復する時間を改善することができる。本技術はまた、マスクの開口部の幅を大きくすることができるので、歩留まりを上げることができるとともに、二重露光部が少なくなることから迷光を減らすことができる利点もある。 Since the double exposure area is halved compared to the conventional area, the non-tilt area is halved, so the time required for recovering the alignment disorder after pressure is improved, especially in the tilt improvement area shown in FIG. can do. The present technology also has the advantage that the width of the opening of the mask can be increased, so that the yield can be increased, and stray light can be reduced because the number of double exposure portions is reduced.
更に、実施形態1では、絵素列間で隣接する配向領域(図3中、横方向で見て内側の4つの配向領域)の内、上側の2つの配向方向が左上側であり、下側の2つの配向方向が右上側である。このような、実施形態1の図3に示した絵素列間で隣接する配向領域では、絵素列間で隣接する配向領域がすべて、絵素列に沿う1方向(上側方向)に揃っており、言い換えれば、図3に示した絵素列間で隣接する配向領域では、絵素列に沿う1方向への正の成分(上側成分)を有し、その反対側の正の成分(下側成分)は有しない。なお、上記絵素列間で隣接する配向領域の隣の絵素列間で隣接する配向領域(全部を図示していない)では、上記反対側の正の成分(下側成分)を有し、上記1方向への正の成分(上側成分)は有しない。このように、絵素列間で隣接する配向領域ごとに、該配向領域のすべてが、絵素列に沿う1方向への正の成分を有するものであればよい。これは、本発明の効果を充分に発揮できる一態様である。 Furthermore, in the first embodiment, among the alignment regions adjacent to each other between the pixel rows (four alignment regions on the inner side when viewed in the horizontal direction in FIG. 3), the upper two alignment directions are the upper left side and the lower side. These two orientation directions are on the upper right side. In such an alignment region adjacent between the pixel rows shown in FIG. 3 of the first embodiment, all the alignment regions adjacent between the pixel rows are aligned in one direction (upward direction) along the pixel row. In other words, the alignment regions adjacent to each other between the pixel rows shown in FIG. 3 have a positive component (upper component) in one direction along the pixel row, and a positive component on the opposite side (lower). No side component). In addition, in the alignment region (all not shown) adjacent to the pixel region adjacent to the alignment region adjacent between the pixel columns, the positive component on the opposite side (lower component) is included, There is no positive component (upper component) in the one direction. In this way, for every alignment region adjacent between the pixel columns, all of the alignment regions may have a positive component in one direction along the pixel column. This is one mode in which the effects of the present invention can be sufficiently exhibited.
実施形態1の液晶表示装置は、液晶分子への印加電圧が閾値電圧未満で液晶分子が基板面に対して略垂直方向に配向する。このような垂直配向モードは、通常は、負の誘電率異方性を持つネガ型液晶を用いて、上記閾値電圧未満(例えば、電圧無印加)のときに、液晶分子を基板面に対して略垂直方向に配向させ、閾値以上の電圧を印加したときに、液晶分子を基板面に対して実質的に水平方向に倒す表示モードである。負の誘電率異方性を有する液晶分子とは、長軸方向よりも短軸方向の誘電率が大きい液晶分子をいう。実施形態1の液晶表示装置においては、垂直配向モードとすることで、高いコントラスト比が得られる。上記略垂直方向に配向する液晶分子とは、液晶表示パネルの技術分野において一般的に垂直配向モードとして評価される程度に実質的に液晶分子が基板主面に対して略垂直なものであればよく、プレチルト角を有していてよい。 In the liquid crystal display device of Embodiment 1, the voltage applied to the liquid crystal molecules is less than the threshold voltage, and the liquid crystal molecules are aligned in a direction substantially perpendicular to the substrate surface. In such a vertical alignment mode, a negative type liquid crystal having a negative dielectric anisotropy is usually used, and when the voltage is less than the threshold voltage (for example, no voltage is applied), the liquid crystal molecules are moved relative to the substrate surface. This is a display mode in which liquid crystal molecules are tilted substantially horizontally with respect to the substrate surface when aligned in a substantially vertical direction and a voltage higher than a threshold value is applied. The liquid crystal molecule having negative dielectric anisotropy refers to a liquid crystal molecule having a larger dielectric constant in the minor axis direction than in the major axis direction. In the liquid crystal display device of Embodiment 1, a high contrast ratio can be obtained by using the vertical alignment mode. The liquid crystal molecules aligned in the substantially vertical direction are those that are substantially perpendicular to the main surface of the substrate to the extent that they are generally evaluated as a vertical alignment mode in the technical field of liquid crystal display panels. It may have a pretilt angle.
実施形態1の液晶表示装置は、薄膜トランジスタを用いたアクティブマトリクス方式の基板を備える形態が好ましい。これにより、液晶の配向規制力をより強固なものとすることができ、表示品位を向上できる。この場合、通常では、ゲート線(走査線)に接続されたゲート電極、ソース線(信号線)に接続されたソース電極、絵素電極に接続されたドレイン電極、及び、補助容量電極といった電極が基板上に形成される。そして、通常は、ゲート線とソース線とが、互いに交差するように配置され、その交差する部分には、スイッチング素子としての薄膜トランジスタ(TFT)が配置され、TFTは、ゲート線に接続されたゲート電極と、該ゲート電極と間隔を空けて対向する、ソース線に接続されたソース電極と、絵素電極に接続されたドレイン電極及び島状(アイランド状)の半導体層から形成される、といった絵素電極構造をとることができる。 The liquid crystal display device of Embodiment 1 preferably includes an active matrix substrate using thin film transistors. Thereby, the alignment regulating force of the liquid crystal can be further strengthened, and the display quality can be improved. In this case, usually, there are electrodes such as a gate electrode connected to the gate line (scanning line), a source electrode connected to the source line (signal line), a drain electrode connected to the pixel electrode, and an auxiliary capacitance electrode. Formed on a substrate. Usually, the gate line and the source line are arranged so as to cross each other, and a thin film transistor (TFT) as a switching element is arranged at the intersecting portion, and the TFT is a gate connected to the gate line. The electrode is formed from a source electrode connected to the source line, a source electrode connected to the source line, a drain electrode connected to the pixel electrode, and an island (island) semiconductor layer. An elementary electrode structure can be taken.
実施形態1の液晶表示装置の構成としては、上述したものであるが、上述した好ましい構成要素以外にも、通常、液晶表示パネル及び液晶表示装置を構成するその他の構成要素を有していてもよい。このような他の構成要素については、特に限定されるものではない。 The configuration of the liquid crystal display device according to the first embodiment is as described above. However, in addition to the preferable components described above, the liquid crystal display device and the liquid crystal display device may usually include other components. Good. Such other components are not particularly limited.
カラーフィルタの材料としては、各色に対応する光を透過する感光性樹脂(カラーレジスト)が好適に用いられる。ブラックマトリクスの材料としては、遮光性を有するものである限り特に限定されず、黒色顔料を含有した樹脂材料、又は、遮光性を有する金属材料が好適に用いられる。 As a material for the color filter, a photosensitive resin (color resist) that transmits light corresponding to each color is preferably used. The material of the black matrix is not particularly limited as long as it has a light shielding property, and a resin material containing a black pigment or a metal material having a light shielding property is preferably used.
なお、実施形態1に係る絵素の形状は実質的に長方形である。
なお、図3は、回路基板の表示領域を示したものであり、ガラス基板(示さず)上に、ゲート配線とソース配線とが略直交するように設けられ、更に、ゲート配線とソース配線とで囲まれる領域ごとに絵素(絵素電極)が設けられている。
Note that the shape of the picture element according to the first embodiment is substantially rectangular.
FIG. 3 shows a display area of a circuit board. A gate wiring and a source wiring are provided on a glass substrate (not shown) so as to be substantially orthogonal to each other. A picture element (picture element electrode) is provided for each area surrounded by.
垂直に配向した液晶分子に対し、一定方向に若干の傾き(例えば、基板主面に対して85°以上、90°未満)を持たせる方法としては、光配向を利用した方法が現時点で最も実用的で表示品位に優れたものである。この方法でマスクを用いて偏光されたUV光をスキャンしながら露光することで領域ごとの配向膜のプレチルト付与方向が一定になるよう好適に制御することができる。なお、実施形態1では、TFTアレイ基板上の配向膜が液晶分子を配向させる方向とCF基板上の配向膜が液晶分子を配向させる方向とが略直交する。 At present, the method using photo-alignment is most practical as a method of giving a slight inclination (for example, 85 ° or more and less than 90 ° to the main surface of the substrate) to the vertically aligned liquid crystal molecules. The display quality is excellent. By performing exposure while scanning polarized UV light using a mask in this method, the pretilt application direction of the alignment film for each region can be suitably controlled. In the first embodiment, the direction in which the alignment film on the TFT array substrate aligns the liquid crystal molecules is substantially orthogonal to the direction in which the alignment film on the CF substrate aligns the liquid crystal molecules.
実施形態1は、少なくとも一方の基板上にアクティブマトリクス素子アレイが形成された2枚の基板間に液晶を挟持した液晶表示装置に関するものである。液晶材料は負の誘電異方性を有し、一定の温度範囲でネマティック相を示すものである。また、この液晶材料は、各基板に対し電圧を印加しない状態で配向領域ごとに一定方向に若干の傾きを持つもののほぼ垂直に配向している。 The first embodiment relates to a liquid crystal display device in which liquid crystal is sandwiched between two substrates each having an active matrix element array formed on at least one substrate. The liquid crystal material has a negative dielectric anisotropy and exhibits a nematic phase in a certain temperature range. In addition, this liquid crystal material has a slight inclination in a certain direction for each alignment region in a state where no voltage is applied to each substrate, but is aligned substantially vertically.
実施形態1により、垂直配向モードの液晶パネルに何らかの力を加えたとき、押し圧痕の戻りが悪いという問題を充分に解消することができる。チルトが小さいと押し圧痕の戻りが悪くなるので、パネル内のチルトが原因の1つと考えられる。
パネルを直線偏光板で見ると、グレー部分が暗線にみえるが、実施形態1では卍形状とアラビア数字の8の字形状に見える。
According to the first embodiment, when a force is applied to the vertical alignment mode liquid crystal panel, it is possible to sufficiently solve the problem of poor return of the pressing impression. If the tilt is small, the return of the pressing indentation is poor, and this is considered to be one of the causes of the tilt in the panel.
When the panel is viewed with a linear polarizing plate, the gray portion appears as a dark line, but in the first embodiment, it looks like a saddle shape and an 8-digit shape of Arabic numerals.
図4は、実施形態1の液晶表示装置に係る暗線を示すシミュレーション図である。図5は、実施形態1の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。
シミュレーションは、絵素電極に5Vが印加されているという条件でおこなった。図4は、直線偏光板で見たときに暗線に見える部分を示すシミュレーション図である。
図4は、3つの絵素を示し、左の絵素及び右の絵素における暗線が、卍形状になり、真ん中の絵素における暗線が、アラビア数字の8の字のようになる。なお、卍形状は、左卍形状であってもよく、右卍形状であってもよい。また、8の字は、通常は矩形状の配向領域内で傾いた形状であるが、当該形状が配向領域間で左右反転していてもよい。
FIG. 4 is a simulation diagram illustrating dark lines according to the liquid crystal display device of the first embodiment. FIG. 5 is a simulation diagram illustrating the alignment direction of the liquid crystal molecules according to the liquid crystal display device of the first embodiment.
The simulation was performed under the condition that 5 V was applied to the pixel electrode. FIG. 4 is a simulation diagram showing a portion that appears as a dark line when viewed with a linear polarizing plate.
FIG. 4 shows three picture elements, and the dark lines in the left and right picture elements have a saddle shape, and the dark line in the middle picture element looks like the figure 8 of the Arabic numeral. The saddle shape may be a port shape or a starboard shape. Moreover, although the figure 8 is a shape inclined normally in the rectangular alignment area | region, the said shape may be reversed horizontally between alignment areas.
実施形態2
図6は、実施形態2の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。図7は、実施形態2の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。
Embodiment 2
FIG. 6 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 2. FIG. 7 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of the second embodiment.
上述した実施形態1では、TFT側の配向膜の配向用のマスク開口部の幅を2倍にし、かつ半絵素分ずらして照射するが、実施形態2では、CF側の配向膜の配向用のマスクについても同様に開口部の幅を2倍にし、かつ半絵素分ずらして照射する。これにより、二重露光部を更に減らすことができ、チルトの小さい(付かない)領域をより減らすことができる。そして、押し圧痕の戻りを更に改善することができる。 In Embodiment 1 described above, the width of the mask opening for alignment of the alignment film on the TFT side is doubled and the irradiation is shifted by half a pixel. In Embodiment 2, however, the alignment film for alignment on the CF side is used for alignment. Similarly, the mask is irradiated with the width of the opening doubled and shifted by half a pixel. As a result, the number of double exposure portions can be further reduced, and the region with a small tilt (not attached) can be further reduced. And the return of a pressing impression can be improved further.
実施形態2のその他の構成は、上述した実施形態1の構成と同様である。また、実施形態2に係る配向分割された液晶表示装置を得るための方法は、上述した実施形態1に係る配向分割された液晶表示装置を得るための方法と同様である。 Other configurations of the second embodiment are the same as those of the first embodiment described above. The method for obtaining the alignment-divided liquid crystal display device according to Embodiment 2 is the same as the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 1 described above.
図8は、実施形態2の液晶表示装置に係る暗線を示すシミュレーション図である。図9は、実施形態2の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。シミュレーションは、絵素電極に5Vが印加されているという条件でおこなった。なお、図8は、直線偏光板で見たときに暗線に見える部分を示すシミュレーション図である。図8は、4つの絵素を示し、左上の絵素及び右下の絵素における暗線が、アラビア数字の8の字形状になり、左下の絵素及び右上の絵素における暗線が、卍形状になる。 FIG. 8 is a simulation diagram illustrating dark lines according to the liquid crystal display device of the second embodiment. FIG. 9 is a simulation diagram illustrating the alignment direction of the liquid crystal molecules according to the liquid crystal display device of the second embodiment. The simulation was performed under the condition that 5 V was applied to the pixel electrode. FIG. 8 is a simulation diagram showing a portion that appears as a dark line when viewed with a linear polarizing plate. FIG. 8 shows four picture elements. The dark line in the upper left picture element and the lower right picture element has an 8-digit shape of Arabic numerals, and the dark line in the lower left picture element and the upper right picture element has a bowl shape. become.
実施形態3
図10は、実施形態3の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。図11は、実施形態3の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。実施形態3では、上述した実施形態2と同様に、CF側の配向膜の配向用のマスクについても同様に開口部の幅を2倍にし、かつ半絵素分ずらして照射する。実施形態3においても、実施形態2に示した絵素と同様に、押し圧痕の戻りを更に改善することができる。
Embodiment 3
FIG. 10 is a schematic plan view illustrating the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Embodiment 3. FIG. 11 is a schematic plan view showing the orientation of the liquid crystal molecules in the intermediate part in the thickness direction of the liquid crystal layer according to the liquid crystal display device of Embodiment 3. In the third embodiment, similarly to the second embodiment described above, the alignment mask of the CF-side alignment film is similarly irradiated with the width of the opening doubled and shifted by half a pixel. Also in the third embodiment, the return of the pressing impression can be further improved as in the picture element shown in the second embodiment.
実施形態3のその他の構成は、上述した実施形態1の構成と同様である。また、実施形態3に係る配向分割された液晶表示装置を得るための方法は、上述した実施形態1に係る配向分割された液晶表示装置を得るための方法と同様である。 Other configurations of the third embodiment are the same as those of the first embodiment described above. The method for obtaining the alignment-divided liquid crystal display device according to Embodiment 3 is the same as the method for obtaining the alignment-divided liquid crystal display device according to Embodiment 1 described above.
比較形態1
図12は、比較形態1の液晶表示装置に係るTFT基板(TFT側)の配向膜のプレチルト付与方向、及び、CF基板(CF側)の配向膜のプレチルト付与方向を示す平面模式図である。図13は、比較形態1の液晶表示装置を得るためのマスク露光工程時のマスク、並びに、TFT基板の配向膜のプレチルト付与方向及びCF基板の配向膜のプレチルト付与方向を示す平面模式図である。図14は、比較形態1の液晶表示装置に係る液晶層の層厚方向における中間部の液晶分子の配向の向きを示す平面模式図である。
Comparative form 1
FIG. 12 is a schematic plan view showing the pretilt application direction of the alignment film on the TFT substrate (TFT side) and the pretilt application direction of the alignment film on the CF substrate (CF side) according to the liquid crystal display device of Comparative Example 1. FIG. 13 is a schematic plan view showing a mask at the time of a mask exposure process for obtaining the liquid crystal display device of Comparative Example 1, and the pretilt application direction of the alignment film of the TFT substrate and the pretilt application direction of the alignment film of the CF substrate. . FIG. 14 is a schematic plan view showing the orientation direction of the liquid crystal molecules in the intermediate portion in the layer thickness direction of the liquid crystal layer according to the liquid crystal display device of Comparative Embodiment 1.
配向膜は、TFT側、CF側ともに、絵素の幅の半分の長さの幅のマスクを用いて、半絵素ピッチで光露光している。これにより、二重露光部が、絵素内の4つに分かれた各配向領域間(十字形)と絵素電極ITO間との両方に形成されていた。 The alignment film is exposed to light at a half-pixel pitch using a mask having a width that is half the width of the pixel on both the TFT side and the CF side. Thereby, the double exposure part was formed in both between each orientation area | region (cross shape) divided into four within a pixel, and between pixel electrode ITO.
実施形態1に係る液晶パネルを、直線偏光板を介して見た場合は卍形状とアラビア数字の8の字形状との組み合わせに見えるのに対して、比較形態1に係る液晶パネルを、直線偏光板を介して見ると、図14に示したように、卍形状の暗線だけが見える。 When the liquid crystal panel according to the first embodiment is viewed through a linear polarizing plate, the liquid crystal panel according to the first comparative embodiment appears to be a combination of a saddle shape and an 8-digit shape of Arabic numerals. When viewed through the board, only the dark-line-shaped dark line can be seen as shown in FIG.
図15は、比較形態1の液晶表示装置に係る暗線を示すシミュレーション図である。図16は、比較形態1の液晶表示装置に係る液晶分子の配向方向を示すシミュレーション図である。シミュレーションは、絵素電極に5Vが印加されているという条件でおこなった。図15は、3つの絵素を示し、左の絵素、真ん中の絵素、及び、右の絵素における暗線が、すべて卍形状になる。 FIG. 15 is a simulation diagram illustrating dark lines according to the liquid crystal display device of Comparative Embodiment 1. FIG. 16 is a simulation diagram illustrating the alignment direction of liquid crystal molecules according to the liquid crystal display device of Comparative Example 1. The simulation was performed under the condition that 5 V was applied to the pixel electrode. FIG. 15 shows three picture elements, and the dark lines in the left picture element, the middle picture element, and the right picture element all have a bowl shape.
比較形態1では、上述した実施形態1~3と同様に、4方向にチルトをつけることができるが、各絵素で卍の形にチルトの小さい(付かない)領域が形成されるため、押し圧痕の戻りが悪い現象が見られる。 In Comparative Mode 1, as in Embodiments 1 to 3 described above, tilting can be performed in four directions, but each pixel has a small (not) tilted region in the shape of a heel, so There is a phenomenon that the indentation does not return well.
図17及び図18は、押し圧試験を説明する図である。図17に示したように、一定の圧力を維持しながら、パネル表面を押す。又は、トレースする。そして、図18に示したように、時間の経過とともに、押し圧痕Tが薄くなり消えていく。完全に押し圧痕Tが消えるまでの時間を測定して、押し圧痕の戻り具合を評価することができる。 17 and 18 are diagrams for explaining the pressing pressure test. As shown in FIG. 17, the panel surface is pushed while maintaining a constant pressure. Or trace. Then, as shown in FIG. 18, the pressing impression T becomes thinner and disappears as time elapses. The time until the pressing impression T completely disappears can be measured to evaluate the return of the pressing impression.
図19は、本発明の液晶表示装置の液晶表示パネル及びバックライトを示す分解斜視模式図である。図19に示されるように、液晶パネルのCF側の基板20と回路基板10とは液晶30を挟持する。CF側の基板20と回路基板10とは、それぞれ、上述したように基板主面を平面視したときに絵素領域内での配向分割がなされている。また、液晶表示装置は、CF側の基板20の観察面側に、偏光板20pを備え、回路基板10の背面に、偏光板10pを備える。更に、液晶表示装置は、偏光板10pの背面に、バックライト40を備える。バックライト40の光は、偏光板10p、回路基板10、液晶30、CF側の基板20、及び、偏光板20pをこの順に通過し、液晶30の配向制御により光の通過・非透過を制御する。 FIG. 19 is an exploded perspective schematic view showing a liquid crystal display panel and a backlight of the liquid crystal display device of the present invention. As shown in FIG. 19, the substrate 20 on the CF side of the liquid crystal panel and the circuit board 10 sandwich the liquid crystal 30. As described above, the CF-side substrate 20 and the circuit substrate 10 are each divided in orientation within the picture element region when the main surface of the substrate is viewed in plan. In addition, the liquid crystal display device includes a polarizing plate 20 p on the observation surface side of the CF-side substrate 20 and a polarizing plate 10 p on the back surface of the circuit substrate 10. Further, the liquid crystal display device includes a backlight 40 on the back surface of the polarizing plate 10p. The light of the backlight 40 passes through the polarizing plate 10p, the circuit board 10, the liquid crystal 30, the CF side substrate 20, and the polarizing plate 20p in this order, and the light passing / non-transmitting is controlled by the orientation control of the liquid crystal 30. .
図20及び図21は、それぞれ、本発明の液晶表示装置の一例を示す分解斜視模式図である。図20は、スマートフォンを示し、図21は、タブレットPCを示す。本発明の液晶表示装置は、このようなタッチパネルを備える液晶表示装置に特に好適に用いることができる。 20 and 21 are exploded perspective schematic views showing an example of the liquid crystal display device of the present invention. FIG. 20 shows a smartphone, and FIG. 21 shows a tablet PC. The liquid crystal display device of the present invention can be particularly suitably used for a liquid crystal display device including such a touch panel.
その他の実施形態
実施形態1では、TFT基板上の配向膜においてマスクが隣接する絵素のそれぞれの半分を覆うようにして露光をおこなった例を示しているが、TFT基板上の配向膜の代わりに、カラーフィルタ基板上の配向膜においても同様の露光を行うことができる。また、実施形態1では、絵素列間で隣接する2つの配向領域で同じ方向であり、かつ絵素列間で隣接する配向領域で、絵素列に沿う1方向への成分を有するが、絵素行間で隣接する2つの配向領域で同じ方向であり、かつ絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有するものであってもよい。なお、絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有するとは、絵素行間で隣接する配向領域ごとに、該配向領域のすべてが、絵素行に沿う1方向への正の成分を有するものであればよい。
Other Embodiments Embodiment 1 shows an example in which exposure is performed so as to cover each half of adjacent picture elements in the alignment film on the TFT substrate, but instead of the alignment film on the TFT substrate. In addition, the same exposure can be performed on the alignment film on the color filter substrate. In the first embodiment, the two alignment regions adjacent between the pixel rows have the same direction, and the alignment regions adjacent between the pixel rows have a component in one direction along the pixel row. Two alignment regions adjacent between the pixel rows may have the same direction, and the alignment regions adjacent between the pixel rows may have a component in one direction along the pixel row. It should be noted that an alignment region adjacent between the pixel rows has a component in one direction along the pixel row means that for each alignment region adjacent between the pixel rows, all of the alignment regions are in one direction along the pixel row. Any material having a positive component to the above may be used.
実施形態1~3ではブラックマトリクス及びカラーフィルタを備える対向基板をCF基板と言うが、ブラックマトリクス及びカラーフィルタは、対向基板側ではなく、TFT基板側に設けられていてもよい。なお、RGB等の色を単色で表示した場合であっても、ほぼ所定の効果を得ることができる。 In Embodiments 1 to 3, the counter substrate including the black matrix and the color filter is referred to as a CF substrate. However, the black matrix and the color filter may be provided on the TFT substrate side instead of the counter substrate side. Even when colors such as RGB are displayed in a single color, almost a predetermined effect can be obtained.
絵素電極としては、ITOの他、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、IGZO(インジウム-ガリウム-亜鉛-酸素)等の透明導電材料を用いることができる。 As the pixel electrode, in addition to ITO, a transparent conductive material such as indium zinc oxide (IZO), zinc oxide (ZnO), tin oxide (SnO), and IGZO (indium-gallium-zinc-oxygen) can be used.
液晶分子に対して一定方向に若干の傾きを持たせる方法としては、マスクラビングによるものやイオンビーム照射によるもの等も採用することが可能である。 As a method for giving a slight inclination to the liquid crystal molecules in a certain direction, it is possible to employ a method using mask rubbing or a method using ion beam irradiation.
TFTの半導体層としては、例えば、アモルファスシリコン、ポリシリコン等からなる高抵抗半導体層(i層)と、アモルファスシリコンにリン等の不純物をドープしたnアモルファスシリコン等からなる低抵抗半導体層(n層)とを積層させたもの等を用いることができる。また、IGZO(インジウム-ガリウム-亜鉛-酸素)等の酸化物半導体が好適に用いられる。 As the semiconductor layer of the TFT, for example, a high-resistance semiconductor layer (i layer) made of amorphous silicon, polysilicon, or the like, and a low-resistance semiconductor layer (n made of n + amorphous silicon doped with an impurity such as phosphorus in amorphous silicon) + Layers) can be used. An oxide semiconductor such as IGZO (indium-gallium-zinc-oxygen) is preferably used.
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each form in embodiment mentioned above may be combined suitably in the range which does not deviate from the summary of this invention.
10:回路基板
20:CF側の基板
10p、20p:偏光板
30:液晶
40:バックライト
100:液晶表示装置
200:液晶表示装置(スマートフォン)
300:液晶表示装置(タブレットPC)
D:液晶分子のチルトの向き
LC:液晶分子
M:(フォト)マスク
O:開口部 
T:押し圧痕
 
10: Circuit board 20: CF- side board 10p, 20p: Polarizing plate 30: Liquid crystal 40: Backlight 100: Liquid crystal display device 200: Liquid crystal display device (smart phone)
300: Liquid crystal display device (tablet PC)
D: direction of tilt of liquid crystal molecule LC: liquid crystal molecule M: (photo) mask O: opening
T: Pushing impression

Claims (5)

  1. マトリクス状に配置された複数の絵素を有する液晶表示装置であって、
    該液晶表示装置は、一対の基板及び該一対の基板間に挟持された液晶層を有し、
    該一対の基板は、互いに対向し、それぞれ液晶層側に光配向膜を備え、
    該液晶表示装置は、基板主面を平面視したときに、1つの絵素内で4つ以上の配向領域に配向分割がなされ、
    該液晶層は、液晶分子を含み、
    該光配向膜近傍にある閾値電圧未満での液晶分子の長軸方向は、該光配向膜が設けられた基板主面に対してプレチルト角をなし、
    該液晶層の閾値電圧未満での液晶分子の配向方向は、基板主面を平面視したときに、
    絵素行間で隣接する2つの配向領域で同じ方向であり、かつ絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有するか、及び/又は、
    絵素列間で隣接する2つの配向領域で同じ方向であり、かつ絵素列間で隣接する配向領域で、絵素列に沿う1方向への成分を有する
    ことを特徴とする液晶表示装置。
    A liquid crystal display device having a plurality of picture elements arranged in a matrix,
    The liquid crystal display device includes a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates,
    The pair of substrates are opposed to each other, each provided with a photo-alignment film on the liquid crystal layer side,
    In the liquid crystal display device, when the main surface of the substrate is viewed in plan, the alignment is divided into four or more alignment regions in one picture element,
    The liquid crystal layer includes liquid crystal molecules,
    The major axis direction of the liquid crystal molecules near the photo-alignment film below the threshold voltage forms a pretilt angle with respect to the main surface of the substrate on which the photo-alignment film is provided,
    The alignment direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer is determined when the substrate main surface is viewed in plan view.
    Two alignment regions adjacent between the pixel rows are in the same direction, and the alignment regions adjacent between the pixel rows have a component in one direction along the pixel rows, and / or
    A liquid crystal display device having a component in one direction along a picture element row in the same direction in two orientation areas adjacent between the picture element rows and in an orientation area adjacent between the picture element rows.
  2. 前記液晶層の閾値電圧未満での液晶分子の配向方向は、基板主面を平面視したときに、
    絵素行間で隣接する2つの配向領域で同じ方向であり、かつ絵素行間で隣接する配向領域で、絵素行に沿う1方向への成分を有し、及び、
    絵素列間で隣接する2つの配向領域で同じ方向であり、かつ絵素列間で隣接する配向領域で、絵素列に沿う1方向への成分を有する
    ことを特徴とする請求項1に記載の液晶表示装置。
    The orientation direction of the liquid crystal molecules below the threshold voltage of the liquid crystal layer, when the substrate main surface is viewed in plan view,
    Two alignment regions adjacent between the pixel rows are in the same direction, and the alignment regions adjacent between the pixel rows have a component in one direction along the pixel row; and
    The two orientation regions adjacent between the pixel rows have the same direction, and the orientation regions adjacent between the pixel rows have a component in one direction along the pixel row. The liquid crystal display device described.
  3. 前記プレチルト角は、85°以上、90°未満である
    ことを特徴とする請求項1又は2に記載の液晶表示装置。
    The liquid crystal display device according to claim 1, wherein the pretilt angle is not less than 85 ° and less than 90 °.
  4. 前記光配向膜は、1絵素内で、配向方向が互いに略180°異なる2つの配向領域をもつ
    ことを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
    4. The liquid crystal display device according to claim 1, wherein the photo-alignment film has two alignment regions whose alignment directions are different from each other by approximately 180 ° within one picture element.
  5. 前記光配向膜は、光配向膜材料にマスクを用いて偏光紫外線を照射することにより形成されたものである
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
     
    5. The liquid crystal display device according to claim 1, wherein the photo-alignment film is formed by irradiating polarized ultraviolet rays using a photo-alignment film material with a mask.
PCT/JP2013/074023 2012-09-13 2013-09-06 Liquid crystal display device WO2014042081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201871 2012-09-13
JP2012201871 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014042081A1 true WO2014042081A1 (en) 2014-03-20

Family

ID=50278194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074023 WO2014042081A1 (en) 2012-09-13 2013-09-06 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2014042081A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703446A (en) * 2018-09-14 2021-04-23 堺显示器制品株式会社 Liquid crystal display panel and method for manufacturing the same
CN114879413A (en) * 2022-04-26 2022-08-09 成都中电熊猫显示科技有限公司 Display panel and display device
CN115113442A (en) * 2022-04-26 2022-09-27 成都中电熊猫显示科技有限公司 Display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013649A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Liquid crystal display device and method for manufacturing same
JP2011227505A (en) * 2010-04-22 2011-11-10 Samsung Electronics Co Ltd Liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013649A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Liquid crystal display device and method for manufacturing same
JP2011227505A (en) * 2010-04-22 2011-11-10 Samsung Electronics Co Ltd Liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703446A (en) * 2018-09-14 2021-04-23 堺显示器制品株式会社 Liquid crystal display panel and method for manufacturing the same
CN114879413A (en) * 2022-04-26 2022-08-09 成都中电熊猫显示科技有限公司 Display panel and display device
CN115113442A (en) * 2022-04-26 2022-09-27 成都中电熊猫显示科技有限公司 Display panel and display device
CN114879413B (en) * 2022-04-26 2023-12-29 成都京东方显示科技有限公司 Display panel and display device
CN115113442B (en) * 2022-04-26 2024-04-26 成都京东方显示科技有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
US9983422B2 (en) LCD panel and LCD and viewing angle control method of LCD panel
US10394090B2 (en) Display panel and manufacture method thereof, display device
US8836900B2 (en) Array substrate and liquid crystal display device
US8659732B2 (en) Liquid crystal display device
US10288955B2 (en) Liquid crystal display device
JP5121529B2 (en) Liquid crystal display device and electronic device
US20100060838A1 (en) Liquid crystal display and method thereof
KR20160072335A (en) Liquid crystal display
KR20020028477A (en) Fringe field switching mode lcd
US20160282646A1 (en) Display Panel and Method for Fabricating the Same
US20130120679A1 (en) Liquid crystal panel and manufacturing method thereof, and liquid crystal display device
US9304363B2 (en) Array substrate and manufacturing method thereof, display device
JP2010169714A (en) Liquid crystal display and electronic apparatus
US20140347614A1 (en) Liquid crystal display device
WO2015090012A1 (en) Liquid crystal display screen and display device
US9829752B2 (en) Liquid crystal display device
WO2014042081A1 (en) Liquid crystal display device
CN108445688B (en) Pixel structure
CN108051964B (en) Pixel structure, display panel and display device
US10261380B2 (en) Lateral electric field type liquid crystal display device
US9063377B2 (en) Liquid crystal display device
JP5689436B2 (en) Liquid crystal display
CN105824156B (en) Liquid crystal display device with a light guide plate
CN101770102B (en) System for displaying images
US8976329B2 (en) Array substrate and LCD panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP