WO2014041800A1 - METAL Na CELL - Google Patents

METAL Na CELL Download PDF

Info

Publication number
WO2014041800A1
WO2014041800A1 PCT/JP2013/005378 JP2013005378W WO2014041800A1 WO 2014041800 A1 WO2014041800 A1 WO 2014041800A1 JP 2013005378 W JP2013005378 W JP 2013005378W WO 2014041800 A1 WO2014041800 A1 WO 2014041800A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
metal
negative electrode
positive electrode
water
Prior art date
Application number
PCT/JP2013/005378
Other languages
French (fr)
Japanese (ja)
Inventor
林 克郎
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2014041800A1 publication Critical patent/WO2014041800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Definitions

  • the present invention relates to a metal Na battery.
  • Li + ion battery has attracted attention as one of such batteries.
  • Li + ion battery it is difficult to provide an electric vehicle using a lithium ion battery as a storage battery with the same range as a conventional internal combustion engine.
  • commercial Li-ion batteries have only an energy density of about 100 to 200 Wh / kg.
  • an Li-ion battery requires an energy density four or more times the current level. Such a significant improvement in energy density is difficult only with the technology in the extension of the conventional Li-ion battery. Therefore, new energy conversion devices have been required.
  • Li-air batteries As one of the means for achieving high energy density, there is known a technology in which a light alkali metal itself having a large change in reaction free energy due to an oxidation reaction is used as the active material of the negative electrode.
  • so-called Li-air batteries have been mainly studied.
  • a lithium-air battery using a carbon composite electrode positive electrode, a polymer membrane separator, and an organic electrolytic solution that transmits oxygen by using a Li metal foil as a negative electrode Non-patent Document 1).
  • This Li-air battery has been considered as the basic type of Li-air battery developed later.
  • the Li-air battery is a battery reaction of 4Li + O 2 ⁇ 2Li 2 O, and the calculated value including O 2 in the battery reaction weight is 5,200 Wh / kg, calculated without O 2. It has a high theoretical energy density of 11,140 Wh / kg. Therefore, it is supposed that an experimentally higher energy density can be obtained as compared to a Li-ion battery having a theoretical energy density of 250 to 350 Wh / kg.
  • Li-air batteries (referred to herein as "Li-water-air batteries") having a different structure have also been developed.
  • This Li-water-air battery is said to be capable of completely performing a battery reaction because the reaction product at the time of discharge is LiOH which is dissolved in a water-soluble electrolyte.
  • the theoretical energy density of this Li-water-air cell is about 5,700 Wh / kg excluding the weight of oxygen required for the reaction.
  • a discharge of about 800 Wh / kg has been demonstrated in the experiment (Non-Patent Document 2).
  • ⁇ -alumina As another means for providing high energy density to the battery, a technology using ⁇ -alumina as a solid electrolyte of a sodium-sulfur (Na-S) battery is known.
  • the ⁇ -alumina is a crystal having a layered structure in which a structural layer called a spinel block sandwiches a layer composed of Na + ions (hereinafter also referred to as sodium ions, Na ions or simply Na + ).
  • ⁇ -alumina has two structures in which the layers of hexagonal ⁇ -phase and cyclohedral ⁇ ′-phase overlap slightly differently.
  • the orientation-controlled polycrystal is a solid electrolyte exhibiting high-speed Na + ion conductivity of 0.1 S ⁇ cm ⁇ 1 or more at about 350 ° C. because Na + ions in the layer can diffuse at high speed.
  • Na-S batteries were initially developed as secondary batteries for electric vehicles, which can achieve high energy density four to five times that of lead acid batteries.
  • Na-S batteries are currently commercialized for stationary use because they operate at a high temperature of about 350.degree.
  • metal Na for the negative electrode
  • graphite wool for the current collector of the molten molten salt are respectively used.
  • Typical operating temperatures are 300-350 ° C., where the sodium sulfide melts and the conductivity of the electrolyte is sufficiently high.
  • Na-S batteries are characterized by high charge and discharge energy efficiency.
  • NASICON is known as a solid electrolyte having high Na + ion conductivity and ion conductivity close to ⁇ or ⁇ ′ ′ alumina.
  • Nasacon is AMM ′ P 3 O 12 (A is an alkali ion It is a series of rhombohedral or monoclinic crystals represented by the general formula of various cations including M, M ', which are divalent to pentavalent cations.
  • Conducting Na + ions typical chemical composition of NASICON to, Na l + x Si x Zr 2 P 3-x O 12 (0 ⁇ x ⁇ 3) is expressed by.
  • a technology using ⁇ or ⁇ ′ ′ alumina electrolyte and metal Na as a negative electrode active material is also known.
  • the primary battery is operated in the region, so that the negative electrode is amalgam of Na-Hg, the separator is a ⁇ alumina electrolyte, the positive electrode active material is contained in a water-soluble electrolytic solution or an organic solvent such as propylene carbonate Br 2 , I 2 , H 2 O and O 2 (Non-Patent Document 4) Since metal Na is solid at room temperature, when only solid metal Na is used as the negative electrode, Na chemical species can not be sufficiently diffused and the discharge characteristics are extremely low.
  • Hg has been used to solve this problem Hg improves diffusion by forming a liquid phase at room temperature with Na.
  • the theoretical energy density of this cell The degree of energy is in the range of 500 to 1,550 Wh / kg, and the actual energy density by the battery test is 1/2 to 1/3 of them, and the energy density is practically higher than that of the Li ion battery.
  • the present invention has been made in view of these problems, and an object thereof is to reduce the cost by using only common materials for the main members while reducing the energy density per weight or volume significantly. It is to provide.
  • the metal Na battery Na + ion conductivity and Na + ion conductor having a substantially metal disposed on one side of the Na + ion conductor
  • the metal Na with light and active metal Na and water, and oxygen which can be taken in from the outside if necessary, is used as the active material, and thus the metal Na with significantly improved energy density per weight or volume A battery can be provided.
  • metallic Na is used for the negative electrode, decomposition of the ceramic separator used as the organic electrolytic solution, the current collector, and the Na + ion conductor is made in comparison with the conventional metal Li-water-air battery or Li ion battery. It is hard to cause.
  • the ion conductivity of the Na + ion conductive solid electrolyte itself is also good, it does not serve as a barrier for improving the power density of the battery.
  • metal Na batteries use only common materials and elements for main components, they can be manufactured inexpensively and do not hinder large-scale use.
  • Na which is responsible for charge transfer in the battery, does not have the problems of abundance and uneven distribution of resources as compared with Li used in Li-ion batteries.
  • Al aluminum
  • the negative electrode holding metal Na it is not necessary to use copper which is often required when using Li, and cheaper aluminum (Al) can be suitably used.
  • the elements and raw materials that make up the ⁇ -alumina based and Nasicon ceramics used as the Na + ion conductor are also inexpensive and touched.
  • the present invention it is possible to provide a metallic Na battery in which the energy density per weight or volume is significantly improved while suppressing the cost by using only common materials for the main members.
  • FIG. 1 (A) is a schematic view showing a sodium-water-air battery of Embodiment 1.
  • FIG. 1 (B) is a schematic view showing a sodium-water battery of Embodiment 2. It is the schematic which shows the outline
  • the current-voltage characteristics obtained at 50 ° C. are shown for the metal Na battery using the Nashicon separator of Example 1.
  • the discharge characteristics obtained at 50 ° C. are shown for the metal Na battery using the Nashicon separator of Example 1.
  • the current-voltage obtained at 50 ° C. is shown for a metallic Na battery using the Nashicon separator of Example 2.
  • the current-voltage characteristics obtained at 30 ° C., 40 ° C., and 50 ° C. are shown for the metal Na battery using the ⁇ -alumina-based separator of Example 3.
  • the current-voltage characteristics measured at 25 ° C. in air for the metal Na battery using the gas-permeable positive electrode of Example 4 are shown.
  • the evaluation of the charge / discharge characteristic with respect to the metal Na battery using the gas-permeable positive electrode of Example 4 is shown.
  • the present inventors are Na + ion conductors (hereinafter also referred to as separators), which are Na + ion conductive solid electrolytes, ⁇ and ⁇ ′ ′ alumina, and Na—Zr—Si—P—O-based Nasacon ceramics.
  • separators Na + ion conductors
  • a battery metal Na battery
  • Na + ion conductive Indicates that Na + ions can be selectively conducted. Selectively conductive does not necessarily mean that only Na + ions are conducted and other substances are not conducted at all. That is, the case in which Na + ions can be conducted at a significantly higher frequency than other substances is also included in the case where they can be conducted selectively.
  • Na of the negative electrode active material When the metal Na battery is discharged, Na of the negative electrode active material is ionized to be Na + ions and dissolved in the organic electrolytic solution to supply electrons to the negative electrode. Na + ions diffuse through the Na + ion conductor into the aqueous electrolyte. That is, the partial reaction at the negative electrode is Na ⁇ Na + + e ⁇ .
  • the partial reaction at the positive electrode is 1 / 2H 2 O + e ⁇ + 1 ⁇ 4O 2 ⁇ OH ⁇ .
  • the total reaction in the metal Na battery is Na + 1/2 H 2 O + e ⁇ + 1 ⁇ 4 O 2 ⁇ NaOH (aq). That is, as the discharge progresses, the concentration of NaOH in the water-soluble electrolyte increases. However, hydrogen gas is not generated from the surface of the positive electrode.
  • This operating condition of the metal Na battery 20 is referred to as "sodium-water-air battery".
  • a sodium-water-air battery will be described as Embodiment 1 with reference to FIG. 1 (A).
  • FIG. 1 (A) is a schematic view showing the structure of a metal Na battery 20 (sodium-water-air battery) according to the first embodiment. First, an outline of the structure of the metal Na battery 20 is described, and then each configuration is described in detail.
  • the negative active material and Na + ion conductor 1 having a Na + ion-conducting, substantially consisting of metallic Na, which is arranged on one side of the Na + ion conductor 1 4 and at least a portion of the negative electrode active material 4 being in contact with the negative electrode 5 capable of conducting electrons generated when metal Na is ionized and in contact with one surface of the negative electrode 5 and the Na + ion conductor 1 water to the pooled organic electrolyte 2, stored as a positive electrode 8 disposed on the other side of the Na + ion conductor 1, in contact with the other surface of the positive electrode 8 and the Na + ion conductor 1 as And a water-soluble electrolyte 3 and having a base resistance and a positive electrode side housing portion 13.
  • the housing 7 accommodates the main components of the metal Na battery 20.
  • the housing 7 includes a negative electrode side housing portion 12 and a positive electrode side housing portion 13.
  • the negative electrode side accommodation portion 12 accommodates the negative electrode 5, the negative electrode active material 4 and the organic electrolytic solution 2 which are members on the negative electrode side of the metal Na battery 20.
  • the negative electrode side housing portion 12 has a structure for keeping the inside airtight after housing these. In this state, the negative electrode external terminal 6 extends from the inside to the outside of the negative electrode side housing portion 12.
  • the positive electrode side accommodation portion 13 accommodates the positive electrode 8 and the water-soluble electrolyte 3 which are members on the positive electrode side of the metal Na battery 20. Further, the positive electrode external terminal 10 extends from the inside of the positive electrode side accommodation portion 13 to the outside. Furthermore, the gas introduction pipe 11 may be inserted into the positive electrode side accommodation portion 13 from the outside as needed.
  • the concentration of NaOH (sodium hydroxide) in the aqueous electrolyte solution 3 increases as the reaction proceeds.
  • the pH of the water-soluble electrolyte 3 may exceed 13. Therefore, at least a portion of the positive electrode side accommodating portion 13 of the housing 7 in contact with the water-soluble electrolytic solution 3 is formed of a basic resistant material, preferably a strongly basic resistant material that can withstand pH 14 or more.
  • a positive electrode side housing portion 13 for example, a container such as Pyrex (registered trademark) glass, nylon, polyvinylidene chloride, peak (polyether ether ketone) resin (manufactured by VICTREX), etc. can be suitably used.
  • the negative electrode side accommodation portion 12 and the positive electrode side accommodation portion 13 of the housing 7 may be integrally formed or may be separately formed.
  • the Na + ion conductor 1 separates the organic electrolyte solution 2 contained in the negative electrode side housing portion 12 from the water-soluble electrolyte solution 3 contained in the positive electrode side housing portion 13.
  • the Na + ion conductor 1 is made of a compact Na + ion conductive solid electrolyte ceramic.
  • materials suitable for the Na + ion conductor 1 the following two materials are mainly considered.
  • the first material suitable for the Na + ion conductor 1 is rhombohedral ⁇ -alumina and hexagonal ⁇ ′ ′-alumina ceramics. These are combined to form a polycrystalline “ ⁇ -alumina based ceramic”. It is called. ⁇ ′ ′-alumina is preferable to ⁇ -alumina because higher Na + ion conductivity improves cell performance, but there is no significant performance difference even in the presence of two phases, and the ⁇ alumina produced actually The ceramics often contain both ⁇ -alumina and ⁇ ′ ′-alumina as main phases.
  • the metal Na battery 20 can be operated in the range of 0 to 100 ° C.
  • the ion conductivity of these ⁇ -alumina based ceramics is typically in the range of 10 ⁇ 3 to 0.1 S ⁇ cm ⁇ 1 . This ionic conductivity is very high as a solid electrolyte, about 1/10 of 1 M HCl aqueous solution.
  • ⁇ alumina-based ceramics have high stability without decomposition even in direct contact with metal Na, as demonstrated for application to Na-S batteries. Therefore, ⁇ -alumina-based ceramics play an important role in securing safety while incorporating metallic Na having high activity into a battery structure.
  • the second suitable material for the Na + ion conductor 1 is monoclinic or rhombohedral (polycrystalline) Nasicon ceramics.
  • the feature of the crystal structure is that Na + ions embedded in a network of oxide ions tetrahedrally and hexahedrally coordinated to cations have a structure capable of easily moving.
  • an electric conduction of 0-100 ° C, typically 10 -4 to 0.1 S ⁇ cm -1 is exhibited. Since Nasicon ceramics are stable even when immersed in an aqueous solution for a long time (J.J. Auborn & D. W. Johnson., Solid State Ionics, Vol. 5, p. 315, 1981), the water-soluble electrolyte 3 Show excellent characteristics for separating the organic electrolyte 2.
  • the composition of the ion conductive species in the ⁇ -alumina based ceramics and the NASICON ceramics be adjusted so as to be limited to Na + ions. That is, it is desirable to minimize the amount of chemical species to be monovalent cations other than Na, such as K (potassium).
  • K potassium
  • the amount of monovalent cations other than Na + ions increases, the ion conductivity decreases and, in addition, the exchange of monovalent cations occurs during the operation of the battery, which causes the volume change in these ceramics, thereby making the ceramics Makes it easy to cause damage.
  • These ceramics are molded into a dense diaphragm. In order to reduce the internal resistance of the battery, the thinner the thickness, the better.
  • the thickness of the Na + ion conductor 1 be 0.1 to 2 mm from the viewpoint of strength.
  • a structure in which a dense ⁇ -alumina-based or NASICON film is formed on a base material made of a material that does not deteriorate with the insulating electrolyte 3 such as porous alumina as the Na + ion conductor 1. May be used. In this case, the resistance can be further reduced.
  • the material of the negative electrode 5 is solid (having a melting point of over 100 ° C.) at the operating temperature (0 to 100 ° C.) of the metal Na battery 20 and has a good conductivity to the extent that electrons generated by dissolving metal Na can be conducted. Any material may be used as long as it is a material that does not react significantly with metal Na. As such a material, for example, Al, Cu, Fe, Cr, Ni, Ti, an alloy containing these as main components, and the like can be suitably used. From the viewpoint of cost and weight, metals having Al as a main component are preferable. Forming the negative electrode 5 as a porous metal is more advantageous because the diffusion of sodium is promoted.
  • the negative electrode active material 4 is accommodated in the negative electrode side accommodation portion 12 so as to be in contact with at least a part of the negative electrode 5.
  • the negative electrode active material 4 contains metal Na as a main component. It is desirable that the negative electrode active material 4 be substantially made of metal Na. “Consisting essentially of metal Na” means that the content of metal Na in the negative electrode active material 4 is 90% by mass or more.
  • the negative electrode active material 4 is electrically connected to the negative electrode 5 and the negative electrode external terminal 6 connected to the negative electrode 5.
  • the metal Na which is the main component of the negative electrode active material 4 may be held by a flat metal plate including the negative electrode 5, a metal wire, a wire mesh or the like. Alternatively, when the negative electrode 5 is formed of a porous metal, Na may be impregnated into the pores to integrate the negative electrode active material 4 and the negative electrode 5.
  • the negative electrode active material 4 preferably contains substantially no amalgam, which is a liquid alloy of mercury and Na.
  • the content of mercury in the negative electrode active material 4 is desirably less than 1.0% by mass, and more desirably less than 0.1% by mass.
  • the energy density per weight of the metal Na battery 20 can be improved, the load on the environment can be reduced, and the safety can be improved.
  • the organic electrolytic solution 2 is a substance having Na + ion conductivity.
  • the organic electrolytic solution 2 propylene carbonate (PC), ethylene carbonate (EC), or a mixed solution of ethylene carbonate and dimethyl carbonate (EC: DMC) is preferable.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Na has a smaller absolute value of the standard redox potential than Li, it does not require the stability as in the organic electrolyte of the conventional Li-ion battery or Li-water-air battery. Therefore, it is thought that the electrolyte solution considered unsuitable for Li ion batteries can be utilized. Even if the organic electrolyte solution 2 is omitted and the Na + ion conductor 1 and the negative electrode active material 4 are brought into direct contact, an electromotive force is generated in principle.
  • the organic electrolyte solution 2 plays an important role in order to sufficiently diffuse sodium between the Na + ion conductor 1 and the negative electrode active material 4.
  • sodium salt such as NaPF 6 , NaClO 4 , NaBO 4 or the like, or, if necessary, an electric current at the interface between the negative electrode active material 4 and the organic electrolytic solution Additives are added to improve the properties. Concentration of sodium salts such as NaPF 6 is more than 0.5M are preferred, more preferably at least 0.8 M, more preferably at least 0.95 M, more 1.0M is more preferable.
  • FEC fluoroethylene carbonate
  • the positive electrode 8 may have any shape of a plate or a wire mesh.
  • a material for example, carbon can be suitably used.
  • the positive electrode 8 may be a carbon plate, a metal electrode mainly composed of nickel (Ni), platinum (Pt) or palladium
  • an electrode made of a noble metal such as (Pd) or an electrode in which a noble metal is coated on a stainless steel mesh or the like (for example, carbon plates can be purchased from Tokai Carbon Co., and metal materials can be purchased from Niraco Co., Ltd.).
  • a carbon plate as the positive electrode 8.
  • a metal electrode mainly composed of nickel is particularly preferable.
  • oxygen or air may be supplied using a compressed gas cylinder.
  • the atmosphere may be supplied by using a pump or the like as needed.
  • the water-soluble electrolyte 3 is accommodated in the positive electrode side accommodation portion 13.
  • a sodium salt is added to the water-soluble electrolyte solution 3 to impart Na + ion conductivity.
  • NaOH is suitable.
  • the positive electrode 8 is in electrical contact with the positive electrode external terminal 10.
  • FIG. 1A shows the case where a platinum wire mesh (Pt wire mesh) is used as the positive electrode 8.
  • the positive electrode 8 is immersed in the water-soluble electrolyte 3.
  • a gas introduction pipe 11 for supplying a gas containing oxygen may be further provided.
  • a Na salt is added to the water-soluble electrolyte solution 3 in order to impart Na + ion conductivity.
  • the H 3 O + ion concentration in the water-soluble electrolyte 3 increases, and the H 3 O + diffuses into the Na + ion conductor 1 and reduces when reaching the organic electrolyte 2 and the negative electrode active material 4 It may be decomposed to form an ion diffusion barrier layer of oxide accompanied by generation of hydrogen gas.
  • the H 3 O + ions move from the organic electrolyte 2 into the water-soluble electrolyte 3 with the discharge of the metal Na battery 20, the NaOH concentration becomes high. However, there is no particular problem even if the depth of discharge is further increased.
  • the concentration of monovalent cations other than Na + ions such as K + be lower. Specifically, it is desirable that the Na + ion concentration ratio is less than 5%.
  • the energy density per weight or volume is significantly large.
  • An improved metal Na battery 20 can be provided.
  • metallic Na is used for the negative electrode, decomposition of the ceramic separator used as the organic electrolytic solution, the current collector, and the Na + ion conductor 1 as compared with the conventional metal Li-water-air battery or Li ion battery Hard to cause
  • the ion conductivity of the Na + ion conductive solid electrolyte itself is also good, it does not serve as a barrier for improving the power density of the battery.
  • the metal Na battery 20 can be manufactured inexpensively and does not hinder large-scale use.
  • Na which is responsible for charge transfer in the battery, does not have the problems of abundance and uneven distribution of resources as compared with Li used in Li-ion batteries.
  • the negative electrode 5 holding metal Na it is not necessary to use copper which is often required when using Li, and cheaper Al can be suitably used.
  • the elements and raw materials constituting the ⁇ -alumina system and the NASICON ceramics used as the Na + ion conductor 1 are also inexpensive and touched.
  • amalgam which is a liquid alloy of mercury and sodium
  • the energy density of the metal Na battery 20 can be improved.
  • the metal Na battery 20 is excellent not only in manufacture but also in terms of disposal.
  • the organic electrolytic solution 2 in which solid metal Na and Na salt are dissolved on the negative electrode 5 side through the Na + ion conductor 1 is dissolved on the positive electrode 8 side.
  • No. 3 enables stable operation at room temperature to 80 ° C.
  • ⁇ and ⁇ ′ ′ alumina and Nasicon ceramics are used as Na + ion conductor 1, good conduction of Na + ions does not become a main resistance component for discharge, and it is a main factor that inhibits the cell reaction.
  • FIG. 1 (B) is a schematic view showing the structure of a metal Na battery 20 (sodium-water battery) according to the second embodiment. Here, only differences from the sodium-water-air battery of Embodiment 1 will be described.
  • the water-soluble electrolyte 3 is accommodated in the positive electrode side accommodating portion 13 by forming the positive electrode 8 on one side of the positive electrode side accommodating portion 13.
  • the positive electrode 8 has gas permeability that directly takes in oxygen from the outside during discharge and releases the oxygen generated on the electrode during charge to the outside.
  • the positive electrode 8 is appropriately infiltrated by the water-soluble electrolyte 3, it does not allow the water-soluble electrolyte 3 to pass through. That is, the positive electrode 8 has gas permeability, and the other surface opposite to the one surface facing the Na + ion conductor 1 is at least partially in contact with air.
  • the gas-permeable positive electrode 8 is water-repellent on the air side and porous and permeable to air, good for oxygen reduction and water oxidation reaction on the aqueous solution side, and excellent in electric conductivity and durability.
  • a positive electrode 8 a gas diffusion layer, a catalyst layer, and a nickel metal mesh are laminated in this order, and a laminated board obtained by hot pressing them at about 200 ° C., for example, can be suitably used.
  • the gas diffusion layer can be obtained by mixing highly conductive carbon (Ketjen black) and a binder (PTEF emulsion) and hot pressing the mixture at, for example, about 200 ° C.
  • the catalyst layer can be obtained by mixing activated carbon on which a catalyst consisting of a Mn 3 O 4 phase is supported with a binder (PTEF emulsion) and hot-pressing the mixture at, for example, about 200 ° C.
  • Table 1 shows theoretical electromotive force (V) at 25 ° C. and theoretical energy density (Wh / kg) at 25 ° C. of sodium-water-air battery (embodiment 1) and sodium-water battery (embodiment 2). In the case where O 2 is not included and when included.
  • “s” “l” “aq” “g” respectively represent solid, liquid, aqueous solution and gas.
  • an energy density of about 3 to 15 times that of a typical Li ion battery can be obtained.
  • the charge / discharge rate (current density) of the metal Na battery 20 is about 0.1 mA / cm 2 , more preferably about 0.5 mA / cm 2 , and still more preferably about 1 mA / cm 2 .
  • Example 1 Metallic Na battery using Nashikon separator
  • Na 3 Zr 2 Si 2 so as to have the composition of the PO 12, Na 3 PO 4, ZrO 2, SiO 2 raw material is weighed and mixed, and 12 hours calcined at 1100 ° C..
  • the powder is pulverized by a ball mill, then subjected to uniaxial pressing and cold isostatic pressing and sintered at 1275 ° C. for 15 hours to form a disc having a Nasicon phase purity of 98% or more and a diameter of about 16 mm.
  • a sintered body having a relative density of 98% or more and no gas permeability was obtained.
  • Nashicon separator Na + ion conductor 1
  • the temperature characteristics of the sum of the resistance components in the crystal grains and grain boundaries of the above-described Nashicon ceramic were evaluated by the AC impedance method.
  • the activation energy of the electrical conductivity showed a typical value of 0.27 eV.
  • the direct current resistance as the separator was 53 ⁇ ⁇ cm ⁇ 2 at 50 ° C.
  • FIG. 2 is a schematic view showing an outline of a battery test.
  • the metal Na battery 20 used in the present example was configured as follows.
  • the housing 7 is configured by the O-ring 14, the jig 15, the glove box 16, the negative electrode side housing portion 12 including the lid portion 17, and the positive electrode side housing portion 13.
  • the obtained Na + ion conductor 1 was attached to a jig 15 made of peak resin (polyether ether ketone) designed to have an effective area of 1.1 cm 2 .
  • the jig 15 has a structure in which the inside of the negative electrode 5 side and the outside of the positive electrode 8 are airtightly separated by a rubber O-ring 14.
  • a glove box 16 providing a purified atmosphere from which oxygen and water were removed, 20 mg of metal Na pieces were bound to a platinum wire and stored in the jig 15 described above. Furthermore, after pouring the organic electrolyte solution 2 in which 0.5 M NaPF 6 and 0.05 M fluoroethylene carbonate were dissolved in propylene carbonate so that all metal Na was immersed, O-ring 14 and lid 17 Airtight sealing was performed to form the negative electrode side accommodation portion 12. The platinum wire was drawn out from the negative electrode side accommodation portion 12 so as to maintain the airtightness, and was used as a negative electrode external terminal 6.
  • the water-soluble electrolyte 3 0.1 M NaOH aqueous solution was used.
  • the water-soluble electrolyte solution 3 was accommodated in the positive electrode side accommodation portion 13 made of Pyrex (registered trademark) glass.
  • the negative electrode side housing portion 12 in which the above-described Na was sealed in the water-soluble electrolyte 3 was placed so that all the Na + ion conductors 1 were immersed in the water-soluble electrolyte 3.
  • 4 cm 2 of 250 mesh Pt wire netting (a metal material purchased from Nyako Co., Ltd.) was set as a positive electrode 8.
  • the platinum wire welded to the positive electrode 8 was drawn out from the positive electrode side accommodation portion 13 to form a positive electrode external terminal 10.
  • FIG. 3 shows the current-voltage characteristics obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 1.
  • the voltage (V) at current 0 corresponds to the open electromotive force.
  • the metal Na battery of this example operated as a Na-water-air battery.
  • the obtained open electromotive force (V) almost matches the theoretical electromotive force.
  • the measured value was slightly smaller than the theoretical electromotive force. It is considered that this is because 0.1 M NaOH was previously dissolved in the aqueous electrolyte.
  • 5% H 2 -95% Ar was supplied through the gas introduction pipe, the metal Na battery of this example operated as a Na-water battery.
  • the obtained open electromotive force (V) showed a value close to the theoretical electromotive force.
  • the measured value was larger than the theoretical electromotive force. It is considered that this is because the dissolved oxygen in the water-soluble electrolyte could not be completely removed.
  • Current - the internal resistance of the battery was estimated from the slope of the voltage characteristic, Na- water - about 200 [Omega / cm 2 in the air battery, the Na- water cell was about 400 ⁇ / cm 2. This was a value several times larger than the resistance value of the separator of Nashicon ceramics. Therefore, it was judged that Nashicon ceramic itself is not a main component of internal resistance, and works effectively as the Na + ion conductor without impairing the battery performance itself.
  • FIG. 4 shows the discharge characteristics obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 1.
  • the electromotive force voltage / V
  • the integrated current value discharge amount / mAh
  • the metal Na battery of the present Example operated stably for 2 days or more in the state which the positive electrode side accommodating part was immersed in the strongly-basic (pH> 13) water-soluble electrolyte solution.
  • Example 2 Metallic Na Battery Using Nashicon Separator
  • the present embodiment is different from the first embodiment in that a sintered body having the same composition as that of the first embodiment is polished to a thickness of 0.5 mm to obtain a separator made of Nashicon ceramics.
  • the battery test shown in FIG. 2 was performed in the same manner as in Example 1 for the metal Na battery 20 using the obtained Nashicon separator. Point metal Na pieces tied to the platinum wire was 23 mg, that was used NaPF 6 of 1.0 M, a point used as a positive electrode 8 12cm 2 carbon plate (Tokai Carbon Co., Ltd. isotropic graphite) And a battery test was conducted in the same manner as Example 1 except that only 100% O 2 gas was supplied to the positive electrode 8.
  • FIG. 5 shows the current-voltage obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 2.
  • the open electromotive force (V) was almost in agreement with the theoretical electromotive force. Therefore, it was confirmed that the metal Na battery of this example operated as a Na-water-air battery.
  • the maximum value of the power density (W / kg) is a total of 4.1 mg of the enclosed metal sodium weight of 23 mg and 18 mg of water required for the complete reaction, and 200 W / kg in terms of the effective area of the Nashicon separator.
  • the current density at that time was 6 mA / cm 2 .
  • FIG. 5 in the present example, the unstable behavior seen in Example 1 (FIG. 3) was not confirmed.
  • Example 2 From this, it is considered that the main reason that the current density was further increased than in Example 1 was that the positive electrode was replaced from a Pt wire mesh to a carbon plate. In addition, it is considered that the increase in the concentration of NaPF 6 in the organic electrolyte is also a factor.
  • Table 2 shows the open electromotive force (V), the energy density (Wh / kg) at 50 ° C., and the power density (W / kg) obtained by the metal Na battery using the Nasicon separators of Examples 1 and 2. .
  • the energy and the power density were calculated from the value at the maximum power in the current-voltage characteristics and the mass of the negative electrode and the positive electrode active material excluding oxygen gas involved in the battery reaction.
  • a conventional Li-ion battery requires a battery of about 1200 kg. Therefore, the conventional Li-ion battery is impractical for practical use.
  • the weight of the battery is about 200 kg. This is a realistic weight comparable to current electric vehicles. In a general-purpose automobile, it is only necessary to constantly obtain a maximum output of about 80 kW for about 1 minute and a steady output of about 20 kW.
  • the metal Na battery of the present embodiment has a high energy density, that is, the feature of lightness is not necessarily limited to a mobile object such as an automobile, and is also suitable as a battery for home electric appliances.
  • Example 3 ⁇ -alumina based metal Na battery using separator
  • a raw material was mixed with Na 2 CO 3 , g-Al 2 O 3 and MgO as a raw material, and calcined at 1600 ° C. for 2 hours. This is subjected to ball milling, uniaxial pressing, and cold isostatic pressing followed by sintering at 1650 ° C. for 24 hours to obtain a diameter of about 6: 4 in weight ratio of ⁇ alumina and ⁇ ′ ′ alumina phase.
  • a sintered body with 16 mm disk shape and relative density of 98% or more without gas permeability was obtained and polished to a thickness of 1.5 mm to obtain a separator (Na + ion conductor of ⁇ alumina ceramic)
  • the temperature characteristics of the sum of the resistance components within the crystal grains and grain boundaries of the above-mentioned ⁇ -alumina-based ceramics were evaluated by the alternating current impedance method.
  • the activation energy of the electrical conductivity was a typical value.
  • the direct current resistance as a Na + ion conductor was 40 ⁇ ⁇ cm ⁇ 2 at 50 ° C.
  • Example 2 a battery test shown in FIG. 2 was performed.
  • a separator of ⁇ -alumina based ceramic was used as Na + ion conductor 1, 10 mg of metal Na pieces bound to a platinum wire, and 0.5 M sodium perchlorate (NaClO instead of NaPF 6)
  • a battery test was conducted in the same manner as in Example 1 except that 4 ) was used.
  • FIG. 6 shows the current-voltage characteristics obtained at 30 ° C., 40 ° C., and 50 ° C. for the metal Na battery using the ⁇ -alumina-based separator of Example 3.
  • the open circuit electromotive force (V) almost agrees with the theoretical electromotive force as the Na-water-air battery. From this, it was confirmed that the metal Na battery of this example operated as desired.
  • the internal resistance of the cell estimated from the slope of the current-voltage characteristics at 50 ° C. was about 900 ⁇ / cm 2 . This was a value 10 or more times larger than the resistance value of the ⁇ -alumina-based ceramic separator. Therefore, it was determined that the ⁇ -alumina ceramic itself was not a main component of the internal resistance. Further, even if the Pt wire mesh was changed to a 1 cm 2 Ni plate, no change in current-voltage characteristics was observed.
  • Example 4 Metallic Na Battery Using Gas Permeable Positive Electrode Corresponding to FIG. 1 (B), the metal Na battery using the gas-permeable positive electrode was created, and the discharge characteristic was evaluated.
  • a gas-permeable positive electrode was produced by the following procedure.
  • This was mixed with a binder (PTEF emulsion), and the mixture was hot pressed at about 200 ° C. to obtain a catalyst layer.
  • a highly conductive carbon Ketjen black
  • a binder PTEF emulsion
  • gas diffusion layer the catalyst layer, and the nickel wire netting described above were stacked in this order and hot pressed at about 200 ° C. to obtain a gas-permeable positive electrode.
  • the metal Na battery 20 shown in FIG. 1 (B) was configured using this gas permeable positive electrode.
  • the effective electrode area of this metal Na battery 20 was 0.79 cm 2 .
  • EC which dissolved 10 mg metal Na crimped on a SUS304 stainless steel plate on a negative electrode, 1M sodium perchlorate NaClO 4 as a sodium salt and 1 vol% fluoroethylene carbonate (FEC) as an additive to a negative electrode electrolyte:
  • An electrolyte of DMC mixture of ethylene carbonate and dimethyl carbonate in a 1: 1 ratio
  • a 0.6 mm thick Nashicon ceramic was used as a ceramic separator.
  • the positive electrode electrolyte was a 0.5 M aqueous solution of sodium hydroxide NaOH, and was in contact with one side of the above gas-permeable positive electrode.
  • FIG. 7 shows the current-voltage characteristics of the metal Na battery using the gas-permeable positive electrode of Example 4 measured at 25 ° C. in air.
  • the maximum output of the metal Na battery of this example was improved to 25 mW / cm 2 or more. It is believed that this property surpasses both conventional aqueous and non-aqueous lithium and sodium air batteries. That is, in the present embodiment, a highly conductive sodium ion conductive ceramic material, a non-aqueous electrolytic solution and a water-soluble electrolytic solution are selected as the electrolyte component. This shows that high output can be obtained in the form of an aqueous solution sodium-air battery equipped with a gas-permeable positive electrode.
  • Example 5 Evaluation of charge and discharge characteristics
  • the configuration of the battery and the measurement conditions are the same as in the fourth embodiment. Only the current control of the measurement system for charge and discharge (charge and discharge) differs from that of the fourth embodiment.
  • FIG. 8 shows the evaluation of charge and discharge characteristics of a metal Na battery using the gas-permeable positive electrode of Example 4.
  • the charge / discharge rate (current density) of the metal Na battery of this example was about 1 mA / cm 2 . This is greater than the charge and discharge rate of the previously reported battery.
  • the charge / discharge rate was about 30 times as fast. That is, in the present embodiment, by taking the form of the aqueous solution sodium-air battery, the merit that the material having high conductivity can be selected for the electrolyte component was exhibited.
  • the present invention relates to a metal Na battery.

Abstract

This invention is provided with: a Na+ ion conductor (1) having Na+ ion conductivity; a negative electrode active material (4) substantively comprising metal Na, disposed on one side of the Na+ ion conductor (1); a negative electrode (5) disposed so that a least a part thereof is in contact with the negative electrode active material (4), the negative electrode (5) being capable of conducting electrons generated when metal Na ionizes; an organic electrolyte (2) stored so as to be in contact with the negative electrode (5) and one surface of the Na+ ion conductor (1); a positive electrode (8) disposed on the other side of the Na+ ion conductor (1); an aqueous electrolyte (3) stored so as to be in contact with the positive electrode (8) and the other surface of the Na+ ion conductor (1); and a housing part (13) for housing the aqueous electrolyte (3), the housing part (13) having base resistance.

Description

金属Na電池Metal Na battery
 本発明は、金属Na電池に関する。 The present invention relates to a metal Na battery.
 近年、化石燃料の代替として、化学反応を利用して電気を得る電気自動車用の電池が開発されてきた。このような電池の1つとして、従来からLiイオン(以下、リチウムイオン、Liイオン、または単にLiともいう)電池が注目されてきた。しかし、Liイオン電池を蓄電池とした電気自動車に、従来の内燃機関車と同等の航続距離を持たせることは難しい。商用のLiイオン電池は100~200Wh/kg程度のエネルギー密度しか有さないためである。内燃機関車と同等の航続距離を得るためには、Liイオン電池では現状の4倍以上のエネルギー密度が必要となる。このように大幅にエネルギー密度を向上させることは、従来のLiイオン電池の延長にある技術だけでは難しい。そのため、新しいしくみのエネルギー変換デバイスが求められてきた。 In recent years, a battery for an electric car which obtains electricity using a chemical reaction has been developed as a substitute for fossil fuel. Conventionally, a lithium ion (hereinafter, also referred to as lithium ion, Li + ion, or simply referred to as Li + ) battery has attracted attention as one of such batteries. However, it is difficult to provide an electric vehicle using a lithium ion battery as a storage battery with the same range as a conventional internal combustion engine. This is because commercial Li-ion batteries have only an energy density of about 100 to 200 Wh / kg. In order to obtain the same range as that of an internal combustion locomotive, an Li-ion battery requires an energy density four or more times the current level. Such a significant improvement in energy density is difficult only with the technology in the extension of the conventional Li-ion battery. Therefore, new energy conversion devices have been required.
 高いエネルギー密度を実現するための手段のひとつとして、酸化反応による反応自由エネルギー変化が大きく、かつ軽いアルカリ金属自体を負極の活物質とする技術が知られている。その中では主に、所謂Li-空気電池が検討されてきた。例えば、Li金属箔を負極にして、酸素を透過する炭素複合電極正極、高分子膜セパレータ、有機電解液を用いたLi-空気電池が知られている(非特許文献1)。このLi-空気電池は、その後開発されるLi-空気電池の基本型とされてきた。Li-空気電池は、理想的な条件下では4Li+O→2LiOの電池反応によって、Oを電池反応物重量に含んだ計算値で5,200Wh/kg、Oを含まない計算値で11,140Wh/kgという高い理論エネルギー密度を持つ。そのため、理論エネルギー密度が250~350Wh/kgのLiイオン電池と比較して、実験的にも高いエネルギー密度が得られるとされている。 As one of the means for achieving high energy density, there is known a technology in which a light alkali metal itself having a large change in reaction free energy due to an oxidation reaction is used as the active material of the negative electrode. Among them, so-called Li-air batteries have been mainly studied. For example, there is known a lithium-air battery using a carbon composite electrode positive electrode, a polymer membrane separator, and an organic electrolytic solution that transmits oxygen by using a Li metal foil as a negative electrode (Non-patent Document 1). This Li-air battery has been considered as the basic type of Li-air battery developed later. Under ideal conditions, the Li-air battery is a battery reaction of 4Li + O 2 → 2Li 2 O, and the calculated value including O 2 in the battery reaction weight is 5,200 Wh / kg, calculated without O 2. It has a high theoretical energy density of 11,140 Wh / kg. Therefore, it is supposed that an experimentally higher energy density can be obtained as compared to a Li-ion battery having a theoretical energy density of 250 to 350 Wh / kg.
 また、非特許文献1の問題(後述)を改善する技術として、セパレータにLi高速イオン伝導体の固体電解質リシコン(LISICON)を用い、正極側に水溶性電解液と酸素を透過する電極を配置した構造を有するLi-空気電池(ここでは「Li-水-空気電池」と称する)も開発されてきた。このLi-水-空気電池は、放電時の反応生成物が水溶性電解液に溶解するLiOHであるため、完全に電池反応を行うことができるとされている。このLi-水-空気電池の理論エネルギー密度は、反応に要する酸素の重量を除外して、約5,700Wh/kgである。また、実験では800Wh/kg程度の放電が実証されている(非特許文献2)。 In addition, as a technique for solving the problem of Non-Patent Document 1 (described later), a Li + high-speed ion conductor solid electrolyte Rishicon (LISICON) is used as a separator, and an electrode that transmits a water-soluble electrolyte and oxygen is disposed on the positive electrode side. Li-air batteries (referred to herein as "Li-water-air batteries") having a different structure have also been developed. This Li-water-air battery is said to be capable of completely performing a battery reaction because the reaction product at the time of discharge is LiOH which is dissolved in a water-soluble electrolyte. The theoretical energy density of this Li-water-air cell is about 5,700 Wh / kg excluding the weight of oxygen required for the reaction. In addition, a discharge of about 800 Wh / kg has been demonstrated in the experiment (Non-Patent Document 2).
 電池に高いエネルギー密度を持たせるための別の手段として、ナトリウム-硫黄(Na-S)電池の固体電解質としてβアルミナを用いる技術が知られている。βアルミナとは、スピネルブロックと呼ばれる構造層がNaイオン(以下、ナトリウムイオン、Naイオン、または単にNaともいう)から成る層を挟み込んだ層状構造を有する結晶である。βアルミナは、六方晶系のβ相および稜面体晶系のβ″相という層の重なり方が若干異なる二つの構造を持つ。例えば、後者の基本的な組成はNa1+xMgAl11-x17  (x=0.59~0.72)である。配向制御された多結晶体は、層間のNaイオンが高速拡散できるため、約350℃で0.1S・cm-1以上の高速Naイオン伝導性を示す固体電解質となる。 As another means for providing high energy density to the battery, a technology using β-alumina as a solid electrolyte of a sodium-sulfur (Na-S) battery is known. The β-alumina is a crystal having a layered structure in which a structural layer called a spinel block sandwiches a layer composed of Na + ions (hereinafter also referred to as sodium ions, Na ions or simply Na + ). β-alumina has two structures in which the layers of hexagonal β-phase and cyclohedral β′-phase overlap slightly differently. For example, the basic composition of the latter is Na 1 + x Mg x Al 11-x O 17   (X = 0.59 to 0.72). The orientation-controlled polycrystal is a solid electrolyte exhibiting high-speed Na + ion conductivity of 0.1 S · cm −1 or more at about 350 ° C. because Na + ions in the layer can diffuse at high speed.
 Na-S電池は当初、鉛蓄電池の4~5倍の高エネルギー密度が達成できる電気自動車向け二次電池として開発された。しかしNa-S電池は、約350℃という高温で動作する等の理由によって、現在は定置向けとして商用化されている。Na-S電池では、負極に金属Na、正極に硫黄および多硫化ナトリウムS/Naの活物質、正極溶融塩の集電材としてグラファイトウールがそれぞれ用いられる。典型的な運転温度は、硫化ナトリウムが溶融して電解質の伝導度も十分に高い300~350℃である。Na-S電池は充放電エネルギー効率の高さを特徴とする。 Na-S batteries were initially developed as secondary batteries for electric vehicles, which can achieve high energy density four to five times that of lead acid batteries. However, Na-S batteries are currently commercialized for stationary use because they operate at a high temperature of about 350.degree. In the Na-S battery, metal Na for the negative electrode, an active material of sulfur and sodium polysulfide S / Na 2 S x for the positive electrode, and graphite wool for the current collector of the molten molten salt are respectively used. Typical operating temperatures are 300-350 ° C., where the sodium sulfide melts and the conductivity of the electrolyte is sufficiently high. Na-S batteries are characterized by high charge and discharge energy efficiency.
 また、高いNaイオン伝導度およびβもしくはβ″アルミナに近いイオン伝導率を有する固体電解質として、ナシコン(NASICON)が知られている。ナシコンは、AMM′P12(Aはアルカリイオンを含む種々の陽イオン、M,M′は、2価から5価の陽イオン)の一般式で表される、菱面体晶系もしくは単斜晶系の一連の結晶である。Naイオンを伝導するナシコンの代表的な化学組成は、Nal+xSiZr3-x12(0≦x≦3)と表される。上記のリシコンは、AをLiとしたナシコンの一連の派生物質を指す。しかし、ナシコンは、Na-S電池の運転温度である300℃付近で金属Naと直接接触すると分解するため(非特許文献3)、Na-S電池に応用するには化学的耐久性に劣ると考えられてきた。 In addition, NASICON is known as a solid electrolyte having high Na + ion conductivity and ion conductivity close to β or β ′ ′ alumina. Nasacon is AMM ′ P 3 O 12 (A is an alkali ion It is a series of rhombohedral or monoclinic crystals represented by the general formula of various cations including M, M ', which are divalent to pentavalent cations. Conducting Na + ions typical chemical composition of NASICON to, Na l + x Si x Zr 2 P 3-x O 12 (0 ≦ x ≦ 3) is expressed by. Additional Rishikon a series of derived materials NASICON that the a and Li However, since Nasicon decomposes when it comes in direct contact with metallic Na at around 300 ° C, which is the operating temperature of Na-S batteries (Non-Patent Document 3), its chemical durability for application to Na-S batteries Inferior to Have gills are in.
 電池に高いエネルギー密度を持たせるためのさらに別の手段として、βもしくはβ″アルミナ電解質と金属Naとを負極活物質として用いる技術も知られている。この技術では、室温から100℃以下の温度域で一次電池を作動させる。そのため、負極をNa-Hgのアマルガム、セパレータをβアルミナ系電解質、正極活物質を水溶性電解液もしくは炭酸プロピレン等の有機溶媒に含有させたBr、I、HO、Oとしている(非特許文献4)。金属Naが室温では固体であるため、固体の金属Naのみを負極とすると、Na化学種が充分に拡散できず、放電特性が著しく低い。この問題を解決するために、Hgが使用されてきた。HgはNaと共に室温では液相を形成することで、拡散を改善する。この電池の理論エネルギー密度は500~1,550Wh/kgの範囲にある。また、電池試験による実際のエネルギー密度は、それらの1/2~1/3であり、実際上もエネルギー密度がLiイオン電池より高い。 As yet another means for providing a battery with high energy density, a technology using β or β ′ ′ alumina electrolyte and metal Na as a negative electrode active material is also known. In this technology, a temperature from room temperature to 100 ° C. or less The primary battery is operated in the region, so that the negative electrode is amalgam of Na-Hg, the separator is a β alumina electrolyte, the positive electrode active material is contained in a water-soluble electrolytic solution or an organic solvent such as propylene carbonate Br 2 , I 2 , H 2 O and O 2 (Non-Patent Document 4) Since metal Na is solid at room temperature, when only solid metal Na is used as the negative electrode, Na chemical species can not be sufficiently diffused and the discharge characteristics are extremely low. Hg has been used to solve this problem Hg improves diffusion by forming a liquid phase at room temperature with Na.The theoretical energy density of this cell The degree of energy is in the range of 500 to 1,550 Wh / kg, and the actual energy density by the battery test is 1/2 to 1/3 of them, and the energy density is practically higher than that of the Li ion battery.
 上述のように、従来のLiイオン電池よりもエネルギー密度が向上したいくつかの電池が検討されてきた。しかし、いずれの技術でも、高価な部材を主要部材として用いていたため、コスト面で改善の余地があった。また、非特許文献1の技術では、実際の反応生成物であるLiが有機電解液には溶解せず正極に目詰まりを起こすため、電池反応が完全に進まず、上記の理論密度が得られないという問題があった。また、非特許文献2の技術でも、リシコン電解質がLi金属と直接接触した場合や、強酸性や強塩基性の水溶液中に入れられた場合に分解するという問題があった。また、非特許文献4の技術では、有害なHgを使用するという問題があった。また、エネルギー密度に改善の余地があった。 As mentioned above, several batteries with improved energy density over conventional Li-ion batteries have been considered. However, in any of the techniques, since expensive members are used as main members, there is room for improvement in cost. Further, in the technique of Non-Patent Document 1, the actual reaction product, Li 2 O 2, does not dissolve in the organic electrolyte and causes clogging in the positive electrode, so that the battery reaction does not proceed completely, and the above theoretical density There was a problem that was not obtained. In addition, even in the technique of Non-Patent Document 2, there is a problem that the solution decomposes when the riscone electrolyte is in direct contact with Li metal or when it is placed in a strongly acidic or strongly basic aqueous solution. Further, the technique of Non-Patent Document 4 has a problem of using harmful Hg. There was also room for improvement in energy density.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、主要部材にありふれた材料のみを用いてコストを抑えつつも、重量もしくは体積あたりのエネルギー密度が大幅に向上した金属Na電池を提供することにある。 The present invention has been made in view of these problems, and an object thereof is to reduce the cost by using only common materials for the main members while reducing the energy density per weight or volume significantly. It is to provide.
 上記課題を解決するために、本発明のある態様の金属Na電池は、Naイオン伝導性を有するNaイオン伝導体と、Naイオン伝導体の一方の側に配置された実質的に金属Naからなる負極活物質と、負極活物質に少なくとも一部が接するように配置され、金属Naがイオン化する際に生じる電子を伝導可能な負極と、負極とNaイオン伝導体の一方の面と接するように貯留された有機電解液と、Naイオン伝導体の他方の側に配置された正極と、正極とNaイオン伝導体の他方の面と接するように貯留された水溶性電解液と、水溶性電解液を収容し、耐塩基性を有する収容部と、を備える。 In order to solve the above problems, the metal Na battery according to one embodiment of the present invention, Na + ion conductivity and Na + ion conductor having a substantially metal disposed on one side of the Na + ion conductor A negative electrode active material made of Na, and a negative electrode which is disposed so as to at least partially contact the negative electrode active material and can conduct electrons generated when metal Na is ionized, and one surface of the negative electrode and the Na + ion conductor an organic electrolytic solution stored in contact, Na + and the positive electrode disposed on the other side of the ion conductor, a cathode and an Na + ion conductor aqueous electrolyte solution stored in contact with the other surface of the And a water-soluble electrolyte and a container having a basic resistance.
 この態様によると、軽量で活性な金属Naと水、および必要な場合には外部から取り込むことができる酸素を活物質として用いているため、重量もしくは体積あたりのエネルギー密度が大幅に向上した金属Na電池を提供することができる。また、負極に金属Naを用いているため、従来の金属Li-水-空気電池やLiイオン電池と比較して、有機電解液や集電材、Naイオン伝導体として用いるセラミックス・セパレータの分解を引き起こし難い。またNaイオン伝導性の固体電解質のイオン伝導度自体も良好であるため、電池の出力密度を改善するための障壁とならない。 According to this embodiment, the metal Na with light and active metal Na and water, and oxygen which can be taken in from the outside if necessary, is used as the active material, and thus the metal Na with significantly improved energy density per weight or volume A battery can be provided. In addition, since metallic Na is used for the negative electrode, decomposition of the ceramic separator used as the organic electrolytic solution, the current collector, and the Na + ion conductor is made in comparison with the conventional metal Li-water-air battery or Li ion battery. It is hard to cause. In addition, since the ion conductivity of the Na + ion conductive solid electrolyte itself is also good, it does not serve as a barrier for improving the power density of the battery.
 また、金属Na電池は、主要部材にありふれた材料や元素のみが用いられているため、安価に製造することができて、大規模な利用の妨げとならない。特に電池中の電荷移動を担うNaは、Liイオン電池に使用されるLiと比較すると、存在量や資源偏在の問題がない。また、金属Naを保持する負極では、Liを用いる際にしばしば必要とされる銅を用いる必要が無く、より安価なアルミニウム(Al)を好適に使用することができる。Naイオン伝導体として用いるβアルミナ系やナシコンセラミックスを構成する元素や原料も安価でありふれている。 In addition, since metal Na batteries use only common materials and elements for main components, they can be manufactured inexpensively and do not hinder large-scale use. In particular, Na, which is responsible for charge transfer in the battery, does not have the problems of abundance and uneven distribution of resources as compared with Li used in Li-ion batteries. Moreover, in the negative electrode holding metal Na, it is not necessary to use copper which is often required when using Li, and cheaper aluminum (Al) can be suitably used. The elements and raw materials that make up the β-alumina based and Nasicon ceramics used as the Na + ion conductor are also inexpensive and touched.
 本発明によれば、主要部材にありふれた材料のみを用いてコストを抑えつつも、重量もしくは体積あたりのエネルギー密度が大幅に向上した金属Na電池を提供することができる。 According to the present invention, it is possible to provide a metallic Na battery in which the energy density per weight or volume is significantly improved while suppressing the cost by using only common materials for the main members.
実施の形態に係る金属Na電池の構造を示す概略図である。図1(A)は、実施の形態1のナトリウム-水-空気電池を示す概略図である。図1(B)は、実施の形態2のナトリウム-水電池を示す概略図である。It is the schematic which shows the structure of the metal Na battery concerning embodiment. FIG. 1 (A) is a schematic view showing a sodium-water-air battery of Embodiment 1. FIG. FIG. 1 (B) is a schematic view showing a sodium-water battery of Embodiment 2. 電池試験の概要を示す概略図である。It is the schematic which shows the outline | summary of a battery test. 実施例1のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた電流-電圧特性を示す。The current-voltage characteristics obtained at 50 ° C. are shown for the metal Na battery using the Nashicon separator of Example 1. 実施例1のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた放電特性を示す。The discharge characteristics obtained at 50 ° C. are shown for the metal Na battery using the Nashicon separator of Example 1. 実施例2のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた電流-電圧を示す。The current-voltage obtained at 50 ° C. is shown for a metallic Na battery using the Nashicon separator of Example 2. 実施例3のβアルミナ系・セパレータを用いた金属Na電池に対して、30℃,40℃,50℃にて得られた電流-電圧特性を示す。The current-voltage characteristics obtained at 30 ° C., 40 ° C., and 50 ° C. are shown for the metal Na battery using the β-alumina-based separator of Example 3. 実施例4のガス透過性の正極を用いた金属Na電池に対して、空気中25℃で測定した電流-電圧特性を示す。The current-voltage characteristics measured at 25 ° C. in air for the metal Na battery using the gas-permeable positive electrode of Example 4 are shown. 実施例4のガス透過性の正極を用いた金属Na電池に対する充放電特性の評価を示す。The evaluation of the charge / discharge characteristic with respect to the metal Na battery using the gas-permeable positive electrode of Example 4 is shown.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 本発明者らは、Naイオン伝導性固体電解質である、βおよびβ″アルミナ、ならびにNa-Zr-Si-P-O系のナシコンセラミックスをNaイオン伝導体(以下、セパレータともいう)として、金属Naを主成分とする負極を用いた電池(金属Na電池)を開発した。その上で、金属Na電池が好適に動作する電池構造や動作条件に関して、鋭意研究を重ねた。その結果、Naに関連する化学種の反応を介することで、ありふれた資源で構成でき、かつ高いエネルギー密度を有する金属Na電池を提供できることを見出した。なお、本明細書中で「Naイオン伝導性」とは、Naイオンを選択的に伝導可能であることをいう。選択的に伝導可能であるとは、必ずしもNaイオンのみを伝導して他の物質を全く伝導しないことを意味しない。つまり、Naイオンを他の物質に比べて有意に高頻度に伝導可能な場合も、選択的に伝導可能な場合に含むものとする。 The present inventors are Na + ion conductors (hereinafter also referred to as separators), which are Na + ion conductive solid electrolytes, β and β ′ ′ alumina, and Na—Zr—Si—P—O-based Nasacon ceramics. As a result, we developed a battery (metal Na battery) using a negative electrode containing metal Na as a main component, and on top of that, we conducted intensive studies on the battery structure and operating conditions under which the metal Na battery suitably operates. by via reactive species associated with Na, and found to be able to provide a metal Na cell having a common can be configured with resources, and high energy density. in this specification, "Na + ion conductive "Indicates that Na + ions can be selectively conducted. Selectively conductive does not necessarily mean that only Na + ions are conducted and other substances are not conducted at all. That is, the case in which Na + ions can be conducted at a significantly higher frequency than other substances is also included in the case where they can be conducted selectively.
 金属Na電池を放電させる場合、負極活物質のNaがイオン化してNaイオンとなって有機電解液に溶解し、負極に電子を供給する。NaイオンはNaイオン伝導体を経て水溶性電解液へと拡散する。即ち負極での部分反応は、Na→Na+eである。 When the metal Na battery is discharged, Na of the negative electrode active material is ionized to be Na + ions and dissolved in the organic electrolytic solution to supply electrons to the negative electrode. Na + ions diffuse through the Na + ion conductor into the aqueous electrolyte. That is, the partial reaction at the negative electrode is Na → Na + + e .
 酸素ガスを正極に供給する場合や金網を正極として用いる場合には、正極での部分反応は1/2HO+e+1/4O→OHとなる。この場合、金属Na電池における全反応は、Na+1/2HO+e+1/4O→NaOH(aq)となる。即ち、放電が進行するにつれて水溶性電解液中のNaOH濃度が増加する。しかし、正極の表面から水素ガスは発生しない。金属Na電池20のこの運転状態を「ナトリウム-水-空気電池」と称する。ナトリウム-水-空気電池は、実施の形態1として図1(A)を用いて説明する。 When oxygen gas is supplied to the positive electrode or a wire mesh is used as the positive electrode, the partial reaction at the positive electrode is 1 / 2H 2 O + e + 1⁄4O 2 → OH . In this case, the total reaction in the metal Na battery is Na + 1/2 H 2 O + e + 1⁄4 O 2 → NaOH (aq). That is, as the discharge progresses, the concentration of NaOH in the water-soluble electrolyte increases. However, hydrogen gas is not generated from the surface of the positive electrode. This operating condition of the metal Na battery 20 is referred to as "sodium-water-air battery". A sodium-water-air battery will be described as Embodiment 1 with reference to FIG. 1 (A).
 一方、酸素ガスを正極に供給しない場合、負極側からの電子の供給により、正極での部分反応は、HO+e→OH+1/2Hとなる。この場合、金属Na電池における全反応は、Na+HO→NaOH(aq)+1/2H↑となる。即ち、放電が進行するにつれて水溶性電解液中のNaOH濃度が増加すると共に、正極の表面から水素ガスが発生する。金属Na電池のこの運転状態を「ナトリウム-水電池」と称する。ナトリウム-水電池は、実施の形態2として図1(B)を用いて説明する。 On the other hand, when oxygen gas is not supplied to the positive electrode, partial reactions on the positive electrode become H 2 O + e → OH + 1⁄2H 2 by the supply of electrons from the negative electrode side. In this case, the total reaction in the metal Na battery is Na + H 2 O → NaOH (aq) + 1/2 H 2 ↑. That is, as the discharge progresses, the concentration of NaOH in the water-soluble electrolyte increases, and hydrogen gas is generated from the surface of the positive electrode. This operating condition of a metal Na battery is referred to as a "sodium-water battery". A sodium-water battery will be described as Embodiment 2 with reference to FIG. 1 (B).
(実施の形態1)
 図1(A)は、実施の形態1に係る金属Na電池20(ナトリウム-水-空気電池)の構造を示す概略図である。まず金属Na電池20の構造の概略を説明した上で、次に各構成を詳細に説明する。
Embodiment 1
FIG. 1 (A) is a schematic view showing the structure of a metal Na battery 20 (sodium-water-air battery) according to the first embodiment. First, an outline of the structure of the metal Na battery 20 is described, and then each configuration is described in detail.
 本実施の形態の金属Na電池20は、Naイオン伝導性を有するNaイオン伝導体1と、Naイオン伝導体1の一方の側に配置された実質的に金属Naからなる負極活物質4と、負極活物質4に少なくとも一部が接するように配置され、金属Naがイオン化する際に生じる電子を伝導可能な負極5と、負極5とNaイオン伝導体1の一方の面と接するように貯留された有機電解液2と、Naイオン伝導体1の他方の側に配置された正極8と、正極8とNaイオン伝導体1の他方の面と接するように貯留された水溶性電解液3と、水溶性電解液3を収容し、耐塩基性を有する正極側収容部13と、を備える。 Metal Na battery 20 of this embodiment, the negative active material and Na + ion conductor 1 having a Na + ion-conducting, substantially consisting of metallic Na, which is arranged on one side of the Na + ion conductor 1 4 and at least a portion of the negative electrode active material 4 being in contact with the negative electrode 5 capable of conducting electrons generated when metal Na is ionized and in contact with one surface of the negative electrode 5 and the Na + ion conductor 1 water to the pooled organic electrolyte 2, stored as a positive electrode 8 disposed on the other side of the Na + ion conductor 1, in contact with the other surface of the positive electrode 8 and the Na + ion conductor 1 as And a water-soluble electrolyte 3 and having a base resistance and a positive electrode side housing portion 13.
 筺体7は、金属Na電池20の主要な部材を収容する。筺体7は、負極側収容部12と正極側収容部13とを含む。負極側収容部12は、金属Na電池20の負極側の部材である負極5、負極活物質4、有機電解液2を収容する。負極側収容部12は、これらを収容した上で、内部を気密に保つ構造を有する。この状態で負極側収容部12の内部から外部へと負極外部端子6が延びている。 The housing 7 accommodates the main components of the metal Na battery 20. The housing 7 includes a negative electrode side housing portion 12 and a positive electrode side housing portion 13. The negative electrode side accommodation portion 12 accommodates the negative electrode 5, the negative electrode active material 4 and the organic electrolytic solution 2 which are members on the negative electrode side of the metal Na battery 20. The negative electrode side housing portion 12 has a structure for keeping the inside airtight after housing these. In this state, the negative electrode external terminal 6 extends from the inside to the outside of the negative electrode side housing portion 12.
 一方、正極側収容部13は、金属Na電池20の正極側の部材である正極8、水溶性電解液3を収容する。また、正極側収容部13の内部から外部へと正極外部端子10が延びている。さらに、正極側収容部13には必要に応じて外部からガス導入管11が挿入されてもよい。 On the other hand, the positive electrode side accommodation portion 13 accommodates the positive electrode 8 and the water-soluble electrolyte 3 which are members on the positive electrode side of the metal Na battery 20. Further, the positive electrode external terminal 10 extends from the inside of the positive electrode side accommodation portion 13 to the outside. Furthermore, the gas introduction pipe 11 may be inserted into the positive electrode side accommodation portion 13 from the outside as needed.
 金属Na電池20の放電開始後、反応が進行するにつれて水溶性電解液3中のNaOH(水酸化ナトリウム)濃度が増大する。その結果、水溶性電解液3のpHは13を超えることがある。そのため、筺体7の正極側収容部13のうち、少なくとも水溶性電解液3と接する部分が耐塩基性の材料、望ましくはpH14以上にも耐えられる耐強塩基性の材料で形成されている。このような正極側収容部13として、例えばパイレックス(登録商標)ガラス、ナイロン、ポリ塩化ビニリデン、ピーク(ポリエーテルエーテルケトン)樹脂(VICTREX社製)等の容器を好適に使用することができる。筺体7の負極側収容部12と正極側収容部13とは一体的に形成されていてもよいし、別々に形成されていてもよい。 After the discharge of the metal Na battery 20 starts, the concentration of NaOH (sodium hydroxide) in the aqueous electrolyte solution 3 increases as the reaction proceeds. As a result, the pH of the water-soluble electrolyte 3 may exceed 13. Therefore, at least a portion of the positive electrode side accommodating portion 13 of the housing 7 in contact with the water-soluble electrolytic solution 3 is formed of a basic resistant material, preferably a strongly basic resistant material that can withstand pH 14 or more. As such a positive electrode side housing portion 13, for example, a container such as Pyrex (registered trademark) glass, nylon, polyvinylidene chloride, peak (polyether ether ketone) resin (manufactured by VICTREX), etc. can be suitably used. The negative electrode side accommodation portion 12 and the positive electrode side accommodation portion 13 of the housing 7 may be integrally formed or may be separately formed.
 Naイオン伝導体1は、負極側収容部12に入れられた有機電解液2と、正極側収容部13に入れられた水溶性電解液3とを隔てる。Naイオン伝導体1は、緻密なNaイオン伝導性固体電解質セラミックスからなる。Naイオン伝導性固体電解質セラミックスは、Naイオンを選択的に伝導可能な固体材料、つまり緻密な気相や液相が直接透過しない、Naイオン伝導性の固体材料である。Naイオン伝導体1に好適な材料として、次に挙げる2つの材料が主に考えられる。 The Na + ion conductor 1 separates the organic electrolyte solution 2 contained in the negative electrode side housing portion 12 from the water-soluble electrolyte solution 3 contained in the positive electrode side housing portion 13. The Na + ion conductor 1 is made of a compact Na + ion conductive solid electrolyte ceramic. Na + ion conductive solid electrolyte ceramic, Na + ions selectively conductively solid material, i.e. a dense gas phase and liquid phase is not transmitted directly, a solid material of Na + ion conductivity. As materials suitable for the Na + ion conductor 1, the following two materials are mainly considered.
 Naイオン伝導体1に好適な1つめの材料は、菱面体晶系のβ-アルミナおよび六方晶系のβ″-アルミナセラミックスである。これらをまとめて多結晶体の「βアルミナ系セラミックス」と称する。Naイオン伝導度が高い方が電池性能が高まるため、β-アルミナよりもβ″-アルミナが望ましい。しかし、二相共存であっても大きな性能差は生じないし、実際に作成されるβアルミナ系セラミックスはβ-アルミナとβ″-アルミナの両方を主要な相として含む場合が多い。金属Na電池20には水溶性電解液3を用いるため、金属Na電池20は0~100℃の範囲で運転できるが、80℃を超えると水溶液の蒸発が著しくなるため、80℃以下の温度が望ましい。この場合、これらのβアルミナ系セラミックスのイオン伝導度は、典型的には10-3~0.1S・cm-1の範囲にある。このイオン伝導度は、1M HCl水溶液の1/10程度と、固体電解質としては非常に高い。また、βアルミナ系セラミックスは、Na-S電池への適用で実証されているように、金属Naと直接接しても分解することは無く、高い安定性を有する。そのため、βアルミナ系セラミックスは、高い活性を有する金属Naを電池構造に組み込みながらも安全性を確保するために重要な役割を果たす。 The first material suitable for the Na + ion conductor 1 is rhombohedral β-alumina and hexagonal β ′ ′-alumina ceramics. These are combined to form a polycrystalline “β-alumina based ceramic”. It is called. Β ′ ′-alumina is preferable to β-alumina because higher Na + ion conductivity improves cell performance, but there is no significant performance difference even in the presence of two phases, and the β alumina produced actually The ceramics often contain both β-alumina and β ′ ′-alumina as main phases. The metal Na battery 20 can be operated in the range of 0 to 100 ° C. because the water soluble electrolyte 3 is used for the metal Na battery 20, but if the temperature exceeds 80 ° C., the evaporation of the aqueous solution becomes remarkable. desirable. In this case, the ion conductivity of these β-alumina based ceramics is typically in the range of 10 −3 to 0.1 S · cm −1 . This ionic conductivity is very high as a solid electrolyte, about 1/10 of 1 M HCl aqueous solution. In addition, β alumina-based ceramics have high stability without decomposition even in direct contact with metal Na, as demonstrated for application to Na-S batteries. Therefore, β-alumina-based ceramics play an important role in securing safety while incorporating metallic Na having high activity into a battery structure.
 Naイオン伝導体1に好適な2つめの材料は、単斜晶もしくは菱面体晶系(多結晶体)のナシコンセラミックスである。その結晶構造の特徴は、陽イオンに四面体と六面体配位した酸化物イオンのネットワーク中に埋め込まれたNaイオンが、容易に移動できる構造を有している点である。ナシコンセラミックスでは0~100℃にて、典型的には10-4~0.1 S・cm-1の電気伝導を示す。ナシコンセラミックスは、水溶液中に長時間浸漬しても安定であるため(J.J.Auborn&D.W.Johnson., Solid State Ionics, 第5巻第315頁、1981年)、水溶性電解液3を有機電解液2から隔てるために優れた特性を示す。 The second suitable material for the Na + ion conductor 1 is monoclinic or rhombohedral (polycrystalline) Nasicon ceramics. The feature of the crystal structure is that Na + ions embedded in a network of oxide ions tetrahedrally and hexahedrally coordinated to cations have a structure capable of easily moving. In the case of Nashicon ceramics, an electric conduction of 0-100 ° C, typically 10 -4 to 0.1 S · cm -1 is exhibited. Since Nasicon ceramics are stable even when immersed in an aqueous solution for a long time (J.J. Auborn & D. W. Johnson., Solid State Ionics, Vol. 5, p. 315, 1981), the water-soluble electrolyte 3 Show excellent characteristics for separating the organic electrolyte 2.
 βアルミナ系セラミックスおよびナシコンセラミックス中のイオン伝導種は、Naイオンに限定されるように組成調整されることが望ましい。即ち、K(カリウム)等、Na以外の一価の陽イオンとなる化学種の量を極力少なくすることが望ましい。Naイオン以外の一価陽イオンの量が多くなると、イオン伝導度が低下する他、電池の運転中に一価陽イオンの交換が起こり、これらのセラミックス中の体積変化を引き起こすことで、セラミックスの破損が生じやすくする。これらのセラミックスは緻密な隔膜状に成型される。電池の内部抵抗を低減させるためにはその厚さは薄いほど有利である。ただし、金属Na電池20の内部で自己的に支持させる場合は、強度の観点からNaイオン伝導体1の厚さを0.1~2mmとすることが望ましい。また、Naイオン伝導体1として、多孔質アルミナなどの絶縁性で水溶性電解液3に対しても劣化しない材質からなる基材に、緻密なβアルミナ系やナシコンの膜を形成した構造体を用いてもよい。この場合、抵抗を更に低減させることができる。 It is desirable that the composition of the ion conductive species in the β-alumina based ceramics and the NASICON ceramics be adjusted so as to be limited to Na + ions. That is, it is desirable to minimize the amount of chemical species to be monovalent cations other than Na, such as K (potassium). When the amount of monovalent cations other than Na + ions increases, the ion conductivity decreases and, in addition, the exchange of monovalent cations occurs during the operation of the battery, which causes the volume change in these ceramics, thereby making the ceramics Makes it easy to cause damage. These ceramics are molded into a dense diaphragm. In order to reduce the internal resistance of the battery, the thinner the thickness, the better. However, in the case of self-supporting inside the metal Na battery 20, it is desirable that the thickness of the Na + ion conductor 1 be 0.1 to 2 mm from the viewpoint of strength. In addition, a structure in which a dense β-alumina-based or NASICON film is formed on a base material made of a material that does not deteriorate with the insulating electrolyte 3 such as porous alumina as the Na + ion conductor 1. May be used. In this case, the resistance can be further reduced.
 負極5の材料は、金属Na電池20の運転温度(0~100℃)において固体(融点が100℃超)であって、金属Naが溶解することにより生じた電子を伝導可能な程度に良導性を有し、金属Naと著しく反応しない材質であれば、どのような材質でもよい。このような材料として、例えばAl、Cu、Fe、Cr、Ni、Tiや、これらを主要成分とする合金などを好適に使用することができる。コストや重量の観点からは、Alを主要成分とする金属が好適である。負極5を多孔質金属として形成すると、ナトリウムの拡散が促進されるためさらに有利である。 The material of the negative electrode 5 is solid (having a melting point of over 100 ° C.) at the operating temperature (0 to 100 ° C.) of the metal Na battery 20 and has a good conductivity to the extent that electrons generated by dissolving metal Na can be conducted. Any material may be used as long as it is a material that does not react significantly with metal Na. As such a material, for example, Al, Cu, Fe, Cr, Ni, Ti, an alloy containing these as main components, and the like can be suitably used. From the viewpoint of cost and weight, metals having Al as a main component are preferable. Forming the negative electrode 5 as a porous metal is more advantageous because the diffusion of sodium is promoted.
 負極側収容部12には、負極5の少なくとも一部と接するように、負極活物質4が収容されている。負極活物質4は、金属Naを主成分とする。負極活物質4は、実質的に金属Naからなることが望ましい。「実質的に金属Naからなる」とは、負極活物質4における金属Naの含有量が90質量%以上であることをいう。負極活物質4は、負極5および負極5に接続された負極外部端子6と電気的に接続されている。負極活物質4の主成分である金属Naは、負極5を含む平板状の金属板、金属線、金網等で保持してもよい。または、負極5が多孔質金属で形成されている場合には、孔の中にNaを含侵させ、負極活物質4と負極5を一体化させてもよい。 The negative electrode active material 4 is accommodated in the negative electrode side accommodation portion 12 so as to be in contact with at least a part of the negative electrode 5. The negative electrode active material 4 contains metal Na as a main component. It is desirable that the negative electrode active material 4 be substantially made of metal Na. “Consisting essentially of metal Na” means that the content of metal Na in the negative electrode active material 4 is 90% by mass or more. The negative electrode active material 4 is electrically connected to the negative electrode 5 and the negative electrode external terminal 6 connected to the negative electrode 5. The metal Na which is the main component of the negative electrode active material 4 may be held by a flat metal plate including the negative electrode 5, a metal wire, a wire mesh or the like. Alternatively, when the negative electrode 5 is formed of a porous metal, Na may be impregnated into the pores to integrate the negative electrode active material 4 and the negative electrode 5.
 負極活物質4に中には、水銀とNaの液体合金であるアマルガムを実質的に含有させないことが好ましい。具体的には、負極活物質4における水銀の含有量は、1.0質量%未満であることが望ましく、0.1質量%未満であることがより望ましい。負極活物質4中の水銀の含有量をこの範囲に抑えることによって、金属Na電池20の重量あたりのエネルギー密度を向上させ、環境への負荷を低減させ、安全性を向上させることができる。同様に、Kも実質的に含有させないことが望ましい。もし負極活物質4の金属NaにKなど一価の陽イオンとなる金属が含まれるのであれば、含有量が低いほど望ましく、特に5質量%未満であることが望ましい。負極活物質4中のKの含有量をこの範囲に抑えることによって、Naイオン伝導体1を構成するセラミックスの伝導率や耐久性を維持させることができる。 The negative electrode active material 4 preferably contains substantially no amalgam, which is a liquid alloy of mercury and Na. Specifically, the content of mercury in the negative electrode active material 4 is desirably less than 1.0% by mass, and more desirably less than 0.1% by mass. By reducing the content of mercury in the negative electrode active material 4 to this range, the energy density per weight of the metal Na battery 20 can be improved, the load on the environment can be reduced, and the safety can be improved. Similarly, it is desirable not to contain K substantially. If the metal Na of the negative electrode active material 4 contains a metal that becomes a monovalent cation such as K, the lower the content, the more desirable, and in particular less than 5% by mass. By reducing the content of K in the negative electrode active material 4 to this range, the conductivity and the durability of the ceramic constituting the Na + ion conductor 1 can be maintained.
 有機電解液2は、Naイオン伝導性を有する物質である。有機電解液2としては、炭酸プロピレン(PC)や炭酸エチレン(EC)、炭酸エチレンと炭酸ジメチルとの混合液(EC:DMC)が好適である。また、NaはLiよりも標準酸化還元電位の絶対値が小さいため、従来のLiイオン電池やLi-水-空気電池の有機電解液ほどの安定性は必要ない。そのため、Liイオン電池向けには不適切とされた電解液を利用できると考えられる。有機電解液2を省いてNaイオン伝導体1と負極活物質4とを直接接触させても原理的には起電力を発生する。しかし、ナトリウムの拡散が著しく遅くなるため、充分な電流を得ることができない。つまり、有機電解液2はNaイオン伝導体1と負極活物質4との間のナトリウム拡散を充分にするために重要な役割を果たす。有機電解液2には、Naイオン伝導性を付与させるために、NaPFやNaClO、NaBOなどのナトリウム塩や、必要に応じて負極活物質4と有機電解液2との界面の電気特性を改善させるための添加剤が加えられる。NaPFなどのナトリウム塩の濃度は、0.5M以上が好ましく、0.8M以上がより好ましく、0.95M以上がより好ましく、1.0M以上がさらに好ましい。また、添加剤としてフルオロエチレンカーボネート(FEC)を加えると、金属Na電池20の安定性が向上する。金属Na電池20におけるFECの役割は、金属Na表面に安定な皮膜を形成することで、ナトリウムの拡散の促進と、有機電解液の安定化に寄与することであると推測される。 The organic electrolytic solution 2 is a substance having Na + ion conductivity. As the organic electrolytic solution 2, propylene carbonate (PC), ethylene carbonate (EC), or a mixed solution of ethylene carbonate and dimethyl carbonate (EC: DMC) is preferable. In addition, since Na has a smaller absolute value of the standard redox potential than Li, it does not require the stability as in the organic electrolyte of the conventional Li-ion battery or Li-water-air battery. Therefore, it is thought that the electrolyte solution considered unsuitable for Li ion batteries can be utilized. Even if the organic electrolyte solution 2 is omitted and the Na + ion conductor 1 and the negative electrode active material 4 are brought into direct contact, an electromotive force is generated in principle. However, because the diffusion of sodium is extremely slow, a sufficient current can not be obtained. That is, the organic electrolyte solution 2 plays an important role in order to sufficiently diffuse sodium between the Na + ion conductor 1 and the negative electrode active material 4. In order to impart Na + ion conductivity to the organic electrolytic solution 2, sodium salt such as NaPF 6 , NaClO 4 , NaBO 4 or the like, or, if necessary, an electric current at the interface between the negative electrode active material 4 and the organic electrolytic solution Additives are added to improve the properties. Concentration of sodium salts such as NaPF 6 is more than 0.5M are preferred, more preferably at least 0.8 M, more preferably at least 0.95 M, more 1.0M is more preferable. Also, the addition of fluoroethylene carbonate (FEC) as an additive improves the stability of the metal Na battery 20. It is speculated that the role of the FEC in the metal Na battery 20 is to promote the diffusion of sodium and contribute to the stabilization of the organic electrolyte by forming a stable film on the surface of metal Na.
 本実施の形態では、正極8は、板または金網のいずれの形状でもよい。このような材質として、例えば炭素を好適に使用することができる。一方、ガス導入管11と正極8を通じて水溶性電解液3に酸素を供給する場合、正極8には、カーボン板、ニッケル(Ni)を主成分とする金属製の電極、白金(Pt)やパラジウム(Pd)などの貴金属製の電極、またはステンレス金網などに貴金属をコーティングした電極を用いることが望ましい(カーボン板は例えば東海カーボン株式会社より、金属材料は例えばニラコ株式会社より、それぞれ購入可能)。電流密度を向上させるためには、正極8としてカーボン板を使用することが特に好適である。また、価格等を考慮すると、ニッケルを主成分とする金属製の電極が特に好適である。 In the present embodiment, the positive electrode 8 may have any shape of a plate or a wire mesh. As such a material, for example, carbon can be suitably used. On the other hand, in the case of supplying oxygen to the water-soluble electrolyte 3 through the gas introduction pipe 11 and the positive electrode 8, the positive electrode 8 may be a carbon plate, a metal electrode mainly composed of nickel (Ni), platinum (Pt) or palladium It is desirable to use an electrode made of a noble metal such as (Pd) or an electrode in which a noble metal is coated on a stainless steel mesh or the like (for example, carbon plates can be purchased from Tokai Carbon Co., and metal materials can be purchased from Niraco Co., Ltd.). In order to improve the current density, it is particularly preferable to use a carbon plate as the positive electrode 8. Further, in consideration of the price etc., a metal electrode mainly composed of nickel is particularly preferable.
 ガス導入管11および正極8を通じて酸素を水溶性電解液3に供給するためには、圧縮ガスボンベを用いて酸素や空気を供給してもよい。または、必要に応じてポンプ等を用いることによって、大気を供給してもよい。 In order to supply oxygen to the water-soluble electrolyte solution 3 through the gas introduction pipe 11 and the positive electrode 8, oxygen or air may be supplied using a compressed gas cylinder. Alternatively, the atmosphere may be supplied by using a pump or the like as needed.
 水溶性電解液3は正極側収容部13に収容されている。水溶性電解液3には、Naイオン伝導性を付与するためにナトリウム塩が添加される。ナトリウム塩としては、NaOHが好適である。正極8は、正極外部端子10と電気的に接触されている。図1(A)には、正極8として白金製の金網(Pt金網)を用いる場合を示す。正極8は、水溶性電解液3中に浸される。金網からなる正極8を利用する場合は、図1(A)に示すように、酸素を含む気体を供給するガス導入管11をさらに設けてもよい。 The water-soluble electrolyte 3 is accommodated in the positive electrode side accommodation portion 13. A sodium salt is added to the water-soluble electrolyte solution 3 to impart Na + ion conductivity. As a sodium salt, NaOH is suitable. The positive electrode 8 is in electrical contact with the positive electrode external terminal 10. FIG. 1A shows the case where a platinum wire mesh (Pt wire mesh) is used as the positive electrode 8. The positive electrode 8 is immersed in the water-soluble electrolyte 3. In the case of using the positive electrode 8 made of a metal mesh, as shown in FIG. 1A, a gas introduction pipe 11 for supplying a gas containing oxygen may be further provided.
 水溶性電解液3には、Naイオン伝導性を付与するために、Na塩が添加される。水溶性電解液3中のNaイオン濃度が高いほど金属Na電池20の内部抵抗低減の観点から有利であるが、金属Na電池20の起電力が僅かに減少する。そのため、水溶性電解液3として典型的には約0.1~約1.0Mの濃度のNaOH水溶液が適当である。水溶性電解液3は、pH>7(塩基性)であることが望ましい。酸性になると水溶性電解液3中のHイオン濃度が高くなり、そのHがNaイオン伝導体1へ拡散して、有機電解液2や負極活物質4に到達すると還元分解され、そこで水素ガスの発生を伴う酸化物のイオン拡散障壁層を形成する恐れがあるためである。また、βアルミナ系およびナシコンは、リシコンと異なり強塩基性でも分解しないためである。また、金属Na電池20の放電と共に有機電解液2から水溶性電解液3中へとNaイオンが移動するため、NaOH濃度が高くなる。しかし、放電深度をさらに高めても特に問題はない。水溶性電解液3のpHの上昇がNaイオン伝導体1に悪影響を及ぼさないためである。また、水溶性電解液3では、KなどNaイオン以外の一価の陽イオン濃度は、低い方が望ましい。具体的には、Naイオン濃度比で5%未満であることが望ましい。 A Na salt is added to the water-soluble electrolyte solution 3 in order to impart Na + ion conductivity. The higher the concentration of Na + ions in the water-soluble electrolyte 3, which is advantageous from the viewpoint of reducing the internal resistance of the metal Na battery 20, but the electromotive force of the metal Na battery 20 slightly decreases. Therefore, an aqueous solution of NaOH, typically having a concentration of about 0.1 to about 1.0 M, is suitable as the water-soluble electrolyte 3. It is desirable that the water-soluble electrolyte 3 have a pH> 7 (basic). When it becomes acidic, the H 3 O + ion concentration in the water-soluble electrolyte 3 increases, and the H 3 O + diffuses into the Na + ion conductor 1 and reduces when reaching the organic electrolyte 2 and the negative electrode active material 4 It may be decomposed to form an ion diffusion barrier layer of oxide accompanied by generation of hydrogen gas. In addition, unlike β-alumina and Nashicon, they do not decompose even with a strong base unlike Rishicon. In addition, since Na + ions move from the organic electrolyte 2 into the water-soluble electrolyte 3 with the discharge of the metal Na battery 20, the NaOH concentration becomes high. However, there is no particular problem even if the depth of discharge is further increased. This is because an increase in the pH of the water-soluble electrolyte 3 does not adversely affect the Na + ion conductor 1. Further, in the water-soluble electrolyte solution 3, it is preferable that the concentration of monovalent cations other than Na + ions such as K + be lower. Specifically, it is desirable that the Na + ion concentration ratio is less than 5%.
 以上、本実施の形態によると、軽量で活性な金属Naと水、および必要な場合には外部から取り込むことができる酸素を活物質として用いているため、重量もしくは体積あたりのエネルギー密度が大幅に向上した金属Na電池20を提供することができる。また、負極に金属Naを用いているため、従来の金属Li-水-空気電池やLiイオン電池と比較して、有機電解液や集電材、Naイオン伝導体1として用いるセラミックス・セパレータの分解を引き起こし難い。またNaイオン伝導性の固体電解質のイオン伝導度自体も良好であるため、電池の出力密度を改善するための障壁とならない。 As described above, according to the present embodiment, since light and active metal Na and water, and oxygen which can be taken in from the outside as necessary are used as active materials, the energy density per weight or volume is significantly large. An improved metal Na battery 20 can be provided. In addition, since metallic Na is used for the negative electrode, decomposition of the ceramic separator used as the organic electrolytic solution, the current collector, and the Na + ion conductor 1 as compared with the conventional metal Li-water-air battery or Li ion battery Hard to cause In addition, since the ion conductivity of the Na + ion conductive solid electrolyte itself is also good, it does not serve as a barrier for improving the power density of the battery.
 また、金属Na電池20は、主要部材にありふれた材料や元素のみが用いられているため、安価に製造することができて、大規模な利用の妨げとならない。特に電池中の電荷移動を担うNaは、Liイオン電池に使用されるLiと比較すると、存在量や資源偏在の問題がない。また、金属Naを保持する負極5では、Liを用いる際にしばしば必要とされる銅を用いる必要が無く、より安価なAlを好適に使用することができる。Naイオン伝導体1として用いるβアルミナ系やナシコンセラミックスを構成する元素や原料も安価でありふれている。 In addition, since only the common materials and elements are used for the main members, the metal Na battery 20 can be manufactured inexpensively and does not hinder large-scale use. In particular, Na, which is responsible for charge transfer in the battery, does not have the problems of abundance and uneven distribution of resources as compared with Li used in Li-ion batteries. Moreover, in the negative electrode 5 holding metal Na, it is not necessary to use copper which is often required when using Li, and cheaper Al can be suitably used. The elements and raw materials constituting the β-alumina system and the NASICON ceramics used as the Na + ion conductor 1 are also inexpensive and touched.
 また、水銀とナトリウムの液体合金であるアマルガムを負極活物質4として実質的に使用しないため、金属Na電池20のエネルギー密度を向上させることができる。加えて、金属Na電池20は製造だけではなく廃棄の観点からも優れている。 In addition, since amalgam, which is a liquid alloy of mercury and sodium, is not substantially used as the negative electrode active material 4, the energy density of the metal Na battery 20 can be improved. In addition, the metal Na battery 20 is excellent not only in manufacture but also in terms of disposal.
 また、本実施の形態の金属Na電池20は、Naイオン伝導体1を介して負極5側に固体の金属NaとNa塩を溶解した有機電解液2を、正極8側に水溶性電解液3を用いることにより、室温から80℃までの条件で安定に動作することができる。特にβおよびβ″アルミナ、ならびにナシコンセラミックスをNaイオン伝導体1として使用した場合、Naイオンを良好に伝導することで、放電に関する主要な抵抗成分とならず、電池反応を阻害する主要な要因となることなく有機電解液2および水溶性電解液3の混合を防ぐことができる。また、金属Na電池20は、Naイオン伝導体1によって正極8側が負極5側の構造体から完全に分離された構造を有する。そのため、水溶性電解液3の補充や交換が容易である。 In the metal Na battery 20 of the present embodiment, the organic electrolytic solution 2 in which solid metal Na and Na salt are dissolved on the negative electrode 5 side through the Na + ion conductor 1 is dissolved on the positive electrode 8 side. The use of No. 3 enables stable operation at room temperature to 80 ° C. In particular, when β and β ′ ′ alumina and Nasicon ceramics are used as Na + ion conductor 1, good conduction of Na + ions does not become a main resistance component for discharge, and it is a main factor that inhibits the cell reaction. It is possible to prevent the mixing of the organic electrolytic solution 2 and the water-soluble electrolytic solution 3 without becoming a serious factor, and the structure of the metal Na battery 20 is completely completed by the Na + ion conductor 1 from the structure of the negative electrode 5 side. Thus, the replenishment and replacement of the water-soluble electrolyte 3 are easy.
(実施の形態2)
 図1(B)は、実施の形態2に係る金属Na電池20(ナトリウム-水電池)の構造を示す概略図である。ここでは、実施の形態1のナトリウム-水-空気電池との相違点のみ説明する。
Second Embodiment
FIG. 1 (B) is a schematic view showing the structure of a metal Na battery 20 (sodium-water battery) according to the second embodiment. Here, only differences from the sodium-water-air battery of Embodiment 1 will be described.
 本実施の形態では、正極8が正極側収容部13の一方の面を形成することにより、水溶性電解液3が正極側収容部13に収容されている。この場合、正極8は、放電時に酸素を外部から直接取り込み充電時に当該電極上で生成された酸素を外部へと放出するガス透過性を有する。一方、正極8は、水溶性電解液3により適度に浸潤されつつも水溶性電解液3を通過させない。つまり、正極8は、ガス透過性を有し、Naイオン伝導体1に対向する一方の面とは反対の他方の面は、少なくとも一部が空気に接している。正極8の少なくとも水溶性電解液3と接する面には、多孔質炭素や多孔質金属膜、金属製金網、もしくは反応性を高めるために微細な金属粒や金属酸化物触媒を担持した多孔質炭素などが積層もしくは複合された材質を用いることが好適である。 In the present embodiment, the water-soluble electrolyte 3 is accommodated in the positive electrode side accommodating portion 13 by forming the positive electrode 8 on one side of the positive electrode side accommodating portion 13. In this case, the positive electrode 8 has gas permeability that directly takes in oxygen from the outside during discharge and releases the oxygen generated on the electrode during charge to the outside. On the other hand, while the positive electrode 8 is appropriately infiltrated by the water-soluble electrolyte 3, it does not allow the water-soluble electrolyte 3 to pass through. That is, the positive electrode 8 has gas permeability, and the other surface opposite to the one surface facing the Na + ion conductor 1 is at least partially in contact with air. A porous carbon, a porous metal film, a metal wire mesh, or a porous carbon carrying fine metal particles or a metal oxide catalyst for enhancing the reactivity on at least the surface of the positive electrode 8 in contact with the water-soluble electrolyte 3 It is preferable to use a laminated or composite material.
 ガス透過性の正極8は、空気側がはっ水性をもち多孔質で空気を透過し、水溶液側で酸素の還元および水の酸化反応が良好かつ、電気伝導性と耐久性に優れたものであれば、任意のものでよい。このような正極8として、ガス拡散層、触媒層、およびニッケル金網をこの順番に積層し、これらをたとえば約200℃でホットプレスすることにより得た積層板を好適に使用することができる。この場合、ガス拡散層は、高導電性カーボン(ケッチェンブラック)と結着材(PTEFエマルション)を混合し、混合体をたとえば約200℃でホットプレスすることにより得ることができる。また、触媒層は、Mn相からなる触媒が坦持された活性炭を結着材(PTEFエマルション)と混合し、混合体をたとえば約200℃でホットプレスすることにより得ることができる。 The gas-permeable positive electrode 8 is water-repellent on the air side and porous and permeable to air, good for oxygen reduction and water oxidation reaction on the aqueous solution side, and excellent in electric conductivity and durability. For example, it is optional. As such a positive electrode 8, a gas diffusion layer, a catalyst layer, and a nickel metal mesh are laminated in this order, and a laminated board obtained by hot pressing them at about 200 ° C., for example, can be suitably used. In this case, the gas diffusion layer can be obtained by mixing highly conductive carbon (Ketjen black) and a binder (PTEF emulsion) and hot pressing the mixture at, for example, about 200 ° C. The catalyst layer can be obtained by mixing activated carbon on which a catalyst consisting of a Mn 3 O 4 phase is supported with a binder (PTEF emulsion) and hot-pressing the mixture at, for example, about 200 ° C.
 本実施の形態によっても、実施の形態1と同様の効果が得られる。 The same effect as that of the first embodiment can be obtained also by the present embodiment.
(金属Na電池20の性能)
 表1は、ナトリウム-水-空気電池(実施の形態1)およびナトリウム-水電池(実施の形態2)の25℃における理論起電力(V)、25℃における理論エネルギー密度(Wh/kg)(Oを含まない場合と含む場合)を示す。表中、「s」「l」「aq」「g」は、それぞれ固体、液体、水溶液、気体を表す。
(Performance of metal Na battery 20)
Table 1 shows theoretical electromotive force (V) at 25 ° C. and theoretical energy density (Wh / kg) at 25 ° C. of sodium-water-air battery (embodiment 1) and sodium-water battery (embodiment 2). In the case where O 2 is not included and when included. In the table, “s” “l” “aq” “g” respectively represent solid, liquid, aqueous solution and gas.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施の形態1および2の金属Na電池では、典型的なLiイオン電池の3~15倍程度のエネルギー密度が得られる。 In the metal Na batteries of Embodiments 1 and 2, an energy density of about 3 to 15 times that of a typical Li ion battery can be obtained.
 また、金属Na電池20の充放電速度(電流密度)は、約0.1mA/cm、より好ましくは約0.5mA/cm、さらに好ましくは約1mA/cmである。 Further, the charge / discharge rate (current density) of the metal Na battery 20 is about 0.1 mA / cm 2 , more preferably about 0.5 mA / cm 2 , and still more preferably about 1 mA / cm 2 .
(実施例1:ナシコン・セパレータを用いた金属Na電池)
 NaZrSiPO12の組成となるように、NaPO、ZrO2、SiO原料を秤量および混合し、1100℃にて12時間仮焼した。これをボールミルによって粉砕後、一軸加圧成型、冷間静水圧プレス後1275℃にて15時間の条件で焼結することにより、ナシコン相の純度が98%以上、直径約16mmの円盤状で、相対密度98%以上でガス透過性の無い焼結体を得た。これを厚さ1mmとなるように研磨して、ナシコンセラミックス製のナシコン・セパレータ(Naイオン伝導体1)を得た。交流インピーダンス法で、上記のナシコン製セラミックスの結晶粒内および結晶粒界の抵抗成分の和の温度特性を評価した。電気伝導度の活性化エネルギーは、典型的な値である0.27eVを示した。セパレータとしての直流抵抗値は、50℃にて53Ω・cm-2であった。
(Example 1: Metallic Na battery using Nashikon separator)
Na 3 Zr 2 Si 2 so as to have the composition of the PO 12, Na 3 PO 4, ZrO 2, SiO 2 raw material is weighed and mixed, and 12 hours calcined at 1100 ° C.. The powder is pulverized by a ball mill, then subjected to uniaxial pressing and cold isostatic pressing and sintered at 1275 ° C. for 15 hours to form a disc having a Nasicon phase purity of 98% or more and a diameter of about 16 mm. A sintered body having a relative density of 98% or more and no gas permeability was obtained. This was polished to a thickness of 1 mm to obtain a Nashicon separator (Na + ion conductor 1) made of Nashicon ceramics. The temperature characteristics of the sum of the resistance components in the crystal grains and grain boundaries of the above-described Nashicon ceramic were evaluated by the AC impedance method. The activation energy of the electrical conductivity showed a typical value of 0.27 eV. The direct current resistance as the separator was 53 Ω · cm −2 at 50 ° C.
 図2は、電池試験の概要を示す概略図である。本実施例で使用した金属Na電池20を以下のように構成した。本実施例では、筺体7をO-リング14、冶具15、グローブボックス16、蓋部17を含む負極側収容部12、および正極側収容部13により構成した。まず、得られたNaイオン伝導体1を、その有効面積が1.1cmとなるように設計されたピーク樹脂(ポリエーテルエーテルケトン)製の冶具15に取り付けた。この冶具15はゴム製のO-リング14によって、負極5側となる内部と正極8側となる外部とを気密に隔てる構造を有する。酸素と水分を除去した精製雰囲気を提供するグローブボックス16内で、金属Na片20mgを白金線に括りつけ、上記の冶具15に収容した。さらに、炭酸プロピレンに0.5MのNaPFおよび0.05Mのフルオロエチレンカーボネートを溶解させた有機電解液2を、金属Naが全て浸るように注いだ後、O-リング14および蓋部17にて気密シールして負極側収容部12を形成した。上記の白金線を気密が保たれるように負極側収容部12から外部へと引き出し、負極外部端子6とした。 FIG. 2 is a schematic view showing an outline of a battery test. The metal Na battery 20 used in the present example was configured as follows. In the present embodiment, the housing 7 is configured by the O-ring 14, the jig 15, the glove box 16, the negative electrode side housing portion 12 including the lid portion 17, and the positive electrode side housing portion 13. First, the obtained Na + ion conductor 1 was attached to a jig 15 made of peak resin (polyether ether ketone) designed to have an effective area of 1.1 cm 2 . The jig 15 has a structure in which the inside of the negative electrode 5 side and the outside of the positive electrode 8 are airtightly separated by a rubber O-ring 14. In a glove box 16 providing a purified atmosphere from which oxygen and water were removed, 20 mg of metal Na pieces were bound to a platinum wire and stored in the jig 15 described above. Furthermore, after pouring the organic electrolyte solution 2 in which 0.5 M NaPF 6 and 0.05 M fluoroethylene carbonate were dissolved in propylene carbonate so that all metal Na was immersed, O-ring 14 and lid 17 Airtight sealing was performed to form the negative electrode side accommodation portion 12. The platinum wire was drawn out from the negative electrode side accommodation portion 12 so as to maintain the airtightness, and was used as a negative electrode external terminal 6.
 水溶性電解液3として、0.1M NaOH水溶液を使用した。水溶性電解液3は、パイレックス(登録商標)ガラス製の正極側収容部13に収容させた。大気中で、水溶性電解液3中に上記のNaを封入した負極側収容部12を、Naイオン伝導体1が全て水溶性電解液3に浸るように設置した。水溶性電解液3中に250メッシュのPt金網(金属材料をニラコ株式会社より購入)4cmを設置して正極8とした。正極8に溶接された白金線を正極側収容部13から外部へと引き出して、正極外部端子10とした。正極8近傍には、プラスチック製のガス導入管11を通して、100%Oガスもしくは、5%H-95%Arガスを50cm/min.の流量で供給した。正極外部端子10および負極外部端子6を通じて、電池特性をポテンショ・ガルバノスタット18(Solartron,1287型)を用いて評価した。 As the water-soluble electrolyte 3, 0.1 M NaOH aqueous solution was used. The water-soluble electrolyte solution 3 was accommodated in the positive electrode side accommodation portion 13 made of Pyrex (registered trademark) glass. In the air, the negative electrode side housing portion 12 in which the above-described Na was sealed in the water-soluble electrolyte 3 was placed so that all the Na + ion conductors 1 were immersed in the water-soluble electrolyte 3. In the water- soluble electrolyte 3, 4 cm 2 of 250 mesh Pt wire netting (a metal material purchased from Nyako Co., Ltd.) was set as a positive electrode 8. The platinum wire welded to the positive electrode 8 was drawn out from the positive electrode side accommodation portion 13 to form a positive electrode external terminal 10. In the vicinity of the positive electrode 8, 100% O 2 gas or 5% H 2 -95% Ar gas at 50 cm 3 / min. Supplied at a flow rate of The battery characteristics were evaluated using the potentio galvanostat 18 (Solartron, 1287 type) through the positive electrode external terminal 10 and the negative electrode external terminal 6.
 図3は、実施例1のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた電流-電圧特性を示す。電流0における電圧(V)が開放起電力に相当する。ガス導入管を通じて100%酸素を供給した場合、本実施例の金属Na電池はNa-水-空気電池として作動した。この場合、得られた開放起電力(V)は理論起電力とほぼ一致した。理論起電力よりも実測値が僅かに小さかった。これは、水溶性電解液中に予め0.1MのNaOHを溶解させたためであると考えられる。一方、ガス導入管を通じて5%H-95%Arを供給した場合、本実施例の金属Na電池はNa-水電池として作動した。この場合、得られた開放起電力(V)は理論起電力に近い値を示した。理論起電力よりも実測値が大きかった。これは、水溶性電解液中の溶存酸素を完全に除去できていなかったためであると考えられる。電流-電圧特性の勾配から見積もった電池の内部抵抗は、Na-水-空気電池において約200Ω/cm、Na-水電池において、約400Ω/cmであった。これは、ナシコンセラミックスのセパレータの抵抗値よりも数倍大きな値であった。従って、ナシコンセラミックス自体は内部抵抗の主要成分ではなく、Naイオン伝導体として電池性能自身を損なうことなく有効に働いていると判断された。 FIG. 3 shows the current-voltage characteristics obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 1. The voltage (V) at current 0 corresponds to the open electromotive force. When 100% oxygen was supplied through the gas inlet tube, the metal Na battery of this example operated as a Na-water-air battery. In this case, the obtained open electromotive force (V) almost matches the theoretical electromotive force. The measured value was slightly smaller than the theoretical electromotive force. It is considered that this is because 0.1 M NaOH was previously dissolved in the aqueous electrolyte. On the other hand, when 5% H 2 -95% Ar was supplied through the gas introduction pipe, the metal Na battery of this example operated as a Na-water battery. In this case, the obtained open electromotive force (V) showed a value close to the theoretical electromotive force. The measured value was larger than the theoretical electromotive force. It is considered that this is because the dissolved oxygen in the water-soluble electrolyte could not be completely removed. Current - the internal resistance of the battery was estimated from the slope of the voltage characteristic, Na- water - about 200 [Omega / cm 2 in the air battery, the Na- water cell was about 400Ω / cm 2. This was a value several times larger than the resistance value of the separator of Nashicon ceramics. Therefore, it was judged that Nashicon ceramic itself is not a main component of internal resistance, and works effectively as the Na + ion conductor without impairing the battery performance itself.
 図4は、実施例1のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた放電特性を示す。ナトリウム-水-空気電池、ナトリウム-水電池のいずれの場合も、仕込んだ金属Na量から予想される積算電流値(放電量/mAh)の直後に、起電力(電圧/V)が急激に低下した。このことから、いずれの運転状態でも金属Na電池を完全に放電可能であることが示された。また、本実施例の金属Na電池は、正極側収容部が強塩基性(pH>13)の水溶性電解液に浸漬された状態で2日間以上安定して動作した。 FIG. 4 shows the discharge characteristics obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 1. In any of the sodium-water-air battery and the sodium-water battery, the electromotive force (voltage / V) decreases sharply immediately after the integrated current value (discharge amount / mAh) expected from the amount of metal Na charged did. From this, it was shown that the metal Na battery can be completely discharged under any operating condition. Moreover, the metal Na battery of the present Example operated stably for 2 days or more in the state which the positive electrode side accommodating part was immersed in the strongly-basic (pH> 13) water-soluble electrolyte solution.
(実施例2:ナシコン・セパレータを用いた金属Na電池)
 本実施例は、実施例1と同じ組成を有する焼結体を、厚さ0.5mmとなるように研磨してナシコンセラミックス製のセパレータを得た点が、実施例1とは異なる。
Example 2 Metallic Na Battery Using Nashicon Separator
The present embodiment is different from the first embodiment in that a sintered body having the same composition as that of the first embodiment is polished to a thickness of 0.5 mm to obtain a separator made of Nashicon ceramics.
 得られたナシコン・セパレータを用いた金属Na電池20について、実施例1と同様に図2に示す電池試験を行った。白金線に括りつけた金属Na片が23mgであった点、1.0MのNaPFを用いた点、正極8として12cmのカーボン板(東海カーボン株式会社製等方性黒鉛)を用いた点、および正極8に100% Oガスのみを供給した点以外は実施例1と同様に電池試験を行った。 The battery test shown in FIG. 2 was performed in the same manner as in Example 1 for the metal Na battery 20 using the obtained Nashicon separator. Point metal Na pieces tied to the platinum wire was 23 mg, that was used NaPF 6 of 1.0 M, a point used as a positive electrode 8 12cm 2 carbon plate (Tokai Carbon Co., Ltd. isotropic graphite) And a battery test was conducted in the same manner as Example 1 except that only 100% O 2 gas was supplied to the positive electrode 8.
 図5は、実施例2のナシコン・セパレータを用いた金属Na電池に対して、50℃にて得られた電流-電圧を示す。開放起電力(V)は、理論起電力とほぼ一致していた。そのため、本実施例の金属Na電池は、Na-水-空気電池として作動したことが確認された。出力密度(W/kg)の最大値は、封入した金属ナトリウム重量23mgおよびその完全反応に要する水18mgの合計4.1mgおよび、ナシコンセパレータの有効面積当りの換算値で、200W/kgであり、その際の電流密度は6mA/cmであった。図5に示すように、本実施例では、実施例1(図3)で見られた不安定な挙動が確認されなかった。このことから、電流密度が実施例1よりもさらに増加した主な要因は、正極をPt金網からカーボン板に交換したことであると考えられる。また、有機電解液中のNaPF濃度を増加させたことも一因であると考えられる。 FIG. 5 shows the current-voltage obtained at 50 ° C. for the metal Na battery using the Nashicon separator of Example 2. The open electromotive force (V) was almost in agreement with the theoretical electromotive force. Therefore, it was confirmed that the metal Na battery of this example operated as a Na-water-air battery. The maximum value of the power density (W / kg) is a total of 4.1 mg of the enclosed metal sodium weight of 23 mg and 18 mg of water required for the complete reaction, and 200 W / kg in terms of the effective area of the Nashicon separator. The current density at that time was 6 mA / cm 2 . As shown in FIG. 5, in the present example, the unstable behavior seen in Example 1 (FIG. 3) was not confirmed. From this, it is considered that the main reason that the current density was further increased than in Example 1 was that the positive electrode was replaced from a Pt wire mesh to a carbon plate. In addition, it is considered that the increase in the concentration of NaPF 6 in the organic electrolyte is also a factor.
 表2は、実施例1および2のナシコン・セパレータを用いた金属Na電池により得られた開放起電力(V)、50℃におけるエネルギー密度(Wh/kg)、出力密度(W/kg)を示す。電流-電圧特性における最大電力での値、および電池反応に関与した、酸素ガスを除く負極および正極活物質量から、エネルギーおよび出力密度を算出した。 Table 2 shows the open electromotive force (V), the energy density (Wh / kg) at 50 ° C., and the power density (W / kg) obtained by the metal Na battery using the Nasicon separators of Examples 1 and 2. . The energy and the power density were calculated from the value at the maximum power in the current-voltage characteristics and the mass of the negative electrode and the positive electrode active material excluding oxygen gas involved in the battery reaction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施例の金属Na電池では、典型的なLiイオン電池の3~15倍程度のエネルギー密度が得られた。また出力密度は、100W/kgの目標目安値に対して充分応え得る値であることが確認された。 In the metal Na battery of this example, an energy density of about 3 to 15 times that of a typical Li ion battery was obtained. It was also confirmed that the power density was a value that could sufficiently respond to the target standard value of 100 W / kg.
 例えば車重が1000kg程度のガソリン車と同等の航続距離を得るためには、従来のLiイオン電池では1200kg程度の電池が必要であった。そのため、従来のLiイオン電池は実用化には非現実的であった。一方、約6倍のエネルギー密度(表2)をもつ本実施例のNa-水-空気電池を用いると、電池の重量は約200kgで済む。これは現状の電気自動車と同程度の現実的な重量である。常用的な自動車では、80kW程度の最大出力を1分程度、20kW程度の定常出力を恒常的に得られればよい。そのため、短時間に80kWの出力を得るために、例えば30kg程度のLiイオン電池やそれと同等の性能をもつスーパーキャパシター等を併用する。これにより、Na-水-空気電池に必要とされる出力密度は100W/kg程度と、Liイオン電池の1/5~1/30で済む。また、本実施例の金属Na電池が有するエネルギー密度が高い、即ち軽いという特徴は、必ずしも自動車のような移動体に限定されるものではなく、家庭用電気機器向けの電池としても好適である。 For example, in order to obtain a cruising distance equivalent to that of a gasoline car having a car weight of about 1000 kg, a conventional Li-ion battery requires a battery of about 1200 kg. Therefore, the conventional Li-ion battery is impractical for practical use. On the other hand, using the Na-water-air battery of this example having an energy density of about 6 times (Table 2), the weight of the battery is about 200 kg. This is a realistic weight comparable to current electric vehicles. In a general-purpose automobile, it is only necessary to constantly obtain a maximum output of about 80 kW for about 1 minute and a steady output of about 20 kW. Therefore, in order to obtain an output of 80 kW in a short time, for example, a Li-ion battery of about 30 kg or a supercapacitor having the same performance as that is used in combination. As a result, the power density required for the Na-water-air battery is about 100 W / kg, which is 1/5 to 1/30 of the Li-ion battery. In addition, the feature that the metal Na battery of the present embodiment has a high energy density, that is, the feature of lightness is not necessarily limited to a mobile object such as an automobile, and is also suitable as a battery for home electric appliances.
(実施例3:βアルミナ系・セパレータを用いた金属Na電池)
 NaCO、g-Al、MgOを原料にボールミル混合し、1600℃で2時間仮焼した。これをボールミル粉砕、一軸加圧成型、冷間静水圧プレス後1650℃にて24時間の条件で焼結することにより、βアルミナおよびβ″アルミナ相の重量比率が約6:4の、直径約16mm円盤状で、相対密度98%以上のガス透過性のない焼結体を得た。これを厚さ1.5mmとなるように研磨して、βアルミナ系セラミックスのセパレータ(Naイオン伝導体)を得た。交流インピーダンス法で上記のβアルミナ系セラミックスの、結晶粒内および結晶粒界の抵抗成分の和の温度特性を評価した。電気伝導度の活性化エネルギーは、典型的な値である0.30eVを示した。Naイオン伝導体としての直流抵抗値は、50℃にて40Ω・cm-2であった。
(Example 3: β-alumina based metal Na battery using separator)
A raw material was mixed with Na 2 CO 3 , g-Al 2 O 3 and MgO as a raw material, and calcined at 1600 ° C. for 2 hours. This is subjected to ball milling, uniaxial pressing, and cold isostatic pressing followed by sintering at 1650 ° C. for 24 hours to obtain a diameter of about 6: 4 in weight ratio of β alumina and β ′ ′ alumina phase. A sintered body with 16 mm disk shape and relative density of 98% or more without gas permeability was obtained and polished to a thickness of 1.5 mm to obtain a separator (Na + ion conductor of β alumina ceramic) The temperature characteristics of the sum of the resistance components within the crystal grains and grain boundaries of the above-mentioned β-alumina-based ceramics were evaluated by the alternating current impedance method. The activation energy of the electrical conductivity was a typical value. The direct current resistance as a Na + ion conductor was 40 Ω · cm −2 at 50 ° C.
 次に、実施例1と同様に、図2に示す電池試験を行った。βアルミナ系セラミックスのセパレータをNaイオン伝導体1として用いた点、白金線に括りつけた金属Na片が10mgであった点、およびNaPFに代えて0.5Mの過塩素酸ナトリウム(NaClO)を用いた点以外は実施例1と同様に電池試験を行った。 Next, in the same manner as in Example 1, a battery test shown in FIG. 2 was performed. A separator of β-alumina based ceramic was used as Na + ion conductor 1, 10 mg of metal Na pieces bound to a platinum wire, and 0.5 M sodium perchlorate (NaClO instead of NaPF 6) A battery test was conducted in the same manner as in Example 1 except that 4 ) was used.
 図6は、実施例3のβアルミナ系・セパレータを用いた金属Na電池に対して、30℃,40℃,50℃にて得られた電流-電圧特性を示す。開放起電力(V)は、Na-水-空気電池としての理論起電力とほぼ一致した。このことから、本実施例の金属Na電池が所望の通りに動作したことが確認された。50℃における電流-電圧特性の勾配から見積もった電池の内部抵抗は、約900Ω/cmであった。これは、βアルミナ系セラミックスセパレータの抵抗値よりも10倍以上大きな値であった。従って、βアルミナセラミックス自体は内部抵抗の主要成分ではないと判断された。また、Pt金網を1cmのNi板に変更しても、電流-電圧特性の変化は認められなかった。 FIG. 6 shows the current-voltage characteristics obtained at 30 ° C., 40 ° C., and 50 ° C. for the metal Na battery using the β-alumina-based separator of Example 3. The open circuit electromotive force (V) almost agrees with the theoretical electromotive force as the Na-water-air battery. From this, it was confirmed that the metal Na battery of this example operated as desired. The internal resistance of the cell estimated from the slope of the current-voltage characteristics at 50 ° C. was about 900 Ω / cm 2 . This was a value 10 or more times larger than the resistance value of the β-alumina-based ceramic separator. Therefore, it was determined that the β-alumina ceramic itself was not a main component of the internal resistance. Further, even if the Pt wire mesh was changed to a 1 cm 2 Ni plate, no change in current-voltage characteristics was observed.
(実施例4:ガス透過性の正極を用いた金属Na電池)
 図1(B)に対応して、ガス透過性の正極を用いた金属Na電池を作成し、その放電特性を評価した。
Example 4 Metallic Na Battery Using Gas Permeable Positive Electrode
Corresponding to FIG. 1 (B), the metal Na battery using the gas-permeable positive electrode was created, and the discharge characteristic was evaluated.
 まず、以下の手順によりガス透過性の正極を作製した。活性炭:硝酸マンガン[Mn(NO・6HO]=3:1(重量比)の混合物を窒素雰囲気中約350℃で2h焼成することにより、主にMn相からなる触媒が坦持された活性炭を得た。これを結着材(PTEFエマルション)と混合し、混合体を約200℃でホットプレスすることにより、触媒層を得た。 First, a gas-permeable positive electrode was produced by the following procedure. Catalyst consisting mainly of Mn 3 O 4 phase by calcining a mixture of activated carbon: manganese nitrate [Mn (NO 3 ) 2 · 6H 2 O] = 3: 1 (weight ratio) at about 350 ° C. in nitrogen atmosphere for 2 h Obtained activated carbon. This was mixed with a binder (PTEF emulsion), and the mixture was hot pressed at about 200 ° C. to obtain a catalyst layer.
 また、高導電性カーボン(ケッチェンブラック)と結着材(PTEFエマルション)を混合し、混合体を約200℃でホットプレスすることによりガス拡散層を得た。 Also, a highly conductive carbon (Ketjen black) and a binder (PTEF emulsion) were mixed, and the mixture was hot pressed at about 200 ° C. to obtain a gas diffusion layer.
 さらに、上記のガス拡散層、触媒層、およびニッケル金網をこの順番に積層し、約200℃でホットプレスすることによりガス透過性の正極を得た。 Furthermore, the gas diffusion layer, the catalyst layer, and the nickel wire netting described above were stacked in this order and hot pressed at about 200 ° C. to obtain a gas-permeable positive electrode.
 このガス透過性の正極を用いて図1(B)に示す金属Na電池20を構成した。この金属Na電池20の有効電極面積は0.79cmであった。負極にSUS304ステンレス鋼板上に圧着した10mgの金属Na、負極電解液にナトリウム塩として1M過塩素酸ナトリウムNaClOおよび添加物として、1vol%のフルオロエチレンカーボネート(Fluoroethylene Carbonate,FEC)を溶解したEC:DMC(1:1比の炭酸エチレンEthylene Carbonateと炭酸ジメチルDimethyl Carbonateとの混合液)電解液を用いた。セラミックスセパレーターとして、0.6mm厚のナシコンセラミックスを用いた。正極電解液は0.5M水酸化ナトリウムNaOH水溶液であり、上記のガス透過性の正極の片面と接触させた。 The metal Na battery 20 shown in FIG. 1 (B) was configured using this gas permeable positive electrode. The effective electrode area of this metal Na battery 20 was 0.79 cm 2 . EC which dissolved 10 mg metal Na crimped on a SUS304 stainless steel plate on a negative electrode, 1M sodium perchlorate NaClO 4 as a sodium salt and 1 vol% fluoroethylene carbonate (FEC) as an additive to a negative electrode electrolyte: An electrolyte of DMC (mixture of ethylene carbonate and dimethyl carbonate in a 1: 1 ratio) was used. A 0.6 mm thick Nashicon ceramic was used as a ceramic separator. The positive electrode electrolyte was a 0.5 M aqueous solution of sodium hydroxide NaOH, and was in contact with one side of the above gas-permeable positive electrode.
 図7は、実施例4のガス透過性の正極を用いた金属Na電池に対して、空気中25℃で測定した電流-電圧特性を示す。本実施例の金属Na電池の最大出力は25mW/cm以上に向上した。本特性は、従来の水溶液系および非水系のリチウムおよびナトリウム空気電池のいずれをも上回ると考えられる。すなわち、本実施例では、電解質構成部材として伝導性の高いナトリウムイオン伝導性セラミックス材料と非水電解液および水溶性電解液が選択されている。これにより、ガス透過性正極を備えた水溶液系ナトリウム空気電池の形態で高い出力が得られることが示された。 FIG. 7 shows the current-voltage characteristics of the metal Na battery using the gas-permeable positive electrode of Example 4 measured at 25 ° C. in air. The maximum output of the metal Na battery of this example was improved to 25 mW / cm 2 or more. It is believed that this property surpasses both conventional aqueous and non-aqueous lithium and sodium air batteries. That is, in the present embodiment, a highly conductive sodium ion conductive ceramic material, a non-aqueous electrolytic solution and a water-soluble electrolytic solution are selected as the electrolyte component. This shows that high output can be obtained in the form of an aqueous solution sodium-air battery equipped with a gas-permeable positive electrode.
(実施例5:充放電特性の評価)
 本実施例では、電池の構成と測定条件は実施例4と同一である。充電・放電(充放電)のための測定系の電流制御のみが実施例4と異なる。
(Example 5: Evaluation of charge and discharge characteristics)
In the present embodiment, the configuration of the battery and the measurement conditions are the same as in the fourth embodiment. Only the current control of the measurement system for charge and discharge (charge and discharge) differs from that of the fourth embodiment.
 図8は、実施例4のガス透過性の正極を用いた金属Na電池に対する充放電特性の評価を示す。 FIG. 8 shows the evaluation of charge and discharge characteristics of a metal Na battery using the gas-permeable positive electrode of Example 4.
 本実施例の金属Na電池の充放電速度(電流密度)は、約1mA/cmであった。これは既報の電池の充放電速度よりも大きい。例えば、セラマテック・インク社の特許出願である特願2012-537241(「ナトリウムイオン伝導性セラミックセパレーターを有する固体ナトリウム系二次電池」)では、最大30μA/cmまでの充放電速度が実施されている。一方、本実施例の金属Na電池では、その約30倍の充放電速度であった。すなわち、本実施例では、水溶液系ナトリウム空気電池の形態をとることで、電解質構成部材に伝導性の高い材料を選択することができるメリットが発揮された。 The charge / discharge rate (current density) of the metal Na battery of this example was about 1 mA / cm 2 . This is greater than the charge and discharge rate of the previously reported battery. For example, in Japanese Patent Application No. 2012-537241 is Seramatekku, Inc. patent application ( "solid sodium secondary battery having a sodium-ion conducting ceramic separator"), is carried out charging and discharging speeds of up to 30 .mu.A / cm 2 There is. On the other hand, in the metal Na battery of this example, the charge / discharge rate was about 30 times as fast. That is, in the present embodiment, by taking the form of the aqueous solution sodium-air battery, the merit that the material having high conductivity can be selected for the electrolyte component was exhibited.
1 Naイオン伝導体、2 有機電解液、3 水溶性電解液、4 負極活物質、5 負極、6 負極外部端子、7 筺体、8 正極、10 正極外部端子、11 ガス導入管、12 負極側収容部、13 正極側収容部、20 金属Na電池 DESCRIPTION OF SYMBOLS 1 Na + ion conductor, 2 organic electrolyte solution, 3 water-soluble electrolyte solution, 4 negative electrode active material, 5 negative electrode, 6 negative electrode external terminal, 7 negative electrode, 8 positive electrode, 10 positive electrode external terminal, 11 gas introduction pipe, 12 negative electrode side Housing part, 13 Positive side housing part, 20 metal Na battery
 本発明は、金属Na電池に関する。 The present invention relates to a metal Na battery.

Claims (6)

  1.  Naイオン伝導性を有するNaイオン伝導体と、
     前記Naイオン伝導体の一方の側に配置された実質的に金属Naからなる負極活物質と、
     前記負極活物質に少なくとも一部が接するように配置され、金属Naがイオン化する際に生じる電子を伝導可能な負極と、
     前記負極活物質と前記Naイオン伝導体の一方の面と接するように貯留された有機電解液と、
     前記Naイオン伝導体の他方の側に配置された正極と、
     前記正極と前記Naイオン伝導体の他方の面と接するように貯留された水溶性電解液と、
     前記水溶性電解液を収容し、耐塩基性を有する収容部と、を備える金属Na電池。
    Na + ion conductor having Na + ion conductivity,
    A negative electrode active material substantially consisting of metallic Na disposed on one side of the Na + ion conductor;
    A negative electrode which is disposed so that at least a part is in contact with the negative electrode active material, and which can conduct electrons generated when metal Na is ionized;
    An organic electrolytic solution stored so as to be in contact with one surface of the negative electrode active material and the Na + ion conductor;
    A positive electrode disposed on the other side of the Na + ion conductor;
    A water-soluble electrolyte stored so as to be in contact with the positive electrode and the other surface of the Na + ion conductor;
    A metal Na battery containing the water-soluble electrolyte and a container having a basic resistance.
  2.  前記Naイオン伝導体は、β″アルミナ、βアルミナまたはNal+xSiZr3-x12(0≦x≦3)で表されるナシコンから形成されていることを特徴とする請求項1に記載の金属Na電池。 The Na + ion conductor is formed of β ′ ′ alumina, β alumina or Nasicon represented by Nal + x Si x Zr 2 P 3-x O 12 (0 ≦ x ≦ 3). The metal Na battery of claim 1.
  3.  前記負極は、Hgを実質的に含まないことを特徴とする請求項1または2に記載の金属Na電池。 The metal Na battery according to claim 1, wherein the negative electrode contains substantially no Hg.
  4.  前記有機電解液は、炭酸プロピレンであることを特徴とする請求項1~3のいずれか1項に記載の金属Na電池。 The metal Na battery according to any one of claims 1 to 3, wherein the organic electrolytic solution is propylene carbonate.
  5.  前記水溶性電解液は、NaOH水溶液であることを特徴とする請求項1~4のいずれか1項に記載の金属Na電池。 The metal Na battery according to any one of claims 1 to 4, wherein the water-soluble electrolyte is an aqueous solution of NaOH.
  6.  前記正極は、ガス透過性を有し、前記Naイオン伝導体に対向する一方の面とは反対の他方の面は、少なくとも一部が空気に接していることを特徴とする請求項1~5のいずれか1項に記載の金属Na電池。 The positive electrode is gas permeable, and the other surface opposite to the one surface facing the Na + ion conductor is at least partially in contact with air. The metal Na battery of any one of 5.
PCT/JP2013/005378 2012-09-11 2013-09-11 METAL Na CELL WO2014041800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199623A JP2015222613A (en) 2012-09-11 2012-09-11 Metal sodium battery
JP2012-199623 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041800A1 true WO2014041800A1 (en) 2014-03-20

Family

ID=50277941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005378 WO2014041800A1 (en) 2012-09-11 2013-09-11 METAL Na CELL

Country Status (2)

Country Link
JP (1) JP2015222613A (en)
WO (1) WO2014041800A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328177A (en) * 2021-05-27 2021-08-31 中国科学技术大学 Metal-hydrogen battery and preparation method thereof
US11427869B2 (en) 2015-02-26 2022-08-30 The Broad Institute, Inc. T cell balance gene expression, compositions of matters and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268327A1 (en) * 2006-10-13 2008-10-30 John Howard Gordon Advanced Metal-Air Battery Having a Ceramic Membrane Electrolyte Background of the Invention
US20120183868A1 (en) * 2009-10-27 2012-07-19 Electricite De France Electrochemical device having a solid alkaline ion-conducting electrolyte and an aqueous electrolyte
JP2012227119A (en) * 2011-04-20 2012-11-15 Samsung Electro-Mechanics Co Ltd Metal air battery and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268327A1 (en) * 2006-10-13 2008-10-30 John Howard Gordon Advanced Metal-Air Battery Having a Ceramic Membrane Electrolyte Background of the Invention
US20120183868A1 (en) * 2009-10-27 2012-07-19 Electricite De France Electrochemical device having a solid alkaline ion-conducting electrolyte and an aqueous electrolyte
JP2012227119A (en) * 2011-04-20 2012-11-15 Samsung Electro-Mechanics Co Ltd Metal air battery and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427869B2 (en) 2015-02-26 2022-08-30 The Broad Institute, Inc. T cell balance gene expression, compositions of matters and methods of use thereof
CN113328177A (en) * 2021-05-27 2021-08-31 中国科学技术大学 Metal-hydrogen battery and preparation method thereof

Also Published As

Publication number Publication date
JP2015222613A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
Manthiram et al. Hybrid and Aqueous Lithium‐Air Batteries
Nazar et al. Lithium-sulfur batteries
JP5755624B2 (en) Air electrode for air battery and air battery
KR101496533B1 (en) Solid electrolyte material and lithium battery
KR101633718B1 (en) Solid electrolyte and all-solid state lithium ion secondary battery
Zhang et al. A novel high energy density rechargeable lithium/air battery
JP6206971B2 (en) Lithium air secondary battery
Rahman et al. High energy density metal-air batteries: a review
US10601094B2 (en) Separator-equipped air electrode for air-metal battery
CN105322250B (en) Lithium air battery with sodium salt as medium
KR102120508B1 (en) Cell
JP5782170B2 (en) Air electrode for air battery and air battery
JP6436444B2 (en) Zinc-air secondary battery air electrode catalyst, Brown mirror light type transition metal oxide as zinc-air secondary battery air electrode catalyst, zinc-air secondary battery air electrode, zinc-air secondary Secondary battery, electrode catalyst for electrolysis, electrode for electrolysis and electrolysis method
JP6081863B2 (en) How to use a metal-air secondary battery
KR20150018527A (en) System comprising accumulators and air-aluminium batteries
JP2007103298A (en) Positive electrode active material, its manufacturing method, and aqueous lithium secondary battery
JP2015026483A (en) Positive electrode for sodium batteries, and sodium battery
Oh et al. Enhanced electrocatalytic activity of three-dimensionally-ordered macroporous La 0.6 Sr 0.4 CoO 3− δ perovskite oxide for Li–O 2 battery application
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
WO2014041800A1 (en) METAL Na CELL
JP5851624B2 (en) Aqueous electrolyte for lithium-air batteries
CN107482283A (en) A kind of high-performance metal air cell and its application
US20050153189A1 (en) Solid oxide electrolyte material and method of producing solid oxide electrolyte
KR20150131653A (en) Lithium sulfur batteries system
Chen Investigation and development of Li-air and Li-air flow batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837508

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP