WO2014038754A1 - Terminal, method for estimating uplink channel, and communication system - Google Patents

Terminal, method for estimating uplink channel, and communication system Download PDF

Info

Publication number
WO2014038754A1
WO2014038754A1 PCT/KR2012/011049 KR2012011049W WO2014038754A1 WO 2014038754 A1 WO2014038754 A1 WO 2014038754A1 KR 2012011049 W KR2012011049 W KR 2012011049W WO 2014038754 A1 WO2014038754 A1 WO 2014038754A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
random access
terminal
uplink channel
access channel
Prior art date
Application number
PCT/KR2012/011049
Other languages
French (fr)
Korean (ko)
Inventor
박규진
이경준
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of WO2014038754A1 publication Critical patent/WO2014038754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a terminal, an uplink channel estimation method, and a communication system.
  • MTC machine type communication
  • RU radio units
  • Het-Net heterogeneous network
  • Independent heterogeneous communication schemes between RUs to guarantee high data rates even for UEs located in cell boundary areas in heterogeneous networks and independent uplink / downlink path establishment due to coverage imbalance between uplink and downlink i.e. An RU as a transmission point (TP) for transmitting a downlink signal and an RU as a reception point (RP) for receiving an uplink signal from a corresponding terminal are independently set).
  • a cooperative communication technique between adjacent base stations has been proposed as a method for increasing uplink and downlink data rates of a terminal located in a cell boundary region.
  • a terminal located in a cell boundary area requires an uplink channel estimation method with a neighbor base station for cooperative communication.
  • a random UE performs a sounding reference signal for periodically or aperiodically measuring an uplink channel state for uplink channel estimation with a base station of a cell to which it is connected. , SRS).
  • SRS sounding reference signal
  • the terminal is transmitted from the terminal to the serving base station by RRC parameters set from the serving base station to which the corresponding terminal belongs.
  • RRC parameters include cell-specific SRS subframe and SRS bandwidth, UE-specific SRS bandwidth, hopping patter, frequency domain position, periodicity, subframe configuration, antenna configuration, base sequence index, and cyclic shift index.
  • the terminal transmits a sounding reference signal (SRS) according to the UE-specific parameter in an uplink subframe / bandwidth region that satisfies the cell-specific parameter.
  • a method of enabling uplink channel measurement between a corresponding terminal and a neighboring cell by receiving a sounding reference signal (SRS) transmission of a terminal located in a cell boundary region not only from the serving base station but also from the neighboring base station has been proposed. That is, as the necessity of measuring an uplink channel with a multi-base station for cooperative communication has emerged, a scheme for sharing the sounding reference signal (SRS) configuration information with a neighboring base station and receiving the neighboring base station has been proposed.
  • SRS sounding reference signal
  • a conventional sounding reference signal (SRS) is generated based on a physical cell ID of a base station to which a terminal belongs
  • a neighboring base station having a different physical cell identifier is a sounding reference signal (SRS) signal generated by a serving base station. It is impossible to receive it.
  • SRS sounding reference signal
  • a cell size between neighboring cells is different in a heterogeneous network, it is also opaque whether an uplink signal of a terminal having a TA value set based on a reception timing of a serving base station is received in synchronization with a neighboring base station.
  • the sounding reference signal (SRS) configuration information is determined by a parameter of the serving base station, even if the sounding reference signal (SRS) configuration information is shared with the neighboring base station, if the neighboring base station receives the sounding reference signal (SRS), At least two additional conditions must be met.
  • the same uplink synchronization can be applied between a serving cell and an adjacent cell in a cell boundary region.
  • the conventional sounding reference signal (SRS) transmission scheme considering only uplink channel estimation with a single base station is sufficient uplink to support various cooperative communication schemes in a CoMP scenario and a heterogeneous network (HetNet). It does not provide channel estimation results.
  • the uplink channel estimation technique with a plurality of base stations limited to a limited scenario has a narrower application range, and thus, a design of a plurality of uplink channel estimation techniques applicable to various cell deployment scenarios is required. It is true.
  • An object of the present invention is to provide a terminal, an uplink channel estimation method, and a communication system for estimating a multi-uplink channel between a terminal and a plurality of base stations based on a random access channel (RACH).
  • RACH random access channel
  • a terminal includes: an uplink channel manager for generating a physical random access channel preamble according to random access channel resource configuration information allocated from a serving base station; And a communication unit configured to transmit the physical random access channel preamble to an adjacent base station according to a request of the uplink channel manager.
  • the physical random access channel preamble is used by the neighbor base station to estimate an uplink channel.
  • the physical random access channel preamble may be used by the serving base station to estimate an uplink channel.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the communication unit may request the physical random access channel preamble to be transmitted a plurality of times periodically or aperiodically.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the allocated random access channel resource configuration information may be obtained from a physical downlink control channel command received according to a random access procedure instruction from the serving base station.
  • the uplink channel manager controls the uplink channel manager
  • the physical random access channel preamble generated using the preamble index is set through a preamble index information region of a physical downlink control channel command according to physical random access channel configuration information, and the physical random access channel mask index is set. Through the physical random access channel resource index set through the adjacent base station can be transmitted.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the physical random access channel configuration information may be received through cell specific system information of the serving base station.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the allocated random access channel resource configuration information may be obtained from a mobility control information region of a radio resource control connection reconfiguration message received according to a fake handover indication from the serving base station.
  • the allocated random access channel resource configuration information includes
  • the preamble index, the preamble mask index, timer information, and preamble transmission maximum information may be included.
  • the terminal When the radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, the terminal requests the uplink channel manager to generate and transmit the physical random access channel preamble and the timer.
  • the timer according to the information it may further include a handover controller for performing network re-entry through the optimization cell selection.
  • the terminal When the radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, the terminal requests the uplink channel manager to generate and transmit the physical random access channel preamble, and the physical If the number of times of random access channel preamble transmission satisfies the information on the maximum number of preamble transmissions, the apparatus may further include a handover controller for performing network re-entry by selecting an optimized cell.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • a radio resource control signaling (RRC signaling) message including the allocated random access channel resource configuration information may be received from the serving base station.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the physical random access channel preamble may be transmitted to the neighbor base station through the resource region of the physical uplink shared channel of the neighbor base station.
  • the uplink channel manager In addition, the uplink channel manager, the uplink channel manager, and
  • the physical random access channel preamble may be transmitted to the neighbor base station through a physical random access channel opportunity (PRACH opportunity) of the neighbor base station.
  • PRACH opportunity physical random access channel opportunity
  • the terminal periodically or aperiodically transmits a result of estimating a downlink channel with the serving base station to the serving base station, and if the result of estimating the downlink channel satisfies a predetermined threshold condition, the The apparatus may further include a downlink channel manager for transmitting a result of estimating a downlink channel with a neighbor base station to the neighbor base station.
  • a method for estimating an uplink channel is a method for estimating an uplink channel by a base station control apparatus that controls and manages a plurality of base stations, which is allocated by a serving base station connected to the terminal from a base station adjacent to the terminal.
  • the uplink channel estimation method further includes receiving an uplink channel estimation result between the mobile station and the serving base station using the random access channel preamble from the serving base station,
  • the method may include performing multi-uplink channel estimation between the terminal and a plurality of base stations based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
  • performing the multi-uplink channel estimation may include:
  • the method may include determining whether to implement downlink cooperative communication between cells by determining whether the terminal is located in an area requiring downlink cooperative communication between cells.
  • performing the multi-uplink channel estimation may include:
  • the method may include determining whether the terminal is handover.
  • performing the multi-uplink channel estimation may include:
  • the method may include determining whether to implement an uplink rerouting of the terminal for transmitting the uplink to the neighboring base station while maintaining the downlink with the serving base station.
  • a communication system includes: a serving base station for allocating a random access channel resource for uplink channel estimation to a terminal located in a cell boundary region; An adjacent base station receiving a physical random access channel preamble generated according to the random access channel resource allocated from the serving base station from the terminal and estimating an uplink channel with the terminal using the physical random access channel preamble ; And a base station control apparatus for receiving a result of estimating an uplink channel with the terminal from the neighbor base station and estimating a multi-uplink channel for cooperative communication between cells.
  • the serving base station the serving base station
  • the base station control device controls the base station control device
  • Multi-uplink channel estimation between the terminal and a plurality of base stations may be performed based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
  • the serving base station and the adjacent base station are identical to the serving base station and the adjacent base station.
  • It may be connected to the same base station control device or different base station control devices.
  • the serving base station and the neighboring base station is a radio signal processing device for forming each independent cell
  • the base station control device is connected to the serving base station and the neighboring base station to perform a base station control management function to the communication station It may include a cloud-based base station structure that is implemented as a virtual server that is centrally installed.
  • the serving base station and the adjacent base station are identical to the serving base station and the adjacent base station.
  • Each cell included in an inter-cell cooperative communication group for a terminal located in a cell boundary region may be formed.
  • a heterogeneous network in which the serving base station and the neighboring base station having different cell coverages may overlap each other may be formed.
  • the serving base station and the adjacent base station are identical to the serving base station and the adjacent base station.
  • a plurality of small cells having a smaller cell radius than the macro cell may be formed.
  • a physical random access channel sequence (PRACH sequence) is used as a form of a reference signal for measuring an uplink channel state with an adjacent cell as well as an uplink channel with a serving cell to which a terminal is connected.
  • PRACH sequence physical random access channel sequence
  • Het-Net heterogeneous networks
  • CompMP scenario is possible.
  • an independent path establishment method between uplink and downlink may provide a framework capable of providing a result of a base channel estimation for determining whether an uplink path is reset.
  • FIG. 1 is a diagram illustrating a network to which an embodiment of the present invention is applied.
  • FIG. 2 illustrates a cloud-based base station structure to which an embodiment of the present invention is applied.
  • FIG. 3 is a block diagram showing a schematic configuration of a serving base station according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of a neighbor base station according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a schematic configuration of a base station control apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of a terminal according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an uplink channel estimation method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of determining a target terminal according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
  • ... unit ... unit
  • module etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have.
  • a terminal is a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user equipment (User Equipment). It may also refer to a user equipment (UE), an access terminal (AT), and the like, and may include all or some functions of a terminal, a mobile terminal, a subscriber station, a portable subscriber station, a user device, an access terminal, and the like.
  • a base station includes an access point (AP), a radio access station (RAS), a node B (Node B), an advanced node B (evolved NodeB, eNodeB), transmission and reception It may also refer to a base transceiver station (BTS), a mobile multihop relay (MMR) -BS, and the like, and may perform all or part of functions of an access point, a wireless access station, a node B, an eNodeB, a transmission / reception base station, an MMR-BS, and the like. It may also include.
  • AP access point
  • RAS radio access station
  • Node B node B
  • eNodeB advanced node B
  • MMR mobile multihop relay
  • cooperative communication not only downlink cooperative communication, but also independent uplink and downlink path setting methods will be referred to as cooperative communication.
  • FIG. 1 is a block diagram of a communication system to which an embodiment of the present invention is applied
  • FIG. 2 illustrates a cloud-based base station structure to which an embodiment of the present invention is applied
  • FIG. 3 is a schematic diagram of a serving base station according to an embodiment of the present invention.
  • 4 is a block diagram showing a schematic configuration of a neighboring base station according to an embodiment of the present invention
  • Figure 5 is a block diagram showing a schematic configuration of a base station control apparatus according to an embodiment of the present invention
  • 6 is a block diagram showing a schematic configuration of a terminal according to an embodiment of the present invention.
  • Heterogeneous network Het-Net
  • Het-Net Heterogeneous network
  • the small cell 400 covers a smaller area than the macro cell 300.
  • a plurality of small cells 400 may exist in one macro cell 300. That is, in one macro cell 300, small cells 400 such as pico cells, micro cells, and femto cells are superimposed by distributed low power remote radio heads (RRHs). Appears.
  • RRHs distributed low power remote radio heads
  • a communication system to which an embodiment of the present invention is applied is a cooperative multi-point scenario (CoMP scenario, Coordinated Multi-) to increase uplink and downlink data rates of a terminal located in a cell boundary region through cooperative communication between adjacent cells.
  • Point scenario) 3 and 4 may be a cloud-based base station structure, as shown in FIG.
  • a general base station is divided into a digital signal processing unit (DU) and a radio signal processing unit (RU) 900.
  • a typical base station includes a processing unit corresponding to each of the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 in one physical system, and one physical system is installed in a service area.
  • the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 are physically separated, and only the wireless signal processing apparatus 900 is installed in the service target area.
  • one digital signal processing apparatus 800 has a control management function for the plurality of wireless signal processing apparatuses 900 forming respective independent cells.
  • the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 may be connected by an optical cable.
  • the digital signal processing apparatus 800 is a part in charge of the digital signal processing and resource management control function of the base station, and is connected to a core system (not shown). And it is mainly installed in communication companies such as Internet data center (IDC, Internet Data Center).
  • the digital signal processing apparatus 800 may use various wireless technologies such as wideband code division multiple access (WCDMA), WiBro (WiBro, Wireless Broadband Internet), and LTE (Long Term Evolution) through a virtualization technology.
  • WCDMA wideband code division multiple access
  • WiBro WiBro
  • Wireless Broadband Internet Wireless Broadband Internet
  • LTE Long Term Evolution
  • the wireless signal processing apparatus 900 is a part for amplifying and radiating a radio wave signal in a wireless signal processing section of a base station to an antenna. That is, the wireless signal processing apparatus 900 converts and amplifies a digital signal received from the digital signal processing apparatus 800 into a radio frequency (RF) signal according to a frequency band.
  • RF radio frequency
  • the first base station 100 and the second base station 200 are implemented with the wireless signal processing apparatus 900 of FIG. 2. And it may be called eNB, RU, RRH (Remote Radio Heads).
  • the base station control apparatus 500 is implemented with a digital signal processing apparatus 800 of FIG. And it is connected to the first base station 100 and the second base station 200 to manage them.
  • first base station 100 and the second base station 200 are shown to be managed by a single base station control apparatus 500, the first base station 100 and the second base station 200 control the different base stations Each may be managed by the device 500.
  • the terminal 600 located in the cell boundary region is required to estimate an uplink channel with the neighbor base station 200.
  • the terminal 600 located in the cell boundary region is defined as a terminal located in the region where the first cell 300 is located but may be affected by the second cell 400.
  • the terminal 600 located in the cell boundary region is not only the first base station 100 currently connected, unlike the terminal 700 located at the center of the second cell 400 transmits and receives only a signal with the second base station 200.
  • a signal may also be transmitted and received with the second base station 200 which is an adjacent base station.
  • the first base station 100 will be described as a serving base station
  • the second base station 200 will be described as a neighbor base station based on the terminal 600 located in the cell boundary region.
  • the terminal 600 located in the cell boundary region receives the downlink physical channel and the physical signal from the serving base station 100 (1).
  • the downlink physical channel includes a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), and a physical broadcast channel (PBCH).
  • the physical signal includes a Common Reference Signal (CRS), a Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS), a Channel State Information-Reference Signal (CSI RS), a DeModulation-Reference Signal (DM RS), and the like.
  • CRS Common Reference Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CSI RS Channel State Information-Reference Signal
  • DM RS DeModulation-Reference Signal
  • the terminal 600 located in the cell boundary region according to the uplink channel state between the terminal 600 and the serving base station 100 and the uplink channel state between the terminal 600 and the second base station 200.
  • the channel and physical signals may be set to be transmitted to the serving base station 100 or may be set to be transmitted (2) to the second base station 200.
  • the uplink physical channel includes a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (PRACH), and the physical signal includes a sounding reference signal (SRS).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • the terminal 600 located in the cell boundary region receives a dedicated physical random access channel (PRACH) configuration signal from the serving base station 100.
  • the dedicated physical random access channel resource configuration signal includes resource allocation information for UE 600 uplink channel estimation with an adjacent cell.
  • the dedicated physical random access channel resource setting signal is transmitted from the serving base station 100 to a target terminal that is a multi-uplink estimation target according to the instruction of the base station control apparatus 500.
  • the target terminal refers to a multi-uplink estimation target terminal determined by the base station control apparatus 500, and eventually becomes the terminal 600 located in the cell boundary region.
  • the multi-uplink channel estimation is defined as uplink channel estimation between the target terminal 600 and two or more base stations.
  • the terminal 600 transmits a physical random access channel preamble (PRACH preamble) to the adjacent base station 200 according to the dedicated physical random access channel resource configuration signal. Then, the neighboring base station 200 estimates an uplink channel state with the terminal 600 based on the physical random access channel preamble and reports it to the base station control apparatus 500.
  • PRACH preamble physical random access channel preamble
  • the terminal 600 transmits a physical random access channel preamble (PRACH preamble) to the serving base station 100 according to the dedicated physical random access channel resource configuration signal.
  • the serving base station 100 estimates an uplink channel state with the terminal 600 based on the physical random access channel preamble and reports it to the base station control apparatus 500.
  • the base station control apparatus 500 performs multi-uplink channel estimation based on each uplink channel state reported from the serving base station 100 and the neighbor base station 200. That is, the terminal 600 estimates the uplink channel with the neighboring base station 200 as well as the uplink channel with the serving base station 100 to which the terminal 600 is currently connected. It may determine whether to implement the downlink cooperative communication between cells. Alternatively, handover of the terminal 600 may be implemented. Alternatively, it may be determined whether the UL 600 implements UL path redirection.
  • the uplink path reset refers to a state in which only the uplink is transmitted to the neighboring base station 200 while maintaining the downlink with the serving base station 100.
  • the serving base station 100 includes a communication unit 110, a memory 130, and a processor 150.
  • the communication unit 110 is connected to the processor 150, and transmits and receives a radio signal.
  • the communication unit 110 may include a baseband circuit for processing a radio signal.
  • the memory 130 is connected to the processor 150 and stores various information for driving the processor 150.
  • the memory 130 may be implemented as a medium such as a RAM such as a dynamic random access memory, a RAM random dynamic memory (DRAM), a synchronous DRAM, a static RAM, or the like.
  • the memory 130 may be inside or outside the processor 150 and may be connected to the processor 150 by various well-known means.
  • the processor 150 may be implemented as a central processing unit (CPU), other chipsets, microprocessors, or the like, and layers of the air interface protocol may be implemented by the processor 150.
  • the processor 150 includes an allocator 251, an estimator 253, and a reporter 255.
  • the allocator 251 generates a dedicated physical random access channel resource setting signal for allocating a resource for uplink channel estimation between the terminal 600 and the neighbor cell 400 according to the instruction of the base station control apparatus 500. It generates and transmits to the terminal 600.
  • the estimator 253 receives a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal from the terminal 600 and estimates an uplink channel state with the terminal 600.
  • the reporter 255 receives the uplink channel estimation result from the estimator 253 and transmits the uplink channel estimation result to the base station control apparatus 500.
  • the neighbor base station 200 includes a communication unit 210, a memory 230, and a processor 250.
  • the communication unit 210 is connected to the processor 250, and transmits and receives a radio signal.
  • the communication unit 210 may include a baseband circuit for processing a radio signal.
  • the memory 230 is connected to the processor 250 and stores various information for driving the processor 250.
  • the memory 230 may be embodied in a medium such as RAM, such as dynamic random access memory, Rambus DRAM, synchronous DRAM, and static RAM.
  • the memory 230 may be inside or outside the processor 250 and may be connected to the processor 250 by various well-known means.
  • the processor 250 may be implemented as a central processing unit, other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 250.
  • the processor 250 includes a channel estimator 251, a cell interference measurer 253, and a reporter 255.
  • the channel estimator 251 receives a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal from the terminal 600 and estimates an uplink channel state with the terminal 600.
  • the cell interference measuring unit 253 measures an interference signal due to a neighboring cell. That is, a strong interference signal is measured according to a predefined criterion in a specific UL band through a backhaul network.
  • the reporter 255 transmits the uplink channel estimation result received from the channel estimator 251 to the base station control apparatus 500.
  • the cell interference signal transmitted from the cell interference measurement unit 253 is transmitted to the base station control apparatus 500.
  • the base station control apparatus 500 includes a communication unit 510, a memory 530, and a processor 550.
  • the communication unit 510 is connected to the processor 550 to transmit and receive a radio signal.
  • the communication unit 510 may include a baseband circuit for processing a radio signal.
  • the memory 530 is connected to the processor 550 and stores various information for driving the processor 550.
  • the memory 530 may be implemented as a medium such as a RAM such as dynamic random access memory, RAM bus DRAM, synchronous DRAM, static RAM, or the like.
  • the memory 530 may be inside or outside the processor 550, and may be connected to the processor 550 by various well-known means.
  • the processor 550 may be implemented as a central processing unit or other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 550.
  • the processor 550 includes a target determiner 551, an indicator 553, and a processor 555.
  • the target determiner 551 determines a target terminal that requires a multi-uplink channel measurement instruction.
  • the target determiner 551 may determine the target terminal based on the measurement report.
  • a channel quality indicator CQI, Channel Quality Information (CSI) or Channel State Information (CSI) is defined to report.
  • CQI Channel Quality indicator
  • CSI Channel Quality Information
  • CSI Channel State Information
  • the terminal 600 Downlink channel estimation results for the neighboring cell 400 as well as the serving cell 300 currently connected are defined to be transmitted through the PUSCH in the form of measurement report RRC signaling.
  • the target determination unit 551 may multi-up based on the downlink channel estimation result received through the channel quality indicator (CQI) or channel state information (CSI) reporting through the PUCCH or the measurement report Rc signaling through the PUSCH.
  • the terminal 600 requiring the link channel estimation may be determined.
  • the target determiner 551 may determine the target terminal based on the neighbor base station request. That is, by receiving the cell interference signal from the neighbor base station 200, it is possible to determine the multi-uplink channel estimation for the terminal 600 scheduled in the uplink band where the cell interference is measured.
  • the indicator 553 instructs the serving base station 100 and the neighbor base station 200 to multi-uplink channel estimation.
  • the processor 555 receives the uplink channel estimation result from the serving base station 100 and the neighboring base station 200 with the terminal 600, respectively, and performs multi-uplink channel estimation. That is, by comparing and analyzing the results of uplink channel estimation, it is possible to determine whether to implement downlink cooperative communication between cells, whether to handover the terminal 600, and whether to implement the uplink path reconfiguration of the terminal 600.
  • the terminal 600 includes a communication unit 610, a memory 630, and a processor 650.
  • the communication unit 610 is connected to the processor 650, and transmits and receives a radio signal.
  • the communication unit 610 may include a baseband circuit for processing a radio signal.
  • the memory 630 is connected to the processor 650 and stores various information for driving the processor 650.
  • the memory 630 may be embodied in a medium such as RAM, such as dynamic random access memory, Rambus DRAM, synchronous DRAM, and static RAM.
  • the memory 630 may be inside or outside the processor 650 and may be connected to the processor 650 through various well-known means.
  • the processor 650 may be implemented as a central processing unit or other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 650.
  • the processor 650 includes an uplink channel manager 651, a downlink channel manager 653, and a handover controller 655.
  • the uplink channel manager 651 generates a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal received from the serving base station 100 and transmits the generated physical random access channel preamble to the serving base station 100 and the neighbor base station 200. do.
  • the downlink channel manager 653 measures the downlink channel with the serving base station 100 periodically or aperiodically and transmits the downlink channel to the serving base station 100. In this case, when the downlink channel estimation result is less than or equal to a predetermined reference value, the downlink channel estimation result may be reported to the serving base station 100.
  • the downlink channel manager 653 estimates a downlink channel with the neighbor base station 200 and transmits the downlink channel to the neighbor base station 200.
  • the handover controller 655 performs best cell selection according to a radio link failure procedure.
  • FIG. 7 is a flowchart illustrating an uplink channel estimation method according to an embodiment of the present invention.
  • the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S101).
  • the target terminal 600 may be a terminal located in a boundary area between two or more base stations managed by the base station control apparatus 500 itself.
  • the base station control apparatus 500 may be a terminal located at a boundary area between two or more base stations managed by itself and the other base station control apparatus.
  • the indication unit 553 of the base station control apparatus 500 instructs the multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S101 is currently connected (Initiation of multi). -UL channel measurement) is transmitted (S103, S105).
  • the allocation unit 151 of the serving base station 100 instructs a random access procedure by transmitting a physical downlink control channel command (PDCCH order) to the target terminal 600 (S107).
  • PDCCH order physical downlink control channel command
  • the physical downlink control channel command includes physical random access channel (PRACH) resource allocation information, and the format is PDCCH format 1A.
  • the PDCCH format 1A is scrambled with a cell radio network temporary identifier (C-RNTI) of the target terminal 600.
  • C-RNTI cell radio network temporary identifier
  • the physical random access channel (PRACH) resource allocation information may also include a preamble index (6 bits) for generating a dedicated physical random access channel (PRACH) preamble and a physical random access for transmitting the preamble.
  • PRACH Mask Index 4 bits that is a channel resource index (PRACH resource index) value.
  • the uplink channel manager 651 of the target terminal 600 generates a dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S107.
  • the transmission is performed to the neighbor base station 200 (S109).
  • the uplink channel manager 651 of the target terminal 600 uses a preamble index information region of a physical downlink control channel command (PDCCH order) according to physical random access channel configuration (PRACH configuration) information.
  • the configured preamble is transmitted through the physical random access channel resource index (PRACH resource index) set through the physical random access channel mask index (PRACH Mask Index).
  • the physical random access channel configuration (PRACH configuration) information is received through the cell-specific system information of the serving base station (100).
  • the physical random access channel configuration (PRACH configuration) information includes a physical random access channel configuration index (PRACH configuration index), a physical random access channel-frequency offset (PRACH-FrequencyOffset), random access channel-root-sequence (RACH_ROOT_SEQUENCE) .
  • the channel estimator 251 of the neighboring base station 200 estimates an uplink channel state with the target terminal 600 by using the dedicated physical random access channel preamble received in step S109. (S111).
  • the report unit 255 of the neighbor base station 200 reports the estimation result to the base station control apparatus 500 (S113).
  • the base station controller 500 uses the dedicated physical random access channel preamble generated according to the dedicated physical random access channel resource information allocated by the serving base station 100.
  • the uplink channel estimation result between the neighbor base station 200 and the target terminal 600 may be obtained from the neighbor base station 200.
  • the uplink channel manager 651 of the target terminal 600 predicates the dedicated physical random access channel generated according to the dedicated physical random access channel (dedicated PRACH) resource allocation information received in step S107.
  • the PRACH preamble is also transmitted to the serving base station 100 (S115).
  • steps S109 and S115 are described as being made in separate steps with a time difference, but steps S109 and S115 may be performed at the same time. That is, steps S109 and S115 may be one operation of the target terminal 600 transmitting a dedicated physical random access channel preamble.
  • the physical random access channel preamble transmitted in this way is simultaneously received by the serving base station 100 and the neighbor base station 200, respectively.
  • the estimator 153 of the serving base station 100 estimates an uplink channel state with the target terminal 600 by using the dedicated physical random access channel preamble received in step S115. (S117).
  • the reporting unit 155 of the serving base station 100 reports the estimation result to the base station control apparatus 500 (S119).
  • the processor 555 of the base station control apparatus 500 estimates the multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S113 and S119 (S121).
  • the processing unit 555 of the base station control apparatus 500 compares and analyzes the uplink channel estimation result between the serving base station 100 and the neighboring base station 200 and the terminal 600 received in steps S113 and S119, respectively, between cells. Whether to implement downlink cooperative communication, whether to handover the terminal 600, and whether to implement the uplink path reconfiguration of the terminal 600 may be determined.
  • the target terminal 600 uses a random access procedure based on a physical downlink control channel command (PDCCH order) defined in the 3GPP LTE / LTE-A system. Transmit a dedicated physical random access channel preamble (dedicated PRACH preamble) and let the neighboring base station 200 receive it.
  • PDCCH order physical downlink control channel command
  • the physical random access channel configuration (PRACH configuration) information and the physical downlink control channel command (PDCCH order) is a value set in the serving base station 100 to which the target terminal 600 is currently connected (connection). Therefore, the neighbor base station 200 is allocated to the target terminal 600 through cell-specific physical random access channel configuration (cell-specific PRACH configuration) information and the physical downlink control channel command (PDCCH order) of the serving base station 100
  • PRACH Mask Index The preamble index and the physical random access channel mask index (PRACH Mask Index) value should be known and obtained through the base station control apparatus 500 or the serving base station 100 directly transmitted to the adjacent base station 200. Do it.
  • FIG. 8 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
  • the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S201).
  • the indicating unit 553 of the base station control apparatus 500 transmits a multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S201 is currently connected (S203). , S205).
  • the allocation unit 151 of the serving base station 100 instructs the target terminal 600 to fake handover (Radio Hand Control) using Radio Resource Control (RRC) signaling (S207).
  • RRC Radio Resource Control
  • the handover is instructed by using a radio resource control connection reconfiguration message transmitted by the serving base station 100 during the existing handover.
  • the allocation unit 151 of the serving base station 100 includes physical random access channel configuration (PRACH configuration) information through the mobility control information (mobility control information) region of the radio resource control connection reconfiguration (RRC Connection Reconfiguration) message System information of the neighbor base station 200 and physical random access channel (PRACH) resource allocation information for generating a dedicated physical random access channel preamble (PRACH) resource allocation information are set and transmitted.
  • PRACH configuration physical random access channel configuration
  • PRACH physical random access channel configuration
  • PRACH physical random access channel configuration
  • PRACH physical random access channel
  • PRACH physical random access channel
  • step S207 if the RRC connection reconfiguration message is received in step S207, the handover controller 655 of the target terminal 600 performs a handover operation.
  • an uplink channel manager of the target terminal 600 ( 651 generates a dedicated physical random access channel (PRACH) preamble according to the physical random access channel (PRACH) resource allocation information and transmits it to the neighbor base station 200 (S209).
  • PRACH dedicated physical random access channel
  • the adjacent base station 200 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S209 (S211). The estimation result is reported to the base station control apparatus 500 (S213).
  • the target terminal 600 generates a dedicated physical random access channel (PRACH) preamble according to the physical random access channel (PRACH) resource allocation information received in step S207, and also transmits it to the serving base station 100. (S215).
  • PRACH dedicated physical random access channel
  • the serving base station 100 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S215 (S217). The estimation result is reported to the base station control apparatus 500 (S219).
  • steps S209 and S215 are a single operation of transmitting a dedicated physical random access channel preamble (dedicated PRACH preamble) from the perspective of the target terminal 600, the receiving side is the serving base station 100 and the adjacent Since it is a base station 200, it is only shown as a separate step in the figure.
  • a dedicated physical random access channel preamble dedicated PRACH preamble
  • the physical random access channel preamble (dedicated PRACH preamble) transmission is performed according to the handover operation of the target terminal 600. Therefore, two embodiments are possible in which the physical random access channel preamble is received only at the neighbor base station 200 or at both the serving base station 100 and the neighbor base station 200. Accordingly, S215, S217, S219, and S221 are not essential steps and may be optional steps.
  • the indication unit 153 of the serving base station 100 may configure the radio resource control connection reconfiguration in a fake handover method (RRC Connection).
  • RRC Connection fake handover method
  • a dedicated PRACH preamble transmission of the target terminal 600 is indicated through a mobility control information area of a reconfiguration message.
  • neither the serving base station 100 nor the neighboring base station 200 transmits any response message to the physical random access channel preamble transmission of the target terminal 600.
  • the processor 555 of the base station control apparatus 500 estimates a multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S213 and S219 (S221).
  • the handover controller 655 of the target terminal 600 determines whether the condition set in the RRC Connection Reconfiguration message is satisfied (S223). For example, it may be determined whether the T304 timer expires according to the T304 timer value. Alternatively, it may be determined whether the number of dedicated physical random access channel preamble transmissions reaches a preamble trans max value.
  • step S223 the handover control unit 655 performs an optimal cell selection according to a radio link failure procedure (S225). Reenter the network.
  • the handover control unit 655 of the target terminal 600 since the handover control unit 655 of the target terminal 600 is located within the downlink coverage of the serving base station 100, the handover control unit 655 re-enters the cell of the serving base station 100 (S227).
  • FIG. 9 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
  • the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S301).
  • the indicating unit 553 of the base station control apparatus 500 transmits a multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S301 is currently connected ( S303, S305).
  • the allocation unit 151 of the serving base station 100 transmits a radio resource control signaling (RRC signaling) message including physical random access channel (PRACH) resource allocation information to the target terminal 600 (S307).
  • RRC signaling radio resource control signaling
  • PRACH physical random access channel
  • the uplink channel manager 651 of the target terminal 600 performs the dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S307. It transmits to the adjacent base station 200 (S309).
  • dedicated physical random access channel preamble dedicated PRACH preamble
  • PRACH physical random access channel
  • the dedicated physical random access channel preamble may be configured to be transmitted through the resource region of the physical uplink public channel (PUSCH) of the neighbor base station 200 have.
  • the RRC signaling message includes time / frequency resource allocation information, random access channel-root-sequence (RACH_ROOT_SEQUENCE), preamble format, and preamble index. index), and power control information including transmission power (Tx Power).
  • time / frequency resource allocation information includes physical random access channel-frequency offset (PRACH-FrequencyOffset), radio frame / subframe index for initial transmission, Period information (Periodicity) and the like.
  • the dedicated physical random access channel preamble may be configured to be transmitted through the physical random access channel opportunity (PRACH opportunity) of the adjacent base station 200.
  • the RRC signaling message includes physical random access channel configuration (PRACH configuration) information, preamble index, preamble mask index, power control information, and period. (periodicity) information and the like.
  • PRACH configuration information is a physical random access channel configuration index (PRACH configuration index), physical random access channel-frequency offset (PRACH-FrequencyOffset), random access channel-root-sequence (RACH_ROOT_SEQUENCE) Include.
  • the channel estimator 251 of the neighboring base station 200 estimates an uplink channel state with the target terminal 600 using the physical random access channel preamble received in step S309 (S311). .
  • the estimation result is reported to the base station controller 500 (S313).
  • the uplink channel manager 651 of the target terminal 600 performs the dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S307. It also transmits to the serving base station 100 (S315).
  • dedicated physical random access channel preamble dedicated PRACH preamble
  • PRACH physical random access channel
  • step S309 and S315 are described as being made in separate steps with a time difference, but the steps S309 and S315 may be performed at the same time. That is, step S309 and step S315 may be one operation of the target terminal 600 transmits a dedicated physical random access channel preamble (dedicated PRACH preamble).
  • the physical random access channel preamble transmitted in this way is simultaneously received by the serving base station 100 and the neighbor base station 200, respectively.
  • the estimator 153 of the serving base station 100 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S315. (S317). The estimation result is reported to the base station controller 500 (S319).
  • the processor 555 of the base station control apparatus 500 estimates the multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S313 and S319 (S321).
  • a channel estimation procedure with the neighboring base station 200 is newly defined through a physical random access channel preamble (PRACH preamble).
  • PRACH preamble Physical random access channel preamble
  • RRC Higher layer
  • the target terminal 600 may transmit a dedicated physical random access channel preamble (dedicated PRACH preamble) a plurality of times periodically or aperiodically.
  • a dedicated physical random access channel preamble dedicated PRACH preamble
  • FIG. 10 is a flowchart illustrating a method of determining a target terminal according to an embodiment of the present invention.
  • the downlink channel manager 653 of the target terminal 600 estimates a downlink channel of a serving cell currently being accessed (S401).
  • the estimated result is periodically or aperiodically reported to the serving base station 100 through the uplink control channel (PUCCH) (S403).
  • PUCCH uplink control channel
  • the reporting unit 255 of the serving base station 100 reports the estimation result received in step S403 to the base station control apparatus 500 (S405).
  • the target determiner 551 of the base station control apparatus 500 determines whether the corresponding terminal is a terminal requiring multi-uplink channel estimation based on the downlink channel estimation result received in step S405 (S407). For example, if the downlink channel estimate value satisfies a predefined threshold condition, the downlink channel estimate may be determined as a terminal located at a cell boundary and may be determined as a terminal requiring a multi-uplink channel estimation indication.
  • FIG. 11 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
  • the downlink channel manager 653 of the target terminal 600 estimates a downlink channel of a serving cell currently being accessed (S501).
  • the estimation result satisfies a predefined condition (S503). For example, it may be determined whether a specific situation for handover support according to the movement of the terminal, that is, the result of downlink channel estimation with the serving cell is less than or equal to a predetermined threshold.
  • the downlink channel manager 653 of the target terminal 600 reports the estimation result periodically or aperiodically to the serving base station 100 through the uplink control channel (PUCCH). (S505). Then, the reporting unit 155 of the serving base station 100 reports the estimation result received in step S505 to the base station control apparatus 500 (S507).
  • the downlink channel manager 653 of the target terminal 600 estimates the downlink channel of the neighbor cell (S509), and reports the estimation result to the neighbor base station 200 (S511). Then, the report unit 255 of the adjacent base station 200 reports the estimation result received in step S511 to the base station control apparatus 500 (S513).
  • the target determiner 551 of the base station control apparatus 500 determines whether the corresponding terminal is a terminal requiring multi-uplink channel estimation based on the downlink channel estimation results received in steps S507 and S513 (S515). .
  • the terminal is defined to transmit the downlink channel estimation result for the neighboring cell as well as the serving cell to which the terminal is currently connected in the form of measurement report RRC signaling.
  • FIG. 12 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
  • the cell interference measuring unit 253 of the adjacent base station 20 measures a strong cell interference signal for a specific UL band through a backhaul network (S601). If so, the measurement result is reported to the base station control apparatus 500 (S603).
  • the target determiner 551 of the base station control apparatus 500 determines a terminal that requires multi-uplink channel estimation based on the measurement result of the cell interference signal reported in step S603 (S605).
  • dedicated PRACH resources for multi-uplink channel estimation may be allocated to a UE scheduled in a specific uplink band where a cell interference signal is detected.
  • the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

Abstract

Provided are a terminal, a method for estimating an uplink channel, and a communication system. The terminal comprises: an uplink channel management unit for generating a physical random access channel preamble according to random access channel resource configuration information, which is allocated by a serving base station; and a communication unit for transmitting the physical random access channel preamble to a neighboring base station according to a request by the uplink channel management unit, wherein the physical random access channel preamble is used by the neighboring base station to estimate the uplink channel.

Description

단말, 상향링크 채널 추정 방법 및 통신 시스템UE, UL channel estimation method and communication system
본 발명은 단말, 상향링크 채널 추정 방법 및 통신 시스템에 관한 것이다.The present invention relates to a terminal, an uplink channel estimation method, and a communication system.
MTC(Machine Type Communication)의 도입 및 스마트 폰의 보급으로 인해 무선 접속을 요하는 단말의 수가 급증하고 있다. 이로 인해 단말 별 높은 데이터 전송률을 지원하기 위한 요구 또한 급증하고 있다. 이런 환경에서 무선 사업자들은 할당된 무선 자원을 효율적으로 관리하고 높은 전송률을 지원하기 위해 기지국을 DU(Digital Unit)와 RU(Radio Unit)로 분리하여 각각의 RU가 독립적인 셀을 형성함으로써 주파수 재사용 효율성을 극대화하기 위해 노력하고 있다. Due to the introduction of machine type communication (MTC) and the spread of smart phones, the number of terminals requiring wireless connection is increasing rapidly. As a result, the demand for supporting a high data rate for each terminal is also rapidly increasing. In this environment, wireless operators divide the base station into digital units (DUs) and radio units (RUs) to efficiently manage allocated radio resources and support high data rates. Is trying to maximize.
또한, RU들 간의 전송 파워 불균형으로 인해 각각의 RU들이 커버하는 셀 사이즈가 다양하게 나타나는 헤테로지니어스 네트워크(heterogeneous network, Het-Net) 시나리오가 일반화되어 가고 있다. In addition, heterogeneous network (Het-Net) scenarios in which cell sizes covered by respective RUs vary due to transmission power imbalance between RUs are becoming common.
헤테로지니어스 네트워크에서 셀 경계 지역에 위치한 단말에게도 높은 데이터 전송률을 보장하기 위한 RU들 간의 다양한 협력 통신 기법 및 상/하향 링크간 커버리지 불균형으로 인한 독립적 상/하향 링크 경로 설정(즉, 임의의 단말을 위한 하향 링크 신호를 전송하는 TP(Transmission Point)로서의 RU와 해당 단말로부터 상향 링크 신호를 수신하는 RP(Reception Point)로서의 RU가 독립적으로 설정)도 제안되고 있다. Independent heterogeneous communication schemes between RUs to guarantee high data rates even for UEs located in cell boundary areas in heterogeneous networks and independent uplink / downlink path establishment due to coverage imbalance between uplink and downlink (i.e. An RU as a transmission point (TP) for transmitting a downlink signal and an RU as a reception point (RP) for receiving an uplink signal from a corresponding terminal are independently set).
하지만 이처럼 진화된 협력 통신 방안을 적용하기 위해서는 기본적으로 임의의 한 단말과 접속된 서빙 기지국에서의 상향링크 채널 측정 뿐 아니라, 해당 단말과 인접한 기지국들과의 상향링크 채널 측정 방안이 필요하다. However, in order to apply such an evolved cooperative communication method, not only an uplink channel measurement in a serving base station connected with any one terminal but also an uplink channel measurement method with a corresponding base station is required.
특히, 셀 경계 지역에 위치한 단말의 상향 및 하향 링크 데이터 전송률을 높이기 위한 방안으로 콤프 시나리오(CoMP scenario)에서는 인접한 기지국 간의 협력 통신 기법이 제안되고 있다. 이때, 셀 경계 지역에 위치한 단말의 경우 협력 통신을 위해 인접 기지국과의 상향링크 채널 추정 방안이 요구되고 있다.In particular, in a CoMP scenario, a cooperative communication technique between adjacent base stations has been proposed as a method for increasing uplink and downlink data rates of a terminal located in a cell boundary region. In this case, a terminal located in a cell boundary area requires an uplink channel estimation method with a neighbor base station for cooperative communication.
현재의 3GPP LTE/LTE-A 시스템에서는 임의의 단말은 자신이 접속을 맺은 셀의 기지국과의 상향링크 채널 추정을 위해 주기적 혹은 비주기적으로 상향링크 채널 상태 측정을 위한 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하도록 정의되어 있다. 일반적으로, 상향링크 채널 상태 측정을 위한 사운딩 참조 신호(SRS)의 경우, 해당 단말이 속한 서빙 기지국으로부터 설정된 RRC parameter들에 의해 단말로부터 서빙 기지국으로 전송되었다. 이러한 RRC parameter로는 cell-specific SRS subframe 및 SRS bandwidth와 UE-specific SRS bandwidth, hopping patter, frequency domain position, periodicity, subframe configuration, antenna configuration, base sequence index 및 cyclic shift index 등이 있다. 단말은 cell-specific parameter가 만족하는 상향링크 subframe/bandwidth 영역 내에서 UE-specific parameter에 따라 사운딩 참조 신호(SRS)를 전송한다. In the current 3GPP LTE / LTE-A system, a random UE performs a sounding reference signal for periodically or aperiodically measuring an uplink channel state for uplink channel estimation with a base station of a cell to which it is connected. , SRS). In general, in the case of a sounding reference signal (SRS) for uplink channel state measurement, the terminal is transmitted from the terminal to the serving base station by RRC parameters set from the serving base station to which the corresponding terminal belongs. Such RRC parameters include cell-specific SRS subframe and SRS bandwidth, UE-specific SRS bandwidth, hopping patter, frequency domain position, periodicity, subframe configuration, antenna configuration, base sequence index, and cyclic shift index. The terminal transmits a sounding reference signal (SRS) according to the UE-specific parameter in an uplink subframe / bandwidth region that satisfies the cell-specific parameter.
따라서, 셀 경계 지역에 위치한 단말의 사운딩 참조 신호(SRS) 전송을 서빙 기지국 뿐만 아니라 인접 기지국에서도 수신함으로써 해당 단말과 인접 셀과의 상향링크 채널 측정을 가능하도록 하는 방안이 제안되었다. 즉 협력 통신을 위한 다중기지국과의 상향링크 채널 측정 필요성이 대두되면서, 사운딩 참조 신호(SRS) 설정 정보를 인접 기지국과 공유함으로써, 인접 기지국에서도 수신할 수 있도록 하는 방안이 제안되었다.Therefore, a method of enabling uplink channel measurement between a corresponding terminal and a neighboring cell by receiving a sounding reference signal (SRS) transmission of a terminal located in a cell boundary region not only from the serving base station but also from the neighboring base station has been proposed. That is, as the necessity of measuring an uplink channel with a multi-base station for cooperative communication has emerged, a scheme for sharing the sounding reference signal (SRS) configuration information with a neighboring base station and receiving the neighboring base station has been proposed.
그런데 종래의 사운딩 참조 신호(SRS)는 단말이 속한 기지국의 물리적 셀 식별자(physical cell ID)를 토대로 생성되므로, 물리적 셀 식별자가 다른 인접 기지국은 서빙 기지국에서 생성된 사운딩 참조 신호(SRS) 신호를 수신하는 것이 불가능하다. 또한, 헤테로지니어스 네트워크에서 인접 셀 간의 셀 크기가 상이하게 나타나는 경우, 서빙 기지국에서의 수신 타이밍을 기반으로 TA값을 설정한 단말의 상향링크 신호가 인접 기지국에 동기가 맞아서 수신될지 여부도 불투명하다. However, since a conventional sounding reference signal (SRS) is generated based on a physical cell ID of a base station to which a terminal belongs, a neighboring base station having a different physical cell identifier is a sounding reference signal (SRS) signal generated by a serving base station. It is impossible to receive it. In addition, when a cell size between neighboring cells is different in a heterogeneous network, it is also opaque whether an uplink signal of a terminal having a TA value set based on a reception timing of a serving base station is received in synchronization with a neighboring base station.
이처럼, 사운딩 참조 신호(SRS) 설정 정보는 서빙 기지국의 파라미터에 의해서 결정되므로, 사운딩 참조 신호(SRS) 설정 정보를 인접 기지국과 공유하더라도 인접 기지국이 사운딩 참조 신호(SRS)를 수신하려면, 적어도 다음의 두가지 조건을 추가적으로 만족해야 한다. As such, since the sounding reference signal (SRS) configuration information is determined by a parameter of the serving base station, even if the sounding reference signal (SRS) configuration information is shared with the neighboring base station, if the neighboring base station receives the sounding reference signal (SRS), At least two additional conditions must be met.
1) 서빙 셀과 인접 셀 간 동일한 cell ID를 사용(CoMP scenario 4)1) Use same cell ID between serving cell and neighbor cell (CoMP scenario 4)
2) 셀 경계 지역에서 서빙 셀과 인접 셀 간 동일한 상향링크 동기 적용 가능2) The same uplink synchronization can be applied between a serving cell and an adjacent cell in a cell boundary region.
이와 같이, 종래의 단일 기지국과의 상향링크 채널 추정만을 고려한 사운딩 참조 신호(SRS) 전송 기법은 콤프 시나리오(CoMP scenario) 및 헤테로지니어스 네트워크(HetNet)에서 다양한 협력 통신 기법을 지원하기 위한 충분한 상향링크 채널 추정 결과를 제공하지 못하고 있다. 그리고 제한된 시나리오에 한정한 복수의 기지국과의 상향링크 채널 추정 기법은 그 적용 범위가 좁아지게 되므로 다양한 셀 디플로이먼트 시나리오(cell deployment scenario)에서 적용 가능한 복수의 상향 링크 채널 추정 기법에 대한 설계가 필요한 실정이다.As such, the conventional sounding reference signal (SRS) transmission scheme considering only uplink channel estimation with a single base station is sufficient uplink to support various cooperative communication schemes in a CoMP scenario and a heterogeneous network (HetNet). It does not provide channel estimation results. In addition, the uplink channel estimation technique with a plurality of base stations limited to a limited scenario has a narrower application range, and thus, a design of a plurality of uplink channel estimation techniques applicable to various cell deployment scenarios is required. It is true.
본 발명이 이루고자 하는 기술적 과제는 랜덤 액세스 채널(RACH)을 기반으로 단말과 복수의 기지국 간의 멀티-상향링크 채널을 추정하는 단말, 상향링크 채널 추정 방법 및 통신 시스템을 제공하는 것이다.An object of the present invention is to provide a terminal, an uplink channel estimation method, and a communication system for estimating a multi-uplink channel between a terminal and a plurality of base stations based on a random access channel (RACH).
본 발명의 한 특징에 따르면, 단말은 서빙 기지국으로부터 할당받은 랜덤 액세스 채널 리소스 설정 정보에 따라 물리적 랜덤 액세스 채널 프리엠블을 생성하는 상향링크 채널 관리부; 및 상기 상향링크 채널 관리부의 요청에 따라 상기 물리적 랜덤 액세스 채널 프리엠블을 인접 기지국으로 전송하는 통신부를 포함하고,According to an aspect of the present invention, a terminal includes: an uplink channel manager for generating a physical random access channel preamble according to random access channel resource configuration information allocated from a serving base station; And a communication unit configured to transmit the physical random access channel preamble to an adjacent base station according to a request of the uplink channel manager.
상기 물리적 랜덤 액세스 채널 프리엠블은 상기 인접 기지국이 상향링크 채널을 추정하는데 사용된다.The physical random access channel preamble is used by the neighbor base station to estimate an uplink channel.
이때, 상기 통신부는,At this time, the communication unit,
상기 상향링크 채널 관리부의 요청에 따라 상기 상기 물리적 랜덤 액세스 채널 프리엠블을 서빙 기지국에게도 전송하고,Transmit the physical random access channel preamble to a serving base station according to a request of the uplink channel manager;
상기 물리적 랜덤 액세스 채널 프리엠블은 상기 서빙 기지국이 상향링크 채널을 추정하는데 사용될 수 있다.The physical random access channel preamble may be used by the serving base station to estimate an uplink channel.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 통신부에게 상기 물리적 랜덤 액세스 채널 프리엠블을 주기적 또는 비주기적으로 복수회 전송 요청할 수 있다.The communication unit may request the physical random access channel preamble to be transmitted a plurality of times periodically or aperiodically.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 서빙 기지국으로부터 임의 접속 절차 지시에 따라 수신된 물리적 다운링크 제어 채널 명령으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 획득할 수 있다.The allocated random access channel resource configuration information may be obtained from a physical downlink control channel command received according to a random access procedure instruction from the serving base station.
또한, 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보는, In addition, the allocated random access channel resource configuration information,
프리엠블 인덱스, 물리적 랜덤 접속 채널 리소스 인덱스 및 물리적 랜덤 접속 채널 마스크 인덱스를 포함하고, A preamble index, a physical random access channel resource index, and a physical random access channel mask index,
상기 상향링크 채널 관리부는,The uplink channel manager,
상기 프리엠블 인덱스를 이용하여 생성한 상기 물리적 랜덤 액세스 채널 프리엠블을 물리적 랜덤 접속 채널 구성 정보에 따라 물리적 다운링크 제어 채널 명령의 프리엠블 인덱스 정보 영역을 통해 설정하고, 상기 물리적 랜덤 접속 채널 마스크 인덱스를 통해 설정된 상기 물리적 랜덤 접속 채널 리소스 인덱스를 통해 상기 인접 기지국으로 전송할 수 있다.The physical random access channel preamble generated using the preamble index is set through a preamble index information region of a physical downlink control channel command according to physical random access channel configuration information, and the physical random access channel mask index is set. Through the physical random access channel resource index set through the adjacent base station can be transmitted.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 서빙 기지국의 셀 특정 시스템 정보를 통해 상기 물리적 랜덤 접속 채널 구성 정보를 수신할 수 있다.The physical random access channel configuration information may be received through cell specific system information of the serving base station.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 서빙 기지국으로부터 페이크 핸드오버(Fake Handover) 지시에 따라 수신된 무선 자원 제어 접속 재구성 메시지의 이동성 제어 정보 영역으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 획득할 수 있다.The allocated random access channel resource configuration information may be obtained from a mobility control information region of a radio resource control connection reconfiguration message received according to a fake handover indication from the serving base station.
또한, 상기 무선 자원 제어 접속 재구성 메시지는,In addition, the radio resource control connection reconfiguration message,
상기 인접 기지국의 시스템 정보 및 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 포함하고,System information of the neighboring base station and the allocated random access channel resource setting information;
상기 할당받은 랜덤 액세스 채널 리소스 설정 정보는,The allocated random access channel resource configuration information,
프리엠블 인덱스, 프리엠블 마스크 인덱스, 타이머 정보 및 프리엠블 전송 최대 횟수 정보를 포함할 수 있다.The preamble index, the preamble mask index, timer information, and preamble transmission maximum information may be included.
또한, 단말은, 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 접속 재구성 메시지가 수신되면, 상기 상향링크 채널 관리부에게 상기 물리적 랜덤 액세스 채널 프리엠블의 생성 및 전송을 요청하고, 상기 타이머 정보에 따른 타이머가 만료되면, 최적화 셀 선택을 통해 네트워크 재진입을 수행하는 핸드오버 제어부를 더 포함할 수 있다.When the radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, the terminal requests the uplink channel manager to generate and transmit the physical random access channel preamble and the timer. When the timer according to the information expires, it may further include a handover controller for performing network re-entry through the optimization cell selection.
또한, 단말은, 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 접속 재구성 메시지가 수신되면, 상기 상향링크 채널 관리부에게 상기 물리적 랜덤 액세스 채널 프리엠블의 생성 및 전송을 요청하고, 상기 물리적 랜덤 액세스 채널 프리엠블의 전송 횟수가 상기 프리엠블 전송 최대 횟수 정보를 충족하면, 최적화 셀 선택을 통해 네트워크 재진입을 수행하는 핸드오버 제어부를 더 포함할 수 있다.When the radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, the terminal requests the uplink channel manager to generate and transmit the physical random access channel preamble, and the physical If the number of times of random access channel preamble transmission satisfies the information on the maximum number of preamble transmissions, the apparatus may further include a handover controller for performing network re-entry by selecting an optimized cell.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 서빙 기지국으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 시그널링(RRC Signaling) 메시지를 수신할 수 있다.A radio resource control signaling (RRC signaling) message including the allocated random access channel resource configuration information may be received from the serving base station.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 물리적 랜덤 액세스 채널 프리엠블을 상기 인접 기지국의 물리적 상향링크 공용 채널의 리소스 영역을 통해 상기 인접 기지국으로 전송할 수 있다.The physical random access channel preamble may be transmitted to the neighbor base station through the resource region of the physical uplink shared channel of the neighbor base station.
또한, 상기 상향링크 채널 관리부는,In addition, the uplink channel manager,
상기 물리적 랜덤 액세스 채널 프리엠블을 상기 인접 기지국의 물리적 랜덤 접속 채널 오퍼튜니티(PRACH opportunity)를 통해 상기 인접 기지국으로 전송할 수 있다.The physical random access channel preamble may be transmitted to the neighbor base station through a physical random access channel opportunity (PRACH opportunity) of the neighbor base station.
또한, 단말은, 주기적 또는 비주기적으로 상기 서빙 기지국과의 하향링크 채널을 추정한 결과를 상기 서빙 기지국으로 전송하고, 상기 하향링크 채널을 추정한 결과 값이 기 정의된 임계 조건을 충족하면, 상기 인접 기지국과의 하향링크 채널을 추정한 결과를 상기 인접 기지국으로 전송하는 하향링크 채널 관리부를 더 포함할 수 있다. In addition, the terminal periodically or aperiodically transmits a result of estimating a downlink channel with the serving base station to the serving base station, and if the result of estimating the downlink channel satisfies a predetermined threshold condition, the The apparatus may further include a downlink channel manager for transmitting a result of estimating a downlink channel with a neighbor base station to the neighbor base station.
본 발명의 다른 특징에 따르면, 상향링크 채널 추정 방법은 복수의 기지국을 제어 및 관리하는 기지국 제어 장치가 상향링크 채널을 추정하는 방법으로서, 단말과 인접한 기지국으로부터 상기 단말이 접속한 서빙 기지국이 할당한 랜덤 액세스 채널 프리엠블을 이용한 상기 단말과 상기 인접 기지국간의 상향링크 채널 추정 결과를 수신하는 단계; 및 상기 단말과 상기 인접한 기지국간의 상향링크 채널 추정 결과를 이용하여 셀간 협력 통신을 위한 멀티-상향링크 채널 추정을 수행하는 단계를 포함한다.According to another aspect of the present invention, a method for estimating an uplink channel is a method for estimating an uplink channel by a base station control apparatus that controls and manages a plurality of base stations, which is allocated by a serving base station connected to the terminal from a base station adjacent to the terminal. Receiving an uplink channel estimation result between the terminal and the neighbor base station using a random access channel preamble; And performing multi-uplink channel estimation for inter-cell cooperative communication using an uplink channel estimation result between the terminal and the adjacent base station.
이때, 상향링크 채널 추정 방법은, 상기 서빙 기지국으로부터 상기 랜덤 액세스 채널 프리엠블을 이용한 상기 단말과 상기 서빙 기지국간의 상향링크 채널 추정 결과를 수신하는 단계를 더 포함하고,In this case, the uplink channel estimation method further includes receiving an uplink channel estimation result between the mobile station and the serving base station using the random access channel preamble from the serving base station,
상기 멀티-상향링크 채널 추정을 수행하는 단계는,Performing the multi-uplink channel estimation,
상기 서빙 기지국 및 상기 인접한 기지국 각각으로부터 수신한 상향링크 채널 추정 결과들을 토대로 상기 단말과 복수의 기지국 간의 멀티-상향링크 채널 추정을 수행하는 단계를 포함할 수 있다.The method may include performing multi-uplink channel estimation between the terminal and a plurality of base stations based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
또한, 상기 멀티-상향링크 채널 추정을 수행하는 단계는,In addition, performing the multi-uplink channel estimation may include:
상기 단말이 셀간 하향링크 협력 통신이 필요한 지역에 위치하는지 판단하여 셀간 하향링크 협력 통신 구현 여부를 결정하는 단계를 포함할 수 있다.The method may include determining whether to implement downlink cooperative communication between cells by determining whether the terminal is located in an area requiring downlink cooperative communication between cells.
또한, 상기 멀티-상향링크 채널 추정을 수행하는 단계는,In addition, performing the multi-uplink channel estimation may include:
상기 단말의 핸드오버 여부를 판단하는 단계를 포함할 수 있다.The method may include determining whether the terminal is handover.
또한, 상기 멀티-상향링크 채널 추정을 수행하는 단계는,In addition, performing the multi-uplink channel estimation may include:
하향링크는 상기 서빙 기지국과 유지한 채 상향링크는 상기 인접한 기지국으로 전송하는 상기 단말의 상향링크 경로 재설정의 구현 여부를 결정하는 단계를 포함할 수 있다.The method may include determining whether to implement an uplink rerouting of the terminal for transmitting the uplink to the neighboring base station while maintaining the downlink with the serving base station.
또한, 상기 단말과 상기 인접 기지국간의 상향링크 채널 추정 결과를 수신하는 단계 이전에, In addition, before the step of receiving an uplink channel estimation result between the terminal and the adjacent base station,
상기 멀티-상향링크 채널 추정이 필요한 타겟 단말을 결정하는 단계; 및 상기 타겟 단말이 접속한 서빙 기지국에게 멀티-상향링크 채널 추정을 지시하는 단계를 더 포함할 수 있다.Determining a target terminal requiring the multi-uplink channel estimation; And instructing multi-uplink channel estimation to the serving base station to which the target terminal is connected.
또한, 상기 결정하는 단계는,In addition, the determining step,
상기 서빙 기지국으로부터 상기 단말과 상기 서빙 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계; 및 상기 하향링크 채널 추정 결과를 토대로 상기 타겟 단말을 결정하는 단계를 포함할 수 있다.Receiving a downlink channel estimation result between the terminal and the serving base station from the serving base station; And determining the target terminal based on the downlink channel estimation result.
또한, 상기 결정하는 단계는,In addition, the determining step,
상기 서빙 기지국으로부터 핸드오버가 필요한 단말과 상기 서빙 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계; 상기 인접 기지국으로부터 핸드오버가 필요한 단말과 상기 인접 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계; 및 상기 서빙 기지국 및 상기 인접 기지국간의 각각의 하향링크 채널 추정 결과를 토대로 상기 타겟 단말을 결정하는 단계를 포함할 수 있다.Receiving a downlink channel estimation result from the serving base station between the terminal requiring handover and the serving base station; Receiving a downlink channel estimation result between the terminal requiring handover and the neighbor base station from the neighbor base station; And determining the target terminal based on respective downlink channel estimation results between the serving base station and the neighbor base station.
또한, 상기 결정하는 단계는,In addition, the determining step,
상기 인접 기지국으로부터 특정 주파수 대역에서의 셀간섭 신호를 수신하는 단계; 및 상기 셀간섭 신호가 발생한 상기 특정 주파수 대역에 스케쥴링된 단말을 상기 타겟 단말로 결정하는 단계를 포함할 수 있다.Receiving a cell interference signal in a specific frequency band from the adjacent base station; And determining, as the target terminal, a terminal scheduled in the specific frequency band where the cell interference signal is generated.
본 발명의 또 다른 특징에 따르면, 통신 시스템은 셀 경계 지역에 위치한 단말에게 상향링크 채널 추정을 위한 랜덤 액세스 채널 리소스를 할당하는 서빙 기지국; 상기 서빙 기지국으로부터 할당받은 상기 랜덤 액세스 채널 리소스에 따라 생성된 물리적 랜덤 액세스 채널 프리엠블을 상기 단말로부터 수신하고, 상기 물리적 랜덤 액세스 채널 프리엠블을 이용하여 상기 단말과의 상향링크 채널을 추정하는 인접 기지국; 및 상기 인접 기지국으로부터 상기 단말과의 상향링크 채널을 추정한 결과를 수신하여 셀간 협력 통신을 위한 멀티-상향링크 채널을 추정하는 기지국 제어 장치를 포함한다.According to still another aspect of the present invention, a communication system includes: a serving base station for allocating a random access channel resource for uplink channel estimation to a terminal located in a cell boundary region; An adjacent base station receiving a physical random access channel preamble generated according to the random access channel resource allocated from the serving base station from the terminal and estimating an uplink channel with the terminal using the physical random access channel preamble ; And a base station control apparatus for receiving a result of estimating an uplink channel with the terminal from the neighbor base station and estimating a multi-uplink channel for cooperative communication between cells.
이때, 상기 서빙 기지국은,At this time, the serving base station,
상기 단말로부터 수신한 상기 물리적 랜덤 액세스 채널 프리엠블을 이용하여상기 단말과의 상향링크 채널을 추정한 결과를 상기 기지국 제어 장치에게 전송하고,Using the physical random access channel preamble received from the terminal, transmits a result of estimating an uplink channel with the terminal to the base station controller,
상기 기지국 제어 장치는,The base station control device,
상기 서빙 기지국 및 상기 인접한 기지국 각각으로부터 수신한 상향링크 채널 추정 결과들을 토대로 상기 단말과 복수의 기지국 간의 멀티-상향링크 채널 추정을 수행할 수 있다.Multi-uplink channel estimation between the terminal and a plurality of base stations may be performed based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
또한, 상기 서빙 기지국 및 상기 인접 기지국은,In addition, the serving base station and the adjacent base station,
동일한 기지국 제어 장치 또는 서로 다른 기지국 제어 장치와 연결될 수 있다.It may be connected to the same base station control device or different base station control devices.
또한, 상기 서빙 기지국 및 상기 인접 기지국은, 각각의 독립된 셀을 형성하는 무선 신호 처리 장치이고, 상기 기지국 제어 장치는, 상기 서빙 기지국 및 상기 인접 기지국과 연결되어 기지국 제어 관리 기능을 수행하며 통신 국사에 집중 설치되는 가상 서버로 구현되는 클라우드 기반의 기지국 구조를 포함할 수 있다.In addition, the serving base station and the neighboring base station is a radio signal processing device for forming each independent cell, the base station control device is connected to the serving base station and the neighboring base station to perform a base station control management function to the communication station It may include a cloud-based base station structure that is implemented as a virtual server that is centrally installed.
또한, 상기 서빙 기지국 및 상기 인접 기지국은,In addition, the serving base station and the adjacent base station,
셀 경계 지역에 위치한 단말에 대한 셀간 협력 통신 그룹에 포함되는 각각의 셀을 형성할 수 있다.Each cell included in an inter-cell cooperative communication group for a terminal located in a cell boundary region may be formed.
또한, 서로 다른 크기의 셀 커버리지를 가지는 상기 서빙 기지국 및 상기 인접 기지국이 중첩적으로 배치되는 헤테로지니어스 네트워크를 형성할 수 있다.In addition, a heterogeneous network in which the serving base station and the neighboring base station having different cell coverages may overlap each other may be formed.
또한, 상기 서빙 기지국 및 상기 인접 기지국은,In addition, the serving base station and the adjacent base station,
매크로 셀 및 상기 매크로 셀 내에 상기 매크로 셀 보다 상대적으로 작은 크기의 셀 반경을 가지는 복수의 스몰 셀을 형성할 수 있다.In the macro cell and the macro cell, a plurality of small cells having a smaller cell radius than the macro cell may be formed.
본 발명의 실시예에 따르면, 단말이 접속한 서빙 셀과의 상향링크 채널 뿐만 아니라, 인접 셀과의 상향링크 채널 상태 측정을 위한 참조 신호의 형태로서 물리적 랜덤 액세스 채널 시쿼스(PRACH sequence)를 사용함으로써, 다양한 헤테로지니어스 네트워크(heterogeneous network, Het-Net) 및 콤프 시나리오(CoMP scenario)에서 범용적으로 적용 가능한 멀티-상향링크 채널 추정이 가능하다. According to an embodiment of the present invention, a physical random access channel sequence (PRACH sequence) is used as a form of a reference signal for measuring an uplink channel state with an adjacent cell as well as an uplink channel with a serving cell to which a terminal is connected. Accordingly, multi-uplink channel estimation that is universally applicable in various heterogeneous networks (Het-Net) and the CompMP scenario is possible.
따라서, 복수의 기지국에서 측정한 상향링크 채널 추정 결과를 바탕으로 단말의 협력 통신 지역(셀 경계 지역)으로의 진입 여부를 판단하기 위한 기반을 제공할 수 있다. 또한, 상향링크 및 하향링크간 독립적 경로 설정 방안, 특히 상향링크 경로 재설정 여부를 판단하기 위한 기반 채널 추정 결과를 제공할 수 있는 기틀을 제공할 수 있다.Therefore, based on the uplink channel estimation result measured by the plurality of base stations, it is possible to provide a basis for determining whether the terminal enters a cooperative communication area (cell boundary area). In addition, an independent path establishment method between uplink and downlink, in particular, may provide a framework capable of providing a result of a base channel estimation for determining whether an uplink path is reset.
도 1은 본 발명의 실시예가 적용되는 네트워크 구성도이다.1 is a diagram illustrating a network to which an embodiment of the present invention is applied.
도 2는 본 발명의 실시예가 적용되는 클라우드 기반의 기지국 구조를 나타낸다.2 illustrates a cloud-based base station structure to which an embodiment of the present invention is applied.
도 3은 본 발명의 실시예에 따른 서빙 기지국의 개략적인 구성을 나타낸 블록도이다.3 is a block diagram showing a schematic configuration of a serving base station according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 인접 기지국의 개략적인 구성을 나타낸 블록도이다.4 is a block diagram showing a schematic configuration of a neighbor base station according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 기지국 제어 장치의 개략적인 구성을 나타낸 블록도이다.5 is a block diagram showing a schematic configuration of a base station control apparatus according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 단말의 개략적인 구성을 나타낸 블록도이다.다. 6 is a block diagram showing a schematic configuration of a terminal according to an embodiment of the present invention.
도 7은 본 발명의 한 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다. 7 is a flowchart illustrating an uplink channel estimation method according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다.8 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
도 9는 본 발명의 또 다른 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다.9 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
도 10은 본 발명의 한 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다. 10 is a flowchart illustrating a method of determining a target terminal according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다.11 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다.12 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, except to exclude other components unless specifically stated otherwise.
또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, the terms “… unit”, “… unit”, “module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have.
본 명세서에서 단말(terminal)은 이동국(Mobile Station, MS), 이동 단말(Mobile Terminal, MT), 가입자국(Subscriber Station, SS), 휴대 가입자국(Portable Subscriber Station, PSS), 사용자 장치(User Equipment, UE), 접근 단말(Access Terminal, AT) 등을 지칭할 수도 있고, 단말, 이동 단말, 가입자국, 휴대 가입자 국, 사용자 장치, 접근 단말 등의 전부 또는 일부의 기능을 포함할 수도 있다.In the present specification, a terminal is a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user equipment (User Equipment). It may also refer to a user equipment (UE), an access terminal (AT), and the like, and may include all or some functions of a terminal, a mobile terminal, a subscriber station, a portable subscriber station, a user device, an access terminal, and the like.
본 명세서에서 기지국(base station, BS)은, 접근점(Access Point, AP), 무선 접근국(Radio Access Station, RAS), 노드B(Node B), 고도화 노드B(evolved NodeB, eNodeB), 송수신 기지국(Base Transceiver Station, BTS), MMR(Mobile Multihop Relay)-BS 등을 지칭할 수도 있고, 접근점, 무선 접근국, 노드B, eNodeB, 송수신 기지국, MMR-BS 등의 전부 또는 일부의 기능을 포함할 수도 있다.In the present specification, a base station (BS) includes an access point (AP), a radio access station (RAS), a node B (Node B), an advanced node B (evolved NodeB, eNodeB), transmission and reception It may also refer to a base transceiver station (BTS), a mobile multihop relay (MMR) -BS, and the like, and may perform all or part of functions of an access point, a wireless access station, a node B, an eNodeB, a transmission / reception base station, an MMR-BS, and the like. It may also include.
본 발명에서는 설명의 편의를 위해 하향 링크 협력 통신 뿐만 아니라, 독립적 상향링크 및 하향링크 경로 설정 방안도 협력 통신이라 지칭하도록 하겠다.In the present invention, not only downlink cooperative communication, but also independent uplink and downlink path setting methods will be referred to as cooperative communication.
이제, 도면을 참고하여 본 발명의 실시예에 따른 단말, 상향링크 채널 추정 방법 및 통신 시스템에 대해 설명하기로 한다.Now, a terminal, an uplink channel estimation method, and a communication system according to an embodiment of the present invention will be described with reference to the drawings.
도 1은 본 발명의 실시예가 적용되는 통신 시스템의 구성도이고, 도 2는 본 발명의 실시예가 적용되는 클라우드 기반의 기지국 구조를 나타내고, 도 3은 본 발명의 실시예에 따른 서빙 기지국의 개략적인 구성을 나타낸 블록도이고, 도 4는 본 발명의 실시예에 따른 인접 기지국의 개략적인 구성을 나타낸 블록도이고, 도 5는 본 발명의 실시예에 따른 기지국 제어 장치의 개략적인 구성을 나타낸 블록도이고, 도 6은 본 발명의 실시예에 따른 단말의 개략적인 구성을 나타낸 블록도이다. 1 is a block diagram of a communication system to which an embodiment of the present invention is applied, FIG. 2 illustrates a cloud-based base station structure to which an embodiment of the present invention is applied, and FIG. 3 is a schematic diagram of a serving base station according to an embodiment of the present invention. 4 is a block diagram showing a schematic configuration of a neighboring base station according to an embodiment of the present invention, Figure 5 is a block diagram showing a schematic configuration of a base station control apparatus according to an embodiment of the present invention 6 is a block diagram showing a schematic configuration of a terminal according to an embodiment of the present invention.
여기서, 도 3~도 6은 장치 구성은 본 발명의 실시예와 관련된 구성만을 간략히 도시하였다.3 to 6 schematically show only the configuration related to the embodiment of the present invention.
먼저, 도 1을 참조하면, 본 발명의 실시예가 적용되는 통신 시스템은 각기 다른 크기의 셀 커버리지(cell coverage)를 가지는 제1 기지국(100) 및 제2 기지국(200)이 중첩적으로 배치되는 헤테로지니어스 네트워크(heterogeneous network, Het-Net)이다. 여기서, 두 개의 기지국만을 도시하였으나, 복수개의 기지국을 포함할 수 있다.First, referring to FIG. 1, in a communication system to which an embodiment of the present invention is applied, a heterogeneous heterogeneous arrangement of a first base station 100 and a second base station 200 having cell coverage of different sizes is arranged. Heterogeneous network (Het-Net). Here, only two base stations are shown, but may include a plurality of base stations.
이러한 헤테로지니어스 네트워크는 제1 기지국(100)의 서비스 대상 지역인 매크로 셀(Macro Cell)(300) 및 제2 기지국(200)의 서비스 대상 지역인 스몰 셀(Small Cell)(400)이 중첩된다. 스몰 셀(400)은 매크로 셀(300) 보다 작은 지역을 커버한다. 하나의 매크로 셀(300) 내에는 복수의 스몰 셀(400)이 존재할 수 있다. 즉 하나의 매크로 셀(300) 내에는 분산된 저전력 RRH(Remote Radio Heads)에 의한 피코 셀(Pico Cell), 마이크로 셀(Micro cell), 펨토 셀(Femto Cell)과 같은 스몰 셀(400)이 중첩되어 나타난다. In such a heterogeneous network, a macro cell 300 serving as a service area of the first base station 100 and a small cell 400 serving as a service area of the second base station 200 overlap each other. The small cell 400 covers a smaller area than the macro cell 300. A plurality of small cells 400 may exist in one macro cell 300. That is, in one macro cell 300, small cells 400 such as pico cells, micro cells, and femto cells are superimposed by distributed low power remote radio heads (RRHs). Appears.
또한, 본 발명의 실시예가 적용되는 통신 시스템은 인접한 셀 간의 협력 통신을 통해 셀 경계 지역에 위치한 단말의 상향링크 및 하향링크 데이터 전송률을 높이고자 하는 협력형 멀티-포인트 시나리오(CoMP scenario, Coordinated Multi-Point scenario) 3, 4를 도입한 클라우드 기반의 기지국 구조일 수 있으며, 도 2와 같다. In addition, a communication system to which an embodiment of the present invention is applied is a cooperative multi-point scenario (CoMP scenario, Coordinated Multi-) to increase uplink and downlink data rates of a terminal located in a cell boundary region through cooperative communication between adjacent cells. Point scenario) 3 and 4 may be a cloud-based base station structure, as shown in FIG.
도 2를 참조하면, 클라우드 기반의 기지국 구조는 일반적인 기지국이 디지털 신호 처리 장치(DU, Digital Unit)(800) 및 무선 신호 처리 장치(RU, Radio Unit)(900)로 분리되어 있다. 일반적인 기지국은 이러한 디지털 신호 처리 장치(800) 및 무선 신호 처리 장치(900) 각각에 대응하는 처리부를 하나의 물리적 시스템 내에 포함하고, 하나의 물리적 시스템이 서비스 대상 지역에 설치된다. 이에 반하여 클라우드 기반의 기지국 구조에 따르면, 디지털 신호 처리 장치(800) 및 무선 신호 처리 장치(900)가 물리적으로 분리되고, 무선 신호 처리 장치(900)만 서비스 대상 지역에 설치된다. 그리고 하나의 디지털 신호 처리 장치(800)가 각각의 독립적인 셀을 형성하는 복수의 무선 신호 처리 장치(900)에 대한 제어 관리 기능을 가진다. 이때, 디지털 신호 처리 장치(800)와 무선 신호 처리 장치(900)는 광케이블로 연결될 수 있다.Referring to FIG. 2, in the cloud-based base station structure, a general base station is divided into a digital signal processing unit (DU) and a radio signal processing unit (RU) 900. A typical base station includes a processing unit corresponding to each of the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 in one physical system, and one physical system is installed in a service area. In contrast, according to the cloud-based base station structure, the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 are physically separated, and only the wireless signal processing apparatus 900 is installed in the service target area. In addition, one digital signal processing apparatus 800 has a control management function for the plurality of wireless signal processing apparatuses 900 forming respective independent cells. In this case, the digital signal processing apparatus 800 and the wireless signal processing apparatus 900 may be connected by an optical cable.
여기서, 디지털 신호 처리 장치(800)는 기지국의 디지털 신호 처리 및 자원 관리 제어 기능을 담당하는 파트로서, 코어 시스템(미도시)에 연결된다. 그리고 주로 인터넷 데이터 센터(IDC, Internet Data Center) 등과 같은 통신 국사에 집중화되어 설치된다. 또한, 디지털 신호 처리 장치(800)는 가상화 기술을 통해 WCDMA(Wideband Code Division Multiple Access), 와이브로(WiBro, Wireless Broadband Internet), LTE(Long Term Evolution) 등 다양한 무선 기술을 하나의 디지털 신호 처리 장치(800)에 소프트웨어적으로 적용해 다수의 디지털 신호 처리 장치(800)가 하나처럼 운용될 수도 있다.Here, the digital signal processing apparatus 800 is a part in charge of the digital signal processing and resource management control function of the base station, and is connected to a core system (not shown). And it is mainly installed in communication companies such as Internet data center (IDC, Internet Data Center). In addition, the digital signal processing apparatus 800 may use various wireless technologies such as wideband code division multiple access (WCDMA), WiBro (WiBro, Wireless Broadband Internet), and LTE (Long Term Evolution) through a virtualization technology. The digital signal processing apparatus 800 may be operated as one by applying the software to the 800.
또한, 무선 신호 처리 장치(900)는 기지국의 무선 신호 처리 부문의 전파신호를 증폭해 안테나로 방사하는 파트이다. 즉 무선 신호 처리 장치(900)는 디지털 신호 처리 장치(800)로부터 수신한 디지털 신호를 주파수 대역에 따라 무선 주파수(radio frequency, RF) 신호로 변환하고 증폭한다. In addition, the wireless signal processing apparatus 900 is a part for amplifying and radiating a radio wave signal in a wireless signal processing section of a base station to an antenna. That is, the wireless signal processing apparatus 900 converts and amplifies a digital signal received from the digital signal processing apparatus 800 into a radio frequency (RF) signal according to a frequency band.
다시, 도 1을 참조하면, 제1 기지국(100) 및 제2 기지국(200)은 도 2의 무선 신호 처리 장치(900)로 구현된다. 그리고 eNB, RU, RRH(Remote Radio Heads)라 칭할 수 있다. 또한, 기지국 제어 장치(500)는 도 2의 디지털 신호 처리 장치(800)로 구현된다. 그리고 제1 기지국(100) 및 제2 기지국(200)과 연결되어 이들을 관리한다.Referring back to FIG. 1, the first base station 100 and the second base station 200 are implemented with the wireless signal processing apparatus 900 of FIG. 2. And it may be called eNB, RU, RRH (Remote Radio Heads). In addition, the base station control apparatus 500 is implemented with a digital signal processing apparatus 800 of FIG. And it is connected to the first base station 100 and the second base station 200 to manage them.
여기서, 제1 기지국(100) 및 제2 기지국(200)은 단일 기지국 제어 장치(500)에 의해 관리되는 경우를 도시하였으나, 제1 기지국(100) 및 제2 기지국(200)은 서로 다른 기지국 제어 장치(500)에 의해 각각 관리될 수도 있다.Here, although the first base station 100 and the second base station 200 are shown to be managed by a single base station control apparatus 500, the first base station 100 and the second base station 200 control the different base stations Each may be managed by the device 500.
협력형 멀티-포인트(CoMP) 시나리오에 따르면, 셀 경계 지역에 위치한 단말(600)은 인접 기지국(200)과의 상향링크 채널을 추정하도록 요구받는다. According to the cooperative multi-point (CoMP) scenario, the terminal 600 located in the cell boundary region is required to estimate an uplink channel with the neighbor base station 200.
여기서, 셀 경계 지역에 위치한 단말(600)은 제1 셀(300)에 위치하나 제2 셀(400)의 영향을 받을 수 있는 지역에 위치한 단말로 정의한다. 이러한 셀 경계 지역에 위치한 단말(600)은 제2 셀(400)의 중심에 위치한 단말(700)이 제2 기지국(200)과만 신호를 송수신하는 것과 달리 현재 접속된 제1 기지국(100) 뿐만 아니라 인접 기지국인 제2 기지국(200)과도 신호를 송수신할 수 있다. Here, the terminal 600 located in the cell boundary region is defined as a terminal located in the region where the first cell 300 is located but may be affected by the second cell 400. The terminal 600 located in the cell boundary region is not only the first base station 100 currently connected, unlike the terminal 700 located at the center of the second cell 400 transmits and receives only a signal with the second base station 200. A signal may also be transmitted and received with the second base station 200 which is an adjacent base station.
이하, 본 명세서에서는 셀 경계 지역에 위치한 단말(600)을 기준으로 제1 기지국(100)은 서빙 기지국이라 기술하고, 제2 기지국(200)은 인접 기지국이라 기술하기로 한다. Hereinafter, the first base station 100 will be described as a serving base station, and the second base station 200 will be described as a neighbor base station based on the terminal 600 located in the cell boundary region.
셀 경계 지역에 위치한 단말(600)은 서빙 기지국(100)으로부터 하향링크 물리 채널 및 물리 신호를 수신한다(①). 여기서, 하향링크 물리 채널은 PDSCH(Physical Downlink Shared Channel), PDCCH(Physical Downlink Control Channel), PBCH(Physical Broadcast Channel)을 포함한다. 그리고 물리 신호는 CRS(Common Reference Signal), PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal), CSI RS(Channel State Information-Reference Signal), DM RS(DeModulation-Reference Signal) 등을 포함한다. The terminal 600 located in the cell boundary region receives the downlink physical channel and the physical signal from the serving base station 100 (①). Here, the downlink physical channel includes a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), and a physical broadcast channel (PBCH). The physical signal includes a Common Reference Signal (CRS), a Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS), a Channel State Information-Reference Signal (CSI RS), a DeModulation-Reference Signal (DM RS), and the like.
또한, 셀 경계 지역에 위치한 단말(600)은 단말(600)과 서빙 기지국(100) 간의 상향링크 채널 상태 및 단말(600)과 제2 기지국(200)과의 상향링크 채널 상태에 따라 상향링크 물리 채널 및 물리 신호를 서빙 기지국(100)으로 전송하도록 설정하거나 또는 제2 기지국(200)으로 전송(②)하도록 설정될 수 있다. 여기서, 상향링크 물리 채널은 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), PRACH(physical random access channel)을 포함하고, 물리 신호는 SRS(Sounding Reference Signal)를 포함한다. In addition, the terminal 600 located in the cell boundary region according to the uplink channel state between the terminal 600 and the serving base station 100 and the uplink channel state between the terminal 600 and the second base station 200. The channel and physical signals may be set to be transmitted to the serving base station 100 or may be set to be transmitted (②) to the second base station 200. Here, the uplink physical channel includes a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (PRACH), and the physical signal includes a sounding reference signal (SRS).
여기서, 셀 경계 지역에 위치한 단말(600)은 서빙 기지국(100)으로부터 데디케이티드 물리 랜덤 액세스 채널 리소스(dedicated PRACH(Physical Random Access Channel) resource) 설정 신호를 수신한다. 이러한 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호는 단말(600)이 인접 셀과의 상향링크 채널 추정을 위한 리소스 할당 정보를 포함한다. 그리고 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호는 서빙 기지국(100)이 기지국 제어 장치(500)의 지시에 따라 멀티-상향링크(multi-uplink) 추정 대상인 타겟 단말로 전송된다.Here, the terminal 600 located in the cell boundary region receives a dedicated physical random access channel (PRACH) configuration signal from the serving base station 100. The dedicated physical random access channel resource configuration signal includes resource allocation information for UE 600 uplink channel estimation with an adjacent cell. The dedicated physical random access channel resource setting signal is transmitted from the serving base station 100 to a target terminal that is a multi-uplink estimation target according to the instruction of the base station control apparatus 500.
여기서, 타겟 단말은 기지국 제어 장치(500)가 결정한 멀티-상향링크(multi-uplink) 추정 대상 단말을 말하며, 결국 셀 경계 지역에 위치한 단말(600)이 된다. 이때, 멀티-상향링크 채널 추정은 타겟 단말(600)과 둘 이상의 기지국 간의 상향링크 채널 추정이라 정의한다. Here, the target terminal refers to a multi-uplink estimation target terminal determined by the base station control apparatus 500, and eventually becomes the terminal 600 located in the cell boundary region. In this case, the multi-uplink channel estimation is defined as uplink channel estimation between the target terminal 600 and two or more base stations.
한편, 단말(600)은 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호에 따라 인접 기지국(200)으로 물리 랜덤 액세스 채널 프리엠블(PRACH preamble)을 전송한다. 그러면, 인접 기지국(200)은 물리 랜덤 액세스 채널 프리엠블을 토대로 단말(600)과의 상향링크 채널 상태를 추정하여 기지국 제어 장치(500)에게 리포트 한다. Meanwhile, the terminal 600 transmits a physical random access channel preamble (PRACH preamble) to the adjacent base station 200 according to the dedicated physical random access channel resource configuration signal. Then, the neighboring base station 200 estimates an uplink channel state with the terminal 600 based on the physical random access channel preamble and reports it to the base station control apparatus 500.
또한, 단말(600)은 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호에 따라 서빙 기지국(100)에게도 물리 랜덤 액세스 채널 프리엠블(PRACH preamble)을 전송한다. 마찬가지로 서빙 기지국(100)은 물리 랜덤 액세스 채널 프리엠블을 토대로 단말(600)과의 상향링크 채널 상태를 추정하여 기지국 제어 장치(500)에게 리포트 한다. In addition, the terminal 600 transmits a physical random access channel preamble (PRACH preamble) to the serving base station 100 according to the dedicated physical random access channel resource configuration signal. Similarly, the serving base station 100 estimates an uplink channel state with the terminal 600 based on the physical random access channel preamble and reports it to the base station control apparatus 500.
그러면, 기지국 제어 장치(500)는 서빙 기지국(100) 및 인접 기지국(200)으로부터 리포트된 각각의 상향링크 채널 상태를 토대로 멀티-상향링크 채널 추정을 수행한다. 즉 단말(600)이 현재 접속한 서빙 기지국(100)과의 상향링크 채널 뿐만 아니라, 인접 기지국(200)과의 상향링크 채널을 추정함으로써, 단말(600)이 셀간 하향링크 협력 통신이 필요한 지역에 위치하는지 판단하여 셀간 하향링크 협력 통신 구현 여부를 결정할 수 있다. 또는, 단말(600)의 핸드오버를 구현할 수 있다. 또는 단말(600)의 상향링크 경로 재설정(UL Path redirection) 구현 여부를 결정할 수 있다. 여기서, 상향링크 경로 재설정은 하향 링크는 서빙 기지국(100)과 유지한 채 상향링크만 인접 기지국(200)으로 전송하는 상태를 말한다.Then, the base station control apparatus 500 performs multi-uplink channel estimation based on each uplink channel state reported from the serving base station 100 and the neighbor base station 200. That is, the terminal 600 estimates the uplink channel with the neighboring base station 200 as well as the uplink channel with the serving base station 100 to which the terminal 600 is currently connected. It may determine whether to implement the downlink cooperative communication between cells. Alternatively, handover of the terminal 600 may be implemented. Alternatively, it may be determined whether the UL 600 implements UL path redirection. Here, the uplink path reset refers to a state in which only the uplink is transmitted to the neighboring base station 200 while maintaining the downlink with the serving base station 100.
이제, 서빙 기지국(100), 인접 기지국(200), 기지국 제어 장치(500) 및 단말(600)의 개략적인 구성을 설명하면 다음과 같다. Now, a schematic configuration of the serving base station 100, the adjacent base station 200, the base station control apparatus 500 and the terminal 600 will be described.
먼저, 도 3을 참조하면, 서빙 기지국(100)은 통신부(110), 메모리(130) 및 프로세서(150)를 포함한다. First, referring to FIG. 3, the serving base station 100 includes a communication unit 110, a memory 130, and a processor 150.
여기서, 통신부(110)는 프로세서(150)와 연결되어, 무선 신호를 전송 및 수신한다. 통신부(110)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 메모리(130)는 프로세서(150)와 연결되어, 프로세서(150)를 구동하기 위한 다양한 정보를 저장한다. 이러한 메모리(130)는 동적 랜덤 액세스 메모리, 램버스 DRAM(Dynamic Random Access Memory), 동기식 DRAM, 정적 RAM 등의 RAM과 같은 매체로 구현될 수 있다. 그리고 메모리(130)는 프로세서(150) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(150)와 연결될 수 있다. Here, the communication unit 110 is connected to the processor 150, and transmits and receives a radio signal. The communication unit 110 may include a baseband circuit for processing a radio signal. The memory 130 is connected to the processor 150 and stores various information for driving the processor 150. The memory 130 may be implemented as a medium such as a RAM such as a dynamic random access memory, a RAM random dynamic memory (DRAM), a synchronous DRAM, a static RAM, or the like. The memory 130 may be inside or outside the processor 150 and may be connected to the processor 150 by various well-known means.
프로세서(150)는 중앙처리유닛(CPU, Central Processing Unit)이나 기타 칩셋(chipset), 마이크로프로세서 등으로 구현될 수 있으며, 무선 인터페이스 프로토콜의 계층들은 프로세서(150)에 의해 구현될 수 있다. 그리고 프로세서(150)는 할당부(251), 추정부(253) 및 보고부(255)를 포함한다.The processor 150 may be implemented as a central processing unit (CPU), other chipsets, microprocessors, or the like, and layers of the air interface protocol may be implemented by the processor 150. The processor 150 includes an allocator 251, an estimator 253, and a reporter 255.
여기서, 할당부(251)는 기지국 제어 장치(500)의 지시에 따라 단말(600)과 인접 셀(400)간의 상향링크 채널 추정을 위한 리소스를 할당하는 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호를 생성하여 단말(600)로 전송한다.In this case, the allocator 251 generates a dedicated physical random access channel resource setting signal for allocating a resource for uplink channel estimation between the terminal 600 and the neighbor cell 400 according to the instruction of the base station control apparatus 500. It generates and transmits to the terminal 600.
추정부(253)는 단말(600)로부터 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호에 따른 물리 랜덤 액세스 채널 프리엠블을 수신하여 단말(600)과의 상향링크 채널 상태를 추정한다.The estimator 253 receives a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal from the terminal 600 and estimates an uplink channel state with the terminal 600.
보고부(255)는 추정부(253)로부터 상향링크 채널 추정 결과를 전달받아 기지국 제어 장치(500)에게 전송한다.The reporter 255 receives the uplink channel estimation result from the estimator 253 and transmits the uplink channel estimation result to the base station control apparatus 500.
다음, 도 4를 참조하면, 인접 기지국(200)은 통신부(210), 메모리(230) 및 프로세서(250)를 포함한다. Next, referring to FIG. 4, the neighbor base station 200 includes a communication unit 210, a memory 230, and a processor 250.
여기서, 통신부(210)는 프로세서(250)와 연결되어, 무선 신호를 전송 및 수신한다. 통신부(210)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 메모리(230)는 프로세서(250)와 연결되어, 프로세서(250)를 구동하기 위한 다양한 정보를 저장한다. 이러한 메모리(230)는 동적 랜덤 액세스 메모리, 램버스 DRAM, 동기식 DRAM, 정적 RAM 등의 RAM과 같은 매체로 구현될 수 있다. 그리고 메모리(230)는 프로세서(250) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(250)와 연결될 수 있다. Here, the communication unit 210 is connected to the processor 250, and transmits and receives a radio signal. The communication unit 210 may include a baseband circuit for processing a radio signal. The memory 230 is connected to the processor 250 and stores various information for driving the processor 250. The memory 230 may be embodied in a medium such as RAM, such as dynamic random access memory, Rambus DRAM, synchronous DRAM, and static RAM. The memory 230 may be inside or outside the processor 250 and may be connected to the processor 250 by various well-known means.
프로세서(250)는 중앙처리유닛이나 기타 칩셋, 마이크로프로세서 등으로 구현될 수 있으며, 무선 인터페이스 프로토콜의 계층들은 프로세서(250)에 의해 구현될 수 있다. 그리고 프로세서(250)는 채널 추정부(251), 셀간섭 측정부(253) 및 보고부(255)를 포함한다.The processor 250 may be implemented as a central processing unit, other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 250. The processor 250 includes a channel estimator 251, a cell interference measurer 253, and a reporter 255.
여기서, 채널 추정부(251)는 단말(600)로부터 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호에 따른 물리 랜덤 액세스 채널 프리엠블을 수신하여 단말(600)과의 상향링크 채널 상태를 추정한다.Here, the channel estimator 251 receives a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal from the terminal 600 and estimates an uplink channel state with the terminal 600.
셀간섭 측정부(253)는 주변 셀로 인한 간섭(interference) 신호를 측정한다. 즉 백홀(backhaul) 망을 통해 특정 상향링크 대역(UL band)에서 기 정의된 기준에 따라 강한 간섭 신호를 측정한다. The cell interference measuring unit 253 measures an interference signal due to a neighboring cell. That is, a strong interference signal is measured according to a predefined criterion in a specific UL band through a backhaul network.
보고부(255)는 채널 추정부(251)로부터 전달받은 상향링크 채널 추정 결과를 기지국 제어 장치(500)에게 전송한다. 또한, 셀간섭 측정부(253)로부터 전달받은 셀간섭 신호를 기지국 제어 장치(500)에게 전송한다.The reporter 255 transmits the uplink channel estimation result received from the channel estimator 251 to the base station control apparatus 500. In addition, the cell interference signal transmitted from the cell interference measurement unit 253 is transmitted to the base station control apparatus 500.
다음, 도 5를 참조하면, 기지국 제어 장치(500)는 통신부(510), 메모리(530) 및 프로세서(550)를 포함한다. Next, referring to FIG. 5, the base station control apparatus 500 includes a communication unit 510, a memory 530, and a processor 550.
여기서, 통신부(510)는 프로세서(550)와 연결되어, 무선 신호를 전송 및 수신한다. 통신부(510)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 메모리(530)는 프로세서(550)와 연결되어, 프로세서(550)를 구동하기 위한 다양한 정보를 저장한다. 이러한 메모리(530)는 동적 랜덤 액세스 메모리, 램버스 DRAM, 동기식 DRAM, 정적 RAM 등의 RAM과 같은 매체로 구현될 수 있다. 그리고 메모리(530)는 프로세서(550) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(550)와 연결될 수 있다. Here, the communication unit 510 is connected to the processor 550 to transmit and receive a radio signal. The communication unit 510 may include a baseband circuit for processing a radio signal. The memory 530 is connected to the processor 550 and stores various information for driving the processor 550. The memory 530 may be implemented as a medium such as a RAM such as dynamic random access memory, RAM bus DRAM, synchronous DRAM, static RAM, or the like. The memory 530 may be inside or outside the processor 550, and may be connected to the processor 550 by various well-known means.
프로세서(550)는 중앙처리유닛이나 기타 칩셋, 마이크로프로세서 등으로 구현될 수 있으며, 무선 인터페이스 프로토콜의 계층들은 프로세서(550)에 의해 구현될 수 있다. 그리고 프로세서(550)는 타겟 결정부(551), 지시부(553) 및 처리부(555)를 포함한다.The processor 550 may be implemented as a central processing unit or other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 550. The processor 550 includes a target determiner 551, an indicator 553, and a processor 555.
타겟 결정부(551)는 멀티-상향링크 채널 측정 지시가 필요한 타겟 단말을 결정한다. The target determiner 551 determines a target terminal that requires a multi-uplink channel measurement instruction.
이때, 타겟 결정부(551)는 측정 리포트 기반으로 타겟 단말을 결정할 수 있다. 일반적으로 셀룰러 시스템에서는 주파수 효율을 극대화하기 위한 채널 의존적 스케줄링을 위해 단말(600)이 하향링크 채널에 대한 채널 추정 결과를 주기적으로 혹은 비주기적으로 상향링크 제어 채널인 PUCCH를 통해 채널 품질 표시기(CQI, Channel Quality Information) 또는 채널 상태 정보(CSI, Channel State Information)를 리포팅(reporting)하도록 정의되어있다. 또한, 이와 별도로 단말(600)의 이동에 따른 핸드오버 지원을 위해 특정 상황 예를들어, 서빙 셀(300)과의 하향링크 채널 추정 결과가 기 정의된 임계값 이하가 되면, 단말(600)은 현재 접속을 맺고 있는 서빙 셀(300) 뿐만 아니라 인접 셀(400)에 대한 하향링크 채널 추정 결과를 측정 리포트 알알씨 시그널링(measurement report RRC signaling)의 형태로 PUSCH를 통해 전송하도록 정의되어 있다. In this case, the target determiner 551 may determine the target terminal based on the measurement report. In general, in a cellular system, a channel quality indicator (CQI, Channel Quality Information (CSI) or Channel State Information (CSI) is defined to report. In addition, in order to support handover according to the movement of the terminal 600 separately, for example, when the downlink channel estimation result with the serving cell 300 is less than or equal to a predetermined threshold, the terminal 600 Downlink channel estimation results for the neighboring cell 400 as well as the serving cell 300 currently connected are defined to be transmitted through the PUSCH in the form of measurement report RRC signaling.
따라서, 타겟 결정부(551)는 이러한 PUCCH를 통한 채널 품질 표시기(CQI) 또는 채널 상태 정보(CSI) 리포팅 혹은 PUSCH를 통한 측정 리포트 알알씨 시그널링을 통해 수신한 하향링크 채널 추정 결과를 토대로 멀티-상향링크 채널 추정이 필요한 단말(600)을 결정할 수 있다. Accordingly, the target determination unit 551 may multi-up based on the downlink channel estimation result received through the channel quality indicator (CQI) or channel state information (CSI) reporting through the PUCCH or the measurement report Rc signaling through the PUSCH. The terminal 600 requiring the link channel estimation may be determined.
또한, 타겟 결정부(551)는 인접 기지국 요청 기반으로 타겟 단말을 결정할 수 있다. 즉, 인접 기지국(200)으로부터 셀간섭 신호를 수신하여 셀간섭이 측정되는 상향링크 대역에 스케줄링된 단말(600)에 대해 멀티-상향링크 채널 추정을 결정할 수 있다.In addition, the target determiner 551 may determine the target terminal based on the neighbor base station request. That is, by receiving the cell interference signal from the neighbor base station 200, it is possible to determine the multi-uplink channel estimation for the terminal 600 scheduled in the uplink band where the cell interference is measured.
지시부(553)는 서빙 기지국(100) 및 인접 기지국(200)에게 멀티-상향링크 채널 추정을 지시한다. The indicator 553 instructs the serving base station 100 and the neighbor base station 200 to multi-uplink channel estimation.
처리부(555)는 서빙 기지국(100) 및 인접 기지국(200)으로부터 단말(600)과의 상향링크 채널 추정 결과를 각각 수신하여 멀티-상향링크 채널 추정을 수행한다. 즉 각각의 상향링크 채널 추정 결과를 비교 및 분석하여 셀간 하향링크 협력 통신 구현 여부, 단말(600)의 핸드오버 여부, 단말(600)의 상향링크 경로 재설정 구현 여부를 결정할 수 있다. The processor 555 receives the uplink channel estimation result from the serving base station 100 and the neighboring base station 200 with the terminal 600, respectively, and performs multi-uplink channel estimation. That is, by comparing and analyzing the results of uplink channel estimation, it is possible to determine whether to implement downlink cooperative communication between cells, whether to handover the terminal 600, and whether to implement the uplink path reconfiguration of the terminal 600.
다음, 도 6을 참조하면, 단말(600)은 통신부(610), 메모리(630) 및 프로세서(650)를 포함한다. Next, referring to FIG. 6, the terminal 600 includes a communication unit 610, a memory 630, and a processor 650.
여기서, 통신부(610)는 프로세서(650)와 연결되어, 무선 신호를 전송 및 수신한다. 통신부(610)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 메모리(630)는 프로세서(650)와 연결되어, 프로세서(650)를 구동하기 위한 다양한 정보를 저장한다. 이러한 메모리(630)는 동적 랜덤 액세스 메모리, 램버스 DRAM, 동기식 DRAM, 정적 RAM 등의 RAM과 같은 매체로 구현될 수 있다. 그리고 메모리(630)는 프로세서(650) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(650)와 연결될 수 있다. Here, the communication unit 610 is connected to the processor 650, and transmits and receives a radio signal. The communication unit 610 may include a baseband circuit for processing a radio signal. The memory 630 is connected to the processor 650 and stores various information for driving the processor 650. The memory 630 may be embodied in a medium such as RAM, such as dynamic random access memory, Rambus DRAM, synchronous DRAM, and static RAM. The memory 630 may be inside or outside the processor 650 and may be connected to the processor 650 through various well-known means.
프로세서(650)는 중앙처리유닛이나 기타 칩셋, 마이크로프로세서 등으로 구현될 수 있으며, 무선 인터페이스 프로토콜의 계층들은 프로세서(650)에 의해 구현될 수 있다. 그리고 프로세서(650)는 상향링크 채널 관리부(651), 하향링크 채널 관리부(653) 및 핸드오버 제어부(655)를 포함한다.The processor 650 may be implemented as a central processing unit or other chipset, microprocessor, or the like, and the layers of the air interface protocol may be implemented by the processor 650. The processor 650 includes an uplink channel manager 651, a downlink channel manager 653, and a handover controller 655.
상향링크 채널 관리부(651)는 서빙 기지국(100)으로부터 수신한 데디케이티드 물리 랜덤 액세스 채널 리소스 설정 신호에 따라 물리 랜덤 액세스 채널 프리엠블을 생성하여 서빙 기지국(100) 및 인접 기지국(200)으로 전송한다.The uplink channel manager 651 generates a physical random access channel preamble according to the dedicated physical random access channel resource configuration signal received from the serving base station 100 and transmits the generated physical random access channel preamble to the serving base station 100 and the neighbor base station 200. do.
하향링크 채널 관리부(653)는 서빙 기지국(100)과의 하향링크 채널을 주기적으로 또는 비주기적으로 측정하여 서빙 기지국(100)으로 전송한다. 이때, 하향링크 채널 추정 결과가 기 정의된 기준값 이하일 경우, 서빙 기지국(100)으로 하향링크 채널 추정 결과를 리포트할 수 있다. The downlink channel manager 653 measures the downlink channel with the serving base station 100 periodically or aperiodically and transmits the downlink channel to the serving base station 100. In this case, when the downlink channel estimation result is less than or equal to a predetermined reference value, the downlink channel estimation result may be reported to the serving base station 100.
또한, 하향링크 채널 관리부(653)는 인접 기지국(200)과의 하향링크 채널을 추정하여 인접 기지국(200)으로 전송한다. In addition, the downlink channel manager 653 estimates a downlink channel with the neighbor base station 200 and transmits the downlink channel to the neighbor base station 200.
핸드오버 제어부(655)는 무선 링크 실패(radio link failure) 절차에 따라 최적 셀 선택(best cell selection)을 수행한다. The handover controller 655 performs best cell selection according to a radio link failure procedure.
지금까지 설명한 내용을 토대로 상향링크 채널 추정 방법을 실시예 별로 설명하기로 한다. 이때, 도 1 ~ 도 6의 구성과 연계하여 설명하며, 동일한 도면 부호를 사용한다. An uplink channel estimation method will be described for each embodiment based on the above description. At this time, it will be described in connection with the configuration of Figures 1 to 6, and the same reference numerals are used.
도 7은 본 발명의 한 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다.7 is a flowchart illustrating an uplink channel estimation method according to an embodiment of the present invention.
도 7을 참조하면, 기지국 제어 장치(500)의 타겟 결정부(551)는 멀티-상향링크 채널 추정이 필요한 타겟 단말(600)을 결정한다(S101).Referring to FIG. 7, the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S101).
여기서, 타겟 단말(600)은 기지국 제어 장치(500) 자신이 관리하는 둘 이상의 기지국들 간의 경계 지역에 위치하는 단말일 수 있다. 또는 기지국 제어 장치(500) 자신 및 다른 기지국 제어 장치가 관리하는 둘 이상의 기지국들 간의 경계 지역에 위치하는 단말일 수 있다.Here, the target terminal 600 may be a terminal located in a boundary area between two or more base stations managed by the base station control apparatus 500 itself. Alternatively, the base station control apparatus 500 may be a terminal located at a boundary area between two or more base stations managed by itself and the other base station control apparatus.
다음, 기지국 제어 장치(500)의 지시부(553)는 S101 단계에서 결정된 타겟 단말(600)이 현재 접속된 서빙 기지국(100) 및 인접 기지국(200)으로 멀티-상향링크 채널 추정 지시(Initiation of multi-UL channel measurement)를 전송한다(S103, S105).Next, the indication unit 553 of the base station control apparatus 500 instructs the multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S101 is currently connected (Initiation of multi). -UL channel measurement) is transmitted (S103, S105).
다음, 서빙 기지국(100)의 할당부(151)는 타겟 단말(600)에게 물리적 다운링크 제어 채널 명령(PDCCH order)을 전송함으로써, 임의 접속 절차(Random Access Procedure)를 지시한다(S107). Next, the allocation unit 151 of the serving base station 100 instructs a random access procedure by transmitting a physical downlink control channel command (PDCCH order) to the target terminal 600 (S107).
이때, 물리적 다운링크 제어 채널 명령(PDCCH order)은 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보를 포함하며, 포맷은 PDCCH format 1A이다. 여기서, PDCCH format 1A는 타겟 단말(600)의 셀 무선 네트워크 임시 식별자(C-RNTI, cell radio network temporary identifier)로 스크램블링(scrambling)된다.In this case, the physical downlink control channel command (PDCCH order) includes physical random access channel (PRACH) resource allocation information, and the format is PDCCH format 1A. Here, the PDCCH format 1A is scrambled with a cell radio network temporary identifier (C-RNTI) of the target terminal 600.
또한, 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보는 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble)을 생성하기 위한 프리엠블 인덱스(preamble index, 6 bits)와 프리엠블을 전송할 물리적 랜덤 접속 채널 리소스 인덱스(PRACH resource index)값인 물리적 랜덤 접속 채널 마스크 인덱스(PRACH Mask Index, 4 bits)를 포함한다.The physical random access channel (PRACH) resource allocation information may also include a preamble index (6 bits) for generating a dedicated physical random access channel (PRACH) preamble and a physical random access for transmitting the preamble. A physical random access channel mask index (PRACH Mask Index, 4 bits) that is a channel resource index (PRACH resource index) value.
다음, 타겟 단말(600)의 상향링크 채널 관리부(651)는 S107 단계에서 수신한 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보에 따라 생성한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 인접 기지국(200)으로 전송한다(S109).Next, the uplink channel manager 651 of the target terminal 600 generates a dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S107. The transmission is performed to the neighbor base station 200 (S109).
이때, 타겟 단말(600)의 상향링크 채널 관리부(651)는 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보에 따라 물리적 다운링크 제어 채널 명령(PDCCH order)의 프리엠블 인덱스(preamble index) 정보 영역을 통해 설정된 프리엠블을 물리적 랜덤 접속 채널 마스크 인덱스(PRACH Mask Index)를 통해 설정된 물리적 랜덤 접속 채널 리소스 인덱스(PRACH resource index)를 통해 전송한다.In this case, the uplink channel manager 651 of the target terminal 600 uses a preamble index information region of a physical downlink control channel command (PDCCH order) according to physical random access channel configuration (PRACH configuration) information. The configured preamble is transmitted through the physical random access channel resource index (PRACH resource index) set through the physical random access channel mask index (PRACH Mask Index).
여기서, 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보는 서빙 기지국(100)의 셀 특정(cell-specific) 시스템 정보를 통해 수신된다. 그리고 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보는 물리적 랜덤 접속 채널 구성 인덱스(PRACH configuration index), 물리적 랜덤 접속 채널-주파수오프셋(PRACH -FrequencyOffset), 랜덤 접속 채널-루트-시퀀스(RACH_ROOT_SEQUENCE)를 포함한다. Here, the physical random access channel configuration (PRACH configuration) information is received through the cell-specific system information of the serving base station (100). The physical random access channel configuration (PRACH configuration) information includes a physical random access channel configuration index (PRACH configuration index), a physical random access channel-frequency offset (PRACH-FrequencyOffset), random access channel-root-sequence (RACH_ROOT_SEQUENCE) .
다음, 인접 기지국(200)의 채널 추정부(251)는 S109 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S111). 그리고 인접 기지국(200)의 보고부(255)는 추정 결과를 기지국 제어 장치(500)에게 보고한다(S113).Next, the channel estimator 251 of the neighboring base station 200 estimates an uplink channel state with the target terminal 600 by using the dedicated physical random access channel preamble received in step S109. (S111). The report unit 255 of the neighbor base station 200 reports the estimation result to the base station control apparatus 500 (S113).
이처럼, 기지국 제어 장치(500)는 서빙 기지국(100)이 할당한 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 리소스 정보에 따라 생성된 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 이용하여 인접 기지국(200)과 타겟 단말(600) 간의 상향링크 채널 추정 결과를 인접 기지국(200)으로부터 획득할 수 있다. As such, the base station controller 500 uses the dedicated physical random access channel preamble generated according to the dedicated physical random access channel resource information allocated by the serving base station 100. The uplink channel estimation result between the neighbor base station 200 and the target terminal 600 may be obtained from the neighbor base station 200.
또한, 타겟 단말(600)의 상향링크 채널 관리부(651)는 S107 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 리소스 할당 정보에 따라 생성한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 서빙 기지국(100)에게도 전송한다(S115).In addition, the uplink channel manager 651 of the target terminal 600 predicates the dedicated physical random access channel generated according to the dedicated physical random access channel (dedicated PRACH) resource allocation information received in step S107. The PRACH preamble is also transmitted to the serving base station 100 (S115).
여기서, S109 단계와 S115 단계는 시간의 차이를 두고 별개의 단계로 이루어지는 것으로 기술되었으나, S109 단계와 S115 단계는 동시에 수행될 수 있다. 즉, S109 단계와 S115 단계는 타겟 단말(600)이 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 전송하는 한번의 동작일 수 있다. 이렇게 전송된 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)은 서빙 기지국(100) 및 인접 기지국(200)에서 각각 동시에 수신된다.Here, steps S109 and S115 are described as being made in separate steps with a time difference, but steps S109 and S115 may be performed at the same time. That is, steps S109 and S115 may be one operation of the target terminal 600 transmitting a dedicated physical random access channel preamble. The physical random access channel preamble transmitted in this way is simultaneously received by the serving base station 100 and the neighbor base station 200, respectively.
그러면, 서빙 기지국(100)의 추정부(153)는 S115 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S117). 그리고 서빙 기지국(100)의 보고부(155)는 추정 결과를 기지국 제어 장치(500)에게 보고한다(S119).Then, the estimator 153 of the serving base station 100 estimates an uplink channel state with the target terminal 600 by using the dedicated physical random access channel preamble received in step S115. (S117). The reporting unit 155 of the serving base station 100 reports the estimation result to the base station control apparatus 500 (S119).
그러면, 기지국 제어 장치(500)의 처리부(555)는 S113 단계 및 S119 단계에서 수신한 추정 결과에 기초하여 타겟 단말(600)과 복수의 기지국 간의 멀티-상향링크 채널을 추정한다(S121).Then, the processor 555 of the base station control apparatus 500 estimates the multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S113 and S119 (S121).
즉 기지국 제어 장치(500)의 처리부(555)는 S113 단계 및 S119 단계에서 각각 수신한 서빙 기지국(100) 및 인접 기지국(200)과 단말(600) 간의 상향링크 채널 추정 결과를 비교 및 분석하여 셀간 하향링크 협력 통신 구현 여부, 단말(600)의 핸드오버 여부, 단말(600)의 상향링크 경로 재설정 구현 여부를 결정할 수 있다.That is, the processing unit 555 of the base station control apparatus 500 compares and analyzes the uplink channel estimation result between the serving base station 100 and the neighboring base station 200 and the terminal 600 received in steps S113 and S119, respectively, between cells. Whether to implement downlink cooperative communication, whether to handover the terminal 600, and whether to implement the uplink path reconfiguration of the terminal 600 may be determined.
이처럼, S101 단계~ S121 단계에 따르면, 3GPP LTE/LTE-A 시스템에서 정의된 물리적 다운링크 제어 채널 명령(PDCCH order) 기반의 임의 접속 절차(Random Access Procedure)를 이용하여 타겟 단말(600)이 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 전송하고, 이를 인접 기지국(200)이 수신하도록 한다.As described above, according to steps S101 to S121, the target terminal 600 uses a random access procedure based on a physical downlink control channel command (PDCCH order) defined in the 3GPP LTE / LTE-A system. Transmit a dedicated physical random access channel preamble (dedicated PRACH preamble) and let the neighboring base station 200 receive it.
이때, 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보 및 물리적 다운링크 제어 채널 명령(PDCCH order)은 타겟 단말(600)이 현재 접속(connection)을 맺고 있는 서빙 기지국(100)에서 설정된 값이다. 따라서, 인접 기지국(200)은 서빙 기지국(100)의 셀 특정 물리적 랜덤 접속 채널 구성(cell-specific PRACH configuration) 정보 및 물리적 다운링크 제어 채널 명령(PDCCH order)을 통해 타겟 단말(600)에게 할당된 프리엠블 인덱스(preamble index) 및 물리적 랜덤 접속 채널 마스크 인덱스(PRACH Mask Index)값을 알아야 하며, 이를 기지국 제어 장치(500)를 통해 획득하거나 혹은 서빙 기지국(100)이 직접 인접 기지국(200)으로 전송하도록 한다. In this case, the physical random access channel configuration (PRACH configuration) information and the physical downlink control channel command (PDCCH order) is a value set in the serving base station 100 to which the target terminal 600 is currently connected (connection). Therefore, the neighbor base station 200 is allocated to the target terminal 600 through cell-specific physical random access channel configuration (cell-specific PRACH configuration) information and the physical downlink control channel command (PDCCH order) of the serving base station 100 The preamble index and the physical random access channel mask index (PRACH Mask Index) value should be known and obtained through the base station control apparatus 500 or the serving base station 100 directly transmitted to the adjacent base station 200. Do it.
도 8은 본 발명의 다른 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다.8 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
도 8을 참조하면, 기지국 제어 장치(500)의 타겟 결정부(551)는 멀티-상향링크 채널 추정이 필요한 타겟 단말(600)을 결정한다(S201).Referring to FIG. 8, the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S201).
다음 기지국 제어 장치(500)의 지시부(553)는 S201 단계에서 결정된 타겟 단말(600)이 현재 접속된 서빙 기지국(100) 및 인접 기지국(200)으로 멀티-상향링크 채널 추정 지시를 전송한다(S203, S205).Next, the indicating unit 553 of the base station control apparatus 500 transmits a multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S201 is currently connected (S203). , S205).
다음, 서빙 기지국(100)의 할당부(151)는 타겟 단말(600)에게 무선 자원 제어(RRC, Radio Resource Control) 시그널링을 이용하여 페이크 핸드오버(Fake Handover)를 지시한다(S207). Next, the allocation unit 151 of the serving base station 100 instructs the target terminal 600 to fake handover (Radio Hand Control) using Radio Resource Control (RRC) signaling (S207).
이때, 기존의 핸드오버시 서빙 기지국(100)에 의해 전송되는 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지를 이용하여 페이크 핸드오버를 지시한다. At this time, the handover is instructed by using a radio resource control connection reconfiguration message transmitted by the serving base station 100 during the existing handover.
또한, 서빙 기지국(100)의 할당부(151)는 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지의 이동성 제어 정보(mobility Contro lInfo) 영역을 통해 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보를 포함하는 인접 기지국(200)의 시스템 정보와, 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 생성하기 위한 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보를 설정하여 전송한다. 여기서, 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보는 프리엠블 인덱스(Preamble index), 프리엠블 마스크 인덱스(Preamble Mask Index), T304 타이머 세팅(T304 timer setting) 정보, 프리엠블 트랜스 맥스(PreambleTransMax) 등을 포함한다.In addition, the allocation unit 151 of the serving base station 100 includes physical random access channel configuration (PRACH configuration) information through the mobility control information (mobility control information) region of the radio resource control connection reconfiguration (RRC Connection Reconfiguration) message System information of the neighbor base station 200 and physical random access channel (PRACH) resource allocation information for generating a dedicated physical random access channel preamble (PRACH) resource allocation information are set and transmitted. Here, the physical random access channel (PRACH) resource allocation information may include a preamble index, a preamble mask index, a T304 timer setting information, a preamble TransMax, and the like. Include.
다음, 타겟 단말(600)의 핸드오버 제어부(655)는 S207 단계에서 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지가 수신되면, 핸드오버 동작을 수행한다. Next, if the RRC connection reconfiguration message is received in step S207, the handover controller 655 of the target terminal 600 performs a handover operation.
이때, 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지의 이동성 제어 정보(mobility Contro lInfo) 영역에 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보가 포함되어 있으므로, 타겟 단말(600)의 상향링크 채널 관리부(651)는 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보에 따라 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble)을 생성하여 인접 기지국(200)으로 전송한다(S209). In this case, since the physical random access channel (PRACH) resource allocation information is included in the mobility control information area of the RRC connection reconfiguration message, an uplink channel manager of the target terminal 600 ( 651 generates a dedicated physical random access channel (PRACH) preamble according to the physical random access channel (PRACH) resource allocation information and transmits it to the neighbor base station 200 (S209).
다음, 인접 기지국(200)은 S209 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S211). 그리고 추정 결과를 기지국 제어 장치(500)에게 보고한다(S213).Next, the adjacent base station 200 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S209 (S211). The estimation result is reported to the base station control apparatus 500 (S213).
또한, 타겟 단말(600)은 S207 단계에서 수신한 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보에 따라 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble)을 생성하여 서빙 기지국(100)에게도 전송한다(S215).In addition, the target terminal 600 generates a dedicated physical random access channel (PRACH) preamble according to the physical random access channel (PRACH) resource allocation information received in step S207, and also transmits it to the serving base station 100. (S215).
그러면, 서빙 기지국(100)은 S215 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S217). 그리고 추정 결과를 기지국 제어 장치(500)에게 보고한다(S219).Then, the serving base station 100 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S215 (S217). The estimation result is reported to the base station control apparatus 500 (S219).
여기서, S209 단계와 S215 단계는 타겟 단말(600)의 입장에서는 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 전송하는 한번의 동작이나, 이를 수신하는 측이 서빙 기지국(100) 및 인접 기지국(200) 이므로 도면에는 별개의 단계로 도시되었을 뿐이다. Here, steps S209 and S215 are a single operation of transmitting a dedicated physical random access channel preamble (dedicated PRACH preamble) from the perspective of the target terminal 600, the receiving side is the serving base station 100 and the adjacent Since it is a base station 200, it is only shown as a separate step in the figure.
또한, 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble) 전송은 타겟 단말(600)의 핸드오버 동작에 따라 수행된다. 그러므로, 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)은 인접 기지국(200)에서만 수신되거나 혹은 서빙 기지국(100)과 인접 기지국(200)에서 모두 수신되는 두가지 실시예가 가능하다. 따라서, S215, S217, S219, S221은 필수적인 단계는 아니며, 선택적으로 추가되는 단계 일 수 있다.이처럼, 서빙 기지국(100)의 지시부(153)는 페이크 핸드오버 방식으로 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지의 이동성 제어 정보(mobility Contro lInfo) 영역을 통해 타겟 단말(600)의 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble) 전송을 지시한다. In addition, the physical random access channel preamble (dedicated PRACH preamble) transmission is performed according to the handover operation of the target terminal 600. Therefore, two embodiments are possible in which the physical random access channel preamble is received only at the neighbor base station 200 or at both the serving base station 100 and the neighbor base station 200. Accordingly, S215, S217, S219, and S221 are not essential steps and may be optional steps. As such, the indication unit 153 of the serving base station 100 may configure the radio resource control connection reconfiguration in a fake handover method (RRC Connection). A dedicated PRACH preamble transmission of the target terminal 600 is indicated through a mobility control information area of a reconfiguration message.
이때, 서빙 기지국(100) 및 인접 기지국(200) 모두 타겟 단말(600)의 물리적 랜덤 접속 채널 프리엠블 전송(PRACH preamble transmission)에 대한 어떠한 응답 메시지도 전송하지 않는다.In this case, neither the serving base station 100 nor the neighboring base station 200 transmits any response message to the physical random access channel preamble transmission of the target terminal 600.
한편, 기지국 제어 장치(500)의 처리부(555)는 S213 단계 및 S219 단계에서 수신한 추정 결과에 기초하여 타겟 단말(600)과 복수의 기지국 간의 멀티-상향링크 채널을 추정한다(S221). Meanwhile, the processor 555 of the base station control apparatus 500 estimates a multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S213 and S219 (S221).
이후, 타겟 단말(600)의 핸드오버 제어부(655)는 무선 자원 제어 접속 재구성(RRC Connection Reconfiguration) 메시지에 설정된 조건이 만족되는지를 판단한다(S223). 예컨대 T304 타이머 값에 따라 T304 타이머가 만료(expire)되는지를 판단할 수 있다. 또는 데디케이티드 물리적 랜덤 접속 채널(dedicated PRACH) 프리앰블(preamble) 전송 횟수가 프리엠블 트랜스 맥스(preamble Trans Max) 값에 도달하는지를 판단할 수 있다. Thereafter, the handover controller 655 of the target terminal 600 determines whether the condition set in the RRC Connection Reconfiguration message is satisfied (S223). For example, it may be determined whether the T304 timer expires according to the T304 timer value. Alternatively, it may be determined whether the number of dedicated physical random access channel preamble transmissions reaches a preamble trans max value.
다음, 타겟 단말(600)의 핸드오버 제어부(655)는 S223 단계에서 조건이 만족하면, 무선 링크 실패(radio link failure) 절차에 따라 최적화 셀 선택(best cell selection)을 수행(S225)한 후, 네트워크에 재진입한다. Next, if the condition is satisfied in step S223, the handover control unit 655 performs an optimal cell selection according to a radio link failure procedure (S225). Reenter the network.
이때, 타겟 단말(600)의 핸드오버 제어부(655)는 서빙 기지국(100)의 하향링크 커버리지 내에 위치하므로, 서빙 기지국(100)의 셀로 재진입한다(S227).In this case, since the handover control unit 655 of the target terminal 600 is located within the downlink coverage of the serving base station 100, the handover control unit 655 re-enters the cell of the serving base station 100 (S227).
도 9는 본 발명의 또 다른 실시예에 따른 상향링크 채널 추정 방법을 나타낸 흐름도이다.9 is a flowchart illustrating an uplink channel estimation method according to another embodiment of the present invention.
도 9를 참조하면, 기지국 제어 장치(500)의 타겟 결정부(551)는 멀티-상향링크 채널 추정이 필요한 타겟 단말(600)을 결정한다(S301).Referring to FIG. 9, the target determiner 551 of the base station control apparatus 500 determines a target terminal 600 requiring multi-uplink channel estimation (S301).
다음, 기지국 제어 장치(500)의 지시부(553)는 S301 단계에서 결정된 타겟 단말(600)이 현재 접속된 서빙 기지국(100) 및 인접 기지국(200)으로 멀티-상향링크 채널 추정 지시를 전송한다(S303, S305).Next, the indicating unit 553 of the base station control apparatus 500 transmits a multi-uplink channel estimation instruction to the serving base station 100 and the adjacent base station 200 to which the target terminal 600 determined in step S301 is currently connected ( S303, S305).
다음, 서빙 기지국(100)의 할당부(151)는 타겟 단말(600)에게 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보를 포함하는 무선 자원 제어 시그널링(RRC Signaling) 메시지를 전송한다(S307). Next, the allocation unit 151 of the serving base station 100 transmits a radio resource control signaling (RRC signaling) message including physical random access channel (PRACH) resource allocation information to the target terminal 600 (S307).
그러면, 타겟 단말(600)의 상향링크 채널 관리부(651)는 S307 단계에서 수신한 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보에 따라 생성한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 인접 기지국(200)으로 전송한다(S309).Then, the uplink channel manager 651 of the target terminal 600 performs the dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S307. It transmits to the adjacent base station 200 (S309).
여기서, 한 실시예에 따르면, 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)은 인접 기지국(200)의 물리적 상향링크 공용 채널(PUSCH)의 리소스(resource) 영역을 통해 전송되도록 설정될 수 있다. 이때, 무선 자원 제어 시그널링(RRC Signaling) 메시지는 시간/주파수 리소스 할당(Time/frequency resource allocation) 정보, 랜덤 접속 채널-루트-시퀀스(RACH_ROOT_SEQUENCE), 프리엠블 포맷(Preamble format), 프리엠블 인덱스(Preamble index), 송신 전력(Tx Power)을 비롯한 전력 제어(Power control) 정보를 포함한다. 이때, 시간/주파수 리소스 할당(Time/frequency resource allocation) 정보는 물리적 랜덤 접속 채널-주파수오프셋(PRACH -FrequencyOffset), 초기 전송을 위한 무선 프레임/서브프레임 인덱스(Radio frame/Subframe index for initial transmission), 주기 정보(Periodicity) 등을 포함한다.Here, according to one embodiment, the dedicated physical random access channel preamble (dedicated PRACH preamble) may be configured to be transmitted through the resource region of the physical uplink public channel (PUSCH) of the neighbor base station 200 have. In this case, the RRC signaling message includes time / frequency resource allocation information, random access channel-root-sequence (RACH_ROOT_SEQUENCE), preamble format, and preamble index. index), and power control information including transmission power (Tx Power). In this case, time / frequency resource allocation information includes physical random access channel-frequency offset (PRACH-FrequencyOffset), radio frame / subframe index for initial transmission, Period information (Periodicity) and the like.
또한, 다른 실시예에 따르면, 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)은 인접 기지국(200)의 물리적 랜덤 접속 채널 오퍼튜니티(PRACH opportunity)를 통해 전송되도록 설정될 수 있다. 이때, 무선 자원 제어 시그널링(RRC Signaling) 메시지는 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보, 프리엠블 인덱스(preamble index), 프리엠블 마스크 인덱스(Preamble Mask Index), 전력 제어(Power control)정보, 주기(periodicity) 정보 등을 포함한다. 여기서, 물리적 랜덤 접속 채널 구성(PRACH configuration) 정보는 물리적 랜덤 접속 채널 구성 인덱스(PRACH configuration index), 물리적 랜덤 접속 채널-주파수 오프셋(PRACH-FrequencyOffset), 랜덤 접속 채널-루트-시퀀스(RACH_ROOT_SEQUENCE) 등을 포함한다.In addition, according to another embodiment, the dedicated physical random access channel preamble (dedicated PRACH preamble) may be configured to be transmitted through the physical random access channel opportunity (PRACH opportunity) of the adjacent base station 200. In this case, the RRC signaling message includes physical random access channel configuration (PRACH configuration) information, preamble index, preamble mask index, power control information, and period. (periodicity) information and the like. Here, the physical random access channel configuration information (PRACH configuration information) is a physical random access channel configuration index (PRACH configuration index), physical random access channel-frequency offset (PRACH-FrequencyOffset), random access channel-root-sequence (RACH_ROOT_SEQUENCE) Include.
다음, 인접 기지국(200)의 채널 추정부(251)는 S309 단계에서 수신한 물리적 랜덤 접속 채널 프리엠블(PRACH Preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S311). 그리고 추정 결과를 기지국 제어 장치(500)에게 보고한다(S313).Next, the channel estimator 251 of the neighboring base station 200 estimates an uplink channel state with the target terminal 600 using the physical random access channel preamble received in step S309 (S311). . The estimation result is reported to the base station controller 500 (S313).
또한, 타겟 단말(600)의 상향링크 채널 관리부(651)는 S307 단계에서 수신한 물리적 랜덤 접속 채널(PRACH) 리소스 할당 정보에 따라 생성한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 서빙 기지국(100)에게도 전송한다(S315).In addition, the uplink channel manager 651 of the target terminal 600 performs the dedicated physical random access channel preamble (dedicated PRACH preamble) generated according to the physical random access channel (PRACH) resource allocation information received in step S307. It also transmits to the serving base station 100 (S315).
여기서, S309 단계와 S315 단계는 시간의 차이를 두고 별개의 단계로 이루어지는 것으로 기술되었으나, S309 단계와 S315 단계는 동시에 수행될 수 있다. 즉, S309 단계와 S315 단계는 타겟 단말(600)이 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 전송하는 한번의 동작일 수 있다. 이렇게 전송된 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)은 서빙 기지국(100) 및 인접 기지국(200)에서 각각 동시에 수신된다.Here, the steps S309 and S315 are described as being made in separate steps with a time difference, but the steps S309 and S315 may be performed at the same time. That is, step S309 and step S315 may be one operation of the target terminal 600 transmits a dedicated physical random access channel preamble (dedicated PRACH preamble). The physical random access channel preamble transmitted in this way is simultaneously received by the serving base station 100 and the neighbor base station 200, respectively.
그러면, 서빙 기지국(100)의 추정부(153)는 S315 단계에서 수신한 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 이용하여 타겟 단말(600)과의 상향링크 채널 상태를 추정한다(S317). 그리고 추정 결과를 기지국 제어 장치(500)에게 보고한다(S319).Then, the estimator 153 of the serving base station 100 estimates an uplink channel state with the target terminal 600 using the dedicated physical random access channel preamble received in step S315. (S317). The estimation result is reported to the base station controller 500 (S319).
그러면, 기지국 제어 장치(500)의 처리부(555)는 S313 단계 및 S319 단계에서 수신한 추정 결과에 기초하여 타겟 단말(600)과 복수의 기지국 간의 멀티-상향링크 채널을 추정한다(S321). Then, the processor 555 of the base station control apparatus 500 estimates the multi-uplink channel between the target terminal 600 and the plurality of base stations based on the estimation results received in steps S313 and S319 (S321).
이처럼, S301 단계~ S321 단계에 따르면, 서빙 기지국(100)과의 상향링크 채널 추정 외에 물리적 랜덤 접속 채널 프리엠블(PRACH preamble)을 통하여 인접 기지국(200)과의 채널 추정 절차를 새롭게 정의하고 이를 위한 설정 정보를 전송하기 위한 higher layer(RRC) 시그널링을 정의할 수 있다. As described above, according to steps S301 to S321, in addition to uplink channel estimation with the serving base station 100, a channel estimation procedure with the neighboring base station 200 is newly defined through a physical random access channel preamble (PRACH preamble). Higher layer (RRC) signaling for transmitting configuration information may be defined.
한편, 도 7, 도 8, 도 9에서 타겟 단말(600)은 데디케이티드 물리적 랜덤 접속 채널 프리엠블(dedicated PRACH preamble)을 주기적 또는 비주기적으로 복수회 전송할 수 있다. 7, 8 and 9, the target terminal 600 may transmit a dedicated physical random access channel preamble (dedicated PRACH preamble) a plurality of times periodically or aperiodically.
또한, 도 7, 도 8, 도 9에서 기지국 제어 장치(500)의 타겟 결정부(551)가 멀티-상향링크 채널 추정이 필요한 단말을 결정하는 실시예에 대해 설명하면 다음과 같다. 7, 8, and 9 will be described with reference to an embodiment in which the target determiner 551 of the base station control apparatus 500 determines a terminal requiring multi-uplink channel estimation.
도 10은 본 발명의 한 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다. 10 is a flowchart illustrating a method of determining a target terminal according to an embodiment of the present invention.
도 10을 참조하면, 타겟 단말(600)의 하향링크 채널 관리부(653)는 현재 접속중인 서빙 셀의 하향링크 채널을 추정(S401)한다. 그리고 상향링크 제어 채널(PUCCH)을 통해 추정 결과를 서빙 기지국(100)에게 주기적으로 또는 비주기적으로 리포트한다(S403). Referring to FIG. 10, the downlink channel manager 653 of the target terminal 600 estimates a downlink channel of a serving cell currently being accessed (S401). The estimated result is periodically or aperiodically reported to the serving base station 100 through the uplink control channel (PUCCH) (S403).
그러면, 서빙 기지국(100)의 보고부(255)는 S403 단계에서 수신한 추정 결과를 기지국 제어 장치(500)에게 리포트한다(S405).Then, the reporting unit 255 of the serving base station 100 reports the estimation result received in step S403 to the base station control apparatus 500 (S405).
다음, 기지국 제어 장치(500)의 타겟 결정부(551)는 S405 단계에서 수신한 하향링크 채널 추정 결과를 토대로 해당 단말이 멀티-상향링크 채널 추정이 필요한 단말인지를 결정한다(S407). 예를 들어, 하향링크 채널 추정값이 기 정의된 임계 조건을 만족하면, 셀 경계에 위치한 단말로 판단하여 멀티-상향링크 채널 추정 지시가 필요한 단말로 결정할 수 있다.Next, the target determiner 551 of the base station control apparatus 500 determines whether the corresponding terminal is a terminal requiring multi-uplink channel estimation based on the downlink channel estimation result received in step S405 (S407). For example, if the downlink channel estimate value satisfies a predefined threshold condition, the downlink channel estimate may be determined as a terminal located at a cell boundary and may be determined as a terminal requiring a multi-uplink channel estimation indication.
도 11은 본 발명의 다른 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다.11 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
도 11을 참조하면, 타겟 단말(600)의 하향링크 채널 관리부(653)는 현재 접속중인 서빙 셀의 하향링크 채널을 추정(S501)한다. Referring to FIG. 11, the downlink channel manager 653 of the target terminal 600 estimates a downlink channel of a serving cell currently being accessed (S501).
이때, 추정 결과가 기 정의된 조건을 만족하는지 판단한다(S503). 예를 들어, 단말의 이동에 따른 핸드오버 지원을 위한 특정 상황 즉 서빙 셀과의 하향링크 채널 추정 결과가 일정 임계값 이하가 될 경우인지를 판단할 수 있다.At this time, it is determined whether the estimation result satisfies a predefined condition (S503). For example, it may be determined whether a specific situation for handover support according to the movement of the terminal, that is, the result of downlink channel estimation with the serving cell is less than or equal to a predetermined threshold.
다음, 기 정의된 조건을 만족하면, 타겟 단말(600)의 하향링크 채널 관리부(653)는 추정 결과를 상향링크 제어 채널(PUCCH)을 통해 서빙 기지국(100)에게 주기적으로 또는 비주기적으로 리포트한다(S505). 그러면, 서빙 기지국(100)의 보고부(155)는 S505 단계에서 수신한 추정 결과를 기지국 제어 장치(500)에게 리포트한다(S507).Next, when the predefined condition is satisfied, the downlink channel manager 653 of the target terminal 600 reports the estimation result periodically or aperiodically to the serving base station 100 through the uplink control channel (PUCCH). (S505). Then, the reporting unit 155 of the serving base station 100 reports the estimation result received in step S505 to the base station control apparatus 500 (S507).
또한, 타겟 단말(600)의 하향링크 채널 관리부(653)는 인접 셀의 하향링크 채널을 추정(S509)하고, 추정 결과를 인접 기지국(200)에게 리포트한다(S511). 그러면, 인접 기지국(200)의 보고부(255)는 S511 단계에서 수신한 추정 결과를 기지국 제어 장치(500)에게 리포트한다(S513).In addition, the downlink channel manager 653 of the target terminal 600 estimates the downlink channel of the neighbor cell (S509), and reports the estimation result to the neighbor base station 200 (S511). Then, the report unit 255 of the adjacent base station 200 reports the estimation result received in step S511 to the base station control apparatus 500 (S513).
그러면, 기지국 제어 장치(500)의 타겟 결정부(551)는 S507 단계 및 S513 단계에서 수신한 하향링크 채널 추정 결과를 토대로 해당 단말이 멀티-상향링크 채널 추정이 필요한 단말인지를 결정한다(S515).Then, the target determiner 551 of the base station control apparatus 500 determines whether the corresponding terminal is a terminal requiring multi-uplink channel estimation based on the downlink channel estimation results received in steps S507 and S513 (S515). .
이처럼, 단말은 현재 접속을 맺고 있는 서빙 셀 뿐만 아니라 인접 셀에 대한 하향 링크 채널 추정 결과를 측정 리포트 알알씨 시그널링(measurement report RRC signaling)의 형태로 전송하도록 정의된다.As such, the terminal is defined to transmit the downlink channel estimation result for the neighboring cell as well as the serving cell to which the terminal is currently connected in the form of measurement report RRC signaling.
도 12는 본 발명의 또 다른 실시예에 따른 타겟 단말 결정 방법을 나타낸 흐름도이다.12 is a flowchart illustrating a method of determining a target terminal according to another embodiment of the present invention.
도 12를 참조하면, 인접 기지국(20))의 셀간섭 측정부(253)는 백홀(backhaul) 망을 통해 특정 상향링크 대역(UL band)에 대한 강한 셀간섭(interference) 신호가 측정(S601)되면, 측정 결과를 기지국 제어 장치(500)에게 리포트 한다(S603).Referring to FIG. 12, the cell interference measuring unit 253 of the adjacent base station 20 measures a strong cell interference signal for a specific UL band through a backhaul network (S601). If so, the measurement result is reported to the base station control apparatus 500 (S603).
그러면, 기지국 제어 장치(500)의 타겟 결정부(551)는 S603 단계에서 리포트된 셀간섭 신호의 측정 결과를 토대로 멀티-상향링크 채널 추정이 필요한 단말을 결정한다(S605). Then, the target determiner 551 of the base station control apparatus 500 determines a terminal that requires multi-uplink channel estimation based on the measurement result of the cell interference signal reported in step S603 (S605).
따라서, 셀간섭(interference) 신호가 감지되는 특정 상향링크 대역에 스케쥴링된 단말에게 멀티-상향링크 채널 추정을 위한 데디케이티드 물리적 랜덤 액세스 채널 리소스(dedicated PRACH resource)를 할당할 수 있다.Accordingly, dedicated PRACH resources for multi-uplink channel estimation may be allocated to a UE scheduled in a specific uplink band where a cell interference signal is detected.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. The embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다. Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (30)

  1. 서빙 기지국으로부터 할당받은 랜덤 액세스 채널 리소스 설정 정보에 따라 물리적 랜덤 액세스 채널 프리엠블을 생성하는 상향링크 채널 관리부; 및An uplink channel manager for generating a physical random access channel preamble according to the random access channel resource configuration information allocated from the serving base station; And
    상기 상향링크 채널 관리부의 요청에 따라 상기 물리적 랜덤 액세스 채널 프리엠블을 인접 기지국으로 전송하는 통신부를 포함하고,A communication unit for transmitting the physical random access channel preamble to an adjacent base station according to a request of the uplink channel manager;
    상기 물리적 랜덤 액세스 채널 프리엠블은 상기 인접 기지국이 상향링크 채널을 추정하는데 사용되는 단말.The physical random access channel preamble is a terminal used by the neighboring base station to estimate the uplink channel.
  2. 제1항에 있어서,The method of claim 1,
    상기 통신부는,The communication unit,
    상기 상향링크 채널 관리부의 요청에 따라 상기 상기 물리적 랜덤 액세스 채널 프리엠블을 서빙 기지국에게도 전송하고,Transmit the physical random access channel preamble to a serving base station according to a request of the uplink channel manager;
    상기 물리적 랜덤 액세스 채널 프리엠블은 상기 서빙 기지국이 상향링크 채널을 추정하는데 사용되는 단말.The physical random access channel preamble is a terminal used by the serving base station to estimate the uplink channel.
  3. 제2항에 있어서,The method of claim 2,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 통신부에게 상기 물리적 랜덤 액세스 채널 프리엠블을 주기적 또는 비주기적으로 복수회 전송 요청하는 단말.And requesting the communication unit to transmit the physical random access channel preamble periodically or aperiodically a plurality of times.
  4. 제1항에 있어서,The method of claim 1,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 서빙 기지국으로부터 임의 접속 절차 지시에 따라 수신된 물리적 다운링크 제어 채널 명령으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 획득하는 단말.And obtaining the allocated random access channel resource configuration information from the physical downlink control channel command received according to the random access procedure instruction from the serving base station.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 할당받은 랜덤 액세스 채널 리소스 설정 정보는, The allocated random access channel resource configuration information,
    프리엠블 인덱스, 물리적 랜덤 접속 채널 리소스 인덱스 및 물리적 랜덤 접속 채널 마스크 인덱스를 포함하고, A preamble index, a physical random access channel resource index, and a physical random access channel mask index,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 프리엠블 인덱스를 이용하여 생성한 상기 물리적 랜덤 액세스 채널 프리엠블을 물리적 랜덤 접속 채널 구성 정보에 따라 물리적 다운링크 제어 채널 명령의 프리엠블 인덱스 정보 영역을 통해 설정하고, 상기 물리적 랜덤 접속 채널 마스크 인덱스를 통해 설정된 상기 물리적 랜덤 접속 채널 리소스 인덱스를 통해 상기 인접 기지국으로 전송하는 단말.The physical random access channel preamble generated using the preamble index is set through a preamble index information region of a physical downlink control channel command according to physical random access channel configuration information, and the physical random access channel mask index is set. A terminal for transmitting to the adjacent base station through the physical random access channel resource index set through.
  6. 제5항에 있어서,The method of claim 5,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 서빙 기지국의 셀 특정 시스템 정보를 통해 상기 물리적 랜덤 접속 채널 구성 정보를 수신하는 단말.And a terminal for receiving the physical random access channel configuration information through cell specific system information of the serving base station.
  7. 제1항에 있어서,The method of claim 1,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 서빙 기지국으로부터 페이크 핸드오버(Fake Handover) 지시에 따라 수신된 무선 자원 제어 접속 재구성 메시지의 이동성 제어 정보 영역으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 획득하는 단말.And obtaining the allocated random access channel resource configuration information from the mobility control information region of the radio resource control connection reconfiguration message received according to a fake handover indication from the serving base station.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 무선 자원 제어 접속 재구성 메시지는,The radio resource control connection reconfiguration message,
    상기 인접 기지국의 시스템 정보 및 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보를 포함하고,System information of the neighboring base station and the allocated random access channel resource setting information;
    상기 할당받은 랜덤 액세스 채널 리소스 설정 정보는,The allocated random access channel resource configuration information,
    프리엠블 인덱스, 프리엠블 마스크 인덱스, 타이머 정보 및 프리엠블 전송 최대 횟수 정보를 포함하는 단말.A terminal including a preamble index, a preamble mask index, timer information and preamble transmission maximum information.
  9. 제8항에 있어서,The method of claim 8,
    상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 접속 재구성 메시지가 수신되면, 상기 상향링크 채널 관리부에게 상기 물리적 랜덤 액세스 채널 프리엠블의 생성 및 전송을 요청하고, 상기 타이머 정보에 따른 타이머가 만료되면, 최적화 셀 선택을 통해 네트워크 재진입을 수행하는 핸드오버 제어부When the radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, request the generation and transmission of the physical random access channel preamble to the uplink channel manager, and a timer according to the timer information When expired, the handover control unit performs network reentry by selecting an optimized cell
    를 더 포함하는 단말.Terminal further comprising.
  10. 제8항에 있어서,The method of claim 8,
    상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 접속 재구성 메시지가 수신되면, 상기 상향링크 채널 관리부에게 상기 물리적 랜덤 액세스 채널 프리엠블의 생성 및 전송을 요청하고, 상기 물리적 랜덤 액세스 채널 프리엠블의 전송 횟수가 상기 프리엠블 전송 최대 횟수 정보를 충족하면, 최적화 셀 선택을 통해 네트워크 재진입을 수행하는 핸드오버 제어부When a radio resource control access reconfiguration message including the allocated random access channel resource configuration information is received, requesting generation and transmission of the physical random access channel preamble to the uplink channel manager, and the physical random access channel preamble A handover control unit performing network reentry by selecting an optimized cell when the number of times of transmission satisfies the maximum number of times of preamble transmission information
    를 더 포함하는 단말.Terminal further comprising.
  11. 제1항에 있어서,The method of claim 1,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 서빙 기지국으로부터 상기 할당받은 랜덤 액세스 채널 리소스 설정 정보가 포함된 무선 자원 제어 시그널링(RRC Signaling) 메시지를 수신하는 단말.A terminal for receiving a radio resource control signaling (RRC Signaling) message including the allocated random access channel resource configuration information from the serving base station.
  12. 제11항에 있어서,The method of claim 11,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 물리적 랜덤 액세스 채널 프리엠블을 상기 인접 기지국의 물리적 상향링크 공용 채널의 리소스 영역을 통해 상기 인접 기지국으로 전송하는 단말.And transmitting the physical random access channel preamble to the neighbor base station through the resource region of the physical uplink shared channel of the neighbor base station.
  13. 제11항에 있어서,The method of claim 11,
    상기 상향링크 채널 관리부는,The uplink channel manager,
    상기 물리적 랜덤 액세스 채널 프리엠블을 상기 인접 기지국의 물리적 랜덤 접속 채널 오퍼튜니티(PRACH opportunity)를 통해 상기 인접 기지국으로 전송하는 단말.And transmitting the physical random access channel preamble to the neighbor base station through a physical random access channel opportunity (PRACH opportunity) of the neighbor base station.
  14. 제1항에 있어서,The method of claim 1,
    주기적 또는 비주기적으로 상기 서빙 기지국과의 하향링크 채널을 추정한 결과를 상기 서빙 기지국으로 전송하고, 상기 하향링크 채널을 추정한 결과 값이 기 정의된 임계 조건을 충족하면, 상기 인접 기지국과의 하향링크 채널을 추정한 결과를 상기 인접 기지국으로 전송하는 하향링크 채널 관리부를 더 포함하는 단말.Periodically or aperiodically, a result of estimating a downlink channel with the serving base station is transmitted to the serving base station, and if the result of estimating the downlink channel satisfies a predetermined threshold condition, the terminal is downlink with the neighboring base station. The terminal further includes a downlink channel management unit for transmitting a result of estimating a link channel to the neighboring base station.
  15. 복수의 기지국을 제어 및 관리하는 기지국 제어 장치가 상향링크 채널을 추정하는 방법으로서,A method of estimating an uplink channel by a base station controller for controlling and managing a plurality of base stations,
    단말과 인접한 기지국으로부터 상기 단말이 접속한 서빙 기지국이 할당한 랜덤 액세스 채널 프리엠블을 이용한 상기 단말과 상기 인접 기지국간의 상향링크 채널 추정 결과를 수신하는 단계; 및Receiving an uplink channel estimation result between the terminal and the neighboring base station using a random access channel preamble allocated by the serving base station accessed by the terminal from the base station adjacent to the terminal; And
    상기 단말과 상기 인접한 기지국간의 상향링크 채널 추정 결과를 이용하여 셀간 협력 통신을 위한 멀티-상향링크 채널 추정을 수행하는 단계Performing multi-uplink channel estimation for inter-cell cooperative communication using an uplink channel estimation result between the terminal and the adjacent base station;
    를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising a.
  16. 제15항에 있어서,The method of claim 15,
    상기 서빙 기지국으로부터 상기 랜덤 액세스 채널 프리엠블을 이용한 상기 단말과 상기 서빙 기지국간의 상향링크 채널 추정 결과를 수신하는 단계를 더 포함하고,Receiving an uplink channel estimation result between the terminal and the serving base station using the random access channel preamble from the serving base station;
    상기 멀티-상향링크 채널 추정을 수행하는 단계는,Performing the multi-uplink channel estimation,
    상기 서빙 기지국 및 상기 인접한 기지국 각각으로부터 수신한 상향링크 채널 추정 결과들을 토대로 상기 단말과 복수의 기지국 간의 멀티-상향링크 채널 추정을 수행하는 단계를 포함하는 상향링크 채널 추정 방법.And performing multi-uplink channel estimation between the terminal and a plurality of base stations based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
  17. 제16항에 있어서,The method of claim 16,
    상기 멀티-상향링크 채널 추정을 수행하는 단계는,Performing the multi-uplink channel estimation,
    상기 단말이 셀간 하향링크 협력 통신이 필요한 지역에 위치하는지 판단하여 셀간 하향링크 협력 통신 구현 여부를 결정하는 단계를 포함하는 상향링크 채널 추정 방법.And determining whether to implement inter-cell downlink cooperative communication by determining whether the terminal is located in an area requiring downlink cooperative communication between cells.
  18. 제16항에 있어서,The method of claim 16,
    상기 멀티-상향링크 채널 추정을 수행하는 단계는,Performing the multi-uplink channel estimation,
    상기 단말의 핸드오버 여부를 판단하는 단계를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising the step of determining whether the terminal handover.
  19. 제16항에 있어서,The method of claim 16,
    상기 멀티-상향링크 채널 추정을 수행하는 단계는,Performing the multi-uplink channel estimation,
    하향링크는 상기 서빙 기지국과 유지한 채 상향링크는 상기 인접한 기지국으로 전송하는 상기 단말의 상향링크 경로 재설정의 구현 여부를 결정하는 단계를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising the step of determining whether to implement the uplink rerouting of the terminal transmitting the uplink to the adjacent base station while maintaining the downlink with the serving base station.
  20. 제15항에 있어서,The method of claim 15,
    상기 단말과 상기 인접 기지국간의 상향링크 채널 추정 결과를 수신하는 단계 이전에, Before receiving an uplink channel estimation result between the terminal and the neighbor base station,
    상기 멀티-상향링크 채널 추정이 필요한 타겟 단말을 결정하는 단계; 및Determining a target terminal requiring the multi-uplink channel estimation; And
    상기 타겟 단말이 접속한 서빙 기지국에게 멀티-상향링크 채널 추정을 지시하는 단계Instructing multi-uplink channel estimation to the serving base station to which the target terminal is connected;
    를 더 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method further comprising.
  21. 제20항에 있어서,The method of claim 20,
    상기 결정하는 단계는,The determining step,
    상기 서빙 기지국으로부터 상기 단말과 상기 서빙 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계; 및Receiving a downlink channel estimation result between the terminal and the serving base station from the serving base station; And
    상기 하향링크 채널 추정 결과를 토대로 상기 타겟 단말을 결정하는 단계Determining the target terminal based on the downlink channel estimation result
    를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising a.
  22. 제20항에 있어서,The method of claim 20,
    상기 결정하는 단계는,The determining step,
    상기 서빙 기지국으로부터 핸드오버가 필요한 단말과 상기 서빙 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계;Receiving a downlink channel estimation result from the serving base station between the terminal requiring handover and the serving base station;
    상기 인접 기지국으로부터 핸드오버가 필요한 단말과 상기 인접 기지국 간의 하향링크 채널 추정 결과를 수신하는 단계; 및Receiving a downlink channel estimation result between the terminal requiring handover and the neighbor base station from the neighbor base station; And
    상기 서빙 기지국 및 상기 인접 기지국간의 각각의 하향링크 채널 추정 결과를 토대로 상기 타겟 단말을 결정하는 단계Determining the target terminal based on respective downlink channel estimation results between the serving base station and the neighbor base station;
    를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising a.
  23. 제20항에 있어서,The method of claim 20,
    상기 결정하는 단계는,The determining step,
    상기 인접 기지국으로부터 특정 주파수 대역에서의 셀간섭 신호를 수신하는 단계; 및Receiving a cell interference signal in a specific frequency band from the adjacent base station; And
    상기 셀간섭 신호가 발생한 상기 특정 주파수 대역에 스케쥴링된 단말을 상기 타겟 단말로 결정하는 단계Determining, as the target terminal, a terminal scheduled in the specific frequency band where the cell interference signal is generated;
    를 포함하는 상향링크 채널 추정 방법.Uplink channel estimation method comprising a.
  24. 셀 경계 지역에 위치한 단말에게 상향링크 채널 추정을 위한 랜덤 액세스 채널 리소스를 할당하는 서빙 기지국; A serving base station for allocating random access channel resources for uplink channel estimation to a terminal located in a cell boundary region;
    상기 서빙 기지국으로부터 할당받은 상기 랜덤 액세스 채널 리소스에 따라 생성된 물리적 랜덤 액세스 채널 프리엠블을 상기 단말로부터 수신하고, 상기 물리적 랜덤 액세스 채널 프리엠블을 이용하여 상기 단말과의 상향링크 채널을 추정하는 인접 기지국; 및An adjacent base station receiving a physical random access channel preamble generated according to the random access channel resource allocated from the serving base station from the terminal and estimating an uplink channel with the terminal using the physical random access channel preamble ; And
    상기 인접 기지국으로부터 상기 단말과의 상향링크 채널을 추정한 결과를 수신하여 셀간 협력 통신을 위한 멀티-상향링크 채널을 추정하는 기지국 제어 장치를 포함하는 통신 시스템.And a base station control device for receiving a result of estimating an uplink channel from the neighbor base station and estimating a multi-uplink channel for inter-cell cooperative communication.
  25. 제24항에 있어서,The method of claim 24,
    상기 서빙 기지국은,The serving base station,
    상기 단말로부터 수신한 상기 물리적 랜덤 액세스 채널 프리엠블을 이용하여 상기 단말과의 상향링크 채널을 추정한 결과를 상기 기지국 제어 장치에게 전송하고,Using the physical random access channel preamble received from the terminal, transmits a result of estimating an uplink channel with the terminal to the base station controller,
    상기 기지국 제어 장치는,The base station control device,
    상기 서빙 기지국 및 상기 인접한 기지국 각각으로부터 수신한 상향링크 채널 추정 결과들을 토대로 상기 단말과 복수의 기지국 간의 멀티-상향링크 채널 추정을 수행하는 통신 시스템.And a multi-uplink channel estimation between the terminal and a plurality of base stations based on uplink channel estimation results received from each of the serving base station and the adjacent base station.
  26. 제24항에 있어서,The method of claim 24,
    상기 서빙 기지국 및 상기 인접 기지국은,The serving base station and the neighbor base station,
    동일한 기지국 제어 장치 또는 서로 다른 기지국 제어 장치와 연결되는 통신 시스템.Communication system connected with the same base station control device or different base station control device.
  27. 제24항에 있어서,The method of claim 24,
    상기 서빙 기지국 및 상기 인접 기지국은, 각각의 독립된 셀을 형성하는 무선 신호 처리 장치이고, 상기 기지국 제어 장치는, 상기 서빙 기지국 및 상기 인접 기지국과 연결되어 기지국 제어 관리 기능을 수행하며 통신 국사에 집중 설치되는 가상 서버로 구현되는 클라우드 기반의 기지국 구조를 포함하는 통신 시스템.The serving base station and the neighboring base station are wireless signal processing apparatuses that form respective independent cells, and the base station control device is connected to the serving base station and the neighboring base station to perform a base station control management function and is centrally installed in a communication station. Communication system comprising a cloud-based base station structure that is implemented as a virtual server.
  28. 제27항에 있어서,The method of claim 27,
    상기 서빙 기지국 및 상기 인접 기지국은,The serving base station and the neighbor base station,
    셀 경계 지역에 위치한 단말에 대한 셀간 협력 통신 그룹에 포함되는 각각의 셀을 형성하는 통신 시스템.A communication system for forming each cell included in the inter-cell cooperative communication group for the terminal located in the cell boundary region.
  29. 제28항에 있어서,The method of claim 28,
    서로 다른 크기의 셀 커버리지를 가지는 상기 서빙 기지국 및 상기 인접 기지국이 중첩적으로 배치되는 헤테로지니어스 네트워크를 형성하는 통신 시스템.And a serving system forming a heterogeneous network in which the serving base station and the neighboring base station overlap each other.
  30. 제29항에 있어서,The method of claim 29,
    상기 서빙 기지국 및 상기 인접 기지국은,The serving base station and the neighbor base station,
    매크로 셀 및 상기 매크로 셀 내에 상기 매크로 셀 보다 상대적으로 작은 크기의 셀 반경을 가지는 복수의 스몰 셀을 형성하는 통신 시스템. And a plurality of small cells within the macro cell and within the macro cell having a cell radius of a smaller size than the macro cell.
PCT/KR2012/011049 2012-09-10 2012-12-18 Terminal, method for estimating uplink channel, and communication system WO2014038754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120100066A KR101472101B1 (en) 2012-09-10 2012-09-10 Terminal unit, method for estimating uplink channel and communication system
KR10-2012-0100066 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038754A1 true WO2014038754A1 (en) 2014-03-13

Family

ID=50237346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011049 WO2014038754A1 (en) 2012-09-10 2012-12-18 Terminal, method for estimating uplink channel, and communication system

Country Status (2)

Country Link
KR (1) KR101472101B1 (en)
WO (1) WO2014038754A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007074A1 (en) * 2015-07-03 2017-01-12 엘지전자 주식회사 Method and device for performing random access in wireless communication system
WO2017173037A1 (en) 2016-03-30 2017-10-05 Idac Holdings, Inc. Method and apparatus for performing physical layer mobility procedures
KR102105586B1 (en) * 2017-12-29 2020-04-28 서울대학교 산학협력단 Method and system for low latency ue-initiated handover in wireless cellular network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049487A (en) * 2008-11-03 2010-05-12 엘지전자 주식회사 A random access method of a user equipment to a base station in a wireless communiaction system supproting uplink and downlink multi carriers
US20110159867A1 (en) * 2009-12-24 2011-06-30 Richard Lee-Chee Kuo Method and apparatus to allocate random access channel (rach) resources for carrier aggregation in a wireless communication network
WO2011085973A1 (en) * 2010-01-12 2011-07-21 Nec Europe Ltd. Method and system for supporting network-based mobility management of a mobile terminal
KR20110085441A (en) * 2010-01-20 2011-07-27 삼성전자주식회사 Method and apparatus for surpporting handover of user equipment in mobile system
US20120178482A1 (en) * 2009-12-03 2012-07-12 Seo Han Byul Method and apparatus for reducing inter-cell interference in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049487A (en) * 2008-11-03 2010-05-12 엘지전자 주식회사 A random access method of a user equipment to a base station in a wireless communiaction system supproting uplink and downlink multi carriers
US20120178482A1 (en) * 2009-12-03 2012-07-12 Seo Han Byul Method and apparatus for reducing inter-cell interference in a wireless communication system
US20110159867A1 (en) * 2009-12-24 2011-06-30 Richard Lee-Chee Kuo Method and apparatus to allocate random access channel (rach) resources for carrier aggregation in a wireless communication network
WO2011085973A1 (en) * 2010-01-12 2011-07-21 Nec Europe Ltd. Method and system for supporting network-based mobility management of a mobile terminal
KR20110085441A (en) * 2010-01-20 2011-07-27 삼성전자주식회사 Method and apparatus for surpporting handover of user equipment in mobile system

Also Published As

Publication number Publication date
KR20140033773A (en) 2014-03-19
KR101472101B1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2018230984A1 (en) Method for measuring synchronization signal block and apparatus therefor
WO2018143760A1 (en) Measurement performing method and user equipment
WO2016105175A1 (en) Method and apparatus for configuration uplink and downlink carriers
WO2016171513A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system supporting unlicensed band
WO2017176022A1 (en) Method and apparatus for managing beam in beamforming system
WO2014126435A1 (en) Method and apparatus for power control and multiplexing for device to device communication in wireless cellular communication system
WO2012060608A2 (en) Method for coordinating inter-cell interference and base station
WO2014126345A1 (en) Mobile terminal handover in an lte network
WO2012046997A1 (en) Methods and apparatus for enabling interference coordination in heterogeneous networks
WO2014157904A1 (en) Location-specific wlan information provision method in cell of wireless communication system
WO2014027804A1 (en) Uplink control channel, and method and apparatus for controlling transmission of sounding reference signal
WO2017123009A1 (en) Method and apparatus for improving coverage of cell in wireless communication system
WO2012057547A2 (en) Method and apparatus for measuring a channel status between terminals in a wireless access system that supports cooperative communication
WO2014038755A1 (en) Method for estimating uplink channel and communication system
WO2017023144A1 (en) Method and apparatus for performing inter-carrier d2d communication
WO2012091450A2 (en) Method and apparatus for requesting inter-cell interference coordination and method and apparatus for processing inter-cell interference coordination request
WO2012118311A2 (en) Method of transmitting and receiving data in a wireless communication system and apparatus therefor
WO2015053514A1 (en) Method and apparatus for transmit signal power control and discovery signal resource multiplexing in wireless communication system
WO2018084593A1 (en) Method for processing data on basis of network slice, and apparatus therefor
WO2013112010A1 (en) Apparatus and method for controlling indevice coexistence interference in wireless communication system
WO2016053039A1 (en) System information transmission method and apparatus
WO2015016576A1 (en) Method and device for performing coordination between radio access points in wireless communication system
WO2015111959A1 (en) Device for transmitting/receiving discovery signal of lte small cell
WO2013141624A1 (en) Apparatus and method for transmitting inter-heterogeneous cell interference coordination information
WO2014077547A1 (en) Mobile terminal handover in an lte network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02-07-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12884173

Country of ref document: EP

Kind code of ref document: A1