WO2014038568A1 - Solar cell module and solar photovoltaic power generation system - Google Patents
Solar cell module and solar photovoltaic power generation system Download PDFInfo
- Publication number
- WO2014038568A1 WO2014038568A1 PCT/JP2013/073747 JP2013073747W WO2014038568A1 WO 2014038568 A1 WO2014038568 A1 WO 2014038568A1 JP 2013073747 W JP2013073747 W JP 2013073747W WO 2014038568 A1 WO2014038568 A1 WO 2014038568A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- alignment mark
- solar cell
- light collector
- solar
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 23
- 238000009434 installation Methods 0.000 claims description 14
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 description 46
- 230000004048 modification Effects 0.000 description 46
- 239000000853 adhesive Substances 0.000 description 43
- 230000001070 adhesive effect Effects 0.000 description 43
- 239000000975 dye Substances 0.000 description 29
- 238000004088 simulation Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 11
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 230000000644 propagated effect Effects 0.000 description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 235000001671 coumarin Nutrition 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229960000956 coumarin Drugs 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002274 desiccant Substances 0.000 description 4
- 229920006332 epoxy adhesive Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000013464 silicone adhesive Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 2
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- -1 polyphenylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- AFVDZBIIBXWASR-AATRIKPKSA-N (E)-1,3,5-hexatriene Chemical compound C=C\C=C\C=C AFVDZBIIBXWASR-AATRIKPKSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- PCGDWIWUQDHQLK-UHFFFAOYSA-N 2-morpholin-4-yl-5-nitrobenzaldehyde Chemical compound O=CC1=CC([N+](=O)[O-])=CC=C1N1CCOCC1 PCGDWIWUQDHQLK-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- GDALETGZDYOOGB-UHFFFAOYSA-N Acridone Natural products C1=C(O)C=C2N(C)C3=CC=CC=C3C(=O)C2=C1O GDALETGZDYOOGB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000000999 acridine dye Substances 0.000 description 1
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000981 basic dye Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- VSSSHNJONFTXHS-UHFFFAOYSA-N coumarin 153 Chemical compound C12=C3CCCN2CCCC1=CC1=C3OC(=O)C=C1C(F)(F)F VSSSHNJONFTXHS-UHFFFAOYSA-N 0.000 description 1
- JRUYYVYCSJCVMP-UHFFFAOYSA-N coumarin 30 Chemical compound C1=CC=C2N(C)C(C=3C4=CC=C(C=C4OC(=O)C=3)N(CC)CC)=NC2=C1 JRUYYVYCSJCVMP-UHFFFAOYSA-N 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- OPQZHVFVHOLQNE-JFGKHBSWSA-N cyclosporin A metabolite M18 Chemical compound CC[C@@H]1NC(=O)[C@H]([C@@H]2OC(CCO)C[C@H]2C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O)C(C)C OPQZHVFVHOLQNE-JFGKHBSWSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000001019 fluorene dye Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- JLKXXDAJGKKSNK-UHFFFAOYSA-N perchloric acid;pyridine Chemical compound OCl(=O)(=O)=O.C1=CC=NC=C1 JLKXXDAJGKKSNK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- MUSLHCJRTRQOSP-UHFFFAOYSA-N rhodamine 101 Chemical compound [O-]C(=O)C1=CC=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MUSLHCJRTRQOSP-UHFFFAOYSA-N 0.000 description 1
- MYIOYATURDILJN-UHFFFAOYSA-N rhodamine 110 Chemical compound [Cl-].C=12C=CC(N)=CC2=[O+]C2=CC(N)=CC=C2C=1C1=CC=CC=C1C(O)=O MYIOYATURDILJN-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000001016 thiazine dye Substances 0.000 description 1
- 239000001017 thiazole dye Substances 0.000 description 1
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/055—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S30/00—Structural details of PV modules other than those related to light conversion
- H02S30/10—Frame structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a solar cell module and a solar power generation device.
- a solar energy converter described in Patent Document 1 is known as a solar power generation device that generates power by installing solar cells on the end face of a light collector and making light propagated through the light collector enter the solar cells. It has been.
- This solar energy converter generates electricity by causing a phosphor to emit light by sunlight incident on the light collector and propagating the fluorescence emitted from the phosphor to solar cells installed on the end face of the light collector. Yes.
- the present invention has been made to solve the above-described problem, and a solar battery module capable of efficiently taking light into a solar battery cell via a light collector and a solar power generation apparatus using the solar battery module The purpose is to provide.
- a solar cell module includes a light collector that allows light from the outside to enter from the first main surface, propagate inside, and exit from the end surface, and the light collector A solar cell that receives the light emitted from the end surface and generates electric power, and an alignment mark corresponding to at least one of the light collector and the solar cell, and the alignment
- the solar battery cell and the light collector are installed in a state of being aligned with each other with reference to a mark.
- the alignment mark includes a first alignment mark corresponding to the light collector and a second alignment mark corresponding to the solar cell,
- the solar battery cell and the light collector are installed in a state of being aligned with each other with the first alignment mark and the second alignment mark as a reference.
- the first alignment mark has a reflection characteristic for reflecting the light.
- the first alignment mark has a laminated structure, and at least a layer in contact with the light collector is a reflective layer.
- the second alignment mark includes an opening formed in the electrode of the solar cell element.
- the solar cell module further includes a support plate that supports the plurality of solar cells and is attached to the light collector, and the plurality of solar cells includes the support plate.
- the second alignment mark and the first alignment mark formed on the first alignment mark are used as a reference, and the second alignment mark is installed in a state of being aligned with the light collector.
- the second alignment mark includes a through-hole penetrating the support plate.
- the support plate is made of a translucent material.
- the installation location of the first alignment mark is set based on the light condensing efficiency of the light collecting plate.
- the light collector is a fluorescent light collector containing a phosphor that absorbs incident light and emits fluorescence.
- the solar power generation device includes the solar cell module according to the first aspect.
- the present invention it is possible to provide a solar cell module capable of efficiently capturing light into a solar cell through a light collector and a solar power generation apparatus using the solar cell module.
- FIG. 3 is a cross-sectional view of the solar cell module along the line AA in FIG. 2. It is a top view which shows the structure of a solar cell element. It is a figure for demonstrating alignment with a light-condensing plate and a solar cell element.
- (A) is sectional drawing which shows the solar cell module which concerns on the 1st modification of 1st Embodiment
- (b) is a top view of the arrangement
- ( c) is a plan view of the solar cell element disposed on the end face of the light collector.
- (A), (b) is a figure which shows the principal part structure of the solar cell module which concerns on the 2nd modification of 1st Embodiment. It is a principal part enlarged view of the solar cell element which concerns on the 3rd modification of 1st Embodiment. It is a figure for demonstrating the alignment of the solar cell module which concerns on a 3rd modification.
- FIG. 1 is an exploded perspective view showing the solar cell module 1 according to the first embodiment of the present invention.
- FIG. 2 is a plan view showing the solar cell module 1.
- FIG. 3 is a cross-sectional view taken along line AA in FIG.
- the solar cell module 1 includes a light collector 2, a solar cell element 3, and a frame 4.
- the light collector 2 is a plate member having a rectangular shape in plan view. As shown in FIG. 3, the light collector 2 has a first main surface 2a, a second main surface 2b, and an end surface 2c.
- the first main surface 2a is a light incident surface.
- the second main surface 2b is a surface opposite to the first main surface 2a.
- the end surface 2c is a light reflecting surface.
- the size of the light collector 2 is, for example, about 100 cm for the long side, about 90 cm for the short side, and about 4 mm in thickness.
- the end surface 2c of the light collector 2 is inclined at an acute angle with respect to the second main surface 2b of the light collector 2.
- the angle formed between the end surface 2c of the light collector 2 and the second main surface 2b of the light collector 2 is, for example, about 45 °.
- the light collector 2 is a fluorescent light collector in which a phosphor 21 is dispersed in a transparent substrate 20 as shown in FIG.
- the transparent substrate 20 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or a transparent inorganic material such as glass.
- PMMA resin refrtive index 1.409 is used as the transparent substrate 20.
- the light collector 2 is formed by dispersing the phosphor 21 in this PMMA resin. Note that the refractive index of the light collector 2 is 1.50, which is about the same as that of the PMMA resin because the amount of the phosphor 21 dispersed is small.
- the phosphor 21 is an optical functional material that absorbs ultraviolet light or visible light, emits visible light or infrared light, and emits it.
- the optical functional material include organic phosphors.
- organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine Dyes, perylene dyes, pyrene dyes, anthracene dyes, acridone dyes, acridine dyes, fluorene dyes, terphenyl dyes, ethene dyes, butadiene dyes, hexatriene dyes, oxazole dyes, coumarins Dyes, stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazin
- An inorganic phosphor can also be used as the phosphor.
- various dyes direct dyes, acid dyes, basic dyes, disperse dyes, etc.
- one type of phosphor 21 is dispersed inside the light collector 2.
- the phosphor 21 absorbs orange light and emits red fluorescence.
- BASF Lumogen R305 (trade name) is used as the phosphor 21.
- the phosphor 21 absorbs light having a wavelength of approximately 600 nm or less.
- the emission spectrum of the phosphor 21 has a peak wavelength at 610 nm.
- the reflection layer 5 is provided on the four end surfaces 2 c of the light collector 2.
- the reflective layer 5 reflects light (light emitted from the phosphor 21) traveling from the inside of the light collector 2 toward the outside toward the inside of the light collector 2.
- a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used. If this material is used, a high reflectance of 98% or more can be realized under visible light.
- the reflective layer 5 may be a reflective layer made of a metal film such as aluminum (Al), copper (Cu), gold (Au), silver (Ag), or the like.
- the reflection layer 5 is joined to the end surface 2c of the light collector 2 by a transparent adhesive 6 as shown in FIG.
- the transparent adhesive 6 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive. Note that the refractive index of the transparent adhesive 6 is 1.50, which is about the same as that of the light collector 2.
- the reflective layer 5 may be formed directly on the end surface 2 c of the light collector 2.
- the reflective layer 5 may be held by being sandwiched between the inner wall surface of the frame 4 and the end surface 2 c of the light collector 2. According to this, the transparent adhesive 6 arrange
- the solar cell element 3 is arranged along the four sides of the light collector 2.
- the light receiving surface of the solar cell element 3 faces the second main surface 2 b at the end of the light collector 2.
- the solar cell element 3 includes a plurality of solar cells 30 and a support plate 31 that supports the plurality of solar cells 30.
- the plurality of solar cells 30 are fixed to the light collector 2 and are not fixed to the frame 4. Specifically, as shown in FIG. 3, the surface of the solar battery cell 30 opposite to the support plate 31 is joined to the second main surface 2 b of the light collector 2 by the transparent adhesive 7.
- the support plate 31 is made of a translucent material such as glass epoxy.
- an ethylene / vinyl acetate copolymer (EVA) can be used in the same manner as the transparent adhesive 6.
- the refractive index of the transparent adhesive 7 is 1.50, which is the same as that of the light collector 2.
- the transparent adhesive 7 may be a thermosetting adhesive such as an epoxy adhesive, a silicone adhesive, or a polyimide adhesive.
- the frame 4 has a rectangular frame shape in plan view as shown in FIG.
- the frame 4 holds the end of the light collector 2.
- the frame 4 is disposed so as to cover the solar cell element 3.
- the thickness of the frame 4 is about 2 mm.
- the material for forming the frame 4 is a metal such as Al.
- various materials can be used as the material for forming the frame 4. In particular, it is preferable to use a high-strength and lightweight material.
- the frame 4 is divided for each side of the light collector 2 as shown in FIG.
- the frame 4 includes a first subframe 41 and a second subframe 42.
- the first subframe 41 is disposed along the short side of the light collector 2.
- Two first subframes 41 are arranged, one on each of the two short sides facing each other.
- the second subframe 42 is disposed along the long side of the light collector 2.
- Two second subframes 42 are arranged, one on each of the two long sides facing each other.
- the frame 4 holds the light collector 2 sandwiched between the first main surface 2a side and the second main surface 2b side.
- the first subframe 41 includes a top plate portion 41a, a bottom plate portion 41b, and a side wall portion 41c.
- the configuration of the second subframe 42 has the same configuration as this.
- the top plate portion 41a, the bottom plate portion 41b, and the side wall portion 41c are integrally formed.
- the top plate portion 41 a is disposed so as to cover the solar cell element 3.
- One end of the top plate portion 41a is connected to the side wall portion 41c.
- the other end portion of the top plate portion 41 a extends to a portion beyond the solar cell element 3.
- the other end portion of the top plate portion 41a is thick.
- the bottom plate portion 41b is disposed to face the top plate portion 41a with the light collector 2 interposed therebetween.
- One end portion of the bottom plate portion 41b is connected to the side wall portion 41c.
- the other end portion of the bottom plate portion 41 b extends to a portion overlapping the other end portion of the top plate portion 41 a of the light collector 2.
- the length of the bottom plate portion 41b in the longitudinal direction of the light collector 2 is substantially equal to the length of the light collector 2 of the top plate portion 41a in the longitudinal direction.
- a through hole 41 h is provided at the end of the first subframe 41.
- a screw hole 42h is provided at a portion of the end of the second subframe 42 that overlaps the through hole 41h of the first subframe 41.
- a fixing member 43 such as a screw is fixed to the screw hole 42h through the through hole 41h. As a result, the end of the first subframe 41 is fixed to the end of the second subframe 42.
- a reflective layer 8 and a buffer layer 9 are provided between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2.
- the reflection layer 8 reflects the light traveling from the inside of the light collector 2 toward the outside (the light emitted from the phosphor 21) toward the inside of the light collector 2.
- a reflection layer made of a dielectric multilayer film such as ESR, or a reflection layer made of a metal film such as Al, Cu, Au, or Ag can be used.
- the reflective layer 8 is joined to the first main surface 2 a of the light collector 2 by a transparent adhesive 10.
- the transparent adhesive 10 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive.
- the refractive index of the transparent adhesive 10 is desirably 1.50, which is about the same as that of the light collector 2 in order to propagate the guided light from the light collector 2 without loss.
- a one-component transparent epoxy resin EH1600-G2 manufactured by Inabata Sangyo Co., Ltd. having a refractive index after curing of 1.51 was used as the transparent adhesive 10 of this embodiment.
- the present adhesive is not limited.
- the reflective layer 8 may be formed directly on the first main surface 2a of the light collector 2. Further, the reflective layer 8 may be held by being sandwiched between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2. Thereby, it becomes unnecessary to arrange the transparent adhesive 10.
- the buffer layer 9 absorbs stress applied between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2.
- a rubber sheet such as a silicon rubber sheet can be used.
- various materials can be used as the material for forming the buffer layer 9. In particular, it is preferable to use a material having high waterproofness.
- the buffer layer 9 is joined to the other end portion of the top plate portion 41 a of the frame 4 with an adhesive 11.
- the adhesive 11 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive.
- EVA ethylene / vinyl acetate copolymer
- the buffer layer 9 may not be completely fixed by the adhesive 11. It is sufficient that the position of the buffer layer 9 does not shift when the light collector 2 is sandwiched and held by the frame 4.
- a reflective layer 12 and a buffer layer 13 are provided between the other end of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2.
- the reflection layer 12 reflects light traveling from the inside of the light collector 2 toward the outside thereof (light emitted from the phosphor 21) toward the inside of the light collector 2.
- the reflective layer 12 the same layer as the reflective layer 8 can be used.
- the reflective layer 12 is joined to the second main surface 2 b of the light collector 2 by a transparent adhesive 14.
- a transparent adhesive 14 the same adhesive as the transparent adhesive 10 can be used.
- the reflective layer 12 may be formed directly on the second main surface 2b of the light collector 2. Further, the reflective layer 12 may be held by being sandwiched between the other end portion of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2. Thereby, it becomes unnecessary to arrange the transparent adhesive 14.
- the buffer layer 13 absorbs stress applied between the other end portion of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2.
- the same one as the buffer layer 9 can be used.
- the buffer layer 13 is bonded to the other end portion of the bottom plate portion 41 b of the frame 4 with an adhesive 15.
- the adhesive 15 can be the same as the adhesive 11. Note that the buffer layer 13 may not be completely fixed by the adhesive 15. It is sufficient that the position of the buffer layer 13 is not displaced when the light collector 2 is sandwiched and held by the frame 4.
- an air layer is interposed in a portion where the reflective layer 12 and the buffer layer 13 between the bottom plate portion 41b of the frame 4 and the second main surface 2b of the light collector 2 are not disposed.
- the inner wall surface 4s (inner wall surface 41s) of the frame 4 (first subframe 41) and the end surface 2c of the light collector 2 are separated from each other. Note that the arrangement relationship between the inner wall surface of the side wall portion of the second subframe 42 and the end surface 2c of the light collector 2 has the same arrangement relationship as this, and thus detailed description thereof is omitted.
- a space 40 is provided between the inner wall surface 41 s of the top plate portion 41 a of the first subframe 41 and the solar cell element 3.
- An air layer is interposed in the space 40.
- the desiccant 18 is provided on the inner wall surface 41 s of the top plate portion 41 a of the first subframe 41.
- Silica gel can be used as the desiccant 18.
- a molecular sieve can be used as the desiccant 18.
- the space 40 may be filled with dry nitrogen.
- the solar battery cell 30 a known solar battery such as a silicon solar battery, a compound solar battery, a quantum dot solar battery, or an organic solar battery can be used.
- the compound type solar cell and quantum dot solar cell using a compound semiconductor are suitable as the solar cell 30 since highly efficient electric power generation is possible.
- a GaAs solar cell which is a compound solar cell exhibiting high efficiency at the peak wavelength (610 nm) of the emission spectrum of the phosphor 21 is desirable.
- InGaP, InGaAs, AlGaAs, Cu (In, Ga) Se2, Cu (In, Ga) (Se, S) 2, CuInS2, CdTe, CdS, or the like may be used as the compound solar cell.
- Si, InGaAs or the like may be used as the quantum dot solar cell.
- other types of solar cells such as Si and organic can be used depending on the price and application.
- the vertical width is 8 mm and the horizontal width is 49 mm.
- the vertical width is 15 mm and the horizontal width is 200 mm.
- a plurality of (five) support plates 31 are arranged on the long side forming the outer shape of the second main surface 2b of the light collector 2, and the short side forming the outer shape of the second main surface 2b of the light collector 2
- a plurality of (four) support plates 31 are arranged on each (see FIGS. 1 and 2).
- each photovoltaic cell 30 is electrically connected in series via a wiring (not shown). That is, the light collector 2 has a total of 20 solar cells 30 arranged along the long side direction of the second main surface 2b, and a total of 16 solar cells along the short side of the second main surface 2b. A cell 30 is arranged.
- the solar battery cell 30 needs to be disposed at a predetermined position on the second main surface 2b of the light collector 2. . Therefore, in the solar cell module 1 according to the present embodiment, the solar cells 30 and the light collector 2 are aligned with each other with high accuracy.
- the solar cell module 1 is arranged in a state in which the solar cells 30 and the light collector 2 are aligned with each other with reference to the first alignment mark and the second alignment mark. Thereby, in the solar cell module 1, the fluorescence propagated in the light collector 2 is efficiently guided to the solar cell 30.
- 1st alignment mark AM1 is formed in the 2nd main surface 2b of the light-condensing plate 2 by printing etc., for example.
- the first alignment mark AM1 corresponds to the light collector 2 and defines relative position information of the light collector 2 during alignment. That is, the first alignment mark AM1 is used as an index at the time of alignment with the solar cell element 3 side as described later.
- the shape of the first alignment mark AM1 various shapes such as a circular shape, a triangular shape, a quadrangular shape, and a cross shape can be adopted.
- the shape of the first alignment mark AM1 may be the same (including a similar shape) as a second alignment mark AM2 described later, or may be a different shape. That is, the shape of the first alignment mark AM1 may be any shape as long as the support plate 31 and the solar cell element 3 can be aligned.
- the first alignment mark AM1 has a cross shape having a width of 300 ⁇ m, a width, and a height of 1 mm, for example (see FIG. 5A).
- the first alignment mark AM1 is a very small area in consideration of the entire area of the light collector 2.
- the first alignment mark AM1 may cause a loss of fluorescence guided to the solar cell element 3.
- a material having a light reflection characteristic is used as a forming material (printing material) of the first alignment mark AM1. Thereby, the loss of fluorescence due to the first alignment mark AM1 can be suppressed.
- the first alignment mark AM1 has a laminated structure in which a plurality of materials are laminated, and at least the outermost layer AM1 ′ in contact with the light collector 2 has light reflection characteristics such as aluminum (Al), copper ( It is comprised from metal materials, such as Cu), gold
- the first alignment mark AM1 may be composed of only one layer of the metal material having the light reflection characteristics as described above, or a resin material in which the layer not in contact with the light collector 2 does not have the light reflection characteristics. You may be comprised from.
- the second alignment mark AM2 is formed on the support plate 31 by printing or the like, for example.
- the second alignment mark AM2 corresponds to the solar battery cell 30 and defines relative position information of the solar battery cell 30 during alignment. That is, the second alignment mark AM2 is used as an index at the time of alignment with the light collector 2 side as described later.
- FIG. 4 is a plan view showing the configuration of the solar cell element 3.
- the support plate 31 is provided with five second alignment marks AM2.
- the second alignment mark AM ⁇ b> 2 is formed at a position that enters inward by 10 mm from the end 31 a of the support plate 31.
- As the shape of the second alignment mark AM2 various shapes such as a circular shape, a triangular shape, a quadrangular shape, and a cross shape can be adopted, and the same shape as the first alignment mark AM1 or a different shape can be used. There may be.
- the second alignment mark AM ⁇ b> 2 is formed in a circular shape with a diameter of about 300 ⁇ m, for example.
- the second alignment mark AM2 has a size that substantially overlaps with the intersecting portion in the center of the first alignment mark AM1 having a cross shape. According to this, for example, the alignment work can be easily performed by relatively moving the support plate 31 and the light collector 2 so that the second alignment mark AM2 is positioned at the center of the first alignment mark AM1.
- the plurality of solar cells 30 are aligned at predetermined positions on the support plate 31 with the second alignment mark AM2 as a reference. Therefore, in the solar cell module 1, when the support plate 31 and the light collector 2 are aligned with each other at a predetermined position with reference to the first alignment mark AM1 and the second alignment mark AM2, the plurality of solar cells 30 are aligned with each other. 2 can be aligned at a predetermined position.
- each solar cell 30 is provided with two alignment marks M.
- the mark M is formed at both ends of the electrode portion constituting the solar battery cell 30.
- the solar battery cell 30 includes a connection electrode 30a and a collect electrode 30b that collects charges generated by irradiation with light.
- the mark M is configured by, for example, a portion that is patterned to form the electrode 30a.
- a cross-shaped blank pattern is formed as the mark M. Since the electrode 30a is made of gold (Au) or silver (Ag) in order to increase the resistance value, there is no particular problem even if the above-described punched portion is formed.
- five second alignment marks AM2 are formed at predetermined positions on the support plate 31 on which the solar cells 30 on which the marks M are formed are arranged.
- the five second alignment marks AM2 may be referred to as second alignment marks AM2a, AM2b, AM2c, AM2d, and AM2e, respectively.
- the marks M in the four solar cells 30 arranged on the support plate 31 may be referred to as M1, M2, M3, M4, M5, M6, M7, and M8 in order from the left.
- a sticking device (not shown) for sticking the solar cells 30 to the support plate 31 uses the mark M and the second alignment mark AM2 when aligning the solar cells 30 with the support plate 31.
- the sticking device images the mark M and the second alignment mark AM2 by an imaging unit such as a CCD camera. Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the mark M and the second alignment mark AM2 are within a predetermined threshold value (predetermined allowable range), and the solar battery cell 30 is supported on the support plate. 31.
- a predetermined threshold value predetermined allowable range
- the sticking device aligns each mark M of the solar battery cell 30 so that the coordinate position with respect to at least two second alignment marks AM2 is within an error (allowable range) of 2% or less, and arranges it on the support plate 31. Paste through the adhesive.
- the attaching device aligns the solar cells 30 on the leftmost side of the support plate 31 in FIG. 4
- the attaching device is a solar cell on the support plate 31 so that the errors in the coordinate positions of the marks M1 and M2 of the solar cell 30 and the second alignment marks AM2a and AM2b of the support plate 31 are within ⁇ 2%, respectively.
- the position of the cell 30 is adjusted.
- the case where the solar battery cell 30 is aligned on the support plate 31 by using the mark M formed on the solar battery cell 30 is described as an example.
- the alignment method is not limited to this.
- alignment is performed by forming a mark corresponding to the outer shape of the solar battery cell 30 in the arrangement region of each solar battery cell 30 on the support plate 31 and arranging the solar battery cell 30 so as to overlap the mark. May be. According to this, the solar cell 30 and the support plate 31 can be easily and accurately aligned by arranging the solar cell 30 on the support plate 31 so as to overlap the mark.
- the solar cell element 3 includes a plurality of (four) solar cells 30 arranged on the support plate 31 with a predetermined error with respect to the second alignment mark AM2.
- the second alignment mark AM ⁇ b> 2 provided on the support plate 31 can be used as an index that defines the relative position of the solar battery cell 30 during alignment with the light collector 2.
- the support plate 31 and the light collector 2 are aligned with reference to the first alignment mark AM1 and the second alignment mark AM2, It is possible to align each solar battery cell 30 arranged on the light collector 2 and the light collector 2.
- FIG. Fig.5 (a) is a top view at the time of aligning the solar cell element 3 and the light-condensing plate 2
- FIG.5 (b) is sectional drawing at the time of alignment.
- the positions of the second alignment mark AM2 and the first alignment mark AM1 are confirmed from the back surface (the surface opposite to the arrangement surface of the solar cells 30) of the support plate 31.
- the solar cell element 3 and the light collector 2 are aligned.
- the support plate 31 is comprised from the glass epoxy which has a light transmittance, the position of the said marks AM1 and AM2 can be confirmed from the back side.
- the plurality of solar cells 30 are accurately aligned on the support plate 31 with the second alignment mark as a reference as described above. Therefore, in the solar cell module 1, the support plate 31 and the light collector 2 are aligned on the light collector 2 with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Each photovoltaic cell 30 and the light collector 2 can be aligned. The solar cells 30 aligned with the light collector 2 are bonded to the support plate 31 via the transparent adhesive 7.
- the solar cell module 1 is installed in a state where the light collector 2 and the solar cell element 3 are accurately aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Can be provided.
- the solar cells 30 are arranged in a state aligned with the predetermined positions of the second main surface 2b of the light collector 2, so that the light collector 2
- the fluorescence that has propagated through the inside can be guided to the solar battery cell 30 satisfactorily. Therefore, high power generation efficiency can be obtained.
- the outermost layer AM1 ′ of the first alignment mark AM1 is made of a material having light reflection characteristics, the first alignment mark AM1 formed on the second main surface 2b of the light collector 2 is used. The loss of fluorescence due to can be suppressed.
- the alignment work can be facilitated.
- the solar cell element 3 is fixed to the first main surface 2 a of the light collector 2 and is not fixed to the frame 4. Therefore, it can suppress that stress is added to the solar cell element 3 by the shift
- the air layer is interposed in the portion where the reflection layer 12 and the buffer layer 13 between the bottom plate portion 41b of the frame 4 and the second main surface 2b of the light collector 2 are not disposed. Yes. Since the refractive index difference between the refractive index of the light collector 2 and the refractive index of the air layer is large, the light propagating through the light collector 2 is likely to be totally reflected at the interface between the light collector 2 and the air layer. Thus, light loss can be reduced. For example, when the refractive index of the light collector 2 is 1.5 and the refractive index of the air layer is 1.0, the critical angle at the interface between the light collector 2 and the air layer is about 42 ° from Snell's law. Since the critical angle condition is satisfied while the incident angle of light on the interface is greater than the critical angle of 42 °, the light is totally reflected at the interface.
- the frame 4 is formed so as to cover the solar cell element 3, it is possible to prevent foreign matters such as dust and rainwater from entering the solar cell element 3.
- the frame 4 is held by sandwiching the end portion of the light collector 2 from the first main surface 2a side and the second main surface 2b side. Therefore, it can suppress that the flame
- the desiccant 18 is provided in the space 40, the moisture in the space 40 can be removed. Therefore, it can suppress that the quality of the solar cell element 3 deteriorates with humidity.
- the light-condensing plate 2 of this embodiment is comprised with the fluorescence light-condensing plate containing the fluorescent substance which absorbs incident light and emits fluorescence, it is not restricted to this. For example, you may be comprised with the light-condensing plate which does not contain fluorescent substance.
- the shape light-condensing plate provided with the reflective surface which reflects the incident light and changes the advancing direction of the said light may be sufficient.
- the solar cell element 3 may be provided in the 1st main surface 2a.
- the reflective layer 12 is provided in a part of the frame 4 .
- the present invention is not limited to this.
- the reflective layer may be provided on the entire inner surface of the frame.
- FIG. 6A is a cross-sectional view showing the solar cell module according to the first modification
- FIG. 6B is a plan view of the end face of the light collector 2 according to the first modification
- FIG. 6C is the end face of the light collector. It is a top view which shows the aligned solar cell element.
- FIG. 6A shows a cross-sectional configuration corresponding to FIG. 3 in the first embodiment.
- the end surface 2c is orthogonal to the first main surface 2a and the second main surface 2b. That is, the angle formed by the end surface 2c of the light collector 2 and the second main surface 2b (first main surface 2a) of the light collector 2 is 90 °.
- the light collector 2 is provided with a first alignment mark AM1 on the upper side (first main surface 2a side) of the end surface 2c.
- the solar cell element 3 is based on the second alignment mark AM2 provided on the support plate 31 and the first alignment mark AM1 provided on the light collector 2. It is installed in an aligned state with the end face 2c of the light collector 2.
- the surface of the solar battery cell 30 opposite to the support plate 31 is joined to the end surface 2 c of the light collector 2 by the transparent adhesive 7.
- the second alignment mark AM2 and the first alignment mark AM1 are formed from the back surface (the surface opposite to the arrangement surface of the solar cells 30) through the support plate 31 made of glass epoxy having light transmittance.
- the solar cell element 3 and the light collector 2 are aligned while confirming the position.
- the support plate 31 and the first alignment mark AM1 and the second alignment mark AM2 are used as a reference. If alignment with the light-condensing plate 2 is performed, each solar cell 30 arrange
- the solar battery cell 30 is arranged in a state accurately aligned with a predetermined position on the end surface 2c of the light collector 2, so that the light propagated in the light collector 2 is arranged on the end surface 2c.
- the solar cell 30 can be favorably guided. Therefore, high power generation efficiency can be obtained as in the above embodiment.
- FIG.7 (a) is a figure which shows the planar structure of the solar cell element which concerns on 2nd deformation
- (b) is sectional drawing for demonstrating alignment of the light-condensing plate 2 and solar cell element which concern on 2nd deformation
- FIG. 7B is a diagram corresponding to FIG. 5B in the first embodiment.
- a through hole K is formed in the support plate 31, and the opening end (circular shape) of the through hole K defines the second alignment mark AM2. It is composed.
- the second alignment mark AM ⁇ b> 2 including the through holes K formed in the support plate 31 and the first alignment mark AM ⁇ b> 1 provided on the light collector 2. Are aligned with respect to the solar battery cell 30 and the light collector 2.
- 1st alignment mark AM1 provided in the light-condensing plate 2 can be confirmed through the through-hole K formed in the support plate 31.
- FIG. Therefore, the positions of the support plate 31 and the light collector 2 can be adjusted so that the first alignment mark AM1 can be confirmed through the through hole K. That is, it can be said that the through hole K constitutes the second alignment mark AM2 that defines the position information on the support plate 31.
- the second alignment mark AM2 is constituted by the through hole K formed in the support plate 31, and therefore the first alignment mark AM1 can be confirmed through the through hole K. Therefore, the support plate 31 does not have to be made of a light transmissive material as in the first embodiment.
- the first alignment mark AM1 and the second alignment mark AM2 are used as a reference. If the support plate 31 and the light collector 2 are aligned, the solar cells 30 arranged on the light collector 2 and the light collector 2 can be aligned. Therefore, the light propagating through the light collector 2 can be favorably guided to the solar battery cell 30 disposed on the end face 2c, and the solar battery module 1 having high power generation efficiency can be obtained.
- FIG. 8 is a diagram illustrating a planar configuration of the solar cell element according to the third modification
- FIG. 9 is a cross-sectional view for explaining alignment of the light collector 2 and the solar cell element according to the third modification.
- FIG. 9 is a diagram corresponding to FIG. 5B in the first embodiment.
- the second alignment mark AM ⁇ b> 2 is composed of an electrode 30 a that is a part of the solar battery cell 30.
- the second alignment mark AM2 includes, for example, a portion that is not patterned when the electrode 30a is formed by patterning (a portion without the electrode 30a).
- connection electrode 30a having a width of 1.5 mm was formed in the solar battery cell 30, and a plurality of 500- ⁇ m-square square-out portions were formed in the electrode 30a.
- the first alignment mark AM1 is a square having the same size as the second alignment mark AM2.
- the positions of the first alignment mark AM1 and the second alignment mark AM2 from the first main surface 2a side of the light collector 2 are shown in FIG.
- the solar cells 30 and the light collector 2 are aligned. Since the light collector 2 is light transmissive, the first alignment mark AM1 and the second alignment mark AM2 can be observed.
- the alignment operation can be easily performed by aligning the positions of the solar battery cell 30 and the light collector 2 so that the first alignment mark AM1 and the second alignment mark AM2 overlap each other.
- the second alignment mark AM2 is constituted by a part of the solar battery cell 30 (electrode 30a), it is not necessary to install a mark on the support plate 31. Further, since the second alignment mark AM2 is formed on the electrode 30a where the light incident on the solar battery cell 30 is not used for power generation, it is possible to prevent the occurrence of light loss due to the provision of the alignment mark.
- the phosphor 21 dispersed therein absorbs the light and radiates fluorescence isotropically.
- the fluorescence emitted isotropically guides the inside of the light collector 2 and is reflected toward the second main surface 2b by the reflective layer 8 provided on the end surface 2c.
- the fluorescent light is not uniformly condensed on the end surface 2 c (reflective layer 5) of the light collector 2, but is reflected by the reflective layer 5.
- an intensity distribution is generated in the light irradiated on the second main surface 2b.
- the first alignment mark AM1 is formed on the second main surface 2b of the light collector 2. Among these, it arrange
- the arrangement position of the first alignment mark AM1 is set based on a simulation result as described later. Moreover, the position of the electrode 30a which forms the 2nd alignment mark AM2 in the photovoltaic cell 30 is adjusted suitably based on the arrangement position of 1st alignment mark AM1.
- the inventor of the present application confirmed the intensity distribution of light incident on the lower surface, which is the installation surface of the solar cells of the light collector, by simulation.
- simulation results will be described with reference to the drawings.
- FIG. 10 is a diagram illustrating a schematic perspective configuration of the light collector used in the simulation.
- FIG. 11 is a diagram showing a two-dimensional distribution of the light intensity on the lower surface of the light collector (the installation surface of the solar cells) derived from the simulation
- FIG. 12 is a three-dimensional distribution of the light intensity derived from the simulation. It is a figure which shows distribution.
- the X direction in FIG. 10 corresponds to the short side direction of the solar cell installation region in the light collector
- the Y direction corresponds to the long side direction of the solar cell placement region in the light collector. That is, the + X direction indicates a direction away from the end of the light collector.
- the inclination angle ⁇ of the end surface with respect to the second main surface of the light collector is 45 °
- the dimension d1 in the X direction of the solar cell arrangement region is 4 mm
- the dimension d2 in the Y direction is 15 cm
- the thickness of the light collector. was 2 mm.
- the dimension of the light-condensing plate used for simulation differs from the dimension of the light-condensing plate 2 which concerns on the said embodiment.
- FIG. 13A is a graph showing the light intensity distribution (intersection P of the light intensity intersecting with the plane BB ′ in FIG. 12) in the cross section of the solar cell installation region of the light collector corresponding to the line BB ′ in FIG. It is a thing.
- the horizontal axis represents the distance from the end of the light collector (that is, the value of X), and the vertical axis represents the light intensity value.
- the vertical axis is normalized so that the maximum value of the light intensity is 1.0.
- the intensity of light in the solar cell installation region rises as it moves away from the end of the light collector and then gradually decreases. Specifically, it can be confirmed that the light intensity (about 0.5) is the smallest in the vicinity of 3.3 mm from the end. That is, based on the simulation result, it is confirmed that the position (mark installation line ML) where the first alignment mark AM1 is installed is preferably set inward by the dimension d3 (3.3 mm) from the end of the light collector. it can.
- the installation location of the first alignment mark AM1 can be set based on the distribution of the light intensity incident on the solar cell installation region on the light collector (that is, the light collection efficiency of the light collector). According to this, since the first alignment mark AM1 is arranged in the region where the light intensity is weak, it is possible to suppress light loss due to the first alignment mark AM1. Therefore, the utilization efficiency of the light condensed by the light collector can be improved.
- FIG. 13B shows the light intensity distribution in the cross section of the solar cell installation region when only the inclination angle ⁇ of the end face of the light collector shown in FIG. 10 is changed to 60 ° among the simulation conditions. It is shown. As shown in FIG. 13B, it was confirmed that the inclination angle of the end face of the light collector does not significantly affect the light intensity distribution.
- this simulation result is an example, and the installation position of the first alignment mark AM1 is appropriately set according to the light intensity distribution that changes according to the simulation conditions. That is, in FIG. 13B, even when the inclination angle of the end face of the light collector is changed from 45 ° to 60 °, the light intensity distribution was not greatly affected. It is also conceivable that the light intensity distribution changes. For example, in the above simulation, the light intensity decreases with increasing distance from the end portion regardless of the inclination angle of the end face. However, depending on the shape of the light collector, the light intensity may decrease as it approaches the end portion. In this case, the mark installation line ML may be set near the end of the light collector.
- FIG. 14 is a cross-sectional view showing the configuration of the solar cell module according to this embodiment.
- FIG. 15 is a view for explaining an alignment method of solar cells with respect to the light collector.
- the light collector 2 has an end surface 2c orthogonal to the first main surface 2a and the second main surface 2b. That is, the angle formed by the end surface 2c of the light collector 2 and the second main surface 2b (first main surface 2a) of the light collector 2 is 90 °.
- the solar battery cell 30 is joined to the end surface 2 c of the light collector 2 by the transparent adhesive 7.
- the first alignment mark AM1 is provided on the end surface 2c of the light collector 2
- the second alignment mark AM2 is provided directly on the solar battery cell 30.
- the solar cells 30 and the light collector 2 are arranged in a state of being aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Thereby, the fluorescence which propagates the inside of the light-condensing plate 2 is taken in favorably by the photovoltaic cell 30 joined to the end surface 2c.
- the first alignment mark AM1 is provided on the end surface 2c of the light collector 2 as shown in FIG. 1st alignment mark AM1 is provided in the position which does not overlap with the arrangement
- the first alignment marks AM1 are provided at positions corresponding to the four corners of the arrangement region A.
- a material having a light reflection characteristic is used as a material for forming the first alignment mark AM1.
- 2nd alignment mark AM2 is provided in the back surface 32 opposite to the surface in which the light in the photovoltaic cell 30 injects.
- the second alignment mark AM2 may be a mark by printing or the like, or may have an uneven shape formed by directly processing the solar battery cell 30.
- the solar battery cell 30 is arranged in a state aligned with the end surface 2c of the light collector 2 by a sticking device (not shown).
- the sticking device uses the first alignment mark AM1 and the second alignment mark AM2 when aligning the solar battery cell 30 with the end surface 2c of the light collector 2.
- the pasting device images the first alignment mark AM1 and the second alignment mark AM2 by an imaging unit such as a CCD camera. Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the first alignment mark AM1 and the second alignment mark AM2 are within a predetermined threshold (predetermined allowable range). Are joined to the predetermined position (arrangement area A) of the end face 2c by the transparent adhesive 7.
- a predetermined threshold predetermined allowable range
- the several photovoltaic cell 30 is aligned with the end surface 2c (arrangement area
- the solar cell module 1 can be favorably guided to the solar cell 30 and provided with high power generation efficiency.
- positioning the several photovoltaic cell 30 in the end surface 2c of the light-condensing plate 2 is not restricted to the said method.
- the solar battery cell 30 may be aligned with the end face 2c using only the first alignment mark AM1 provided on the light collector 2.
- the first alignment mark AM1 is formed in an L shape that surrounds the four corners of the arrangement region A, and the intersection portion of the L shape corresponds to the corner of the arrangement region A.
- the sticking device adjusts the position of the solar battery cell 30 so that the four corners of the solar battery cell 30 are aligned with the first alignment mark AM1 set on the end surface 2c, and the solar cell with respect to the light collector 2
- the battery cell 30 can be aligned.
- the sticking device acquires the position coordinates of the light collector 2 by an imaging unit such as a CCD camera and stores the position coordinates of the four corners of the light collector 2 in advance.
- the sticking device images the first alignment mark AM1 provided on the solar cell 30 with the imaging unit, and stores the above-described stored collection.
- the position of the solar battery cell 30 on the light collector 2 is adjusted so that the error of the coordinate position between the four corners of the light plate 2 and the first alignment mark AM1 is within ⁇ 2%.
- one mark AM1, AM2 is provided.
- alignment of the solar battery cell 30 and the light collector 2 can be performed.
- FIG. 17 is a cross-sectional view showing a solar cell module according to this modification
- FIG. 18 is a diagram for explaining a method of aligning solar cells with respect to a light collector according to this modification.
- the angle formed between the end surface 2c of the light collector 2 and the second main surface 2b of the light collector 2 is set to, for example, about 45 °.
- a plurality of solar cells 30 are directly joined to the second main surface 2 b (first main surface 2 a) of the light collector 2 via the transparent adhesive 7.
- the first alignment mark AM1 is provided on the second main surface 2b of the light collector 2, and the second alignment mark AM2 is provided directly on the solar battery cell 30.
- the solar cells 30 and the light collector 2 are arranged in a state of being aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference.
- the fluorescence which propagates the inside of the light-condensing plate 2 is taken in favorably by the photovoltaic cell 30 joined to the end surface 2c.
- the first alignment mark AM1 is a position that does not overlap the arrangement area A of the solar cells 30 on the second main surface 2b of the light collector 2 and is arranged so as to face the arrangement area A. ing.
- a material having a light reflection characteristic is used as a material for forming the first alignment mark AM1.
- 2nd alignment mark AM2 is provided in the back surface 32 opposite to the surface in which the light in the photovoltaic cell 30 injects.
- the second alignment mark AM2 may be a mark by printing or the like, or may have an uneven shape formed by directly processing the solar battery cell 30.
- three second alignment marks AM2 are provided for one solar battery cell 30.
- three first alignment marks AM1 are arranged corresponding to the solar cells 30.
- the solar battery cell 30 is arranged in a state aligned with the second main surface 2b of the light collector 2 by a sticking device (not shown).
- the sticking device uses the first alignment mark AM1 and the second alignment mark AM2 when aligning the solar battery cell 30 with the second main surface 2b of the light collector 2.
- first alignment marks AM1 provided on the second main surface 2b
- second alignment marks AM2a, AM2b, and AM2c are referred to as second alignment marks AM2a, AM2b, and AM2c in order from the top.
- the pasting device images the first alignment mark AM1 and the second alignment mark AM2 by an imaging unit such as a CCD camera. . Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the first alignment mark AM1 and the second alignment mark AM2 are within a predetermined threshold (predetermined allowable range). Are joined to the predetermined position (arrangement area A) of the second main surface 2b by the transparent adhesive 7.
- a predetermined threshold predetermined allowable range
- the attaching device includes, for example, second alignment marks AM2a, AM2b, AM2c provided on the solar battery cell 30 and second alignment marks AM2a provided on the second main surface 2b of the light collector 2.
- the position of the solar battery cell 30 is adjusted so that the error of the coordinate position of AM2b and AM2c is within ⁇ 2%.
- the some photovoltaic cell 30 will be aligned with the 2nd main surface 2b (arrangement area
- the solar cell module 1 can be favorably guided to the solar cell 30 and provided with high power generation efficiency.
- the solar cell 30 is set to the 1st main surface 2a of the light-condensing plate 2 It may be arranged.
- the solar cell element 3 (several solar cell 30) is arrange
- Fig.16 (a) uses so that only the 1st alignment mark AM1 provided in the light-condensing plate 2 may align the photovoltaic cell 30 with the 2nd main surface 2b. It may be.
- FIG.16 (b) using only 2nd alignment mark AM2 provided only in the back surface 32 of the photovoltaic cell 30, the photovoltaic cell 30 is aligned with the 2nd main surface 2b. You may do it.
- FIG. 19 is a schematic configuration diagram of the solar power generation device 1000.
- a photovoltaic power generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, and an inverter that converts DC power output from the solar cell module 1001 into AC power (DC / AC). Converter) 1004 and a storage battery 1005 for storing the DC power output from the solar cell module 1001.
- the solar cell module 1001 includes a condensing member (condensing plate) 1002 that condenses sunlight, and a solar cell element 1003 that generates electric power with sunlight condensed by the condensing member 1002.
- a solar cell module 1001 the solar cell module demonstrated by the said embodiment and modification is used suitably, for example.
- the solar power generation device 1000 supplies power to the external electronic device 1006.
- the electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary. Since the photovoltaic power generation apparatus 1000 having such a configuration includes the above-described solar battery module according to the present invention, light from the light collector can be efficiently guided to the solar battery cell, and high power generation efficiency can be obtained. Is possible.
- the present invention can be used for a solar cell module and a solar power generation device.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Provided are: a solar cell module which is capable of efficiently taking light into a solar cell through a light collecting plate; and a solar photovoltaic power generation system which uses the solar cell module.
This solar cell module is provided with: a light collecting plate wherein the outside light is incident on a first main surface, propagates through the inside, and is discharged from an end face; a solar cell element that is arranged on the end face of the light collecting plate and generates electric power by receiving the light discharged from the end face; a first alignment mark that is provided on the light collecting plate; and a second alignment mark that is provided corresponding to the solar cell element. The solar cell element and the light collecting plate are aligned with each other with reference to the first alignment mark and the second alignment mark.
Description
本発明は、太陽電池モジュール及び太陽光発電装置に関する。
The present invention relates to a solar cell module and a solar power generation device.
集光板の端面に太陽電池セルを設置し、集光板の内部を伝播した光を太陽電池セルに入射させて発電を行う太陽光発電装置として、特許文献1に記載の太陽光エネルギー変換器が知られている。この太陽光エネルギー変換器は、集光板内に入射した太陽光によって蛍光体を発光させ、蛍光体から放射された蛍光を集光板の端面に設置された太陽電池セルに伝播させることで発電している。
A solar energy converter described in Patent Document 1 is known as a solar power generation device that generates power by installing solar cells on the end face of a light collector and making light propagated through the light collector enter the solar cells. It has been. This solar energy converter generates electricity by causing a phosphor to emit light by sunlight incident on the light collector and propagating the fluorescence emitted from the phosphor to solar cells installed on the end face of the light collector. Yes.
しかしながら、上記従来技術においては、太陽電池セルが集光板の端面に設置される際に位置ずれが生じると、蛍光(光)を効率的に太陽電池セルに伝播させることができず、発電量の低下を招くおそれがあった。
However, in the above-described prior art, if a positional shift occurs when the solar battery cell is installed on the end face of the light collector, the fluorescence (light) cannot be efficiently propagated to the solar battery cell, and the amount of power generation is reduced. There was a risk of lowering.
本発明は、上記の課題を解決するためになされたものであって、集光板を介して太陽電池セルに効率的に光を取り込むことが可能な太陽電池モジュール及びこれを用いた太陽光発電装置を提供することを目的とする。
The present invention has been made to solve the above-described problem, and a solar battery module capable of efficiently taking light into a solar battery cell via a light collector and a solar power generation apparatus using the solar battery module The purpose is to provide.
上記の目的を達成するために、本発明の第一態様に係る太陽電池モジュールは、外部からの光を第1主面から入射させ内部で伝播させて端面から射出させる集光板と、前記集光板の前記端面に設置され、前記端面から射出された光を受光して電力を発生する太陽電池セルと、前記集光板及び前記太陽電池セルの少なくとも一方に対応するアライメントマークと、を含み、前記アライメントマークを基準として、前記太陽電池セル及び前記集光板が互いに位置合わせされた状態で設置されることを特徴とする。
In order to achieve the above object, a solar cell module according to a first aspect of the present invention includes a light collector that allows light from the outside to enter from the first main surface, propagate inside, and exit from the end surface, and the light collector A solar cell that receives the light emitted from the end surface and generates electric power, and an alignment mark corresponding to at least one of the light collector and the solar cell, and the alignment The solar battery cell and the light collector are installed in a state of being aligned with each other with reference to a mark.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記アライメントマークは、前記集光板に対応する第1アライメントマークと、前記太陽電池セルに対応する第2アライメントマークと、を含み、前記第1アライメントマーク及び前記第2アライメントマークを基準として、前記太陽電池セル及び前記集光板が互いに位置合わせされた状態で設置されることを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the alignment mark includes a first alignment mark corresponding to the light collector and a second alignment mark corresponding to the solar cell, The solar battery cell and the light collector are installed in a state of being aligned with each other with the first alignment mark and the second alignment mark as a reference.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記第1アライメントマークは、前記光を反射する反射特性を有することを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the first alignment mark has a reflection characteristic for reflecting the light.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記第1アライメントマークは積層構造を有し、少なくとも前記集光板に接する層が反射層であることを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the first alignment mark has a laminated structure, and at least a layer in contact with the light collector is a reflective layer.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記第2アライメントマークは、前記太陽電池素子の電極に形成された開口を含むことを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the second alignment mark includes an opening formed in the electrode of the solar cell element.
また、本発明の第一態様に係る太陽電池モジュールにおいては、複数の前記太陽電池セルを支持するとともに前記集光板に貼りつけられる支持プレートをさらに備え、前記複数の太陽電池セルは、前記支持プレートに形成された前記第2アライメントマークと、前記第1アライメントマークとを基準として、前記集光板に位置合わせされた状態で設置されることを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the solar cell module further includes a support plate that supports the plurality of solar cells and is attached to the light collector, and the plurality of solar cells includes the support plate. The second alignment mark and the first alignment mark formed on the first alignment mark are used as a reference, and the second alignment mark is installed in a state of being aligned with the light collector.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記第2アライメントマークは、前記支持プレートを貫通する貫通孔を含むことを特徴とする。
Moreover, in the solar cell module according to the first aspect of the present invention, the second alignment mark includes a through-hole penetrating the support plate.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記支持プレートは、透光性材料から構成されることを特徴とする。
Moreover, in the solar cell module according to the first aspect of the present invention, the support plate is made of a translucent material.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記第1アライメントマークの設置場所は、前記集光板における前記光の集光効率に基づいて設定されることを特徴とする。
Further, in the solar cell module according to the first aspect of the present invention, the installation location of the first alignment mark is set based on the light condensing efficiency of the light collecting plate.
また、本発明の第一態様に係る太陽電池モジュールにおいては、前記集光板が、入射した光を吸収して蛍光を発する蛍光体を含有する蛍光集光板であることを特徴とする。
In the solar cell module according to the first aspect of the present invention, the light collector is a fluorescent light collector containing a phosphor that absorbs incident light and emits fluorescence.
また、本発明の第二態様に係る太陽光発電装置は、上記第一態様に係る太陽電池モジュールを備えることを特徴とする。
Moreover, the solar power generation device according to the second aspect of the present invention includes the solar cell module according to the first aspect.
本発明によれば、集光板を介して太陽電池に効率的に光を取り込むことが可能な太陽電池モジュール及びこれを用いた太陽光発電装置を提供することができる。
According to the present invention, it is possible to provide a solar cell module capable of efficiently capturing light into a solar cell through a light collector and a solar power generation apparatus using the solar cell module.
次に図面を参照しながら、本発明の実施の形態の具体例としての実施例を説明するが、本発明は以下の実施例に限定されるものではない。
また、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。 Next, examples as specific examples of embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.
Also, in the description using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension and the like are different from the actual ones, and are necessary for the description for easy understanding. Illustrations other than the members are omitted as appropriate.
また、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。 Next, examples as specific examples of embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.
Also, in the description using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension and the like are different from the actual ones, and are necessary for the description for easy understanding. Illustrations other than the members are omitted as appropriate.
(第1実施形態)
図1は、本発明の第1実施形態の太陽電池モジュール1を示す分解斜視図である。図2は、太陽電池モジュール1を示す平面図である。図3は、図2のA-A線に沿った断面図である。 (First embodiment)
FIG. 1 is an exploded perspective view showing the solar cell module 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the solar cell module 1. FIG. 3 is a cross-sectional view taken along line AA in FIG.
図1は、本発明の第1実施形態の太陽電池モジュール1を示す分解斜視図である。図2は、太陽電池モジュール1を示す平面図である。図3は、図2のA-A線に沿った断面図である。 (First embodiment)
FIG. 1 is an exploded perspective view showing the solar cell module 1 according to the first embodiment of the present invention. FIG. 2 is a plan view showing the solar cell module 1. FIG. 3 is a cross-sectional view taken along line AA in FIG.
図1、2に示すように、太陽電池モジュール1は、集光板2と、太陽電池素子3と、フレーム4と、を備えている。
1 and 2, the solar cell module 1 includes a light collector 2, a solar cell element 3, and a frame 4.
集光板2は平面視長方形の板部材である。集光板2は、図3に示すように、第1主面2aと、第2主面2bと、端面2cと、を有している。第1主面2aは、光入射面である。第2主面2bは、第1主面2aとは反対側の面である。端面2cは、光反射面である。なお、集光板2のサイズは、一例として、長辺の長さが100cm程度、短辺の長さが90cm程度、厚みが4mm程度である。
The light collector 2 is a plate member having a rectangular shape in plan view. As shown in FIG. 3, the light collector 2 has a first main surface 2a, a second main surface 2b, and an end surface 2c. The first main surface 2a is a light incident surface. The second main surface 2b is a surface opposite to the first main surface 2a. The end surface 2c is a light reflecting surface. The size of the light collector 2 is, for example, about 100 cm for the long side, about 90 cm for the short side, and about 4 mm in thickness.
本実施形態においては、集光板2の端面2cは、集光板2の第2主面2bに対して鋭角に傾斜している。集光板2の端面2cと集光板2の第2主面2bとのなす角度は、例えば45°程度である。
In the present embodiment, the end surface 2c of the light collector 2 is inclined at an acute angle with respect to the second main surface 2b of the light collector 2. The angle formed between the end surface 2c of the light collector 2 and the second main surface 2b of the light collector 2 is, for example, about 45 °.
集光板2は、図2に示すように、透明基材20中に、蛍光体21を分散させた蛍光集光板である。透明基材20は、PMMA等のアクリル樹脂、ポリカーボネート樹脂などの透明性の高い有機材料、もしくはガラスなどの透明性の無機材料からなる。本実施形態では、透明基材20としてPMMA樹脂(屈折率1.49)を用いる。集光板2は、このPMMA樹脂中に蛍光体21を分散させて形成されている。なお、この集光板2の屈折率は、分散させている蛍光体21の量が少ないため、PMMA樹脂と同程度の1.50となっている。
The light collector 2 is a fluorescent light collector in which a phosphor 21 is dispersed in a transparent substrate 20 as shown in FIG. The transparent substrate 20 is made of a highly transparent organic material such as an acrylic resin such as PMMA, a polycarbonate resin, or a transparent inorganic material such as glass. In this embodiment, PMMA resin (refractive index 1.49) is used as the transparent substrate 20. The light collector 2 is formed by dispersing the phosphor 21 in this PMMA resin. Note that the refractive index of the light collector 2 is 1.50, which is about the same as that of the PMMA resin because the amount of the phosphor 21 dispersed is small.
蛍光体21は、紫外光または可視光を吸収して可視光または赤外光を発光し放射する光機能材料である。光機能材料としては、有機蛍光体が挙げられる。
このような有機蛍光体としては、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素,キサンテン系色素,ピリジン系色素、オキサジン系色素、クリセン系色素、チオフラビン系色素、ペリレン系色素、ピレン系色素、アントラセン系色素、アクリドン系色素、アクリジン系色素、フルオレン系色素、ターフェニル系色素、エテン系色素、ブタジエン系色素、ヘキサトリエン系色素、オキサゾール系色素、クマリン系色素、スチルベン系色素、ジ-およびトリフェニルメタン系色素、チアゾール系色素、チアジン系色素、ナフタルイミド系色素、アントラキノン系色素等が好適に使用され、具体的には、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素や、クマリン色素系染料であるベーシックイエロー51や、ソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素や、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素、さらには、シアニン系色素、あるいはオキサジン系色素などが用いられる。 Thephosphor 21 is an optical functional material that absorbs ultraviolet light or visible light, emits visible light or infrared light, and emits it. Examples of the optical functional material include organic phosphors.
Such organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine Dyes, perylene dyes, pyrene dyes, anthracene dyes, acridone dyes, acridine dyes, fluorene dyes, terphenyl dyes, ethene dyes, butadiene dyes, hexatriene dyes, oxazole dyes, coumarins Dyes, stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used. Specifically, 3- (2′- Benzothiazolyl) -7-diethylaminocoumarin (bear) Phosphorus 6), 3- (2′-Benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30) , 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153) and other coumarin dyes, and basic coumarin dyes Naphthalimide dyes such as yellow 51, solvent yellow 11 and solvent yellow 116; rhodamine dyes such as rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine,basic violet 11 and basic red 2; 1-ethyl-2- [4- (p-dimethyl) Aminophenyl) -1,3-butadienyl] pyridinium - perchlorate (pyridine 1) pyridine dyes such as news, cyanine dyes, or the like oxazine dyes are used.
このような有機蛍光体としては、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素,キサンテン系色素,ピリジン系色素、オキサジン系色素、クリセン系色素、チオフラビン系色素、ペリレン系色素、ピレン系色素、アントラセン系色素、アクリドン系色素、アクリジン系色素、フルオレン系色素、ターフェニル系色素、エテン系色素、ブタジエン系色素、ヘキサトリエン系色素、オキサゾール系色素、クマリン系色素、スチルベン系色素、ジ-およびトリフェニルメタン系色素、チアゾール系色素、チアジン系色素、ナフタルイミド系色素、アントラキノン系色素等が好適に使用され、具体的には、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素や、クマリン色素系染料であるベーシックイエロー51や、ソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素や、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素、さらには、シアニン系色素、あるいはオキサジン系色素などが用いられる。 The
Such organic phosphors include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, thioflavine Dyes, perylene dyes, pyrene dyes, anthracene dyes, acridone dyes, acridine dyes, fluorene dyes, terphenyl dyes, ethene dyes, butadiene dyes, hexatriene dyes, oxazole dyes, coumarins Dyes, stilbene dyes, di- and triphenylmethane dyes, thiazole dyes, thiazine dyes, naphthalimide dyes, anthraquinone dyes and the like are preferably used. Specifically, 3- (2′- Benzothiazolyl) -7-diethylaminocoumarin (bear) Phosphorus 6), 3- (2′-Benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30) , 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153) and other coumarin dyes, and basic coumarin dyes Naphthalimide dyes such as yellow 51, solvent yellow 11 and solvent yellow 116; rhodamine dyes such as rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine,
なお、蛍光体として無機蛍光体を用いることもできる。
さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も、蛍光性があれば本発明の蛍光体として使用可能である。 An inorganic phosphor can also be used as the phosphor.
Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor of the present invention as long as they have fluorescence.
さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も、蛍光性があれば本発明の蛍光体として使用可能である。 An inorganic phosphor can also be used as the phosphor.
Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used as the phosphor of the present invention as long as they have fluorescence.
本実施形態の場合、集光板2の内部には、1種類の蛍光体21が分散されている。蛍光体21は、橙色光を吸収して赤色の蛍光を放射する。本実施形態では、蛍光体21としてBASF社製LumogenR305(商品名)を用いる。蛍光体21は、概ね600nm以下の波長の光を吸収する。蛍光体21の発光スペクトルは、610nmにピーク波長を有する。
In the case of the present embodiment, one type of phosphor 21 is dispersed inside the light collector 2. The phosphor 21 absorbs orange light and emits red fluorescence. In the present embodiment, BASF Lumogen R305 (trade name) is used as the phosphor 21. The phosphor 21 absorbs light having a wavelength of approximately 600 nm or less. The emission spectrum of the phosphor 21 has a peak wavelength at 610 nm.
なお、1種類の蛍光体を用いる場合に限らず、複数種類(2種類もしくは3種類以上)の蛍光体を用いてもよい。
In addition, you may use not only the case where 1 type of fluorescent substance is used but multiple types (2 types or 3 types or more) fluorescent substance.
図1に示すように、集光板2の4つの端面2cには反射層5が設けられている。反射層5は、集光板2の内部からその外部に向けて進行する光(蛍光体21から放射された光)を集光板2の内部に向けて反射する。反射層5としては、ESR(Enhanced Specular Reflector)反射フィルム(3M社製)等の誘電体多層膜からなる反射層を用いることができる。本材料を用いれば、可視光下において98%以上の高い反射率を実現できる。なお、反射層5としては、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)等の金属膜からなる反射層を用いてもよい。
As shown in FIG. 1, the reflection layer 5 is provided on the four end surfaces 2 c of the light collector 2. The reflective layer 5 reflects light (light emitted from the phosphor 21) traveling from the inside of the light collector 2 toward the outside toward the inside of the light collector 2. As the reflective layer 5, a reflective layer made of a dielectric multilayer film such as an ESR (Enhanced Specular Reflector) reflective film (manufactured by 3M) can be used. If this material is used, a high reflectance of 98% or more can be realized under visible light. The reflective layer 5 may be a reflective layer made of a metal film such as aluminum (Al), copper (Cu), gold (Au), silver (Ag), or the like.
反射層5は、図3に示すように、集光板2の端面2cに透明接着剤6により接合されている。透明接着剤6は、エチレン・酢酸ビニル共重合体(EVA)、エポキシ系接着剤、シリコーン系接着剤、ポリイミド系接着剤等の熱硬化性接着剤が好適である。なお、透明接着剤6の屈折率は、集光板2と同程度の1.50となっている。
The reflection layer 5 is joined to the end surface 2c of the light collector 2 by a transparent adhesive 6 as shown in FIG. The transparent adhesive 6 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive. Note that the refractive index of the transparent adhesive 6 is 1.50, which is about the same as that of the light collector 2.
なお、反射層5は、集光板2の端面2cに直接形成されていてもよい。また、反射層5は、フレーム4の内壁面と集光板2の端面2cとの間に挟み込まれることにより保持されていてもよい。これによれば、反射層5と端面2cとの間に配置される透明接着剤6を無くすことができる。
Note that the reflective layer 5 may be formed directly on the end surface 2 c of the light collector 2. The reflective layer 5 may be held by being sandwiched between the inner wall surface of the frame 4 and the end surface 2 c of the light collector 2. According to this, the transparent adhesive 6 arrange | positioned between the reflection layer 5 and the end surface 2c can be eliminated.
太陽電池素子3は、図1に示すように、集光板2の4辺に沿って配置されている。太陽電池素子3の受光面は、集光板2の端部の第2主面2bに対向している。
なお、図1では、太陽電池素子3を集光板2の4辺に沿って設置した例を示したが、太陽電池素子3を集光板2の1辺ないし3辺に沿って設置してもよい。 As shown in FIG. 1, thesolar cell element 3 is arranged along the four sides of the light collector 2. The light receiving surface of the solar cell element 3 faces the second main surface 2 b at the end of the light collector 2.
In addition, although the example which installed thesolar cell element 3 along 4 sides of the light-condensing plate 2 was shown in FIG. 1, you may install the solar cell element 3 along 1 thru | or 3 sides of the light-condensing plate 2. FIG. .
なお、図1では、太陽電池素子3を集光板2の4辺に沿って設置した例を示したが、太陽電池素子3を集光板2の1辺ないし3辺に沿って設置してもよい。 As shown in FIG. 1, the
In addition, although the example which installed the
太陽電池素子3は、複数の太陽電池セル30と、これら複数の太陽電池セル30を支持する支持プレート31と、を有する。複数の太陽電池セル30は、集光板2に固定されており、フレーム4には固定されていない。具体的に太陽電池セル30は、図3に示すように、支持プレート31と反対側の面が集光板2の第2主面2bに透明接着剤7により接合されている。なお、支持プレート31は、例えばガラスエポキシ等の透光性材料から構成される。
The solar cell element 3 includes a plurality of solar cells 30 and a support plate 31 that supports the plurality of solar cells 30. The plurality of solar cells 30 are fixed to the light collector 2 and are not fixed to the frame 4. Specifically, as shown in FIG. 3, the surface of the solar battery cell 30 opposite to the support plate 31 is joined to the second main surface 2 b of the light collector 2 by the transparent adhesive 7. The support plate 31 is made of a translucent material such as glass epoxy.
透明接着剤7は、上記透明接着剤6と同様、エチレン・酢酸ビニル共重合体(EVA)を用いることができる。透明接着剤7の屈折率は、集光板2と同程度の1.50となっている。なお、透明接着剤7としては、エポキシ系接着剤、シリコーン系接着剤、ポリイミド系接着剤等の熱硬化性接着剤を用いてもよい。
As the transparent adhesive 7, an ethylene / vinyl acetate copolymer (EVA) can be used in the same manner as the transparent adhesive 6. The refractive index of the transparent adhesive 7 is 1.50, which is the same as that of the light collector 2. The transparent adhesive 7 may be a thermosetting adhesive such as an epoxy adhesive, a silicone adhesive, or a polyimide adhesive.
フレーム4は、図2に示すように、平面視矩形枠状である。フレーム4は、集光板2の端部を保持するものである。フレーム4は、太陽電池素子3を覆って配置されている。フレーム4の肉厚は2mm程度である。フレーム4の形成材料は、Al等の金属である。この他にも、フレーム4の形成材料としては種々の材料を用いることができる。特に、高強度かつ軽量な材料を用いることが好ましい。
The frame 4 has a rectangular frame shape in plan view as shown in FIG. The frame 4 holds the end of the light collector 2. The frame 4 is disposed so as to cover the solar cell element 3. The thickness of the frame 4 is about 2 mm. The material for forming the frame 4 is a metal such as Al. In addition, various materials can be used as the material for forming the frame 4. In particular, it is preferable to use a high-strength and lightweight material.
本実施形態において、フレーム4は、図1に示すように、集光板2の各辺ごとに分割されている。フレーム4は、第1サブフレーム41と、第2サブフレーム42と、を有する。第1サブフレーム41は、集光板2の短辺に沿って配置されている。第1サブフレーム41は、互いに対向する2つの短辺にそれぞれ1つずつ、計2つ配置されている。第2サブフレーム42は、集光板2の長辺に沿って配置されている。第2サブフレーム42は、互いに対向する2つの長辺にそれぞれ1つずつ、計2つ配置されている。
In this embodiment, the frame 4 is divided for each side of the light collector 2 as shown in FIG. The frame 4 includes a first subframe 41 and a second subframe 42. The first subframe 41 is disposed along the short side of the light collector 2. Two first subframes 41 are arranged, one on each of the two short sides facing each other. The second subframe 42 is disposed along the long side of the light collector 2. Two second subframes 42 are arranged, one on each of the two long sides facing each other.
図3に示すように、フレーム4は、集光板2を第1主面2aの側と第2主面2bの側とから挟み込んで保持している。ここでは、フレーム4の構成として、第1サブフレーム41の図を挙げて説明する。第1サブフレーム41は、天板部41aと、底板部41bと、側壁部41cと、を備えている。なお、第2サブフレーム42の構成は、これと同様の構成を有する。
As shown in FIG. 3, the frame 4 holds the light collector 2 sandwiched between the first main surface 2a side and the second main surface 2b side. Here, the configuration of the frame 4 will be described with reference to the diagram of the first subframe 41. The first subframe 41 includes a top plate portion 41a, a bottom plate portion 41b, and a side wall portion 41c. The configuration of the second subframe 42 has the same configuration as this.
天板部41aと、底板部41bと、側壁部41cと、は一体に構成されている。天板部41aは、太陽電池素子3を覆って配置されている。天板部41aの一端部は側壁部41cに接続されている。天板部41aの他端部は、太陽電池素子3を超える部分まで延在している。天板部41aの他端部は厚肉になっている。底板部41bは、集光板2を挟んで天板部41aと対向して配置されている。底板部41bの一端部は側壁部41cに接続されている。底板部41bの他端部は集光板2の天板部41aの他端部と重なる部分まで延在している。底板部41bの集光板2の長手方向の長さは、天板部41aの集光板2の長手方向の長さと概ね等しくなっている。
The top plate portion 41a, the bottom plate portion 41b, and the side wall portion 41c are integrally formed. The top plate portion 41 a is disposed so as to cover the solar cell element 3. One end of the top plate portion 41a is connected to the side wall portion 41c. The other end portion of the top plate portion 41 a extends to a portion beyond the solar cell element 3. The other end portion of the top plate portion 41a is thick. The bottom plate portion 41b is disposed to face the top plate portion 41a with the light collector 2 interposed therebetween. One end portion of the bottom plate portion 41b is connected to the side wall portion 41c. The other end portion of the bottom plate portion 41 b extends to a portion overlapping the other end portion of the top plate portion 41 a of the light collector 2. The length of the bottom plate portion 41b in the longitudinal direction of the light collector 2 is substantially equal to the length of the light collector 2 of the top plate portion 41a in the longitudinal direction.
図1に示すように、第1サブフレーム41の端部には、貫通孔41hが設けられている。第2サブフレーム42の端部において第1サブフレーム41の貫通孔41hに重なる部分には、ネジ穴42hが設けられている。ネジ穴42hにはネジ等の固定部材43が貫通孔41hを介して固定される。これにより、第1サブフレーム41の端部が第2サブフレーム42の端部に固定される。
As shown in FIG. 1, a through hole 41 h is provided at the end of the first subframe 41. A screw hole 42h is provided at a portion of the end of the second subframe 42 that overlaps the through hole 41h of the first subframe 41. A fixing member 43 such as a screw is fixed to the screw hole 42h through the through hole 41h. As a result, the end of the first subframe 41 is fixed to the end of the second subframe 42.
図3に示すように、フレーム4の天板部41aの他端部と集光板2の第1主面2aとの間には、反射層8及び緩衝層9が設けられている。
As shown in FIG. 3, a reflective layer 8 and a buffer layer 9 are provided between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2.
反射層8は、集光板2の内部からその外部に向けて進行する光(蛍光体21から放射された光)を集光板2の内部に向けて反射する。反射層8としては、ESR等の誘電体多層膜からなる反射層、Al、Cu、Au、Ag等の金属膜からなる反射層を用いることができる。
The reflection layer 8 reflects the light traveling from the inside of the light collector 2 toward the outside (the light emitted from the phosphor 21) toward the inside of the light collector 2. As the reflection layer 8, a reflection layer made of a dielectric multilayer film such as ESR, or a reflection layer made of a metal film such as Al, Cu, Au, or Ag can be used.
反射層8は、集光板2の第1主面2aに透明接着剤10により接合されている。透明接着剤10は、エチレン・酢酸ビニル共重合体(EVA)、エポキシ系接着剤、シリコーン系接着剤、ポリイミド系接着剤等の熱硬化性接着剤が好適である。なお、透明接着剤10の屈折率は、集光板2からの導波光をロスなく伝播するために、集光板2と同程度の1.50であることが望ましい。具体的には、硬化後の屈折率が1.51である、稲畑産業(株)の一液性透明エポキシ樹脂EH1600-G2を本実施形態の透明接着剤10として用いた。もちろん、本接着剤に限定するものではない。
The reflective layer 8 is joined to the first main surface 2 a of the light collector 2 by a transparent adhesive 10. The transparent adhesive 10 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive. The refractive index of the transparent adhesive 10 is desirably 1.50, which is about the same as that of the light collector 2 in order to propagate the guided light from the light collector 2 without loss. Specifically, a one-component transparent epoxy resin EH1600-G2 manufactured by Inabata Sangyo Co., Ltd. having a refractive index after curing of 1.51 was used as the transparent adhesive 10 of this embodiment. Of course, the present adhesive is not limited.
なお、反射層8は、集光板2の第1主面2aに直接形成されていてもよい。また、反射層8は、フレーム4の天板部41aの他端部と集光板2の第1主面2aとの間に挟み込まれることにより保持されていてもよい。これにより、透明接着剤10を配置する必要がなくなる。
The reflective layer 8 may be formed directly on the first main surface 2a of the light collector 2. Further, the reflective layer 8 may be held by being sandwiched between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2. Thereby, it becomes unnecessary to arrange the transparent adhesive 10.
緩衝層9は、フレーム4の天板部41aの他端部と集光板2の第1主面2aとの間に加わる応力を吸収する。緩衝層9としては、シリコンゴムシート等のゴムシートを用いることができる。この他にも、緩衝層9の形成材料としては種々の材料を用いることができる。特に、高い防水性を兼ね備えた材料を用いることが好ましい。
The buffer layer 9 absorbs stress applied between the other end portion of the top plate portion 41 a of the frame 4 and the first main surface 2 a of the light collector 2. As the buffer layer 9, a rubber sheet such as a silicon rubber sheet can be used. In addition, various materials can be used as the material for forming the buffer layer 9. In particular, it is preferable to use a material having high waterproofness.
緩衝層9は、フレーム4の天板部41aの他端部に接着剤11により接合されている。接着剤11は、エチレン・酢酸ビニル共重合体(EVA)、エポキシ系接着剤、シリコーン系接着剤、ポリイミド系接着剤等の熱硬化性接着剤が好適である。なお、緩衝層9は接着剤11により完全に固定されていなくてもよい。フレーム4により集光板2を挟み込んで保持するときに緩衝層9の位置がずれなければよい。
The buffer layer 9 is joined to the other end portion of the top plate portion 41 a of the frame 4 with an adhesive 11. The adhesive 11 is preferably a thermosetting adhesive such as an ethylene / vinyl acetate copolymer (EVA), an epoxy adhesive, a silicone adhesive, or a polyimide adhesive. The buffer layer 9 may not be completely fixed by the adhesive 11. It is sufficient that the position of the buffer layer 9 does not shift when the light collector 2 is sandwiched and held by the frame 4.
フレーム4の底板部41bの他端部と集光板2の第2主面2bとの間には、反射層12及び緩衝層13が設けられている。
A reflective layer 12 and a buffer layer 13 are provided between the other end of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2.
反射層12は、集光板2の内部からその外部に向けて進行する光(蛍光体21から放射された光)を集光板2の内部に向けて反射する。反射層12としては、反射層8と同様のものを用いることができる。
The reflection layer 12 reflects light traveling from the inside of the light collector 2 toward the outside thereof (light emitted from the phosphor 21) toward the inside of the light collector 2. As the reflective layer 12, the same layer as the reflective layer 8 can be used.
反射層12は、集光板2の第2主面2bに透明接着剤14により接合されている。透明接着剤14は、透明接着剤10と同様のものを用いることができる。
The reflective layer 12 is joined to the second main surface 2 b of the light collector 2 by a transparent adhesive 14. As the transparent adhesive 14, the same adhesive as the transparent adhesive 10 can be used.
なお、反射層12は、集光板2の第2主面2bに直接形成されていてもよい。また、反射層12は、フレーム4の底板部41bの他端部と集光板2の第2主面2bとの間に挟み込まれることにより保持されていてもよい。これにより、透明接着剤14を配置する必要がなくなる。
The reflective layer 12 may be formed directly on the second main surface 2b of the light collector 2. Further, the reflective layer 12 may be held by being sandwiched between the other end portion of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2. Thereby, it becomes unnecessary to arrange the transparent adhesive 14.
緩衝層13は、フレーム4の底板部41bの他端部と集光板2の第2主面2bとの間に加わる応力を吸収する。緩衝層13としては、緩衝層9と同様のものを用いることができる。
The buffer layer 13 absorbs stress applied between the other end portion of the bottom plate portion 41 b of the frame 4 and the second main surface 2 b of the light collector 2. As the buffer layer 13, the same one as the buffer layer 9 can be used.
緩衝層13は、フレーム4の底板部41bの他端部に接着剤15により接合されている。接着剤15は、接着剤11と同様のものを用いることができる。なお、緩衝層13は接着剤15により完全に固定されていなくてもよい。フレーム4により集光板2を挟み込んで保持するときに緩衝層13の位置がずれなければよい。
The buffer layer 13 is bonded to the other end portion of the bottom plate portion 41 b of the frame 4 with an adhesive 15. The adhesive 15 can be the same as the adhesive 11. Note that the buffer layer 13 may not be completely fixed by the adhesive 15. It is sufficient that the position of the buffer layer 13 is not displaced when the light collector 2 is sandwiched and held by the frame 4.
なお、フレーム4の底板部41bと集光板2の第2主面2bとの間の反射層12及び緩衝層13が配置されていない部分には空気層が介在している。
Note that an air layer is interposed in a portion where the reflective layer 12 and the buffer layer 13 between the bottom plate portion 41b of the frame 4 and the second main surface 2b of the light collector 2 are not disposed.
図3に示すように、フレーム4(第1サブフレーム41)の内壁面4s(内壁面41s)と集光板2の端面2cとが離間している。なお、第2サブフレーム42の側壁部の内壁面と集光板2の端面2cとの配置関係は、これと同様の配置関係を有するため詳細な説明は省略する。
3, the inner wall surface 4s (inner wall surface 41s) of the frame 4 (first subframe 41) and the end surface 2c of the light collector 2 are separated from each other. Note that the arrangement relationship between the inner wall surface of the side wall portion of the second subframe 42 and the end surface 2c of the light collector 2 has the same arrangement relationship as this, and thus detailed description thereof is omitted.
第1サブフレーム41の天板部41aの内壁面41sと太陽電池素子3との間には空間40が設けられている。空間40には空気層が介在している。
第1サブフレーム41の天板部41aの内壁面41sには、乾燥剤18が設けられている。乾燥剤18は、シリカゲルを用いることができる。この他にも、乾燥剤18としては、モレキュラーシーブを用いることができる。なお、空間40に乾燥窒素を充填してもよい。 Aspace 40 is provided between the inner wall surface 41 s of the top plate portion 41 a of the first subframe 41 and the solar cell element 3. An air layer is interposed in the space 40.
Thedesiccant 18 is provided on the inner wall surface 41 s of the top plate portion 41 a of the first subframe 41. Silica gel can be used as the desiccant 18. In addition, as the desiccant 18, a molecular sieve can be used. The space 40 may be filled with dry nitrogen.
第1サブフレーム41の天板部41aの内壁面41sには、乾燥剤18が設けられている。乾燥剤18は、シリカゲルを用いることができる。この他にも、乾燥剤18としては、モレキュラーシーブを用いることができる。なお、空間40に乾燥窒素を充填してもよい。 A
The
上記太陽電池セル30としては、シリコン系太陽電池、化合物系太陽電池、量子ドット太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池や量子ドット太陽電池は、高効率な発電が可能であることから、太陽電池セル30として好適である。特に、蛍光体21の発光スペクトルのピーク波長(610nm)において高効率を示す化合物系太陽電池であるGaAs太陽電池が望ましい。他にも、化合物系太陽電池として、InGaP、InGaAs,AlGaAs、Cu(In,Ga)Se2、Cu(In,Ga)(Se,S)2、CuInS2、CdTe、CdS等を用いてもよい。また、量子ドット太陽電池として、Si、InGaAs等を用いてもよい。ただし、価格や用途に応じて、Si系や有機系など他の種類の太陽電池を用いることもできる。
As the solar battery cell 30, a known solar battery such as a silicon solar battery, a compound solar battery, a quantum dot solar battery, or an organic solar battery can be used. Especially, the compound type solar cell and quantum dot solar cell using a compound semiconductor are suitable as the solar cell 30 since highly efficient electric power generation is possible. In particular, a GaAs solar cell which is a compound solar cell exhibiting high efficiency at the peak wavelength (610 nm) of the emission spectrum of the phosphor 21 is desirable. In addition, InGaP, InGaAs, AlGaAs, Cu (In, Ga) Se2, Cu (In, Ga) (Se, S) 2, CuInS2, CdTe, CdS, or the like may be used as the compound solar cell. Further, Si, InGaAs or the like may be used as the quantum dot solar cell. However, other types of solar cells such as Si and organic can be used depending on the price and application.
太陽電池セル30の寸法の一例としては、縦幅が8mm、横幅が49mmである。支持プレート31の寸法の一例としては、縦幅が15mm、横幅が200mmである。本実施形態では、集光板2の第2主面2bにおける外形をなす長辺にそれぞれ複数(5枚)の支持プレート31が配置され、集光板2の第2主面2bにおける外形をなす短辺にそれぞれ複数(4枚)の支持プレート31が配置されている(図1、2参照)。
As an example of the dimensions of the solar battery cell 30, the vertical width is 8 mm and the horizontal width is 49 mm. As an example of the dimensions of the support plate 31, the vertical width is 15 mm and the horizontal width is 200 mm. In the present embodiment, a plurality of (five) support plates 31 are arranged on the long side forming the outer shape of the second main surface 2b of the light collector 2, and the short side forming the outer shape of the second main surface 2b of the light collector 2 A plurality of (four) support plates 31 are arranged on each (see FIGS. 1 and 2).
図1、2に示すように、各支持プレート31には、長辺方向に沿って太陽電池セル30が複数(4つ)配置されている。支持プレート31において、各太陽電池セル30は不図示の配線を介して直列状態で電気的に接続されている。すなわち、集光板2は、第2主面2bの長辺方向に沿って合計で20個の太陽電池セル30が配置され、第2主面2bの短辺に沿って合計で16個の太陽電池セル30が配置されている。
As shown in FIGS. 1 and 2, a plurality (four) of solar cells 30 are arranged on each support plate 31 along the long side direction. In the support plate 31, each photovoltaic cell 30 is electrically connected in series via a wiring (not shown). That is, the light collector 2 has a total of 20 solar cells 30 arranged along the long side direction of the second main surface 2b, and a total of 16 solar cells along the short side of the second main surface 2b. A cell 30 is arranged.
ところで、太陽電池セル30に蛍光を効率的に導いて良好な発電効率を得るためには、太陽電池セル30が集光板2の第2主面2bの所定の位置に配置されている必要がある。そこで、本実施形態に係る太陽電池モジュール1では、太陽電池セル30及び集光板2が互いに高精度でアライメント(位置合わせ)されたものとしている。
By the way, in order to efficiently guide the fluorescence to the solar battery cell 30 and obtain a good power generation efficiency, the solar battery cell 30 needs to be disposed at a predetermined position on the second main surface 2b of the light collector 2. . Therefore, in the solar cell module 1 according to the present embodiment, the solar cells 30 and the light collector 2 are aligned with each other with high accuracy.
具体的に、太陽電池モジュール1は、第1アライメントマーク及び第2アライメントマークを基準として、太陽電池セル30及び集光板2が互いに位置合わせされた状態で配置されたものとなっている。これにより、太陽電池モジュール1は、集光板2内を伝播した蛍光が太陽電池セル30に効率的に導かれるようになっている。
Specifically, the solar cell module 1 is arranged in a state in which the solar cells 30 and the light collector 2 are aligned with each other with reference to the first alignment mark and the second alignment mark. Thereby, in the solar cell module 1, the fluorescence propagated in the light collector 2 is efficiently guided to the solar cell 30.
第1アライメントマークAM1は、集光板2の第2主面2bに例えば印刷等により形成されている。第1アライメントマークAM1は、集光板2に対応するものであり、アライメント時に該集光板2の相対的な位置情報を規定する。つまり、第1アライメントマークAM1は、後述のように太陽電池素子3側とのアライメント時の指標として利用される。
1st alignment mark AM1 is formed in the 2nd main surface 2b of the light-condensing plate 2 by printing etc., for example. The first alignment mark AM1 corresponds to the light collector 2 and defines relative position information of the light collector 2 during alignment. That is, the first alignment mark AM1 is used as an index at the time of alignment with the solar cell element 3 side as described later.
第1アライメントマークAM1の形状としては、円形状、三角形状、四角形状、十字形状等の各種形状を採用することができる。また、第1アライメントマークAM1の形状は、後述する第2アライメントマークAM2と同一(相似形状を含む)であっても良いし、異なる形状であってもよい。すなわち、第1アライメントマークAM1の形状は、支持プレート31及び太陽電池素子3のアライメントが可能であればどのような形状であっても構わない。
As the shape of the first alignment mark AM1, various shapes such as a circular shape, a triangular shape, a quadrangular shape, and a cross shape can be adopted. The shape of the first alignment mark AM1 may be the same (including a similar shape) as a second alignment mark AM2 described later, or may be a different shape. That is, the shape of the first alignment mark AM1 may be any shape as long as the support plate 31 and the solar cell element 3 can be aligned.
本実施形態において、第1アライメントマークAM1は、例えば幅が300μmで、横、高さが1mmの十字形状から構成されている(図5(a)参照)。第1アライメントマークAM1は、集光板2の全体の面積から考慮すると非常に小さな面積であるが、太陽電池素子3に導波される蛍光をロスする要因となる可能性もあり得る。これに対し、本実施形態においては、第1アライメントマークAM1の形成材料(印刷材料)として光反射特性を有するものを用いている。これにより、第1アライメントマークAM1による蛍光のロスを抑制することができる。
In the present embodiment, the first alignment mark AM1 has a cross shape having a width of 300 μm, a width, and a height of 1 mm, for example (see FIG. 5A). The first alignment mark AM1 is a very small area in consideration of the entire area of the light collector 2. However, the first alignment mark AM1 may cause a loss of fluorescence guided to the solar cell element 3. On the other hand, in the present embodiment, a material having a light reflection characteristic is used as a forming material (printing material) of the first alignment mark AM1. Thereby, the loss of fluorescence due to the first alignment mark AM1 can be suppressed.
本実施形態に係る第1アライメントマークAM1は、複数の材料が積層された積層構造を有しており、少なくとも集光板2に接する最表層AM1´が光反射特性を有するアルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)等の金属材料から構成されている(図5(b)参照)。なお、第1アライメントマークAM1は、上述のような光反射特性を有する金属材料の1層のみから構成されていてもよいし、集光板2に接しない層が光反射特性を有しない樹脂材料等から構成されていてもよい。
The first alignment mark AM1 according to the present embodiment has a laminated structure in which a plurality of materials are laminated, and at least the outermost layer AM1 ′ in contact with the light collector 2 has light reflection characteristics such as aluminum (Al), copper ( It is comprised from metal materials, such as Cu), gold | metal | money (Au), and silver (Ag) (refer FIG.5 (b)). The first alignment mark AM1 may be composed of only one layer of the metal material having the light reflection characteristics as described above, or a resin material in which the layer not in contact with the light collector 2 does not have the light reflection characteristics. You may be comprised from.
一方、上記第2アライメントマークAM2は、例えば、印刷等により支持プレート31に形成されている。第2アライメントマークAM2は太陽電池セル30に対応するものであり、アライメント時に該太陽電池セル30の相対的な位置情報を規定する。つまり、第2アライメントマークAM2は、後述のように集光板2側とのアライメント時の指標として利用される。
On the other hand, the second alignment mark AM2 is formed on the support plate 31 by printing or the like, for example. The second alignment mark AM2 corresponds to the solar battery cell 30 and defines relative position information of the solar battery cell 30 during alignment. That is, the second alignment mark AM2 is used as an index at the time of alignment with the light collector 2 side as described later.
図4は太陽電池素子3の構成を示す平面図である。
図4に示すように、支持プレート31には、上記第2アライメントマークAM2が5つ設けられている。第2アライメントマークAM2は、支持プレート31の端部31aから10mmだけ内側に入り込んだ位置に形成されている。第2アライメントマークAM2の形状としては、円形状、三角形状、四角形状、十字形状等の各種形状を採用することができ、第1アライメントマークAM1と同一形状であっても良いし、異なる形状であってもよい。 FIG. 4 is a plan view showing the configuration of thesolar cell element 3.
As shown in FIG. 4, thesupport plate 31 is provided with five second alignment marks AM2. The second alignment mark AM <b> 2 is formed at a position that enters inward by 10 mm from the end 31 a of the support plate 31. As the shape of the second alignment mark AM2, various shapes such as a circular shape, a triangular shape, a quadrangular shape, and a cross shape can be adopted, and the same shape as the first alignment mark AM1 or a different shape can be used. There may be.
図4に示すように、支持プレート31には、上記第2アライメントマークAM2が5つ設けられている。第2アライメントマークAM2は、支持プレート31の端部31aから10mmだけ内側に入り込んだ位置に形成されている。第2アライメントマークAM2の形状としては、円形状、三角形状、四角形状、十字形状等の各種形状を採用することができ、第1アライメントマークAM1と同一形状であっても良いし、異なる形状であってもよい。 FIG. 4 is a plan view showing the configuration of the
As shown in FIG. 4, the
本実施形態に係る第2アライメントマークAM2は、図4に示すように、例えば直径が300μm程度の円形状から構成されている。第2アライメントマークAM2は、十字形状からなる第1アライメントマークAM1の中心部における交差部分と平面的に概ね重なる大きさとされている。これによれば、例えば第2アライメントマークAM2が第1アライメントマークAM1の中央部に位置するように支持プレート31及び集光板2を相対移動させることでアライメント作業を容易に行うことができる。
As shown in FIG. 4, the second alignment mark AM <b> 2 according to the present embodiment is formed in a circular shape with a diameter of about 300 μm, for example. The second alignment mark AM2 has a size that substantially overlaps with the intersecting portion in the center of the first alignment mark AM1 having a cross shape. According to this, for example, the alignment work can be easily performed by relatively moving the support plate 31 and the light collector 2 so that the second alignment mark AM2 is positioned at the center of the first alignment mark AM1.
本実施形態において、複数の太陽電池セル30は、上記第2アライメントマークAM2を基準として支持プレート31上の所定位置にアライメントされているものとする。そのため、太陽電池モジュール1は、上記第1アライメントマークAM1及び第2アライメントマークAM2を基準に支持プレート31及び集光板2が互いに所定の位置にアライメントされると、複数の太陽電池セル30が集光板2に対して所定の位置にアライメントされた状態とすることができる。
In this embodiment, it is assumed that the plurality of solar cells 30 are aligned at predetermined positions on the support plate 31 with the second alignment mark AM2 as a reference. Therefore, in the solar cell module 1, when the support plate 31 and the light collector 2 are aligned with each other at a predetermined position with reference to the first alignment mark AM1 and the second alignment mark AM2, the plurality of solar cells 30 are aligned with each other. 2 can be aligned at a predetermined position.
ここで、複数の太陽電池セル30を支持プレート31上にアライメントする方法について説明する。
図4に示すように、各太陽電池セル30には位置合わせ用のマークMが2個ずつ設けられている。マークMは、太陽電池セル30を構成する電極部分の両端に形成されている。太陽電池セル30は、接続用の電極30aと、光が照射されて発生した電荷を収集するコレクト電極30bとから構成されている。具体的にマークMは、例えば、パターニングして電極30aを形成する際の抜き部分から構成される。本実施形態では、マークMとして、十字形状の抜きパターンを形成した。なお、電極30aは、抵抗値を稼ぐために、金(Au)や銀(Ag)で形成されているため、上述のような抜き部分を形成したとしても特に問題無い。 Here, a method of aligning the plurality ofsolar cells 30 on the support plate 31 will be described.
As shown in FIG. 4, eachsolar cell 30 is provided with two alignment marks M. The mark M is formed at both ends of the electrode portion constituting the solar battery cell 30. The solar battery cell 30 includes a connection electrode 30a and a collect electrode 30b that collects charges generated by irradiation with light. Specifically, the mark M is configured by, for example, a portion that is patterned to form the electrode 30a. In the present embodiment, a cross-shaped blank pattern is formed as the mark M. Since the electrode 30a is made of gold (Au) or silver (Ag) in order to increase the resistance value, there is no particular problem even if the above-described punched portion is formed.
図4に示すように、各太陽電池セル30には位置合わせ用のマークMが2個ずつ設けられている。マークMは、太陽電池セル30を構成する電極部分の両端に形成されている。太陽電池セル30は、接続用の電極30aと、光が照射されて発生した電荷を収集するコレクト電極30bとから構成されている。具体的にマークMは、例えば、パターニングして電極30aを形成する際の抜き部分から構成される。本実施形態では、マークMとして、十字形状の抜きパターンを形成した。なお、電極30aは、抵抗値を稼ぐために、金(Au)や銀(Ag)で形成されているため、上述のような抜き部分を形成したとしても特に問題無い。 Here, a method of aligning the plurality of
As shown in FIG. 4, each
ここで、上記マークMが形成された太陽電池セル30が配置される支持プレート31には、5つの第2アライメントマークAM2が所定の位置に形成されている。以下、説明の都合上、5つの第2アライメントマークAM2をそれぞれ第2アライメントマークAM2a、AM2b、AM2c、AM2d、AM2eと称す場合もある。また、支持プレート31上に配置される4つの太陽電池セル30における各マークMを左から順にM1、M2、M3、M4、M5、M6、M7、M8と称す場合もある。
Here, five second alignment marks AM2 are formed at predetermined positions on the support plate 31 on which the solar cells 30 on which the marks M are formed are arranged. Hereinafter, for convenience of explanation, the five second alignment marks AM2 may be referred to as second alignment marks AM2a, AM2b, AM2c, AM2d, and AM2e, respectively. In addition, the marks M in the four solar cells 30 arranged on the support plate 31 may be referred to as M1, M2, M3, M4, M5, M6, M7, and M8 in order from the left.
支持プレート31に対する太陽電池セル30の貼り付けを行う貼付装置(不図示)は、太陽電池セル30を支持プレート31にアライメントする際、上記マークM及び第2アライメントマークAM2を利用する。
A sticking device (not shown) for sticking the solar cells 30 to the support plate 31 uses the mark M and the second alignment mark AM2 when aligning the solar cells 30 with the support plate 31.
貼付装置は、例えば、支持プレート31上に設定されたセル設置領域に太陽電池セル30を移動した際、CCDカメラ等の撮像部により上記マークM及び第2アライメントマークAM2を撮像する。そして、貼付装置は、これらマークM及び第2アライメントマークAM2の座標位置が所定の閾値(所定の許容範囲)内に収まるように太陽電池セル30の位置を調整し、太陽電池セル30を支持プレート31上に配置する。
For example, when the solar cell 30 is moved to the cell installation area set on the support plate 31, the sticking device images the mark M and the second alignment mark AM2 by an imaging unit such as a CCD camera. Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the mark M and the second alignment mark AM2 are within a predetermined threshold value (predetermined allowable range), and the solar battery cell 30 is supported on the support plate. 31.
貼付装置は、太陽電池セル30の各マークMについて、少なくとも2つの第2アライメントマークAM2に対する座標位置が2%以内の誤差(許容範囲)に収まるように位置合わせし、支持プレート31上に配置し、接着剤を介して貼り付ける。
The sticking device aligns each mark M of the solar battery cell 30 so that the coordinate position with respect to at least two second alignment marks AM2 is within an error (allowable range) of 2% or less, and arranges it on the support plate 31. Paste through the adhesive.
ここで、図4における支持プレート31上の最も左側に貼付装置が太陽電池セル30をアライメントする場合を例に挙げる。この場合、貼付装置は太陽電池セル30のマークM1,M2及び支持プレート31の第2アライメントマークAM2a、AM2bの座標位置の誤差がそれぞれ±2%以内に収まるように支持プレート31上での太陽電池セル30の位置を調整する。
Here, a case where the attaching device aligns the solar cells 30 on the leftmost side of the support plate 31 in FIG. 4 will be described as an example. In this case, the attaching device is a solar cell on the support plate 31 so that the errors in the coordinate positions of the marks M1 and M2 of the solar cell 30 and the second alignment marks AM2a and AM2b of the support plate 31 are within ± 2%, respectively. The position of the cell 30 is adjusted.
なお、上記説明では、太陽電池セル30に形成したマークMを用いることで支持プレート31上に該太陽電池セル30をアライメントする場合を例に挙げたが、太陽電池セル30を支持プレート31に対してアライメントする方法はこれに限定されることはない。例えば、支持プレート31上の各太陽電池セル30の配置領域に太陽電池セル30の外形に対応したマークを形成し、該マークに太陽電池セル30を重ねるように配置することでアライメントを行うようにしてもよい。これによれば、太陽電池セル30を該マークに重ねるように支持プレート31上に配置することで太陽電池セル30と支持プレート31とのアライメントを簡便且つ精度良く行うことができる。
In the above description, the case where the solar battery cell 30 is aligned on the support plate 31 by using the mark M formed on the solar battery cell 30 is described as an example. The alignment method is not limited to this. For example, alignment is performed by forming a mark corresponding to the outer shape of the solar battery cell 30 in the arrangement region of each solar battery cell 30 on the support plate 31 and arranging the solar battery cell 30 so as to overlap the mark. May be. According to this, the solar cell 30 and the support plate 31 can be easily and accurately aligned by arranging the solar cell 30 on the support plate 31 so as to overlap the mark.
このようなアライメント動作が繰り返されることで、太陽電池素子3は、支持プレート31上に複数(4つ)の太陽電池セル30が第2アライメントマークAM2に対し、所定の誤差で配置されたものとされている。つまり、支持プレート31に設けられた第2アライメントマークAM2は、集光板2とのアライメント時に該太陽電池セル30の相対的な位置を規定する指標として利用することが可能である。
By repeating such an alignment operation, the solar cell element 3 includes a plurality of (four) solar cells 30 arranged on the support plate 31 with a predetermined error with respect to the second alignment mark AM2. Has been. That is, the second alignment mark AM <b> 2 provided on the support plate 31 can be used as an index that defines the relative position of the solar battery cell 30 during alignment with the light collector 2.
このような構成に基づき、本実施形態に係る太陽電池モジュール1においては、第1アライメントマークAM1及び第2アライメントマークAM2を基準として、支持プレート31と集光板2とのアライメントが行われることにより、該集光板2上に配置された各太陽電池セル30と集光板2とを位置合わせすることが可能とされている。
Based on such a configuration, in the solar cell module 1 according to the present embodiment, the support plate 31 and the light collector 2 are aligned with reference to the first alignment mark AM1 and the second alignment mark AM2, It is possible to align each solar battery cell 30 arranged on the light collector 2 and the light collector 2.
続いて、太陽電池素子3及び集光板2をアライメントする方法について、図5を参照しながら説明する。図5(a)は太陽電池素子3及び集光板2をアライメントする際の平面図であり、図5(b)はアライメント時の断面図である。
Subsequently, a method of aligning the solar cell element 3 and the light collector 2 will be described with reference to FIG. Fig.5 (a) is a top view at the time of aligning the solar cell element 3 and the light-condensing plate 2, FIG.5 (b) is sectional drawing at the time of alignment.
図5(a)、(b)に示すように、支持プレート31の裏面(太陽電池セル30の配置面と反対面)側から第2アライメントマークAM2及び第1アライメントマークAM1の位置を確認しつつ、太陽電池素子3及び集光板2の位置合わせを行う。なお、支持プレート31は、光透過性を有するガラスエポキシから構成されているため、裏面側から上記マークAM1、AM2の位置を確認することができる。
As shown in FIGS. 5A and 5B, the positions of the second alignment mark AM2 and the first alignment mark AM1 are confirmed from the back surface (the surface opposite to the arrangement surface of the solar cells 30) of the support plate 31. The solar cell element 3 and the light collector 2 are aligned. In addition, since the support plate 31 is comprised from the glass epoxy which has a light transmittance, the position of the said marks AM1 and AM2 can be confirmed from the back side.
本実施形態において、複数の太陽電池セル30は、上述のように第2アライメントマークを基準として支持プレート31上に精度良くアライメントされている。そのため、太陽電池モジュール1においては、第1アライメントマークAM1及び第2アライメントマークAM2を基準として、支持プレート31と集光板2との位置合わせが行われることにより、該集光板2上に配置された各太陽電池セル30と集光板2とをアライメントすることができる。集光板2にアライメントされた太陽電池セル30は、透明接着剤7を介して支持プレート31に接着される。
In the present embodiment, the plurality of solar cells 30 are accurately aligned on the support plate 31 with the second alignment mark as a reference as described above. Therefore, in the solar cell module 1, the support plate 31 and the light collector 2 are aligned on the light collector 2 with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Each photovoltaic cell 30 and the light collector 2 can be aligned. The solar cells 30 aligned with the light collector 2 are bonded to the support plate 31 via the transparent adhesive 7.
このように本実施形態に係る太陽電池モジュール1は、第1アライメントマークAM1及び第2アライメントマークAM2を基準とすることで集光板2及び太陽電池素子3が互いに精度良く位置合わせされた状態で設置された構造を提供することができる。
Thus, the solar cell module 1 according to the present embodiment is installed in a state where the light collector 2 and the solar cell element 3 are accurately aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Can be provided.
以上説明したように、本実施形態における太陽電池モジュール1によれば、太陽電池セル30が集光板2の第2主面2bの所定位置にアライメントされた状態で配置されているので、集光板2内を伝播した蛍光を太陽電池セル30に良好に導くことができる。よって、高い発電効率を得ることができる。
As described above, according to the solar cell module 1 in the present embodiment, the solar cells 30 are arranged in a state aligned with the predetermined positions of the second main surface 2b of the light collector 2, so that the light collector 2 The fluorescence that has propagated through the inside can be guided to the solar battery cell 30 satisfactorily. Therefore, high power generation efficiency can be obtained.
また、本実施形態によれば、第1アライメントマークAM1の最表層AM1´が光反射特性を有する材料から構成されるので、集光板2の第2主面2bに形成される第1アライメントマークAM1による蛍光のロスを抑制することができる。
Further, according to the present embodiment, since the outermost layer AM1 ′ of the first alignment mark AM1 is made of a material having light reflection characteristics, the first alignment mark AM1 formed on the second main surface 2b of the light collector 2 is used. The loss of fluorescence due to can be suppressed.
また、本実施形態によれば、支持プレート31を介して集光板2に接合することで、複数の太陽電池セル30と第2主面2bとのアライメントを簡便に行うことができる。また、支持プレート31が透光性材料から構成されるため、アライメント時に該支持プレート31の裏面側から直接第1アライメントマークAM1及び第2アライメントマークAM2を確認することができる。よって、アライメント作業を容易なものとすることができる。
Moreover, according to this embodiment, by joining to the light-condensing plate 2 via the support plate 31, alignment with the some solar cell 30 and the 2nd main surface 2b can be performed simply. Further, since the support plate 31 is made of a translucent material, the first alignment mark AM1 and the second alignment mark AM2 can be confirmed directly from the back side of the support plate 31 during alignment. Therefore, the alignment work can be facilitated.
また、本実施形態によれば、太陽電池素子3が集光板2の第1主面2aに固定され、フレーム4には固定されていない。そのため、集光板2とフレーム4の相対位置のずれにより太陽電池素子3に応力が加わることを抑制できる。よって、太陽電池素子3の損傷を抑制することができる。
Further, according to the present embodiment, the solar cell element 3 is fixed to the first main surface 2 a of the light collector 2 and is not fixed to the frame 4. Therefore, it can suppress that stress is added to the solar cell element 3 by the shift | offset | difference of the relative position of the light-condensing plate 2 and the flame | frame 4. Therefore, damage to the solar cell element 3 can be suppressed.
また、本実施形態によれば、フレーム4の底板部41bと集光板2の第2主面2bとの間の反射層12及び緩衝層13が配置されていない部分には空気層が介在している。集光板2の屈折率と空気層の屈折率と間の屈折率差が大きいため、集光板2を伝播する光が集光板2と空気層との界面で全反射しやすくなる。よって、光の損失を低減できる。例えば、集光板2の屈折率を1.5、空気層の屈折率を1.0とすると、集光板2と空気層との界面における臨界角は、Snellの法則から42°程度となる。当該界面への光の入射角が臨界角である42°よりも大きい間は臨界角条件を満たすため、光は当該界面で全反射する。
Further, according to the present embodiment, the air layer is interposed in the portion where the reflection layer 12 and the buffer layer 13 between the bottom plate portion 41b of the frame 4 and the second main surface 2b of the light collector 2 are not disposed. Yes. Since the refractive index difference between the refractive index of the light collector 2 and the refractive index of the air layer is large, the light propagating through the light collector 2 is likely to be totally reflected at the interface between the light collector 2 and the air layer. Thus, light loss can be reduced. For example, when the refractive index of the light collector 2 is 1.5 and the refractive index of the air layer is 1.0, the critical angle at the interface between the light collector 2 and the air layer is about 42 ° from Snell's law. Since the critical angle condition is satisfied while the incident angle of light on the interface is greater than the critical angle of 42 °, the light is totally reflected at the interface.
また、本実施形態によれば、フレーム4が太陽電池素子3を覆って形成されているため、塵埃等の異物や雨水が太陽電池素子3に浸入することを抑制できる。
Further, according to the present embodiment, since the frame 4 is formed so as to cover the solar cell element 3, it is possible to prevent foreign matters such as dust and rainwater from entering the solar cell element 3.
また、本実施形態によれば、フレーム4が集光板2の端部を第1主面2aの側及び第2主面2bの側から挟み込んで保持されている。そのため、外力によってフレーム4がずれることを抑制し、太陽電池素子3に衝撃が加わることを抑制できる。よって、太陽電池素子3の損傷を抑制することができる。
Further, according to the present embodiment, the frame 4 is held by sandwiching the end portion of the light collector 2 from the first main surface 2a side and the second main surface 2b side. Therefore, it can suppress that the flame | frame 4 slip | deviates with external force, and can suppress that an impact is added to the solar cell element 3. FIG. Therefore, damage to the solar cell element 3 can be suppressed.
また、本実施形態によれば、空間40に乾燥剤18が設けられているため、空間40の湿気を取り除くことができる。よって、湿度により太陽電池素子3の品質が劣化することを抑制できる。
Moreover, according to this embodiment, since the desiccant 18 is provided in the space 40, the moisture in the space 40 can be removed. Therefore, it can suppress that the quality of the solar cell element 3 deteriorates with humidity.
なお、本実施形態の集光板2は、入射した光を吸収して蛍光を発する蛍光体を含有する蛍光集光板で構成されているが、これに限らない。例えば、蛍光体を含有していない集光板で構成されていてもよい。また、入射した光を反射させて当該光の進行方向を変更する反射面が設けられた形状集光板であってもよい。
In addition, although the light-condensing plate 2 of this embodiment is comprised with the fluorescence light-condensing plate containing the fluorescent substance which absorbs incident light and emits fluorescence, it is not restricted to this. For example, you may be comprised with the light-condensing plate which does not contain fluorescent substance. Moreover, the shape light-condensing plate provided with the reflective surface which reflects the incident light and changes the advancing direction of the said light may be sufficient.
また、本実施形態では、集光板2の第2主面2bに太陽電池素子3を設ける場合を説明したが、太陽電池素子3が第1主面2aに設けられていてもよい。
Moreover, although the case where the solar cell element 3 was provided in the 2nd main surface 2b of the light-condensing plate 2 was demonstrated in this embodiment, the solar cell element 3 may be provided in the 1st main surface 2a.
また、本実施形態では、反射層12がフレーム4の一部に設けられている例を挙げて説明したが、これに限らない。例えば、反射層がフレームの内面全体に設けられていてもよい。
In the present embodiment, the example in which the reflective layer 12 is provided in a part of the frame 4 has been described. However, the present invention is not limited to this. For example, the reflective layer may be provided on the entire inner surface of the frame.
(第1実施形態の第1変形例)
続いて、第1実施形態に係る第1変形例について説明する。本変形例と第1実施形態との違いは、太陽電池素子3が配置されている位置及び集光板2の形状であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (First modification of the first embodiment)
Then, the 1st modification concerning 1st Embodiment is demonstrated. The difference between this modification and 1st Embodiment is the position where thesolar cell element 3 is arrange | positioned, and the shape of the light-condensing plate 2, Other structures are the same. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
続いて、第1実施形態に係る第1変形例について説明する。本変形例と第1実施形態との違いは、太陽電池素子3が配置されている位置及び集光板2の形状であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (First modification of the first embodiment)
Then, the 1st modification concerning 1st Embodiment is demonstrated. The difference between this modification and 1st Embodiment is the position where the
図6(a)は第1変形に係る太陽電池モジュールを示す断面図であり、(b)は第1変形に係る集光板2の端面の平面図であり、(c)は集光板の端面にアライメントされた太陽電池素子を示す平面図である。なお、図6(a)は、第1実施形態における図3に対応する断面構成を示すものである。
6A is a cross-sectional view showing the solar cell module according to the first modification, FIG. 6B is a plan view of the end face of the light collector 2 according to the first modification, and FIG. 6C is the end face of the light collector. It is a top view which shows the aligned solar cell element. FIG. 6A shows a cross-sectional configuration corresponding to FIG. 3 in the first embodiment.
本変形例に係る集光板2は、図6(a)に示すように、端面2cが第1主面2a及び第2主面2bに対して直交している。すなわち、集光板2の端面2cと集光板2の第2主面2b(第1主面2a)とのなす角度が90°である。図6(b)に示すように、集光板2は、端面2cの上部側(第1主面2a側)に第1アライメントマークAM1が設けられている。
In the light collector 2 according to this modification, as shown in FIG. 6A, the end surface 2c is orthogonal to the first main surface 2a and the second main surface 2b. That is, the angle formed by the end surface 2c of the light collector 2 and the second main surface 2b (first main surface 2a) of the light collector 2 is 90 °. As shown in FIG. 6 (b), the light collector 2 is provided with a first alignment mark AM1 on the upper side (first main surface 2a side) of the end surface 2c.
本変形例においても、図6(c)に示すように、支持プレート31に設けられた第2アライメントマークAM2及び集光板2に設けられた第1アライメントマークAM1を基準として、太陽電池素子3が集光板2の端面2cにアライメントされた状態で設置されている。太陽電池セル30は、支持プレート31と反対側の面が集光板2の端面2cに透明接着剤7により接合されている。
Also in this modified example, as shown in FIG. 6C, the solar cell element 3 is based on the second alignment mark AM2 provided on the support plate 31 and the first alignment mark AM1 provided on the light collector 2. It is installed in an aligned state with the end face 2c of the light collector 2. The surface of the solar battery cell 30 opposite to the support plate 31 is joined to the end surface 2 c of the light collector 2 by the transparent adhesive 7.
本変形例に係るアライメントにおいても、光透過性を有するガラスエポキシからなる支持プレート31を介し、裏面(太陽電池セル30の配置面と反対面)側から第2アライメントマークAM2及び第1アライメントマークAM1の位置を確認しつつ、太陽電池素子3及び集光板2の位置合わせを行う。
Also in the alignment according to this modification, the second alignment mark AM2 and the first alignment mark AM1 are formed from the back surface (the surface opposite to the arrangement surface of the solar cells 30) through the support plate 31 made of glass epoxy having light transmittance. The solar cell element 3 and the light collector 2 are aligned while confirming the position.
上記実施形態と同様に複数の太陽電池セル30は支持プレート31上に精度良くアライメントされた状態に配置されているため、第1アライメントマークAM1及び第2アライメントマークAM2を基準として、支持プレート31と集光板2との位置合わせを行えば、該集光板2上に配置された各太陽電池セル30と集光板2とをアライメントすることができる。
Since the plurality of solar battery cells 30 are arranged on the support plate 31 with high accuracy as in the above embodiment, the support plate 31 and the first alignment mark AM1 and the second alignment mark AM2 are used as a reference. If alignment with the light-condensing plate 2 is performed, each solar cell 30 arrange | positioned on this light-condensing plate 2 and the light-condensing plate 2 can be aligned.
本変形例によれば、太陽電池セル30が集光板2の端面2cの所定位置に精度良くアライメントされた状態で配置されているので、集光板2内を伝播した光を端面2cに配置された太陽電池セル30に良好に導くことができる。よって、上記実施形態と同様、高い発電効率を得ることができる。
According to the present modification, the solar battery cell 30 is arranged in a state accurately aligned with a predetermined position on the end surface 2c of the light collector 2, so that the light propagated in the light collector 2 is arranged on the end surface 2c. The solar cell 30 can be favorably guided. Therefore, high power generation efficiency can be obtained as in the above embodiment.
(第1実施形態の第2変形例)
続いて、第1実施形態に係る第2変形例について説明する。本変形例と第1実施形態との違いは、第2アライメントマークの構成であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Second modification of the first embodiment)
Next, a second modification example according to the first embodiment will be described. The difference between this modification and the first embodiment is the configuration of the second alignment mark, and the other configurations are the same. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
続いて、第1実施形態に係る第2変形例について説明する。本変形例と第1実施形態との違いは、第2アライメントマークの構成であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Second modification of the first embodiment)
Next, a second modification example according to the first embodiment will be described. The difference between this modification and the first embodiment is the configuration of the second alignment mark, and the other configurations are the same. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
図7(a)は第2変形に係る太陽電池素子の平面構成を示す図であり、(b)は第2変形に係る集光板2及び太陽電池素子のアライメントを説明するための断面図である。なお、図7(b)は、第1実施形態における図5(b)に対応する図である。
Fig.7 (a) is a figure which shows the planar structure of the solar cell element which concerns on 2nd deformation | transformation, (b) is sectional drawing for demonstrating alignment of the light-condensing plate 2 and solar cell element which concern on 2nd deformation | transformation. . FIG. 7B is a diagram corresponding to FIG. 5B in the first embodiment.
本変形例においては、図7(a)、(b)に示すように、支持プレート31に貫通孔Kが形成されており、該貫通孔Kの開口端(円形)が第2アライメントマークAM2を構成している。
本変形例において、太陽電池素子3及び集光板2にアライメントする場合、支持プレート31に形成された貫通孔Kから構成される第2アライメントマークAM2及び集光板2に設けられた第1アライメントマークAM1を基準として、太陽電池セル30及び集光板2の位置合わせを行う。 In this modification, as shown in FIGS. 7A and 7B, a through hole K is formed in thesupport plate 31, and the opening end (circular shape) of the through hole K defines the second alignment mark AM2. It is composed.
In this modification, when aligning with thesolar cell element 3 and the light collector 2, the second alignment mark AM <b> 2 including the through holes K formed in the support plate 31 and the first alignment mark AM <b> 1 provided on the light collector 2. Are aligned with respect to the solar battery cell 30 and the light collector 2.
本変形例において、太陽電池素子3及び集光板2にアライメントする場合、支持プレート31に形成された貫通孔Kから構成される第2アライメントマークAM2及び集光板2に設けられた第1アライメントマークAM1を基準として、太陽電池セル30及び集光板2の位置合わせを行う。 In this modification, as shown in FIGS. 7A and 7B, a through hole K is formed in the
In this modification, when aligning with the
集光板2に設けられた第1アライメントマークAM1は、支持プレート31に形成された貫通孔Kを介して確認することが可能である。そのため、貫通孔Kを介して第1アライメントマークAM1が確認可能なように支持プレート31及び集光板2の位置を調整することができる。つまり、貫通孔Kは、支持プレート31における位置情報を規定する第2アライメントマークAM2を構成しているといえる。
1st alignment mark AM1 provided in the light-condensing plate 2 can be confirmed through the through-hole K formed in the support plate 31. FIG. Therefore, the positions of the support plate 31 and the light collector 2 can be adjusted so that the first alignment mark AM1 can be confirmed through the through hole K. That is, it can be said that the through hole K constitutes the second alignment mark AM2 that defines the position information on the support plate 31.
このように本変形例においては、第2アライメントマークAM2が支持プレート31に形成された貫通孔Kによって構成されることから、貫通孔Kを介して第1アライメントマークAM1を確認することができる。そのため、支持プレート31が上記第1実施形態のように光透過性を有する材料から構成されていなくてもよい。
As described above, in the present modification, the second alignment mark AM2 is constituted by the through hole K formed in the support plate 31, and therefore the first alignment mark AM1 can be confirmed through the through hole K. Therefore, the support plate 31 does not have to be made of a light transmissive material as in the first embodiment.
本変形例においても、複数の太陽電池セル30は支持プレート31上に精度良くアライメントされた状態に配置されているため、第1アライメントマークAM1及び第2アライメントマークAM2(貫通孔K)を基準として、支持プレート31と集光板2との位置合わせを行えば、該集光板2上に配置された各太陽電池セル30と集光板2とをアライメントすることができる。よって、集光板2内を伝播した光を端面2cに配置された太陽電池セル30に良好に導くことができ、高い発電効率を備えた太陽電池モジュール1を得ることができる。
Also in this modified example, since the plurality of solar cells 30 are arranged on the support plate 31 in a state of being accurately aligned, the first alignment mark AM1 and the second alignment mark AM2 (through hole K) are used as a reference. If the support plate 31 and the light collector 2 are aligned, the solar cells 30 arranged on the light collector 2 and the light collector 2 can be aligned. Therefore, the light propagating through the light collector 2 can be favorably guided to the solar battery cell 30 disposed on the end face 2c, and the solar battery module 1 having high power generation efficiency can be obtained.
(第1実施形態の第3変形例)
続いて、第1実施形態に係る第3変形例について説明する。本変形例と第1実施形態との違いは、第2アライメントマークの構成であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Third Modification of First Embodiment)
Then, the 3rd modification concerning 1st Embodiment is demonstrated. The difference between this modification and the first embodiment is the configuration of the second alignment mark, and the other configurations are the same. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
続いて、第1実施形態に係る第3変形例について説明する。本変形例と第1実施形態との違いは、第2アライメントマークの構成であり、それ以外の構成は同一である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Third Modification of First Embodiment)
Then, the 3rd modification concerning 1st Embodiment is demonstrated. The difference between this modification and the first embodiment is the configuration of the second alignment mark, and the other configurations are the same. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
図8は第3変形例に係る太陽電池素子の平面構成を示す図であり、図9は第3変形例に係る集光板2及び太陽電池素子のアライメントを説明するための断面図である。なお、図9は、第1実施形態における図5(b)に対応する図である。
FIG. 8 is a diagram illustrating a planar configuration of the solar cell element according to the third modification, and FIG. 9 is a cross-sectional view for explaining alignment of the light collector 2 and the solar cell element according to the third modification. FIG. 9 is a diagram corresponding to FIG. 5B in the first embodiment.
本変形例においては、図8に示すように、第2アライメントマークAM2が太陽電池セル30の一部である電極30aから構成されている。第2アライメントマークAM2は、例えば、パターニングして電極30aを形成する際の抜き部分(電極30aが無い部分)から構成される。
In the present modification, as shown in FIG. 8, the second alignment mark AM <b> 2 is composed of an electrode 30 a that is a part of the solar battery cell 30. The second alignment mark AM2 includes, for example, a portion that is not patterned when the electrode 30a is formed by patterning (a portion without the electrode 30a).
本変形例では、太陽電池セル30の中に1.5mm幅の接続用の電極30aを形成し、該電極30aの中に500μm角の正方形状の抜け部分を複数形成した。また、第1アライメントマークAM1は、第2アライメントマークAM2と同じ大きさの正方形状のものを用いた。
In this modification, a connection electrode 30a having a width of 1.5 mm was formed in the solar battery cell 30, and a plurality of 500-μm-square square-out portions were formed in the electrode 30a. The first alignment mark AM1 is a square having the same size as the second alignment mark AM2.
本変形例において、太陽電池素子3及び集光板2にアライメントする場合、図9に示すように、集光板2の第1主面2a側から第1アライメントマークAM1及び第2アライメントマークAM2の位置を確認して、太陽電池セル30及び集光板2の位置合わせを行う。集光板2は、光透過性を有するため、第1アライメントマークAM1及び第2アライメントマークAM2を観察することができる。第1アライメントマークAM1及び第2アライメントマークAM2を重ねるように太陽電池セル30及び集光板2の位置を合わせることでアライメント作業を容易に行うことができる。
In this modification, when aligning with the solar cell element 3 and the light collector 2, the positions of the first alignment mark AM1 and the second alignment mark AM2 from the first main surface 2a side of the light collector 2 are shown in FIG. After confirming, the solar cells 30 and the light collector 2 are aligned. Since the light collector 2 is light transmissive, the first alignment mark AM1 and the second alignment mark AM2 can be observed. The alignment operation can be easily performed by aligning the positions of the solar battery cell 30 and the light collector 2 so that the first alignment mark AM1 and the second alignment mark AM2 overlap each other.
本変形例によれば、第2アライメントマークAM2が太陽電池セル30の一部(電極30a)から構成されるので、支持プレート31にマークを設置する必要が無い。また、第2アライメントマークAM2は、太陽電池セル30に入射した光が発電に使用されない電極30aに形成されるので、アライメントマークを設けることによる光のロスの発生を防止することができる。
According to this modification, since the second alignment mark AM2 is constituted by a part of the solar battery cell 30 (electrode 30a), it is not necessary to install a mark on the support plate 31. Further, since the second alignment mark AM2 is formed on the electrode 30a where the light incident on the solar battery cell 30 is not used for power generation, it is possible to prevent the occurrence of light loss due to the provision of the alignment mark.
ところで、集光板2は、光(例えば、太陽光)が入射すると内部に分散された蛍光体21が光を吸収し等方的に蛍光を放射するようになっている。等方的に放射された蛍光は、集光板2の内部を導光し、端面2cに設けられた反射層8で第2主面2bに向けて反射される。しかしながら、集光板2に光が一様に入射した場合であっても、集光板2の端面2c(反射層5)に蛍光が一様に集光されるわけではなく、反射層5で反射されて第2主面2bに照射される光には強度分布が生じてしまう。
By the way, when light (for example, sunlight) is incident on the light collector 2, the phosphor 21 dispersed therein absorbs the light and radiates fluorescence isotropically. The fluorescence emitted isotropically guides the inside of the light collector 2 and is reflected toward the second main surface 2b by the reflective layer 8 provided on the end surface 2c. However, even when light uniformly enters the light collector 2, the fluorescent light is not uniformly condensed on the end surface 2 c (reflective layer 5) of the light collector 2, but is reflected by the reflective layer 5. Thus, an intensity distribution is generated in the light irradiated on the second main surface 2b.
本変形例では、上述のように太陽電池セル30の一部(電極30a)で第2アライメントマークAM2を構成しているため、第1アライメントマークAM1は、集光板2の第2主面2bのうち、太陽電池セル30の配置領域Aと平面的に重なる領域に配置される(図9参照)。第1アライメントマークAM1は、少なからず集光板2内を伝搬する蛍光をロスする要因となり得るため、第1アライメントマークAM1は出来るだけ端面2c(反射層5)による反射光の強度が低い領域に配置することが好ましい。これによれば、第1アライメントマークAM1による光のロスを最小限に抑えることが可能となるからである。
In the present modification, since the second alignment mark AM2 is configured by a part (electrode 30a) of the solar battery cell 30 as described above, the first alignment mark AM1 is formed on the second main surface 2b of the light collector 2. Among these, it arrange | positions in the area | region which overlaps with the arrangement | positioning area | region A of the photovoltaic cell 30 planarly (refer FIG. 9). Since the first alignment mark AM1 may cause a loss of the fluorescence propagating in the light collector 2, it is arranged in a region where the intensity of the reflected light from the end face 2c (the reflective layer 5) is as low as possible. It is preferable to do. This is because light loss due to the first alignment mark AM1 can be minimized.
本変形例では、後述するようなシミュレーション結果に基づいて、第1アライメントマークAM1の配置位置が設定されたものとしている。また、第1アライメントマークAM1の配置位置に基づいて、太陽電池セル30における第2アライメントマークAM2を形成する電極30aの位置を適宜調整している。
In this modification, the arrangement position of the first alignment mark AM1 is set based on a simulation result as described later. Moreover, the position of the electrode 30a which forms the 2nd alignment mark AM2 in the photovoltaic cell 30 is adjusted suitably based on the arrangement position of 1st alignment mark AM1.
本願発明者は、集光板の太陽電池セルの設置面である下面に入射する光の強度分布をシミュレーションで確認した。以下、シミュレーションの結果について、図面を用いて説明する。
The inventor of the present application confirmed the intensity distribution of light incident on the lower surface, which is the installation surface of the solar cells of the light collector, by simulation. Hereinafter, simulation results will be described with reference to the drawings.
図10は、シミュレーションに用いた集光板の概略斜視構成を示す図である。
図11はシミュレーションから導き出された集光板の下面(太陽電池セルの設置面)における光強度の2次元的な分布を示す図であり、図12はシミュレーションから導き出された光強度の3次元的な分布を示す図である。なお、図10におけるX方向は、集光板における太陽電池セルの設置領域の短辺方向に対応し、Y方向は集光板における太陽電池セルの配置領域の長辺方向に対応する。つまり、+X方向は集光板の端部から離間する方向を示している。 FIG. 10 is a diagram illustrating a schematic perspective configuration of the light collector used in the simulation.
FIG. 11 is a diagram showing a two-dimensional distribution of the light intensity on the lower surface of the light collector (the installation surface of the solar cells) derived from the simulation, and FIG. 12 is a three-dimensional distribution of the light intensity derived from the simulation. It is a figure which shows distribution. Note that the X direction in FIG. 10 corresponds to the short side direction of the solar cell installation region in the light collector, and the Y direction corresponds to the long side direction of the solar cell placement region in the light collector. That is, the + X direction indicates a direction away from the end of the light collector.
図11はシミュレーションから導き出された集光板の下面(太陽電池セルの設置面)における光強度の2次元的な分布を示す図であり、図12はシミュレーションから導き出された光強度の3次元的な分布を示す図である。なお、図10におけるX方向は、集光板における太陽電池セルの設置領域の短辺方向に対応し、Y方向は集光板における太陽電池セルの配置領域の長辺方向に対応する。つまり、+X方向は集光板の端部から離間する方向を示している。 FIG. 10 is a diagram illustrating a schematic perspective configuration of the light collector used in the simulation.
FIG. 11 is a diagram showing a two-dimensional distribution of the light intensity on the lower surface of the light collector (the installation surface of the solar cells) derived from the simulation, and FIG. 12 is a three-dimensional distribution of the light intensity derived from the simulation. It is a figure which shows distribution. Note that the X direction in FIG. 10 corresponds to the short side direction of the solar cell installation region in the light collector, and the Y direction corresponds to the long side direction of the solar cell placement region in the light collector. That is, the + X direction indicates a direction away from the end of the light collector.
本シミュレーションにおいては、集光板の第2主面に対する端面の傾斜角度θを45°とし、太陽電池セルの配置領域のX方向の寸法d1を4mm、Y方向の寸法d2を15cm、集光板の厚みを2mmとした。なお、シミュレーションに用いた集光板の寸法は、上記実施形態に係る集光板2の寸法とは異なる。
In this simulation, the inclination angle θ of the end surface with respect to the second main surface of the light collector is 45 °, the dimension d1 in the X direction of the solar cell arrangement region is 4 mm, the dimension d2 in the Y direction is 15 cm, and the thickness of the light collector. Was 2 mm. In addition, the dimension of the light-condensing plate used for simulation differs from the dimension of the light-condensing plate 2 which concerns on the said embodiment.
シミュレーションの結果、図11、12に示されるように、集光板の端部(X=0)から離れるに従って光の強度が一旦上昇し、その後、端部から離間するに従って光の強度が低下していくことが確認できた。また、Y方向においては、光の強度分布は中心で強度が最大となり、中心から離間するにつれて強度が低下する傾向を示すことが確認できた。
As a result of the simulation, as shown in FIGS. 11 and 12, the intensity of the light once increases as it moves away from the end (X = 0) of the light collector, and then the intensity of the light decreases as it moves away from the end. I was able to confirm. In the Y direction, it was confirmed that the intensity distribution of light had the maximum intensity at the center, and the intensity decreased with increasing distance from the center.
図13(a)は図11のB-B´線に対応する集光板の太陽電池セルの設置領域の断面の光強度分布(図12の面BB´と交差する光強度の交点P)をグラフにしたものである。なお、図13(a)において、横軸は集光板の端部からの距離(すなわち、Xの値)であり、縦軸は光強度の値である。なお、縦軸においては、光強度の最大値が1.0を示すように規格化したものである。
FIG. 13A is a graph showing the light intensity distribution (intersection P of the light intensity intersecting with the plane BB ′ in FIG. 12) in the cross section of the solar cell installation region of the light collector corresponding to the line BB ′ in FIG. It is a thing. In FIG. 13A, the horizontal axis represents the distance from the end of the light collector (that is, the value of X), and the vertical axis represents the light intensity value. The vertical axis is normalized so that the maximum value of the light intensity is 1.0.
シミュレーション結果からは、図13(a)に示されるように、太陽電池セルの設置領域の光の強度は、集光板の端部から離れるに従って上昇した後、次第に低下することが確認できる。具体的には、端部から3.3mmの付近で最も光の強度(0.5程度)が小さくなることが確認できる。すなわち、本シミュレーション結果に基づけば、第1アライメントマークAM1を設置する位置(マーク設置ラインML)が集光板の端部から寸法d3(3.3mm)だけ内側に設定されるのが好ましいことが確認できる。このように第1アライメントマークAM1の設置場所は、集光板における太陽電池セルの設置領域に入射する光強度の分布(すなわち、集光板における光の集光効率)に基づいて設定することができる。これによれば、光の強度が弱い領域に第1アライメントマークAM1が配置されるので、第1アライメントマークAM1による光のロスを抑えることができる。よって、集光板で集光した光の利用効率を向上させることができる。
From the simulation results, as shown in FIG. 13 (a), it can be confirmed that the intensity of light in the solar cell installation region rises as it moves away from the end of the light collector and then gradually decreases. Specifically, it can be confirmed that the light intensity (about 0.5) is the smallest in the vicinity of 3.3 mm from the end. That is, based on the simulation result, it is confirmed that the position (mark installation line ML) where the first alignment mark AM1 is installed is preferably set inward by the dimension d3 (3.3 mm) from the end of the light collector. it can. Thus, the installation location of the first alignment mark AM1 can be set based on the distribution of the light intensity incident on the solar cell installation region on the light collector (that is, the light collection efficiency of the light collector). According to this, since the first alignment mark AM1 is arranged in the region where the light intensity is weak, it is possible to suppress light loss due to the first alignment mark AM1. Therefore, the utilization efficiency of the light condensed by the light collector can be improved.
また、図13(b)は、上記シミュレーション条件のうち、図10に示した集光板の端面の傾斜角度θのみを60°に変更した場合の太陽電池セルの設置領域の断面の光強度分布を示すものである。図13(b)に示されるように、集光板の端面の傾斜角度は、光強度の分布に大きく影響しないことが確認できた。
FIG. 13B shows the light intensity distribution in the cross section of the solar cell installation region when only the inclination angle θ of the end face of the light collector shown in FIG. 10 is changed to 60 ° among the simulation conditions. It is shown. As shown in FIG. 13B, it was confirmed that the inclination angle of the end face of the light collector does not significantly affect the light intensity distribution.
なお、本シミュレーション結果は一例であり、第1アライメントマークAM1の設置位置はシミュレーションの条件に応じて変化する光強度分布に応じて適宜設定される。すなわち、上記図13(b)では、集光板の端面の傾斜角度を45°から60°に変更した場合でも光強度の分布に大きく影響しなかったが、集光板の形状等によっては傾斜角度によって光強度の分布が変化する場合も考えられる。例えば、上記シミュレーションでは、端面の傾斜角度によらず、端部から離れるに従って光強度が小さくなったが、集光板の形状等によっては端部に近づくほど光強度が小さい場合もあり得る。この場合、集光板の端部の近傍にマーク設置ラインMLを設定すればよい。
Note that this simulation result is an example, and the installation position of the first alignment mark AM1 is appropriately set according to the light intensity distribution that changes according to the simulation conditions. That is, in FIG. 13B, even when the inclination angle of the end face of the light collector is changed from 45 ° to 60 °, the light intensity distribution was not greatly affected. It is also conceivable that the light intensity distribution changes. For example, in the above simulation, the light intensity decreases with increasing distance from the end portion regardless of the inclination angle of the end face. However, depending on the shape of the light collector, the light intensity may decrease as it approaches the end portion. In this case, the mark installation line ML may be set near the end of the light collector.
(第2実施形態)
続いて、第2実施形態に係る太陽電池モジュールについて説明する。本実施形態と第1実施形態との違いは、太陽電池セル30が支持プレート31を用いることなく、集光板2に直接接合されている点である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Second Embodiment)
Then, the solar cell module which concerns on 2nd Embodiment is demonstrated. The difference between the present embodiment and the first embodiment is that thesolar battery cell 30 is directly joined to the light collector 2 without using the support plate 31. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
続いて、第2実施形態に係る太陽電池モジュールについて説明する。本実施形態と第1実施形態との違いは、太陽電池セル30が支持プレート31を用いることなく、集光板2に直接接合されている点である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Second Embodiment)
Then, the solar cell module which concerns on 2nd Embodiment is demonstrated. The difference between the present embodiment and the first embodiment is that the
図14は、本実施形態に係る太陽電池モジュールの構成を示す断面図である。図15は集光板に対する太陽電池セルのアライメント方法を説明するための図である。
本実施形態において、集光板2は、図14に示すように、端面2cが第1主面2a及び第2主面2bに対して直交している。すなわち、集光板2の端面2cと集光板2の第2主面2b(第1主面2a)とのなす角度が90°である。 FIG. 14 is a cross-sectional view showing the configuration of the solar cell module according to this embodiment. FIG. 15 is a view for explaining an alignment method of solar cells with respect to the light collector.
In this embodiment, as shown in FIG. 14, thelight collector 2 has an end surface 2c orthogonal to the first main surface 2a and the second main surface 2b. That is, the angle formed by the end surface 2c of the light collector 2 and the second main surface 2b (first main surface 2a) of the light collector 2 is 90 °.
本実施形態において、集光板2は、図14に示すように、端面2cが第1主面2a及び第2主面2bに対して直交している。すなわち、集光板2の端面2cと集光板2の第2主面2b(第1主面2a)とのなす角度が90°である。 FIG. 14 is a cross-sectional view showing the configuration of the solar cell module according to this embodiment. FIG. 15 is a view for explaining an alignment method of solar cells with respect to the light collector.
In this embodiment, as shown in FIG. 14, the
太陽電池セル30は、集光板2の端面2cに透明接着剤7により接合されている。本実施形態において、第1アライメントマークAM1は集光板2の端面2cに設けられ、第2アライメントマークAM2は太陽電池セル30に直接設けられている。本実施形態においても、第1アライメントマークAM1及び第2アライメントマークAM2を基準として、太陽電池セル30及び集光板2は互いが位置合わせされた状態で配置されている。これにより、集光板2内を伝播する蛍光が端面2cに接合された太陽電池セル30に良好に取り込まれるようになっている。
The solar battery cell 30 is joined to the end surface 2 c of the light collector 2 by the transparent adhesive 7. In the present embodiment, the first alignment mark AM1 is provided on the end surface 2c of the light collector 2, and the second alignment mark AM2 is provided directly on the solar battery cell 30. Also in the present embodiment, the solar cells 30 and the light collector 2 are arranged in a state of being aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Thereby, the fluorescence which propagates the inside of the light-condensing plate 2 is taken in favorably by the photovoltaic cell 30 joined to the end surface 2c.
第1アライメントマークAM1は、図15に示すように、集光板2の端面2cに設けられている。第1アライメントマークAM1は、端面2cにおける太陽電池セル30の配置領域Aに重ならない位置に設けられている。本実施形態において、第1アライメントマークAM1は、配置領域Aの四隅に対応する位置に設けられている。第1アライメントマークAM1の形成材料として光反射特性を有するものが用いられる。
The first alignment mark AM1 is provided on the end surface 2c of the light collector 2 as shown in FIG. 1st alignment mark AM1 is provided in the position which does not overlap with the arrangement | positioning area | region A of the photovoltaic cell 30 in the end surface 2c. In the present embodiment, the first alignment marks AM1 are provided at positions corresponding to the four corners of the arrangement region A. A material having a light reflection characteristic is used as a material for forming the first alignment mark AM1.
第2アライメントマークAM2は、太陽電池セル30における光が入射する面と反対の裏面32に設けられている。第2アライメントマークAM2は、印刷等によるマークであってもよいし、太陽電池セル30を直接加工することで形成した凹凸形状であってもよい。
2nd alignment mark AM2 is provided in the back surface 32 opposite to the surface in which the light in the photovoltaic cell 30 injects. The second alignment mark AM2 may be a mark by printing or the like, or may have an uneven shape formed by directly processing the solar battery cell 30.
例えば、太陽電池セル30は、貼付装置(不図示)によって集光板2の端面2cにアライメントされた状態で配置される。貼付装置は、太陽電池セル30を集光板2の端面2cにアライメントする際、第1アライメントマークAM1及び第2アライメントマークAM2を利用する。
For example, the solar battery cell 30 is arranged in a state aligned with the end surface 2c of the light collector 2 by a sticking device (not shown). The sticking device uses the first alignment mark AM1 and the second alignment mark AM2 when aligning the solar battery cell 30 with the end surface 2c of the light collector 2.
貼付装置は、例えば、端面2c上に設定された配置領域Aに太陽電池セル30を移動した際、CCDカメラ等の撮像部により上記第1アライメントマークAM1及び第2アライメントマークAM2を撮像する。そして、貼付装置は、これら第1アライメントマークAM1及び第2アライメントマークAM2の座標位置が所定の閾値(所定の許容範囲)内に収まるように太陽電池セル30の位置を調整し、太陽電池セル30を端面2cの所定位置(配置領域A)に透明接着剤7により接合する。
For example, when the solar cell 30 is moved to the arrangement area A set on the end surface 2c, the pasting device images the first alignment mark AM1 and the second alignment mark AM2 by an imaging unit such as a CCD camera. Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the first alignment mark AM1 and the second alignment mark AM2 are within a predetermined threshold (predetermined allowable range). Are joined to the predetermined position (arrangement area A) of the end face 2c by the transparent adhesive 7.
このように本実施形態によれば、複数の太陽電池セル30が集光板2の端面2c(配置領域A)に精度良くアライメントされているため、集光板2内を伝播した光を端面2cに配置された太陽電池セル30に良好に導くことができ、高い発電効率を備えた太陽電池モジュール1を提供できる。
Thus, according to this embodiment, since the several photovoltaic cell 30 is aligned with the end surface 2c (arrangement area | region A) of the light-condensing plate 2 with sufficient precision, the light which propagated the inside of the light-condensing plate 2 is arrange | positioned at the end surface 2c. Thus, the solar cell module 1 can be favorably guided to the solar cell 30 and provided with high power generation efficiency.
なお、集光板2の端面2cに複数の太陽電池セル30を配置する方法は、上記方法に限られることは無い。例えば、図16(a)に示すように集光板2に設けられた第1アライメントマークAM1のみを用いて、太陽電池セル30を端面2cにアライメントするようにしてもよい。第1アライメントマークAM1は、第1アライメントマークAM1は、配置領域Aの四隅を囲むL字形状に形成され、L字形状の交点部分が配置領域Aの角部に対応する。この場合において、貼付装置は、例えば、端面2c上に設定された第1アライメントマークAM1に太陽電池セル30の4隅を沿わせるように太陽電池セル30の位置を調整し、集光板2に対する太陽電池セル30のアライメントを行うことができる。
In addition, the method of arrange | positioning the several photovoltaic cell 30 in the end surface 2c of the light-condensing plate 2 is not restricted to the said method. For example, as shown in FIG. 16A, the solar battery cell 30 may be aligned with the end face 2c using only the first alignment mark AM1 provided on the light collector 2. The first alignment mark AM1 is formed in an L shape that surrounds the four corners of the arrangement region A, and the intersection portion of the L shape corresponds to the corner of the arrangement region A. In this case, for example, the sticking device adjusts the position of the solar battery cell 30 so that the four corners of the solar battery cell 30 are aligned with the first alignment mark AM1 set on the end surface 2c, and the solar cell with respect to the light collector 2 The battery cell 30 can be aligned.
また、図16(b)に示すように太陽電池セル30の裏面32のみに設けられた第2アライメントマークAM2のみを基準に用いて、太陽電池セル30を端面2cにアライメントするようにしてもよい。この場合において、貼付装置は、例えば、CCDカメラ等の撮像部により集光板2の位置座標を取得し、予め該集光板2における4隅の位置座標を記憶しておく。貼付装置は、端面2cに設定された配置領域Aに太陽電池セル30を移動した際、太陽電池セル30に設けられている第1アライメントマークAM1を撮像部で撮像し、上述の記憶される集光板2の4隅の位置座標と第1アライメントマークAM1との座標位置の誤差がそれぞれ±2%以内に収まるように集光板2上での太陽電池セル30の位置を調整する。
Moreover, as shown in FIG.16 (b), you may make it align the photovoltaic cell 30 to the end surface 2c, using only the 2nd alignment mark AM2 provided only in the back surface 32 of the photovoltaic cell 30 as a reference | standard. . In this case, for example, the sticking device acquires the position coordinates of the light collector 2 by an imaging unit such as a CCD camera and stores the position coordinates of the four corners of the light collector 2 in advance. When the solar cell 30 is moved to the arrangement area A set on the end face 2c, the sticking device images the first alignment mark AM1 provided on the solar cell 30 with the imaging unit, and stores the above-described stored collection. The position of the solar battery cell 30 on the light collector 2 is adjusted so that the error of the coordinate position between the four corners of the light plate 2 and the first alignment mark AM1 is within ± 2%.
このように、本発明は、第1アライメントマークAM1及び第2アライメントマークAM2が、太陽電池セル30及び集光板2の少なくとも一方のみに設けられている場合であっても、一方のマークAM1、AM2を基準として、太陽電池セル30及び集光板2のアライメントを行うことができる。
As described above, according to the present invention, even when the first alignment mark AM1 and the second alignment mark AM2 are provided only on at least one of the solar battery cell 30 and the light collector 2, one mark AM1, AM2 is provided. As a reference, alignment of the solar battery cell 30 and the light collector 2 can be performed.
(第2実施形態の変形例)
続いて、第2実施形態に係る変形例について説明する。本変形例と第2実施形態との違いは、太陽電池セル30が集光板2の端面2cではなく、第2主面2bに直接接合されている点である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Modification of the second embodiment)
Subsequently, a modification according to the second embodiment will be described. The difference between this modification and 2nd Embodiment is that thephotovoltaic cell 30 is directly joined to the 2nd main surface 2b instead of the end surface 2c of the light-condensing plate 2. FIG. In this description, the same reference numerals are given to the same configurations and members as those in the above embodiment, and detailed description is omitted or simplified.
続いて、第2実施形態に係る変形例について説明する。本変形例と第2実施形態との違いは、太陽電池セル30が集光板2の端面2cではなく、第2主面2bに直接接合されている点である。本説明では、上記実施形態と同一の構成及び部材については、同じ符号を付し、詳細な説明については省略若しくは簡略化するものとする。 (Modification of the second embodiment)
Subsequently, a modification according to the second embodiment will be described. The difference between this modification and 2nd Embodiment is that the
図17は本変形例に係る太陽電池モジュールを示す断面図であり、図18は本変形例に係る集光板に対する太陽電池セルのアライメント方法を説明するための図である。
FIG. 17 is a cross-sectional view showing a solar cell module according to this modification, and FIG. 18 is a diagram for explaining a method of aligning solar cells with respect to a light collector according to this modification.
本変形例では第1実施形態と同様、図17に示すように、集光板2の端面2cと集光板2の第2主面2bとのなす角度が例えば45°程度に設定されている。また、複数の太陽電池セル30が集光板2の第2主面2b(第1主面2a)に透明接着剤7を介して直接接合されている。
In this modification, as in the first embodiment, as shown in FIG. 17, the angle formed between the end surface 2c of the light collector 2 and the second main surface 2b of the light collector 2 is set to, for example, about 45 °. A plurality of solar cells 30 are directly joined to the second main surface 2 b (first main surface 2 a) of the light collector 2 via the transparent adhesive 7.
本変形例において、第1アライメントマークAM1は集光板2の第2主面2bに設けられ、第2アライメントマークAM2は太陽電池セル30に直接設けられている。本変形例においても、第1アライメントマークAM1及び第2アライメントマークAM2を基準として、太陽電池セル30及び集光板2は互いが位置合わせされた状態で配置されている。これにより、集光板2内を伝播する蛍光が端面2cに接合された太陽電池セル30に良好に取り込まれるようになっている。
In the present modification, the first alignment mark AM1 is provided on the second main surface 2b of the light collector 2, and the second alignment mark AM2 is provided directly on the solar battery cell 30. Also in this modification, the solar cells 30 and the light collector 2 are arranged in a state of being aligned with each other with the first alignment mark AM1 and the second alignment mark AM2 as a reference. Thereby, the fluorescence which propagates the inside of the light-condensing plate 2 is taken in favorably by the photovoltaic cell 30 joined to the end surface 2c.
図18に示すように、第1アライメントマークAM1は、集光板2の第2主面2bにおける太陽電池セル30の配置領域Aに重ならない位置であり、該配置領域Aに対向するように配置されている。第1アライメントマークAM1の形成材料として光反射特性を有するものが用いられる。
As shown in FIG. 18, the first alignment mark AM1 is a position that does not overlap the arrangement area A of the solar cells 30 on the second main surface 2b of the light collector 2 and is arranged so as to face the arrangement area A. ing. A material having a light reflection characteristic is used as a material for forming the first alignment mark AM1.
第2アライメントマークAM2は、太陽電池セル30における光が入射する面と反対の裏面32に設けられている。第2アライメントマークAM2は、印刷等によるマークであってもよいし、太陽電池セル30を直接加工することで形成した凹凸形状であってもよい。
2nd alignment mark AM2 is provided in the back surface 32 opposite to the surface in which the light in the photovoltaic cell 30 injects. The second alignment mark AM2 may be a mark by printing or the like, or may have an uneven shape formed by directly processing the solar battery cell 30.
具体的に本変形例では、1枚の太陽電池セル30につき、第2アライメントマークAM2を3つ設けている。また、各配置領域Aには、太陽電池セル30に対応して、第1アライメントマークAM1が3つずつ配置されている。
Specifically, in the present modification, three second alignment marks AM2 are provided for one solar battery cell 30. In each arrangement region A, three first alignment marks AM1 are arranged corresponding to the solar cells 30.
例えば、太陽電池セル30は、貼付装置(不図示)によって集光板2の第2主面2bにアライメントされた状態で配置される。貼付装置は、太陽電池セル30を集光板2の第2主面2bにアライメントする際、第1アライメントマークAM1及び第2アライメントマークAM2を利用する。
For example, the solar battery cell 30 is arranged in a state aligned with the second main surface 2b of the light collector 2 by a sticking device (not shown). The sticking device uses the first alignment mark AM1 and the second alignment mark AM2 when aligning the solar battery cell 30 with the second main surface 2b of the light collector 2.
ここで、説明の都合上、第2主面2bに設けられた3つの第1アライメントマークAM1を上から順にそれぞれ第1アライメントマークAM1a、AM1b、AM1cと称する。また、太陽電池セル30に設けられた3つの第2アライメントマークAM2を上から順にそれぞれ第2アライメントマークAM2a、AM2b、AM2cと称する。
Here, for convenience of explanation, the three first alignment marks AM1 provided on the second main surface 2b are referred to as first alignment marks AM1a, AM1b, and AM1c in order from the top. In addition, the three second alignment marks AM2 provided on the solar battery cell 30 are referred to as second alignment marks AM2a, AM2b, and AM2c in order from the top.
貼付装置は、例えば、第2主面2bに設定された配置領域Aに太陽電池セル30を移動した際、CCDカメラ等の撮像部により上記第1アライメントマークAM1及び第2アライメントマークAM2を撮像する。そして、貼付装置は、これら第1アライメントマークAM1及び第2アライメントマークAM2の座標位置が所定の閾値(所定の許容範囲)内に収まるように太陽電池セル30の位置を調整し、太陽電池セル30を第2主面2bの所定位置(配置領域A)に透明接着剤7により接合する。
For example, when the solar cell 30 is moved to the arrangement area A set on the second main surface 2b, the pasting device images the first alignment mark AM1 and the second alignment mark AM2 by an imaging unit such as a CCD camera. . Then, the sticking device adjusts the position of the solar battery cell 30 so that the coordinate positions of the first alignment mark AM1 and the second alignment mark AM2 are within a predetermined threshold (predetermined allowable range). Are joined to the predetermined position (arrangement area A) of the second main surface 2b by the transparent adhesive 7.
貼付装置は、図18に示すように、例えば、太陽電池セル30に設けられた第2アライメントマークAM2a、AM2b、AM2c及び集光板2の第2主面2bに設けられた第2アライメントマークAM2a、AM2b、AM2cの座標位置の誤差が±2%以内に収まるように太陽電池セル30の位置を調整する。
これにより、複数の太陽電池セル30が集光板2の第2主面2b(配置領域A)に精度良くアライメントされたものとなる。 As shown in FIG. 18, the attaching device includes, for example, second alignment marks AM2a, AM2b, AM2c provided on thesolar battery cell 30 and second alignment marks AM2a provided on the second main surface 2b of the light collector 2. The position of the solar battery cell 30 is adjusted so that the error of the coordinate position of AM2b and AM2c is within ± 2%.
Thereby, the somephotovoltaic cell 30 will be aligned with the 2nd main surface 2b (arrangement area | region A) of the light-condensing plate 2 with sufficient precision.
これにより、複数の太陽電池セル30が集光板2の第2主面2b(配置領域A)に精度良くアライメントされたものとなる。 As shown in FIG. 18, the attaching device includes, for example, second alignment marks AM2a, AM2b, AM2c provided on the
Thereby, the some
このように本変形例によれば、複数の太陽電池セル30が第2主面2bの配置領域Aに精度良くアライメントされるため、集光板2内を伝播した光を第2主面2bに配置された太陽電池セル30に良好に導くことができ、高い発電効率を備えた太陽電池モジュール1を提供できる。
Thus, according to this modification, since the plurality of solar cells 30 are accurately aligned with the arrangement region A of the second main surface 2b, the light propagated in the light collector 2 is arranged on the second main surface 2b. Thus, the solar cell module 1 can be favorably guided to the solar cell 30 and provided with high power generation efficiency.
なお、本変形例では、複数の太陽電池セル30が集光板2の第2主面2bに配置される場合を例に挙げたが、太陽電池セル30が集光板2の第1主面2aに配置されていてもよい。
In addition, in this modification, although the case where the several photovoltaic cell 30 was arrange | positioned to the 2nd main surface 2b of the light-condensing plate 2 was mentioned as an example, the solar cell 30 is set to the 1st main surface 2a of the light-condensing plate 2 It may be arranged.
また、本実施形態では、太陽電池素子3(複数の太陽電池セル30)が集光板2の第2主面2bに配置される場合を例に挙げたが、太陽電池素子3が集光板2の第1主面2aに配置されていてもよい。
Moreover, in this embodiment, although the case where the solar cell element 3 (several solar cell 30) is arrange | positioned at the 2nd main surface 2b of the light-condensing plate 2 was mentioned as an example, the solar cell element 3 of the light-condensing plate 2 is mentioned. You may arrange | position to the 1st main surface 2a.
また、本変形例においても、図16(a)に示したように、集光板2に設けられた第1アライメントマークAM1のみを用いて、太陽電池セル30を第2主面2bにアライメントするようにしてもよい。また、図16(b)に示したように、太陽電池セル30の裏面32のみに設けられた第2アライメントマークAM2のみを基準に用いて、太陽電池セル30を第2主面2bにアライメントするようにしてもよい。
Moreover, also in this modification, as shown to Fig.16 (a), it uses so that only the 1st alignment mark AM1 provided in the light-condensing plate 2 may align the photovoltaic cell 30 with the 2nd main surface 2b. It may be. Moreover, as shown in FIG.16 (b), using only 2nd alignment mark AM2 provided only in the back surface 32 of the photovoltaic cell 30, the photovoltaic cell 30 is aligned with the 2nd main surface 2b. You may do it.
(太陽光発電装置)
図19は、太陽光発電装置1000の概略構成図である。
図19に示すように、太陽光発電装置1000は、太陽光のエネルギーを電力に変換する太陽電池モジュール1001と、太陽電池モジュール1001から出力された直流電力を交流電力に変換するインバータ(直流/交流変換器)1004と、太陽電池モジュール1001から出力された直流電力を蓄える蓄電池1005と、を備えている。 (Solar power generator)
FIG. 19 is a schematic configuration diagram of the solarpower generation device 1000.
As shown in FIG. 19, a photovoltaicpower generation apparatus 1000 includes a solar cell module 1001 that converts sunlight energy into electric power, and an inverter that converts DC power output from the solar cell module 1001 into AC power (DC / AC). Converter) 1004 and a storage battery 1005 for storing the DC power output from the solar cell module 1001.
図19は、太陽光発電装置1000の概略構成図である。
図19に示すように、太陽光発電装置1000は、太陽光のエネルギーを電力に変換する太陽電池モジュール1001と、太陽電池モジュール1001から出力された直流電力を交流電力に変換するインバータ(直流/交流変換器)1004と、太陽電池モジュール1001から出力された直流電力を蓄える蓄電池1005と、を備えている。 (Solar power generator)
FIG. 19 is a schematic configuration diagram of the solar
As shown in FIG. 19, a photovoltaic
太陽電池モジュール1001は、太陽光を集光する集光部材(集光板)1002と、集光部材1002によって集光された太陽光によって発電を行う太陽電池素子1003とを備えている。このような太陽電池モジュール1001としては、例えば、上記実施形態及び変形例で説明した太陽電池モジュールが好適に用いられる。
The solar cell module 1001 includes a condensing member (condensing plate) 1002 that condenses sunlight, and a solar cell element 1003 that generates electric power with sunlight condensed by the condensing member 1002. As such a solar cell module 1001, the solar cell module demonstrated by the said embodiment and modification is used suitably, for example.
太陽光発電装置1000は、外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。
このような構成の太陽光発電装置1000は、前述した本発明に係る太陽電池モジュールを備えているため、集光板の光を太陽電池セルに効率的に導くことができ、高い発電効率を得ることが可能なものとなる。 The solarpower generation device 1000 supplies power to the external electronic device 1006. The electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary.
Since the photovoltaicpower generation apparatus 1000 having such a configuration includes the above-described solar battery module according to the present invention, light from the light collector can be efficiently guided to the solar battery cell, and high power generation efficiency can be obtained. Is possible.
このような構成の太陽光発電装置1000は、前述した本発明に係る太陽電池モジュールを備えているため、集光板の光を太陽電池セルに効率的に導くことができ、高い発電効率を得ることが可能なものとなる。 The solar
Since the photovoltaic
以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記の実施形態に限定されないことは言うまでもない。上記の実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
その他、太陽電池モジュールの各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である。 As mentioned above, although preferred embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above embodiment are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
In addition, specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the solar cell module are not limited to the above-described embodiment, and can be changed as appropriate.
その他、太陽電池モジュールの各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である。 As mentioned above, although preferred embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above embodiment are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
In addition, specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the solar cell module are not limited to the above-described embodiment, and can be changed as appropriate.
本発明は、太陽電池モジュール及び太陽光発電装置に利用可能である。
The present invention can be used for a solar cell module and a solar power generation device.
1,1001…太陽電池モジュール、2…集光板、2a…第1主面、2b…第2主面、2c…端面、3…太陽電池素子、5…反射層、6…透明接着剤、K…貫通孔、21…蛍光体、30…太陽電池セル、31…支持プレート、AM1…第1アライメントマーク、AM2…第2アライメントマーク、1001…太陽電池モジュール
DESCRIPTION OF SYMBOLS 1,1001 ... Solar cell module, 2 ... Light-condensing plate, 2a ... 1st main surface, 2b ... 2nd main surface, 2c ... End surface, 3 ... Solar cell element, 5 ... Reflective layer, 6 ... Transparent adhesive, K ... Through hole, 21 ... phosphor, 30 ... solar cell, 31 ... support plate, AM1 ... first alignment mark, AM2 ... second alignment mark, 1001 ... solar cell module
Claims (11)
- 外部からの光を第1主面から入射させ内部で伝播させて端面から射出させる集光板と、
前記集光板の前記端面に設置され、前記端面から射出された光を受光して電力を発生する太陽電池セルと、
前記集光板及び前記太陽電池セルの少なくとも一方に対応するアライメントマークと、を含み、
前記アライメントマークを基準として、前記太陽電池セル及び前記集光板が互いに位置合わせされた状態で設置される太陽電池モジュール。 A light collector that makes light from the outside incident from the first main surface, propagates inside, and exits from the end surface;
A solar battery cell installed on the end face of the light collector and receiving power emitted from the end face to generate electric power;
An alignment mark corresponding to at least one of the light collector and the solar cell,
A solar cell module installed with the solar cell and the light collector aligned with each other with the alignment mark as a reference. - 前記アライメントマークは、前記集光板に対応する第1アライメントマークと、前記太陽電池セルに対応する第2アライメントマークと、を含み、
前記第1アライメントマーク及び前記第2アライメントマークを基準として、前記太陽電池セル及び前記集光板が互いに位置合わせされた状態で設置される請求項1に記載の太陽電池モジュール。 The alignment mark includes a first alignment mark corresponding to the light collector and a second alignment mark corresponding to the solar battery cell,
2. The solar cell module according to claim 1, wherein the solar cell and the light collector are installed with the first alignment mark and the second alignment mark being used as a reference. - 前記第1アライメントマークは、前記光を反射する反射特性を有する請求項2に記載の太陽電池モジュール。 3. The solar cell module according to claim 2, wherein the first alignment mark has a reflection characteristic of reflecting the light.
- 前記第1アライメントマークは積層構造を有し、少なくとも前記集光板に接する層が反射層である請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the first alignment mark has a laminated structure, and at least a layer in contact with the light collector is a reflective layer.
- 前記第2アライメントマークは、前記太陽電池セルの電極に形成された開口を含む請求項2~4のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 2 to 4, wherein the second alignment mark includes an opening formed in an electrode of the solar battery cell.
- 複数の前記太陽電池セルを支持するとともに前記集光板に貼りつけられる支持プレートをさらに備え、
前記複数の太陽電池セルは、前記支持プレートに形成された前記第2アライメントマークと、前記第1アライメントマークとを基準として、前記集光板に位置合わせされた状態で設置される請求項2~5のいずれか一項に記載の太陽電池モジュール。 Further comprising a support plate that supports the plurality of solar cells and is attached to the light collector,
The plurality of solar cells are installed in a state of being aligned with the light collector with reference to the second alignment mark formed on the support plate and the first alignment mark. The solar cell module according to any one of the above. - 前記第2アライメントマークは、前記支持プレートを貫通する貫通孔を含む請求項6に記載の太陽電池モジュール。 The solar cell module according to claim 6, wherein the second alignment mark includes a through hole penetrating the support plate.
- 前記支持プレートは、透光性材料から構成される請求項6又は7に記載の太陽電池モジュール。 The solar cell module according to claim 6 or 7, wherein the support plate is made of a translucent material.
- 前記第1アライメントマークの設置場所は、前記集光板における前記光の集光効率に基づいて設定される請求項2~8のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 2 to 8, wherein an installation location of the first alignment mark is set based on a light collection efficiency of the light on the light collector.
- 前記集光板が、入射した光を吸収して蛍光を発する蛍光体を含有する蛍光集光板である請求項1~9のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 9, wherein the light collecting plate is a fluorescent light collecting plate containing a phosphor that emits fluorescence by absorbing incident light.
- 請求項1~10のいずれか一項に記載の太陽電池モジュールを備えた太陽光発電装置。 A solar power generation apparatus comprising the solar cell module according to any one of claims 1 to 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012198767A JP2015216138A (en) | 2012-09-10 | 2012-09-10 | Solar cell module and photovoltaic power generation device |
JP2012-198767 | 2012-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038568A1 true WO2014038568A1 (en) | 2014-03-13 |
Family
ID=50237177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073747 WO2014038568A1 (en) | 2012-09-10 | 2013-09-04 | Solar cell module and solar photovoltaic power generation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015216138A (en) |
WO (1) | WO2014038568A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463560A (en) * | 2014-06-05 | 2017-02-22 | 法国电力公司 | Photovoltaic device and associated manufacturing process |
EP3783671A4 (en) * | 2018-07-23 | 2021-07-14 | Samsung Electronics Co., Ltd. | Electronic device comprising solar cells of multiple types |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106230374B (en) * | 2016-09-26 | 2018-10-12 | 国家电网公司 | It is fitted the device that enhancing different time scales photovoltaic is contributed based on probability density |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006132265A1 (en) * | 2005-06-07 | 2006-12-14 | Sharp Kabushiki Kaisha | Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure |
WO2008125471A1 (en) * | 2007-04-05 | 2008-10-23 | Commissariat A L'energie Atomique | Flat light concentrator of small thickness |
WO2009064701A1 (en) * | 2007-11-16 | 2009-05-22 | Qualcomm Mems Technologies, Inc. | Thin film solar concentrator/collector |
WO2011033958A1 (en) * | 2009-09-18 | 2011-03-24 | シャープ株式会社 | Solar cell module and solar photovoltaic system |
US20120099325A1 (en) * | 2007-09-10 | 2012-04-26 | Banyan Energy, Inc. | Redirecting optics for concentration and illumination systems |
WO2012070374A1 (en) * | 2010-11-22 | 2012-05-31 | シャープ株式会社 | Photovoltaic module and photovoltaic power generation device |
-
2012
- 2012-09-10 JP JP2012198767A patent/JP2015216138A/en active Pending
-
2013
- 2013-09-04 WO PCT/JP2013/073747 patent/WO2014038568A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006132265A1 (en) * | 2005-06-07 | 2006-12-14 | Sharp Kabushiki Kaisha | Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure |
WO2008125471A1 (en) * | 2007-04-05 | 2008-10-23 | Commissariat A L'energie Atomique | Flat light concentrator of small thickness |
US20120099325A1 (en) * | 2007-09-10 | 2012-04-26 | Banyan Energy, Inc. | Redirecting optics for concentration and illumination systems |
WO2009064701A1 (en) * | 2007-11-16 | 2009-05-22 | Qualcomm Mems Technologies, Inc. | Thin film solar concentrator/collector |
WO2011033958A1 (en) * | 2009-09-18 | 2011-03-24 | シャープ株式会社 | Solar cell module and solar photovoltaic system |
WO2012070374A1 (en) * | 2010-11-22 | 2012-05-31 | シャープ株式会社 | Photovoltaic module and photovoltaic power generation device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463560A (en) * | 2014-06-05 | 2017-02-22 | 法国电力公司 | Photovoltaic device and associated manufacturing process |
EP3152787A1 (en) * | 2014-06-05 | 2017-04-12 | Electricité de France | Photovoltaic device and associated manufacturing process |
US10770611B2 (en) | 2014-06-05 | 2020-09-08 | Electricite De France | Photovoltaic device and associated fabrication method |
EP3152787B1 (en) * | 2014-06-05 | 2021-08-18 | Electricité de France | Photovoltaic device and associated manufacturing process |
EP3783671A4 (en) * | 2018-07-23 | 2021-07-14 | Samsung Electronics Co., Ltd. | Electronic device comprising solar cells of multiple types |
US11869999B2 (en) | 2018-07-23 | 2024-01-09 | Samsung Electronics Co., Ltd. | Electronic device comprising solar cells of multiple types |
Also Published As
Publication number | Publication date |
---|---|
JP2015216138A (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013180298A1 (en) | Solar cell module and solar power generation device | |
US9306089B2 (en) | Solar cell module and solar generator | |
JP2010263115A (en) | Solar light collector | |
WO2014030546A1 (en) | Solar cell module and photovoltaic power generating device | |
WO2011033958A1 (en) | Solar cell module and solar photovoltaic system | |
WO2014038568A1 (en) | Solar cell module and solar photovoltaic power generation system | |
CN102576755A (en) | Solar cell module and solar power generating apparatus | |
JP5838358B2 (en) | Condensing photoelectric conversion device and system | |
JP5885338B2 (en) | Solar cell module and solar power generation device | |
JP2011054814A (en) | Light collecting member for solar cell, and solar cell | |
US9780233B2 (en) | Solar cell module, solar cell module assembly, and solar photovoltaic power generation system | |
JP5929578B2 (en) | Solar cell module and solar cell module assembly | |
JP2013211487A (en) | Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module | |
US20130087183A1 (en) | Solar cell module, and solar energy generator device comprising the solar cell module | |
JP2015230345A (en) | Display device | |
WO2012128339A1 (en) | Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module | |
WO2012050059A1 (en) | Solar cell module and solar power generation device | |
CN114400265B (en) | Photoelectric conversion device for solar photovoltaic power generation | |
CN102709376A (en) | Back plate integrated with fluorescent planar optical waveguide structure for solar battery module and application | |
US20160087133A1 (en) | Light concentration device | |
JPS6141154B2 (en) | ||
WO2012115248A1 (en) | Solar cell module and solar generator device | |
KR102468505B1 (en) | Transparent solar window based on micro solar cell array and light conversion member and the window comprising the same | |
WO2011152132A1 (en) | Solar cell module, and solar photovoltaic device with same | |
JP2015153836A (en) | Solar cell module and photovoltaic power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13835437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13835437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |