WO2014038551A1 - Angle detection device - Google Patents

Angle detection device Download PDF

Info

Publication number
WO2014038551A1
WO2014038551A1 PCT/JP2013/073686 JP2013073686W WO2014038551A1 WO 2014038551 A1 WO2014038551 A1 WO 2014038551A1 JP 2013073686 W JP2013073686 W JP 2013073686W WO 2014038551 A1 WO2014038551 A1 WO 2014038551A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotor
angle detection
angle
stator
Prior art date
Application number
PCT/JP2013/073686
Other languages
French (fr)
Japanese (ja)
Inventor
笹田 一郎
康平 田中
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2014534364A priority Critical patent/JP6044050B2/en
Publication of WO2014038551A1 publication Critical patent/WO2014038551A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core

Definitions

  • the present invention relates to an angle detection apparatus for performing angle detection.
  • a resolver is widely used as a device for detecting the rotation angle of a rotor.
  • a technique relating to such a resolver for example, a technique disclosed in Patent Document 1 is disclosed.
  • Patent Document 1 is formed of a disk body made of a magnetic body having uniaxial magnetic anisotropy, and the disk body rotates in a disk plane about a center point, and a circle of the rotor
  • Patent Document 2 describes that the reference position of the crank angle is determined by providing one place where the shape change of the rotating member is different from the others.
  • Patent Document 3 describes that a pair of conductive members whose opposing areas change due to rotation of a shaft are provided, and displacement is detected from a change in coil inductance caused by a change in the opposing area.
  • Patent Document 4 describes that the origin is specified by making holes at equal intervals in the slit ring and forming only one of them in a larger hole.
  • Patent Document 5 describes that a plurality of small windows and one large window are provided in the pulsar ring, and the period of one rotation of the rotating body is detected by changing the waveform amplitude by the large windows.
  • Patent Document 6 describes that it is determined whether or not a detected portion has been detected by changing the magnetic properties of the detected portion of a part of the shaft.
  • Patent Document 1 The technique shown in Patent Document 1 is a new configuration that has not been achieved in the past, and although it is possible to manufacture an angle detection device at a very simple and low cost, an electrical angle is generated every time the rotor makes one mechanical angle. Since a two-turn waveform is detected, there is a problem that it is difficult to distinguish between 0 degrees and 180 degrees. That is, in the technique of Patent Document 1, in order to clearly distinguish 0 degree and 180 degrees while maintaining the detection accuracy, in addition to the angle detection, a reference position for distinguishing two electrical angle rotations is set. Need to be identified.
  • Patent Document 2 can determine the reference position by changing the interval between the shape change portions, there is a problem that detection accuracy is not sufficient because one detection coil is used in common. Have Also, the techniques of Patent Documents 3 to 6 cannot accurately specify the reference position while maintaining the detection accuracy in the technique of Patent Document 1.
  • the present invention provides an angle detection device that accurately specifies a reference position serving as a reference for a rotation angle while maintaining the accuracy of angle detection in an angle detection device configured by axially laminating a rotor and a stator.
  • An angle detection apparatus includes a reference detection unit having a uniaxial anisotropy as a whole of a disk body including a magnetic body and having an electromagnetic characteristic different from the electromagnetic characteristic of the disk body.
  • a reference detection unit having a uniaxial anisotropy as a whole of a disk body including a magnetic body and having an electromagnetic characteristic different from the electromagnetic characteristic of the disk body.
  • a rotor in which the disk body rotates within a disk surface around a center point, an excitation coil for generating a magnetic field, and a magnetic field excited by the excitation coil, depending on the rotation angle of the rotor
  • An angle detection coil for detecting the detected voltage and a stator having a reference detection coil for detecting a change in the electromagnetic characteristics in the reference detection unit, and the stator faces the plate surface of the disc body of the rotor.
  • a plurality of fan-shaped excitation coils and the angle detection coils are alternately arranged along the plate surface of the stator, and are arranged close to each other coaxially with an axis passing through the center point of the rotor.
  • the reference detection coil in the corresponding position of the stator corresponding to the disposition position of the reference detection unit is one that is provided.
  • one reference detection unit that causes a change in electromagnetic characteristics is formed in the rotor, and a reference detection coil that detects the change in electromagnetic characteristics is arranged in the stator. Therefore, it is possible to reliably detect one rotation of the rotor mechanical angle by the reference detection coil, and to clearly distinguish between 0 degrees and 180 degrees.
  • the angle detection coil and the reference detection coil are individually provided and are integrally fixed as a stator, the detection of the angle and the detection of the reference position are accurately performed by each coil. There is an effect that the reference position of the angle can be clearly obtained in association with the result.
  • the reference detection unit has an elongated shape, and the longitudinal direction of the reference detection unit is formed along the magnetic anisotropy.
  • the reference detection unit is formed in the longitudinal direction of the reference detection unit along the magnetic anisotropy, so that the angle detection accuracy is maintained and the electromagnetic detection is performed. There is an effect that a change in characteristics can be reliably detected as a reference position.
  • the reference detection unit is formed along the radial direction from the center of the rotor.
  • the reference detection unit is formed along the magnetic anisotropy with the direction of the magnetic anisotropy in the rotor as the longitudinal direction, and radiates from the center of the rotor. Since it is formed along the direction, it is possible to reliably detect a change in electromagnetic characteristics as a reference position while maintaining the accuracy of angle detection.
  • the excitation coil, the angle detection coil, and the reference detection coil in the stator are integrally formed in one disc body.
  • the excitation coil, the angle detection coil, and the reference detection coil are integrally formed in one disc body, so that the number of assembly steps can be reduced and the size can be reduced. There is an effect that it becomes possible.
  • the excitation coil, the angle detection coil, and the reference detection coil are integrally formed, the detected angle and the reference position can be clearly associated with each other.
  • the reference detection coil is an 8-shaped coil wound in an 8-shaped shape.
  • the reference detection coil is an 8-shaped coil, there is an effect that a change in electromagnetic characteristics in the reference detection unit can be clearly output.
  • the angle detection device includes a reference detection excitation coil that generates an excitation magnetic field at a frequency different from that of the excitation coil so that the stator is linked to the reference detection coil.
  • the reference detection coil detects the reference detection unit in linkage with the excitation magnetic field generated by the reference detection excitation coil. There is an effect that it can be detected at a high output. Further, since the reference detection excitation coil is excited at a frequency different from that of the excitation coil, the reference detection unit can be detected with high accuracy without affecting the excitation current of the excitation coil.
  • the angle detection device detects the reference detection unit by multiplying the output result of the reference detection coil and the output result of the angle detection coil.
  • the reference detection unit is detected by multiplying the output result of the reference detection coil and the output result of the angle detection coil, the peak in the output result of the reference detection coil is remarkable. Thus, it is possible to easily detect the reference detection unit.
  • the stator includes a back yoke having substantially the same outer shape that is opposed to the surface on which the rotor is disposed.
  • the detection sensitivity can be increased by strengthening the magnetic field. There is an effect.
  • the angle detection device includes a rotor and a stator.
  • the rotor has a uniaxial anisotropy as a whole in the disk body including the magnetic body, and is formed along the anisotropy, and the electromagnetic characteristics of the disk body (for example, the magnetic permeability, the conductivity) , A reference detection unit having electromagnetic characteristics different from those of the magnetic permeability and conductivity), and the disk body rotates in the disk surface around the center point.
  • the stator includes an excitation coil that generates a magnetic field, an angle detection coil that detects a voltage corresponding to a rotation angle of the rotor in linkage with a magnetic field excited by the excitation coil, and the electromagnetic characteristics in the reference detection unit
  • a reference detection coil for detecting the change of The stator faces the plate surface of the disc body of the rotor and is disposed in close proximity with substantially the same outer shape so as to be coaxial with an axis passing through the center point of the rotor.
  • the fan-shaped excitation coil and the angle detection coil are alternately arranged, and the reference detection coil is arranged at a corresponding position of the stator corresponding to the arrangement position of the reference detection unit in the rotor. .
  • an exciting coil and an angle detecting coil are formed on a fixing member having substantially the same external shape as the disk of the rotor, and the exciting coil and the angle detecting coil are radially fanned from the center of the disk. It is wound.
  • the fixing member may be formed of a magnetic material.
  • FIG. 1 is an exploded perspective view of main components forming the angle detection device 1 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the angle detection device 1 as viewed from the arrow I in FIG.
  • FIG. 1A shows a back yoke 2
  • FIG. 1B shows a stator 3
  • FIG. 1C shows a rotor 5.
  • the angle detection device 1 is formed of a disc body having uniaxial magnetic anisotropy and is opposed to the disc surface of the rotor 5 and a rotor 5 that rotates in a disc surface around a center point 5 a where the pivot 6 is joined.
  • stator 3 having substantially the same outer shape in a non-contact state and a magnetic thin plate having no directionality (isotropic) are formed in substantially the same outer shape as the stator 3, and the rotor 5 is in contact or non-contact with the stator 3.
  • a back yoke 2 disposed to face a surface opposite to the surface disposed. Note that the back yoke 2 is not necessarily provided, but is preferably provided to enhance the coupling of magnetic flux.
  • the excitation coil 4 b and the angle detection coil 4 a of the stator 3 are wired in a semicircular shape (wiring is performed so as to avoid the pivot 6 for the portion where the pivot 6 is disposed), and is alternately arranged along the plate surface of the stator 3. It is installed.
  • the back yoke 2 can efficiently link the magnetic flux generated by the excitation coil 4b with the angle detection coil 4a, thereby increasing the sensitivity.
  • a non-oriented electrical steel sheet having a thickness of about 0.3 mm shaped into a disk shape can be used.
  • a permalloy thin plate having a thickness of about 0.1 mm to 2 mm may be used, or one or several wide amorphous magnetic ribbons may be formed and stacked.
  • the rotor 5 is formed of a disc body, and is a composite plate configured by arranging a magnetic body so as to generate uniaxial magnetic anisotropy on a magnetic plate or flat plate substrate having uniaxial magnetic anisotropy in the surface direction. Are joined to the pivot 6 at the center point 5a.
  • a magnetic body having uniaxial magnetic anisotropy there are an easy axis direction in which the magnetic body is easily magnetized and a difficult axis direction in which it is difficult to magnetize in a direction perpendicular thereto. That is, the rotor 5 rotates in accordance with the rotation of the pivot 6, and the easy axis direction of magnetic anisotropy changes accordingly.
  • the rotation angle can be detected using the change in the easy axis direction of the magnetic anisotropy.
  • the magnetic permeability in the easy axis direction is large, and the magnetic permeability is small in the hard axis direction perpendicular to the easy axis direction.
  • the exciting coil 4 b is connected to the AC power supply unit 40, and an AC current is supplied from the AC power supply unit 40.
  • an AC current is supplied from the AC power supply unit 40.
  • a magnetic field is generated in the region 3b of the stator 3 in a direction perpendicular to the surface direction. This magnetic field is strongest in the vicinity of the copper wire of the coil, and becomes weaker toward the center of the region 3b. That is, a strong magnetic field is generated in the region 30 where the detection coil 4a and the excitation coil 4b are adjacent to each other.
  • the detection coil 4a generates a voltage corresponding to the magnetic field excited by the magnetic field excited by the excitation coil 4b, and the voltage is detected by the synchronous detection circuit 41 connected to the detection coil 4b. At this time, the detected voltage value changes depending on the angle of the rotor 5. The calculation result obtained by analyzing the change in the voltage value is output as an angle value.
  • FIG. 3 is a diagram illustrating a structure in the case where the angle detection device according to the present embodiment includes two excitation coils and two angle detection coils.
  • the configurations of the back yoke 2 and the rotor 5 are the same as those in FIG.
  • the exciting coils 4b and 4d and the angle detection coils 4a and 4c are wired in the shape of a 1 ⁇ 4 circle fan (the wiring portion is arranged so as to avoid the pivot 6 for the arrangement portion of the pivot 6), and the stator plate Alternatingly arranged along the surface.
  • the exciting coils 4b and 4d are wound and connected so that the directions of the magnetic flux in the direction perpendicular to the surface direction of the stator 3 are opposite to each other (if one is an N pole, the other is an S pole).
  • the angle detection coils 4a and 4c are connected so that the winding directions are opposite to each other.
  • angle detection coil 4a and the excitation coil 4d, and the angle detection coil 4c and the excitation coil 4b are positioned in the direction of the axis of the magnetic anisotropy of the rotor 5, and thus the coupling becomes very small.
  • the angle detection device 1 is configured to include the pivot 6, but without the pivot 6, for example, the rotor can be rotated by a rotational force (rotational force by a roller or a gear) from the outer surface. 5 may be configured to rotate.
  • the angle detection device has an extremely simple structure in which the rotor 5 is configured by a disc body having uniaxial magnetic anisotropy, and thus does not require complicated processing, and is extremely It can be manufactured easily.
  • the stator 3 is not disposed to face the outer surface of the disk body of the rotor 5 but has a surface structure disposed to face the plate surface of the disk body of the rotor 5. It is possible to reduce the thickness by a simple manufacturing process without deteriorating the function.
  • the back yoke 2 is disposed on the plate surface opposite to the surface on which the rotor 5 is disposed across the stator 3 so as to be opposed to the disk body of the stator 3 with substantially the same outer shape, the magnetic field is generated. It can be strengthened to increase detection sensitivity.
  • the angle detection device 1 further includes a reference detection unit in the rotor 5 and a reference detection coil in the stator 3 in order to detect a reference position in the rotation angle, that is, the Z phase.
  • FIG. 4 is a diagram illustrating a reference detection unit and a reference detection coil in the angle detection apparatus according to the present embodiment.
  • 4A is a schematic top view of the rotor 5
  • FIG. 4B is a schematic top view of each coil in the stator 3.
  • one reference detection unit 7 having an electromagnetic characteristic different from the electromagnetic characteristic of the disc body is formed along the easy axis direction of the rotor 5.
  • the reference detection unit 7 is formed as a long body along the easy axis direction, thereby preventing an obstacle that lowers the accuracy of angle detection.
  • the reference detection unit 7 may have any electromagnetic characteristics different from other parts of the disk body of the rotor 5, and may be formed as a notch or a slit, or a tape or seal having different electromagnetic characteristics, for example. You may make it stick. Further, the reference detection unit 7 may be formed by surface modification. For example, instead of mechanically scratching, the electromagnetic characteristics may be locally changed or the surface may be shaved with an electron beam or a laser.
  • the reference detection coil may be formed integrally with the disk body of the stator 3 or may be formed separately from the disk body, but the angle detection result and the reference position detection result From the viewpoint of the correspondence and the degree of integration, it is desirable to form them integrally.
  • the coils arranged in the stator 3 are formed by exciting coils 4b and 4d and angle detection coils 4a and 4c being wired in a 1 ⁇ 4 circle fan shape.
  • a reference detection coil 8 for detecting the reference detection unit 7 in any one of the fan-shaped regions of the excitation coils 4b and 4d.
  • an 8-shaped coil having an 8-shape is provided in the fan-shaped region of the exciting coil 4 b.
  • the figure 8 coil has a first region 8a and a second region 8b, and the directions of currents flowing through the coils forming the respective regions are opposite to each other.
  • the reference detection unit 7 is arranged in association with a position on the reference detection coil 8 that sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a. .
  • the reference detection coil 8 an 8-shaped coil
  • the magnetic field generated in the first region 8a and the magnetic field generated in the second region 8b cancel each other and output.
  • the reference detection unit 7 sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a, the electromagnetic characteristics of the reference detection unit 7 are reduced. Due to the difference, the balance of the magnetic field in each region is lost and a change appears in the output. By detecting this change, the reference position of one period of the rotor 5, that is, the Z phase can be detected.
  • the reference detection coil 8 does not have to be an 8-shaped coil, and any reference detection coil 8 can be used as long as it can detect a change in electromagnetic characteristics in the reference detection unit 7. That is, for example, a ring coil type detection coil may be used.
  • standard detection coil is not restricted to the case of FIG. 4, Another aspect may be sufficient (a detail is later mentioned using FIG.6 and FIG.7).
  • FIG. 5 is a diagram showing an output result when the angle detection device 1 in FIG. 3 is actually operated.
  • the stator 3 is fixed to the pivot 6 in the state of FIG. That is, a pair of excitation coils 4b and 4d and a pair of angle detection coils 4a and 4c are provided, and a reference detection coil 8 (8-shaped coil) is disposed in the central region of the excitation coil 4b.
  • the rotor 5 is disposed so as to be opposed to the stator 3, and rotates along the surface about the pivot 6.
  • the positional relationship between the easy axis direction and the reference detection unit 7 when the rotor 5 rotates is shown below the graph of FIG.
  • an output result when the rotor 5 rotates leftward is shown, and a slit is formed as the reference detection unit 7.
  • the solid line indicates the output waveforms of the angle detection coils 4a and 4c (here, only the sin component), and the broken line indicates the output waveform of the reference detection coil 8.
  • the electrical angle is detected by two rotations while the rotor 5 is rotated once by the mechanical angle, so that the rotation angle is 0 degree and 180 degrees. It becomes difficult to distinguish.
  • the position of the reference detection unit 7 appears as one peak while the rotor 5 makes one rotation, so that the distinction between 0 degree and 180 degrees is made. This makes it possible to accurately detect the angle.
  • the reference detection coil 8 is provided separately from the angle detection coils 4a and 4c, and the angle detection and the Z phase detection are more accurately performed by clearly distinguishing and processing the angle detection and the Z phase detection. Can be done.
  • the angle detection device 1 can accurately specify the reference position serving as the reference for the rotation angle while maintaining the accuracy of angle detection.
  • FIGS. 6 and 7 are diagrams showing another aspect in the case where the reference detection unit 7 and the reference detection coil 8 are provided.
  • the point that the reference detection coil 8 is an 8-shaped coil is the same as in FIG. 4, but the arrangement direction of the 8-shaped coil is different. That is, in the case of FIG. 4, the reference detector 7 and the 8-shaped coil so that the reference detector 7 sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a.
  • the reference detection unit 7 and the reference detection unit 7 are arranged so that the reference detection unit 7 moves on only one of the first region 8a and the second region 8b. 8-shaped coils are arranged in association with each other.
  • the reference position can be specified by detecting the change.
  • FIG. 7 is a diagram showing still another aspect.
  • the reference detection coil 8 is an 8-shaped coil
  • the reference detection unit 7 is changed from the first region 8a to the second region 8b.
  • the reference detector 7 and the 8-shaped coil are arranged so as to move sequentially from the second region 8b to the first region 8a, but the 8-shaped coil detects the angle with the exciting coil 4b.
  • the difference is that it is disposed in two places, a region between the coil 4a and a region between the excitation coil 4b and the angle detection coil 4c.
  • the detection results of the reference detection coil 81 and the reference detection coil 82 in FIG. 7A are out of phase by 90 degrees, and the respective detection results are subtracted.
  • a combination of positive and negative peaks as shown in FIG. 7D can be detected once per rotation of the rotor 5. That is, the reference position can be specified accurately.
  • FIG. 8 is a diagram illustrating a reference detection unit and a reference detection coil in the angle detection apparatus according to the present embodiment.
  • 8A is a schematic top view of the rotor 5
  • FIG. 8B is a schematic top view of each coil in the stator 3.
  • the rotor 5 in FIG. 8A has the same configuration as that in FIG.
  • the coil in the stator 3 shown in FIG. 8B is newly provided with an elliptical reference detection exciting coil 10 for generating a magnetic field interlinking with the reference detection coil 8.
  • the reference detection excitation coil 10 is energized with an excitation current at a frequency different from that of the excitation coils 4b and 4d so that the excitation coils 4b and 4d are not affected. At this time, the respective excitation currents may be separated by synchronous detection.
  • the reference detection coil 8 is capable of detecting a peak with high output by interlinking with the excitation magnetic field generated by the reference detection excitation coil 10 and can specify the reference position.
  • the solid line indicates the output waveform of the sin component
  • the dotted line indicates the output waveform of the cos component
  • the broken line indicates the output waveform of the reference detection coil 8.
  • FIG. 9A three sharp peaks are detected during one rotation of the mechanical angle. Since the reference position may not be clearly specified in this state, here, the detection result of the reference detection coil 8 is multiplied by one of the output waveforms of the angle detection coil 4a or 4c. The result is shown in FIG. By multiplying the detection result of the reference detection coil 8 and the output waveform of the angle detection coil 4a or 4c, one positive peak is obtained and can be handled as the Z phase.
  • the output result of the reference detection coil 8 is clearly obtained by multiplying the detection result of the reference detection coil 8 and the output waveform of the angle detection coil 4a or 4c.
  • the output waveform of the phase generated by the excitation coil in which the reference detection coil 8 is arranged and the detection result of the reference detection coil 8 one clear positive peak is obtained. Can be detected.
  • FIG. 10B shows the output result when the positions of the slits that are the reference detection coil 8 and the reference detection unit 7 are arranged as shown in FIG.
  • the reference detection unit 7 and the reference detection coil 8 are arranged so that the slit which is the reference detection unit 7 passes through not only the entire region of the reference detection coil 8 but also a half region. ing.
  • one sharp positive peak appears in two cycles of the sine wave, which is the output result of the angle detection coils 4a, 4c, so one signal is detected for one rotation of the rotor 5 mechanical angle. It can be seen that a Z phase is generated.
  • the reference detection excitation coil 10 functions as a Z-phase detection coil and the reference detection coil 8 functions as an excitation coil from the viewpoint of duality. It is possible to detect a clear Z phase in the same manner as in FIG.
  • the reference detection coil 8 does not have to be an 8-shaped coil, and may be any one that can detect a change in electromagnetic characteristics in the reference detection unit 7.
  • standard detection coil is not restricted to the case of FIG. 10,
  • the other aspect as shown to 2nd Embodiment may be sufficient.
  • the angle detection device can accurately detect the reference position, that is, the Z phase, which is the reference for the rotation angle while maintaining the accuracy of angle detection. .
  • the angle detection device is adapted to rotate at a low speed, or to change the angle in the clockwise or counterclockwise direction at most half rotation to several rotations, for example, to detect the angle of the steering wheel of a car.
  • a sensor that reacts when a ferromagnetic material such as a proximity sensor passes through is combined (for example, a large number of windings are formed on a part of the housing).
  • a ring coil may be installed) and arranged so as to be close to the protruding structure. If the protruding structure passes, the inductance may be increased so that the signal can be detected.
  • the coexistence with the angle detection device 1 is that if the outer diameter of the rotor 5 is made slightly larger than the outer diameter of the angle detection coil, the protrusions of the rotor 5 do not affect the radial direction. .
  • the longitudinal direction of the reference detection unit 7 is formed along the easy axis direction and is shown as a rectangular long body extending in the radial direction from the center of the rotor 5,
  • the shape may be other than a rectangle
  • FIGS. 11 (C) and 11 (D) a length extending in the radial direction from the center of the rotor 5. It need not be a scale. In other words, any structure having electromagnetic characteristics different from those of other portions of the rotor 5 may be used without causing a factor that lowers the accuracy of angle detection.
  • the reference detection coil 8 is preferably formed integrally with the disc body of the stator 3, but at this time, it is formed on the printed circuit board simultaneously with the angle detection coils 4a and 4c and the excitation coils 4b and 4d.
  • the stator 3 can be formed with a two-layer substrate, and the degree of integration can be increased and the manufacturing process can be simplified.
  • FIG. 12 is a diagram illustrating the structure of the coil and the rotor.
  • the angle detection device prototyped in this experiment is a rotor in which a slit is formed in a disk made of an electromagnetic steel plate (or silicon steel plate) having a high particle orientation and a thickness of 0.3 mm, and a thickness of 0.3 mm. And a set of two set coils (a set of an excitation coil and a detection coil).
  • slit width 1 mm, 2 mm, 3 mm, and no slit, respectively.
  • the slit length was 15.5 mm, and the slit was 17 mm away from the center of the rotor.
  • Two set coils, an 8-shaped coil for detecting the reference position, and a square coil that is an exciting coil for generating a magnetic field interlinking with the 8-shaped coil are printed on two 0.4 mm. Created with a wiring board (PCB).
  • PCB wiring board
  • the number of turns of each of the first and second sine outputs and cosine outputs was 10, the square coil was 5, and the 8-shaped coil was 10.
  • the outer diameter of the set coil was 75 mm, and the outer diameters of the rotor and back yoke were 76 mm.
  • the size of the figure 8 coil was 21 ⁇ 13 mm, and the size of the rectangular coil was 27 ⁇ 15 mm. In order to avoid contact between the rotor and the coil, the gap between them was 2 mm.
  • the rotational speed of the rotor was 3000 revolutions / minute (rpm).
  • a lock-in amplifier was used as a power source for phase detection and sine wave.
  • the phase shifter of the lock-in amplifier was adjusted to minimize the influence from the primary coil.
  • FIG. 13A shows three types of output voltages (after normalization) when a rotor having a slit width of 3 mm is rotated at a speed of 3000 rpm.
  • the actual output voltage was 20.2 mV in the detection coil S1, 15.6 mV in the detection coil S2, and 1.5 mV in the 8-shaped coil of S3.
  • the time width in FIG. 13A shows a case where the rotor makes one and a half revolutions.
  • a Z-pulse is obtained when the slit passes over the 8-shaped coil, and a rapid positive voltage is generated immediately after a sudden negative voltage is generated every rotation. was gotten.
  • the 8-shaped coil is disposed in the center of the detection coil that generates the cosine waveform.
  • the detection coil that generates the sine waveform at a position that is rotationally symmetric and its excitation coil
  • the Z pulse is output when the output of the sine waveform is maximized due to such a positional relationship. That is, since the Z pulse always appears together with the peak of the sine phase output, it can be easily detected by multiplying the Z pulse output and the sine phase output as shown in FIG. That is, the Z pulse output changes sharply at the peak of the sine phase output.
  • the peak voltage was as small as other output voltages.
  • the peak voltage was smaller than other output voltages. They could not be detected by multiplication with the sine phase output.
  • Oriented silicon steel sheet is a commercial product, and its properties vary, but the results of multiple experiments using multiple rotors are almost the same.
  • An oriented silicon steel sheet is an aggregate of single crystal grains having uniaxial magnetic anisotropy. Some of the crystal grains may have an easy axis direction that is slightly different from the easy axis direction of most crystal grains, and their passage was detected by an 8-shaped coil. This incorrect voltage was observed to be larger than the Z pulse detection voltage for the slit when the slit width was 1 mm or 2 mm. However, when the slit width is 3 mm, the rapid voltage change of the Z pulse output caused by the slit can be distinguished from an erroneous voltage causing a malfunction.
  • FIG. 14A shows the result of calculating the electrical angle in the mechanical angle 2 ⁇ section from the two types of output voltages shown in FIG. The value of the electrical angle from ⁇ / 2 to ⁇ / 2 appears four times during one rotation of the rotor, and the number of data in each straight line is the same.
  • the prototype angle detection apparatus accurately divided the mechanical angle into four.
  • FIG. 14B shows an electrical angle of ⁇ ⁇ / 2 sections corresponding to a mechanical angle of ⁇ / 2 sections based on two sine output voltages.
  • FIG. 14C shows non-linearity errors calculated from the data of FIG. 14B in this mechanical angle section.
  • the full scale is set to ⁇ (this is in the range of ⁇ ⁇ / 2).
  • the linearity of the calculated data is good.
  • the experiment was conducted using four rotors each having four slit widths of 1 mm, 2 mm, 3 mm and no slit. They are made from different silicon steel sheets. The average data is shown in Table 1.

Abstract

Provided is an angle detection device that is configured by axially layering a rotor and a stator and maintains precise angle detection and accurately identifies a reference position that is the reference for a rotation angle. The angle detection device comprises: a rotor (5) wherein the magnetic permeability of a disc member containing a magnetic body has uniaxial anisotropy overall and the disc member is rotated about a central point (5a) in the plane of the disc, said rotor being provided with one reference detector (7) that is formed along the aforementioned anisotropy and has electromagnetic properties that differ from the electromagnetic properties of the disc member; and a stator (3) comprising magnetic excitation coils (4b, 4d) for generating a magnetic field, angle detecting coils (4a, 4c) for detecting the voltage corresponding to the rotation angle of the rotor (5) interlinked with the magnetic field that is magnetically excited with the magnetic excitation coil (4b, 4d), and a reference detecting coil (8) for detecting changes in the electromagnetic properties in the reference detector (7). The stator (3) is provided in the proximity of and facing the plate face of the disc member of the rotor (5) with substantially the same external shape. A plurality of fan-shaped magnetic excitation coils (4b, 4d) and angle detecting coils (4a, 4c) are provided alternately along the plate face of the stator (3), and the reference detecting coil (8) is provided in a corresponding location on the stator (3) corresponding to the disposition location of the reference detector (7) on the rotor (5).

Description

角度検出装置Angle detector
 本発明は、角度検出を行うための角度検出装置に関する。 The present invention relates to an angle detection apparatus for performing angle detection.
 例えば、自動車、ロボット等の駆動に用いられる駆動モータを制御する場合には、ロータの回転角を高精度に検出する必要がある。ロータの回転角を検出する装置としてレゾルバが広く用いられている。このようなレゾルバに関する技術として、例えば、特許文献1に示す技術が開示されている。 For example, when controlling a drive motor used for driving an automobile, a robot, etc., it is necessary to detect the rotation angle of the rotor with high accuracy. A resolver is widely used as a device for detecting the rotation angle of a rotor. As a technique relating to such a resolver, for example, a technique disclosed in Patent Document 1 is disclosed.
 特許文献1に示す技術は、一軸磁気異方性を有する磁性体からなる円板体で形成され、当該円板体が中心点を中心として円板面内で回動するロータと、ロータの円板体の板面に対向して略同一外形で配設され、扇状に複数に分割し、分割領域の外周に沿って励磁コイル又は検出コイルを巻回しているステータと、ステータを挟んでロータが配設される面と反対の方向に、ステータの円板体に対向して略同一外形で配設されるバックヨークとを備えるものである。 The technique shown in Patent Document 1 is formed of a disk body made of a magnetic body having uniaxial magnetic anisotropy, and the disk body rotates in a disk plane about a center point, and a circle of the rotor A stator that is arranged with substantially the same outer shape facing the plate surface of the plate, is divided into a plurality of sectors, and an excitation coil or a detection coil is wound along the outer periphery of the divided region, and a rotor sandwiching the stator And a back yoke disposed in substantially the same outer shape so as to face the disc body of the stator in a direction opposite to the surface on which the stator is disposed.
 また、回転角度や特定位置を検出する技術として、例えば、特許文献2ないし6に示す技術が開示されている。特許文献2には、回転部材の形状変化が他と異なる箇所を1箇所設けることで、クランク角の基準位置を判別することが記載されている。特許文献3には、シャフトの回転により対向する面積が変化する一対の導電性部材を具備し、対向面積の変化によるコイルのインダクタンス変化から変位を検出することが記載されている。特許文献4には、スリットリングに等間隔で穴をあけ、そのうち1つだけ大きい穴に形成することで、原点を特定することが記載されている。特許文献5には、パルサリングに複数の小窓と一つの大窓を設け、この大窓により波形振幅を変化させることで回転体の1回転の周期を検出することが記載されている。特許文献6には、軸の一部分の被検出部において磁気的性質を異ならせることで、被検出部を検出したか否かを判定することが記載されている。 Further, as a technique for detecting a rotation angle or a specific position, for example, techniques disclosed in Patent Documents 2 to 6 are disclosed. Patent Document 2 describes that the reference position of the crank angle is determined by providing one place where the shape change of the rotating member is different from the others. Patent Document 3 describes that a pair of conductive members whose opposing areas change due to rotation of a shaft are provided, and displacement is detected from a change in coil inductance caused by a change in the opposing area. Patent Document 4 describes that the origin is specified by making holes at equal intervals in the slit ring and forming only one of them in a larger hole. Patent Document 5 describes that a plurality of small windows and one large window are provided in the pulsar ring, and the period of one rotation of the rotating body is detected by changing the waveform amplitude by the large windows. Patent Document 6 describes that it is determined whether or not a detected portion has been detected by changing the magnetic properties of the detected portion of a part of the shaft.
国際公開第2012/002126号International Publication No. 2012/002126 特開平10-111144号公報JP-A-10-111144 特開2006-313121号公報JP 2006-313121 A 特公平6-22387号公報Japanese Patent Publication No. 6-22387 特許第4144657号Japanese Patent No. 4144657 特開平7-332911号公報JP-A-7-332911
 特許文献1に示す技術は、従来にない新規の構成であり、非常に簡単で低コストに角度検出装置を製造することが可能であるものの、ロータが機械角で1回転するごとに電気角で2回転の波形が検出されるため、0度と180度を区別することが困難であるという問題がある。すなわち、特許文献1の技術において、検出精度を保ったままで0度と180度を明確に区別するためには、角度の検出に加えて電気角2回転分を区別するような基準となる位置を特定する必要がある。 The technique shown in Patent Document 1 is a new configuration that has not been achieved in the past, and although it is possible to manufacture an angle detection device at a very simple and low cost, an electrical angle is generated every time the rotor makes one mechanical angle. Since a two-turn waveform is detected, there is a problem that it is difficult to distinguish between 0 degrees and 180 degrees. That is, in the technique of Patent Document 1, in order to clearly distinguish 0 degree and 180 degrees while maintaining the detection accuracy, in addition to the angle detection, a reference position for distinguishing two electrical angle rotations is set. Need to be identified.
 特許文献2に示す技術は、形状変化部の間隔を異ならせることで基準位置を判別することができるが、検出コイルが1つの共通したものであるため、検出精度の点では十分ではないという課題を有する。また、特許文献3ないし6の技術についても、特許文献1の技術において、検出精度を保ちつつ基準となる位置を正確に特定できるものではない。 Although the technique shown in Patent Document 2 can determine the reference position by changing the interval between the shape change portions, there is a problem that detection accuracy is not sufficient because one detection coil is used in common. Have Also, the techniques of Patent Documents 3 to 6 cannot accurately specify the reference position while maintaining the detection accuracy in the technique of Patent Document 1.
 本発明は、ロータとステータとがアキシャルに積層されて構成される角度検出装置において、角度検出の精度を保ちつつ、回転角の基準となる基準位置を正確に特定する角度検出装置を提供する。 The present invention provides an angle detection device that accurately specifies a reference position serving as a reference for a rotation angle while maintaining the accuracy of angle detection in an angle detection device configured by axially laminating a rotor and a stator.
 本発明に係る角度検出装置は、磁性体を含む円板体の透磁率が全体として一軸の異方性を有し、前記円板体の電磁気特性と異なる電磁気特性を有する一の基準検出部を含み、前記円板体が中心点を中心として円板面内で回動するロータと、磁界を発生させる励磁コイル、当該励磁コイルで励磁された磁界と鎖交して前記ロータの回転角度に応じた電圧を検出する角度検出コイル、及び、前記基準検出部における前記電磁気特性の変化を検出する基準検出コイルを有するステータとを備え、前記ステータが、前記ロータの円板体の板面に対向し、前記ロータの中心点を通る軸と同軸に略同一外形で近接配設され、前記ステータの板面に沿って複数の扇状の前記励磁コイル及び前記角度検出コイルが交互に配設されると共に、前記ロータにおける前記基準検出部の配設位置に対応する前記ステータの対応位置に前記基準検出コイルが配設されているものである。 An angle detection apparatus according to the present invention includes a reference detection unit having a uniaxial anisotropy as a whole of a disk body including a magnetic body and having an electromagnetic characteristic different from the electromagnetic characteristic of the disk body. Including a rotor in which the disk body rotates within a disk surface around a center point, an excitation coil for generating a magnetic field, and a magnetic field excited by the excitation coil, depending on the rotation angle of the rotor An angle detection coil for detecting the detected voltage, and a stator having a reference detection coil for detecting a change in the electromagnetic characteristics in the reference detection unit, and the stator faces the plate surface of the disc body of the rotor. In addition, a plurality of fan-shaped excitation coils and the angle detection coils are alternately arranged along the plate surface of the stator, and are arranged close to each other coaxially with an axis passing through the center point of the rotor. In the rotor The reference detection coil in the corresponding position of the stator corresponding to the disposition position of the reference detection unit is one that is provided.
 このように、本発明に係る角度検出装置においては、電磁気特性の変化が生じるような一の基準検出部がロータに形成されており、この電磁気特性の変化を検出する基準検出コイルがステータに配設されているため、ロータの機械角1回転を基準検出コイルで確実に検出することができ、0度と180度の区別を明確に行うことができるという効果を奏する。 As described above, in the angle detection device according to the present invention, one reference detection unit that causes a change in electromagnetic characteristics is formed in the rotor, and a reference detection coil that detects the change in electromagnetic characteristics is arranged in the stator. Therefore, it is possible to reliably detect one rotation of the rotor mechanical angle by the reference detection coil, and to clearly distinguish between 0 degrees and 180 degrees.
 また、角度検出コイルと基準検出コイルとがそれぞれ個別に設けられており、ステータとして一体的に固定されているため、角度の検出と基準位置の検出を各コイルで正確に行いつつ、それぞれの検出結果を対応付けて角度の基準位置を明確に求めることができるという効果を奏する。 In addition, since the angle detection coil and the reference detection coil are individually provided and are integrally fixed as a stator, the detection of the angle and the detection of the reference position are accurately performed by each coil. There is an effect that the reference position of the angle can be clearly obtained in association with the result.
 本発明に係る角度検出装置は、前記基準検出部が細長形状であり、当該基準検出部の長手方向が前記磁気異方性に沿って形成されているものである。 In the angle detection device according to the present invention, the reference detection unit has an elongated shape, and the longitudinal direction of the reference detection unit is formed along the magnetic anisotropy.
 このように、本発明に係る角度検出装置においては、基準検出部が当該基準検出部の長手方向が前記磁気異方性に沿って形成されているため、角度検出の精度を維持しつつ、電磁気特性の変化を基準位置として確実に検出することができるという効果を奏する。 As described above, in the angle detection device according to the present invention, the reference detection unit is formed in the longitudinal direction of the reference detection unit along the magnetic anisotropy, so that the angle detection accuracy is maintained and the electromagnetic detection is performed. There is an effect that a change in characteristics can be reliably detected as a reference position.
 本発明に係る角度検出装置は、前記基準検出部が、前記ロータの中心から放射方向に沿って形成されているものである。 In the angle detection device according to the present invention, the reference detection unit is formed along the radial direction from the center of the rotor.
 このように、本発明に係る角度検出装置においては、基準検出部が前記ロータにおける磁気異方性の方向を長手方向とし、当該磁気異方性に沿って形成され、且つ、ロータの中心から放射方向に沿って形成されているため、角度検出の精度を維持しつつ、電磁気特性の変化を基準位置として確実に検出することができるという効果を奏する。 As described above, in the angle detection device according to the present invention, the reference detection unit is formed along the magnetic anisotropy with the direction of the magnetic anisotropy in the rotor as the longitudinal direction, and radiates from the center of the rotor. Since it is formed along the direction, it is possible to reliably detect a change in electromagnetic characteristics as a reference position while maintaining the accuracy of angle detection.
 本発明に係る角度検出装置は、前記ステータにおける前記励磁コイル、前記角度検出コイル及び前記基準検出コイルが一の円板体内に一体的に形成されているものである。 In the angle detection device according to the present invention, the excitation coil, the angle detection coil, and the reference detection coil in the stator are integrally formed in one disc body.
 このように、本発明に係る角度検出装置においては、励磁コイル、角度検出コイル及び基準検出コイルが一の円板体内に一体的に形成されているため、組み立て工数が少なくて済み、且つ、小型化が可能になるという効果を奏する。また、励磁コイル、角度検出コイル及び基準検出コイルが一体的に形成されることで、検出された角度と基準位置とを明確に対応付けることができるという効果を奏する。 As described above, in the angle detection device according to the present invention, the excitation coil, the angle detection coil, and the reference detection coil are integrally formed in one disc body, so that the number of assembly steps can be reduced and the size can be reduced. There is an effect that it becomes possible. In addition, since the excitation coil, the angle detection coil, and the reference detection coil are integrally formed, the detected angle and the reference position can be clearly associated with each other.
 本発明に係る角度検出装置は、前記基準検出コイルが、8の字状に巻回された8の字コイルであるものである。 In the angle detection device according to the present invention, the reference detection coil is an 8-shaped coil wound in an 8-shaped shape.
 このように、本発明に係る角度検出装置においては、基準検出コイルが8の字コイルであるため、基準検出部における電磁気特性の変化を明確に出力することができるという効果を奏する。 Thus, in the angle detection device according to the present invention, since the reference detection coil is an 8-shaped coil, there is an effect that a change in electromagnetic characteristics in the reference detection unit can be clearly output.
 本発明に係る角度検出装置は、前記ステータが、前記基準検出コイルと鎖交するように前記励磁コイルと異なる周波数で励磁磁界を発生させる基準検出励磁コイルを備えるものである。 The angle detection device according to the present invention includes a reference detection excitation coil that generates an excitation magnetic field at a frequency different from that of the excitation coil so that the stator is linked to the reference detection coil.
 このように、本発明に係る角度検出装置においては、基準検出コイルが、基準検出励磁コイルで発生した励磁磁界と鎖交して基準検出部を検知するため、基準検出部における電磁気特性の変化を高出力で検知することができるという効果を奏する。また、基準検出励磁コイルが励磁コイルと異なる周波数で励磁されているため、励磁コイルの励磁電流に影響を与えることなく、基準検出部を高精度に検知することができるという効果を奏する。 As described above, in the angle detection device according to the present invention, the reference detection coil detects the reference detection unit in linkage with the excitation magnetic field generated by the reference detection excitation coil. There is an effect that it can be detected at a high output. Further, since the reference detection excitation coil is excited at a frequency different from that of the excitation coil, the reference detection unit can be detected with high accuracy without affecting the excitation current of the excitation coil.
 本発明に係る角度検出装置は、前記基準検出コイルの出力結果と前記角度検出コイルの出力結果とを乗算して前記基準検出部を検出するものである。 The angle detection device according to the present invention detects the reference detection unit by multiplying the output result of the reference detection coil and the output result of the angle detection coil.
 このように、本発明に係る角度検出装置においては、基準検出コイルの出力結果と角度検出コイルの出力結果とを乗算して基準検出部を検出するため、基準検出コイルの出力結果におけるピークが顕著となり、基準検出部を検出し易くなるという効果を奏する。 As described above, in the angle detection device according to the present invention, since the reference detection unit is detected by multiplying the output result of the reference detection coil and the output result of the angle detection coil, the peak in the output result of the reference detection coil is remarkable. Thus, it is possible to easily detect the reference detection unit.
 本発明に係る角度検出装置は、前記ステータが、前記ロータが配設される面と反対方向に対向する略同一外形のバックヨークを備えるものである。 In the angle detection device according to the present invention, the stator includes a back yoke having substantially the same outer shape that is opposed to the surface on which the rotor is disposed.
 このように、本発明に係る角度検出装置においては、ロータが配設される面と反対方向に対向する略同一外形のバックヨークを備えるため、磁界を強くして検出感度を上げることができるという効果を奏する。 As described above, in the angle detection device according to the present invention, since the back yoke having substantially the same outer shape facing the direction opposite to the surface on which the rotor is disposed is provided, the detection sensitivity can be increased by strengthening the magnetic field. There is an effect.
第1の実施形態に係る角度検出装置の主要な構成要素の分解斜視図である。It is a disassembled perspective view of the main components of the angle detection apparatus which concerns on 1st Embodiment. 図1における矢印Iから見た角度検出装置の断面図である。It is sectional drawing of the angle detection apparatus seen from the arrow I in FIG. 第1の実施形態に係る角度検出装置において励磁コイルと角度検出コイルとをそれぞれ2つずつ備えた場合の構造を示す図である。It is a figure which shows the structure at the time of providing the excitation coil and the angle detection coil 2 each in the angle detection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る角度検出装置における基準検出部及び基準検出コイルを示す図である。It is a figure which shows the reference | standard detection part and the reference | standard detection coil in the angle detection apparatus which concern on 1st Embodiment. 図3における角度検出装置を実際に動作させた場合の出力結果を示す図である。It is a figure which shows the output result at the time of actually operating the angle detection apparatus in FIG. 第2の実施形態に係る角度検出装置の構成を示す第1の図である。It is a 1st figure which shows the structure of the angle detection apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る角度検出装置の構成を示す第2の図である。It is a 2nd figure which shows the structure of the angle detection apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る角度検出装置の構成を示す図である。It is a figure which shows the structure of the angle detection apparatus which concerns on 3rd Embodiment. 図8における角度検出装置を実際に動作させた場合の出力結果を示す図である。It is a figure which shows the output result at the time of actually operating the angle detection apparatus in FIG. 第3の実施形態に係る角度検出装置の他の構成を示す図である。It is a figure which shows the other structure of the angle detection apparatus which concerns on 3rd Embodiment. 本発明に係る角度検出装置の基準検出部の態様を示す図である。It is a figure which shows the aspect of the reference | standard detection part of the angle detection apparatus which concerns on this invention. 試作した角度検出装置におけるコイル及びロータの構造を示す図である。It is a figure which shows the structure of the coil and rotor in a prototype angle detection apparatus. 本発明に係る角度検出装置の実験結果を示す第1の図である。It is a 1st figure which shows the experimental result of the angle detection apparatus which concerns on this invention. 本発明に係る角度検出装置の実験結果を示す第2の図である。It is a 2nd figure which shows the experimental result of the angle detection apparatus which concerns on this invention.
 以下、本発明の実施の形態を説明する。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。 Hereinafter, embodiments of the present invention will be described. Also, the same reference numerals are given to the same elements throughout the present embodiment.
  (本発明の第1の実施形態)
 本実施形態に係る角度検出装置について、図1ないし図5を用いて説明する。本実施形態に係る角度検出装置は、ロータとステータとからなる。当該ロータは、磁性体を含む円板体の透磁率が全体として一軸の異方性を有し、当該異方性に沿って形成され前記円板体の電磁気特性(例えば、透磁率、導電率、透磁率及び導電率等)と異なる電磁気特性を有する一の基準検出部を備え、前記円板体が中心点を中心として円板面内で回動する。前記ステータは、磁界を発生させる励磁コイル、当該励磁コイルで励磁された磁界と鎖交して前記ロータの回転角度に応じた電圧を検出する角度検出コイル、及び、前記基準検出部における前記電磁気特性の変化を検出する基準検出コイルを有している。そして、前記ステータは、前記ロータの円板体の板面に対向し、ロータの中心点を通る軸と同軸となるように略同一外形で近接配設され、前記ステータの板面に沿って複数の扇状の前記励磁コイル及び前記角度検出コイルが交互に配設されると共に、前記ロータにおける前記基準検出部の配設位置に対応する前記ステータの対応位置に前記基準検出コイルが配設されている。
(First embodiment of the present invention)
An angle detection apparatus according to this embodiment will be described with reference to FIGS. The angle detection device according to the present embodiment includes a rotor and a stator. The rotor has a uniaxial anisotropy as a whole in the disk body including the magnetic body, and is formed along the anisotropy, and the electromagnetic characteristics of the disk body (for example, the magnetic permeability, the conductivity) , A reference detection unit having electromagnetic characteristics different from those of the magnetic permeability and conductivity), and the disk body rotates in the disk surface around the center point. The stator includes an excitation coil that generates a magnetic field, an angle detection coil that detects a voltage corresponding to a rotation angle of the rotor in linkage with a magnetic field excited by the excitation coil, and the electromagnetic characteristics in the reference detection unit A reference detection coil for detecting the change of The stator faces the plate surface of the disc body of the rotor and is disposed in close proximity with substantially the same outer shape so as to be coaxial with an axis passing through the center point of the rotor. The fan-shaped excitation coil and the angle detection coil are alternately arranged, and the reference detection coil is arranged at a corresponding position of the stator corresponding to the arrangement position of the reference detection unit in the rotor. .
 ステータは、ロータの円板体と略同一外形の固定部材に励磁コイル及び角度検出コイルを形成しており、この励磁コイル及び角度検出コイルは、円板体の中心から放射状に扇状となるように巻回されている。なお、固定部材は磁性体で形成するようにしてもよい。 In the stator, an exciting coil and an angle detecting coil are formed on a fixing member having substantially the same external shape as the disk of the rotor, and the exciting coil and the angle detecting coil are radially fanned from the center of the disk. It is wound. Note that the fixing member may be formed of a magnetic material.
 図1は、本実施形態に係る角度検出装置1を形成する主要な構成要素の分解斜視図であり、図2は、図1における矢印Iから見た角度検出装置1の断面図である。図1(A)はバックヨーク2、図1(B)はステータ3、図1(C)はロータ5であり、これらは枢軸6を同軸として積層されて構成される。角度検出装置1は、一軸磁気異方性を有する円板体で形成され枢軸6が接合する中心点5aを中心として円板面内で回動するロータ5と、ロータ5の円板面に対向して非接触状態で略同一外形のステータ3と、方向性を持たない(等方性の)磁性薄板をステータ3と略同一外形で形成し、ステータ3に接触又は非接触状態でロータ5が配設される面と反対方向の面に対向して配設されるバックヨーク2とを有する。なお、バックヨーク2は必ずしも配設する必要はないが、磁束の結合を強めるために配設されることが望ましい。 FIG. 1 is an exploded perspective view of main components forming the angle detection device 1 according to the present embodiment, and FIG. 2 is a cross-sectional view of the angle detection device 1 as viewed from the arrow I in FIG. FIG. 1A shows a back yoke 2, FIG. 1B shows a stator 3, and FIG. 1C shows a rotor 5. These are configured so that the pivot 6 is coaxially stacked. The angle detection device 1 is formed of a disc body having uniaxial magnetic anisotropy and is opposed to the disc surface of the rotor 5 and a rotor 5 that rotates in a disc surface around a center point 5 a where the pivot 6 is joined. Thus, the stator 3 having substantially the same outer shape in a non-contact state and a magnetic thin plate having no directionality (isotropic) are formed in substantially the same outer shape as the stator 3, and the rotor 5 is in contact or non-contact with the stator 3. And a back yoke 2 disposed to face a surface opposite to the surface disposed. Note that the back yoke 2 is not necessarily provided, but is preferably provided to enhance the coupling of magnetic flux.
 ステータ3の励磁コイル4b及び角度検出コイル4aは、半円状に配線(枢軸6の配設部分については当該枢軸6を回避するように配線)され、ステータ3の板面に沿って交互に配設されている。バックヨーク2は、励磁コイル4bが作る磁束を角度検出コイル4aと効率よく鎖交させることができ、それにより感度を上げることができる。バックヨーク2は、例えば厚さ0.3mm程度の無方向性電磁鋼板を円板状に整形したものを利用することができる。また、例えば0.1mm~2mm程度の厚さをもつパーマロイの薄板を成形したものを使用してもよいし、広幅アモルファス磁性薄帯を1枚又は数枚重ねて整形して用いてもよい。 The excitation coil 4 b and the angle detection coil 4 a of the stator 3 are wired in a semicircular shape (wiring is performed so as to avoid the pivot 6 for the portion where the pivot 6 is disposed), and is alternately arranged along the plate surface of the stator 3. It is installed. The back yoke 2 can efficiently link the magnetic flux generated by the excitation coil 4b with the angle detection coil 4a, thereby increasing the sensitivity. As the back yoke 2, for example, a non-oriented electrical steel sheet having a thickness of about 0.3 mm shaped into a disk shape can be used. In addition, for example, a permalloy thin plate having a thickness of about 0.1 mm to 2 mm may be used, or one or several wide amorphous magnetic ribbons may be formed and stacked.
 ロータ5は、円板体で形成され、その面方向に一軸磁気異方性を有する磁性体板又は平板基板に、一軸磁気異方性を生じるように磁性体を配置して構成される複合板等が、枢軸6に中心点5aで接合されている。一軸磁気異方性を持つ磁性体では、磁性体が容易に磁化される容易軸方向と、それに直交する方向で磁化するのが困難な困難軸方向が存在する。つまり、枢軸6の回動に合わせてロータ5が回動し、それに伴って磁気異方性の容易軸方向が変化する。この磁気異方性の容易軸方向の変化を利用して回転角度を検出することができる。容易軸方向の透磁率は大きく、それに垂直な方向にある困難軸方向では透磁率が小さい。 The rotor 5 is formed of a disc body, and is a composite plate configured by arranging a magnetic body so as to generate uniaxial magnetic anisotropy on a magnetic plate or flat plate substrate having uniaxial magnetic anisotropy in the surface direction. Are joined to the pivot 6 at the center point 5a. In a magnetic body having uniaxial magnetic anisotropy, there are an easy axis direction in which the magnetic body is easily magnetized and a difficult axis direction in which it is difficult to magnetize in a direction perpendicular thereto. That is, the rotor 5 rotates in accordance with the rotation of the pivot 6, and the easy axis direction of magnetic anisotropy changes accordingly. The rotation angle can be detected using the change in the easy axis direction of the magnetic anisotropy. The magnetic permeability in the easy axis direction is large, and the magnetic permeability is small in the hard axis direction perpendicular to the easy axis direction.
 励磁コイル4bは、交流電源部40に接続しており、この交流電源部40から交流電流が供給される。励磁コイル4bに交流電流が供給されることで、ステータ3の領域3bには面方向に垂直な方向に磁界が発生する。この磁界はコイルの銅線近傍で最も強く、領域3bの中心方向にいくにしたがって弱くなっている。つまり、検出コイル4aと励磁コイル4bが隣接している領域30においては、強い磁界が発生している。 The exciting coil 4 b is connected to the AC power supply unit 40, and an AC current is supplied from the AC power supply unit 40. By supplying an alternating current to the exciting coil 4b, a magnetic field is generated in the region 3b of the stator 3 in a direction perpendicular to the surface direction. This magnetic field is strongest in the vicinity of the copper wire of the coil, and becomes weaker toward the center of the region 3b. That is, a strong magnetic field is generated in the region 30 where the detection coil 4a and the excitation coil 4b are adjacent to each other.
 検出コイル4aは、励磁コイル4bにより励磁された磁界により、その磁界に応じた電圧が生じ、その電圧を検出コイル4bに接続された同期検波回路41で検出する。このとき、ロータ5の角度により検出される電圧値が変化する。この電圧値の変化を解析して得られた演算結果を角度の値として出力する。 The detection coil 4a generates a voltage corresponding to the magnetic field excited by the magnetic field excited by the excitation coil 4b, and the voltage is detected by the synchronous detection circuit 41 connected to the detection coil 4b. At this time, the detected voltage value changes depending on the angle of the rotor 5. The calculation result obtained by analyzing the change in the voltage value is output as an angle value.
 図3は、本実施形態に係る角度検出装置において励磁コイルと角度検出コイルとをそれぞれ2つずつ備えた場合の構造を示す図である。バックヨーク2及びロータ5の構成は、図1の場合と同じである。ステータ3は、励磁コイル4b,4d及び角度検出コイル4a,4cが、1/4円の扇状に配線(枢軸6の配設部分については当該枢軸6を回避するように配線)され、ステータの板面に沿って交互に配設されている。 FIG. 3 is a diagram illustrating a structure in the case where the angle detection device according to the present embodiment includes two excitation coils and two angle detection coils. The configurations of the back yoke 2 and the rotor 5 are the same as those in FIG. In the stator 3, the exciting coils 4b and 4d and the angle detection coils 4a and 4c are wired in the shape of a ¼ circle fan (the wiring portion is arranged so as to avoid the pivot 6 for the arrangement portion of the pivot 6), and the stator plate Alternatingly arranged along the surface.
 励磁コイル4bと4dは、ステータ3の面方向に対して垂直方向の磁束の向きが、相互に逆になる(一方がN極の場合、他方がS極となる)ように巻回されて接続されており、角度検出コイル4aと4cは、相互に巻き方向が逆となるように結線される。こうすることで、ロータ5の回転角度が0度の場合は、角度検出コイル4aと励磁コイル4b、及び角度検出コイル4cと励磁コイル4dが、ロータ5の磁気異方性の容易軸方向に位置するため、強く結合する。逆に、角度検出コイル4aと励磁コイル4d、及び角度検出コイル4cと励磁コイル4bは、ロータ5の磁気異方性の困難軸方向に位置するため結合が非常に小さくなる。 The exciting coils 4b and 4d are wound and connected so that the directions of the magnetic flux in the direction perpendicular to the surface direction of the stator 3 are opposite to each other (if one is an N pole, the other is an S pole). The angle detection coils 4a and 4c are connected so that the winding directions are opposite to each other. Thus, when the rotation angle of the rotor 5 is 0 degree, the angle detection coil 4a and the excitation coil 4b, and the angle detection coil 4c and the excitation coil 4d are positioned in the easy axis direction of the magnetic anisotropy of the rotor 5. To join strongly. Conversely, the angle detection coil 4a and the excitation coil 4d, and the angle detection coil 4c and the excitation coil 4b are positioned in the direction of the axis of the magnetic anisotropy of the rotor 5, and thus the coupling becomes very small.
 なお、図1ないし図3において、角度検出装置1は枢軸6を備える構成となっているが、枢軸6を備えることなく、例えば、外側面からの回転力(ローラやギアによる回転力)によりロータ5を回転させる構成としてもよい。 1 to 3, the angle detection device 1 is configured to include the pivot 6, but without the pivot 6, for example, the rotor can be rotated by a rotational force (rotational force by a roller or a gear) from the outer surface. 5 may be configured to rotate.
 本実施形態に係る角度検出装置における角度検出の原理については、特許文献1に示す技術と同じであるために詳細な説明は省略する。 Since the principle of angle detection in the angle detection apparatus according to the present embodiment is the same as the technique disclosed in Patent Document 1, detailed description thereof is omitted.
 このように、本実施形態に係る角度検出装置は、ロータ5が一軸磁気異方性を有する円板体で構成された、極めてシンプルな構造であるため、複雑な加工を必要とせず、非常に容易に製造することができる。また、ステータ3がロータ5の円板体の外側面に対向して配設されるのではなく、ロータ5の円板体の板面に対向して配設される面構造になっているため、機能を低下させることなく、簡単な製造工程で薄型化することができる。さらに、ステータ3を挟んでロータ5が配設される面と反対方向の板面に、ステータ3の円板体に対向して略同一外形で配設されるバックヨーク2を備えるため、磁界を強くし検出感度を上げることができる。 As described above, the angle detection device according to the present embodiment has an extremely simple structure in which the rotor 5 is configured by a disc body having uniaxial magnetic anisotropy, and thus does not require complicated processing, and is extremely It can be manufactured easily. In addition, the stator 3 is not disposed to face the outer surface of the disk body of the rotor 5 but has a surface structure disposed to face the plate surface of the disk body of the rotor 5. It is possible to reduce the thickness by a simple manufacturing process without deteriorating the function. Further, since the back yoke 2 is disposed on the plate surface opposite to the surface on which the rotor 5 is disposed across the stator 3 so as to be opposed to the disk body of the stator 3 with substantially the same outer shape, the magnetic field is generated. It can be strengthened to increase detection sensitivity.
 本実施形態に係る角度検出装置1は、上記構成に加えて、さらに回転角度における基準となる位置、すなわちZ相を検出するために、ロータ5に基準検出部、ステータ3に基準検出コイルを備える。図4は、本実施形態に係る角度検出装置における基準検出部及び基準検出コイルを示す図である。図4(A)は、ロータ5の上面概略図であり、図4(B)は、ステータ3における各コイルの上面概略図である。図4(A)において、ロータ5の容易軸方向に沿って、円板体の電磁気特性と異なる電磁気特性を有する一の基準検出部7が形成されている。この基準検出部7は、容易軸方向に沿って長尺体として形成されることで、角度検出の精度を下げるような阻害要因になることを防止している。 In addition to the above configuration, the angle detection device 1 according to the present embodiment further includes a reference detection unit in the rotor 5 and a reference detection coil in the stator 3 in order to detect a reference position in the rotation angle, that is, the Z phase. . FIG. 4 is a diagram illustrating a reference detection unit and a reference detection coil in the angle detection apparatus according to the present embodiment. 4A is a schematic top view of the rotor 5, and FIG. 4B is a schematic top view of each coil in the stator 3. In FIG. 4A, one reference detection unit 7 having an electromagnetic characteristic different from the electromagnetic characteristic of the disc body is formed along the easy axis direction of the rotor 5. The reference detection unit 7 is formed as a long body along the easy axis direction, thereby preventing an obstacle that lowers the accuracy of angle detection.
 基準検出部7は、ロータ5の円板体の他の部分と異なる電磁気特性を有するものであればよく、例えば、切欠部やスリットとして形成されてもよいし、異なる電磁気特性のテープやシール等を貼設するようにしてもよい。また、表面改質により基準検出部7を形成してもよい。例えば、機械的に傷をつけるのではなく、電子ビームやレーザ等で局所的に電磁気特性を変化させたり、表面を削ったりしてもよい。 The reference detection unit 7 may have any electromagnetic characteristics different from other parts of the disk body of the rotor 5, and may be formed as a notch or a slit, or a tape or seal having different electromagnetic characteristics, for example. You may make it stick. Further, the reference detection unit 7 may be formed by surface modification. For example, instead of mechanically scratching, the electromagnetic characteristics may be locally changed or the surface may be shaved with an electron beam or a laser.
 なお、基準検出コイルはステータ3の円板体に一体的に形成されてもよいし、当該円板体とは別体で形成されてもよいが、角度の検出結果と基準位置の検出結果との対応付けや集積度の観点から、一体的に形成されたほうが望ましい。 The reference detection coil may be formed integrally with the disk body of the stator 3 or may be formed separately from the disk body, but the angle detection result and the reference position detection result From the viewpoint of the correspondence and the degree of integration, it is desirable to form them integrally.
 図4(B)において、ステータ3に配設されているコイルは、図3に示すように、励磁コイル4b,4d及び角度検出コイル4a,4cが、1/4円の扇状に配線されてなされると共に、励磁コイル4b,4dの何れかの扇状領域内に基準検出部7を検出するための基準検出コイル8からなる。図4においては、基準検出コイル8として励磁コイル4bの扇状領域内に8の字状の8の字コイルを備えている。8の字コイルは、第1領域8aと第2領域8bとを有しており、それぞれの領域を形成するコイルに流れる電流の向きが相互に逆方向となっている。そして、基準検出部7が基準検出コイル8上を、第1領域8aから第2領域8b、又は、第2領域8bから第1領域8aにかけて順次移動するような位置に対応付けて配設される。 In FIG. 4B, as shown in FIG. 3, the coils arranged in the stator 3 are formed by exciting coils 4b and 4d and angle detection coils 4a and 4c being wired in a ¼ circle fan shape. And a reference detection coil 8 for detecting the reference detection unit 7 in any one of the fan-shaped regions of the excitation coils 4b and 4d. In FIG. 4, as the reference detection coil 8, an 8-shaped coil having an 8-shape is provided in the fan-shaped region of the exciting coil 4 b. The figure 8 coil has a first region 8a and a second region 8b, and the directions of currents flowing through the coils forming the respective regions are opposite to each other. The reference detection unit 7 is arranged in association with a position on the reference detection coil 8 that sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a. .
 すなわち、基準検出コイル8を8の字コイルとすることで、基準検出部7の影響がない場合は、第1領域8aに発生する磁界と第2領域8bに発生する磁界とが打ち消し合って出力が小さくなるのに対して、基準検出部7が、第1領域8aから第2領域8b、又は、第2領域8bから第1領域8aにかけて順次移動する場合は、基準検出部7における電磁気特性の違いにより、各領域における磁界のバランスが崩れて出力に変化が現れる。この変化を検出することで、ロータ5の1周期の基準位置、すなわちZ相を検出することができる。 That is, by making the reference detection coil 8 an 8-shaped coil, when there is no influence of the reference detection unit 7, the magnetic field generated in the first region 8a and the magnetic field generated in the second region 8b cancel each other and output. In contrast, when the reference detection unit 7 sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a, the electromagnetic characteristics of the reference detection unit 7 are reduced. Due to the difference, the balance of the magnetic field in each region is lost and a change appears in the output. By detecting this change, the reference position of one period of the rotor 5, that is, the Z phase can be detected.
 なお、基準検出コイル8は8の字コイルである必要はなく、基準検出部7における電磁気特性の変化を検出できるものであればよい。すなわち、例えば、リングコイル型の検出コイルを用いてもよい。また、基準検出コイルを配設する際の態様は、図4の場合に限らず他の態様であってもよい(図6及び図7を用いて詳細を後述する)。 Note that the reference detection coil 8 does not have to be an 8-shaped coil, and any reference detection coil 8 can be used as long as it can detect a change in electromagnetic characteristics in the reference detection unit 7. That is, for example, a ring coil type detection coil may be used. Moreover, the aspect at the time of arrange | positioning a reference | standard detection coil is not restricted to the case of FIG. 4, Another aspect may be sufficient (a detail is later mentioned using FIG.6 and FIG.7).
 図4のロータ5及びステータ3の各コイルを用いた場合の出力結果について、図5を用いて説明する。図5は、図3における角度検出装置1を実際に動作させた場合の出力結果を示す図である。図5の場合において、ステータ3は図5(A)の状態で枢軸6に固定されているとする。すなわち、1対の励磁コイル4b,4dと1対の角度検出コイル4a,4cとを備え、励磁コイル4bの中央の領域に基準検出コイル8(8の字コイル)が配設されている。ロータ5は、ステータ3に対向して積層されて配設されており、枢軸6を中心として面に沿って回動する。ロータ5が回動する際の容易軸方向と基準検出部7の位置関係を図5(B)のグラフの下方に示す。ここでは、ロータ5が左方向に回転した場合の出力結果を示しており、基準検出部7としてスリットが形成されている。図5(B)のグラフにおいて、実線は角度検出コイル4a,4cの出力波形(ここでは、sin成分のみ)を示し、破線は基準検出コイル8の出力波形を示している。 The output result when each coil of the rotor 5 and the stator 3 in FIG. 4 is used will be described with reference to FIG. FIG. 5 is a diagram showing an output result when the angle detection device 1 in FIG. 3 is actually operated. In the case of FIG. 5, it is assumed that the stator 3 is fixed to the pivot 6 in the state of FIG. That is, a pair of excitation coils 4b and 4d and a pair of angle detection coils 4a and 4c are provided, and a reference detection coil 8 (8-shaped coil) is disposed in the central region of the excitation coil 4b. The rotor 5 is disposed so as to be opposed to the stator 3, and rotates along the surface about the pivot 6. The positional relationship between the easy axis direction and the reference detection unit 7 when the rotor 5 rotates is shown below the graph of FIG. Here, an output result when the rotor 5 rotates leftward is shown, and a slit is formed as the reference detection unit 7. In the graph of FIG. 5B, the solid line indicates the output waveforms of the angle detection coils 4a and 4c (here, only the sin component), and the broken line indicates the output waveform of the reference detection coil 8.
 励磁コイル4b,4d及び角度検出コイル4a,4cの位置関係に応じて、図5の実線で示す正弦波が正確に検出されていることがわかる。そして、ロータ5に基準検出部7が形成されているにも関わらず、角度検出には何ら影響を及ぼしていないことが明らかである。 It can be seen that the sine wave indicated by the solid line in FIG. 5 is accurately detected according to the positional relationship between the excitation coils 4b and 4d and the angle detection coils 4a and 4c. It is clear that the angle detection is not affected in spite of the reference detection unit 7 being formed on the rotor 5.
 また、上述したように、従来の特許文献1に示す角度検出装置1では、ロータ5が機械角で1回転する間に電気角が2回転分検出されることで、0度と180度との区別が困難になってしまう。ところが、本実施形態においては、図5(B)の破線で示すように、基準検出部7の位置がロータ5が1回転する間に1つのピークとして現れるので、0度と180度との区別を明確にして角度検出を正確に行うことが可能となっている。 Further, as described above, in the angle detection device 1 shown in the conventional patent document 1, the electrical angle is detected by two rotations while the rotor 5 is rotated once by the mechanical angle, so that the rotation angle is 0 degree and 180 degrees. It becomes difficult to distinguish. However, in the present embodiment, as indicated by the broken line in FIG. 5B, the position of the reference detection unit 7 appears as one peak while the rotor 5 makes one rotation, so that the distinction between 0 degree and 180 degrees is made. This makes it possible to accurately detect the angle.
 さらに、角度検出コイル4a,4cとは別個に基準検出コイル8を設けており、角度検出とZ相の検出とを明確に区別して処理することで、より正確に角度検出及びZ相の検出を行うことが可能となる。 Further, the reference detection coil 8 is provided separately from the angle detection coils 4a and 4c, and the angle detection and the Z phase detection are more accurately performed by clearly distinguishing and processing the angle detection and the Z phase detection. Can be done.
 すなわち、本実施形態に係る角度検出装置1は、角度検出の精度を保ちつつ、回転角の基準となる基準位置を正確に特定することができる。 That is, the angle detection device 1 according to the present embodiment can accurately specify the reference position serving as the reference for the rotation angle while maintaining the accuracy of angle detection.
  (本発明の第2の実施形態)
 本実施形態に係る角度検出装置について、図6及び図7を用いて説明する。図6及び図7は、基準検出部7及び基準検出コイル8を備える場合の他の態様を示す図である。図6において、基準検出コイル8が8の字コイルである点は図4の場合と同じであるが、8の字コイルの配設方向が異なる。すなわち、図4の場合は、基準検出部7が、第1領域8aから第2領域8b、又は、第2領域8bから第1領域8aにかけて順次移動するように基準検出部7と8の字コイルとを対応付けて配設したが、図6の場合は、基準検出部7が、第1領域8a又は第2領域8bのいずれか一方のみのコイル上を移動するように、基準検出部7と8の字コイルとを対応付けて配設している。
(Second embodiment of the present invention)
The angle detection apparatus according to this embodiment will be described with reference to FIGS. FIGS. 6 and 7 are diagrams showing another aspect in the case where the reference detection unit 7 and the reference detection coil 8 are provided. In FIG. 6, the point that the reference detection coil 8 is an 8-shaped coil is the same as in FIG. 4, but the arrangement direction of the 8-shaped coil is different. That is, in the case of FIG. 4, the reference detector 7 and the 8-shaped coil so that the reference detector 7 sequentially moves from the first region 8a to the second region 8b or from the second region 8b to the first region 8a. In the case of FIG. 6, the reference detection unit 7 and the reference detection unit 7 are arranged so that the reference detection unit 7 moves on only one of the first region 8a and the second region 8b. 8-shaped coils are arranged in association with each other.
 すなわち、基準検出部7が第1領域8a又は第2領域8bのいずれか一方のみのコイル上を移動することで、その電磁気特性の変化により第1領域8aと第2領域8bとの磁界のバランスが崩れ、その変化を検出することで基準位置を特定することができる。 That is, when the reference detection unit 7 moves on only one of the coils of the first region 8a or the second region 8b, the balance of the magnetic field between the first region 8a and the second region 8b due to the change in the electromagnetic characteristics thereof. The reference position can be specified by detecting the change.
 図7は、さらに別の態様を示す図であり、図7(A)において、基準検出コイル8が8の字コイルであり、基準検出部7が、第1領域8aから第2領域8b、又は、第2領域8bから第1領域8aにかけて順次移動するように基準検出部7と8の字コイルとが配設されている点は同じであるが、8の字コイルが励磁コイル4bと角度検出コイル4aとの間の領域と、励磁コイル4bと角度検出コイル4cとの間の領域との2箇所に配設されている点が異なる。 FIG. 7 is a diagram showing still another aspect. In FIG. 7A, the reference detection coil 8 is an 8-shaped coil, and the reference detection unit 7 is changed from the first region 8a to the second region 8b. The reference detector 7 and the 8-shaped coil are arranged so as to move sequentially from the second region 8b to the first region 8a, but the 8-shaped coil detects the angle with the exciting coil 4b. The difference is that it is disposed in two places, a region between the coil 4a and a region between the excitation coil 4b and the angle detection coil 4c.
 つまり、図7(B)、(C)に示すように、図7(A)における基準検出コイル81と基準検出コイル82との検出結果は位相が90度ずれており、それぞれの検出結果を差し引くことで、図7(D)に示すようなプラスとマイナスのピークの組合せをロータ5の1回転につき1回検出することができる。すなわち、基準位置を正確に特定することができる。 That is, as shown in FIGS. 7B and 7C, the detection results of the reference detection coil 81 and the reference detection coil 82 in FIG. 7A are out of phase by 90 degrees, and the respective detection results are subtracted. Thus, a combination of positive and negative peaks as shown in FIG. 7D can be detected once per rotation of the rotor 5. That is, the reference position can be specified accurately.
  (本発明の第3の実施形態)
 本実施形態に係る角度検出装置について、図8ないし図10を用いて説明する。本実施形態に係る角度検出装置においては、基準検出コイルと鎖交するような磁界を発生させるための基準検出励磁コイルを備える。図8は、本実施形態に係る角度検出装置における基準検出部及び基準検出コイルを示す図である。図8(A)は、ロータ5の上面概略図であり、図8(B)は、ステータ3における各コイルの上面概略図である。図8(A)のロータ5は、図4の場合と同じ構成である。図8(B)のステータ3におけるコイルについては、基準検出コイル8と鎖交するような磁界を発生させるための楕円状の基準検出励磁コイル10を新たに備える構成となっている。
(Third embodiment of the present invention)
The angle detection apparatus according to the present embodiment will be described with reference to FIGS. The angle detection apparatus according to the present embodiment includes a reference detection excitation coil for generating a magnetic field interlinking with the reference detection coil. FIG. 8 is a diagram illustrating a reference detection unit and a reference detection coil in the angle detection apparatus according to the present embodiment. 8A is a schematic top view of the rotor 5, and FIG. 8B is a schematic top view of each coil in the stator 3. The rotor 5 in FIG. 8A has the same configuration as that in FIG. The coil in the stator 3 shown in FIG. 8B is newly provided with an elliptical reference detection exciting coil 10 for generating a magnetic field interlinking with the reference detection coil 8.
 基準検出励磁コイル10は、励磁コイル4b,4dに影響がないように、励磁コイル4b,4dとは異なる周波数で励磁電流が通電される。このとき、同期検波によりそれぞれの励磁電流を分離するようにしてもよい。基準検出コイル8は、基準検出励磁コイル10による励磁磁界と鎖交することで、高出力でピークを検知することが可能となり、基準位置を特定することができる。 The reference detection excitation coil 10 is energized with an excitation current at a frequency different from that of the excitation coils 4b and 4d so that the excitation coils 4b and 4d are not affected. At this time, the respective excitation currents may be separated by synchronous detection. The reference detection coil 8 is capable of detecting a peak with high output by interlinking with the excitation magnetic field generated by the reference detection excitation coil 10 and can specify the reference position.
 基準検出励磁コイル10を用いた場合の実際の出力結果について、図9を用いて説明する。図9(A)の基準検出コイル8の出力結果において、実線はsin成分の出力波形を示し、点線はcos成分の出力波形を示し、破線は基準検出コイル8の出力波形を示す。図9(A)に示すように、機械角1回転中にシャープなピークが3つ検出されている。この状態では基準位置を明確に特定することができない場合があるため、ここでは、基準検出コイル8の検出結果と、角度検出コイル4a又は4cの出力波形のうちの一つとを掛け算する。その結果を図9(B)に示す。基準検出コイル8の検出結果と角度検出コイル4a又は4cの出力波形とを掛け算することで、正のピークが1個になりZ相として扱うことができる。 The actual output result when the reference detection excitation coil 10 is used will be described with reference to FIG. In the output result of the reference detection coil 8 in FIG. 9A, the solid line indicates the output waveform of the sin component, the dotted line indicates the output waveform of the cos component, and the broken line indicates the output waveform of the reference detection coil 8. As shown in FIG. 9A, three sharp peaks are detected during one rotation of the mechanical angle. Since the reference position may not be clearly specified in this state, here, the detection result of the reference detection coil 8 is multiplied by one of the output waveforms of the angle detection coil 4a or 4c. The result is shown in FIG. By multiplying the detection result of the reference detection coil 8 and the output waveform of the angle detection coil 4a or 4c, one positive peak is obtained and can be handled as the Z phase.
 なお、この場合、基準検出励磁コイル10の有無に関わらず、基準検出コイル8の検出結果と角度検出コイル4a又は4cの出力波形とを掛け算することで、基準検出コイル8の出力結果を明確にすることができるが、特に、基準検出コイル8が配設されている励磁コイルが生成する相の出力波形と基準検出コイル8の検出結果とを掛け算することで、1つの明確な正のピークを検出することができる。 In this case, regardless of the presence or absence of the reference detection excitation coil 10, the output result of the reference detection coil 8 is clearly obtained by multiplying the detection result of the reference detection coil 8 and the output waveform of the angle detection coil 4a or 4c. In particular, by multiplying the output waveform of the phase generated by the excitation coil in which the reference detection coil 8 is arranged and the detection result of the reference detection coil 8, one clear positive peak is obtained. Can be detected.
 基準検出コイル8と基準検出部7であるスリットの位置を図10(A)のように配置した場合の出力結果を図10(B)に示す。図10(A)において、基準検出部7であるスリットが、基準検出コイル8の全体の領域ではなく半分の領域のみを含んで通過するように、基準検出部7及び基準検出コイル8が配置されている。このように配置した場合は、シャープな正のピークが角度検出コイル4a,4cの出力結果である正弦波2周期に1個出ているため,ロータ5の機械角1回転に1個信号を検出することができ、Z相が生成されていることが分かる。 FIG. 10B shows the output result when the positions of the slits that are the reference detection coil 8 and the reference detection unit 7 are arranged as shown in FIG. In FIG. 10A, the reference detection unit 7 and the reference detection coil 8 are arranged so that the slit which is the reference detection unit 7 passes through not only the entire region of the reference detection coil 8 but also a half region. ing. When arranged in this way, one sharp positive peak appears in two cycles of the sine wave, which is the output result of the angle detection coils 4a, 4c, so one signal is detected for one rotation of the rotor 5 mechanical angle. It can be seen that a Z phase is generated.
 なお、本実施形態に係る角度検出装置においては、双対原理の観点から基準検出励磁コイル10をZ相の検出用コイルとして機能させると共に、基準検出コイル8を励磁用コイルとして機能させても、上記と同様に明確なZ相の検出が可能である。 In the angle detection device according to the present embodiment, the reference detection excitation coil 10 functions as a Z-phase detection coil and the reference detection coil 8 functions as an excitation coil from the viewpoint of duality. It is possible to detect a clear Z phase in the same manner as in FIG.
 また、第1の実施形態の場合と同様に、基準検出コイル8は8の字コイルである必要はなく、基準検出部7における電磁気特性の変化を検出できるものであればよい。また、基準検出コイルを配設する際の態様は、図10の場合に限らず、例えば第2の実施形態に示すような他の態様であってもよい。 Further, as in the case of the first embodiment, the reference detection coil 8 does not have to be an 8-shaped coil, and may be any one that can detect a change in electromagnetic characteristics in the reference detection unit 7. Moreover, the aspect at the time of arrange | positioning a reference | standard detection coil is not restricted to the case of FIG. 10, For example, the other aspect as shown to 2nd Embodiment may be sufficient.
 以上、上記各実施の形態で示したように、本発明に係る角度検出装置は、角度検出の精度を保ちつつ、回転角の基準となる基準位置、すなわちZ相を正確に検出することができる。 As described above, as described in the above embodiments, the angle detection device according to the present invention can accurately detect the reference position, that is, the Z phase, which is the reference for the rotation angle while maintaining the accuracy of angle detection. .
 なお、本発明に係る角度検出装置は、低速で回転する場合や、例えば車のハンドルの角度を検出するような高々半回転~数回転を時計方向、反時計方向に角度変化するようなものにも適用することができる。その場合、例えば、ロータ5の縁に1の突起構造を形成し、それを近接センサのような強磁性体が通過すると反応するセンサを複合化しておき(例えば、ハウジングの一部に多数巻きのリングコイルを設置し)、突起構造に近接するように配置し、突起構造が通過すればインダクタンスが増えて信号検出できるようにしてもよい。その際、角度検出装置1との共存性は、角度検出のコイルの外径よりロータ5の外径をやや大きくしておけば、ロータ5の突起が半径方向に対して影響を与えることはない。 Note that the angle detection device according to the present invention is adapted to rotate at a low speed, or to change the angle in the clockwise or counterclockwise direction at most half rotation to several rotations, for example, to detect the angle of the steering wheel of a car. Can also be applied. In that case, for example, one protrusion structure is formed on the edge of the rotor 5, and a sensor that reacts when a ferromagnetic material such as a proximity sensor passes through is combined (for example, a large number of windings are formed on a part of the housing). A ring coil may be installed) and arranged so as to be close to the protruding structure. If the protruding structure passes, the inductance may be increased so that the signal can be detected. In this case, the coexistence with the angle detection device 1 is that if the outer diameter of the rotor 5 is made slightly larger than the outer diameter of the angle detection coil, the protrusions of the rotor 5 do not affect the radial direction. .
 また、上記各実施形態においては、基準検出部7の長手方向が容易軸方向に沿って形成され、且つ、ロータ5の中心から放射方向に延びた矩形の長尺体として示されているが、例えば、図11(A)(B)に示すように、矩形以外の形状であってもよいし、図11(C)(D)に示すように、ロータ5の中心から放射方向に延びた長尺体である必要はない。すなわち、角度検出の精度を下げるような要因になることなく、ロータ5における他の箇所と異なる電磁気特性を有する構造であればよい。つまり、ロータ5の一部にこのような基準検出部7が形成されたとしても、回転対称の状態となっている限りは、角度検出における全体の出力を下げるだけで、検出精度に何ら影響することはなく、形状や位置は任意に設計することが可能である。 Further, in each of the above embodiments, the longitudinal direction of the reference detection unit 7 is formed along the easy axis direction and is shown as a rectangular long body extending in the radial direction from the center of the rotor 5, For example, as shown in FIGS. 11 (A) and 11 (B), the shape may be other than a rectangle, and as shown in FIGS. 11 (C) and 11 (D), a length extending in the radial direction from the center of the rotor 5. It need not be a scale. In other words, any structure having electromagnetic characteristics different from those of other portions of the rotor 5 may be used without causing a factor that lowers the accuracy of angle detection. In other words, even if such a reference detection unit 7 is formed in a part of the rotor 5, as long as it is in a rotationally symmetric state, it only affects the detection accuracy by reducing the overall output in angle detection. The shape and position can be arbitrarily designed.
 さらに、基準検出コイル8は、ステータ3の円板体に一体的に形成されるのが望ましいが、その際に、角度検出コイル4a,4cや励磁コイル4b,4dと同時にプリント基板に形成されることで、2層基板でステータ3を作成することが可能となり、集積度を上げると共に、製造工程を簡素化することができる。 Further, the reference detection coil 8 is preferably formed integrally with the disc body of the stator 3, but at this time, it is formed on the printed circuit board simultaneously with the angle detection coils 4a and 4c and the excitation coils 4b and 4d. Thus, the stator 3 can be formed with a two-layer substrate, and the degree of integration can be increased and the manufacturing process can be simplified.
 本発明に係る角度検出装置を用いた実験を行った。本実験においては、上記第3の実施形態に係る図8に示す角度検出装置をベースとする試作品を作成した。つまり、8の字の基準検出コイルの周囲に励磁のための方形状の基準検出励磁コイルを備えるものとした。図12は、コイル及びロータの構造を示す図である。 An experiment using the angle detection device according to the present invention was conducted. In this experiment, a prototype based on the angle detection device shown in FIG. 8 according to the third embodiment was created. In other words, a rectangular reference detection excitation coil for excitation is provided around an 8-shaped reference detection coil. FIG. 12 is a diagram illustrating the structure of the coil and the rotor.
 (1)実験条件
 本実験で試作した角度検出装置は、高い粒子配向性を有する厚さ0.3mmの電磁鋼板(あるいは珪素鋼板)からなる円板にスリットを形成したロータ、厚さ0.3mmの無方向性電磁鋼板の円板からなるバックヨーク、及び、2つのセットコイル(励磁コイル及び検出コイルのセット)を有する。
(1) Experimental conditions The angle detection device prototyped in this experiment is a rotor in which a slit is formed in a disk made of an electromagnetic steel plate (or silicon steel plate) having a high particle orientation and a thickness of 0.3 mm, and a thickness of 0.3 mm. And a set of two set coils (a set of an excitation coil and a detection coil).
 ロータは直径76mmのものを4つ作成し、スリット幅をそれぞれ1mm、2mm、3mm、及び、スリット無しとした。スリットの長さは15.5mmとし、ロータの中央から17mm離れるものとした。2つのセットコイル、基準位置を検出するための8の字コイル、及び、8の字コイルと鎖交するような磁界を発生させるための励磁コイルである方形コイルは、2つの0.4mmのプリント配線基板(PCB)で作成した。 Four rotors with a diameter of 76 mm were prepared, and the slit width was 1 mm, 2 mm, 3 mm, and no slit, respectively. The slit length was 15.5 mm, and the slit was 17 mm away from the center of the rotor. Two set coils, an 8-shaped coil for detecting the reference position, and a square coil that is an exciting coil for generating a magnetic field interlinking with the 8-shaped coil are printed on two 0.4 mm. Created with a wiring board (PCB).
 第1及び第2のサイン出力、コサイン出力のそれぞれのコイルの巻き数は10とし、方形コイルは5、8の字コイルは10とした。セットコイルの外径は75mmとし、ロータとバックヨークの外径は76mmとした。8の字コイルのサイズは21×13mm、方形コイルのサイズは27×15mmとした。ロータとコイルとが接触するのを避けるために、それらのギャップは2mmとした。ロータの回転速度は、3000回転/分(rpm)とした。 The number of turns of each of the first and second sine outputs and cosine outputs was 10, the square coil was 5, and the 8-shaped coil was 10. The outer diameter of the set coil was 75 mm, and the outer diameters of the rotor and back yoke were 76 mm. The size of the figure 8 coil was 21 × 13 mm, and the size of the rectangular coil was 27 × 15 mm. In order to avoid contact between the rotor and the coil, the gap between them was 2 mm. The rotational speed of the rotor was 3000 revolutions / minute (rpm).
 位相検波及び正弦波の電源としてロックインアンプを使用した。供給された正弦波電圧は、それぞれ、P1にf=16kHz、802mV、79mAとし、P2にf=7kHz、725mV、79mAとし、P3にf=102kHz、290mV、56mAとした。このような条件下で、最大のZパルス出力と2つの正弦波出力が生成された。 A lock-in amplifier was used as a power source for phase detection and sine wave. The supplied sinusoidal voltages were f 1 = 16 kHz, 802 mV, and 79 mA for P1, f 2 = 7 kHz, 725 mV, and 79 mA for P2, and f 3 = 102 kHz, 290 mV, and 56 mA for P3, respectively. Under these conditions, a maximum Z pulse output and two sine wave outputs were generated.
 ロックインアンプの時定数はτ=0.1msとし、f=1/2πτ=1.6kHzのカットオフ周波数となる。Zパルス出力を得るために、ロックインアンプの位相器は一次コイルからの影響が最小となるように調整した。 The time constant of the lock-in amplifier is τ = 0.1 ms, and the cutoff frequency is f c = 1 / 2πτ = 1.6 kHz. In order to obtain the Z pulse output, the phase shifter of the lock-in amplifier was adjusted to minimize the influence from the primary coil.
 (2)実験結果
 スリット幅が3mmのロータを3000rpmの速度で回転させたときの3種類の出力電圧(規格化後)を図13(A)に示す。実際の出力電圧は、検出コイルS1において20.2mV、検出コイルS2において15.6mV、S3の8の字コイルにおいて1.5mVであった。図13(A)の時間幅は、ロータが1回転半した場合を示している。上記実施形態において説明したように、スリットが8の字コイルの上を通ったときにZパルスが得られ、1回転ごとに急激な負方向の電圧が生じた直後に急激な正方向への電圧が得られた。8の字コイルは、コサイン波形を生成する検出コイルの中央に配設されており、この部分をスリットが通過する際には、回転対称となる位置におけるサイン波形を生成する検出コイルとその励磁コイルとの磁気結合が最大になり、このような位置関係によって、サイン波形の出力が最大になるときにZパルスが出力される。すなわち、Zパルスは、常にサインフェーズ出力のピークと一緒に現れるため、図13(B)に示すように、Zパルス出力とサインフェーズ出力を乗算することで容易に検出することが可能となる。つまり、Zパルス出力がサインフェーズ出力のピークで急峻に変化する。
(2) Experimental results FIG. 13A shows three types of output voltages (after normalization) when a rotor having a slit width of 3 mm is rotated at a speed of 3000 rpm. The actual output voltage was 20.2 mV in the detection coil S1, 15.6 mV in the detection coil S2, and 1.5 mV in the 8-shaped coil of S3. The time width in FIG. 13A shows a case where the rotor makes one and a half revolutions. As described in the above embodiment, a Z-pulse is obtained when the slit passes over the 8-shaped coil, and a rapid positive voltage is generated immediately after a sudden negative voltage is generated every rotation. was gotten. The 8-shaped coil is disposed in the center of the detection coil that generates the cosine waveform. When the slit passes through this portion, the detection coil that generates the sine waveform at a position that is rotationally symmetric and its excitation coil The Z pulse is output when the output of the sine waveform is maximized due to such a positional relationship. That is, since the Z pulse always appears together with the peak of the sine phase output, it can be easily detected by multiplying the Z pulse output and the sine phase output as shown in FIG. That is, the Z pulse output changes sharply at the peak of the sine phase output.
 一方、スリット幅が2mmの場合は、そのピーク電圧は他の出力電圧と同じぐらい小さかった。また、スリット幅が1mmの場合は、そのピーク電圧は他の出力電圧よりも小さかった。それらは、サインフェーズ出力と乗算しても検出することができなかった。 On the other hand, when the slit width was 2 mm, the peak voltage was as small as other output voltages. When the slit width was 1 mm, the peak voltage was smaller than other output voltages. They could not be detected by multiplication with the sine phase output.
 配向性を有する珪素鋼板は、市販品であり、その性質にはバラツキがあるが、複数のロータを用いて行った複数の実験結果は概ね同じとなった。また、配向性を有する珪素鋼板は、一軸性の磁気異方性を有する単結晶粒の集合体である。結晶粒のいくつかは、大部分の結晶粒の容易軸方向とはやや異なる容易軸方向を持つ場合があり、それらの通過は8の字コイルにより検出された。この誤った電圧は、スリット幅が1mm又は2mmの場合は、スリットに対するZパルス検出電圧に比べ大きくなる場合が認められた。しかし、スリット幅が3mmの場合は、そのスリットにより生じたZパルス出力の急激な電圧の変化を、誤動作を引き起こす誤った電圧と区別することができた。 Oriented silicon steel sheet is a commercial product, and its properties vary, but the results of multiple experiments using multiple rotors are almost the same. An oriented silicon steel sheet is an aggregate of single crystal grains having uniaxial magnetic anisotropy. Some of the crystal grains may have an easy axis direction that is slightly different from the easy axis direction of most crystal grains, and their passage was detected by an 8-shaped coil. This incorrect voltage was observed to be larger than the Z pulse detection voltage for the slit when the slit width was 1 mm or 2 mm. However, when the slit width is 3 mm, the rapid voltage change of the Z pulse output caused by the slit can be distinguished from an erroneous voltage causing a malfunction.
 さらに、図13(A)に示すサイン波形の位相差は、ほぼπ/2となっている。図13(A)の2種類の出力電圧から、機械角2π区間の電気角を計算した結果を図14(A)に示す。-π/2からπ/2における電気角の値は、ロータが1回転する間に4回現れており、各直線におけるデータ数は同じである。このように、試作した角度検出装置は、機械角を正確に4つに分割した。 Furthermore, the phase difference of the sine waveform shown in FIG. 13A is approximately π / 2. FIG. 14A shows the result of calculating the electrical angle in the mechanical angle 2π section from the two types of output voltages shown in FIG. The value of the electrical angle from −π / 2 to π / 2 appears four times during one rotation of the rotor, and the number of data in each straight line is the same. As described above, the prototype angle detection apparatus accurately divided the mechanical angle into four.
 傾斜部分の4つの直線の差は、±0.2%以内であり、π/2区間の機械角についてのデータの非直線性の誤差は平均して0.22%-0.27%の範囲であった。2つのサイン出力電圧に基づくπ/2区間の機械角に対応する±π/2区間の電気角を図14(B)に示す。また、この機械角の区間において、図14(B)のデータから算出した非直線性の誤差を図14(C)に示す。この誤差算出の際には、フルスケールをπとした(これは±π/2の範囲となる)。3mm幅のスリットを有するロータを用いた角度検出装置に関して、算出データの直線性は良好である。 The difference between the four straight lines in the inclined part is within ± 0.2%, and the error in the nonlinearity of the data for the mechanical angle in the π / 2 section is in the range of 0.22%-0.27% on average. Met. FIG. 14B shows an electrical angle of ± π / 2 sections corresponding to a mechanical angle of π / 2 sections based on two sine output voltages. Further, FIG. 14C shows non-linearity errors calculated from the data of FIG. 14B in this mechanical angle section. In calculating the error, the full scale is set to π (this is in the range of ± π / 2). Regarding the angle detection device using a rotor having a slit with a width of 3 mm, the linearity of the calculated data is good.
 スリット幅が1mm、2mm、3mm及びスリット無しの4種類のロータをそれぞれ4個ずつ用いて実験を行った。それらは、夫々異なる珪素鋼板のシートから作成されたものである。平均のデータを表1に示す。 The experiment was conducted using four rotors each having four slit widths of 1 mm, 2 mm, 3 mm and no slit. They are made from different silicon steel sheets. The average data is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 スリット幅が1mmの場合と、スリットが無い場合はZパルスが検出されなかった。表1によると、スリットを有するロータと有しないロータとの非直線性の誤差及び第3高調波歪はほとんど同じである。すなわち、2種類のサイン波形の出力を損なうことなくZパルスを得ることが明らかとなった。 Z pulses were not detected when the slit width was 1 mm and when there was no slit. According to Table 1, the non-linearity error and the third harmonic distortion of the rotor having the slit and the rotor not having the slit are almost the same. That is, it has been clarified that a Z pulse can be obtained without impairing the output of two types of sine waveforms.
  1 角度検出装置
  2 バックヨーク
  3 ステータ
  4a,4c 角度検出コイル
  4b,4d 励磁コイル
  5 ロータ
  6 枢軸
  7 基準検出部
  8 基準検出コイル
  10 基準検出励磁コイル
DESCRIPTION OF SYMBOLS 1 Angle detection apparatus 2 Back yoke 3 Stator 4a, 4c Angle detection coil 4b, 4d Excitation coil 5 Rotor 6 Axis 7 Reference detection part 8 Reference detection coil 10 Reference detection excitation coil

Claims (8)

  1.  磁性体を含む円板体の透磁率が全体として一軸の異方性を有し、前記円板体の電磁気特性と異なる電磁気特性を有する一の基準検出部を含み、前記円板体が中心点を中心として円板面内で回動するロータと、
     磁界を発生させ前記ロータを励磁する励磁コイル、当該励磁コイルで励磁されたロータを通過した磁界と鎖交して前記ロータの回転角度に応じた電圧を検出する角度検出コイル、及び、前記基準検出部における前記電磁気特性の変化を検出する基準検出コイルを有するステータとを備え、
     前記ステータが、前記ロータの円板体の板面に対向し、前記ロータの中心点を通る軸と同軸に略同一外形で近接配設され、前記ステータの板面に沿って複数の扇状の前記励磁コイル及び前記角度検出コイルが交互に配設されると共に、前記ロータにおける前記基準検出部の配設位置に対応する前記ステータの対応位置に前記基準検出コイルが配設されていることを特徴とする角度検出装置。
    The disk body including the magnetic body has a uniaxial anisotropy as a whole, and includes one reference detection unit having electromagnetic characteristics different from the electromagnetic characteristics of the disk body, the disk body having a central point A rotor that rotates in a disc surface around
    An excitation coil that generates a magnetic field and excites the rotor, an angle detection coil that detects a voltage corresponding to the rotation angle of the rotor in linkage with a magnetic field that has passed through the rotor excited by the excitation coil, and the reference detection A stator having a reference detection coil for detecting a change in the electromagnetic characteristics in the section,
    The stator faces the plate surface of the disk of the rotor, is disposed close to the same axis and coaxially with an axis passing through the center point of the rotor, and has a plurality of fan-like shapes along the plate surface of the stator. The excitation coil and the angle detection coil are alternately arranged, and the reference detection coil is arranged at a corresponding position of the stator corresponding to the arrangement position of the reference detection unit in the rotor. Angle detection device.
  2.  請求項1に記載の角度検出装置において、
     前記基準検出部が細長形状であり、当該基準検出部の長手方向が前記磁気異方性に沿って形成されていることを特徴とする角度検出装置。
    The angle detection device according to claim 1,
    The angle detection device according to claim 1, wherein the reference detection unit has an elongated shape, and a longitudinal direction of the reference detection unit is formed along the magnetic anisotropy.
  3.  請求項2に記載の角度検出装置において、
     前記基準検出部が、前記ロータの中心から放射方向に沿って形成されていることを特徴とする角度検出装置。
    The angle detection device according to claim 2,
    The angle detection device, wherein the reference detection unit is formed along a radial direction from a center of the rotor.
  4.  請求項1ないし3のいずれかに記載の角度検出装置において、
     前記ステータにおける前記励磁コイル、前記角度検出コイル及び前記基準検出コイルが一の円板体内に一体的に形成されていることを特徴とする角度検出装置。
    The angle detection device according to any one of claims 1 to 3,
    The angle detection device according to claim 1, wherein the excitation coil, the angle detection coil, and the reference detection coil in the stator are integrally formed in one disc body.
  5.  請求項1ないし4のいずれかに記載の角度検出装置において、
     前記基準検出コイルが、8の字状に巻回された8の字コイルであることを特徴とする角度検出装置。
    In the angle detection device according to any one of claims 1 to 4,
    The angle detection device, wherein the reference detection coil is an 8-shaped coil wound in an 8-shaped shape.
  6.  請求項1ないし5のいずれかに記載の角度検出装置において、
     前記ステータが、前記基準検出コイルと鎖交するように前記励磁コイルと異なる周波数で励磁磁界を発生させる基準検出励磁コイルを備えることを特徴とする角度検出装置。
    In the angle detection device according to any one of claims 1 to 5,
    An angle detection device comprising: a reference detection excitation coil for generating an excitation magnetic field at a frequency different from that of the excitation coil so that the stator is interlinked with the reference detection coil.
  7.  請求項1ないし6のいずれかに記載の角度検出装置において、
     前記基準検出コイルの出力結果と前記角度検出コイルの出力結果とを乗算して前記基準検出部を検出することを特徴とする角度検出装置。
    The angle detection device according to any one of claims 1 to 6,
    An angle detection apparatus that detects the reference detection unit by multiplying an output result of the reference detection coil and an output result of the angle detection coil.
  8.  請求項1ないし7のいずれかに記載の角度検出装置において、
     前記ステータが、前記ロータが配設される面と反対方向に対向する略同一外形のバックヨークを備えることを特徴とする角度検出装置。
    The angle detection device according to any one of claims 1 to 7,
    The angle detection device according to claim 1, wherein the stator includes a back yoke having substantially the same outer shape facing in a direction opposite to a surface on which the rotor is disposed.
PCT/JP2013/073686 2012-09-04 2013-09-03 Angle detection device WO2014038551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534364A JP6044050B2 (en) 2012-09-04 2013-09-03 Angle detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012194561 2012-09-04
JP2012-194561 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038551A1 true WO2014038551A1 (en) 2014-03-13

Family

ID=50237160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073686 WO2014038551A1 (en) 2012-09-04 2013-09-03 Angle detection device

Country Status (2)

Country Link
JP (1) JP6044050B2 (en)
WO (1) WO2014038551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048945A (en) * 2016-09-23 2018-03-29 国立大学法人九州大学 Angle detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162351A (en) * 1984-08-31 1986-03-31 Yaskawa Electric Mfg Co Ltd Resolver
JPH07332911A (en) * 1994-06-03 1995-12-22 Sony Corp Axial position detecting sensor
JPH11194135A (en) * 1998-01-07 1999-07-21 Koyo Seiko Co Ltd Rotation detector
WO2012002126A1 (en) * 2010-07-02 2012-01-05 国立大学法人九州大学 Angle detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162351A (en) * 1984-08-31 1986-03-31 Yaskawa Electric Mfg Co Ltd Resolver
JPH07332911A (en) * 1994-06-03 1995-12-22 Sony Corp Axial position detecting sensor
JPH11194135A (en) * 1998-01-07 1999-07-21 Koyo Seiko Co Ltd Rotation detector
WO2012002126A1 (en) * 2010-07-02 2012-01-05 国立大学法人九州大学 Angle detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048945A (en) * 2016-09-23 2018-03-29 国立大学法人九州大学 Angle detector

Also Published As

Publication number Publication date
JPWO2014038551A1 (en) 2016-08-08
JP6044050B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
USRE47723E1 (en) Angle detection apparatus
US8729887B2 (en) Rotation angle sensor
JP3740984B2 (en) Electric pole position detector
JP2007252096A (en) Brushless motor
US20120176123A1 (en) Position sensor
WO2005040729A1 (en) Magnetic encoder device and actuator
JP4982756B2 (en) motor
JP6867386B2 (en) Resolver
JP5364031B2 (en) Rotation angle sensor
JP6044050B2 (en) Angle detector
JP5421198B2 (en) Rotation angle detector
JP5342963B2 (en) Sheet coil type resolver
US20120200286A1 (en) Resolver
JP2008203176A (en) Torque sensor and electric power steering apparatus using the same
JP2008286285A (en) Electromagnetic clutch
JP5249174B2 (en) Rotation angle sensor
JP5904811B2 (en) Position sensor
JP2013160734A (en) Position sensor
JP6744607B2 (en) Angle detector
JP5248559B2 (en) Position detection sensor
WO2022124415A1 (en) Resolver
JP4463594B2 (en) Angle sensor
JP2009162741A (en) Rotation angle detecting device
JP2010181192A (en) Magnetostrictive device for detecting torque and rotation angle
JP5188379B2 (en) Rotation angle sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835170

Country of ref document: EP

Kind code of ref document: A1