WO2014038094A1 - Light emitting apparatus and method for manufacturing same - Google Patents

Light emitting apparatus and method for manufacturing same Download PDF

Info

Publication number
WO2014038094A1
WO2014038094A1 PCT/JP2012/073107 JP2012073107W WO2014038094A1 WO 2014038094 A1 WO2014038094 A1 WO 2014038094A1 JP 2012073107 W JP2012073107 W JP 2012073107W WO 2014038094 A1 WO2014038094 A1 WO 2014038094A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
emitting device
auxiliary wiring
light
Prior art date
Application number
PCT/JP2012/073107
Other languages
French (fr)
Japanese (ja)
Inventor
修一 関
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/073107 priority Critical patent/WO2014038094A1/en
Publication of WO2014038094A1 publication Critical patent/WO2014038094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • the present invention relates to a light emitting device and a manufacturing technique thereof, and is applied to, for example, a light emitting apparatus using a light emitting element represented by an organic electroluminescence element (hereinafter referred to as an organic EL element) and a manufacturing technique thereof. It relates to effective technology.
  • an organic electroluminescence element hereinafter referred to as an organic EL element
  • Patent Document 1 describes a technique of providing a guard line below a partition formed between adjacent pixels.
  • Patent Document 2 JP-A-2005-203128 (Patent Document 2), a reverse-tapered partition is provided so as to surround the organic EL element, and an auxiliary electrode for reducing the electrical resistance of the transparent electrode is provided below the partition. The technology is described.
  • an auxiliary electrode of an organic EL element is provided in a part of a wall-like insulating layer, and a portion of the wall-like insulating layer provided with the auxiliary electrode is provided with an auxiliary electrode. A technique is described that is wider than the unexposed portion.
  • LEDs light-emitting diodes
  • LEDs light-emitting diodes
  • cost reduction has also progressed.
  • the light-emitting diode since the light-emitting diode has a long life, there is a possibility that demand will stagnate in the future, and development of a new light-emitting device is underway.
  • Electroluminescence is a phenomenon that emits light when a voltage is applied to a substance.
  • an element that generates this electroluminescence with an organic substance is called an organic EL element. Since this organic EL element is a current injection type device and exhibits diode characteristics, it is also called an organic light emitting diode (OLED).
  • Such light-emitting devices using organic EL elements are expected to be put to practical use so as to follow light-emitting devices using light-emitting diodes that have already been commercialized. This is because a light-emitting device using an organic EL element can be made thinner than a light-emitting device using a light-emitting diode and can illuminate a wide range. That is, according to the light-emitting device using the organic EL element, there is a possibility that it can be applied to a wide range of uses that have been difficult in the past, such as lighting that shines on the entire wall and billboard lighting in a store that does not take up space.
  • the organic EL element emits light on the surface unlike the light emitting diode that emits light in terms of the element. Therefore, according to the light emitting device using the organic EL element, the room can be illuminated in a state close to natural light without creating a shadow. it can.
  • a light-emitting device using an organic EL element is expected for a space having high design properties such as an entrance hall and an atrium.
  • a light emitting device using an organic EL element is thin and light, there is an advantage that it can be easily installed on a ceiling or a wall.
  • light-emitting devices using light-emitting diodes are mostly point light emission, so they are suitable for miniaturization, but in contrast to the restrictions on heat generation and the need to devise light diffusion.
  • a light-emitting device using an organic EL element has advantages such as “surface emission”, “no restriction on shape (flexible)”, and “transparent”. For this reason, the light-emitting device using an organic EL element has the possibility of spreading beyond the light-emitting device using a light emitting diode.
  • An organic EL element expected to be applied to a light emitting device has, for example, the following basic structure. That is, the organic EL element is formed, for example, such that a lower electrode is formed on a substrate and a plurality of partition walls extend in a predetermined direction (first direction) on the lower electrode. Each region sandwiched between the plurality of partition walls extending in the first direction is a cell region. In the cell region, an organic layer including a light emitting layer is formed on the lower electrode, and the upper electrode is formed on the organic layer. The upper electrode is separated for each cell region. For example, in each cell region, the upper electrode is formed to extend in the first direction.
  • the organic EL element configured as described above, for example, by applying a voltage between a hole injection electrode (anode) as a lower electrode and an electron injection electrode (cathode) as an upper electrode, the anode and the cathode A current flows through the sandwiched organic layer and emits light by itself.
  • anode hole injection electrode
  • cathode electron injection electrode
  • the cathode is formed on the cell region after forming the organic layer including the light emitting layer in the cell region sandwiched between the plurality of partition walls. It is formed by forming a conductor film.
  • the invention described in claim 1 includes: (a) a substrate; (b) a first electrode formed on the substrate; and (c) a partition wall portion formed on the substrate and extending in the first direction. (D) a plurality of cell regions partitioned by the partition wall, each of the plurality of cell regions being formed with (e) a light emitting unit and (f) the first electrode of the substrate.
  • the light emitting portion and a conducting portion sandwiched between the partition walls, and the light emitting portion includes (e1) a light emitting layer formed on the first electrode.
  • a second electrode auxiliary wiring extending in the first direction, and (f2) the conductive portion from above the organic layer of the light emitting portion. Characterized in that it comprises a second electrode formed over the second electrode for the auxiliary wire.
  • the invention described in claim 12 includes: (a) a step of preparing a substrate; (b) a step of forming a first conductor film on the substrate after the step (a); and (c) the ( b) After the step, the first conductive film is patterned to form the first electrode and the second electrode auxiliary wiring extending in the first direction with the first electrode interposed through the separation region.
  • the invention described in claim 13 includes (a) a step of preparing a substrate, (b) a step of forming a first conductor film on the substrate after the step (a), and (c) the ( b) After the step, by patterning the first conductor film, the first electrode made of the first conductor film and the first wiring layer extending in the first direction through the separation region And (d) after the step (c), a second conductor film having a smaller resistivity than the first conductor film is formed so as to cover the first electrode and the first wiring layer.
  • step (e) after the step (d), patterning the second conductor film to form a second wiring layer extending in the first direction on the first wiring layer, and Forming a second electrode auxiliary wiring composed of one wiring layer and the second wiring layer, and on the first electrode; A step of forming a first electrode auxiliary wiring made of the second conductor film and extending in the first direction; and (f) after the step (e), covering the first electrode auxiliary wiring, A step of forming a first insulating film so as to embed the separation region provided between the first electrode and the second electrode auxiliary wiring; and (g) after the step (f), the first insulating film Forming an opening in the opening and exposing the second electrode auxiliary wiring from the opening; and (h) a partition wall extending in the first direction on the first insulating film after the step (g) And is sandwiched between the light emitting portion and the partition portion in a plan view as viewed from the light emitting portion and the surface of the substrate on which the first electrode is formed, for the second electrode.
  • a step of partitioning a cell region including a conductive portion including an auxiliary wiring and (i) after the step (h), before A step of forming an organic layer including a light-emitting layer on the first electrode of the light-emitting portion excluding the conducting portion in the cell region; and (j) after the step (i), formed in the light-emitting portion.
  • a second electrode is formed over the organic layer, and over the second electrode auxiliary wiring exposed from the opening formed in the conductive portion, and the second electrode auxiliary wiring and the second electrode are formed. And a step of electrically connecting the two.
  • FIG. 1 It is a top view which shows the anode structure of the light-emitting device in related technology.
  • a related art light emitting device it is a top view mainly showing the cathode composition formed on an anode.
  • sectional drawing which shows one cross section of the light-emitting device in related technology.
  • flowchart which shows the flow which manufactures the light-emitting device in related technology.
  • figure which shows the state to which the foreign material adhered after forming an organic layer and before forming a cathode.
  • FIG. 7 is a cross-sectional view taken along line AA in FIG. 6.
  • FIG. 3 is a plan view showing a schematic configuration of the light emitting device in the first embodiment.
  • 3 is a plan view mainly showing an anode configuration of the light-emitting device in Embodiment 1.
  • FIG. 4 is a plan view mainly showing a cathode configuration formed on an anode and an auxiliary wiring in the light-emitting device of Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 1.
  • FIG. It is a figure which shows the structural example of the light emission part using the organic layer comprised from a low molecular material.
  • FIG. 3 is a plan view showing a state in which a cathode is formed in a state where foreign matter adheres so as to straddle adjacent barrier ribs in the light emitting device in the first embodiment. It is sectional drawing cut
  • FIG. 17 is a diagram schematically showing a state in which electrical connection is ensured by an auxiliary wiring in the cross-sectional view taken along line AA in FIG. 16.
  • 3 is a flowchart showing a flow of manufacturing the light emitting device in the first embodiment.
  • 5 is a cross-sectional view showing a manufacturing process of the light-emitting device in Embodiment 1.
  • FIG. 22 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 21.
  • FIG. 23 is a cross-sectional view showing a manufacturing step of the light emitting device following that of FIG. 22;
  • FIG. 24 is a cross-sectional view showing a manufacturing step of the light-emitting device following FIG. 23.
  • FIG. 25 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 24.
  • FIG. 26 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 25.
  • FIG. 27 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 26.
  • FIG. 28 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 27.
  • FIG. 29 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 28.
  • FIG. 30 is a cross-sectional view showing a manufacturing step of the light emitting device following that of FIG.
  • FIG. 29 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 2.
  • FIG. 6 is a flowchart showing a flow of manufacturing the light emitting device in the second embodiment.
  • 11 is a cross-sectional view showing a manufacturing process of the light-emitting device in Embodiment 2.
  • FIG. 34 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 33.
  • FIG. 35 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 34.
  • FIG. 36 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. FIG.
  • FIG. 37 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 36.
  • FIG. 38 is a cross-sectional view showing a manufacturing step of the light-emitting device following
  • FIG. 7 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 3.
  • FIG. 10 is a flowchart showing a flow of manufacturing a light-emitting device according to Embodiment 3.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • Embodiment 1 Below, the related technique relevant to the light-emitting device in this Embodiment 1 is demonstrated first, and the room for the improvement which exists in this related technique is demonstrated after that. Then, the technical idea in the first embodiment, which is devised for the room for improvement existing in the related technology, will be described. Note that in the first embodiment, a so-called bottom emission type light-emitting device that extracts light from the back side (lower surface side) of a substrate having electrodes formed on the front surface (main surface) will be described as an example.
  • FIG. 1 is a plan view showing an anode configuration of a light emitting device LAP in the related art.
  • an anode AE having a solid pattern is formed on a rectangular substrate 1S.
  • the term “on the substrate” here means above the substrate, and includes a case where another layer such as a protective film exists between the substrate and the anode.
  • a plurality of bus electrodes BE are formed on the anode AE.
  • the bus electrode BE formed on the anode AE is formed in a stripe shape. That is, the plurality of bus electrodes BE are arranged at a predetermined interval in the X direction, and each bus electrode BE is formed to extend in the Y direction.
  • the bus electrode BE is electrically connected to the anode AE and is formed to reduce the resistance of the anode AE.
  • FIG. 2 is a plan view mainly showing a cathode configuration formed on the anode AE shown in FIG. 1 in the related art light emitting device LAP.
  • the plurality of partition walls PT are arranged at predetermined intervals in the X direction, and each partition wall PT is formed to extend in the Y direction.
  • the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the partition PT is disposed so as to sandwich the cell region CR, and the bus electrode BE shown in FIG. 1 is disposed in the lower layer overlapping the partition PT in plan view.
  • a cathode CE is formed in the cell region CR defined by the partition walls PT.
  • the cathode CE is separated for each cell region CR. That is, the cathode CE is provided corresponding to each of the plurality of cell regions CR.
  • FIG. 3 is a sectional view showing one section of the light emitting device LAP in the related art.
  • the anode AE is formed on the substrate 1S, and the bus electrode BE is formed in a predetermined region on the anode AE.
  • the substrate 1S is composed of a transparent substrate such as a glass substrate or a plastic substrate, and the anode AE formed on the substrate 1S is also made of, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). It is formed from a representative transparent conductor film.
  • the bus electrode BE is formed of, for example, an aluminum film (Al film).
  • an insulating film IL1 made of, for example, a polyimide resin film is formed so as to cover the bus electrode BE, and a partition wall PT is formed on the insulating film IL1.
  • This partition PT is made of, for example, a photosensitive resin.
  • the bus electrode BE is formed below the partition PT in the partition formation region via the insulating film IL1.
  • a region sandwiched between the partition wall formation regions is a cell region CR.
  • the cell region CR is defined as a region sandwiched between the partition walls PT adjacent to each other.
  • an organic layer OL including a light emitting layer is formed on the anode AE, and a cathode CE is formed on the organic layer OL.
  • the cathode CE is formed of, for example, an aluminum film (Al film) or a silver film (Ag film).
  • the light emitting device LAP in the related art configured as described above, by generating a potential difference between the anode AE and the cathode CE, in the cell region, the anode AE passes through the organic layer OL including the light emitting layer. A current flows through the cathode CE. As a result, light based on electroluminescence (visible light) is emitted from the light emitting layer included in the organic layer OL. Light emitted from the light emitting layer passes through the anode AE that is a transparent electrode and the substrate 1S that is a transparent substrate, and is extracted from the back surface side (lower surface side) of the substrate 1S to the outside of the light emitting device LAP. As described above, the light emitting device LAP in the related art can emit light.
  • transparent used in a transparent substrate or a transparent conductor film means that it has translucency with respect to visible light, for example, it transmits with respect to incident light. It is used in a wide concept including the state where light is generated. That is, the term “transparent” in this specification refers to a state where transmitted light is generated regardless of the amount of transmitted light with respect to incident light. Therefore, there is transmitted light not only in a state where the amount of transmitted light is large, but also in a “semi-transparent” state where the amount of transmitted light with respect to incident light is about half or in a state where the amount of transmitted light is small. The state is included in “transparent” in the present specification.
  • FIG. 4 is a flowchart showing a flow of manufacturing the light emitting device LAP in the related art. Below, based on FIG. 3 and FIG. 4, the manufacturing process of the light-emitting device LAP in related technology is demonstrated.
  • a substrate 1S which is a transparent substrate is prepared (S101). Then, an anode AE made of ITO or IZO is formed on the surface (main surface) of the substrate 1S by using, for example, a sputtering method (S102). Thereafter, a metal film made of, for example, an aluminum film is formed on the anode AE, and the bus electrode BE is formed by using a photolithography technique and an etching technique on the metal film (S103).
  • an insulating film IL1 is formed so as to cover the bus electrode BE (S104). Thereafter, a partition PT is formed on the insulating film IL1 (S105). Subsequently, an organic layer OL including a light emitting layer is formed on the anode AE of the cell region CR partitioned by the partition PT by using, for example, a vapor deposition method (S106). Thereafter, for example, by using a vapor deposition method, a cathode CE made of an aluminum film is formed on the organic layer OL (S107). In this way, the light emitting device LAP in the related art can be manufactured.
  • FIG. 5 is a diagram showing a state in which foreign matter adheres after forming the organic layer OL and before forming the cathode.
  • a conductive film made of, for example, an aluminum film is formed on the organic layer OL. Due to the cleanliness in the processing apparatus at this time, the surface of the substrate 1S is formed.
  • Foreign matter (dust) FB may adhere to the top.
  • the step of forming the cathode since the plurality of partition walls PT are already formed, for example, when the size of the foreign matter FB is larger than the distance between the partition walls PT adjacent to each other, FIG. As shown, the foreign substance FB adheres across the partition walls PT adjacent to each other. For example, since the interval between the adjacent partition walls PT is about 100 ⁇ m to 150 ⁇ m, at least when the size of the foreign material FB is 150 ⁇ m or more, the foreign material FB adheres across the adjacent partition walls PT.
  • FIG. 6 is a plan view showing a state in which the cathode CE is formed in a state where foreign matter adheres across the partition walls PT adjacent to each other.
  • a plurality of partition walls PT are formed at a predetermined interval in the X direction on the substrate 1S, and each partition wall PT extends in the Y direction.
  • a plurality of cell regions are partitioned by the plurality of partition walls PT arranged in this way. For example, attention is paid to a cell region formed near the center of FIG.
  • a gap SP in which the cathode CE is not formed is formed in a partial region of the cell region as shown in FIG. I understand. That is, the gap SP is formed in the lower layer that overlaps with the area where the foreign matter is adhered, as a result of the conductor film constituting the cathode CE not being formed.
  • the cathode CE in the cell region to which foreign matter has adhered, is not formed over the entire cell region, but the cathode CE includes the first cathode portion CEP1 which is a part of the cathode CE, and the cathode It is separated from the second cathode part CEP2 which is another part of CE by the gap SP.
  • the first cathode part CEP1 and the second cathode part CEP2 are electrically separated.
  • the electrically integrated cathode CE is not formed, but the first cathode portion CEP1 and the second cathode portion CEP2 that are electrically separated from each other are formed. It will be. In other words, the cathode CE is disconnected in the cell region to which foreign matter has adhered.
  • FIG. 7 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 7, an anode AE is formed on the substrate 1S, and an organic layer OL including a light emitting layer is formed on the anode AE. Then, the first cathode part CEP1 and the second cathode part CEP2 are formed on the organic layer OL via the gap SP.
  • the related technology has a potential to reduce the reliability of the light emitting device LAP.
  • the cathode when a foreign substance having a size straddling adjacent partition walls PT adheres to the cell region, the cathode is disconnected. Then, due to the disconnection of the cathode, a light emission failure of the light emitting device LAP occurs, and the reliability of the light emitting device LAP is lowered. From this, it can be seen that there is room for improvement in the related art from the viewpoint of improving the reliability of the light emitting device LAP. That is, in the current light emitting device LAP, further improvement in reliability is desired.
  • the next possibility is to develop a technology to compensate for cathode formation defects even if foreign particles of a size straddling adjacent partition walls adhere to the cell region and cause cathode formation defects. To do.
  • a device for improving the reliability of the light emitting device is provided by compensating for the formation failure of the cathode to prevent the light emitting failure of the light emitting device. Below, the technical idea in this Embodiment 1 which gave this device is demonstrated.
  • ⁇ Configuration of Light-Emitting Device in Embodiment 1> a schematic configuration of the light emitting device LA1 according to the first embodiment will be described.
  • the light emitting device LA1 according to the first embodiment can be applied to the case where light of various colors is emitted.
  • a case where a configuration for irradiating white light is employed will be described.
  • FIG. 8 is a plan view showing a schematic configuration of the light emitting device LA1 according to the first embodiment.
  • the light emitting device LA1 in the first embodiment includes, for example, a rectangular substrate 1S, and a plurality of cell regions CR are formed on the main surface (surface, upper surface) of the substrate 1S.
  • partition walls PT are arranged on the main surface of the substrate 1S so as to be arranged at predetermined intervals in the X direction, and each partition wall PT extends in the Y direction.
  • a plurality of cell regions CR are partitioned by the partition walls PT arranged in this manner. That is, as shown in FIG. 8, a region sandwiched between adjacent partition walls PT is a cell region CR. Therefore, in the light emitting device LA1 in the first embodiment, the cell regions extending in the Y direction are arranged so as to be aligned in the X direction.
  • the cell regions CR to be irradiated are periodically arranged.
  • white light can be irradiated. That is, if the physical arrangement of the cell regions CR that emit RGB light is sufficiently fine and the observer is sufficiently away from the light emitting device LA1, the RGB light beams that are incident on the human eye. Is recognized as white light.
  • the cell regions CR that respectively emit RGB are periodically arranged.
  • this configuration for example, by adjusting the respective light amounts of RGB, it is possible to irradiate not only white light but also light of various colors.
  • the configuration of the light emitting device LA1 in the first embodiment is not limited to the configuration shown in FIG. 8, and white light can be irradiated by other methods.
  • white light may be obtained by periodically arranging one color of RGB and a color (cyan, yellow, magenta: CYM) complementary to the color.
  • a configuration for obtaining white light using blue (B) and its complementary color yellow (Y) is highly versatile.
  • the organic EL element is greatly different from the inorganic LED in that RGB light emitting layers can be laminated with a thin film of the order of nm.
  • the organic EL element can also obtain white light by single current excitation, unlike the inorganic LED that can obtain only a single color due to the structure of the device.
  • the light emitting layer sandwiched between the anode and the cathode has an RGB stacked structure, whereby white light can be emitted for each cell region.
  • white light can be obtained from a single cell region by providing a light emitting layer emitting each color of RGB between the anode and the cathode in the process of forming the element. Therefore, in the first embodiment, for example, white light can be emitted from each of the plurality of cell regions.
  • FIG. 9 is a plan view mainly showing the anode configuration of the light emitting device LA1 in the first embodiment.
  • an anode AE is formed on a rectangular substrate 1S.
  • the term “on the substrate” as used herein means above the substrate, and includes a case where another layer such as a protective film exists between the substrate and the substrate.
  • the plurality of anodes AE are arranged in a predetermined interval in the X direction, and each of the plurality of anodes AE is arranged to extend in the Y direction. This is different from the anode AE (solid pattern) shown in the related art shown in FIG.
  • the auxiliary wiring AWL (second electrode auxiliary wiring) is sandwiched between the anodes AE adjacent to each other in a plan view as viewed from the surface of the substrate 1S on which the first electrode is formed. ) Is formed.
  • the auxiliary wiring AWL is provided.
  • the auxiliary wiring AWL is provided through a separation region (space region) from the anode AE, and is arranged side by side at a predetermined interval in the X direction. Further, each auxiliary wiring AWL is configured to extend in the Y direction, like the anode AE.
  • the auxiliary wiring AWL is provided via the separation area from the anode AE, the anode AE is formed in a stripe shape.
  • a bus electrode BE (first electrode auxiliary wiring) is formed on each of the plurality of anodes AE.
  • the bus electrode BE formed on each of the plurality of anodes AE is formed in a stripe shape. That is, the plurality of bus electrodes BE are arranged at a predetermined interval in the X direction, and each bus electrode BE is formed to extend in the Y direction.
  • the bus electrode BE is electrically connected to the anode AE and is formed to reduce the resistance of the anode AE.
  • FIG. 10 is a plan view mainly showing a cathode configuration formed on the anode AE and the auxiliary wiring AWL shown in FIG. 9 in the light emitting device LA1 of the first embodiment.
  • a plurality of partition walls PT are arranged at predetermined intervals in the X direction, and each partition wall PT is formed to extend in the Y direction.
  • the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the partition PT is disposed so as to sandwich the cell region CR, and the bus electrode BE shown in FIG. 9 is disposed in a lower layer overlapping the partition PT in plan view.
  • anode AE and the auxiliary wiring AWL shown in FIG. 9 are arranged in a lower layer overlapping the cell region CR in plan view.
  • a cathode CE is formed in the cell region CR defined by the partition walls PT.
  • the cathode CE is separated for each cell region CR. That is, the cathode CE is provided corresponding to each of the plurality of cell regions CR.
  • the auxiliary wiring AWL is provided, and both the anode AE and the cathode CE are separated for each cell region CR.
  • the separated anodes AE and cathodes CE are arranged at predetermined intervals in the X direction, and the individual anodes AE and individual cathodes CE are configured to extend in the Y direction.
  • FIG. 11 is a diagram illustrating an example of a cross-sectional configuration of the light emitting device LA1 according to the first embodiment. In FIG. 11, an area corresponding to one cell area CR is mainly illustrated.
  • the light emitting device LA1 in the first embodiment has a substrate 1S.
  • the type and structure of the substrate 1S are not particularly limited, and a flexible substrate, a hard material, or the like can be used depending on the application.
  • examples of the material of the substrate 1S include glass, quartz, polyethylene, polypropylene, polyethylene terephthalate, polymethacrylate, polymethyl methacrylate, polymethyl acrylate, polyester, polycarbonate, and the like.
  • the anode AE and the auxiliary wiring AWL are formed on the main surface (surface, upper surface) of the substrate 1S described above.
  • a separation region space region is provided between the anode AE and the auxiliary wiring AWL, and the anode AE and the auxiliary wiring AWL are electrically separated.
  • main surface front surface, upper surface
  • back surface lower surface
  • a bus electrode BE is formed on the anode AE, and the bus electrode BE and the anode AE are electrically connected.
  • the reason why the bus electrode BE is provided on the anode AE will be described.
  • the anode AE needs to be formed of a transparent electrode such as ITO or IZO.
  • a transparent electrode made of ITO or IZO has a characteristic that the resistivity is relatively high. For this reason, for example, even if a positive voltage is supplied to the anode AE, there is a possibility that a uniform positive voltage cannot be supplied to the entire area of the anode AE.
  • the voltage drop becomes significant due to the relatively high resistivity of the transparent electrode, and the applied voltage decreases as the distance from the power supply region increases.
  • the voltage applied to the cell region CR changes for each local region, and the light emission intensity in the cell region CR changes depending on the location. This increases the possibility of uneven brightness in the light emitting device.
  • the bus electrode BE is formed on the anode AE.
  • the bus electrode BE is made of a metal film such as an aluminum film having a resistivity lower than that of a transparent electrode such as ITO or IZO, and extends in the Y direction that is the extending direction of the anode AE. (See FIG. 9).
  • the resistivity of the electrode which integrated anode AE and bus electrode BE can be reduced.
  • the voltage drop can be reduced even in a region away from the power supply region, and the uniformity of the positive voltage applied to the entire region of the integrated electrode can be improved.
  • a metal film typified by an aluminum film having a lower resistivity than the anode AE is used as the bus electrode BE.
  • this metal film is not transparent, it cannot be formed on the cell region CR. For this reason, it is provided in the lower layer of the partition PT which divides the cell region CR. As a result, the resistivity of the electrode in which the anode AE and the bus electrode BE are integrated can be reduced without blocking the light emission of the cell region CR.
  • an insulating film IL1 made of, for example, a polyimide resin film is formed so as to cover the bus electrode BE and the auxiliary wiring AWL.
  • an opening OP1 reaching the surface of the auxiliary wiring AWL is formed, and a partition PT is formed on the insulating film IL1 covering the bus electrode BE.
  • This partition PT is made of, for example, a photosensitive resin.
  • the partition PT has a shape such that the width of the bottom of the partition PT is smaller than the width of the top of the partition PT.
  • the cross-sectional shape of the partition PT perpendicular to the Y direction (first direction) can be said to be an inversely tapered shape.
  • the bus electrode BE is formed below the partition PT in the partition formation region via the insulating film IL1.
  • a region sandwiched between the partition wall formation regions is a cell region CR.
  • the cell region CR is defined as a region sandwiched between the partition walls PT adjacent to each other.
  • the cell region CR includes the light emitting part LP and the conduction part CP. Specifically, most of the cell region CR is the light emitting portion LP, and a region sandwiched between the light emitting portion LP and the partition wall PT in plan view is defined as the conduction portion CP.
  • the width of the cell region CR partitioned by the partition walls PT adjacent to each other is 100 ⁇ m to 150 ⁇ m, and the width of the conduction part CP is about 30 ⁇ m, for example.
  • an organic layer OL including a light emitting layer is formed on the anode AE, and a cathode CE made of, for example, an aluminum film (Al film) or a silver film (Ag film) is formed on the organic layer OL. Is formed.
  • an auxiliary wiring AWL is formed on the substrate 1S, and an insulating film IL1 is formed so as to cover the auxiliary wiring AWL.
  • an opening OP1 is formed in the insulating film IL1, and the opening OP1 is formed so as to reach the surface of the auxiliary wiring AWL.
  • the organic layer OL including the light emitting layer is not formed, and the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1. That is, in the first embodiment, the cathode CE is formed from the light emitting part LP to the conduction part CP.
  • the cathode CE is formed so as to straddle the auxiliary wiring AWL formed on the conduction portion CP from the organic layer OL formed in the light emitting portion LP.
  • the cathode CE is formed on the insulating film IL1, and the cathode CE is formed so as to fill the opening OP1 formed in the insulating film IL1.
  • the cathode CE and the auxiliary wiring AWL are electrically connected. That is, in the light emitting device LA1 according to Embodiment 1, the cathode CE and the auxiliary wiring AWL are electrically connected.
  • the light emitting device LA1 is configured as described above, and a more detailed configuration of the cell region CR will be described below.
  • Each of the plurality of cell regions CR provided in the light emitting device LA1 in the first embodiment is characterized in that it includes a light emitting part LP and a conduction part CP.
  • a configuration example of the light emitting unit LP formed in the cell region CR will be described, then a light emission mechanism in the light emitting unit LP will be described, and then the conduction unit CP which is a feature of the first embodiment. Will be described.
  • the material of the organic layer OL that is a component of the light emitting unit LP shown in FIG. 11 is roughly classified into a low molecular material and a high molecular material. Therefore, a configuration example of the light emitting unit LP using the organic layer OL made of a low molecular material and a configuration example of the light emitting unit LP using the organic layer OL made of a polymer material will be described.
  • FIG. 12 is a diagram showing a configuration example of the light emitting unit LP using the organic layer OL composed of a low molecular material.
  • an anode AE hole injection electrode
  • An organic layer OL is formed on the anode AE, and a cathode CE is formed on the organic layer OL.
  • a cathode CE is formed on the organic layer OL.
  • the organic layer OL includes a hole injection layer HIL formed on the anode AE, a hole transport layer HTL formed on the hole injection layer HIL, It has a light emitting layer LL formed on the transport layer HTL, an electron transport layer ETL formed on the light emitting layer LL, and an electron injection layer EIL formed on the electron transport layer ETL.
  • the hole injection layer HIL is provided in order to improve the hole injection efficiency from the anode AE.
  • an organic compound has a highest occupied molecular orbital (HOMO (highest occupied molecular orbital)) and a lowest unoccupied molecular orbital (LUMO (lowest unoccupied molecular orbital)).
  • HOMO is the orbit with the highest energy among the orbits filled with electrons, and the constraint from the nucleus is the smallest. From this, it can be said that HOMO is an orbit where electrons move most easily. For example, at the interface between the anode AE and the hole transport layer HTL, electrons move from the HOMO of the hole transport layer HTL to the anode AE side.
  • the hole transport layer HTL is oxidized by supplying electrons to the anode AE.
  • holes are injected from the anode AE into the hole transport layer HTL. This movement of electrons becomes easier as the work function of the anode AE and the HOMO level of the hole transport layer HTL are closer.
  • the hole transport layer HTL mainly aims to prevent holes from moving smoothly into the light emitting layer LL and to prevent electrons injected into the light emitting layer LL from moving into the hole transport layer HTL. Selected as. Therefore, a material whose HOMO level of the hole transport layer HTL is close to the work function of the anode AE is not necessarily selected. For this reason, a hole injection layer HIL having a HOMO level close to the work function of the anode AE is inserted. Thereby, the hole injection efficiency from anode AE can be improved. That is, the hole injection layer HIL is provided in order to improve the hole injection efficiency from the anode AE.
  • the hole transport layer HTL has the purpose of allowing holes to move smoothly to the light emitting layer LL and that the electrons injected into the light emitting layer LL move into the hole transport layer HTL. Is provided for the purpose of preventing. Therefore, the hole transport layer HTL is made of a material having a high hole mobility.
  • the light emitting layer LL has a function of emitting light when holes that have moved through the hole transport layer HTL and electrons that have moved through the electron transport layer ETL are recombined. For this reason, a material with high quantum efficiency of light emission is used for the light emitting layer LL.
  • the electron injection layer EIL is provided in order to improve the efficiency of electron injection from the cathode CE (electron injection electrode).
  • LUMO present in an organic compound is an orbit having the lowest energy among empty orbits that are not filled with electrons.
  • the cathode CE and the electron transport layer ETL electrons move from the cathode CE to the LUMO of the electron transport layer ETL.
  • the electron transport layer ETL is reduced by the electrons supplied from the cathode CE. This movement of electrons becomes easier as the work function of the cathode CE and the LUMO level of the electron transport layer ETL are closer.
  • the electron transport layer ETL is selected mainly for the purpose of preventing electrons from moving smoothly into the light emitting layer LL and preventing holes injected into the light emitting layer LL from moving into the electron transport layer ETL. Is done. Therefore, a material whose LUMO level of the electron transport layer ETL is close to the work function of the cathode CE is not necessarily selected. For this reason, an electron injection layer EIL having a LUMO level close to the work function of the cathode CE is inserted. Thereby, the electron injection efficiency from the cathode CE can be improved. That is, the electron injection layer EIL is provided in order to improve the injection efficiency of electrons from the cathode CE.
  • the electron transport layer ETL is used for the purpose of allowing electrons to move smoothly to the light emitting layer LL and for the purpose of preventing holes injected into the light emitting layer LL from moving into the electron transport layer ETL. Is provided. Therefore, the electron transport layer ETL is made of a material having a high electron mobility.
  • the light emitting portion LP using the organic layer OL composed of the low molecular material is configured.
  • a configuration example of the light emitting unit LP using the organic layer OL made of a polymer material will be described.
  • FIG. 13 is a diagram illustrating a configuration example of the light emitting unit LP using the organic layer OL formed of a polymer material.
  • an anode AE is formed on a substrate 1S.
  • An organic layer OL is formed on the anode AE, and a cathode CE is formed on the organic layer OL.
  • the organic layer OL includes a hole injection layer HIL formed on the anode AE, a hole transport layer HTL formed on the hole injection layer HIL, and a hole.
  • a light emitting layer LL formed on the transport layer HTL.
  • the light emitting part LP using the organic layer OL made of a low molecular material has a complex multilayer structure, and the vacuum evaporation method is mainly used for manufacturing.
  • a typical light emitting portion LP using an organic layer OL made of a polymer material has a simpler structure than the case shown in FIG.
  • a coating method or a printing method is used. Therefore, the organic layer OL composed of a high molecular weight material has a simpler structure than the organic layer OL composed of a low molecular weight material, and the coating method and the printing method can be used.
  • the material of the light emitting layer LL include a dye-based light-emitting material, a metal complex-based light-emitting material, and a polymer-based light-emitting material.
  • the dye-based light emitting material for example, cyclopentadiene derivative, tetraphenylbutadiene derivative, triphenylamine derivative, oxadiazole derivative, pyrazoloquinoline derivative, distyrylbenzene derivative, distyrylarylene derivative, silole derivative Thiophene ring compound, pyridine ring compound, perinone derivative, perylene derivative, oligothiophene derivative, trifumanylamine derivative, oxadiazole dimer, pyrazoline dimer, and the like.
  • the metal complex light emitting material examples include an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazole zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, a porphyrin zinc complex, and a europium complex.
  • polymer light-emitting material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinyl carbazole, polyfluorenone derivatives, polyfluorene derivatives, polyquinoxaline derivatives, and combinations thereof.
  • a polymer etc. can be mentioned.
  • the hole injection layer HIL for example, in addition to the compounds exemplified as the light emitting material of the light emitting layer LL, phenylamine, starburst amine, phthalocyanine, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, etc. And derivatives of oxides, amorphous carbon, polyaniline, polythiophene, and the like.
  • phthalocyanine As a material of the hole transport layer HTL, phthalocyanine, naphthalocyanine, porphyrin, oxadiazole, triphenylamine, triazole, imidazole, imidazolone, pyrazoline, tetrahydroimidazole, hydrazone, stilbene, pentacene, polythiophene, butadiene, or these Derivatives and the like can be mentioned.
  • Materials for the electron transport layer HTL include anthraquinodimethane, fluorenylidenemethane, tetracyanoethylene, fluorenone, diphenoquinone oxadiazole, anthrone, thiopyran dioxide, diphenoquinone, benzoquinone, malononitrile, niditrobenzene, nitro Anthraquinone, maleic anhydride, perylene tetracarboxylic acid, or derivatives thereof can be exemplified.
  • the material of the electron injection layer EIL in addition to the compounds exemplified as the light emitting material of the light emitting layer LL, aluminum, lithium fluoride, strontium, magnesium oxide, magnesium fluoride, strontium fluoride, calcium fluoride, barium fluoride, and oxide
  • examples include aluminum, strontium oxide, calcium, sodium polymethylmethacrylate polystyrene sulfonate, lithium, cesium, cesium fluoride, and the like, alkali metals, alkali metal halides, alkali metal organic complexes, and the like.
  • FIG. 14 is a schematic diagram showing how electrons injected from the cathode into the organic layer and holes injected from the anode into the organic layer move in the counter electrode direction.
  • a and B represent molecules constituting the organic layer.
  • holes injected from the anode into the organic layer and electrons injected from the cathode into the organic layer move toward the counter electrode by using an electric field gradient as a driving force. As shown in FIG. 14, it can be considered chemically about the movement of. That is, first, at the anode interface, the molecule (B) is oxidized (loses electrons) and becomes a radical cation.
  • Molecules (B + ) with a few electrons correspond to holes in the inorganic semiconductor and become carriers.
  • the molecule (A) is reduced (receives electrons) and becomes a radical anion.
  • the molecule (A ⁇ ) in which one electron is added becomes an electron carrier.
  • excitons are generated by recombination of holes and electrons in the light emitting layer.
  • excitons are in a state where holes (radical cation) and electrons (radical anion) are bound to each other by Coulomb force, but the same as the one-electron excited state by photoexcitation due to the transfer of charge to one side. It becomes a state. The difference in energy when this exciton returns to the ground state is emitted as light.
  • the light emission part LP emits light by a mechanism in which energy is released by light when the exciton returns to the ground state.
  • FIG. 15 is a diagram for explaining the light emission mechanism in the organic layer.
  • the transport state of holes can be said to be a process in which molecules constituting the hole transport layer are oxidized to form radical cations and move.
  • the electron transport state is a process in which molecules constituting the electron transport layer are reduced to form radical anions and move.
  • the conduction part CP which is a feature of the first embodiment, will be described.
  • the conduction portion CP is provided with an auxiliary wiring AWL, and the auxiliary wiring AWL is connected to the anode AE formed on the substrate 1 ⁇ / b> S via a separation region (space region).
  • the auxiliary wiring AWL extends in the Y direction (first direction).
  • an insulating film IL1 is formed so as to cover the auxiliary wiring AWL, and this insulating film IL1 is formed so as to embed a separation region formed between the auxiliary wiring AWL and the anode AE.
  • the electrical isolation between the auxiliary wiring AWL and the anode AE can be reliably performed by the insulating film IL1 filling the separation region.
  • an opening OP1 is formed in the insulating film IL1, and the auxiliary wiring AWL is exposed from the bottom of the opening OP1.
  • the cathode CE is formed so as to fill the opening OP1, and the cathode CE and the auxiliary wiring AWL are electrically connected.
  • the cathode CE and the auxiliary wiring AWL are electrically connected. Therefore, even if a formation failure occurs in the cathode CE, the disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the first embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA1 in the first embodiment, it is possible to prevent the light emitting failure of the light emitting device LA1 and improve the reliability of the light emitting device LA1.
  • FIG. 16 is a plan view showing a state in which the cathode CE is formed in the light emitting device LA1 according to the first embodiment in a state where foreign matters are attached so as to straddle the adjacent partition walls PT.
  • a plurality of partition walls PT are formed at a predetermined interval in the X direction on the substrate 1S, and each partition wall PT extends in the Y direction.
  • the plurality of cell regions CR are partitioned by the plurality of partition walls PT arranged in this manner.
  • a gap SP in which the cathode CE is not formed is formed in a partial region of the cell region CR. I understand that That is, the gap SP is formed in the lower layer that overlaps with the area where the foreign matter is adhered, as a result of the conductor film constituting the cathode CE not being formed.
  • the cathode CE in the cell region CR to which foreign matter is attached, the cathode CE is not formed over the entire cell region CR, but the cathode CE is connected to the first cathode portion CEP1 which is a part of the cathode CE.
  • the second cathode part CEP2 which is another part of the cathode CE is separated by the gap SP. This seems that the first cathode part CEP1 and the second cathode part CEP2 are electrically separated at a glance.
  • the cell region CR includes not only the light emitting portion LP but also the conduction portion CP. Therefore, as can be imagined from FIG. 16, it can be seen that the first cathode part CEP1 and the second cathode part CEP2 are electrically connected by the auxiliary wiring AWL exposed from the gap SP. That is, in the first embodiment, as a result of forming the cathode CE in a state in which foreign matter adheres across the partition walls PT adjacent to each other, even if a formation failure occurs in the cathode CE, the first cathode portion CEP1 And the second cathode portion CEP2 are electrically connected through the auxiliary wiring AWL.
  • the disconnection of the cathode CE can be prevented and the light emission failure resulting from the disconnection of the cathode CE can be suppressed.
  • the reliability of the light emitting device LA1 can be dramatically improved.
  • FIG. 17 is a cross-sectional view taken along line AA in FIG. That is, FIG. 17 is a cross-sectional view corresponding to the light emitting portion LP of the cell region CR.
  • FIG. 17 it can be seen that the anode AE is formed on the substrate 1S, and the organic layer OL is formed on the anode AE. In a normal state, a cathode having no defective formation is formed on the organic layer OL.
  • FIG. 17 is a cross-sectional view taken along line AA in FIG. That is, FIG. 17 is a cross-sectional view corresponding to the light emitting portion LP of the cell region CR.
  • the first cathode part CEP1 and the second cathode part CEP2 are formed on the organic layer OL with a gap SP therebetween.
  • the first cathode part CEP1 and the second cathode part CEP2 seem to be electrically separated. That is, in the light emitting part LP of the cell region CR, the first cathode part CEP1 and the second cathode part CEP2 appear to be electrically separated.
  • FIG. 18 is a cross-sectional view taken along line BB in FIG. That is, FIG. 18 is a cross-sectional view corresponding to the conduction portion CP of the cell region CR.
  • the auxiliary wiring AWL is formed on the substrate 1S, and the first cathode portion CEP1 and the second cathode portion CEP2 are formed on the auxiliary wiring AWL via the gap SP. It will be.
  • the first cathode portion CEP1 and the auxiliary wiring AWL are electrically connected, and the second cathode portion CEP2 is also electrically connected to the auxiliary wiring AWL.
  • the first cathode part CEP1 and the second cathode part CEP2 are electrically connected via the auxiliary wiring AWL. Therefore, although it seems that the first cathode part CEP1 and the second cathode part CEP2 formed in the cell region CR are disconnected in the light emitting part LP, the electrical connection is actually made in the conduction part CP. It can be seen that is secured.
  • FIG. 19 is a diagram schematically showing a state in which electrical connection is secured by the auxiliary wiring AWL in the cross-sectional view taken along the line AA in FIG.
  • the first cathode portion CEP1 is electrically connected to the cathode feeding region. Therefore, the cathode voltage is supplied to the first cathode part CEP1.
  • the cathode voltage is also supplied to the second cathode part CEP2. .
  • the light emitting device LA1 in the first embodiment it is possible to sufficiently suppress the light emission failure caused by the adhesion of the foreign matter. This is because, according to the first embodiment, even if the formation failure of the cathode CE due to adhesion of foreign matter occurs, the effect of the light emitting device LA1 based on the formation failure of the cathode CE due to the filling effect by the auxiliary wiring AWL. It means that light emission defects can be suppressed. Thereby, according to light-emitting device LA1 in this Embodiment 1, reliability can be improved significantly.
  • the feature of the first embodiment also exists in that the auxiliary wiring AWL is formed in the same layer as the anode AE, and that the formation material of the auxiliary wiring AWL and the formation material of the anode AE are the same.
  • This advantage is mainly reflected in that the manufacturing process of the light emitting device LA1 can be simplified and the manufacturing cost of the light emitting device LA1 can be reduced. Therefore, these advantages will be described in a method for manufacturing the light emitting device LA1 described later.
  • the light emitting device LA1 in the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings. Specifically, first, the outline of the manufacturing process of the light emitting device LA1 will be described using the flowchart shown in FIG. 20, and then the light emitting device LA1 according to the first embodiment will be described with reference to FIGS. The manufacturing process will be described.
  • FIG. 20 is a flowchart showing a flow of manufacturing the light emitting device LA1 according to the first embodiment.
  • a substrate transparent to visible light typified by a glass substrate or a plastic substrate is prepared (S201).
  • a first conductor film made of, for example, ITO or IZO is formed on the main surface (element formation surface) of the substrate (S202).
  • the first conductor film is patterned by using a photolithography technique and an etching technique (S203). Thereby, the anode and auxiliary wiring which consist of a 1st conductor film can be formed.
  • a second conductor film having a resistivity lower than that of the first conductor film is formed on the substrate on which the anode and the auxiliary wiring are formed (S204).
  • the second conductor film can be formed from, for example, a metal film typified by an aluminum film.
  • the second conductor film is patterned by using a photolithography technique and an etching technique (S205). Thereby, the bus electrode made of the second conductor film can be formed on the anode.
  • an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the bus electrode is formed (S206). Then, an opening is formed in the insulating film by using a photolithography technique and an etching technique (S207). The opening is formed so as to overlap with the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring is exposed at the bottom of the opening.
  • a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S208).
  • a cell region sandwiched between adjacent partition walls is partitioned.
  • the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view.
  • This conduction part includes auxiliary wiring.
  • an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum deposition method using a mask, a coating method, a printing method, or the like (S209).
  • a cathode made of, for example, an aluminum film or a silver film is formed from the light emitting portion in the cell region to the conducting portion (S210).
  • the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion.
  • the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening.
  • a sealing process is implemented after this process in order to protect an organic EL element from air
  • the light-emitting device according to Embodiment 1 can be manufactured.
  • a substrate 1S transparent to visible light is prepared.
  • a first conductor film CF1 is formed on the main surface (element formation surface) of the substrate 1S.
  • the first conductor film CF1 is formed of a transparent film typified by ITO or IZO, for example, and can be formed by using, for example, a sputtering method.
  • the first conductor film CF1 is patterned by using a photolithography technique and an etching technique.
  • the anode AE made of the first conductor film CF1 and the auxiliary wiring AWL made of the first conductor film CF1 can be formed.
  • the anode AE and the auxiliary wiring AWL are formed so as to be separated through a separation region.
  • the anode AE and the auxiliary wiring AWL are electrically separated.
  • the anode AE and the auxiliary wiring AWL are formed by patterning the common first conductor film CF1.
  • the auxiliary wiring AWL can be formed using the process of forming the anode AE without adding the process of forming the auxiliary wiring AWL independently.
  • Embodiment 1 since the anode AE and the auxiliary wiring AWL are formed in the same process, the anode AE and the auxiliary wiring AWL are inevitably formed in the same layer, and the anode AE and the auxiliary wiring are inevitably formed.
  • the wiring AWL is formed from the same material (first conductor film CF1).
  • the second conductor film CF2 is formed on the substrate 1S on which the anode AE and the auxiliary wiring AWL are formed.
  • the second conductor film CF2 is formed from a film having a lower resistivity than the first conductor film CF1.
  • the second conductor film CF2 is formed of a metal film typified by an aluminum film, and can be formed by using, for example, a sputtering method.
  • the second conductor film CF2 is patterned by using a photolithography technique and an etching technique.
  • the bus electrode BE made of the second conductor film CF2 can be formed on the anode AE.
  • the bus electrode BE is electrically connected to the anode AE formed in the lower layer, and has a function of reducing the resistivity of the electrode composed of the anode AE and the bus electrode BE.
  • an insulating film IL1 made of, for example, a polyimide resin film is formed on the substrate 1S on which the bus electrode BE is formed.
  • the insulating film IL1 is formed so as to embed a separation region provided between the anode AE and the auxiliary wiring AWL.
  • the insulating film IL1 is patterned to form an opening OP1 whose bottom reaches the auxiliary wiring AWL. As a result, the surface of the auxiliary wiring AWL is exposed. At this time, as shown in FIG. 27, the insulating film IL1 is patterned so that a partial region on the anode AE where the bus electrode BE is not formed is also exposed from the insulating film IL1.
  • the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the region sandwiched between the partition walls PT adjacent to each other is the cell region CR.
  • the light emitting portion LP and the conduction portion CP sandwiched between the light emitting portion LP and the partition wall PT in plan view are formed.
  • the auxiliary wiring AWL is formed in the conduction portion CP.
  • an organic layer OL including a light emitting layer is formed on the anode AE formed in the light emitting portion LP in the cell region CR.
  • the organic layer OL when the organic layer OL is composed of a low molecular material, the organic layer OL can be formed by a vacuum vapor deposition method using a mask.
  • the organic layer OL when the organic layer OL is composed of a polymer material, it can be formed by using a coating method or a printing method.
  • the organic layer OL is not formed over the entire cell region CR, but the organic layer OL is formed in the light emitting portion LP in the cell region CR. In other words, the organic layer OL is not formed in the conduction part CP in the cell region CR. As a result, in the conduction part CP, the organic layer OL is not formed on the auxiliary wiring AWL and in the opening OP1.
  • a cathode CE is formed from the light emitting portion LP in the cell region CR to the conducting portion CP.
  • the cathode CE is formed of, for example, an aluminum film or a silver film, and can be formed by, for example, a vapor deposition method.
  • the damage given to the organic layer OL can be reduced by using a vapor deposition method as a method of forming the cathode CE.
  • the partition PT has an inversely tapered shape, the cathode CE is not formed across the plurality of cell regions CR, and the cathode CE separated for each cell region CR is automatically formed. Can do.
  • the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1 formed in the conducting portion CP from the organic layer OL formed in the light emitting portion LP.
  • the cathode CE is filled in the opening OP1, the cathode CE is electrically connected to the auxiliary wiring AWL exposed from the bottom of the opening OP1.
  • the light emitting device LA1 according to Embodiment 1 can be manufactured.
  • the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the first embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA1 in the first embodiment, it is possible to prevent the light emitting failure of the light emitting device LA1 and improve the reliability of the light emitting device LA1.
  • the anode AE and the auxiliary wiring AWL are formed by patterning the common first conductor film CF1.
  • the auxiliary wiring AWL can be formed using the process of forming the anode AE without adding the process of forming the auxiliary wiring AWL independently.
  • the anode AE and the auxiliary wiring AWL are formed in the same process, the anode AE and the auxiliary wiring AWL are inevitably formed in the same layer.
  • the anode AE and the auxiliary wiring AWL are formed from the same material (first conductor film CF1).
  • FIG. 31 is a sectional view showing a section of the light emitting device LA2 in the second embodiment.
  • the light emitting device LA2 in the second embodiment is characterized in that the auxiliary wiring AWL formed in the conduction portion CP in the cell region CR is a stacked layer of the first wiring layer FWL and the second wiring layer SWL.
  • the film is formed from a film.
  • the first wiring layer FWL is formed in the same layer as the anode AE formed on the substrate 1S and is made of the same material. Therefore, the first wiring layer FWL is also made of a transparent material such as ITO or IZO, for example, like the anode AE.
  • the second wiring layer SWL is formed in the same layer as the bus electrode BE formed on the anode AE and is made of the same material. Therefore, the second wiring layer SWL is made of, for example, a metal film typified by an aluminum film, like the bus electrode BE.
  • the resistivity of the bus electrode BE is smaller than the resistivity of the anode AE
  • the resistivity of the second wiring layer SWL is also smaller than the resistivity of the first wiring layer FWL.
  • the resistivity can be reduced as compared with the auxiliary wiring AWL in the first embodiment which is made of the same material as the anode AE. That is, according to the second embodiment, as a result of forming the first wiring layer FWL and the second wiring layer FWL having a lower resistivity than the first wiring layer FWL, the auxiliary wiring AWL The resistivity can be reduced.
  • the resistivity of the auxiliary wiring AWL connecting the separated first cathode portion CEP1 and second cathode portion CEP2 is reduced in the cathode in which the formation failure has occurred. For this reason, the connection resistance between 1st cathode part CEP1 and 2nd cathode part CEP2 can be reduced. As a result, it is possible to suppress the occurrence of a potential difference between the first cathode part CEP1 and the second cathode part CEP2 due to the resistance component existing in the auxiliary wiring AWL.
  • the auxiliary wiring AWL that electrically connects the separated first cathode portion CEP1 and second cathode portion CEP2 even when the formation failure occurs in the cathode.
  • the resistivity can be lowered.
  • the uniformity of the potential applied to the first cathode part CEP1 and the second cathode part CEP2 can be improved.
  • the difference in the emitted light intensity in 1st cathode part CEP1 and 2nd cathode part CEP2 can be made small.
  • the auxiliary wiring AWL in the second embodiment since the resistivity of the auxiliary wiring AWL can be reduced, the wiring width is reduced even if the wiring width of the auxiliary wiring AWL is reduced. As a result, the increase in resistance of the auxiliary wiring AWL can be mitigated.
  • the wiring width (width in the X direction) of the auxiliary wiring AWL can be reduced without causing a significant increase in resistance of the auxiliary wiring AWL.
  • the light emitting device LA2 in the second embodiment it is possible to reduce the occupied area of the conduction part CP in the cell region CR. In other words, the area occupied by the light emitting portion LP in the cell region CR can be increased. As a result, according to the second embodiment, it is possible to improve the ratio (aperture ratio) of the area effective for light emission in the entire cell region CR.
  • the same effect as in the first embodiment can be obtained. That is, also in the second embodiment, the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the second embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA2 in the present second embodiment, it is possible to prevent the light emitting failure of the light emitting device LA2 and improve the reliability of the light emitting device LA2.
  • the light emitting device LA2 according to the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings. Specifically, first, an outline of the manufacturing process of the light emitting device LA2 will be described using the flowchart shown in FIG. 32, and then the light emitting device LA2 according to the second embodiment will be described with reference to FIGS. The manufacturing process will be described.
  • a substrate transparent to visible light represented by a glass substrate or a plastic substrate is prepared (S301).
  • a first conductor film made of, for example, ITO or IZO is formed on the main surface (element formation surface) of the substrate (S302).
  • the first conductor film is patterned by using a photolithography technique and an etching technique (S303). Thereby, the anode and the first wiring layer made of the first conductor film can be formed.
  • a second conductor film having a resistivity lower than that of the first conductor film is formed on the substrate on which the anode and the first wiring layer are formed (S304).
  • the second conductor film can be formed from, for example, a metal film typified by an aluminum film.
  • the second conductor film is patterned by using a photolithography technique and an etching technique (S305). Thereby, the bus electrode made of the second conductor film can be formed on the anode, and the second wiring layer made of the second conductor film can be formed on the first conductor film. Thereby, an auxiliary wiring composed of a laminated film of the first wiring layer and the second wiring layer can be formed.
  • an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the bus electrode and the second wiring layer are formed (S306).
  • an opening is formed in the insulating film by using a photolithography technique and an etching technique (S307). The opening is formed so as to overlap the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring (the surface of the second wiring layer) is exposed at the bottom of the opening.
  • a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S308).
  • a cell region sandwiched between adjacent partition walls is partitioned.
  • the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view.
  • This conduction part includes auxiliary wiring.
  • an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum deposition method using a mask, a coating method, a printing method, or the like (S309).
  • a cathode made of, for example, an aluminum film or a silver film is formed from the light emitting portion to the conducting portion in the cell region (S310).
  • the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion.
  • the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening.
  • a sealing process is implemented after this process in order to protect an organic EL element from air
  • the light-emitting device in Embodiment 2 can be manufactured.
  • FIGS. 21 to 24 are the same as those in the first embodiment.
  • the auxiliary wiring AWL shown in FIGS. 23 and 24 is the first wiring layer FWL in the second embodiment.
  • the second conductor film CF2 is patterned by using a photolithography technique and an etching technique.
  • the bus electrode BE made of the second conductor film CF2 is formed on the anode AE
  • the second wiring layer SWL made of the second conductor film CF2 is formed on the first wiring layer FWL.
  • the auxiliary wiring AWL composed of the laminated film of the first wiring layer FWL and the second wiring layer SWL can be formed. That is, in the second embodiment, the first wiring layer FWL made of the same material and in the same layer as the anode AE and the second wiring layer SWL made of the same material and in the same layer as the bus electrode BE.
  • the laminated film of the first wiring layer FWL and the second wiring layer SWL is used as the auxiliary wiring AWL.
  • an insulating film IL1 made of, for example, a polyimide resin film is formed on the substrate 1S on which the bus electrode BE and the second wiring layer SWL are formed.
  • the insulating film IL1 is formed so as to embed a separation region provided between the anode AE and the auxiliary wiring AWL.
  • the insulating film IL1 is patterned to form an opening OP1 whose bottom reaches the auxiliary wiring AWL. As a result, the surface of the auxiliary wiring AWL is exposed. At this time, as shown in FIG. 35, the insulating film IL1 is patterned so that a partial region on the anode AE where the bus electrode BE is not formed is also exposed from the insulating film IL1.
  • a partition PT made of, for example, a photosensitive resin film is formed on the insulating film IL1.
  • the partition PT is formed, for example, by patterning a photosensitive resin film by using a photolithography technique.
  • the intensity of the exposure light decreases downward in the photosensitive resin film.
  • the difference in the intensity of the exposure light causes a difference in the dissolution rate in the developer, and the inversely tapered partition wall PT is formed. That is, the partition PT is formed such that the width of the bottom of the partition PT is smaller than the width of the upper portion of the partition PT.
  • the partition PT is formed so that the cross-sectional shape of the partition PT perpendicular to the Y direction (first direction) is an inversely tapered shape.
  • the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the region sandwiched between the partition walls PT adjacent to each other is the cell region CR.
  • the light emitting portion LP and the conduction portion CP sandwiched between the light emitting portion LP and the partition wall PT in plan view are formed.
  • the auxiliary wiring AWL is formed in the conduction portion CP.
  • an organic layer OL including a light emitting layer is formed on the anode AE formed in the light emitting portion LP in the cell region CR.
  • the organic layer OL when the organic layer OL is composed of a low molecular material, the organic layer OL can be formed by a vacuum vapor deposition method using a mask.
  • the organic layer OL when the organic layer OL is composed of a polymer material, it can be formed by using a coating method or a printing method.
  • the organic layer OL is not formed over the entire cell region CR, but the organic layer OL is formed in the light emitting portion LP in the cell region CR. In other words, the organic layer OL is not formed in the conduction part CP in the cell region CR. As a result, in the conduction part CP, the organic layer OL is not formed on the auxiliary wiring AWL and in the opening OP1.
  • a cathode CE is formed from the light emitting portion LP in the cell region CR to the conducting portion CP.
  • the cathode CE is formed of, for example, an aluminum film or a silver film, and can be formed by, for example, a vapor deposition method.
  • the damage given to the organic layer OL can be reduced by using a vapor deposition method as a method of forming the cathode CE.
  • the partition PT has an inversely tapered shape, the cathode CE is not formed across the plurality of cell regions CR, and the cathode CE separated for each cell region CR is automatically formed. Can do.
  • the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1 formed in the conducting portion CP from the organic layer OL formed in the light emitting portion LP.
  • the cathode CE is filled in the opening OP1, the cathode CE is electrically connected to the auxiliary wiring AWL exposed from the bottom of the opening OP1.
  • the light emitting device LA2 according to the second embodiment can be manufactured.
  • Embodiment 3 In the first embodiment and the second embodiment, a so-called bottom emission type light emitting device that takes out light from the back side (lower surface side) of a substrate having electrodes formed on the front surface (main surface) has been described as an example. However, in the third embodiment, a so-called top emission type light emitting device that extracts light from the main surface side (front surface side, upper surface side, element forming surface side) of the substrate will be described. ⁇ Characteristics in Embodiment 3>
  • the configuration of the light emitting device LA3 in the third embodiment is substantially the same as the configuration of the light emitting device LA1 in the first embodiment, the following description will focus on differences.
  • FIG. 39 is a cross-sectional view showing a cross section of the light emitting device LA3 in the third embodiment.
  • the light emitting device LA3 according to the third embodiment is a top emission type light emitting device. For this reason, it is not necessary to use a substrate transparent to visible light as the substrate 1S, and various types of substrates that function as a support can be used.
  • the anode AE is made of a metal film typified by an aluminum film, for example.
  • the cathode CE since the cathode CE needs to be transparent, it is formed from a transparent electrode such as ITO or IZO, for example.
  • the auxiliary wiring AWL is made of the same material as that of the anode AE, and thus is made of, for example, a metal film typified by an aluminum film.
  • the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the third embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. For this reason, according to the light emitting device LA3 in Embodiment 3, it is possible to prevent the light emitting failure of the light emitting device LA3 and improve the reliability of the light emitting device LA3.
  • the cathode CE is made of a transparent material having a relatively high resistivity, such as ITO or IZO.
  • the cathode CE is electrically connected to the auxiliary wiring AWL, and the auxiliary wiring AWL is made of a material having a low resistivity such as an aluminum film. That is, the auxiliary wiring AWL can have a lower resistivity than the cathode CE made of a transparent material.
  • the auxiliary wiring AWL in the third embodiment is formed mainly for the purpose of avoiding the disconnection failure of the cathode CE. Further, in the third embodiment, the resistivity of the cathode CE is lowered. A secondary effect of being able to do so can also be obtained. That is, according to the third embodiment, since it is not necessary to use a transparent material for the auxiliary wiring AWL, the auxiliary wiring AWL can be made of a metal film such as an aluminum film having a low resistivity. For this reason, the resistivity of the cathode CE can be reduced by electrically connecting the auxiliary wiring AWL to the cathode CE made of a transparent material.
  • FIG. 40 is a flowchart showing a flow of manufacturing the light emitting device LA3 according to the third embodiment.
  • a substrate that functions as a support is prepared (S401).
  • a first conductor film made of a metal film such as an aluminum film is formed on the main surface (element formation surface) of the substrate (S402).
  • the first conductor film is patterned by using a photolithography technique and an etching technique (S403).
  • the anode and auxiliary wiring which consist of a 1st conductor film can be formed.
  • an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the anode and the auxiliary wiring are formed (S404).
  • an opening is formed in the insulating film by using a photolithography technique and an etching technique (S405).
  • the opening is formed so as to overlap with the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring is exposed at the bottom of the opening.
  • a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S406).
  • a cell region sandwiched between adjacent partition walls is partitioned.
  • the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view.
  • This conduction part includes auxiliary wiring.
  • an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum vapor deposition method using a mask, a coating method, a printing method, or the like (S407). ). Then, a cathode made of a transparent electrode such as ITO or IZO is formed from the light emitting portion to the conducting portion in the cell region (S408). At this time, the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion. As a result, since the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening. In addition, a sealing process is implemented after this process in order to protect an organic EL element from air
  • the invention made by the present inventor has been specifically described based on the embodiment.
  • the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • a light emitting device using an anode as a lower electrode and a cathode as an upper electrode is illustrated, but conversely, the light emitting device can be appropriately changed to a light emitting device having a lower electrode as a cathode and an upper electrode as an anode.

Abstract

Provided is a technology with which reliability of a light emitting apparatus can be improved. A conductive section (CP) is provided with an auxiliary wiring line (AWL), and the auxiliary wiring line (AWL) is disposed with a separating region (space region) between the auxiliary wiring line and the anode (AE) formed on the substrate (1S). The auxiliary wiring line (AWL) extends, for instance, in the Y direction. In the conductive section (CP), an insulating film (IL1) is formed such that the auxiliary wiring line (AWL) is covered with the insulating film, and an opening (OP1) is formed in the insulating film (IL1). The auxiliary wiring line (AWL) is configured to be exposed from the bottom portion of the opening (OP1). The cathode (CE) is formed such that the opening (OP1) is fully filled with the cathode, and the cathode (CE) and the auxiliary wiring line (AWL) are electrically connected to each other.

Description

発光装置およびその製造方法Light emitting device and manufacturing method thereof
 本発明は、発光装置およびその製造技術に関し、例えば、有機エレクトロルミネッセンス素子(organic electroluminescence device:以下、有機EL素子と呼ぶ)に代表される発光素子を用いた発光装置およびその製造技術に適用して有効な技術に関する。 The present invention relates to a light emitting device and a manufacturing technique thereof, and is applied to, for example, a light emitting apparatus using a light emitting element represented by an organic electroluminescence element (hereinafter referred to as an organic EL element) and a manufacturing technique thereof. It relates to effective technology.
 特表2005-521204号公報(特許文献1)には、隣接する画素間に形成される隔壁の下層にガードラインを設ける技術が記載されている。 Japanese Patent Application Publication No. 2005-521204 (Patent Document 1) describes a technique of providing a guard line below a partition formed between adjacent pixels.
 特開2005-203128号公報(特許文献2)には、有機EL素子を囲うように逆テーパ形状の隔壁を設け、この隔壁の下層に、透明電極の電気抵抗を低減するための補助電極を設ける技術が記載されている。 In JP-A-2005-203128 (Patent Document 2), a reverse-tapered partition is provided so as to surround the organic EL element, and an auxiliary electrode for reducing the electrical resistance of the transparent electrode is provided below the partition. The technology is described.
 特開2008-153237号公報(特許文献3)には、有機EL素子の補助電極を壁状絶縁層の一部分に設け、補助電極が設けられた壁状絶縁層の部分が、補助電極が設けられていない部分よりも幅広である技術が記載されている。 In JP 2008-153237 A (Patent Document 3), an auxiliary electrode of an organic EL element is provided in a part of a wall-like insulating layer, and a portion of the wall-like insulating layer provided with the auxiliary electrode is provided with an auxiliary electrode. A technique is described that is wider than the unexposed portion.
特表2005-521204号公報JP 2005-521204 A 特開2005-203128号公報JP-A-2005-203128 特開2008-153237号公報JP 2008-153237 A
 現在、白熱電球や蛍光灯に代わる発光装置(例えば、照明装置)として、発光ダイオード(LED:Light Emitting Diode)を使用した発光装置の普及が進んでいる。なぜなら、発光ダイオードは、長寿命で消費電力を抑えることができる省エネルギー特性を有しているとともに、近年では、低コスト化も進んでいるからである。ただし、発光ダイオードは、長寿命であることから、その裏返しとして、今後、需要が停滞する可能性もあり、新たな発光装置の開発が進められている。 Currently, light-emitting devices using light-emitting diodes (LEDs) as light-emitting devices (for example, lighting devices) that replace incandescent bulbs and fluorescent lamps are becoming widespread. This is because light-emitting diodes have energy saving characteristics that can reduce power consumption with a long lifetime, and in recent years, cost reduction has also progressed. However, since the light-emitting diode has a long life, there is a possibility that demand will stagnate in the future, and development of a new light-emitting device is underway.
 例えば、発光装置に適用される新たな発光素子の一例として、エレクトロルミネッセンスを利用した有機EL素子に注目が集まっている。エレクトロルミネッセンスとは、物質に電圧を印加した際に発光する現象であり、特に、このエレクトロルミネッセンスを有機物質で生じさせる素子を有機EL素子と呼ぶ。この有機EL素子は、電流注入型デバイスであり、かつ、ダイオード特性を示すため、有機発光ダイオード(Organic Light Emitting Diode:OLED)とも呼ばれる。 For example, as an example of a new light emitting element applied to a light emitting device, attention has been focused on an organic EL element using electroluminescence. Electroluminescence is a phenomenon that emits light when a voltage is applied to a substance. In particular, an element that generates this electroluminescence with an organic substance is called an organic EL element. Since this organic EL element is a current injection type device and exhibits diode characteristics, it is also called an organic light emitting diode (OLED).
 このような有機EL素子を使用した発光装置は、すでに製品化が始まっている発光ダイオードを使用した発光装置の後を追うように実用化が期待されている。なぜなら、有機EL素子を使用した発光装置は、発光ダイオードを使用した発光装置よりも薄型化が可能であり、かつ、広範囲を照らせる特徴があるからである。すなわち、有機EL素子を使用した発光装置によれば、壁全体が光る照明や、場所を取らない店舗の看板照明など、従来は難しかった幅広い用途に応用できる可能性がある。つまり、有機EL素子は、素子という点で発光する発光ダイオードと異なり、面で発光するため、有機EL素子を使用した発光装置によれば、影を作らず自然光に近い状態で室内を照らすことができる。特に、有機EL素子を使用した発光装置は、玄関ホールや吹き抜けなどの意匠性が高い空間向けとして期待されている。また、有機EL素子を使用した発光装置は、薄くて軽いため、天井や壁などへの設置も容易である利点がある。 Such light-emitting devices using organic EL elements are expected to be put to practical use so as to follow light-emitting devices using light-emitting diodes that have already been commercialized. This is because a light-emitting device using an organic EL element can be made thinner than a light-emitting device using a light-emitting diode and can illuminate a wide range. That is, according to the light-emitting device using the organic EL element, there is a possibility that it can be applied to a wide range of uses that have been difficult in the past, such as lighting that shines on the entire wall and billboard lighting in a store that does not take up space. In other words, the organic EL element emits light on the surface unlike the light emitting diode that emits light in terms of the element. Therefore, according to the light emitting device using the organic EL element, the room can be illuminated in a state close to natural light without creating a shadow. it can. In particular, a light-emitting device using an organic EL element is expected for a space having high design properties such as an entrance hall and an atrium. In addition, since a light emitting device using an organic EL element is thin and light, there is an advantage that it can be easily installed on a ceiling or a wall.
 以上のように、発光ダイオードを使用した発光装置が、ほとんど点発光であるために小型化には向いていても、発熱という制約や光の拡散に工夫が求められている点とは対照的に、有機EL素子を使用した発光装置は、「面発光」、「形状に制約がない(フレキシブル)」、「透明である」などの利点がある。このため、有機EL素子を使用した発光装置は、発光ダイオードを使用した発光装置を超えて普及する可能性を秘めている。 As described above, light-emitting devices using light-emitting diodes are mostly point light emission, so they are suitable for miniaturization, but in contrast to the restrictions on heat generation and the need to devise light diffusion. A light-emitting device using an organic EL element has advantages such as “surface emission”, “no restriction on shape (flexible)”, and “transparent”. For this reason, the light-emitting device using an organic EL element has the possibility of spreading beyond the light-emitting device using a light emitting diode.
 ただし、有機EL素子を使用した発光装置の普及を促進するためには、有機EL素子の信頼性を向上させることが必要である。この点に関し、本発明者が検討した結果、本発明者は、有機EL素子の信頼性を低下させる一因が存在することを見出した。そこで、以下では、まず、有機EL素子の代表的な基本構成について説明し、その後、この基本構成を有する有機EL素子の信頼性を低下させる要因の一例について説明する。 However, in order to promote the spread of light-emitting devices using organic EL elements, it is necessary to improve the reliability of the organic EL elements. As a result of investigation by the present inventor regarding this point, the present inventor has found that there is a cause for lowering the reliability of the organic EL element. Therefore, in the following, a typical basic configuration of the organic EL element will be described first, and then an example of factors that reduce the reliability of the organic EL element having this basic configuration will be described.
 発光装置に適用が期待されている有機EL素子は、例えば、以下に示す基本構造をしている。すなわち、有機EL素子は、例えば、基板上に、下部電極が形成され、この下部電極上に複数の隔壁が所定方向(第1方向)に延在するように形成されている。そして、第1方向に延在する複数の隔壁で挟まれたそれぞれの領域がセル領域となっている。このセル領域においては、下部電極上に発光層を含む有機層が形成されており、この有機層上に上部電極が形成されることになる。この上部電極は、セル領域ごとに分離されており、例えば、セル領域のそれぞれにおいて、上部電極は、第1方向に延在するように形成される。このように構成されている有機EL素子によれば、例えば、下部電極として正孔注入電極(陽極)と上部電極として電子注入電極(陰極)の間に電圧を印加することにより、陽極と陰極で挟まれた有機層に電流が流れて自ら発光することになる。 An organic EL element expected to be applied to a light emitting device has, for example, the following basic structure. That is, the organic EL element is formed, for example, such that a lower electrode is formed on a substrate and a plurality of partition walls extend in a predetermined direction (first direction) on the lower electrode. Each region sandwiched between the plurality of partition walls extending in the first direction is a cell region. In the cell region, an organic layer including a light emitting layer is formed on the lower electrode, and the upper electrode is formed on the organic layer. The upper electrode is separated for each cell region. For example, in each cell region, the upper electrode is formed to extend in the first direction. According to the organic EL element configured as described above, for example, by applying a voltage between a hole injection electrode (anode) as a lower electrode and an electron injection electrode (cathode) as an upper electrode, the anode and the cathode A current flows through the sandwiched organic layer and emits light by itself.
 ここで、有機EL素子の製造工程の中で、陰極を形成する工程に着目すると、陰極は、複数の隔壁で挟まれたセル領域に発光層を含む有機層を形成した後に、セル領域上に導体膜を成膜することにより形成される。 Here, paying attention to the step of forming the cathode in the manufacturing process of the organic EL element, the cathode is formed on the cell region after forming the organic layer including the light emitting layer in the cell region sandwiched between the plurality of partition walls. It is formed by forming a conductor film.
 このとき、例えば、互いに隣接する隔壁間に跨るように異物(ゴミ)が付着した状態で、導体膜を成膜すると、異物が付着した領域には、導体膜が形成されないことになる。この結果、導体膜からなる陰極に断線が発生するという問題点が一例として顕在化する。陰極が断線するということは、発光装置に不良が発生することを意味し、これによって、発光装置の信頼性が低下するおそれが顕在化する。
 本発明の目的は、発光装置の信頼性を向上させることができる技術を提供することにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
At this time, for example, if a conductive film is formed in a state where foreign matter (dust) is attached so as to straddle between adjacent partition walls, the conductive film is not formed in a region where the foreign matter is attached. As a result, the problem that disconnection occurs in the cathode made of the conductive film becomes apparent as an example. The disconnection of the cathode means that a defect occurs in the light emitting device, and this may cause a possibility that the reliability of the light emitting device is lowered.
The objective of this invention is providing the technique which can improve the reliability of a light-emitting device.
Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 請求項1に記載の発明は、(a)基板と、(b)前記基板上に形成された第1電極と、(c)前記基板上に形成され、第1方向に延在する隔壁部と、(d)前記隔壁部によって区画された複数のセル領域と、を備え、前記複数のセル領域のそれぞれは、(e)発光部と、(f)前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれた導通部と、を有し、前記発光部は、(e1)前記第1電極上に形成された発光層を含む有機層と、(e2)前記有機層上に形成された第2電極と、を含み、前記導通部は、(f1)前記基板上に形成され、かつ、前記第1電極とは電気的に分離され、前記第1方向に延在する第2電極用補助配線と、(f2)前記発光部の前記有機層上から前記導通部の前記第2電極用補助配線上にわたって形成された前記第2電極を含むことを特徴とする。 The invention described in claim 1 includes: (a) a substrate; (b) a first electrode formed on the substrate; and (c) a partition wall portion formed on the substrate and extending in the first direction. (D) a plurality of cell regions partitioned by the partition wall, each of the plurality of cell regions being formed with (e) a light emitting unit and (f) the first electrode of the substrate. In plan view as seen from the side surface, the light emitting portion and a conducting portion sandwiched between the partition walls, and the light emitting portion includes (e1) a light emitting layer formed on the first electrode. An organic layer; and (e2) a second electrode formed on the organic layer, wherein the conductive portion is (f1) formed on the substrate and electrically separated from the first electrode. A second electrode auxiliary wiring extending in the first direction, and (f2) the conductive portion from above the organic layer of the light emitting portion. Characterized in that it comprises a second electrode formed over the second electrode for the auxiliary wire.
 また、請求項12に記載の発明は、(a)基板を用意する工程と、(b)前記(a)工程後、前記基板上に第1導体膜を形成する工程と、(c)前記(b)工程後、前記第1導体膜をパターニングすることにより、第1電極と、前記第1電極とは離間領域を介しながら第1方向に延在する第2電極用補助配線と、を形成する工程と、(d)前記(c)工程後、前記第1電極と前記第2電極用補助配線との間に設けられた前記離間領域を埋め込むように第1絶縁膜を形成する工程と、(e)前記(d)工程後、前記第1絶縁膜に開口部を形成し、前記開口部から前記第2電極用補助配線を露出する工程と、(f)前記(e)工程後、前記基板上に第1方向に延在する隔壁部を形成し、前記隔壁部によって、発光部と、前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれ、前記第2電極用補助配線を含む導通部と、からなるセル領域を区画する工程と、(g)前記(f)工程後、前記セル領域のうち、前記導通部を除く前記発光部の前記第1電極上に、発光層を含む有機層を形成する工程と、(h)前記(g)工程後、前記発光部に形成されている前記有機層上から、前記導通部に形成されている前記開口部から露出する前記第2電極用補助配線上にわたって、第2電極を形成し、前記第2電極用補助配線と前記第2電極とを電気的に接続する工程と、を備えることを特徴とする。 The invention described in claim 12 includes: (a) a step of preparing a substrate; (b) a step of forming a first conductor film on the substrate after the step (a); and (c) the ( b) After the step, the first conductive film is patterned to form the first electrode and the second electrode auxiliary wiring extending in the first direction with the first electrode interposed through the separation region. And (d) after the step (c), forming a first insulating film so as to embed the spacing region provided between the first electrode and the second electrode auxiliary wiring; e) after the step (d), forming an opening in the first insulating film and exposing the second electrode auxiliary wiring from the opening; (f) after the step (e), the substrate A partition wall extending in a first direction is formed thereon, and the light emission unit and the first electrode of the substrate are formed by the partition wall. A step of partitioning a cell region including a light-emitting portion and a conductive portion including the second electrode auxiliary wiring in a plan view as viewed from the formed surface; and (g) After the step (f), a step of forming an organic layer including a light emitting layer on the first electrode of the light emitting portion excluding the conducting portion in the cell region, and (h) after the step (g) A second electrode is formed from the organic layer formed in the light emitting portion over the second electrode auxiliary wiring exposed from the opening formed in the conducting portion, and the second electrode Electrically connecting the auxiliary wiring for use and the second electrode.
 さらに、請求項13に記載の発明は、(a)基板を用意する工程と、(b)前記(a)工程後、前記基板上に第1導体膜を形成する工程と、(c)前記(b)工程後、前記第1導体膜をパターニングすることにより、前記第1導体膜からなる第1電極と、前記第1電極とは離間領域を介しながら第1方向に延在した第1配線層を形成する工程と、(d)前記(c)工程後、前記第1電極および前記第1配線層を覆うように、前記第1導体膜よりも小さい抵抗率を有する第2導体膜を形成する工程と、(e)前記(d)工程後、前記第2導体膜をパターニングすることにより、前記第1配線層上に前記第1方向に延在する第2配線層を形成して、前記第1配線層と前記第2配線層からなる第2電極用補助配線を形成し、かつ、前記第1電極上に前記第2導体膜からなり、前記第1方向に延在する第1電極用補助配線を形成する工程と、(f)前記(e)工程後、前記第1電極用補助配線を覆うとともに、前記第1電極と前記第2電極用補助配線との間に設けられた前記離間領域を埋め込むように第1絶縁膜を形成する工程と、(g)前記(f)工程後、前記第1絶縁膜に開口部を形成し、前記開口部から前記第2電極用補助配線を露出する工程と、(h)前記(g)工程後、前記第1絶縁膜上に第1方向に延在する隔壁部を形成し、前記隔壁部によって、発光部と、前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれ、前記第2電極用補助配線を含む導通部と、からなるセル領域を区画する工程と、(i)前記(h)工程後、前記セル領域のうち、前記導通部を除く前記発光部の前記第1電極上に、発光層を含む有機層を形成する工程と、(j)前記(i)工程後、前記発光部に形成されている前記有機層上から、前記導通部に形成されている前記開口部から露出する前記第2電極用補助配線上にわたって、第2電極を形成し、前記第2電極用補助配線と前記第2電極とを電気的に接続する工程と、を備えることを特徴とする。 Furthermore, the invention described in claim 13 includes (a) a step of preparing a substrate, (b) a step of forming a first conductor film on the substrate after the step (a), and (c) the ( b) After the step, by patterning the first conductor film, the first electrode made of the first conductor film and the first wiring layer extending in the first direction through the separation region And (d) after the step (c), a second conductor film having a smaller resistivity than the first conductor film is formed so as to cover the first electrode and the first wiring layer. And (e) after the step (d), patterning the second conductor film to form a second wiring layer extending in the first direction on the first wiring layer, and Forming a second electrode auxiliary wiring composed of one wiring layer and the second wiring layer, and on the first electrode; A step of forming a first electrode auxiliary wiring made of the second conductor film and extending in the first direction; and (f) after the step (e), covering the first electrode auxiliary wiring, A step of forming a first insulating film so as to embed the separation region provided between the first electrode and the second electrode auxiliary wiring; and (g) after the step (f), the first insulating film Forming an opening in the opening and exposing the second electrode auxiliary wiring from the opening; and (h) a partition wall extending in the first direction on the first insulating film after the step (g) And is sandwiched between the light emitting portion and the partition portion in a plan view as viewed from the light emitting portion and the surface of the substrate on which the first electrode is formed, for the second electrode. A step of partitioning a cell region including a conductive portion including an auxiliary wiring, and (i) after the step (h), before A step of forming an organic layer including a light-emitting layer on the first electrode of the light-emitting portion excluding the conducting portion in the cell region; and (j) after the step (i), formed in the light-emitting portion. A second electrode is formed over the organic layer, and over the second electrode auxiliary wiring exposed from the opening formed in the conductive portion, and the second electrode auxiliary wiring and the second electrode are formed. And a step of electrically connecting the two.
関連技術における発光装置の陽極構成を示す平面図である。It is a top view which shows the anode structure of the light-emitting device in related technology. 関連技術の発光装置において、陽極上に形成される陰極構成を主に示す平面図である。In a related art light emitting device, it is a top view mainly showing the cathode composition formed on an anode. 関連技術における発光装置の一断面を示す断面図である。It is sectional drawing which shows one cross section of the light-emitting device in related technology. 関連技術における発光装置を製造する流れを示すフローチャートである。It is a flowchart which shows the flow which manufactures the light-emitting device in related technology. 有機層を形成した後であって、陰極を形成する前に異物が付着した状態を示す図である。It is a figure which shows the state to which the foreign material adhered after forming an organic layer and before forming a cathode. 互いに隣り合う隔壁に跨るように異物が付着した状態で、陰極の形成を行なった一状態を示す平面図である。It is a top view which shows one state which formed the cathode in the state which the foreign material adhered so as to straddle the mutually adjacent partition. 図6のA-A線で切断した断面図である。FIG. 7 is a cross-sectional view taken along line AA in FIG. 6. 実施の形態1における発光装置の概略構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of the light emitting device in the first embodiment. 実施の形態1における発光装置の陽極構成を主に示す平面図である。3 is a plan view mainly showing an anode configuration of the light-emitting device in Embodiment 1. FIG. 実施の形態1の発光装置において、陽極および補助配線上に形成される陰極構成を主に示す平面図である。4 is a plan view mainly showing a cathode configuration formed on an anode and an auxiliary wiring in the light-emitting device of Embodiment 1. FIG. 実施の形態1における発光装置の構成を示す断面図である。3 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 1. FIG. 低分子系材料から構成される有機層を使用した発光部の構成例を示す図である。It is a figure which shows the structural example of the light emission part using the organic layer comprised from a low molecular material. 高分子系材料から構成される有機層を使用した発光部の構成例を示す図である。It is a figure which shows the structural example of the light emission part using the organic layer comprised from a polymeric material. 陰極から有機層に注入された電子と、陽極から有機層に注入された正孔(ホール)が対極方向に移動する様子を示す模式図である。It is a schematic diagram which shows a mode that the electron inject | poured into the organic layer from the cathode and the hole (hole) inject | poured into the organic layer from the anode move to a counter electrode direction. 有機層における発光メカニズムを説明するための図である。It is a figure for demonstrating the light emission mechanism in an organic layer. 実施の形態1における発光装置において、互いに隣り合う隔壁に跨るように異物が付着した状態で、陰極の形成を行なった一状態を示す平面図である。FIG. 3 is a plan view showing a state in which a cathode is formed in a state where foreign matter adheres so as to straddle adjacent barrier ribs in the light emitting device in the first embodiment. 図16のA-A線で切断した断面図である。It is sectional drawing cut | disconnected by the AA line of FIG. 図16のB-B線で切断した断面図である。It is sectional drawing cut | disconnected by the BB line | wire of FIG. 図16のA-A線で切断した断面図に補助配線によって電気的な接続が確保されている状態を模式的に示す図である。FIG. 17 is a diagram schematically showing a state in which electrical connection is ensured by an auxiliary wiring in the cross-sectional view taken along line AA in FIG. 16. 実施の形態1における発光装置を製造する流れを示すフローチャートである。3 is a flowchart showing a flow of manufacturing the light emitting device in the first embodiment. 実施の形態1における発光装置の製造工程を示す断面図である。5 is a cross-sectional view showing a manufacturing process of the light-emitting device in Embodiment 1. FIG. 図21に続く発光装置の製造工程を示す断面図である。FIG. 22 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 21. 図22に続く発光装置の製造工程を示す断面図である。FIG. 23 is a cross-sectional view showing a manufacturing step of the light emitting device following that of FIG. 22; 図23に続く発光装置の製造工程を示す断面図である。FIG. 24 is a cross-sectional view showing a manufacturing step of the light-emitting device following FIG. 23. 図24に続く発光装置の製造工程を示す断面図である。FIG. 25 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 24. 図25に続く発光装置の製造工程を示す断面図である。FIG. 26 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 25. 図26に続く発光装置の製造工程を示す断面図である。FIG. 27 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 26. 図27に続く発光装置の製造工程を示す断面図である。FIG. 28 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 27. 図28に続く発光装置の製造工程を示す断面図である。FIG. 29 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 28. 図29に続く発光装置の製造工程を示す断面図である。FIG. 30 is a cross-sectional view showing a manufacturing step of the light emitting device following that of FIG. 29; 実施の形態2における発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 2. FIG. 実施の形態2における発光装置を製造する流れを示すフローチャートである。6 is a flowchart showing a flow of manufacturing the light emitting device in the second embodiment. 実施の形態2における発光装置の製造工程を示す断面図である。11 is a cross-sectional view showing a manufacturing process of the light-emitting device in Embodiment 2. FIG. 図33に続く発光装置の製造工程を示す断面図である。FIG. 34 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 33. 図34に続く発光装置の製造工程を示す断面図である。FIG. 35 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 34. 図35に続く発光装置の製造工程を示す断面図である。FIG. 36 is a cross-sectional view showing a manufacturing process of the light-emitting device following FIG. 図36に続く発光装置の製造工程を示す断面図である。FIG. 37 is a cross-sectional view showing the manufacturing process for the light-emitting device following FIG. 36. 図37に続く発光装置の製造工程を示す断面図である。FIG. 38 is a cross-sectional view showing a manufacturing step of the light-emitting device following FIG. 実施の形態3における発光装置の構成を示す断面図である。7 is a cross-sectional view illustrating a structure of a light-emitting device in Embodiment 3. FIG. 実施の形態3における発光装置を製造する流れを示すフローチャートである。10 is a flowchart showing a flow of manufacturing a light-emitting device according to Embodiment 3.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., unless otherwise specified, and in principle, it is considered that this is not clearly the case, it is substantially the same. Including those that are approximate or similar to the shape. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
 (実施の形態1)
 以下では、まず、本実施の形態1における発光装置に関連した関連技術について説明し、その後、この関連技術に存在する改善の余地について説明する。そして、この関連技術に存在する改善の余地に対する工夫を施した本実施の形態1における技術的思想について説明することにする。なお、本実施の形態1では、表面(主面)に電極を形成した基板の裏面側(下面側)から光を取り出す、いわゆるボトムエミッション方式の発光装置を例に挙げて説明する。
(Embodiment 1)
Below, the related technique relevant to the light-emitting device in this Embodiment 1 is demonstrated first, and the room for the improvement which exists in this related technique is demonstrated after that. Then, the technical idea in the first embodiment, which is devised for the room for improvement existing in the related technology, will be described. Note that in the first embodiment, a so-called bottom emission type light-emitting device that extracts light from the back side (lower surface side) of a substrate having electrodes formed on the front surface (main surface) will be described as an example.
 <関連技術の説明>
 図1は、関連技術における発光装置LAPの陽極構成を示す平面図である。図1に示すように、矩形形状をした基板1S上にベタパターンからなる陽極AEが形成されている。ここで言う基板上とは、基板の上方という意味であり、基板と陽極との間に保護膜等の他の層が存在する場合も含まれる。
<Description of related technologies>
FIG. 1 is a plan view showing an anode configuration of a light emitting device LAP in the related art. As shown in FIG. 1, an anode AE having a solid pattern is formed on a rectangular substrate 1S. The term “on the substrate” here means above the substrate, and includes a case where another layer such as a protective film exists between the substrate and the anode.
 そして、この陽極AE上に複数のバス電極BEが形成されている。具体的に、陽極AE上に形成されるバス電極BEは、ストライプ状に形成されている。すなわち、複数のバス電極BEは、X方向に所定間隔で配置され、それぞれのバス電極BEがY方向に延在するように形成されている。このバス電極BEは、陽極AEと電気的に接続されており、陽極AEの抵抗を低減させるために形成されている。 A plurality of bus electrodes BE are formed on the anode AE. Specifically, the bus electrode BE formed on the anode AE is formed in a stripe shape. That is, the plurality of bus electrodes BE are arranged at a predetermined interval in the X direction, and each bus electrode BE is formed to extend in the Y direction. The bus electrode BE is electrically connected to the anode AE and is formed to reduce the resistance of the anode AE.
 次に、図2は、関連技術の発光装置LAPにおいて、図1に示す陽極AE上に形成される陰極構成を主に示す平面図である。図2に示すように、複数の隔壁PTがX方向に所定間隔で配置されており、それぞれの隔壁PTがY方向に延在するように形成されている。このとき、互いに隣り合う隔壁PTでセル領域CRが区画される。つまり、セル領域CRを挟むように隔壁PTが配置され、隔壁PTと平面的に重なる下層に図1に示すバス電極BEが配置されていることになる。そして、隔壁PTで区画されたセル領域CRに陰極CEが形成されている。この陰極CEは、セル領域CRごとに分離されている。すなわち、陰極CEは、複数のセル領域CRのそれぞれに対応して設けられていることになる。 Next, FIG. 2 is a plan view mainly showing a cathode configuration formed on the anode AE shown in FIG. 1 in the related art light emitting device LAP. As shown in FIG. 2, the plurality of partition walls PT are arranged at predetermined intervals in the X direction, and each partition wall PT is formed to extend in the Y direction. At this time, the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the partition PT is disposed so as to sandwich the cell region CR, and the bus electrode BE shown in FIG. 1 is disposed in the lower layer overlapping the partition PT in plan view. A cathode CE is formed in the cell region CR defined by the partition walls PT. The cathode CE is separated for each cell region CR. That is, the cathode CE is provided corresponding to each of the plurality of cell regions CR.
 続いて、図3は、関連技術における発光装置LAPの一断面を示す断面図である。図3に示すように、基板1S上に陽極AEが形成されており、陽極AE上の所定領域にバス電極BEが形成されている。 Subsequently, FIG. 3 is a sectional view showing one section of the light emitting device LAP in the related art. As shown in FIG. 3, the anode AE is formed on the substrate 1S, and the bus electrode BE is formed in a predetermined region on the anode AE.
 例えば、基板1Sは、ガラス基板やプラスチック基板などの透明基板から構成されており、この基板1S上に形成される陽極AEも、例えば、ITO(インジウムスズオキサイド)やIZO(インジウム亜鉛オキサイド)などに代表される透明導体膜から形成されている。一方、バス電極BEは、例えば、アルミニウム膜(Al膜)から形成されている。このように陽極AEおよびバス電極BEは、ともに導体膜から形成され、かつ、陽極AE上に直接バス電極BEが形成されていることから、陽極AEとバス電極BEとは、互いに電気的に接続されていることになる。 For example, the substrate 1S is composed of a transparent substrate such as a glass substrate or a plastic substrate, and the anode AE formed on the substrate 1S is also made of, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). It is formed from a representative transparent conductor film. On the other hand, the bus electrode BE is formed of, for example, an aluminum film (Al film). Thus, since the anode AE and the bus electrode BE are both formed of a conductor film, and the bus electrode BE is directly formed on the anode AE, the anode AE and the bus electrode BE are electrically connected to each other. Will be.
 そして、バス電極BEを覆うように、例えば、ポリイミド樹脂膜からなる絶縁膜IL1が形成されており、この絶縁膜IL1上に隔壁PTが形成されている。この隔壁PTは、例えば、感光性樹脂から構成されている。ここで、隔壁PTが形成されている領域を隔壁形成領域と呼ぶことにすると、隔壁形成領域において、隔壁PTの下層には、絶縁膜IL1を介してバス電極BEが形成されていることになり、隔壁形成領域の間に挟まれた領域がセル領域CRとなる。言い換えれば、セル領域CRは、互いに隣り合う隔壁PTで挟まれた領域として定義される。このセル領域CRにおいては、陽極AE上に発光層を含む有機層OLが形成されており、この有機層OL上に陰極CEが形成されている。この陰極CEは、例えば、アルミニウム膜(Al膜)や銀膜(Ag膜)から形成されている。 Then, an insulating film IL1 made of, for example, a polyimide resin film is formed so as to cover the bus electrode BE, and a partition wall PT is formed on the insulating film IL1. This partition PT is made of, for example, a photosensitive resin. Here, if the region where the partition PT is formed is called a partition formation region, the bus electrode BE is formed below the partition PT in the partition formation region via the insulating film IL1. A region sandwiched between the partition wall formation regions is a cell region CR. In other words, the cell region CR is defined as a region sandwiched between the partition walls PT adjacent to each other. In the cell region CR, an organic layer OL including a light emitting layer is formed on the anode AE, and a cathode CE is formed on the organic layer OL. The cathode CE is formed of, for example, an aluminum film (Al film) or a silver film (Ag film).
 このように構成されている関連技術における発光装置LAPによれば、陽極AEと陰極CEとの間に電位差を生じさせることにより、セル領域において、陽極AEから発光層を含む有機層OLを介して陰極CEに電流が流れる。この結果、有機層OLに含まれる発光層においては、エレクトロルミネッセンスに基づく光(可視光)が射出される。発光層から射出された光は、透明電極である陽極AEおよび透明基板である基板1Sを透過して、基板1Sの裏面側(下面側)から発光装置LAPの外部に取り出される。以上のようにして、関連技術における発光装置LAPを発光させることができる。 According to the light emitting device LAP in the related art configured as described above, by generating a potential difference between the anode AE and the cathode CE, in the cell region, the anode AE passes through the organic layer OL including the light emitting layer. A current flows through the cathode CE. As a result, light based on electroluminescence (visible light) is emitted from the light emitting layer included in the organic layer OL. Light emitted from the light emitting layer passes through the anode AE that is a transparent electrode and the substrate 1S that is a transparent substrate, and is extracted from the back surface side (lower surface side) of the substrate 1S to the outside of the light emitting device LAP. As described above, the light emitting device LAP in the related art can emit light.
 ここで、本明細書において、透明基板や透明導体膜で使用されている「透明」とは、可視光に対して透光性を有していることをいい、例えば、入射光に対して透過光が発生する状態を含む広い概念で使用している。すなわち、本明細書でいう「透明」とは、入射光に対する透過光の光量は問わず、透過光が発生する状態を「透明」ということにする。したがって、少なくとも、透過光の光量が多い状態だけでなく、入射光に対する透過光の光量が半分程度の「半透明」状態や、透過光の光量が少ない状態であっても、透過光が存在する状態は、本明細書での「透明」に含まれるものとする。 Here, in this specification, “transparent” used in a transparent substrate or a transparent conductor film means that it has translucency with respect to visible light, for example, it transmits with respect to incident light. It is used in a wide concept including the state where light is generated. That is, the term “transparent” in this specification refers to a state where transmitted light is generated regardless of the amount of transmitted light with respect to incident light. Therefore, there is transmitted light not only in a state where the amount of transmitted light is large, but also in a “semi-transparent” state where the amount of transmitted light with respect to incident light is about half or in a state where the amount of transmitted light is small. The state is included in “transparent” in the present specification.
 関連技術における発光装置LAPは上記のように構成されており、以下に、その製造方法について簡単に説明する。図4は、関連技術における発光装置LAPを製造する流れを示すフローチャートである。以下では、図3および図4に基づいて、関連技術における発光装置LAPの製造工程を説明する。 The light emitting device LAP in the related art is configured as described above, and the manufacturing method thereof will be briefly described below. FIG. 4 is a flowchart showing a flow of manufacturing the light emitting device LAP in the related art. Below, based on FIG. 3 and FIG. 4, the manufacturing process of the light-emitting device LAP in related technology is demonstrated.
 まず、例えば、透明基板である基板1Sを用意する(S101)。そして、基板1Sの表面(主面)上に、例えば、スパッタリング法を使用することにより、ITOやIZOからなる陽極AEを形成する(S102)。その後、陽極AE上に、例えば、アルミニウム膜からなる金属膜を形成し、この金属膜に対してフォトリソグラフィ技術およびエッチング技術を使用することにより、バス電極BEを形成する(S103)。 First, for example, a substrate 1S which is a transparent substrate is prepared (S101). Then, an anode AE made of ITO or IZO is formed on the surface (main surface) of the substrate 1S by using, for example, a sputtering method (S102). Thereafter, a metal film made of, for example, an aluminum film is formed on the anode AE, and the bus electrode BE is formed by using a photolithography technique and an etching technique on the metal film (S103).
 次に、バス電極BEを覆うように絶縁膜IL1を形成する(S104)。その後、絶縁膜IL1上に隔壁PTを形成する(S105)。続いて、隔壁PTで区画されたセル領域CRの陽極AE上に、例えば、蒸着法を使用することにより、発光層を含む有機層OLを形成する(S106)。その後、例えば、蒸着法を使用することにより、アルミニウム膜からなる陰極CEを有機層OL上に形成する(S107)。このようにして、関連技術における発光装置LAPを製造することができる。 Next, an insulating film IL1 is formed so as to cover the bus electrode BE (S104). Thereafter, a partition PT is formed on the insulating film IL1 (S105). Subsequently, an organic layer OL including a light emitting layer is formed on the anode AE of the cell region CR partitioned by the partition PT by using, for example, a vapor deposition method (S106). Thereafter, for example, by using a vapor deposition method, a cathode CE made of an aluminum film is formed on the organic layer OL (S107). In this way, the light emitting device LAP in the related art can be manufactured.
 <関連技術における改善の余地>
 ここで、本発明者は、発光装置LAPの信頼性を向上する点に着目し、この信頼性を向上する観点から、陰極形成工程において改善の余地があることを新たに見出した。以下に、本発明者が見出した改善の余地について説明する。
<Room for improvement in related technologies>
Here, the inventor paid attention to the point of improving the reliability of the light emitting device LAP and newly found that there is room for improvement in the cathode forming step from the viewpoint of improving the reliability. The room for improvement found by the present inventor will be described below.
 例えば、図5は、有機層OLの形成後、陰極を形成する前に異物が付着した状態を示す図である。陰極を形成する工程では、有機層OL上に、例えば、アルミニウム膜からなる導体膜を成膜することが行われるが、このときの処理装置内の清浄度などに起因して、基板1Sの表面上に異物(ゴミ)FBが付着する場合がある。具体的に、陰極を形成する工程では、既に複数の隔壁PTが形成されていることから、例えば、異物FBのサイズが互いに隣り合う隔壁PTの間の距離よりも大きい場合には、図5に示すように、互いに隣接する隔壁PTに跨って異物FBが付着することになる。例えば、互いに隣り合う隔壁PTの間隔は、100μm~150μm程度であることから、少なくとも、異物FBのサイズが150μm以上になると、互いに隣接する隔壁PTに跨って異物FBが付着することになる。 For example, FIG. 5 is a diagram showing a state in which foreign matter adheres after forming the organic layer OL and before forming the cathode. In the step of forming the cathode, a conductive film made of, for example, an aluminum film is formed on the organic layer OL. Due to the cleanliness in the processing apparatus at this time, the surface of the substrate 1S is formed. Foreign matter (dust) FB may adhere to the top. Specifically, in the step of forming the cathode, since the plurality of partition walls PT are already formed, for example, when the size of the foreign matter FB is larger than the distance between the partition walls PT adjacent to each other, FIG. As shown, the foreign substance FB adheres across the partition walls PT adjacent to each other. For example, since the interval between the adjacent partition walls PT is about 100 μm to 150 μm, at least when the size of the foreign material FB is 150 μm or more, the foreign material FB adheres across the adjacent partition walls PT.
 この状態で、陰極を構成する導体膜の成膜処理が実施されると、異物FBが付着したセル領域においては、異物FBが邪魔になって、有機膜OL上に陰極を形成することが困難になる。つまり、異物FBと平面的に重なる領域の有機層OL上に陰極を形成することがほとんどできなくなるおそれが高まる。 In this state, when the film forming process of the conductor film constituting the cathode is performed, it is difficult to form the cathode on the organic film OL in the cell region where the foreign substance FB adheres. become. That is, there is an increased possibility that the cathode can hardly be formed on the organic layer OL in a region overlapping the foreign matter FB in a planar manner.
 図6は、互いに隣り合う隔壁PTに跨るように異物が付着した状態で、陰極CEの形成を行なった一状態を示す平面図である。図6に示すように、基板1S上には、X方向に所定間隔で複数の隔壁PTが形成され、それぞれの隔壁PTは、Y方向に延在している。このように配置されている複数の隔壁PTによって、複数のセル領域が区画されるが、例えば、図6の中央付近に形成されているセル領域に着目する。例えば、このセル領域を区画する一対の隔壁PTに跨るように異物が付着していたとすると、図6に示すように、セル領域の一部領域に陰極CEが形成されない隙間SPが形成されることがわかる。すなわち、異物が付着している領域と平面的に重なる下層には、陰極CEを構成する導体膜が形成されない結果、隙間SPが形成されることになるのである。 FIG. 6 is a plan view showing a state in which the cathode CE is formed in a state where foreign matter adheres across the partition walls PT adjacent to each other. As shown in FIG. 6, a plurality of partition walls PT are formed at a predetermined interval in the X direction on the substrate 1S, and each partition wall PT extends in the Y direction. A plurality of cell regions are partitioned by the plurality of partition walls PT arranged in this way. For example, attention is paid to a cell region formed near the center of FIG. For example, if a foreign substance adheres so as to straddle a pair of partition walls PT that divide the cell region, a gap SP in which the cathode CE is not formed is formed in a partial region of the cell region as shown in FIG. I understand. That is, the gap SP is formed in the lower layer that overlaps with the area where the foreign matter is adhered, as a result of the conductor film constituting the cathode CE not being formed.
 したがって、図6に示すように、異物が付着したセル領域では、セル領域の全体にわたって陰極CEが形成されるのではなく、陰極CEは、陰極CEの一部分である第1陰極部CEP1と、陰極CEの他の一部分である第2陰極部CEP2とに隙間SPによって分離されることになる。このことは、第1陰極部CEP1と第2陰極部CEP2とが電気的に分離されることを意味する。この結果、異物が付着したセル領域においては、電気的に一体的な陰極CEが形成されることはなく、互いに電気的に分離された第1陰極部CEP1と第2陰極部CEP2が形成されることになる。つまり、異物が付着したセル領域においては、陰極CEが断線する。 Therefore, as shown in FIG. 6, in the cell region to which foreign matter has adhered, the cathode CE is not formed over the entire cell region, but the cathode CE includes the first cathode portion CEP1 which is a part of the cathode CE, and the cathode It is separated from the second cathode part CEP2 which is another part of CE by the gap SP. This means that the first cathode part CEP1 and the second cathode part CEP2 are electrically separated. As a result, in the cell region to which foreign matter has adhered, the electrically integrated cathode CE is not formed, but the first cathode portion CEP1 and the second cathode portion CEP2 that are electrically separated from each other are formed. It will be. In other words, the cathode CE is disconnected in the cell region to which foreign matter has adhered.
 この際、関連技術における発光装置LAPでは、以下に示す不都合が生じる。図7は、図6のA-A線で切断した断面図である。図7に示すように、基板1S上には、陽極AEが形成され、この陽極AE上に発光層を含む有機層OLが形成されている。そして、有機層OL上に隙間SPを介して、第1陰極部CEP1と第2陰極部CEP2が形成されることになる。 At this time, the following disadvantages occur in the light emitting device LAP in the related art. 7 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 7, an anode AE is formed on the substrate 1S, and an organic layer OL including a light emitting layer is formed on the anode AE. Then, the first cathode part CEP1 and the second cathode part CEP2 are formed on the organic layer OL via the gap SP.
 ここで、図7の左側から陽極AEに給電を行なうとともに、図7の右側から陰極に給電を行なう場合を考える。この場合、図7に示すように、陽極AEおよび第1陰極部CEP1には給電が実施されるため、陽極AEと第1陰極部CEP1の間には電流が流れる。つまり、陽極AEと第1陰極部CEP1の間に形成されている有機層OLには、電流が供給されるため、セル領域のうち、第1陰極部CEP1と平面的に重なる有機層OLからは光が射出される。 Here, let us consider a case where power is supplied to the anode AE from the left side of FIG. 7 and power is supplied to the cathode from the right side of FIG. In this case, as shown in FIG. 7, since power is supplied to the anode AE and the first cathode part CEP1, a current flows between the anode AE and the first cathode part CEP1. That is, since an electric current is supplied to the organic layer OL formed between the anode AE and the first cathode portion CEP1, the organic layer OL that planarly overlaps the first cathode portion CEP1 in the cell region Light is emitted.
 一方、図7に示すように、第2陰極部CEP2は、第1陰極部CEP1と隙間SPを介して電気的に分離されているため、第2陰極部CEP2には、給電が行われない。この結果、陽極AEと第2陰極部CEP2の間には電流が流れないことになる。つまり、陽極AEと第2陰極部CEP2の間に形成されている有機層OLには、電流が供給されないため、セル領域のうち、第2陰極部CEP2と平面的に重なる有機層OLからは光が射出されないことになる。以上のことから、異物が付着したセル領域では、セル領域全体が発光するのではなく、一部の領域(第2陰極部CEP2と平面的に重なる有機層OL)では、発光不良が生じることになる。 On the other hand, as shown in FIG. 7, since the second cathode part CEP2 is electrically separated from the first cathode part CEP1 through the gap SP, no power is supplied to the second cathode part CEP2. As a result, no current flows between the anode AE and the second cathode part CEP2. That is, since no current is supplied to the organic layer OL formed between the anode AE and the second cathode portion CEP2, light is emitted from the organic layer OL that planarly overlaps the second cathode portion CEP2 in the cell region. Will not be ejected. From the above, in the cell region to which foreign matter has adhered, the entire cell region does not emit light, but in some regions (the organic layer OL that planarly overlaps with the second cathode portion CEP2), a light emission failure occurs. Become.
 このことは、関連技術における発光装置LAPに不良が発生することを意味する。これにより、関連技術には、発光装置LAPの信頼性が低下するポテンシャルが内在していることがわかる。すなわち、関連技術においては、互いに隣り合う隔壁PTに跨るサイズの異物がセル領域に付着すると、陰極の断線を招くことになる。そして、この陰極の断線に起因して、発光装置LAPの発光不良が発生して、発光装置LAPの信頼性の低下が引き起こされるのである。このことから、関連技術においては、発光装置LAPの信頼性の向上を図る観点から改善の余地が存在することがわかる。すなわち、現状の発光装置LAPにおいては、さらなる信頼性の向上が望まれているのである。 This means that a defect occurs in the light emitting device LAP in the related art. Thereby, it can be seen that the related technology has a potential to reduce the reliability of the light emitting device LAP. In other words, in the related art, when a foreign substance having a size straddling adjacent partition walls PT adheres to the cell region, the cathode is disconnected. Then, due to the disconnection of the cathode, a light emission failure of the light emitting device LAP occurs, and the reliability of the light emitting device LAP is lowered. From this, it can be seen that there is room for improvement in the related art from the viewpoint of improving the reliability of the light emitting device LAP. That is, in the current light emitting device LAP, further improvement in reliability is desired.
 この点に関し、まず考えられるのは、陰極を形成する工程において、互いに隣り合う隔壁PTに跨るサイズを有する異物の発生を極力抑制する技術を開発することが挙げられるが、現実問題として、このようなサイズの異物の発生確率をゼロにすることは困難である。特に、セル領域の微細化が進むと、互いに隣り合う隔壁PTの間隔も狭くなり、結果として、互いに隣り合う隔壁PTに跨る異物のサイズも小さくなり、このような異物の発生を充分に抑制することは困難となると考えられる。 In this regard, first of all, it is conceivable to develop a technique for suppressing the generation of foreign substances having a size straddling adjacent partition walls PT in the step of forming the cathode as a practical problem. It is difficult to make the generation probability of foreign objects of a certain size zero. In particular, when the cell region is further miniaturized, the interval between the adjacent partition walls PT is also narrowed. As a result, the size of the foreign material straddling the adjacent partition walls PT is also reduced, and generation of such foreign material is sufficiently suppressed. It will be difficult.
 そこで、次に考えられることは、たとえ、互いに隣り合う隔壁に跨るサイズの異物がセル領域に付着して陰極の形成不良が引き起こされることがあっても、陰極の形成不良を補填する技術を開発することが挙げられる。このことから、本実施の形態1では、陰極の形成不良を補填することにより、発光装置の発光不良を防止して、発光装置の信頼性を向上させる工夫を施している。以下に、この工夫を施した本実施の形態1における技術的思想について説明する。 Therefore, the next possibility is to develop a technology to compensate for cathode formation defects even if foreign particles of a size straddling adjacent partition walls adhere to the cell region and cause cathode formation defects. To do. For this reason, in the first embodiment, a device for improving the reliability of the light emitting device is provided by compensating for the formation failure of the cathode to prevent the light emitting failure of the light emitting device. Below, the technical idea in this Embodiment 1 which gave this device is demonstrated.
 <実施の形態1における発光装置の構成>
 まず、本実施の形態1における発光装置LA1の概略構成について説明する。例えば、本実施の形態1における発光装置LA1は、様々な色の光を発光させる場合に適用することができるが、特に、白色光を照射する構成を採る場合について説明する。
<Configuration of Light-Emitting Device in Embodiment 1>
First, a schematic configuration of the light emitting device LA1 according to the first embodiment will be described. For example, the light emitting device LA1 according to the first embodiment can be applied to the case where light of various colors is emitted. In particular, a case where a configuration for irradiating white light is employed will be described.
 図8は、本実施の形態1における発光装置LA1の概略構成を示す平面図である。図8に示すように、本実施の形態1における発光装置LA1は、例えば、矩形形状の基板1Sを有しており、この基板1Sの主面(表面、上面)に複数のセル領域CRが形成されている。具体的に、基板1Sの主面には、X方向に所定間隔で並ぶように隔壁PTが配置されており、それぞれの隔壁PTは、Y方向に延在している。このように配置されている隔壁PTによって、複数のセル領域CRが区画されている。つまり、図8に示すように、互いに隣り合う隔壁PTで挟まれた領域がセル領域CRとなる。したがって、本実施の形態1における発光装置LA1では、Y方向に延在するセル領域がX方向に並ぶように配置されていることになる。 FIG. 8 is a plan view showing a schematic configuration of the light emitting device LA1 according to the first embodiment. As shown in FIG. 8, the light emitting device LA1 in the first embodiment includes, for example, a rectangular substrate 1S, and a plurality of cell regions CR are formed on the main surface (surface, upper surface) of the substrate 1S. Has been. Specifically, partition walls PT are arranged on the main surface of the substrate 1S so as to be arranged at predetermined intervals in the X direction, and each partition wall PT extends in the Y direction. A plurality of cell regions CR are partitioned by the partition walls PT arranged in this manner. That is, as shown in FIG. 8, a region sandwiched between adjacent partition walls PT is a cell region CR. Therefore, in the light emitting device LA1 in the first embodiment, the cell regions extending in the Y direction are arranged so as to be aligned in the X direction.
 ここで、図8に示すように、本実施の形態1における発光装置LA1では、赤色(R)を照射するセル領域CRと、緑色(G)を照射するセル領域CRと、青色(B)を照射するセル領域CRが周期的に配置されている。これにより、本実施の形態1における発光装置LA1によれば、白色光を照射させることができる。すなわち、RGBのそれぞれを発光するセル領域CRの物理的な配置が充分に細かく、かつ、観察者が発光装置LA1から充分に離れた場所にいれば、人間の眼に入射するRGBのそれぞれの光は、白色光として認識されるのである。このような原理に基づき、本実施の形態1における発光装置LA1では、RGBのそれぞれを発光するセル領域CRを周期的に配置している。この構成の場合、例えば、RGBのそれぞれ光量を調整することにより、白色光だけでなく、様々な色合いの光を照射することができる。 Here, as shown in FIG. 8, in the light emitting device LA1 in the first embodiment, the cell region CR that irradiates red (R), the cell region CR that irradiates green (G), and blue (B). The cell regions CR to be irradiated are periodically arranged. Thereby, according to light-emitting device LA1 in this Embodiment 1, white light can be irradiated. That is, if the physical arrangement of the cell regions CR that emit RGB light is sufficiently fine and the observer is sufficiently away from the light emitting device LA1, the RGB light beams that are incident on the human eye. Is recognized as white light. Based on such a principle, in the light emitting device LA1 according to the first embodiment, the cell regions CR that respectively emit RGB are periodically arranged. In the case of this configuration, for example, by adjusting the respective light amounts of RGB, it is possible to irradiate not only white light but also light of various colors.
 ただし、本実施の形態1における発光装置LA1の構成は、図8に示す構成に限定されるものではなく、その他の方法で白色光を照射させることもできる。例えば、RGBのうちの一色と、その色と補色関係にある色(シアン、イエロー、マゼンダ:CYM)を周期的に配置して白色光を得るようにしてもよい。この場合、例えば、青色(B)とその補色の黄色(Y)を使用して白色光を得る構成は汎用性が高い。 However, the configuration of the light emitting device LA1 in the first embodiment is not limited to the configuration shown in FIG. 8, and white light can be irradiated by other methods. For example, white light may be obtained by periodically arranging one color of RGB and a color (cyan, yellow, magenta: CYM) complementary to the color. In this case, for example, a configuration for obtaining white light using blue (B) and its complementary color yellow (Y) is highly versatile.
 さらには、有機EL素子の特徴を生かして白色光を得るように構成することもできる。すなわち、有機EL素子は、RGBの発光層をnmオーダの薄膜で積層することができる点が無機LEDと大きく異なる点である。つまり、デバイスの構造上、単一色しか得ることができない無機LEDと異なり、有機EL素子は、単一の電流励起で白色光を得ることもできるのである。この場合、例えば、複数のセル領域CRのそれぞれにおいて、陽極と陰極で挟まれる発光層をRGBの積層構造とすることにより、セル領域ごとに白色光を発光させるように構成することができる。このように、有機EL素子では、RGBのそれぞれの色を発する発光層を素子の成膜過程において、陽極と陰極の間に内在させることにより、単独のセル領域から白色光を得ることができる。したがって、本実施の形態1では、例えば、複数のセル領域のそれぞれから白色光を発するように構成することもできる。 Furthermore, it is possible to obtain white light by taking advantage of the characteristics of the organic EL element. That is, the organic EL element is greatly different from the inorganic LED in that RGB light emitting layers can be laminated with a thin film of the order of nm. In other words, the organic EL element can also obtain white light by single current excitation, unlike the inorganic LED that can obtain only a single color due to the structure of the device. In this case, for example, in each of the plurality of cell regions CR, the light emitting layer sandwiched between the anode and the cathode has an RGB stacked structure, whereby white light can be emitted for each cell region. As described above, in the organic EL element, white light can be obtained from a single cell region by providing a light emitting layer emitting each color of RGB between the anode and the cathode in the process of forming the element. Therefore, in the first embodiment, for example, white light can be emitted from each of the plurality of cell regions.
 次に、図9は、本実施の形態1における発光装置LA1の陽極構成を主に示す平面図である。図9に示すように、矩形形状をした基板1S上に陽極AEが形成されている。ここで言う基板上とは、基板の上方という意味であり、基板との間に保護膜等の他の層が存在する場合も含まれる。具体的に、本実施の形態1では、X方向に所定間隔で複数の陽極AEが並ぶように配置されており、複数の陽極AEのそれぞれがY方向に延在するように配置されている。この点で、図1に示す関連技術に示す陽極AE(ベタパターン)と相違する。 Next, FIG. 9 is a plan view mainly showing the anode configuration of the light emitting device LA1 in the first embodiment. As shown in FIG. 9, an anode AE is formed on a rectangular substrate 1S. The term “on the substrate” as used herein means above the substrate, and includes a case where another layer such as a protective film exists between the substrate and the substrate. Specifically, in the first embodiment, the plurality of anodes AE are arranged in a predetermined interval in the X direction, and each of the plurality of anodes AE is arranged to extend in the Y direction. This is different from the anode AE (solid pattern) shown in the related art shown in FIG.
 そして、本実施の形態1では、基板1Sの前記第1電極が形成された側の面から見た平面視において、互いに隣り合う陽極AEに挟まれるように補助配線AWL(第2電極用補助配線)が形成されている。この補助配線AWLを設ける点が本実施の形態1の特徴の1つである。この補助配線AWLは、陽極AEとは離間領域(スペース領域)を介して設けられており、X方向に所定間隔で並んで配置されている。さらに、個々の補助配線AWLは、陽極AEと同様に、Y方向に延在するように構成されている。このように本実施の形態1では、陽極AEと離間領域を介して補助配線AWLを設けているため、陽極AEがストライプ状に形成されることになる。 In the first embodiment, the auxiliary wiring AWL (second electrode auxiliary wiring) is sandwiched between the anodes AE adjacent to each other in a plan view as viewed from the surface of the substrate 1S on which the first electrode is formed. ) Is formed. One feature of the first embodiment is that the auxiliary wiring AWL is provided. The auxiliary wiring AWL is provided through a separation region (space region) from the anode AE, and is arranged side by side at a predetermined interval in the X direction. Further, each auxiliary wiring AWL is configured to extend in the Y direction, like the anode AE. As described above, in the first embodiment, since the auxiliary wiring AWL is provided via the separation area from the anode AE, the anode AE is formed in a stripe shape.
 さらに、複数の陽極AEのそれぞれの上にバス電極BE(第1電極用補助配線)が形成されている。具体的に、複数の陽極AEのそれぞれの上に形成されるバス電極BEは、ストライプ状に形成されている。すなわち、複数のバス電極BEは、X方向に所定間隔で配置され、それぞれのバス電極BEがY方向に延在するように形成されている。このバス電極BEは、陽極AEと電気的に接続されており、陽極AEの抵抗を低減させるために形成されている。 Furthermore, a bus electrode BE (first electrode auxiliary wiring) is formed on each of the plurality of anodes AE. Specifically, the bus electrode BE formed on each of the plurality of anodes AE is formed in a stripe shape. That is, the plurality of bus electrodes BE are arranged at a predetermined interval in the X direction, and each bus electrode BE is formed to extend in the Y direction. The bus electrode BE is electrically connected to the anode AE and is formed to reduce the resistance of the anode AE.
 続いて、図10は、本実施の形態1の発光装置LA1において、図9に示す陽極AEおよび補助配線AWL上に形成される陰極構成を主に示す平面図である。図10に示すように、複数の隔壁PTがX方向に所定間隔で配置されており、それぞれの隔壁PTがY方向に延在するように形成されている。このとき、互いに隣り合う隔壁PTでセル領域CRが区画される。つまり、セル領域CRを挟むように隔壁PTが配置され、隔壁PTと平面的に重なる下層に図9に示すバス電極BEが配置されていることになる。また、セル領域CRと平面的に重なる下層に図9に示す陽極AEおよび補助配線AWLが配置されていることになる。そして、隔壁PTで区画されたセル領域CRに陰極CEが形成されている。この陰極CEは、セル領域CRごとに分離されている。すなわち、陰極CEは、複数のセル領域CRのそれぞれに対応して設けられていることになる。 Subsequently, FIG. 10 is a plan view mainly showing a cathode configuration formed on the anode AE and the auxiliary wiring AWL shown in FIG. 9 in the light emitting device LA1 of the first embodiment. As shown in FIG. 10, a plurality of partition walls PT are arranged at predetermined intervals in the X direction, and each partition wall PT is formed to extend in the Y direction. At this time, the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the partition PT is disposed so as to sandwich the cell region CR, and the bus electrode BE shown in FIG. 9 is disposed in a lower layer overlapping the partition PT in plan view. Further, the anode AE and the auxiliary wiring AWL shown in FIG. 9 are arranged in a lower layer overlapping the cell region CR in plan view. A cathode CE is formed in the cell region CR defined by the partition walls PT. The cathode CE is separated for each cell region CR. That is, the cathode CE is provided corresponding to each of the plurality of cell regions CR.
 このことから、本実施の形態1における発光装置LA1では、補助配線AWLが設けられているとともに、陽極AEおよび陰極CEの両方がセル領域CRごとに分離されていることになる。そして、分離されているそれぞれの陽極AEおよび陰極CEは、X方向に所定間隔で配置されながら、個々の陽極AEおよび個々の陰極CEは、Y方向に延在するように構成されていることになる。 For this reason, in the light emitting device LA1 in the first embodiment, the auxiliary wiring AWL is provided, and both the anode AE and the cathode CE are separated for each cell region CR. The separated anodes AE and cathodes CE are arranged at predetermined intervals in the X direction, and the individual anodes AE and individual cathodes CE are configured to extend in the Y direction. Become.
 本実施の形態1における発光装置LA1の平面構成は上記のようになっており、以下では、発光装置LA1の断面構成について説明する。図11は、本実施の形態1における発光装置LA1の断面構成の一例を示す図である。図11では、主に、1つのセル領域CRに対応した領域が図示されている。 The planar configuration of the light emitting device LA1 in the first embodiment is as described above, and the cross-sectional configuration of the light emitting device LA1 will be described below. FIG. 11 is a diagram illustrating an example of a cross-sectional configuration of the light emitting device LA1 according to the first embodiment. In FIG. 11, an area corresponding to one cell area CR is mainly illustrated.
 図11に示すように、本実施の形態1における発光装置LA1は、基板1Sを有している。この基板1Sの種類や構造は、特に限定されるものではなく、用途に応じて、フレキシブルな材質の基板や硬質な材質などを使用することができる。具体的に、基板1Sの材料としては、例えば、ガラス、石英、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメタクリレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエステル、ポリカーボネート等を挙げることができる。 As shown in FIG. 11, the light emitting device LA1 in the first embodiment has a substrate 1S. The type and structure of the substrate 1S are not particularly limited, and a flexible substrate, a hard material, or the like can be used depending on the application. Specifically, examples of the material of the substrate 1S include glass, quartz, polyethylene, polypropylene, polyethylene terephthalate, polymethacrylate, polymethyl methacrylate, polymethyl acrylate, polyester, polycarbonate, and the like.
 上述した基板1Sの主面(表面、上面)上には、陽極AEおよび補助配線AWLが形成されている。特に、本実施の形態1では、陽極AEと補助配線AWLの間には離間領域(スペース領域)が設けられており、陽極AEと補助配線AWLは電気的に分離されている。 The anode AE and the auxiliary wiring AWL are formed on the main surface (surface, upper surface) of the substrate 1S described above. In particular, in the first embodiment, a separation region (space region) is provided between the anode AE and the auxiliary wiring AWL, and the anode AE and the auxiliary wiring AWL are electrically separated.
 ここで、本明細書でいう「主面(表面、上面)」とは、発光素子が形成される素子形成面のことを言い、この素子形成面と反対側の面が「裏面(下面)」となる。 Here, “main surface (front surface, upper surface)” in this specification means an element formation surface on which a light emitting element is formed, and the surface opposite to the element formation surface is “back surface (lower surface)”. It becomes.
 次に、図11に示すように、陽極AE上には、バス電極BEが形成されており、このバス電極BEと陽極AEとは電気的に接続されている。ここで、陽極AE上にバス電極BEを設けている理由について説明する。例えば、ボトムエミッション方式の発光装置LA1において、陽極AEは、例えば、ITOやIZOなどの透明電極から形成する必要がある。ところが、ITOやIZOからなる透明電極の抵抗率は比較的高いという特性がある。このため、例えば、陽極AEに正電圧を給電しても、陽極AEの全体領域に均一な正電圧を供給できなくなるおそれがあるのである。つまり、給電領域から遠い陽極AEの領域では、透明電極の比較的高い抵抗率のため、電圧降下が顕著となり、給電領域から離れれば離れるほど印加される電圧が低下することになる。この結果、陽極AEの全体領域に均一な正電圧を供給することが難しくなる。この場合、セル領域CRに印加される電圧が局所領域ごとに変化することになり、セル領域CRでの発光強度が場所によって変化する。これにより、発光装置において輝度ムラが生じる可能性が高まる。 Next, as shown in FIG. 11, a bus electrode BE is formed on the anode AE, and the bus electrode BE and the anode AE are electrically connected. Here, the reason why the bus electrode BE is provided on the anode AE will be described. For example, in the bottom emission type light emitting device LA1, the anode AE needs to be formed of a transparent electrode such as ITO or IZO. However, a transparent electrode made of ITO or IZO has a characteristic that the resistivity is relatively high. For this reason, for example, even if a positive voltage is supplied to the anode AE, there is a possibility that a uniform positive voltage cannot be supplied to the entire area of the anode AE. That is, in the region of the anode AE far from the power supply region, the voltage drop becomes significant due to the relatively high resistivity of the transparent electrode, and the applied voltage decreases as the distance from the power supply region increases. As a result, it becomes difficult to supply a uniform positive voltage to the entire area of the anode AE. In this case, the voltage applied to the cell region CR changes for each local region, and the light emission intensity in the cell region CR changes depending on the location. This increases the possibility of uneven brightness in the light emitting device.
 そこで、本実施の形態1では、陽極AE上にバス電極BEを形成している。このバス電極BEは、例えば、ITOやIZOなどの透明電極よりも抵抗率の低いアルミニウム膜などの金属膜から構成されており、陽極AEの延在方向であるY方向に延在するように構成されている(図9参照)。これにより、陽極AEとバス電極BEを一体化した電極の抵抗率を低減することができる。この結果、給電領域から離れている領域であっても、電圧降下を低減することができ、一体化した電極の全体領域に印加される正電圧の均一性を向上させることができる。これにより、セル領域CRに印加される電圧が局所領域ごとに変化することを抑制でき、セル領域CRでの発光強度の場所依存性を小さくすることができる。このように、陽極AEと一体化するようにバス電極BEを設けることにより、発光装置における輝度ムラを低減することができるのである。 Therefore, in the first embodiment, the bus electrode BE is formed on the anode AE. The bus electrode BE is made of a metal film such as an aluminum film having a resistivity lower than that of a transparent electrode such as ITO or IZO, and extends in the Y direction that is the extending direction of the anode AE. (See FIG. 9). Thereby, the resistivity of the electrode which integrated anode AE and bus electrode BE can be reduced. As a result, the voltage drop can be reduced even in a region away from the power supply region, and the uniformity of the positive voltage applied to the entire region of the integrated electrode can be improved. Thereby, it can suppress that the voltage applied to the cell area | region CR changes for every local area | region, and the location dependence of the emitted light intensity in the cell area | region CR can be made small. Thus, by providing the bus electrode BE so as to be integrated with the anode AE, luminance unevenness in the light emitting device can be reduced.
 なお、バス電極BEは、例えば、陽極AEよりも抵抗率の低いアルミニウム膜に代表される金属膜が使用されるが、この金属膜は透明でないため、セル領域CR上に形成することはできない。このため、セル領域CRを区画している隔壁PTの下層に設けられているのである。この結果、セル領域CRの発光を遮ることなく、陽極AEとバス電極BEとを一体化した電極の抵抗率を低減することができる。 For example, a metal film typified by an aluminum film having a lower resistivity than the anode AE is used as the bus electrode BE. However, since this metal film is not transparent, it cannot be formed on the cell region CR. For this reason, it is provided in the lower layer of the partition PT which divides the cell region CR. As a result, the resistivity of the electrode in which the anode AE and the bus electrode BE are integrated can be reduced without blocking the light emission of the cell region CR.
 続いて、バス電極BEおよび補助配線AWLを覆うように、例えば、ポリイミド樹脂膜からなる絶縁膜IL1が形成されている。この絶縁膜IL1には、補助配線AWLの表面に達する開口部OP1が形成されているとともに、バス電極BEを覆う絶縁膜IL1上に隔壁PTが形成されている。この隔壁PTは、例えば、感光性樹脂から構成されている。この隔壁PTは、例えば、図11に示すように、隔壁PTの底部の幅が隔壁PTの上部の幅よりも小さくなるような形状をしている。言い換えれば、隔壁PTにおいて、Y方向(第1方向)と直交する隔壁PTの断面形状は、逆テーパ形状をしているということができる。 Subsequently, an insulating film IL1 made of, for example, a polyimide resin film is formed so as to cover the bus electrode BE and the auxiliary wiring AWL. In this insulating film IL1, an opening OP1 reaching the surface of the auxiliary wiring AWL is formed, and a partition PT is formed on the insulating film IL1 covering the bus electrode BE. This partition PT is made of, for example, a photosensitive resin. For example, as shown in FIG. 11, the partition PT has a shape such that the width of the bottom of the partition PT is smaller than the width of the top of the partition PT. In other words, in the partition PT, the cross-sectional shape of the partition PT perpendicular to the Y direction (first direction) can be said to be an inversely tapered shape.
 このとき、隔壁PTが形成されている領域を隔壁形成領域と呼ぶことにすると、隔壁形成領域において、隔壁PTの下層には、絶縁膜IL1を介してバス電極BEが形成されていることになり、隔壁形成領域の間に挟まれた領域がセル領域CRとなる。言い換えれば、セル領域CRは、互いに隣り合う隔壁PTで挟まれた領域として定義される。 At this time, if the region where the partition PT is formed is referred to as a partition formation region, the bus electrode BE is formed below the partition PT in the partition formation region via the insulating film IL1. A region sandwiched between the partition wall formation regions is a cell region CR. In other words, the cell region CR is defined as a region sandwiched between the partition walls PT adjacent to each other.
 ここで、本実施の形態1では、セル領域CRは、発光部LPと導通部CPとを備えている。具体的に、セル領域CRの大部分が発光部LPであり、平面視において、この発光部LPと隔壁PTで挟まれる領域が導通部CPとして定義される。例えば、互いに隣り合う隔壁PTで区画されるセル領域CRの幅は、100μm~150μmであり、導通部CPの幅は、例えば、30μm程度である。 Here, in the first embodiment, the cell region CR includes the light emitting part LP and the conduction part CP. Specifically, most of the cell region CR is the light emitting portion LP, and a region sandwiched between the light emitting portion LP and the partition wall PT in plan view is defined as the conduction portion CP. For example, the width of the cell region CR partitioned by the partition walls PT adjacent to each other is 100 μm to 150 μm, and the width of the conduction part CP is about 30 μm, for example.
 発光部LPにおいては、陽極AE上に発光層を含む有機層OLが形成されており、この有機層OL上に、例えば、アルミニウム膜(Al膜)や銀膜(Ag膜)からなる陰極CEが形成されている。 In the light emitting unit LP, an organic layer OL including a light emitting layer is formed on the anode AE, and a cathode CE made of, for example, an aluminum film (Al film) or a silver film (Ag film) is formed on the organic layer OL. Is formed.
 一方、導通部CPにおいては、基板1S上に補助配線AWLが形成されており、この補助配線AWLを覆うように絶縁膜IL1が形成されている。さらに、導通部CPにおいては、絶縁膜IL1に開口部OP1が形成されており、この開口部OP1は、補助配線AWLの表面に達するように形成されている。そして、導通部CPにおいては、発光層を含む有機層OLは形成されておらず、開口部OP1内を含む絶縁膜IL1上に陰極CEが形成されている。すなわち、本実施の形態1においては、発光部LPから導通部CPにわたって陰極CEが形成されている。具体的に、陰極CEは、発光部LPに形成されている有機層OL上から、導通部CP上に形成されている補助配線AWLに跨るように形成されている。特に、導通部CPおいては、絶縁膜IL1上に陰極CEが形成されるが、この陰極CEは、絶縁膜IL1に形成された開口部OP1を埋め込むように形成されている。これにより、陰極CEと補助配線AWLが電気的に接続されることになる。つまり、本実施の形態1における発光装置LA1において、陰極CEと補助配線AWLとは電気的に接続されていることになる。 On the other hand, in the conductive portion CP, an auxiliary wiring AWL is formed on the substrate 1S, and an insulating film IL1 is formed so as to cover the auxiliary wiring AWL. Further, in the conduction part CP, an opening OP1 is formed in the insulating film IL1, and the opening OP1 is formed so as to reach the surface of the auxiliary wiring AWL. In the conduction part CP, the organic layer OL including the light emitting layer is not formed, and the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1. That is, in the first embodiment, the cathode CE is formed from the light emitting part LP to the conduction part CP. Specifically, the cathode CE is formed so as to straddle the auxiliary wiring AWL formed on the conduction portion CP from the organic layer OL formed in the light emitting portion LP. In particular, in the conduction portion CP, the cathode CE is formed on the insulating film IL1, and the cathode CE is formed so as to fill the opening OP1 formed in the insulating film IL1. As a result, the cathode CE and the auxiliary wiring AWL are electrically connected. That is, in the light emitting device LA1 according to Embodiment 1, the cathode CE and the auxiliary wiring AWL are electrically connected.
 本実施の形態1における発光装置LA1は上記のように構成されており、以下に、セル領域CRのさらなる詳細な構成について説明する。本実施の形態1における発光装置LA1に設けられている複数のセル領域CRのそれぞれは、発光部LPと導通部CPとを有している点に特徴点がある。以下では、まず、セル領域CRに形成されている発光部LPの構成例について説明した後、この発光部LPでの発光メカニズムについて説明し、その後、本実施の形態1の特徴である導通部CPについて説明することにする。 The light emitting device LA1 according to the first embodiment is configured as described above, and a more detailed configuration of the cell region CR will be described below. Each of the plurality of cell regions CR provided in the light emitting device LA1 in the first embodiment is characterized in that it includes a light emitting part LP and a conduction part CP. In the following, first, a configuration example of the light emitting unit LP formed in the cell region CR will be described, then a light emission mechanism in the light emitting unit LP will be described, and then the conduction unit CP which is a feature of the first embodiment. Will be described.
 <発光部の構成例>
 図11に示す発光部LPの構成要素である有機層OLの材料は、低分子系材料と高分子系材料に大別される。そこで、低分子系材料から構成される有機層OLを使用した発光部LPの構成例と、高分子系材料から構成される有機層OLを使用した発光部LPの構成例について説明する。
<Configuration example of light emitting unit>
The material of the organic layer OL that is a component of the light emitting unit LP shown in FIG. 11 is roughly classified into a low molecular material and a high molecular material. Therefore, a configuration example of the light emitting unit LP using the organic layer OL made of a low molecular material and a configuration example of the light emitting unit LP using the organic layer OL made of a polymer material will be described.
 図12は、低分子系材料から構成される有機層OLを使用した発光部LPの構成例を示す図である。図12に示すように、本実施の形態1における発光部LPは、例えば、基板1S上に陽極AE(正孔注入電極)が形成されている。そして、この陽極AE上に有機層OLが形成され、有機層OL上に陰極CEが形成されている。このとき、有機層OLは、例えば、図12に示すように、陽極AE上に形成された正孔注入層HILと、正孔注入層HIL上に形成された正孔輸送層HTLと、正孔輸送層HTL上に形成された発光層LLと、発光層LL上に形成された電子輸送層ETLと、電子輸送層ETL上に形成された電子注入層EILと、を有している。 FIG. 12 is a diagram showing a configuration example of the light emitting unit LP using the organic layer OL composed of a low molecular material. As shown in FIG. 12, in the light emitting unit LP in the first embodiment, for example, an anode AE (hole injection electrode) is formed on a substrate 1S. An organic layer OL is formed on the anode AE, and a cathode CE is formed on the organic layer OL. At this time, as shown in FIG. 12, for example, the organic layer OL includes a hole injection layer HIL formed on the anode AE, a hole transport layer HTL formed on the hole injection layer HIL, It has a light emitting layer LL formed on the transport layer HTL, an electron transport layer ETL formed on the light emitting layer LL, and an electron injection layer EIL formed on the electron transport layer ETL.
 正孔注入層HILは、陽極AEからの正孔注入効率を向上させるために設けられている。具体的に、有機化合物には、最高被占分子軌道(HOMO(highest occupied molecular orbital))と、最低空分子軌道(LUMO(lowest unoccupied molecular orbital))とが存在する。このとき、HOMOは、電子が充填されている軌道の中でも一番エネルギーの高い軌道であり、原子核からの束縛が一番小さい。このことから、HOMOは、電子が一番動きやすい軌道ということができる。例えば、陽極AEと正孔輸送層HTLの界面では、正孔輸送層HTLのHOMOから電子が陽極AE側に移動する。つまり、正孔輸送層HTLは、陽極AEへ電子を供給することにより酸化される。言い換えれば、陽極AEから正孔輸送層HTLに正孔が注入される。この電子の動きは、陽極AEの仕事関数と正孔輸送層HTLのHOMO準位が近くなればなるほど容易になる。 The hole injection layer HIL is provided in order to improve the hole injection efficiency from the anode AE. Specifically, an organic compound has a highest occupied molecular orbital (HOMO (highest occupied molecular orbital)) and a lowest unoccupied molecular orbital (LUMO (lowest unoccupied molecular orbital)). At this time, HOMO is the orbit with the highest energy among the orbits filled with electrons, and the constraint from the nucleus is the smallest. From this, it can be said that HOMO is an orbit where electrons move most easily. For example, at the interface between the anode AE and the hole transport layer HTL, electrons move from the HOMO of the hole transport layer HTL to the anode AE side. That is, the hole transport layer HTL is oxidized by supplying electrons to the anode AE. In other words, holes are injected from the anode AE into the hole transport layer HTL. This movement of electrons becomes easier as the work function of the anode AE and the HOMO level of the hole transport layer HTL are closer.
 この点に関し、正孔輸送層HTLは、正孔が円滑に発光層LLへ移動できるとともに、発光層LLに注入された電子が正孔輸送層HTL内に移動することを阻止することを主目的として選択される。したがって、必ずしも、正孔輸送層HTLのHOMO準位が陽極AEの仕事関数と近い材料が選択されるとは限らない。このため、陽極AEの仕事関数に近いHOMO準位を有する正孔注入層HILが挿入される。これにより、陽極AEからの正孔注入効率を向上させることができる。つまり、正孔注入層HILは、陽極AEからの正孔の注入効率を向上させるために設けられている。 In this regard, the hole transport layer HTL mainly aims to prevent holes from moving smoothly into the light emitting layer LL and to prevent electrons injected into the light emitting layer LL from moving into the hole transport layer HTL. Selected as. Therefore, a material whose HOMO level of the hole transport layer HTL is close to the work function of the anode AE is not necessarily selected. For this reason, a hole injection layer HIL having a HOMO level close to the work function of the anode AE is inserted. Thereby, the hole injection efficiency from anode AE can be improved. That is, the hole injection layer HIL is provided in order to improve the hole injection efficiency from the anode AE.
 また、上述したように、正孔輸送層HTLは、正孔が円滑に発光層LLへ移動できるようにする目的と、発光層LLに注入された電子が正孔輸送層HTL内に移動することを阻止する目的のために設けられている。したがって、正孔輸送層HTLは、正孔の移動度が高い材料から構成される。 In addition, as described above, the hole transport layer HTL has the purpose of allowing holes to move smoothly to the light emitting layer LL and that the electrons injected into the light emitting layer LL move into the hole transport layer HTL. Is provided for the purpose of preventing. Therefore, the hole transport layer HTL is made of a material having a high hole mobility.
 次に、発光層LLは、正孔輸送層HTLを移動してきた正孔と、電子輸送層ETLを移動してきた電子とが再結合した際に発光する機能を有している。このことから、発光層LLには、発光の量子効率が高い材料が使用される。 Next, the light emitting layer LL has a function of emitting light when holes that have moved through the hole transport layer HTL and electrons that have moved through the electron transport layer ETL are recombined. For this reason, a material with high quantum efficiency of light emission is used for the light emitting layer LL.
 続いて、電子注入層EILは、陰極CE(電子注入電極)からの電子注入効率を向上させるために設けられている。具体的に、有機化合物に存在するLUMOは、電子が充填されていない空の軌道の中で一番エネルギーの低い軌道である。例えば、陰極CEと電子輸送層ETLの界面では、陰極CEから電子輸送層ETLのLUMOに電子が移動する。これにより、電子輸送層ETLは、陰極CEから供給される電子によって還元される。この電子の動きも陰極CEの仕事関数と、電子輸送層ETLのLUMO準位が近くなればなるほど容易となる。 Subsequently, the electron injection layer EIL is provided in order to improve the efficiency of electron injection from the cathode CE (electron injection electrode). Specifically, LUMO present in an organic compound is an orbit having the lowest energy among empty orbits that are not filled with electrons. For example, at the interface between the cathode CE and the electron transport layer ETL, electrons move from the cathode CE to the LUMO of the electron transport layer ETL. Thereby, the electron transport layer ETL is reduced by the electrons supplied from the cathode CE. This movement of electrons becomes easier as the work function of the cathode CE and the LUMO level of the electron transport layer ETL are closer.
 この点に関し、電子輸送層ETLは、電子が円滑に発光層LLへ移動できるとともに、発光層LLに注入された正孔が電子輸送層ETL内に移動することを阻止することを主目的として選択される。したがって、必ずしも、電子輸送層ETLのLUMO準位が陰極CEの仕事関数と近い材料が選択されるとは限らない。このため、陰極CEの仕事関数に近いLUMO準位を有する電子注入層EILが挿入される。これにより、陰極CEからの電子注入効率を向上させることができる。つまり、電子注入層EILは、陰極CEからの電子の注入効率を向上させるために設けられている。 In this regard, the electron transport layer ETL is selected mainly for the purpose of preventing electrons from moving smoothly into the light emitting layer LL and preventing holes injected into the light emitting layer LL from moving into the electron transport layer ETL. Is done. Therefore, a material whose LUMO level of the electron transport layer ETL is close to the work function of the cathode CE is not necessarily selected. For this reason, an electron injection layer EIL having a LUMO level close to the work function of the cathode CE is inserted. Thereby, the electron injection efficiency from the cathode CE can be improved. That is, the electron injection layer EIL is provided in order to improve the injection efficiency of electrons from the cathode CE.
 また、電子輸送層ETLは、電子が円滑に発光層LLへ移動できるようにする目的と、発光層LLに注入された正孔が電子輸送層ETL内に移動することを阻止する目的のために設けられている。したがって、電子輸送層ETLは、電子の移動度が高い材料から構成される。 The electron transport layer ETL is used for the purpose of allowing electrons to move smoothly to the light emitting layer LL and for the purpose of preventing holes injected into the light emitting layer LL from moving into the electron transport layer ETL. Is provided. Therefore, the electron transport layer ETL is made of a material having a high electron mobility.
 以上のようにして、低分子系材料から構成される有機層OLを使用した発光部LPが構成されることになる。続いて、高分子系材料から構成される有機層OLを使用した発光部LPの構成例について説明する。 As described above, the light emitting portion LP using the organic layer OL composed of the low molecular material is configured. Next, a configuration example of the light emitting unit LP using the organic layer OL made of a polymer material will be described.
 図13は、高分子系材料から構成される有機層OLを使用した発光部LPの構成例を示す図である。図13に示すように、本実施の形態1における発光部LPは、例えば、基板1S上に陽極AEが形成されている。そして、この陽極AE上に有機層OLが形成され、有機層OL上に陰極CEが形成されている。このとき、有機層OLは、例えば、図13に示すように、陽極AE上に形成された正孔注入層HILと、正孔注入層HIL上に形成された正孔輸送層HTLと、正孔輸送層HTL上に形成された発光層LLと、を有している。 FIG. 13 is a diagram illustrating a configuration example of the light emitting unit LP using the organic layer OL formed of a polymer material. As shown in FIG. 13, in the light emitting unit LP according to the first embodiment, for example, an anode AE is formed on a substrate 1S. An organic layer OL is formed on the anode AE, and a cathode CE is formed on the organic layer OL. At this time, for example, as shown in FIG. 13, the organic layer OL includes a hole injection layer HIL formed on the anode AE, a hole transport layer HTL formed on the hole injection layer HIL, and a hole. A light emitting layer LL formed on the transport layer HTL.
 例えば、図12に示すように、低分子系材料から構成される有機層OLを使用した発光部LPは、複雑な多層構造をしており、主に製造には真空蒸着法が使用される。一方、例えば、図13に示すように、高分子系材料から構成される有機層OLを使用した典型的な発光部LPは、図12に示す場合よりも単純な構造をしており、主に製造には塗布法や印刷法が使用される。このことから、高分子系材料から構成される有機層OLは、低分子系材料から構成される有機層OLよりも単純な構造をしている点と、塗布法や印刷法を使用できる点によって、低分子系材料から構成される有機層OLよりも低コストで製造できる利点がある。つまり、真空蒸着法では、材料の利用効率が数%程度であるのに対し、塗布法や印刷法では、ほぼ材料を無駄なく利用できることから、高分子系材料から構成される有機層OLは、低分子系材料から構成される有機層OLよりも低コストで製造できる。
 ここで、発光層LLの材料としては、例えば、色素系発光材料、金属錯体系発光材料、高分子系発光材料などを挙げることができる。
For example, as shown in FIG. 12, the light emitting part LP using the organic layer OL made of a low molecular material has a complex multilayer structure, and the vacuum evaporation method is mainly used for manufacturing. On the other hand, for example, as shown in FIG. 13, a typical light emitting portion LP using an organic layer OL made of a polymer material has a simpler structure than the case shown in FIG. For the production, a coating method or a printing method is used. Therefore, the organic layer OL composed of a high molecular weight material has a simpler structure than the organic layer OL composed of a low molecular weight material, and the coating method and the printing method can be used. There is an advantage that it can be manufactured at a lower cost than the organic layer OL composed of a low molecular material. That is, in the vacuum deposition method, the material utilization efficiency is about several percent, whereas in the coating method and the printing method, the material can be used almost without waste. It can be manufactured at a lower cost than the organic layer OL composed of a low molecular material.
Here, examples of the material of the light emitting layer LL include a dye-based light-emitting material, a metal complex-based light-emitting material, and a polymer-based light-emitting material.
 具体的には、色素系発光材料としては、例えば、シクロペンタジエン誘導体、テトラフェニルブタジエン誘導体、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、シロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー等を挙げることができる。 Specifically, as the dye-based light emitting material, for example, cyclopentadiene derivative, tetraphenylbutadiene derivative, triphenylamine derivative, oxadiazole derivative, pyrazoloquinoline derivative, distyrylbenzene derivative, distyrylarylene derivative, silole derivative Thiophene ring compound, pyridine ring compound, perinone derivative, perylene derivative, oligothiophene derivative, trifumanylamine derivative, oxadiazole dimer, pyrazoline dimer, and the like.
 金属錯体系発光材料としては、例えば、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等を挙げることができる。 Examples of the metal complex light emitting material include an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazole zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, a porphyrin zinc complex, and a europium complex.
 高分子系発光材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリビニルカルバゾール、ポリフルオレノン誘導体、ポリフルオレン誘導体、ポリキノキサリン誘導体、および、これらの共重合体などを挙げることができる。 Examples of the polymer light-emitting material include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinyl carbazole, polyfluorenone derivatives, polyfluorene derivatives, polyquinoxaline derivatives, and combinations thereof. A polymer etc. can be mentioned.
 正孔注入層HILの材料としては、例えば、発光層LLの発光材料に例示した化合物の他、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウムなどの酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェンなどの誘導体等を挙げることができる。 As a material of the hole injection layer HIL, for example, in addition to the compounds exemplified as the light emitting material of the light emitting layer LL, phenylamine, starburst amine, phthalocyanine, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, etc. And derivatives of oxides, amorphous carbon, polyaniline, polythiophene, and the like.
 正孔輸送層HTLの材料としては、フタロシアニン、ナフタロシアニン、ポリフィリン、オキサジアゾール、トリフェニルアミン、トリアゾール、イミダゾール、イミダゾロン、ピラゾリン、テトラヒドロイミダゾール、ヒドラゾン、スチルベン、ペンタセン、ポリチオフェン、ブタジエン、または、これらの誘導体等を挙げることができる。 As a material of the hole transport layer HTL, phthalocyanine, naphthalocyanine, porphyrin, oxadiazole, triphenylamine, triazole, imidazole, imidazolone, pyrazoline, tetrahydroimidazole, hydrazone, stilbene, pentacene, polythiophene, butadiene, or these Derivatives and the like can be mentioned.
 電子輸送層HTLの材料としては、アントラキノジメタン、フルオレニリデンメタン、テトラシアノエチレン、フルオレノン、ジフェノキノンオキサジアゾール、アントロン、チオピランジオキシド、ジフェノキノン、ベンゾキノン、マロノニトリル、ニジトロベンゼン、ニトロアントラキノン、無水マレイン酸、ペリレンテトラカルボン酸、または、これらの誘導体などを挙げることができる。 Materials for the electron transport layer HTL include anthraquinodimethane, fluorenylidenemethane, tetracyanoethylene, fluorenone, diphenoquinone oxadiazole, anthrone, thiopyran dioxide, diphenoquinone, benzoquinone, malononitrile, niditrobenzene, nitro Anthraquinone, maleic anhydride, perylene tetracarboxylic acid, or derivatives thereof can be exemplified.
 電子注入層EILの材料としては、発光層LLの発光材料に例示した化合物の他、アルミニウム、フッ化リチウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化カルシウム、フッ化バリウム、酸化アルミニウム、酸化ストロンチウム、カルシウム、ポリメチルメタクリレートポリスチレンスルホン酸ナトリウム、リチウム、セシウム、フッ化セシウム等のように、アルカリ金属類、アルカリ金属類のハロゲン化物、アルカリ金属の有機錯体などを挙げることができる。 As the material of the electron injection layer EIL, in addition to the compounds exemplified as the light emitting material of the light emitting layer LL, aluminum, lithium fluoride, strontium, magnesium oxide, magnesium fluoride, strontium fluoride, calcium fluoride, barium fluoride, and oxide Examples include aluminum, strontium oxide, calcium, sodium polymethylmethacrylate polystyrene sulfonate, lithium, cesium, cesium fluoride, and the like, alkali metals, alkali metal halides, alkali metal organic complexes, and the like.
 <発光部からの発光メカニズム>
 次に、発光部LPからの発光メカニズムについて、図面を参照しながら説明する。図14は、陰極から有機層に注入された電子と、陽極から有機層に注入された正孔(ホール)が対極方向に移動する様子を示す模式図である。AおよびBは、有機層を構成する分子を示している。まず、図14において、陽極から有機層に注入された正孔と、陰極から有機層に注入された電子は、電界勾配を駆動力として、それぞれ対極に向かって移動するが、有機層中のキャリアの移動に関しては、図14に示すように化学的に考えることができる。すなわち、まず、陽極界面では、分子(B)は酸化され(電子を失う)、ラジカルカチオンになる。一電子少ない状態の分子(B)が無機半導体の正孔に相当し、キャリアの担い手となる。一方、陰極界面では、分子(A)が還元され(電子を受け取る)、ラジカルアニオンとなる。この場合、一電子が付加された状態の分子(A)が電子の担い手となる。
<Light emission mechanism from light emitting part>
Next, the light emission mechanism from the light emission part LP is demonstrated, referring drawings. FIG. 14 is a schematic diagram showing how electrons injected from the cathode into the organic layer and holes injected from the anode into the organic layer move in the counter electrode direction. A and B represent molecules constituting the organic layer. First, in FIG. 14, holes injected from the anode into the organic layer and electrons injected from the cathode into the organic layer move toward the counter electrode by using an electric field gradient as a driving force. As shown in FIG. 14, it can be considered chemically about the movement of. That is, first, at the anode interface, the molecule (B) is oxidized (loses electrons) and becomes a radical cation. Molecules (B + ) with a few electrons correspond to holes in the inorganic semiconductor and become carriers. On the other hand, at the cathode interface, the molecule (A) is reduced (receives electrons) and becomes a radical anion. In this case, the molecule (A ) in which one electron is added becomes an electron carrier.
 そして、生成されたラジカルカチオンおよびラジカルアニオンが、それぞれ隣接分子間での酸化還元反応を繰り返すことにより、有機層中を移動していく過程をキャリアの移動と考えることができる。 The process in which the generated radical cation and radical anion move through the organic layer by repeating the redox reaction between adjacent molecules can be considered as carrier movement.
 その後、発光層において、正孔と電子が再結合することにより、励起子が生成される。電流励起では、励起子は、正孔(ラジカルカチオン)と電子(ラジカルアニオン)が互いにクーロン力で束縛されている状態にあるが、電荷が一方に移ることにより、光励起による一電子励起状態と同じ状態となる。この励起子がもとに基底状態に戻る際のエネルギーの差分が光として放出される。 Thereafter, excitons are generated by recombination of holes and electrons in the light emitting layer. In current excitation, excitons are in a state where holes (radical cation) and electrons (radical anion) are bound to each other by Coulomb force, but the same as the one-electron excited state by photoexcitation due to the transfer of charge to one side. It becomes a state. The difference in energy when this exciton returns to the ground state is emitted as light.
 すなわち、有機層に対して陰極から電子が注入され、かつ、陽極から正孔が注入され、それぞれのキャリア(電子および正孔)が輸送される。そして、発光層において電子と正孔が再結合することにより励起子が生成される。この励起子が基底状態に戻るときに光によりエネルギーを放出するというメカニズムで発光部LPでの発光が生じている。 That is, electrons are injected from the cathode into the organic layer, and holes are injected from the anode, and respective carriers (electrons and holes) are transported. And an exciton is produced | generated when an electron and a hole recombine in a light emitting layer. The light emission part LP emits light by a mechanism in which energy is released by light when the exciton returns to the ground state.
 さらに図15を使用して詳しく説明する。図15は、有機層における発光メカニズムを説明するための図である。図15に示すように、正孔の輸送状態は、正孔輸送層を構成する分子が酸化されてラジカルカチオンを形成して移動する過程ということができる。同様に、電子の輸送状態は、電子輸送層を構成する分子が還元されてラジカルアニオンを形成して移動する過程ということができる。 Further details will be described with reference to FIG. FIG. 15 is a diagram for explaining the light emission mechanism in the organic layer. As shown in FIG. 15, the transport state of holes can be said to be a process in which molecules constituting the hole transport layer are oxidized to form radical cations and move. Similarly, it can be said that the electron transport state is a process in which molecules constituting the electron transport layer are reduced to form radical anions and move.
 そして、図15に示す発光層において、2種類のラジカルが接近して再結合し、正孔-電子対(励起子)が形成される。その後、励起子において、電荷が受け渡され、最高被占分子軌道(HOMO(highest occupied molecular orbital))に2個の電子を有し、かつ、最低空分子軌道(LUMO(lowest unoccupied molecular orbital))には電子が存在しない基底状態の分子と、HOMOとLUMOにそれぞれ1個ずつの電子を有する励起状態の分子が生成される。この励起子のうちの励起状態の分子が基底状態に戻るとき、励起状態と基底状態のエネルギー差に対応した光が放出される。このようにして、陽極と陰極との間に電流を流すと、発光部LPから光が放出されることがわかる。 Then, in the light emitting layer shown in FIG. 15, two types of radicals approach and recombine to form a hole-electron pair (exciton). The exciton then passes the charge, has two electrons in the highest occupied molecular orbital (HOMO), and has the lowest unoccupied molecular orbital (LUMO). In this case, a ground state molecule in which no electron exists and an excited state molecule having one electron each in HOMO and LUMO are generated. When the excited molecule of the excitons returns to the ground state, light corresponding to the energy difference between the excited state and the ground state is emitted. Thus, it can be seen that light is emitted from the light emitting portion LP when a current is passed between the anode and the cathode.
 <導通部の構成(実施の形態1における特徴)>
 次に、本実施の形態1の特徴である導通部CPについて説明する。例えば、図11に示すように、導通部CPには、補助配線AWLが設けられており、この補助配線AWLは、基板1S上に形成されている陽極AEと離間領域(スペース領域)を介して配置されている。そして、補助配線AWLは、例えば、図9に示すように、Y方向(第1方向)に延在している。さらに、導通部CPにおいては、補助配線AWLを覆うように絶縁膜IL1が形成されており、この絶縁膜IL1は、補助配線AWLと陽極AEの間に形成されている離間領域も埋め込むように形成されている。このため、離間領域を埋め込む絶縁膜IL1によって、補助配線AWLと陽極AEとの電気的な分離を確実に行なうことができる。
<Configuration of Conducting Part (Characteristics in Embodiment 1)>
Next, the conduction part CP, which is a feature of the first embodiment, will be described. For example, as shown in FIG. 11, the conduction portion CP is provided with an auxiliary wiring AWL, and the auxiliary wiring AWL is connected to the anode AE formed on the substrate 1 </ b> S via a separation region (space region). Has been placed. For example, as illustrated in FIG. 9, the auxiliary wiring AWL extends in the Y direction (first direction). Further, in the conductive portion CP, an insulating film IL1 is formed so as to cover the auxiliary wiring AWL, and this insulating film IL1 is formed so as to embed a separation region formed between the auxiliary wiring AWL and the anode AE. Has been. For this reason, the electrical isolation between the auxiliary wiring AWL and the anode AE can be reliably performed by the insulating film IL1 filling the separation region.
 続いて、導通部CPにおいて、絶縁膜IL1には開口部OP1が形成されており、この開口部OP1の底部から補助配線AWLが露出されるように構成されている。そして、この開口部OP1を埋め込むように陰極CEが形成されており、陰極CEと補助配線AWLとは電気的に接続されていることになる。 Subsequently, in the conduction part CP, an opening OP1 is formed in the insulating film IL1, and the auxiliary wiring AWL is exposed from the bottom of the opening OP1. The cathode CE is formed so as to fill the opening OP1, and the cathode CE and the auxiliary wiring AWL are electrically connected.
 このように本実施の形態1では、陰極CEと補助配線AWLが電気的に接続されている点が重要である。これにより、たとえ、陰極CEに形成不良が発生しても、陰極CEと電気的に接続されている補助配線AWLによって陰極CEの断線不良を回避することができる。つまり、本実施の形態1によれば、補助配線AWLを形成することで、陰極の形成不良を補填することができるのである。このことから、本実施の形態1における発光装置LA1によれば、発光装置LA1の発光不良を防止して、発光装置LA1の信頼性を向上させることができるのである。 Thus, in the first embodiment, it is important that the cathode CE and the auxiliary wiring AWL are electrically connected. Thereby, even if a formation failure occurs in the cathode CE, the disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the first embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA1 in the first embodiment, it is possible to prevent the light emitting failure of the light emitting device LA1 and improve the reliability of the light emitting device LA1.
 以下に、具体的に、導通部CPに、陰極CEと電気的に接続される補助配線AWLを設けることにより、発光装置LA1の信頼性を向上できることを、図面を参照しながら説明する。図16は、本実施の形態1における発光装置LA1において、互いに隣り合う隔壁PTに跨るように異物が付着した状態で、陰極CEの形成を行なった一状態を示す平面図である。図16に示すように、基板1S上には、X方向に所定間隔で複数の隔壁PTが形成され、それぞれの隔壁PTは、Y方向に延在している。このように配置されている複数の隔壁PTによって、複数のセル領域CRが区画されるが、例えば、図16の中央付近に形成されているセル領域CRに着目する。例えば、このセル領域CRを区画する一対の隔壁PTに跨るように異物が付着していたとすると、図16に示すように、セル領域CRの一部領域に陰極CEが形成されない隙間SPが形成されることがわかる。すなわち、異物が付着している領域と平面的に重なる下層には、陰極CEを構成する導体膜が形成されない結果、隙間SPが形成されることになるのである。 Hereinafter, it will be described in detail with reference to the drawings that the reliability of the light emitting device LA1 can be improved by providing the conductive line CP with the auxiliary wiring AWL electrically connected to the cathode CE. FIG. 16 is a plan view showing a state in which the cathode CE is formed in the light emitting device LA1 according to the first embodiment in a state where foreign matters are attached so as to straddle the adjacent partition walls PT. As shown in FIG. 16, a plurality of partition walls PT are formed at a predetermined interval in the X direction on the substrate 1S, and each partition wall PT extends in the Y direction. The plurality of cell regions CR are partitioned by the plurality of partition walls PT arranged in this manner. For example, attention is paid to the cell region CR formed near the center of FIG. For example, if a foreign substance adheres across the pair of partition walls PT that divide the cell region CR, as shown in FIG. 16, a gap SP in which the cathode CE is not formed is formed in a partial region of the cell region CR. I understand that That is, the gap SP is formed in the lower layer that overlaps with the area where the foreign matter is adhered, as a result of the conductor film constituting the cathode CE not being formed.
 したがって、図16に示すように、異物が付着したセル領域CRでは、セル領域CRの全体にわたって陰極CEが形成されるのではなく、陰極CEは、陰極CEの一部分である第1陰極部CEP1と、陰極CEの他の一部分である第2陰極部CEP2とに隙間SPによって分離されることになる。このことは、第1陰極部CEP1と第2陰極部CEP2とが一見、電気的に分離されるように思われる。 Accordingly, as shown in FIG. 16, in the cell region CR to which foreign matter is attached, the cathode CE is not formed over the entire cell region CR, but the cathode CE is connected to the first cathode portion CEP1 which is a part of the cathode CE. The second cathode part CEP2 which is another part of the cathode CE is separated by the gap SP. This seems that the first cathode part CEP1 and the second cathode part CEP2 are electrically separated at a glance.
 しかし、本実施の形態1における発光装置LA1においては、図16に示すように、セル領域CRが、発光部LPだけではなく、導通部CPも備えている。このため、図16から想像がつくように、隙間SPから露出している補助配線AWLによって、第1陰極部CEP1と第2陰極部CEP2が電気的に接続されることがわかる。つまり、本実施の形態1では、互いに隣り合う隔壁PTに跨るように異物が付着した状態で、陰極CEの形成を行なった結果、陰極CEに形成不良が発生しても、第1陰極部CEP1と第2陰極部CEP2が補助配線AWLを介して電気的に接続される。このため、本実施の形態1によれば、陰極CEの断線を防止することができ、陰極CEの断線に起因する発光不良を抑制することができる。この結果、本実施の形態1によれば、発光装置LA1の信頼性を飛躍的に向上させることができるのである。 However, in the light emitting device LA1 according to the first embodiment, as shown in FIG. 16, the cell region CR includes not only the light emitting portion LP but also the conduction portion CP. Therefore, as can be imagined from FIG. 16, it can be seen that the first cathode part CEP1 and the second cathode part CEP2 are electrically connected by the auxiliary wiring AWL exposed from the gap SP. That is, in the first embodiment, as a result of forming the cathode CE in a state in which foreign matter adheres across the partition walls PT adjacent to each other, even if a formation failure occurs in the cathode CE, the first cathode portion CEP1 And the second cathode portion CEP2 are electrically connected through the auxiliary wiring AWL. For this reason, according to this Embodiment 1, the disconnection of the cathode CE can be prevented and the light emission failure resulting from the disconnection of the cathode CE can be suppressed. As a result, according to the first embodiment, the reliability of the light emitting device LA1 can be dramatically improved.
 さらに断面図を使用して、本実施の形態1における発光装置LA1の利点について説明する。図17は、図16のA-A線で切断した断面図である。すなわち、図17は、セル領域CRの発光部LPに対応した断面図である。図17に示すように、基板1S上に陽極AEが形成されており、この陽極AE上に有機層OLが形成されていることがわかる。そして、正常状態では、この有機層OL上に形成不良の存在しない陰極が形成されることになるが、図16のA-A線においては、異物の付着に起因する隙間SPが存在するため、図17においては、有機層OL上に隙間SPを介して第1陰極部CEP1と第2陰極部CEP2が離間して形成されることになる。この場合、第1陰極部CEP1と第2陰極部CEP2は、電気的に分離されているように思われる。すなわち、セル領域CRの発光部LPにおいては、第1陰極部CEP1と第2陰極部CEP2が電気的に分離しているように見える。 Further, the advantages of the light emitting device LA1 according to the first embodiment will be described with reference to cross-sectional views. 17 is a cross-sectional view taken along line AA in FIG. That is, FIG. 17 is a cross-sectional view corresponding to the light emitting portion LP of the cell region CR. As shown in FIG. 17, it can be seen that the anode AE is formed on the substrate 1S, and the organic layer OL is formed on the anode AE. In a normal state, a cathode having no defective formation is formed on the organic layer OL. However, in the AA line in FIG. 16, there is a gap SP due to the adhesion of foreign matters. In FIG. 17, the first cathode part CEP1 and the second cathode part CEP2 are formed on the organic layer OL with a gap SP therebetween. In this case, the first cathode part CEP1 and the second cathode part CEP2 seem to be electrically separated. That is, in the light emitting part LP of the cell region CR, the first cathode part CEP1 and the second cathode part CEP2 appear to be electrically separated.
 この点に関し、図18は、図16のB-B線で切断した断面図である。すなわち、図18は、セル領域CRの導通部CPに対応した断面図である。図18に示すように、基板1S上には、補助配線AWLが形成されており、この補助配線AWL上に隙間SPを介して、第1陰極部CEP1と第2陰極部CEP2が形成されていることになる。図18を見てわかるように、第1陰極部CEP1と補助配線AWLは、電気的に接続されており、かつ、第2陰極部CEP2も補助配線AWLと電気的に接続されている。このことから、セル領域CRの導通部CPにおいて、第1陰極部CEP1と第2陰極部CEP2は、補助配線AWLを介して電気的に接続されていることがわかる。したがって、セル領域CRに形成されている第1陰極部CEP1と第2陰極部CEP2は、発光部LPにおいては断線しているように思えるが、実際には、導通部CPにおいて、電気的な接続が確保されていることがわかる。 In this regard, FIG. 18 is a cross-sectional view taken along line BB in FIG. That is, FIG. 18 is a cross-sectional view corresponding to the conduction portion CP of the cell region CR. As shown in FIG. 18, the auxiliary wiring AWL is formed on the substrate 1S, and the first cathode portion CEP1 and the second cathode portion CEP2 are formed on the auxiliary wiring AWL via the gap SP. It will be. As can be seen from FIG. 18, the first cathode portion CEP1 and the auxiliary wiring AWL are electrically connected, and the second cathode portion CEP2 is also electrically connected to the auxiliary wiring AWL. From this, it can be seen that in the conduction part CP of the cell region CR, the first cathode part CEP1 and the second cathode part CEP2 are electrically connected via the auxiliary wiring AWL. Therefore, although it seems that the first cathode part CEP1 and the second cathode part CEP2 formed in the cell region CR are disconnected in the light emitting part LP, the electrical connection is actually made in the conduction part CP. It can be seen that is secured.
 図19は、図16のA-A線で切断した断面図に補助配線AWLによって電気的な接続が確保されている状態を模式的に示す図である。図19に示すように、図面の左側から陽極給電が実施され、かつ、図面の右側から陰極給電が実施されていると仮定すると、もちろん、第1陰極部CEP1は、陰極の給電領域と電気的に接続されていることから、第1陰極部CEP1には、陰極電圧が供給される。さらに、本実施の形態1では、第1陰極部CEP1と第2陰極部CEP2が補助配線AWLで電気的に接続されているため、第2陰極部CEP2にも陰極電圧が供給されることになる。 FIG. 19 is a diagram schematically showing a state in which electrical connection is secured by the auxiliary wiring AWL in the cross-sectional view taken along the line AA in FIG. As shown in FIG. 19, when it is assumed that anode feeding is performed from the left side of the drawing and cathode feeding is performed from the right side of the drawing, of course, the first cathode portion CEP1 is electrically connected to the cathode feeding region. Therefore, the cathode voltage is supplied to the first cathode part CEP1. Further, in the first embodiment, since the first cathode part CEP1 and the second cathode part CEP2 are electrically connected by the auxiliary wiring AWL, the cathode voltage is also supplied to the second cathode part CEP2. .
 この結果、図19に示すように、陽極AEから第2陰極部CEP2には電流が流れるため、陽極AEと第2陰極部CEP2に挟まれた有機層OLにも電流が供給され、この有機層OLから光が射出される。また、陽極AEから第1陰極部CEPにも電流が流れるため、陽極と第1陰極部CEP1に挟まれた有機層OLにも電流が供給され、この有機層OLからも光が射出される。 As a result, as shown in FIG. 19, since current flows from the anode AE to the second cathode portion CEP2, current is also supplied to the organic layer OL sandwiched between the anode AE and the second cathode portion CEP2, and this organic layer Light is emitted from the OL. In addition, since current flows from the anode AE to the first cathode portion CEP, current is also supplied to the organic layer OL sandwiched between the anode and the first cathode portion CEP1, and light is also emitted from the organic layer OL.
 このようにして、本実施の形態1における発光装置LA1によれば、異物の付着に起因する発光不良を充分に抑制することができる。このことは、本実施の形態1によれば、異物の付着による陰極CEの形成不良が発生した場合であっても、補助配線AWLによる補填効果により、陰極CEの形成不良に基づく発光装置LA1の発光不良を抑制することができることを意味する。これにより、本実施の形態1における発光装置LA1によれば、信頼性を飛躍的に向上させることができるのである。 As described above, according to the light emitting device LA1 in the first embodiment, it is possible to sufficiently suppress the light emission failure caused by the adhesion of the foreign matter. This is because, according to the first embodiment, even if the formation failure of the cathode CE due to adhesion of foreign matter occurs, the effect of the light emitting device LA1 based on the formation failure of the cathode CE due to the filling effect by the auxiliary wiring AWL. It means that light emission defects can be suppressed. Thereby, according to light-emitting device LA1 in this Embodiment 1, reliability can be improved significantly.
 さらに、本実施の形態1の特徴は、補助配線AWLを陽極AEと同層で形成する点や、補助配線AWLの形成材料と陽極AEの形成材料が同一である点にも存在するが、これらの利点は、主に、発光装置LA1の製造工程を簡略化できる点や、発光装置LA1の製造コストを低減できる点に反映される。したがって、これら利点については、後述する発光装置LA1の製造方法で説明することにする。 Further, the feature of the first embodiment also exists in that the auxiliary wiring AWL is formed in the same layer as the anode AE, and that the formation material of the auxiliary wiring AWL and the formation material of the anode AE are the same. This advantage is mainly reflected in that the manufacturing process of the light emitting device LA1 can be simplified and the manufacturing cost of the light emitting device LA1 can be reduced. Therefore, these advantages will be described in a method for manufacturing the light emitting device LA1 described later.
 <実施の形態1における発光装置の製造方法>
 本実施の形態1における発光装置LA1は上記のように構成されており、以下に、その製造方法について図面を参照しながら説明する。具体的には、まず、図20に示すフローチャートを使用して発光装置LA1の製造工程についての概略を説明した後、図21~図30を参照しながら、本実施の形態1における発光装置LA1の製造工程について説明する。
<Method for Manufacturing Light-Emitting Device in Embodiment 1>
The light emitting device LA1 in the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings. Specifically, first, the outline of the manufacturing process of the light emitting device LA1 will be described using the flowchart shown in FIG. 20, and then the light emitting device LA1 according to the first embodiment will be described with reference to FIGS. The manufacturing process will be described.
 図20は、本実施の形態1における発光装置LA1を製造する流れを示すフローチャートである。図20において、例えば、ガラス基板やプラスチック基板などに代表される可視光に対して透明な基板を用意する(S201)。そして、基板の主面(素子形成面)上に、例えば、ITOやIZOなどからなる第1導体膜を形成する(S202)。次に、フォトリソグラフィ技術およびエッチング技術を使用することにより、第1導体膜をパターニングする(S203)。これにより、第1導体膜からなる陽極および補助配線を形成することができる。続いて、陽極および補助配線を形成した基板上に、例えば、第1導体膜よりも抵抗率の低い第2導体膜を形成する(S204)。具体的に、第2導体膜は、例えば、アルミニウム膜に代表される金属膜から形成することができる。 FIG. 20 is a flowchart showing a flow of manufacturing the light emitting device LA1 according to the first embodiment. In FIG. 20, for example, a substrate transparent to visible light typified by a glass substrate or a plastic substrate is prepared (S201). Then, a first conductor film made of, for example, ITO or IZO is formed on the main surface (element formation surface) of the substrate (S202). Next, the first conductor film is patterned by using a photolithography technique and an etching technique (S203). Thereby, the anode and auxiliary wiring which consist of a 1st conductor film can be formed. Subsequently, for example, a second conductor film having a resistivity lower than that of the first conductor film is formed on the substrate on which the anode and the auxiliary wiring are formed (S204). Specifically, the second conductor film can be formed from, for example, a metal film typified by an aluminum film.
 その後、フォトリソグラフィ技術およびエッチング技術を使用することにより、第2導体膜をパターニングする(S205)。これにより、第2導体膜からなるバス電極を陽極上に形成することができる。 Thereafter, the second conductor film is patterned by using a photolithography technique and an etching technique (S205). Thereby, the bus electrode made of the second conductor film can be formed on the anode.
 次に、バス電極を形成した基板上に、例えば、ポリイミド樹脂膜からなる絶縁膜を形成する(S206)。そして、フォトリソグラフィ技術およびエッチング技術を使用することにより、この絶縁膜に開口部を形成する(S207)。この開口部は、平面視において、補助配線と重なるように形成され、開口部の底部において補助配線の表面が露出されるように形成される。 Next, an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the bus electrode is formed (S206). Then, an opening is formed in the insulating film by using a photolithography technique and an etching technique (S207). The opening is formed so as to overlap with the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring is exposed at the bottom of the opening.
 続いて、絶縁膜上に、例えば、感光性樹脂膜を形成し、この感光性樹脂膜をパターニングすることより、複数の隔壁を形成する(S208)。これにより、互いに隣り合う隔壁で挟まれたセル領域が区画される。このとき、このセル領域は、発光部と、平面視において、発光部と隔壁に挟まれた導通部とを有する。この導通部には、補助配線が含まれる。 Subsequently, for example, a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S208). As a result, a cell region sandwiched between adjacent partition walls is partitioned. At this time, the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view. This conduction part includes auxiliary wiring.
 その後、マスクを用いた真空蒸着法や、塗布法、あるいは、印刷法などを使用することにより、セル領域内に発光部に形成されている陽極上に発光層を含む有機層を形成する(S209)。そして、セル領域内の発光部から導通部にわたって、例えば、アルミニウム膜や銀膜からなる陰極を形成する(S210)。このとき、陰極は、発光部に形成されている有機層上から、導通部に形成されている開口部内を含む絶縁膜上に形成される。この結果、陰極は、開口部に充填されるため、開口部の底部から露出する補助配線と電気的に接続されることになる。なお、この工程後、有機EL素子を大気や水分から保護するため、封止工程が実施される。以上のようにして、本実施の形態1における発光装置を製造することができる。 Thereafter, an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum deposition method using a mask, a coating method, a printing method, or the like (S209). ). Then, a cathode made of, for example, an aluminum film or a silver film is formed from the light emitting portion in the cell region to the conducting portion (S210). At this time, the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion. As a result, since the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening. In addition, a sealing process is implemented after this process in order to protect an organic EL element from air | atmosphere or a water | moisture content. As described above, the light-emitting device according to Embodiment 1 can be manufactured.
 次に、本実施の形態1における発光装置LA1の製造方法について図面を参照しながら、さらに詳しく説明する。まず、図21に示すように、可視光に対して透明な基板1Sを用意する。その後、図22に示すように、基板1Sの主面(素子形成面)上に第1導体膜CF1を形成する。この第1導体膜CF1は、例えば、ITOやIZOに代表される透明膜から形成され、例えば、スパッタリング法を使用することにより形成することができる。 Next, the manufacturing method of the light emitting device LA1 in the first embodiment will be described in more detail with reference to the drawings. First, as shown in FIG. 21, a substrate 1S transparent to visible light is prepared. Thereafter, as shown in FIG. 22, a first conductor film CF1 is formed on the main surface (element formation surface) of the substrate 1S. The first conductor film CF1 is formed of a transparent film typified by ITO or IZO, for example, and can be formed by using, for example, a sputtering method.
 続いて、図23に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、第1導体膜CF1をパターニングする。これにより、第1導体膜CF1からなる陽極AEと、第1導体膜CF1からなる補助配線AWLを形成することができる。具体的に、陽極AEと補助配線AWLとは、離間領域を介して分離するよう形成される。この結果、陽極AEと補助配線AWLとは、電気的に分離されることになる。 Subsequently, as shown in FIG. 23, the first conductor film CF1 is patterned by using a photolithography technique and an etching technique. Thereby, the anode AE made of the first conductor film CF1 and the auxiliary wiring AWL made of the first conductor film CF1 can be formed. Specifically, the anode AE and the auxiliary wiring AWL are formed so as to be separated through a separation region. As a result, the anode AE and the auxiliary wiring AWL are electrically separated.
 ここで、本実施の形態1では、共通する第1導体膜CF1をパターニングすることにより、陽極AEおよび補助配線AWLを形成している。このため、補助配線AWLを独自に形成する工程を追加することなく、陽極AEを形成する工程を利用して補助配線AWLを形成することができる。この結果、本実施の形態1によれば、工程の簡略化および製造コストの低減を図ることができる。 Here, in the first embodiment, the anode AE and the auxiliary wiring AWL are formed by patterning the common first conductor film CF1. For this reason, the auxiliary wiring AWL can be formed using the process of forming the anode AE without adding the process of forming the auxiliary wiring AWL independently. As a result, according to the first embodiment, it is possible to simplify the process and reduce the manufacturing cost.
 本実施の形態1では、陽極AEと補助配線AWLとを同じ工程で形成しているため、必然的に、陽極AEと補助配線AWLは同層で形成されることになるとともに、陽極AEと補助配線AWLは、同一の材料(第1導体膜CF1)から形成されることになる。 In Embodiment 1, since the anode AE and the auxiliary wiring AWL are formed in the same process, the anode AE and the auxiliary wiring AWL are inevitably formed in the same layer, and the anode AE and the auxiliary wiring are inevitably formed. The wiring AWL is formed from the same material (first conductor film CF1).
 次に、図24に示すように、陽極AEおよび補助配線AWLを形成した基板1S上に第2導体膜CF2を形成する。第2導体膜CF2は、第1導体膜CF1よりも抵抗率の低い膜から形成される。例えば、第2導体膜CF2は、アルミニウム膜に代表される金属膜から形成され、例えば、スパッタリング法を使用することにより形成することができる。 Next, as shown in FIG. 24, the second conductor film CF2 is formed on the substrate 1S on which the anode AE and the auxiliary wiring AWL are formed. The second conductor film CF2 is formed from a film having a lower resistivity than the first conductor film CF1. For example, the second conductor film CF2 is formed of a metal film typified by an aluminum film, and can be formed by using, for example, a sputtering method.
 そして、図25に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、第2導体膜CF2をパターニングする。これにより、陽極AE上に第2導体膜CF2からなるバス電極BEを形成することができる。このバス電極BEは、下層に形成されている陽極AEと電気的に接続されており、陽極AEとバス電極BEからなる電極の抵抗率を下げる機能を有している。 Then, as shown in FIG. 25, the second conductor film CF2 is patterned by using a photolithography technique and an etching technique. Thereby, the bus electrode BE made of the second conductor film CF2 can be formed on the anode AE. The bus electrode BE is electrically connected to the anode AE formed in the lower layer, and has a function of reducing the resistivity of the electrode composed of the anode AE and the bus electrode BE.
 続いて、図26に示すように、バス電極BEを形成した基板1S上に、例えば、ポリイミド樹脂膜からなる絶縁膜IL1を形成する。この絶縁膜IL1は、例えば、陽極AEと補助配線AWLとの間に設けられている離間領域も埋め込むように形成される。 Subsequently, as shown in FIG. 26, an insulating film IL1 made of, for example, a polyimide resin film is formed on the substrate 1S on which the bus electrode BE is formed. For example, the insulating film IL1 is formed so as to embed a separation region provided between the anode AE and the auxiliary wiring AWL.
 その後、図27に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、絶縁膜IL1をパターニングして、底部が補助配線AWLに達する開口部OP1を形成する。これにより、補助配線AWLの表面が露出される。このとき、図27に示すように、バス電極BEが形成されていない陽極AE上の一部領域も絶縁膜IL1から露出するように、絶縁膜IL1のパターニングが行われる。 Thereafter, as shown in FIG. 27, by using a photolithography technique and an etching technique, the insulating film IL1 is patterned to form an opening OP1 whose bottom reaches the auxiliary wiring AWL. As a result, the surface of the auxiliary wiring AWL is exposed. At this time, as shown in FIG. 27, the insulating film IL1 is patterned so that a partial region on the anode AE where the bus electrode BE is not formed is also exposed from the insulating film IL1.
 次に、図28に示すように、絶縁膜IL1上に、例えば、感光性樹脂膜からなる隔壁PTを形成する。この隔壁PTは、例えば、フォトリソグラフィ技術を使用することにより、感光性樹脂膜をパターニングすることにより形成される。このとき、例えば、感光性樹脂膜に対して露光処理を実施した際、感光性樹脂膜の内部においては、下方ほど露光光の強度が低下する。このため、この露光光の強度差によって、現像液への溶解速度に差が生じ、逆テーパ形状の隔壁PTが形成されることになる。つまり、隔壁PTの底部の幅が隔壁PTの上部の幅よりも小さくなるように隔壁PTが形成される。言い換えれば、Y方向(第1方向)と直交する隔壁PTの断面形状が逆テーパ形状となるように隔壁PTが形成されることになる。 Next, as shown in FIG. 28, a partition PT made of, for example, a photosensitive resin film is formed on the insulating film IL1. The partition PT is formed, for example, by patterning a photosensitive resin film by using a photolithography technique. At this time, for example, when an exposure process is performed on the photosensitive resin film, the intensity of the exposure light decreases downward in the photosensitive resin film. For this reason, the difference in the intensity of the exposure light causes a difference in the dissolution rate in the developer, and the inversely tapered partition wall PT is formed. That is, the partition PT is formed such that the width of the bottom of the partition PT is smaller than the width of the upper portion of the partition PT. In other words, the partition PT is formed so that the cross-sectional shape of the partition PT perpendicular to the Y direction (first direction) is an inversely tapered shape.
 このようにして、X方向に所定間隔で配置されるとともに、Y方向に延在する複数の隔壁PTを形成することができる。この結果、互いに隣り合う隔壁PTによってセル領域CRが区画されることになる。すなわち、互いに隣り合う隔壁PTによって挟まれた領域がセル領域CRとなる。このセル領域CRには、発光部LPと、平面視において、発光部LPと隔壁PTで挟まれた導通部CPが形成されることになる。特に、導通部CPには、補助配線AWLが形成されている。 In this way, it is possible to form a plurality of partition walls PT arranged in the X direction at predetermined intervals and extending in the Y direction. As a result, the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the region sandwiched between the partition walls PT adjacent to each other is the cell region CR. In the cell region CR, the light emitting portion LP and the conduction portion CP sandwiched between the light emitting portion LP and the partition wall PT in plan view are formed. In particular, the auxiliary wiring AWL is formed in the conduction portion CP.
 続いて、図29に示すように、セル領域CR内の発光部LPに形成されている陽極AE上に発光層を含む有機層OLを形成する。例えば、有機層OLが低分子系材料から構成されている場合には、マスクを用いた真空蒸着法で有機層OLを形成することができる。一方、有機層OLが高分子系材料から構成されている場合には、塗布法や印刷法を使用することにより形成することができる。 Subsequently, as shown in FIG. 29, an organic layer OL including a light emitting layer is formed on the anode AE formed in the light emitting portion LP in the cell region CR. For example, when the organic layer OL is composed of a low molecular material, the organic layer OL can be formed by a vacuum vapor deposition method using a mask. On the other hand, when the organic layer OL is composed of a polymer material, it can be formed by using a coating method or a printing method.
 ここで、本実施の形態1では、セル領域CR全体にわたって有機層OLが形成されるのではなく、セル領域CR内の発光部LPにおいて有機層OLが形成される。言い換えれば、セル領域CR内の導通部CPには有機層OLは形成されない。この結果、導通部CPにおいては、補助配線AWL上および開口部OP1内には有機層OLが形成されないことになる。 Here, in the first embodiment, the organic layer OL is not formed over the entire cell region CR, but the organic layer OL is formed in the light emitting portion LP in the cell region CR. In other words, the organic layer OL is not formed in the conduction part CP in the cell region CR. As a result, in the conduction part CP, the organic layer OL is not formed on the auxiliary wiring AWL and in the opening OP1.
 その後、図30に示すように、セル領域CR内の発光部LPから導通部CPにわたって陰極CEを形成する。この陰極CEは、例えば、アルミニウム膜や銀膜から形成され、例えば、蒸着法により形成することができる。このとき、陰極CEを形成する方法として蒸着法を使用することにより、有機層OLに与えるダメージを低減することができる。ここで、隔壁PTが逆テーパ形状をしているため、陰極CEは複数のセル領域CRに跨って形成されることなく、個々のセル領域CRごとに分離した陰極CEを自動的に形成することができる。 Thereafter, as shown in FIG. 30, a cathode CE is formed from the light emitting portion LP in the cell region CR to the conducting portion CP. The cathode CE is formed of, for example, an aluminum film or a silver film, and can be formed by, for example, a vapor deposition method. At this time, the damage given to the organic layer OL can be reduced by using a vapor deposition method as a method of forming the cathode CE. Here, since the partition PT has an inversely tapered shape, the cathode CE is not formed across the plurality of cell regions CR, and the cathode CE separated for each cell region CR is automatically formed. Can do.
 このとき、陰極CEは、発光部LPに形成されている有機層OL上から、導通部CPに形成されている開口部OP1内を含む絶縁膜IL1上に形成される。この結果、陰極CEは、開口部OP1に充填されるため、開口部OP1の底部から露出する補助配線AWLと電気的に接続されることになる。 At this time, the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1 formed in the conducting portion CP from the organic layer OL formed in the light emitting portion LP. As a result, since the cathode CE is filled in the opening OP1, the cathode CE is electrically connected to the auxiliary wiring AWL exposed from the bottom of the opening OP1.
 なお、この工程後、有機EL素子を大気や水分から保護するため、封止工程が実施される。以上のようにして、本実施の形態1における発光装置LA1を製造することができる。 In addition, after this process, in order to protect an organic EL element from air | atmosphere and a water | moisture content, a sealing process is implemented. As described above, the light emitting device LA1 according to Embodiment 1 can be manufactured.
 <実施の形態1における代表的な効果>
 (1)本実施の形態1によれば、陰極CEと電気的に接続される補助配線AWLを設けている。このため、たとえ、異物の付着に基づく陰極CEに形成不良が発生しても、陰極CEと電気的に接続されている補助配線AWLによって陰極CEの断線不良を回避することができる。つまり、本実施の形態1によれば、補助配線AWLを形成することで、陰極の形成不良を補填することができるのである。このことから、本実施の形態1における発光装置LA1によれば、発光装置LA1の発光不良を防止して、発光装置LA1の信頼性を向上させることができる。
<Typical effects in the first embodiment>
(1) According to the first embodiment, the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the first embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA1 in the first embodiment, it is possible to prevent the light emitting failure of the light emitting device LA1 and improve the reliability of the light emitting device LA1.
 (2)本実施の形態1では、共通する第1導体膜CF1をパターニングすることにより、陽極AEおよび補助配線AWLを形成している。このため、補助配線AWLを独自に形成する工程を追加することなく、陽極AEを形成する工程を利用して補助配線AWLを形成することができる。この結果、本実施の形態1によれば、工程の簡略化および製造コストの低減を図ることができる。このように、本実施の形態1では、陽極AEと補助配線AWLとを同じ工程で形成しているため、必然的に、陽極AEと補助配線AWLは同層で形成されることになるとともに、陽極AEと補助配線AWLは、同一の材料(第1導体膜CF1)から形成されることになる。 (2) In the first embodiment, the anode AE and the auxiliary wiring AWL are formed by patterning the common first conductor film CF1. For this reason, the auxiliary wiring AWL can be formed using the process of forming the anode AE without adding the process of forming the auxiliary wiring AWL independently. As a result, according to the first embodiment, it is possible to simplify the process and reduce the manufacturing cost. As described above, in the first embodiment, since the anode AE and the auxiliary wiring AWL are formed in the same process, the anode AE and the auxiliary wiring AWL are inevitably formed in the same layer. The anode AE and the auxiliary wiring AWL are formed from the same material (first conductor film CF1).
 (実施の形態2)
 前記実施の形態1では、補助配線AWLを第1導体膜CF1から構成する例について説明したが、本実施の形態2では、補助配線AWLを、第1導体膜CF1および第2導体膜CF2の積層膜から形成する例について説明する。
 <実施の形態2における特徴>
(Embodiment 2)
In the first embodiment, the example in which the auxiliary wiring AWL is composed of the first conductor film CF1 has been described. In the second embodiment, the auxiliary wiring AWL is formed by stacking the first conductor film CF1 and the second conductor film CF2. An example of forming from a film will be described.
<Characteristics in Embodiment 2>
 本実施の形態2における発光装置LA2の構成は、前記実施の形態1における発光装置LA1の構成とほぼ同様の構成をしているため、以下では、異なる点を中心に説明する。 Since the configuration of the light emitting device LA2 in the second embodiment is substantially the same as the configuration of the light emitting device LA1 in the first embodiment, the following description will focus on the differences.
 図31は、本実施の形態2における発光装置LA2の一断面を示す断面図である。本実施の形態2における発光装置LA2の特徴は、図31に示すように、セル領域CR内の導通部CPに形成されている補助配線AWLが第1配線層FWLと第2配線層SWLの積層膜から形成されている点にある。このとき、第1配線層FWLは、基板1S上に形成されている陽極AEと同層で形成され、かつ、同一材料から構成されている。したがって、第1配線層FWLも、陽極AEと同様に、例えば、ITOやIZOなどの透明材料から構成されていることになる。一方、第2配線層SWLは、陽極AE上に形成されているバス電極BEと同層で形成され、かつ、同一材料から構成されている。したがって、第2配線層SWLは、バス電極BEと同様に、例えば、アルミニウム膜に代表される金属膜から構成されることになる。 FIG. 31 is a sectional view showing a section of the light emitting device LA2 in the second embodiment. As shown in FIG. 31, the light emitting device LA2 in the second embodiment is characterized in that the auxiliary wiring AWL formed in the conduction portion CP in the cell region CR is a stacked layer of the first wiring layer FWL and the second wiring layer SWL. The film is formed from a film. At this time, the first wiring layer FWL is formed in the same layer as the anode AE formed on the substrate 1S and is made of the same material. Therefore, the first wiring layer FWL is also made of a transparent material such as ITO or IZO, for example, like the anode AE. On the other hand, the second wiring layer SWL is formed in the same layer as the bus electrode BE formed on the anode AE and is made of the same material. Therefore, the second wiring layer SWL is made of, for example, a metal film typified by an aluminum film, like the bus electrode BE.
 ここで、バス電極BEの抵抗率は、陽極AEの抵抗率よりも小さくなっていることから、第2配線層SWLの抵抗率も第1配線層FWLの抵抗率よりも小さくなっていることになる。このため、本実施の形態2における補助配線AWLによれば、陽極AEと同一材料から構成されている前記実施の形態1における補助配線AWLよりも抵抗率を低減することができる。つまり、本実施の形態2によれば、第1配線層FWLと、この第1配線層FWLよりも抵抗率の小さい第2配線層FWLとの積層膜で形成している結果、補助配線AWLの抵抗率を低減することができるのである。 Here, since the resistivity of the bus electrode BE is smaller than the resistivity of the anode AE, the resistivity of the second wiring layer SWL is also smaller than the resistivity of the first wiring layer FWL. Become. For this reason, according to the auxiliary wiring AWL in the second embodiment, the resistivity can be reduced as compared with the auxiliary wiring AWL in the first embodiment which is made of the same material as the anode AE. That is, according to the second embodiment, as a result of forming the first wiring layer FWL and the second wiring layer FWL having a lower resistivity than the first wiring layer FWL, the auxiliary wiring AWL The resistivity can be reduced.
 この場合、例えば、図16に示すように、形成不良が発生した陰極において、分離されている第1陰極部CEP1と第2陰極部CEP2とを接続する補助配線AWLの抵抗率が小さくなる。このため、第1陰極部CEP1と第2陰極部CEP2との間の接続抵抗を低減することができる。この結果、補助配線AWLに存在する抵抗成分に起因して第1陰極部CEP1と第2陰極部CEP2との間に差電位が発生することを抑制できる。言い換えれば、本実施の形態2によれば、陰極に形成不良が発生した場合であっても、分離されている第1陰極部CEP1と第2陰極部CEP2とを電気的に接続する補助配線AWLの抵抗率を低くすることができる。このため、第1陰極部CEP1と第2陰極部CEP2に印加される電位の均一性を向上させることができる。これにより、本実施の形態2によれば、第1陰極部CEP1と第2陰極部CEP2での発光強度の相違を小さくすることができる。このように、補助配線AWLを第1配線層FWLと、この第1配線層FWLよりも抵抗率の小さな第2配線層SWLとの積層膜から構成することにより、補助配線AWLによって陰極の断線不良を回避することができるとともに、さらに、発光装置LA2における輝度ムラを低減することができる。 In this case, for example, as shown in FIG. 16, the resistivity of the auxiliary wiring AWL connecting the separated first cathode portion CEP1 and second cathode portion CEP2 is reduced in the cathode in which the formation failure has occurred. For this reason, the connection resistance between 1st cathode part CEP1 and 2nd cathode part CEP2 can be reduced. As a result, it is possible to suppress the occurrence of a potential difference between the first cathode part CEP1 and the second cathode part CEP2 due to the resistance component existing in the auxiliary wiring AWL. In other words, according to the second embodiment, the auxiliary wiring AWL that electrically connects the separated first cathode portion CEP1 and second cathode portion CEP2 even when the formation failure occurs in the cathode. The resistivity can be lowered. For this reason, the uniformity of the potential applied to the first cathode part CEP1 and the second cathode part CEP2 can be improved. Thereby, according to this Embodiment 2, the difference in the emitted light intensity in 1st cathode part CEP1 and 2nd cathode part CEP2 can be made small. As described above, the auxiliary wiring AWL is composed of the laminated film of the first wiring layer FWL and the second wiring layer SWL having a resistivity lower than that of the first wiring layer FWL. Can be avoided, and furthermore, luminance unevenness in the light emitting device LA2 can be reduced.
 さらに、別の見方をすれば、本実施の形態2における補助配線AWLでは、補助配線AWLの抵抗率を小さくすることができることから、補助配線AWLの配線幅を小さくしても、配線幅を小さくすることによる補助配線AWLの抵抗の増大を緩和することができる。このことは、本実施の形態2によれば、補助配線AWLの著しい抵抗増大を招くことなく、補助配線AWLの配線幅(X方向の幅)を小さくできることを意味する。この結果、本実施の形態2における発光装置LA2によれば、セル領域CRに占める導通部CPの占有面積を小さくすることができる。言い換えれば、セル領域CRに占める発光部LPの占有面積を大きくすることができる。この結果、本実施の形態2によれば、セル領域CR全体に占める発光に有効な面積の割合(開口率)を向上させることができる。 Further, from another viewpoint, in the auxiliary wiring AWL in the second embodiment, since the resistivity of the auxiliary wiring AWL can be reduced, the wiring width is reduced even if the wiring width of the auxiliary wiring AWL is reduced. As a result, the increase in resistance of the auxiliary wiring AWL can be mitigated. This means that according to the second embodiment, the wiring width (width in the X direction) of the auxiliary wiring AWL can be reduced without causing a significant increase in resistance of the auxiliary wiring AWL. As a result, according to the light emitting device LA2 in the second embodiment, it is possible to reduce the occupied area of the conduction part CP in the cell region CR. In other words, the area occupied by the light emitting portion LP in the cell region CR can be increased. As a result, according to the second embodiment, it is possible to improve the ratio (aperture ratio) of the area effective for light emission in the entire cell region CR.
 なお、本実施の形態2においても、前記実施の形態1と同様の効果を得ることができる。すなわち、本実施の形態2においても、陰極CEと電気的に接続される補助配線AWLを設けている。このため、たとえ、異物の付着に基づく陰極CEに形成不良が発生しても、陰極CEと電気的に接続されている補助配線AWLによって陰極CEの断線不良を回避することができる。つまり、本実施の形態2によっても、補助配線AWLを形成することで、陰極の形成不良を補填することができるのである。このことから、本実施の形態2における発光装置LA2によれば、発光装置LA2の発光不良を防止して、発光装置LA2の信頼性を向上させることができる。 In the second embodiment, the same effect as in the first embodiment can be obtained. That is, also in the second embodiment, the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the second embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. Therefore, according to the light emitting device LA2 in the present second embodiment, it is possible to prevent the light emitting failure of the light emitting device LA2 and improve the reliability of the light emitting device LA2.
 <実施の形態2における発光装置の製造方法>
 本実施の形態2における発光装置LA2は、上記のように構成されており、以下に、その製造方法について図面を参照しながら説明する。具体的には、まず、図32に示すフローチャートを使用して発光装置LA2の製造工程についての概略を説明した後、図33~図38を参照しながら、本実施の形態2における発光装置LA2の製造工程について説明する。
<Method for Manufacturing Light-Emitting Device in Embodiment 2>
The light emitting device LA2 according to the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings. Specifically, first, an outline of the manufacturing process of the light emitting device LA2 will be described using the flowchart shown in FIG. 32, and then the light emitting device LA2 according to the second embodiment will be described with reference to FIGS. The manufacturing process will be described.
 図32において、例えば、ガラス基板やプラスチック基板などに代表される可視光に対して透明な基板を用意する(S301)。そして、基板の主面(素子形成面)上に、例えば、ITOやIZOなどからなる第1導体膜を形成する(S302)。次に、フォトリソグラフィ技術およびエッチング技術を使用することにより、第1導体膜をパターニングする(S303)。これにより、第1導体膜からなる陽極および第1配線層を形成することができる。続いて、陽極および第1配線層を形成した基板上に、例えば、第1導体膜よりも抵抗率の低い第2導体膜を形成する(S304)。具体的に、第2導体膜は、例えば、アルミニウム膜に代表される金属膜から形成することができる。 32, for example, a substrate transparent to visible light represented by a glass substrate or a plastic substrate is prepared (S301). Then, a first conductor film made of, for example, ITO or IZO is formed on the main surface (element formation surface) of the substrate (S302). Next, the first conductor film is patterned by using a photolithography technique and an etching technique (S303). Thereby, the anode and the first wiring layer made of the first conductor film can be formed. Subsequently, for example, a second conductor film having a resistivity lower than that of the first conductor film is formed on the substrate on which the anode and the first wiring layer are formed (S304). Specifically, the second conductor film can be formed from, for example, a metal film typified by an aluminum film.
 その後、フォトリソグラフィ技術およびエッチング技術を使用することにより、第2導体膜をパターニングする(S305)。これにより、第2導体膜からなるバス電極を陽極上に形成するとともに、第2導体膜からなる第2配線層を第1導体膜上に形成することができる。これにより、第1配線層および第2配線層の積層膜からなる補助配線を形成することができる。 Thereafter, the second conductor film is patterned by using a photolithography technique and an etching technique (S305). Thereby, the bus electrode made of the second conductor film can be formed on the anode, and the second wiring layer made of the second conductor film can be formed on the first conductor film. Thereby, an auxiliary wiring composed of a laminated film of the first wiring layer and the second wiring layer can be formed.
 次に、バス電極および第2配線層を形成した基板上に、例えば、ポリイミド樹脂膜からなる絶縁膜を形成する(S306)。そして、フォトリソグラフィ技術およびエッチング技術を使用することにより、この絶縁膜に開口部を形成する(S307)。この開口部は、平面視において、補助配線と重なるように形成され、開口部の底部において補助配線の表面(第2配線層の表面)が露出されるように形成される。 Next, an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the bus electrode and the second wiring layer are formed (S306). Then, an opening is formed in the insulating film by using a photolithography technique and an etching technique (S307). The opening is formed so as to overlap the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring (the surface of the second wiring layer) is exposed at the bottom of the opening.
 続いて、絶縁膜上に、例えば、感光性樹脂膜を形成し、この感光性樹脂膜をパターニングすることより、複数の隔壁を形成する(S308)。これにより、互いに隣り合う隔壁で挟まれたセル領域が区画される。このとき、このセル領域は、発光部と、平面視において、発光部と隔壁に挟まれた導通部とを有する。この導通部には、補助配線が含まれる。 Subsequently, for example, a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S308). As a result, a cell region sandwiched between adjacent partition walls is partitioned. At this time, the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view. This conduction part includes auxiliary wiring.
 その後、マスクを用いた真空蒸着法や、塗布法、あるいは、印刷法などを使用することにより、セル領域内に発光部に形成されている陽極上に発光層を含む有機層を形成する(S309)。そして、セル領域内の発光部から導通部にわたって、例えば、アルミニウム膜や銀膜からなる陰極を形成する(S310)。このとき、陰極は、発光部に形成されている有機層上から、導通部に形成されている開口部内を含む絶縁膜上に形成される。この結果、陰極は、開口部に充填されるため、開口部の底部から露出する補助配線と電気的に接続されることになる。なお、この工程後、有機EL素子を大気や水分から保護するため、封止工程が実施される。以上のようにして、本実施の形態2における発光装置を製造することができる。 Thereafter, an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum deposition method using a mask, a coating method, a printing method, or the like (S309). ). Then, a cathode made of, for example, an aluminum film or a silver film is formed from the light emitting portion to the conducting portion in the cell region (S310). At this time, the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion. As a result, since the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening. In addition, a sealing process is implemented after this process in order to protect an organic EL element from air | atmosphere or a water | moisture content. As described above, the light-emitting device in Embodiment 2 can be manufactured.
 次に、本実施の形態2における発光装置の製造方法について図面を参照しながら、さらに詳しく説明する。まず、図21~図24に示す工程までは、前記実施の形態1と同様である。なお、図23および図24に示される補助配線AWLは、本実施の形態2では、第1配線層FWLとなる。 Next, the manufacturing method of the light emitting device according to the second embodiment will be described in more detail with reference to the drawings. First, the processes shown in FIGS. 21 to 24 are the same as those in the first embodiment. Note that the auxiliary wiring AWL shown in FIGS. 23 and 24 is the first wiring layer FWL in the second embodiment.
 次に、図33に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、第2導体膜CF2をパターニングする。これにより、陽極AE上に第2導体膜CF2からなるバス電極BEを形成するとともに、第1配線層FWL上に第2導体膜CF2からなる第2配線層SWLを形成する。これにより、第1配線層FWLおよび第2配線層SWLの積層膜からなる補助配線AWLを形成することができる。つまり、本実施の形態2では、陽極AEと同層で、かつ、同一の材料からなる第1配線層FWLと、バス電極BEと同層で、かつ、同一の材料からなる第2配線層SWLを形成し、この第1配線層FWLおよび第2配線層SWLの積層膜を補助配線AWLとしている。 Next, as shown in FIG. 33, the second conductor film CF2 is patterned by using a photolithography technique and an etching technique. Thereby, the bus electrode BE made of the second conductor film CF2 is formed on the anode AE, and the second wiring layer SWL made of the second conductor film CF2 is formed on the first wiring layer FWL. Thereby, the auxiliary wiring AWL composed of the laminated film of the first wiring layer FWL and the second wiring layer SWL can be formed. That is, in the second embodiment, the first wiring layer FWL made of the same material and in the same layer as the anode AE and the second wiring layer SWL made of the same material and in the same layer as the bus electrode BE. The laminated film of the first wiring layer FWL and the second wiring layer SWL is used as the auxiliary wiring AWL.
 続いて、図34に示すように、バス電極BEおよび第2配線層SWLを形成した基板1S上に、例えば、ポリイミド樹脂膜からなる絶縁膜IL1を形成する。この絶縁膜IL1は、例えば、陽極AEと補助配線AWLとの間に設けられている離間領域も埋め込むように形成される。 Subsequently, as shown in FIG. 34, an insulating film IL1 made of, for example, a polyimide resin film is formed on the substrate 1S on which the bus electrode BE and the second wiring layer SWL are formed. For example, the insulating film IL1 is formed so as to embed a separation region provided between the anode AE and the auxiliary wiring AWL.
 その後、図35に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、絶縁膜IL1をパターニングして、底部が補助配線AWLに達する開口部OP1を形成する。これにより、補助配線AWLの表面が露出される。このとき、図35に示すように、バス電極BEが形成されていない陽極AE上の一部領域も絶縁膜IL1から露出するように、絶縁膜IL1のパターニングが行われる。 Thereafter, as shown in FIG. 35, by using a photolithography technique and an etching technique, the insulating film IL1 is patterned to form an opening OP1 whose bottom reaches the auxiliary wiring AWL. As a result, the surface of the auxiliary wiring AWL is exposed. At this time, as shown in FIG. 35, the insulating film IL1 is patterned so that a partial region on the anode AE where the bus electrode BE is not formed is also exposed from the insulating film IL1.
 次に、図36に示すように、絶縁膜IL1上に、例えば、感光性樹脂膜からなる隔壁PTを形成する。この隔壁PTは、例えば、フォトリソグラフィ技術を使用することにより、感光性樹脂膜をパターニングすることにより形成される。このとき、例えば、感光性樹脂膜に対して露光処理を実施した際、感光性樹脂膜の内部においては、下方ほど露光光の強度が低下する。このため、この露光光の強度差によって、現像液への溶解速度に差が生じ、逆テーパ形状の隔壁PTが形成されることになる。つまり、隔壁PTの底部の幅が隔壁PTの上部の幅よりも小さくなるように隔壁PTが形成される。言い換えれば、Y方向(第1方向)と直交する隔壁PTの断面形状が逆テーパ形状となるように隔壁PTが形成されることになる。 Next, as shown in FIG. 36, a partition PT made of, for example, a photosensitive resin film is formed on the insulating film IL1. The partition PT is formed, for example, by patterning a photosensitive resin film by using a photolithography technique. At this time, for example, when an exposure process is performed on the photosensitive resin film, the intensity of the exposure light decreases downward in the photosensitive resin film. For this reason, the difference in the intensity of the exposure light causes a difference in the dissolution rate in the developer, and the inversely tapered partition wall PT is formed. That is, the partition PT is formed such that the width of the bottom of the partition PT is smaller than the width of the upper portion of the partition PT. In other words, the partition PT is formed so that the cross-sectional shape of the partition PT perpendicular to the Y direction (first direction) is an inversely tapered shape.
 このようにして、X方向に所定間隔で配置されるとともに、Y方向に延在する複数の隔壁PTを形成することができる。この結果、互いに隣り合う隔壁PTによってセル領域CRが区画されることになる。すなわち、互いに隣り合う隔壁PTによって挟まれた領域がセル領域CRとなる。このセル領域CRには、発光部LPと、平面視において、発光部LPと隔壁PTで挟まれた導通部CPが形成されることになる。特に、導通部CPには、補助配線AWLが形成されている。 In this way, it is possible to form a plurality of partition walls PT arranged in the X direction at predetermined intervals and extending in the Y direction. As a result, the cell region CR is partitioned by the partition walls PT adjacent to each other. That is, the region sandwiched between the partition walls PT adjacent to each other is the cell region CR. In the cell region CR, the light emitting portion LP and the conduction portion CP sandwiched between the light emitting portion LP and the partition wall PT in plan view are formed. In particular, the auxiliary wiring AWL is formed in the conduction portion CP.
 続いて、図37に示すように、セル領域CR内の発光部LPに形成されている陽極AE上に発光層を含む有機層OLを形成する。例えば、有機層OLが低分子系材料から構成されている場合には、マスクを用いた真空蒸着法で有機層OLを形成することができる。一方、有機層OLが高分子系材料から構成されている場合には、塗布法や印刷法を使用することにより形成することができる。 Subsequently, as shown in FIG. 37, an organic layer OL including a light emitting layer is formed on the anode AE formed in the light emitting portion LP in the cell region CR. For example, when the organic layer OL is composed of a low molecular material, the organic layer OL can be formed by a vacuum vapor deposition method using a mask. On the other hand, when the organic layer OL is composed of a polymer material, it can be formed by using a coating method or a printing method.
 ここで、本実施の形態2では、セル領域CR全体にわたって有機層OLが形成されるのではなく、セル領域CR内の発光部LPにおいて有機層OLが形成される。言い換えれば、セル領域CR内の導通部CPには有機層OLは形成されない。この結果、導通部CPにおいては、補助配線AWL上および開口部OP1内には有機層OLが形成されないことになる。 Here, in the second embodiment, the organic layer OL is not formed over the entire cell region CR, but the organic layer OL is formed in the light emitting portion LP in the cell region CR. In other words, the organic layer OL is not formed in the conduction part CP in the cell region CR. As a result, in the conduction part CP, the organic layer OL is not formed on the auxiliary wiring AWL and in the opening OP1.
 その後、図38に示すように、セル領域CR内の発光部LPから導通部CPにわたって陰極CEを形成する。この陰極CEは、例えば、アルミニウム膜や銀膜から形成され、例えば、蒸着法により形成することができる。このとき、陰極CEを形成する方法として蒸着法を使用することにより、有機層OLに与えるダメージを低減することができる。ここで、隔壁PTが逆テーパ形状をしているため、陰極CEは複数のセル領域CRに跨って形成されることなく、個々のセル領域CRごとに分離した陰極CEを自動的に形成することができる。 Thereafter, as shown in FIG. 38, a cathode CE is formed from the light emitting portion LP in the cell region CR to the conducting portion CP. The cathode CE is formed of, for example, an aluminum film or a silver film, and can be formed by, for example, a vapor deposition method. At this time, the damage given to the organic layer OL can be reduced by using a vapor deposition method as a method of forming the cathode CE. Here, since the partition PT has an inversely tapered shape, the cathode CE is not formed across the plurality of cell regions CR, and the cathode CE separated for each cell region CR is automatically formed. Can do.
 このとき、陰極CEは、発光部LPに形成されている有機層OL上から、導通部CPに形成されている開口部OP1内を含む絶縁膜IL1上に形成される。この結果、陰極CEは、開口部OP1に充填されるため、開口部OP1の底部から露出する補助配線AWLと電気的に接続されることになる。 At this time, the cathode CE is formed on the insulating film IL1 including the inside of the opening OP1 formed in the conducting portion CP from the organic layer OL formed in the light emitting portion LP. As a result, since the cathode CE is filled in the opening OP1, the cathode CE is electrically connected to the auxiliary wiring AWL exposed from the bottom of the opening OP1.
 なお、この工程後、有機EL素子を大気や水分から保護するため、封止工程が実施される。以上のようにして、本実施の形態2における発光装置LA2を製造することができる。 In addition, after this process, in order to protect an organic EL element from air | atmosphere and a water | moisture content, a sealing process is implemented. As described above, the light emitting device LA2 according to the second embodiment can be manufactured.
 (実施の形態3)
 前記実施の形態1および前記実施の形態2では、表面(主面)に電極を形成した基板の裏面側(下面側)から光を取り出す、いわゆるボトムエミッション方式の発光装置を例に挙げて説明したが、本実施の形態3では、基板の主面側(表面側、上面側、素子形成面側)から光を取り出す、いわゆるトップエミッション方式の発光装置について説明する。
 <実施の形態3における特徴>
(Embodiment 3)
In the first embodiment and the second embodiment, a so-called bottom emission type light emitting device that takes out light from the back side (lower surface side) of a substrate having electrodes formed on the front surface (main surface) has been described as an example. However, in the third embodiment, a so-called top emission type light emitting device that extracts light from the main surface side (front surface side, upper surface side, element forming surface side) of the substrate will be described.
<Characteristics in Embodiment 3>
 本実施の形態3における発光装置LA3の構成は、前記実施の形態1における発光装置LA1の構成とほぼ同様の構成をしているため、以下では、異なる点を中心に説明する。 Since the configuration of the light emitting device LA3 in the third embodiment is substantially the same as the configuration of the light emitting device LA1 in the first embodiment, the following description will focus on differences.
 図39は、本実施の形態3における発光装置LA3の一断面を示す断面図である。図39において、本実施の形態3における発光装置LA3は、トップエミッション方式の発光装置となっている。このため、基板1Sは、可視光に対して透明な基板を使用する必要はなく、支持体として機能する様々な種類の基板を使用することができる。また、陽極AEは、例えば、アルミニウム膜に代表される金属膜から構成される。一方、本実施の形態3において、陰極CEは透明である必要があるので、例えば、ITOやIZOなどの透明電極から形成される。さらに、本実施の形態3では、補助配線AWLは、陽極AEと同一の材料から構成されていることから、例えば、アルミニウム膜に代表される金属膜から形成される。 FIG. 39 is a cross-sectional view showing a cross section of the light emitting device LA3 in the third embodiment. In FIG. 39, the light emitting device LA3 according to the third embodiment is a top emission type light emitting device. For this reason, it is not necessary to use a substrate transparent to visible light as the substrate 1S, and various types of substrates that function as a support can be used. The anode AE is made of a metal film typified by an aluminum film, for example. On the other hand, in Embodiment 3, since the cathode CE needs to be transparent, it is formed from a transparent electrode such as ITO or IZO, for example. Furthermore, in the third embodiment, the auxiliary wiring AWL is made of the same material as that of the anode AE, and thus is made of, for example, a metal film typified by an aluminum film.
 このように構成されている本実施の形態3における発光装置LA3においても、陰極CEと電気的に接続される補助配線AWLを設けている。このため、たとえ、異物の付着に基づく陰極CEに形成不良が発生しても、陰極CEと電気的に接続されている補助配線AWLによって陰極CEの断線不良を回避することができる。つまり、本実施の形態3によっても、補助配線AWLを形成することで、陰極の形成不良を補填することができるのである。このことから、本実施の形態3における発光装置LA3によれば、発光装置LA3の発光不良を防止して、発光装置LA3の信頼性を向上させることができる。 In the light emitting device LA3 according to the third embodiment configured as described above, the auxiliary wiring AWL that is electrically connected to the cathode CE is provided. For this reason, even if formation failure occurs in the cathode CE due to adhesion of foreign matter, disconnection failure of the cathode CE can be avoided by the auxiliary wiring AWL electrically connected to the cathode CE. That is, according to the third embodiment, the formation of the auxiliary wiring AWL can compensate for the formation failure of the cathode. For this reason, according to the light emitting device LA3 in Embodiment 3, it is possible to prevent the light emitting failure of the light emitting device LA3 and improve the reliability of the light emitting device LA3.
 さらに、本実施の形態3では、以下に示す効果も得ることができる。すなわち、本実施の形態3における発光装置LA3では、トップエミッション方式を採用していることから、陰極CEを、例えば、ITOやIZOなどの比較的抵抗率の高い透明材料から構成している。このとき、本実施の形態3では、陰極CEは、補助配線AWLと電気的に接続されており、この補助配線AWLは、例えば、アルミニウム膜などの抵抗率の低い材料から構成されている。すなわち、補助配線AWLは、透明材料で構成された陰極CEよりも低抵抗率とすることができる。 Furthermore, in the third embodiment, the following effects can also be obtained. That is, in the light emitting device LA3 according to Embodiment 3, since the top emission method is adopted, the cathode CE is made of a transparent material having a relatively high resistivity, such as ITO or IZO. At this time, in the third embodiment, the cathode CE is electrically connected to the auxiliary wiring AWL, and the auxiliary wiring AWL is made of a material having a low resistivity such as an aluminum film. That is, the auxiliary wiring AWL can have a lower resistivity than the cathode CE made of a transparent material.
 したがって、本実施の形態3における補助配線AWLは、陰極CEの断線不良を回避することを主目的として形成されているが、さらに、本実施の形態3では、陰極CEの抵抗率を下げることができるという副次的な効果も得ることができる。すなわち、本実施の形態3によれば、補助配線AWLに透明材料を使用する必要がないことから、補助配線AWLを抵抗率の低いアルミニウム膜などの金属膜から構成することができる。このため、補助配線AWLを透明材料から構成される陰極CEと電気的に接続することにより、陰極CEの抵抗率を低減することもできるのである。 Therefore, the auxiliary wiring AWL in the third embodiment is formed mainly for the purpose of avoiding the disconnection failure of the cathode CE. Further, in the third embodiment, the resistivity of the cathode CE is lowered. A secondary effect of being able to do so can also be obtained. That is, according to the third embodiment, since it is not necessary to use a transparent material for the auxiliary wiring AWL, the auxiliary wiring AWL can be made of a metal film such as an aluminum film having a low resistivity. For this reason, the resistivity of the cathode CE can be reduced by electrically connecting the auxiliary wiring AWL to the cathode CE made of a transparent material.
 <実施の形態3における発光装置の製造方法>
 本実施の形態3における発光装置LA3は上記のように構成されており、以下に、その製造方法について図面を参照しながら説明する。具体的には、図40に示すフローチャートを使用して発光装置LA3の製造工程について説明する。
<Method for Manufacturing Light-Emitting Device in Embodiment 3>
The light emitting device LA3 according to the third embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings. Specifically, the manufacturing process of the light emitting device LA3 will be described using the flowchart shown in FIG.
 図40は、本実施の形態3における発光装置LA3を製造する流れを示すフローチャートである。図40において、例えば、支持体として機能する基板を用意する(S401)。そして、基板の主面(素子形成面)上に、例えば、アルミニウム膜などの金属膜からなる第1導体膜を形成する(S402)。次に、フォトリソグラフィ技術およびエッチング技術を使用することにより、第1導体膜をパターニングする(S403)。これにより、第1導体膜からなる陽極および補助配線を形成することができる。続いて、陽極および補助配線を形成した基板上に、例えば、ポリイミド樹脂膜からなる絶縁膜を形成する(S404)。そして、フォトリソグラフィ技術およびエッチング技術を使用することにより、この絶縁膜に開口部を形成する(S405)。この開口部は、平面視において、補助配線と重なるように形成され、開口部の底部において補助配線の表面が露出されるように形成される。 FIG. 40 is a flowchart showing a flow of manufacturing the light emitting device LA3 according to the third embodiment. In FIG. 40, for example, a substrate that functions as a support is prepared (S401). Then, a first conductor film made of a metal film such as an aluminum film is formed on the main surface (element formation surface) of the substrate (S402). Next, the first conductor film is patterned by using a photolithography technique and an etching technique (S403). Thereby, the anode and auxiliary wiring which consist of a 1st conductor film can be formed. Subsequently, an insulating film made of, for example, a polyimide resin film is formed on the substrate on which the anode and the auxiliary wiring are formed (S404). Then, an opening is formed in the insulating film by using a photolithography technique and an etching technique (S405). The opening is formed so as to overlap with the auxiliary wiring in a plan view, and is formed so that the surface of the auxiliary wiring is exposed at the bottom of the opening.
 続いて、絶縁膜上に、例えば、感光性樹脂膜を形成し、この感光性樹脂膜をパターニングすることより、複数の隔壁を形成する(S406)。これにより、互いに隣り合う隔壁で挟まれたセル領域が区画される。このとき、このセル領域は、発光部と、平面視において、発光部と隔壁に挟まれた導通部とを有する。この導通部には、補助配線が含まれる。 Subsequently, for example, a photosensitive resin film is formed on the insulating film, and a plurality of partition walls are formed by patterning the photosensitive resin film (S406). As a result, a cell region sandwiched between adjacent partition walls is partitioned. At this time, the cell region includes a light emitting portion and a conductive portion sandwiched between the light emitting portion and the partition in a plan view. This conduction part includes auxiliary wiring.
 その後、マスクを用いた真空蒸着法や、塗布法、あるいは、印刷法などを使用することにより、セル領域内に発光部に形成されている陽極上に発光層を含む有機層を形成する(S407)。そして、セル領域内の発光部から導通部にわたって、例えば、ITOやIZOなどの透明電極からなる陰極を形成する(S408)。このとき、陰極は、発光部に形成されている有機層上から、導通部に形成されている開口部内を含む絶縁膜上に形成される。この結果、陰極は、開口部に充填されるため、開口部の底部から露出する補助配線と電気的に接続されることになる。なお、この工程後、有機EL素子を大気や水分から保護するため、封止工程が実施される。以上のようにして、本実施の形態3における発光装置を製造することができる。 Thereafter, an organic layer including a light emitting layer is formed on the anode formed in the light emitting portion in the cell region by using a vacuum vapor deposition method using a mask, a coating method, a printing method, or the like (S407). ). Then, a cathode made of a transparent electrode such as ITO or IZO is formed from the light emitting portion to the conducting portion in the cell region (S408). At this time, the cathode is formed on the insulating film including the inside of the opening formed in the conducting portion from the organic layer formed in the light emitting portion. As a result, since the cathode fills the opening, it is electrically connected to the auxiliary wiring exposed from the bottom of the opening. In addition, a sealing process is implemented after this process in order to protect an organic EL element from air | atmosphere or a water | moisture content. As described above, the light-emitting device according to Embodiment 3 can be manufactured.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例の一つとし、下部電極として陽極、上部電極として陰極を利用する発光装置を例示したが、逆に下部電極を陰極、上部電極を陽極とする発光装置にも適宜変更可能である。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. As an example, a light emitting device using an anode as a lower electrode and a cathode as an upper electrode is illustrated, but conversely, the light emitting device can be appropriately changed to a light emitting device having a lower electrode as a cathode and an upper electrode as an anode.

Claims (13)

  1.  (a)基板と、
     (b)前記基板上に形成された第1電極と、
     (c)前記基板上に形成され、第1方向に延在する隔壁部と、
     (d)前記隔壁部によって区画された複数のセル領域と、を備え、
     前記複数のセル領域のそれぞれは、
     (e)発光部と、
     (f)前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれた導通部と、を有し、
     前記発光部は、
     (e1)前記第1電極上に形成された発光層を含む有機層と、
     (e2)前記有機層上に形成された第2電極と、を含み、
     前記導通部は、
     (f1)前記基板上に形成され、かつ、前記第1電極とは電気的に分離され、前記第1方向に延在する第2電極用補助配線と、
     (f2)前記発光部の前記有機層上から前記導通部の前記第2電極用補助配線上にわたって形成された前記第2電極を含むことを特徴とする発光装置。
    (A) a substrate;
    (B) a first electrode formed on the substrate;
    (C) a partition wall formed on the substrate and extending in the first direction;
    (D) a plurality of cell regions partitioned by the partition wall,
    Each of the plurality of cell regions is
    (E) a light emitting unit;
    (F) in a plan view seen from the surface of the substrate on which the first electrode is formed, the light emitting portion and a conduction portion sandwiched between the partition portions,
    The light emitting unit
    (E1) an organic layer including a light emitting layer formed on the first electrode;
    (E2) a second electrode formed on the organic layer,
    The conduction part is
    (F1) A second electrode auxiliary wiring formed on the substrate and electrically separated from the first electrode and extending in the first direction;
    (F2) The light emitting device including the second electrode formed from the organic layer of the light emitting unit to the second electrode auxiliary wiring of the conduction unit.
  2.  請求項1に記載の発光装置であって、
     前記第2電極用補助配線は、前記第1電極と同層に配置された第1配線層から構成されていることを特徴とする発光装置。
    The light-emitting device according to claim 1,
    The second electrode auxiliary wiring is constituted by a first wiring layer disposed in the same layer as the first electrode.
  3.  請求項2に記載の発光装置であって、
     前記第2電極用補助配線は、前記基板上に形成され、前記第1電極と同じ材料で形成された前記第1配線層から構成されていることを特徴とする発光装置。
    The light-emitting device according to claim 2,
    The light emitting device, wherein the second electrode auxiliary wiring is formed of the first wiring layer formed on the substrate and made of the same material as the first electrode.
  4.  請求項3に記載の発光装置であって、
     前記第1電極と電気的に接続された第1電極用補助配線が形成されていることを特徴とする発光装置。
    The light-emitting device according to claim 3,
    A light-emitting device, wherein a first electrode auxiliary wiring electrically connected to the first electrode is formed.
  5.  請求項4に記載の発光装置であって、
     前記第2電極用補助配線は、
     前記基板上に形成され、前記第1電極と同層に配置された前記第1配線層と、
     前記第1配線層上に形成され、前記第1電極用補助配線と同層に配置された第2配線層と、から構成されていることを特徴とする発光装置。
    The light-emitting device according to claim 4,
    The auxiliary wiring for the second electrode is
    The first wiring layer formed on the substrate and disposed in the same layer as the first electrode;
    A light-emitting device comprising: a second wiring layer formed on the first wiring layer and disposed in the same layer as the first electrode auxiliary wiring.
  6.  請求項5に記載の発光装置であって、
     前記第2電極用補助配線は、
     前記基板上に形成され、前記第1電極と同じ材料で形成された前記第1配線層と、
     前記第1配線層上に形成され、前記第1電極用補助配線と同じ材料で形成された前記第2配線層と、から構成されていることを特徴とする発光装置。
    The light-emitting device according to claim 5,
    The auxiliary wiring for the second electrode is
    The first wiring layer formed on the substrate and made of the same material as the first electrode;
    A light emitting device comprising: the second wiring layer formed on the first wiring layer and formed of the same material as the first electrode auxiliary wiring.
  7.  請求項6に記載の発光装置であって、
     前記第2配線層の抵抗率は、前記第1配線層の抵抗率よりも小さいことを特徴とする発光装置。
    The light-emitting device according to claim 6,
    The light emitting device according to claim 1, wherein a resistivity of the second wiring layer is smaller than a resistivity of the first wiring layer.
  8.  請求項1に記載の発光装置であって、
     前記第1電極は、前記複数のセル領域のそれぞれごとに分離されており、
     分離されている前記第1電極のそれぞれは、前記第1方向に延在していることを特徴とする発光装置。
    The light-emitting device according to claim 1,
    The first electrode is separated for each of the plurality of cell regions;
    Each of the separated first electrodes extends in the first direction.
  9.  請求項8に記載の発光装置であって、
     前記第2電極は、前記複数のセル領域ごとに分離されており、
     分離されている前記第2電極のそれぞれは、前記第1方向に延在していることを特徴とする発光装置。
    The light-emitting device according to claim 8,
    The second electrode is separated for each of the plurality of cell regions,
    Each of the separated second electrodes extends in the first direction.
  10.  請求項1に記載の発光装置であって、
     前記隔壁部の底部の幅は、前記隔壁部の上部の幅よりも小さいことを特徴とする発光装置。
    The light-emitting device according to claim 1,
    The width of the bottom of the partition wall is smaller than the width of the top of the partition wall.
  11.  請求項10に記載の発光装置であって、
     前記隔壁部において、前記第1方向と直交する前記隔壁部の断面形状は、逆テーパ形状をしていることを特徴とする発光装置。
    The light-emitting device according to claim 10,
    The light emitting device according to claim 1, wherein a cross-sectional shape of the partition wall perpendicular to the first direction is an inversely tapered shape.
  12.  (a)基板を用意する工程と、
     (b)前記(a)工程後、前記基板上に第1導体膜を形成する工程と、
     (c)前記(b)工程後、前記第1導体膜をパターニングすることにより、第1電極と、前記第1電極とは離間領域を介しながら第1方向に延在する第2電極用補助配線と、を形成する工程と、
     (d)前記(c)工程後、前記第1電極と前記第2電極用補助配線との間に設けられた前記離間領域を埋め込むように第1絶縁膜を形成する工程と、
     (e)前記(d)工程後、前記第1絶縁膜に開口部を形成し、前記開口部から前記第2電極用補助配線を露出する工程と、
     (f)前記(e)工程後、前記基板上に第1方向に延在する隔壁部を形成し、前記隔壁部によって、発光部と、前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれ、前記第2電極用補助配線を含む導通部と、からなるセル領域を区画する工程と、
     (g)前記(f)工程後、前記セル領域のうち、前記導通部を除く前記発光部の前記第1電極上に、発光層を含む有機層を形成する工程と、
     (h)前記(g)工程後、前記発光部に形成されている前記有機層上から、前記導通部に形成されている前記開口部から露出する前記第2電極用補助配線上にわたって、第2電極を形成し、前記第2電極用補助配線と前記第2電極とを電気的に接続する工程と、を備えることを特徴とする発光装置の製造方法。
    (A) preparing a substrate;
    (B) after the step (a), forming a first conductor film on the substrate;
    (C) After the step (b), by patterning the first conductive film, the first electrode and the second electrode auxiliary wiring extending in the first direction with the first electrode interposed between the separated regions And a step of forming
    (D) after the step (c), a step of forming a first insulating film so as to bury the separation region provided between the first electrode and the second electrode auxiliary wiring;
    (E) after the step (d), forming an opening in the first insulating film and exposing the second electrode auxiliary wiring from the opening;
    (F) After the step (e), a partition wall portion extending in the first direction is formed on the substrate, and the light emitting portion and the surface on the side where the first electrode of the substrate is formed by the partition wall portion. In a plan view as seen from the step of partitioning a cell region that is sandwiched between the light emitting portion and the partition wall and includes a conductive portion including the second electrode auxiliary wiring;
    (G) After the step (f), a step of forming an organic layer including a light emitting layer on the first electrode of the light emitting unit excluding the conducting portion in the cell region;
    (H) After the step (g), the second electrode extends from the organic layer formed in the light emitting section to the second electrode auxiliary wiring exposed from the opening formed in the conducting section. Forming a electrode, and electrically connecting the second electrode auxiliary wiring and the second electrode. A method for manufacturing a light emitting device, comprising:
  13.  (a)基板を用意する工程と、
     (b)前記(a)工程後、前記基板上に第1導体膜を形成する工程と、
     (c)前記(b)工程後、前記第1導体膜をパターニングすることにより、前記第1導体膜からなる第1電極と、前記第1電極とは離間領域を介しながら第1方向に延在した第1配線層を形成する工程と、
     (d)前記(c)工程後、前記第1電極および前記第1配線層を覆うように、前記第1導体膜よりも小さい抵抗率を有する第2導体膜を形成する工程と、
     (e)前記(d)工程後、前記第2導体膜をパターニングすることにより、前記第1配線層上に前記第1方向に延在する第2配線層を形成して、前記第1配線層と前記第2配線層からなる第2電極用補助配線を形成し、かつ、前記第1電極上に前記第2導体膜からなり、前記第1方向に延在する第1電極用補助配線を形成する工程と、
     (f)前記(e)工程後、前記第1電極用補助配線を覆うとともに、前記第1電極と前記第2電極用補助配線との間に設けられた前記離間領域を埋め込むように第1絶縁膜を形成する工程と、
     (g)前記(f)工程後、前記第1絶縁膜に開口部を形成し、前記開口部から前記第2電極用補助配線を露出する工程と、
     (h)前記(g)工程後、前記第1絶縁膜上に第1方向に延在する隔壁部を形成し、前記隔壁部によって、発光部と、前記基板の前記第1電極が形成された側の面から見た平面視において、前記発光部と前記隔壁部に挟まれ、前記第2電極用補助配線を含む導通部と、からなるセル領域を区画する工程と、
     (i)前記(h)工程後、前記セル領域のうち、前記導通部を除く前記発光部の前記第1電極上に、発光層を含む有機層を形成する工程と、
     (j)前記(i)工程後、前記発光部に形成されている前記有機層上から、前記導通部に形成されている前記開口部から露出する前記第2電極用補助配線上にわたって、第2電極を形成し、前記第2電極用補助配線と前記第2電極とを電気的に接続する工程と、を備えることを特徴とする発光装置の製造方法。
    (A) preparing a substrate;
    (B) after the step (a), forming a first conductor film on the substrate;
    (C) After the step (b), by patterning the first conductor film, the first electrode made of the first conductor film and the first electrode extend in the first direction through a separation region. Forming the first wiring layer,
    (D) after the step (c), forming a second conductor film having a smaller resistivity than the first conductor film so as to cover the first electrode and the first wiring layer;
    (E) After the step (d), by patterning the second conductor film, a second wiring layer extending in the first direction is formed on the first wiring layer, and the first wiring layer is formed. And a second electrode auxiliary wiring formed of the second wiring layer, and a first electrode auxiliary wiring formed of the second conductive film extending in the first direction on the first electrode. And a process of
    (F) After the step (e), the first insulation is provided so as to cover the first electrode auxiliary wiring and to bury the separation region provided between the first electrode and the second electrode auxiliary wiring. Forming a film;
    (G) after the step (f), forming an opening in the first insulating film and exposing the second electrode auxiliary wiring from the opening;
    (H) After the step (g), a partition portion extending in the first direction is formed on the first insulating film, and the partition portion forms the light emitting portion and the first electrode of the substrate. In a plan view as seen from the side surface, a step of partitioning a cell region that is sandwiched between the light emitting part and the partition part and includes a conductive part including the second electrode auxiliary wiring;
    (I) after the step (h), a step of forming an organic layer including a light emitting layer on the first electrode of the light emitting unit excluding the conducting portion in the cell region;
    (J) After the step (i), the second electrode extends from the organic layer formed in the light emitting portion to the second electrode auxiliary wiring exposed from the opening formed in the conducting portion. Forming a electrode, and electrically connecting the second electrode auxiliary wiring and the second electrode. A method for manufacturing a light emitting device, comprising:
PCT/JP2012/073107 2012-09-10 2012-09-10 Light emitting apparatus and method for manufacturing same WO2014038094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073107 WO2014038094A1 (en) 2012-09-10 2012-09-10 Light emitting apparatus and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073107 WO2014038094A1 (en) 2012-09-10 2012-09-10 Light emitting apparatus and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014038094A1 true WO2014038094A1 (en) 2014-03-13

Family

ID=50236738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073107 WO2014038094A1 (en) 2012-09-10 2012-09-10 Light emitting apparatus and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014038094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620186A (en) * 2018-06-18 2019-12-27 东京毅力科创株式会社 Organic EL panel and method for manufacturing organic EL panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230086A (en) * 2000-02-16 2001-08-24 Idemitsu Kosan Co Ltd Active drive organic electroluminescence device and its manufacturing method
JP2005235491A (en) * 2004-02-18 2005-09-02 Tdk Corp Image display device
JP2008084541A (en) * 2006-09-25 2008-04-10 Fujifilm Corp Organic el display device and manufacturing method therefor
JP2009032673A (en) * 2007-07-03 2009-02-12 Canon Inc Organic electroluminescent display device and its manufacturing method
JP2009283304A (en) * 2008-05-22 2009-12-03 Seiko Epson Corp Light-emitting device, method of manufacturing the same, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230086A (en) * 2000-02-16 2001-08-24 Idemitsu Kosan Co Ltd Active drive organic electroluminescence device and its manufacturing method
JP2005235491A (en) * 2004-02-18 2005-09-02 Tdk Corp Image display device
JP2008084541A (en) * 2006-09-25 2008-04-10 Fujifilm Corp Organic el display device and manufacturing method therefor
JP2009032673A (en) * 2007-07-03 2009-02-12 Canon Inc Organic electroluminescent display device and its manufacturing method
JP2009283304A (en) * 2008-05-22 2009-12-03 Seiko Epson Corp Light-emitting device, method of manufacturing the same, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620186A (en) * 2018-06-18 2019-12-27 东京毅力科创株式会社 Organic EL panel and method for manufacturing organic EL panel

Similar Documents

Publication Publication Date Title
US20170133438A1 (en) Light-Emitting Panel, Display Device, and Method for Manufacturing Light-Emitting Panel
JP5142846B2 (en) Organic light emitting device
US9293736B2 (en) Organic light emitting element having emission layers and an electron injection layer including fullerene and lithium quinolate
CN106463645B (en) Organic light emitting device and method for manufacturing the same
KR102495204B1 (en) Organic light emitting diode display device
US9515284B2 (en) Organic electroluminescence element and production method therefor
KR20120091023A (en) Organic electroluminescent element
JP2010092741A (en) Organic electroluminescent element
JP2012028226A (en) Organic electroluminescent panel and organic electroluminescent device
KR20100106366A (en) Electroluminescent devices comprising bus bars
US20130075708A1 (en) Light emitting device
WO2014038094A1 (en) Light emitting apparatus and method for manufacturing same
US8975623B2 (en) Organic electroluminescence element
JP2010033973A (en) Organic electroluminescent element
US10103202B2 (en) Organic element
US9401495B2 (en) Luminescent element and lighting device using the same
JP6685372B2 (en) OLED lighting device
JP2010108652A (en) Manufacturing method of organic electroluminescent element
KR102661270B1 (en) Lighting apparatus
WO2012032662A1 (en) Organic el panel
WO2023145055A1 (en) Light-emitting device and production method therefor
KR20200082322A (en) Lighting apparatus
JP2023052941A (en) Light-emitting device
JP2013004313A (en) Organic el element, method for manufacturing organic el element, and organic el display device
JP2013030335A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP