WO2014037559A1 - Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules - Google Patents

Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules Download PDF

Info

Publication number
WO2014037559A1
WO2014037559A1 PCT/EP2013/068593 EP2013068593W WO2014037559A1 WO 2014037559 A1 WO2014037559 A1 WO 2014037559A1 EP 2013068593 W EP2013068593 W EP 2013068593W WO 2014037559 A1 WO2014037559 A1 WO 2014037559A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
particles
substrate
carrier liquid
head
Prior art date
Application number
PCT/EP2013/068593
Other languages
English (en)
Inventor
Olivier Dellea
Philippe Coronel
Pascal Fugier
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to EP13762434.2A priority Critical patent/EP2892658B1/fr
Priority to US14/423,957 priority patent/US9744557B2/en
Publication of WO2014037559A1 publication Critical patent/WO2014037559A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/008Accessories or implements for use in connection with applying particulate materials to surfaces; not provided elsewhere in B05C19/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/04Apparatus specially adapted for applying particulate materials to surfaces the particulate material being projected, poured or allowed to flow onto the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/30Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
    • B05D2401/32Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as powders

Definitions

  • the invention relates to the field of processes and installations for the deposition of particles on a substrate.
  • the particle size may be between a few nanometers and several hundred micrometers.
  • the particles, preferably of spherical shape, may for example be silica particles.
  • the invention essentially relates to a step of forming the film of ordered particles to be deposited, this step also being referred to as structuring the film of particles, in particular when the film comprises different particles, in dimensions and / or materials.
  • the invention has applications in many fields such as fuel cells, optics, photonics, polymer coating, chips, MEMs, organic and photovoltaic electronics, heat exchangers, sensors, tribology, etc.
  • the most well-known technique is the so-called Langmuir-Blodgett technique, consisting in dispensing particles on a carrier liquid placed in a receptacle, then compressing these particles in order to order them / compact them on the liquid. carrier, in order to obtain an ordered / compact film. Compression is carried out between the substrate partially immersed vertically, and a vertical compression barrier opposed to the substrate, capable of moving to reduce the area occupied by the particles.
  • the substrate is set in motion as is the compression barrier, in order to progressively deposit, by capillarity, the film on this substrate.
  • the barrier therefore accompanies the pulling movement, in order to preserve the order of the particles within the film.
  • Such a solution is for example known from WO-A-200814604, consisting generally of forming a film in a transfer zone, which opens onto a substrate in scrolling.
  • the particles are dispensed continuously on an inclined ramp so that they remain permanently ordered / compacted between an upstream front of particles located on the ramp, and the moving substrate.
  • This technique when new particles are dispensed on the ramp, they reach directly the upstream front on which they adopt a scheduling which is preserved until the deposit on the substrate.
  • This technique can be implemented with an oblique or vertical scrolling substrate, but not with a horizontal substrate.
  • this technique also suffers from a significant problem in the event of a defect occurring in the order of the particles in the transfer zone.
  • the technique described in document WO-A-200814604 simultaneously performs the deposition on the substrate of a substrate. part of the film, and the scheduling in the transfer zone of a more upstream part of this same film. Therefore, in case of failure occurring in the scheduling in the transfer zone, it must be emptied of its particles and the draw stopped, before new particles ordered come to cover the transfer zone and the draw is rebooted .
  • the invention therefore aims to at least partially overcome the disadvantages mentioned above, relating to the achievements of the prior art.
  • the invention firstly relates to a method of forming a film of particles on a carrier liquid present in a receptacle, for depositing this film on a substrate, the method comprising the successive steps following: - Performing a film primer between barrier means and a head having an inclined ramp, said primer being obtained by dispensing particles via said inclined ramp, operated until these particles floating on the carrier liquid occupy the space between the barrier means against which they abut, and an upstream particle front located on the inclined ramp; and
  • the invention also relates to an installation for depositing a film of particles on a substrate, the installation comprising a receptacle for receiving a carrier liquid on which said film is intended to be formed.
  • the installation further comprises a head having an inclined ramp through which the particles are intended to transit before reaching the liquid carrying the receptacle, and also comprises means for moving said head relative to the receptacle, parallel to the surface of said liquid carrier.
  • the invention is remarkable in that it allows, essentially by moving the inclined ramp during the formation of the film, to form a film of great length while limiting the risk of defects within the latter.
  • the film is formed progressively directly on the ramp at the upstream front of particles, before being deposited on the carrier liquid of the receptacle as the head back.
  • This solution contrasts sharply with the conventional solutions of the prior art based on Langmuir-Schaefer and Langmuir-Blodgett techniques, in which all the particles are placed on the carrier liquid, before being put into compression simultaneously. by the barrier provided for this purpose.
  • the invention allows the formation of the entire film on the carrier liquid before it is deposited on the substrate, thus avoiding the risks associated with any reworking in the event of a defect in the scheduling, as can be encountered with the transfer zone technique described in WO-A-0- 200814604. Nevertheless, it is the technique of compression of particles by inclined ramp disclosed in this document which is retained by the present invention, because during the formation of the film, at least a portion of the energy required for scheduling / compaction particles are fed by the inclined ramp carrying the carrier liquid and these particles.
  • the invention offers the advantage of being applicable to all kinds of deposits on rigid or flexible substrate, horizontally, vertically or obliquely, by capillarity and / or by direct contact, etc.
  • the substrate may be plane or in three dimensions.
  • said upstream particle front is maintained in the same position on the ramp. This contributes to obtaining constant film formation conditions, regardless of the position of the head during this training.
  • said head has suction means for sucking a part of the carrier liquid near the submerged end of said inclined ramp, said means being activated at least during part of said step of elongating the film, and preferably continuously activated throughout the stretching step.
  • the liquid flow is active during the formation of the film, but it may be preferable to stop it during the subsequent transfer of the film onto the substrate.
  • carrier liquid feed means feed said carrier liquid head so that it carries with it, on the inclined ramp, said particles.
  • carrier liquid feed means feed said carrier liquid head so that it carries with it, on the inclined ramp, said particles.
  • said carrier liquid suction means communicate with said carrier liquid supply means, a closed circuit integrating these two means traversed by the carrier liquid being preferentially retained.
  • the surface tension of the carrier liquid, as well as its temperature should preferably remain stable and uniform. Consequently, it is preferentially used deionized water. Also, to satisfy this condition, either it is expected open circuit operation always bringing water "new" or is retained a closed circuit for filtering and purification of water before reinjecting.
  • said carrier liquid and the particles are dispensed in an overflow tank in the head, said reservoir being configured so that when it overflows, the solution of carrier liquid and particles flows on said inclined ramp.
  • the liquid and / or the particles could be dispensed directly on the ramp, without departing from the scope of the invention.
  • the overflow tank could be used only for the reception of the liquid before it flows on the ramp, or even only for the reception of the particles before they flow on the ramp.
  • said carrier liquid and said particles are dispensed separately into said reservoir.
  • the liquid and the particles could be premixed before being dispensed into the tank or directly on the inclined ramp, without departing from the scope of the invention.
  • the invention also relates to a method of depositing a film of particles on a substrate, comprising a method of forming a film of particles as described above, followed by a step of transferring said film to the substrate. substrate.
  • said transfer step is performed with the horizontally oriented substrate.
  • said substrate is brought into contact with said floating particle film on the carrier liquid, while being displaced vertically.
  • said horizontal substrate is immersed in said carrier liquid during the formation of said film of particles, and then lifted vertically so that this film is deposited on this horizontal substrate, in the manner of the Langmuir technique.
  • the vertical movement can be made from the outside, down the substrate until it comes into contact with the film.
  • said barrier means may be an integral part of the means for vertically moving the substrate. Be that as it may, in this embodiment, all particles of the compact / ordered film are deposited simultaneously on the substrate.
  • said transfer step is carried out with the substrate oriented vertically or obliquely.
  • oblique here is meant a direction inclined relative to the vertical and horizontal directions.
  • said transfer takes place by drawing the substrate, and by moving the film on the carrier liquid by displacement of said head towards said substrate.
  • the head therefore performs a movement opposite to that operated during the formation of the film.
  • said vertical or oblique substrate is rigid or flexible, previously immersed at least in part, or located outside the receptacle.
  • said barrier means is formed, at least in part, by said substrate.
  • additional means can be adopted to fulfill this temporary barrier function, these additional means then being released at the time of depositing the film.
  • the method preferably incorporates a thermal annealing step to facilitate the deposition and adhesion of these particles on the substrate.
  • FIG. 1 shows a deposition installation according to a preferred embodiment of the present invention, in schematic section taken along the line 1-1 of FIG. 2;
  • FIG. 2 represents a schematic view from above of the depot installation shown in FIG. 1;
  • FIGS. 3a to 3f show different stages of a deposition process implemented using the installation shown in the preceding figures, according to a first preferred embodiment
  • FIGS. 4a and 4b schematize a deposition method according to a second preferred embodiment
  • FIG. 5 schematizes a deposition method according to a third preferred embodiment. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • the installation 1 comprises a device 2 for dispensing particles, whose size may be between a few nanometers and several hundred micrometers.
  • the particles preferably of spherical shape, may for example be silica particles.
  • Other particles of interest may be made of metal or metal oxide such as platinum, TiO 2, polymer such as polystyrene or PMMA, carbon, etc., or any type of molecule.
  • the particles are silica spheres of about 1 ⁇ in diameter, optionally stored in solution in the dispensing device 2.
  • the proportion of the medium is about 7 g of particles for 200 ml of solution, here butanol.
  • the particles shown in the figures adopt a diameter greater than their actual diameter.
  • the dispensing device 2 has a controllable injection nozzle 6, about 500 ⁇ in diameter.
  • the installation 1 has, close to the device 2, means
  • It also comprises a receptacle in the form of a tray 10, for example of rectangular parallelepipedal shape, in which the carrier liquid 16 is located.
  • a head 5 incorporating an inclined ramp 12 for the circulation of the particles 4 and the carrier liquid 16.
  • the upper end 12a of the inclined ramp delimits the opening of an overflow tank 9 made in the head, and wherein the particles 4 and the carrier liquid 16 are intended to be dispensed. Therefore, in operation, when the liquid 16 overflows the tank 9, it is discharged by the ramp 12, carrying with it the particles 4 previously dispensed to the surface of the same tank by the device 2.
  • the ramp 12 is flat, inclined at an angle between 5 and 60 °, preferably between 5 and 25 °, allowing the particles to be conveyed to the carrier liquid in the tray 10, since the upper end of the ramp 12 is raised relative to the liquid level in this tank.
  • the liquid level in the tray is preferably kept constant by liquid suction means, bearing the general numerical reference 13. These means allow to suck the liquid 16 near a lower end 12b of the ramp 12, which is immersed in the same liquid.
  • the means 13 have a suction mouth 15 in the lower part of the head, which mouth is connected by a channel to a pump 17, the whole being preferably integrated in a closed hydraulic circuit also comprising the dispensing means of liquid 3 located above the overflow tank 9, and thus communicating with the suction means 13.
  • the liquid 16 is thus re-circulated using the aforementioned means, between the lower end of the ramp and its upper end, even if other designs can be retained, particularly open circuit, without departing from the scope of the invention. 'invention.
  • the ramp 12 immersed in the liquid 16 of the tank 10, defines with the horizontal level of this liquid an inflection line 24, which forms a particle inlet in the tray.
  • This entry is located away from a barrier particles 23 placed in the tray 10 defined by two side flanges 28 holding the carrier fluid 16.
  • These flanges 28, opposite and at a distance from each other, s' extend parallel to a main flow direction of the carrier liquid and particles in the installation, this direction being shown schematically by the arrow 30 in Figures 1 and 2.
  • the installation 1 is also provided with a support 35 of the substrate 36 immersed in the bottom of the tray.
  • the support is equipped with a horizontal plate 37 on which the substrate 36 rests, a handle 39 located outside the tray, and a connection zone 41 between the handle and the tray.
  • the aforementioned barrier 23 may here be formed by the part of the connection zone 41 passing through the surface of the liquid 16, and / or by the downstream end wall 10 'of the tank 10, as will be described hereinafter. after.
  • the substrate may be rigid or flexible, as it is supported by the plate 37.
  • the head 5 is displaceable in translation relative to the tank 10, in the direction 30, namely parallel to the surface of the carrier liquid.
  • conventional translation means 45 may be adopted (only shown schematically), for example driven by a linear linear displacement motor.
  • the head 5, equipped with its means 2, 3, is therefore able to be moved to the surface of the carrier liquid, so as to be remote / close to the barrier 23.
  • a particle deposition method according to a first embodiment will now be described with reference to Figures 3a to 3f.
  • the head 5 is sufficiently recessed to allow the immersion of the substrate 36 carried by the support plate 35, as shown schematically in Figure 3a. Then the head is moved in the other direction to move closer to the barrier 23. As shown in Figure 3b, the accumulation area 14 between the barrier and the inflection line 24 is then very low, so to be able to carry out the initiation of a film of particles.
  • the injection nozzle 6 is activated in order to begin dispensing the particles 4 in the tank, just as, beforehand, the liquid suction means 13 and liquid supply 3 are themselves also activated.
  • the flow rates of the means 13 and 3 are preferably kept constant throughout the dispensing period of the particles, in order to obtain constant film formation conditions, regardless of the position of the head during the formation of the film. this film.
  • the particles 4 protruding from the tank circulate on the ramp 12, then enter the zone 14 in which they disperse. As these particles 4 enter the zone 14, they abut against the barrier 23, then the upstream front of these particles tends to shift upstream, direction of the inflection line 24. The injection of particles continues even after the upstream front has exceeded the line 24, so that it rises on the inclined ramp 12, as shown in Figure 3c.
  • the particles 4 forming the primer are ordered / compacted in the reduced zone 14 and on the ramp 12, on which they arrange / compact themselves automatically, without assistance, thanks in particular to their kinetic energy and capillary forces. used in the moment of the impact on the front 54.
  • the scheduling is such that the compact film primer obtained has a so-called "compact hexagonal" structure. , in which each particle 4 is surrounded and contacted by six other particles 4 in contact with each other. It is then indifferently spoken of compact film of particles, or film of ordered particles, the latter terminology being preferentially retained in the case of spherical particles.
  • This elongation step is carried out by continuing the suction and the supply of liquid, as well as the dispensing of particles.
  • the head 5 is moved back away from the barrier 23, in order to lengthen the accumulation zone 14 in which the film 4 "of particles 4 is formed.
  • This displacement is carried out at a speed that allows to keep the particle front 54 on the ramp 12, preferably in a constant position, as shown schematically in FIGURE 3d.
  • the film 4 "lengthens progressively as the head 5 back relative to the tray 10, while maintaining the ordering of the particles 4 already deposited on the ramp 12 and in the zone 14.
  • This principle of stretching the film upstream, in the opposite direction of dispensing the particles allows to keep substantially constant film formation conditions, making the quality of the film independent of its length.
  • the film 4 ' can be formed over a long length, approaching the total length of the tray, and thus allows quality deposits on large surfaces.
  • this film is transferred to the substrate 36 in a similar technique to that of Langmuir-Shaefer.
  • a schematic representation of this step has been carried out in FIG 3f.It consists in moving the substrate 36 vertically by means of the handle 39 of the support 35, manually or automatically.Maintained horizontally during this movement, when this substrate 36 comes into contact with the particles of the film 4 ", it is deposited on the upper surface of the substrate. The surplus of particles 4 remaining on the carrier liquid can then be displaced so as to form all or part of the primer of a subsequent film to be deposited. Alternatively, the excess can be sucked.
  • the barrier 23 may possibly be formed not only by the support 35, but also in combination with the downstream end wall 10 'of the trough, when the joining zone 41 has a width less than the total width of the tray between the two lateral flanges.
  • the connection zone 41 is preferably located closer to the one and / or the other side sills 28.
  • thermal annealing subsequent to the transfer.
  • This thermal annealing is for example carried out at 80 ° C, using a low-temperature matt rolling film based on polyester, for example sold under the reference PERFEX-MATT TM, of thickness 125 ⁇ .
  • the advantage of such a film as a substrate is that one of its faces becomes tacky at a temperature of the order of 80 ° C., which makes it possible to facilitate the adhesion of the particles 4.
  • the substrate 36 may be of the silicon, glass or piezoelectric film type.
  • the particle / liquid injection and the head displacement speed are adjusted so that the particle front 54 remains in a substantially identical position.
  • the particle flow rate can be of the order of 0.01 ml / min to 10 ml / min, while the linear speed of the head 5 can be of the order of a few mm / min to 30 cm. / min.
  • the flow of carrier liquid is fixed between 100 and 1000 ml / min.
  • FIGS. 4a and 4b schematize a second preferred embodiment, in which the transfer of the film takes place on a substrate 36 oriented vertically.
  • the formation of the film 4 "of ordered particles 4 on the carrier liquid 16 is performed in a manner identical or similar to that presented in the context of the first embodiment, with the barrier 23 being constituted by a portion of the substrate 36 located in the periphery of the tank, as shown in Figure 4a, the particles are in direct contact with this substrate, then for the transfer, the substrate is displaced vertically at the same time as the film 4 "is pushed by the head 5 into displacement in the opposite direction to that which allowed the lengthening of the film.
  • a conventional print is then obtained, as shown schematically in Figure 4b.
  • This embodiment could be implemented with the substrate 36 previously immersed in part in the carrier liquid, without departing from the scope of the invention.
  • the substrate 36 previously immersed in part is arranged obliquely, that is to say inclined with respect to vertical and horizontal directions.
  • the substrate 36 is preferably displaced in the plane in which it is in the course of the previous step of forming the film, during which its portion passing through the carrier liquid fulfills the role of barrier 23.
  • the substrate 36 is preferably rigid, but could be replaced by a flexible substrate in the form of a moving strip passing through rollers or the like.
  • heat exchangers These are, for example, heat exchangers.
  • the structuring of the walls of the exchangers is a means of regulating the heat exchanges.
  • These structures can be made by lithography with a particle mask.
  • the implementation of heterogeneous deposits associating particles of different dimensions makes it possible to obtain geometries usually made by lithography, and in particular to geometries with particle size gradients. It is therefore possible, with this technique, to form surfaces with energy gradients, for example to promote the formation and flow of condensed drops on the surface
  • compact films can be used as a lithography mask to create micro / nanocucts for the retention of lubricant on the surface of rubbing objects.
  • the adjustment of the dimensions of these retention micro / nanocuves is a setting parameter of the coefficient of friction.
  • a simple way to change the dimensions of these micro / nanocuves is to use as a mask etching a heterogeneous compact film composed of different particle sizes, easy to obtain with the method specific to the present invention.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne un procédé de formation d'un film de particules (4) sur un liquide porteur (16) présent dans un réceptacle (10), en vue du dépôt de ce film sur un substrat, comprenant les étapes suivantes : - réalisation d'une amorce de film entre des moyens formant barrière et une tête (5) présentant une rampe inclinée (12), l'amorce étant obtenue par dispense de particules via la rampe et opérée jusqu'à ce que ces particules flottant sur le liquide porteur occupent l'espace entre les moyens formant barrière et un front amont de particules (54) situé sur la rampe inclinée; et - allongement du film en réalisant la poursuite de la dispense de particules (4), et un déplacement de la tête (5) de manière à l'éloigner des moyens formant barrière, cet allongement du film étant effectué de manière à maintenir le front de particules (54) sur la rampe.

Description

PROCEDE DE FORMATION D'UN FILM DE PARTICULES SUR LIQUIDE PORTEUR. AVEC DEPLACEMENT D'UNE RAMPE INCLINEE DE COMPRESSION DES PARTICULES
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine des procédés et installations pour le dépôt de particules sur un substrat.
Plus précisément, elle concerne le dépôt d'un film de particules ordonnées, de préférence du type monocouche, dont la taille des particules peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice.
L'invention se rapporte essentiellement à une étape de formation du film de particules ordonnées à déposer, cette étape étant également dénommée structuration du film de particules, en particulier lorsque le film comprend des particules différentes, en dimensions et/ou matériaux.
L'invention présente des applications dans de nombreux domaines comme les piles à combustible, l'optique, la photonique, le revêtement de polymère, les puces, les MEMs, l'électronique organique et photovoltaïque, les échangeurs de chaleur, les capteurs, la tribologie, etc.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
De nombreuses techniques sont connues pour le dépôt de films de particules sur un substrat.
La technique la plus connue est celle dite de Langmuir-Blodgett, consistant à dispenser des particules sur un liquide porteur placé dans un réceptacle, puis à mettre ces particules en compression afin de les ordonner/compacter sur le liquide porteur, afin d'obtenir un film ordonné/compact. La mise en compression s'effectue entre le substrat partiellement immergé à la verticale, et une barrière verticale de mise en compression opposée au substrat, capable de se déplacer pour diminuer la surface occupée par les particules. Lorsque le film compact est formé, le substrat est mis en mouvement de même que la barrière de mise en compression, afin de déposer progressivement, par capillarité, le film sur ce substrat. La barrière accompagne donc le mouvement de tirage, afin de conserver l'ordonnancement des particules au sein du film.
Une autre technique, dite de Langmuir-Shaefer, permet le dépôt du film sur un substrat horizontal. Avec cette technique, l'ordonnancement du film s'effectue de manière analogue à celle de la technique Langmuir-Blodgett, par compression des particules entre deux butées, dont au moins l'une est mobile. Ensuite, le dépôt s'effectue en amenant horizontalement le substrat depuis l'extérieur, ou bien en remontant horizontalement le substrat préalablement immergé dans le liquide porteur.
Ces deux techniques de Langmuir-Shaefer trouvent leurs limites dans la réalisation de surfaces élevées. En effet, lorsqu'une quantité importante de particules est dispensée sur le liquide porteur afin de former une surface élevée, par exemple de l'ordre de 100 cm2 ou supérieure, la mise en compression simultanée de toutes les particules effectuée par la barrière à la surface du liquide porteur peut s'avérer problématique, avec des risques associés de défauts locaux et/ou des défauts d'uniformité, comme des superpositions de billes, ou, inversement, la présence de vides dans le film.
Par ailleurs, ces techniques se heurtent également à l'impossibilité de former des films avec des gradients contrôlés de particules, tels que des gradients de matériaux et/ou de dimensions. La formation de tels films dits hétérogènes s'avère impossible, puisque la méthode de mise en compression, par déplacement de la barrière, rend totalement aléatoire le positionnement des particules les unes par rapport aux autres dans le film ordonné obtenu.
Il a été proposé une solution visant à résoudre les problèmes de dépôt sur de grandes dimensions, et celui de la formation contrôlée de films hétérogènes. Une telle solution est par exemple connue du document WO-A-200814604, consistant globalement à former un film dans une zone de transfert, qui s'ouvre sur un substrat en défilement. La dispense des particules s'effectue en continue sur une rampe inclinée de sorte que celles-ci restent en permanence ordonnées/compactées entre un front amont de particules situé sur la rampe, et le substrat en défilement. Avec cette technique, lorsque de nouvelles particules sont dispensées sur la rampe, elles atteignent directement le front amont sur lequel elles adoptent un ordonnancement qui est conservé jusqu'au dépôt sur le substrat. Cette technique peut être mise en œuvre avec un substrat oblique ou vertical en défilement, mais pas avec un substrat horizontal. Par ailleurs, cette technique souffre également d'un problème non négligeable en cas de défaut survenant dans l'ordonnancement des particules dans la zone de transfert. En effet, contrairement aux techniques de Langmuir-Shaefer et de Langmuir-Blodgett dans lesquelles le film est entièrement réalisé avant son dépôt sur le substrat, la technique décrite dans le document WO-A-200814604 réalise simultanément le dépôt sur le substrat d'une partie du film, et l'ordonnancement dans la zone de transfert d'une partie plus amont de ce même film. Par conséquent, en cas de défaut survenant dans l'ordonnancement dans la zone de transfert, celle-ci doit être vidée de ses particules et le tirage stoppé, avant que de nouvelles particules ordonnées viennent recouvrir la zone de transfert et que le tirage soit réamorcé. Néanmoins, la reprise du tirage dans de telles conditions est source de problèmes, et peut ne pas garantir le niveau de qualité requis. Par ailleurs, si une zone de transition entre des particules de différentes natures se trouvait dans la zone de transfert au moment du défaut, il peut s'avérer difficile, voire impossible, de reproduire de manière contrôlée ce gradient avec les nouvelles particules introduites dans la zone de transfert.
EXPOSÉ DE L'INVENTION
L'invention a donc pour but de remédier au moins partiellement aux inconvénients mentionnés ci-dessus, relatifs aux réalisations de l'art antérieur.
Pour ce faire, l'invention a tout d'abord pour objet un procédé de formation d'un film de particules sur un liquide porteur présent dans un réceptacle, en vue du dépôt de ce film sur un substrat, le procédé comprenant les étapes successives suivantes : - réalisation d'une amorce de film entre des moyens formant barrière et une tête présentant une rampe inclinée, ladite amorce étant obtenue par dispense de particules via ladite rampe inclinée, opérée jusqu'à ce que ces particules flottant sur le liquide porteur occupent l'espace entre les moyens formant barrière contre lesquelles elles sont en butée, et un front amont de particules situé sur la rampe inclinée ; et
- allongement du film en réalisant, simultanément, une poursuite de la dispense de particules via ladite rampe inclinée, et un déplacement de ladite tête relativement au réceptacle de manière à éloigner cette tête desdits moyens formant barrière, cet allongement du film étant effectué de manière à maintenir ledit front amont de particules sur la rampe inclinée.
L'invention a également pour objet une installation pour le dépôt d'un film de particules sur un substrat, l'installation comprenant un réceptacle pour recevoir un liquide porteur sur lequel ledit film est destiné à être formé. L'installation comprend en outre une tête présentant une rampe inclinée par laquelle les particules sont destinées à transiter avant d'atteindre le liquide porteur du réceptacle, et comprend également des moyens de déplacement de ladite tête relativement au réceptacle, parallèlement à la surface dudit liquide porteur.
L'invention est remarquable en ce qu'elle permet, essentiellement grâce au déplacement de la rampe inclinée au cours de la formation du film, de former un film de grande longueur tout en limitant les risques de défaut au sein de ce dernier. En effet, le film se forme progressivement directement sur la rampe au niveau du front amont de particules, avant d'être déposé sur le liquide porteur du réceptacle au fur et à mesure que la tête recule. Cette solution contraste fortement avec les solutions classiques de l'art antérieur basées sur les techniques de Langmuir-Schaefer et de Langmuir-Blodgett, dans lesquelles l'ensemble des particules sont placées sur le liquide porteur, avant d'être toutes mises en compression simultanément par la barrière prévue à cet effet.
Par ailleurs, l'invention permet la formation du film en intégralité sur le liquide porteur avant son dépôt sur le substrat, évitant ainsi les risques liés aux éventuelles reprises de tirage en cas de défaut dans l'ordonnancement, comme cela peut être rencontré avec la technique à zone de transfert décrite dans le document WO-A- 200814604. C'est néanmoins la technique de compression des particules par rampe inclinée divulguée dans ce document qui est retenue par la présente invention, car durant la formation du film, au moins une partie de l'énergie nécessaire à l'ordonnancement / au compactage des particules est amenée par la rampe inclinée transportant le liquide porteur et ces particules.
En outre, la formation contrôlée de films hétérogènes est parfaitement envisageable avec l'invention, puisque lorsque de nouvelles particules transitent par la rampe, elles atteignent directement le front amont sur lequel elles adoptent un ordonnancement / un compactage qui est conservé durant toute la formation du film, jusqu'au dépôt sur le substrat. Pour obtenir un film hétérogène, il suffit simplement de dispenser tour à tour des particules de natures différentes, qui se retrouvent dans le film avec un ordre correspondant à celui dans lequel elles ont été dispensées.
Enfin, l'invention offre l'avantage de pouvoir s'appliquer à toutes sortes de dépôts, sur substrat rigide ou souple, à l'horizontal, à la verticale ou oblique, par capillarité et/ou par contact direct, etc. Par ailleurs, le substrat peut être plan ou en trois dimensions.
De préférence, au cours de l'étape d'allongement du film, ledit front amont de particules est maintenu dans une même position sur la rampe. Cela contribue à l'obtention de conditions constantes de formation du film, quelle que soit la position de la tête au cours de cette formation. Dans le même but, il est préférentiellement fait en sorte que ladite tête présente des moyens d'aspiration permettant d'aspirer une partie du liquide porteur à proximité d'une extrémité immergée de ladite rampe inclinée, lesdits moyens étant activés au moins durant une partie de ladite étape d'allongement du film, et de préférence activés de manière constante durant toute l'étape d'allongement. Préférentiellement, la circulation de liquide est active durant la formation du film, mais il peut être préférable de l'arrêter lors du transfert ultérieur du film sur le substrat.
De préférence, des moyens d'amenée de liquide porteur alimentent ladite tête en liquide porteur de manière à ce que celui-ci entraîne avec lui, sur la rampe inclinée, lesdites particules. Ainsi, en contrôlant l'alimentation et l'aspiration de liquide porteur, il est aisé d'obtenir des conditions constantes de formation du film. Plus précisément, en pilotant ces deux paramètres d'alimentation et d'aspiration, il est possible d'obtenir un champ de vitesse sensiblement constant au voisinage de l'extrémité immergée de la rampe inclinée. Ce champ de vitesse constant du liquide contribue avantageusement à l'obtention d'une force de compression invariable au sein des particules ordonnées / compactées sur la rampe et dans le reste du film flottant sur le liquide porteur, et ce, donc, quelle que soit la position de la tête relativement au réceptacle et aux moyens formant barrière.
De préférence, lesdits moyens d'aspiration de liquide porteur communiquent avec lesdits moyens d'amenée de liquide porteur, un circuit fermé intégrant ces deux moyens traversés par le liquide porteur étant préférentiellement retenu. Il est noté que pour que le procédé fonctionne de façon optimale, la tension superficielle du liquide porteur, ainsi que sa température, doivent de préférence rester stables et uniformes. En conséquence, il est préférentiellement utilisé de l'eau dé-ionisée. Aussi, pour satisfaire cette condition, soit il est prévu un fonctionnement en circuit ouvert en amenant toujours de l'eau « neuve », soit il est retenu un circuit fermé assurant un filtrage et une purification de l'eau avant de la réinjecter.
De préférence, ledit liquide porteur et les particules sont dispensés dans un réservoir à débordement pratiqué dans la tête, ledit réservoir étant configuré pour que lorsqu'il déborde, la solution de liquide porteur et de particules s'écoule sur ladite rampe inclinée. Alternativement, le liquide et/ou les particules pourraient être dispensées directement sur la rampe, sans sortir du cadre de l'invention. Egalement, le réservoir à débordement pourrait être utilisé uniquement pour la réception du liquide avant son écoulement sur la rampe, ou bien encore uniquement pour la réception des particules avant leur écoulement sur la rampe.
II est noté qu'une dispense directe sur la rampe peut ne pas laisser le temps aux particules de se répartir uniformément sur la largeur de la tête. Le principe à débordement est retenu tout d'abord car il permet de « filtrer » ou « d'atténuer » les fluctuations de surface générées par la pompe d'amenée du liquide porteur, également pour obtenir un écoulement laminaire uniforme sur la largeur de la rampe inclinée, et enfin pour avoir la possibilité d'injecter suffisamment en amont les particules pour qu'elles aient le temps de se répartir sur la largeur de la tête.
De préférence, ledit liquide porteur et lesdites particules sont dispensés séparément dans ledit réservoir. Alternativement, le liquide et les particules pourraient être préalablement mélangés avant d'être dispensés dans le réservoir ou directement sur la rampe inclinée, sans sortir du cadre de l'invention.
L'invention a également pour objet un procédé de dépôt d'un film de particules sur un substrat, comprenant un procédé de formation d'un film de particules tel que décrit ci-dessus, suivi d'une étape de transfert dudit film sur le substrat.
Selon un mode de réalisation préféré, ladite étape de transfert s'effectue avec le substrat orienté horizontalement. Dans un tel cas, ledit substrat est amené au contact dudit film de particules flottant sur le liquide porteur, en étant déplacé verticalement. Pour ce faire, ledit substrat horizontal est immergé dans ledit liquide porteur durant la formation dudit film de particules, puis remonté verticalement afin que ce film se dépose sur ce substrat horizontal, à la manière de la technique Langmuir-
Shaefer. Alternativement, le déplacement vertical peut s'effectuer depuis l'extérieur, en descendant le substrat jusqu'à ce qu'il arrive au contact du film.
Dans ce mode de réalisation préféré, lesdits moyens formant barrière peuvent faire partie intégrante des moyens pour déplacer verticalement le substrat. Quoi qu'il en soit, dans ce mode de réalisation, toutes les particules du film compact / ordonné sont déposées simultanément sur le substrat.
Selon un autre mode de réalisation, ladite étape de transfert s'effectue avec le substrat orienté verticalement ou de façon oblique. Par oblique, il est ici entendu une direction inclinée par rapport aux directions verticale et horizontale.
Dans ce mode de réalisation, ledit transfert s'effectue par tirage du substrat, et par mise en mouvement du film sur le liquide porteur par déplacement de ladite tête en direction dudit substrat. La tête effectue par conséquent un déplacement opposé à celui opéré durant la formation du film.
Ici, ledit substrat vertical ou oblique est rigide ou souple, préalablement immergé au moins en partie, ou situé à l'extérieur du réceptacle. De préférence, lesdits moyens formant barrière sont formés, au moins en partie, par ledit substrat. Alternativement, des moyens additionnels peuvent être adoptés pour remplir cette fonction temporaire de barrière, ces moyens additionnels étant alors libérés au moment du dépôt du film.
Enfin, postérieurement au transfert sur le substrat, le procédé intègre de préférence une étape de recuit thermique pour faciliter le dépôt et l'adhérence de ces particules sur le substrat.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous. BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels ;
- la figure 1 montre une installation de dépôt selon un mode de réalisation préféré de la présente invention, en coupe schématique prise le long de la ligne l-l de la figure 2 ;
- la figure 2 représente une vue schématique de dessus de l'installation de dépôt montrée sur la figure 1 ;
- les figures 3a à 3f représentent différentes étapes d'un procédé de dépôt mis en œuvre à l'aide de l'installation montrée sur les figures précédentes, selon un premier mode de réalisation préféré ;
- les figures 4a et 4b schématisent un procédé de dépôt selon un second mode de réalisation préféré ; et
- la figure 5 schématise un procédé de dépôt selon un troisième mode de réalisation préféré. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence tout d'abord aux figures 1 et 2, il est représenté une installation 1 pour le dépôt d'un film de particules sur un substrat, ici un substrat horizontal. L'installation 1 comporte un dispositif 2 de dispense de particules, dont la taille peut être comprise entre quelques nanomètres et plusieurs centaines de micromètres. Les particules, de préférence de forme sphérique, peuvent par exemple être des particules de silice. D'autres particules d'intérêt peuvent être faites de métal ou d'oxyde de métal comme le Platine, le Ti02, de polymère comme le polystyrène ou le PMMA, de carbone, etc., ou encore tout type de molécules.
Plus précisément, dans le mode de réalisation préféré, les particules sont des sphères de silice d'environ 1 μιη de diamètre, éventuellement stockées en solution dans le dispositif de dispense 2. La proportion du milieu est d'environ 7 g de particules pour 200 ml de solution, ici du butanol. Naturellement, pour des raisons de clarté, les particules représentées sur les figures adoptent un diamètre supérieur à leur diamètre réel.
Le dispositif de dispense 2 présente une buse d'injection 6 commandable, d'environ 500 μιη de diamètre.
En outre, l'installation 1 dispose, à proximité du dispositif 2, de moyens
3 d'amenée d'un liquide porteur 16, également commandables par le biais d'une vanne 7 ou similaire.
Elle comporte aussi un réceptacle en forme de bac 10, par exemple de forme parallélépipédique rectangle, dans lequel se trouve le liquide porteur 16.
Par ailleurs, elle comporte une tête 5 intégrant une rampe inclinée 12 de circulation des particules 4 et du liquide porteur 16. L'extrémité haute 12a de la rampe inclinée délimite l'ouverture d'un réservoir à débordement 9 pratiqué dans la tête, et dans lequel les particules 4 ainsi que le liquide porteur 16 sont destinés à être dispensés. Par conséquent, en fonctionnement, lorsque le liquide 16 déborde du réservoir 9, il est évacué par la rampe 12, en entraînant avec lui les particules 4 préalablement dispensées à la surface de ce même réservoir par le dispositif 2.
La rampe 12 est plane, inclinée d'un angle compris entre 5 et 60°, de préférence entre 5 et 25°, permettant aux particules d'être acheminées vers le liquide porteur situé dans le bac 10, puisque l'extrémité haute de la rampe 12 est surélevée par rapport au niveau de liquide dans ce bac. En fonctionnement, malgré l'introduction continue de liquide dans le bac par les moyens 3, via la rampe 12, le niveau de liquide dans le bac est préférentiellement maintenu constant par des moyens d'aspiration de liquide, portant la référence numérique générale 13. Ces moyens permettent d'aspirer du liquide 16 à proximité d'une extrémité inférieure 12b de la rampe 12, qui est immergée dans ce même liquide. Pour ce faire, les moyens 13 présentent une bouche d'aspiration 15 en partie inférieure de la tête, bouche qui est reliée par un canal à une pompe 17, le tout étant de préférence intégré à un circuit hydraulique fermé comprenant également les moyens de dispense de liquide 3 situés au-dessus du réservoir à débordement 9, et communiquant donc avec les moyens d'aspiration 13.
Le liquide 16 est ainsi re-circulé à l'aide des moyens précités, entre l'extrémité inférieure de la rampe et son extrémité supérieure, même si d'autres conceptions peuvent être retenues, notamment à circuit ouvert, sans sortir du cadre de l'invention.
La rampe 12, plongeant dans le liquide 16 du bac 10, définit avec le niveau horizontal de ce liquide une ligne d'inflexion 24, qui forme une entrée de particules dans le bac. Cette entrée se situe à distance d'une barrière de particules 23, placée dans le bac 10 délimité par deux rebords latéraux 28 retenant le liquide porteur 16. Ces rebords 28, en regard et à distance l'un de l'autre, s'étendent parallèlement à une direction principale d'écoulement du liquide porteur et des particules dans l'installation, cette direction étant schématisée par la flèche 30 sur les figures 1 et 2.
Entre l'entrée 24 et la barrière 23 à la surface du liquide porteur, il est donc créé une zone 14 d'accumulation des particules, qui prend par conséquent, entre les rebords latéraux 28, la forme d'un couloir sensiblement rectangulaire. D'autres géométries pourraient néanmoins être adoptées, sans sortir du cadre de l'invention.
L'installation 1 est également pourvue d'un support 35 du substrat 36 immergé dans le fond du bac. Le support est équipé d'un plateau horizontal 37 sur lequel repose le substrat 36, d'une poignée 39 située à l'extérieur du bac, et d'une zone de raccord 41 entre la poignée et le plateau. D'ailleurs, la barrière 23 précitée peut ici être formée par la partie de la zone de raccord 41 traversant la surface du liquide 16, et/ou par la paroi d'extrémité aval 10' du bac 10, comme cela sera décrit ci-après. Dans ce premier mode de réalisation, le substrat peut être rigide ou souple, car supporté par le plateau 37.
L'une des particularités de la présente invention réside ici dans le fait que la tête 5 est déplaçable en translation relativement au bac 10, selon la direction 30, à savoir parallèlement à la surface du liquide porteur. Pour ce faire, des moyens classiques de translation 45 peuvent être adoptés (uniquement représentés schématiquement), par exemple pilotés par un moteur linéaire à déplacement rectiligne. La tête 5, équipée de ses moyens 2, 3, est donc capable d'être déplacée à la surface du liquide porteur, de façon à pouvoir être éloignée / rapprochée de la barrière 23.
Un procédé de dépôt de particules selon un premier mode de réalisation va maintenant être décrit en référence aux figures 3a à 3f.
Tout d'abord, la tête 5 est suffisamment reculée pour permettre l'immersion du substrat 36 porté par le plateau du support 35, comme cela est schématisé sur la figure 3a. Ensuite, la tête est déplacée dans l'autre sens afin de se rapprocher de la barrière 23. Comme le montre la figure 3b, la zone d'accumulation 14 entre cette barrière et la ligne d'inflexion 24 est alors très réduite, de manière à pouvoir réaliser l'amorce d'un film de particules.
Pour ce faire, la buse d'injection 6 est activée dans le but de débuter la dispense des particules 4 dans le réservoir, de même que, au préalable, les moyens d'aspiration de liquide 13 et d'amenée de liquide 3 sont eux aussi activés. Les débits des moyens 13 et 3 sont de préférence maintenus constants durant toute la durée de dispense des particules, afin d'obtenir des conditions constantes de formation du film, quelle que soit d'ailleurs la position de la tête au cours de la formation de ce film.
Pour l'étape de réalisation de l'amorce du film dans la zone d'accumulation réduite 14, il s'agit simplement de remplir cette zone 14 par des particules 4 flottant sur le liquide porteur.
Durant cette phase, les particules 4 débordant du réservoir circulent sur la rampe 12, puis pénètrent dans la zone 14 dans laquelle elles se dispersent. Au fur et à mesure que ces particules 4 pénètrent dans la zone 14, elles viennent en butée contre la barrière 23, puis le front amont de ces particules a tendance à se décaler vers l'amont, en direction de la ligne d'inflexion 24. L'injection de particules se poursuit même après que ce front amont ait dépassé la ligne 24, afin qu'il remonte sur la rampe inclinée 12, comme montré sur la figure 3c.
Effectivement, il est fait en sorte que le front amont de particules 54 remonte sur la rampe 12 de manière à ce qu'il se situe à une distance horizontale « d » donnée de la ligne d'inflexion 24, cette distance « d » pouvant être de l'ordre de 15mm.
A cet instant, les particules 4 formant l'amorce sont ordonnées/compactées dans la zone réduite 14 et sur la rampe 12, sur laquelle elles s'ordonnent / se compactent automatiquement, sans assistance, grâce notamment à leur énergie cinétique et aux forces capillaires mises à profit au moment de l'impact sur le front 54. Dans le cas de particules sphériques tel que présenté dans ce mode de réalisation, l'ordonnancement est tel que l'amorce de film compact obtenue présente une structure dite « hexagonale compacte », dans laquelle chaque particule 4 est entourée et contactée par six autres particules 4 en contact entre elles. Il est alors indifféremment parlé de film compact de particules, ou de film de particules ordonnées, cette dernière terminologie étant préférentiellement retenue dans le cas des particules sphériques.
Une fois que les particules ordonnancées 4 formant l'amorce de film 4' recouvrent l'intégralité du liquide porteur situé dans la zone réduite d'accumulation 14, une nouvelle étape est débutée, visant à allonger la longueur du film.
Cette étape d'allongement est mise en œuvre en poursuivant l'aspiration et l'amenée de liquide, ainsi que la dispense de particules. En revanche, la tête 5 est reculée de manière à s'éloigner de la barrière 23, afin d'allonger la zone d'accumulation 14 dans laquelle se forme le film 4" de particules 4. Ce déplacement est effectué à une vitesse qui permet de conserver le front de particules 54 sur la rampe 12, de préférence dans une position constante, tel que cela a été schématisé sur la figure 3d. Par conséquent, le film 4" s'allonge progressivement au fur et à mesure que la tête 5 recule relativement au bac 10, tout en maintenant l'ordonnancement des particules 4 déjà déposées sur la rampe 12 et dans la zone 14. Ce principe d'étirement du film vers l'amont, dans le sens inverse de dispense des particules, permet de conserver des conditions sensiblement constantes de formation du film, rendant la qualité de ce dernier indépendante de sa longueur. Le film 4' peut être formé sur une grande longueur, avoisinant la longueur totale du bac, et permet donc des dépôts de qualité sur des surfaces importantes. D'ailleurs, comme montré sur la figure 3e de façon schématique, un film 4" hétérogène peut être obtenu de manière contrôlée, puisque lorsque de nouvelles particules 4 transitent par la rampe 12, elles atteignent directement le front amont 54 sur lequel elles adoptent un ordonnancement qui est conservé durant toute la formation du film. Il suffit alors simplement de dispenser tour à tour des particules 4 de natures différentes, par exemple de tailles différentes comme schématisé sur la figure 3e, qui se retrouvent ensuite dans le film 4" dans un ordre correspondant à celui dans lequel elles ont été dispensées.
A cet effet, il est possible de mettre en place plusieurs injecteurs de particules afin d'actionner celui souhaité au moment souhaité. Il est même possible de diviser la rampe en sections, chaque section étant séparée des autres par une ou deux parois parallèles aux bords, et d'associer à chaque section un ou plusieurs injecteurs. Il est ainsi possible de réaliser un gradient dans le sens de déplacement de la tête mais aussi dans la direction perpendiculaire à ce déplacement.
Une fois le film 4" allongé à la longueur désirée, toujours maintenu par la rampe incliné 12 de la tête à l'arrêt, ce film est transféré sur le substrat 36 selon une technique analogue à celle de Langmuir-Shaefer. Une représentation schématique de cette étape a été réalisée sur la figure 3f. Elle consiste à déplacer verticalement le substrat 36 à l'aide de la poignée 39 du support 35, de manière manuelle ou automatisée. Maintenu horizontalement durant ce déplacement, lorsque ce substrat 36 arrive au contact des particules du film 4", celui-ci se dépose sur la surface supérieure du substrat. L'excédent de particules 4 restant sur le liquide porteur peut ensuite être déplacé de manière à former toute ou partie de l'amorce d'un film suivant à déposer. Alternativement, l'excédent peut être aspiré.
Il est par ailleurs noté que la barrière 23 peut éventuellement être formée non seulement par le support 35, mais également en combinaison avec la paroi d'extrémité aval 10' du bac, lorsque la zone de jonction 41 présente une largeur inférieure à la largeur totale du bac entre les deux rebords latéraux. Dans un tel cas, après le dépôt du film 4" sur le substrat, des particules 4 subsistent de part et d'autre du film emporté sur ce même substrat 36, comme montré sur la figure 3f. Une autre solution consiste à faire en sorte que cette barrière soit intégralement formée par cette paroi d'extrémité aval 10' du bac en regard de la rampe 12. Dans un tel cas, la zone de raccord 41 se situe alors de préférence au plus près de l'un et/ou de l'autre des rebords latéraux 28.
Pour faciliter le dépôt et l'adhérence des particules 4 sur le substrat 36, de préférence réalisé en polymère, il est prévu un recuit thermique postérieurement au transfert. Ce recuit thermique est par exemple réalisé à 80°C, en utilisant un film mat de laminage basse température à base de polyester, par exemple commercialisé sous la référence PERFEX-MATT™, d'épaisseur 125μιη.
L'avantage d'un tel film en tant que substrat est que l'une de ses faces devient collante à la température de l'ordre de 80°C, ce qui permet de faciliter l'adhérence des particules 4. Alternativement, le substrat 36 peut être du type silicium, verre, ou encore film piézoélectrique.
Comme évoqué ci-dessus, au cours de l'allongement du film, l'injection de particules / de liquide et la vitesse de déplacement de la tête sont réglées de sorte que le front de particules 54 reste dans une position sensiblement identique. Pour ce faire, le débit de particules peut être de l'ordre de 0,01 ml/min à 10 ml/min, tandis que la vitesse linéaire de la tête 5 peut être de l'ordre de quelques mm/min à 30 cm/min. le débit de liquide porteur est quant à lui fixé entre 100 et 1000 ml/min.
Les figures 4a et 4b schématisent un second mode de réalisation préféré, dans lequel le transfert du film s'effectue sur un substrat 36 orienté verticalement. La formation du film 4" de particules ordonnées 4 sur le liquide porteur 16 s'effectue d'une manière identique ou analogue à celle présentée dans le cadre du premier mode de réalisation, avec la barrière 23 étant ici constituée par une partie du substrat 36 située en périphérie du bac, comme montré sur la figure 4a. Les particules sont donc en contact direct avec ce substrat. Ensuite, pour le transfert, le substrat est déplacé verticalement en même temps que le film 4" est poussé par la tête 5 en déplacement dans le sens opposé à celui ayant permis l'allongement du film. Un tirage classique est alors obtenu, comme schématisé sur la figure 4b. Ce mode de réalisation pourrait être mis en œuvre avec le substrat 36 préalablement immergé en partie dans le liquide porteur, sans sortir du cadre de l'invention. D'ailleurs, c'est la solution préférentiellement retenue pour le troisième mode de réalisation montré sur la figure 5, dans lequel le substrat 36 préalablement immergé en partie, est agencé de façon oblique, c'est-à-dire incliné par rapport aux directions verticale et horizontale. Pour le tirage, le substrat 36 est préférentiellement déplacé dans le plan dans lequel il se trouve au cours de l'étape antérieure de formation du film, durant laquelle sa partie traversant le liquide porteur remplit le rôle de barrière 23.
Pour le second et le troisième modes de réalisation, le substrat 36 est préférentiellement rigide, mais pourrait être remplacé par un substrat souple sous forme de bande en défilement, passant par des rouleaux ou analogues.
Des applications possibles pour les procédés qui viennent d'être décrits ont été mentionnées ci-dessus. Des exemples concrets sont également décrits ci-dessous.
Il s'agit par exemple d'échangeurs thermiques. La structuration des parois des échangeurs est un moyen pour régler les échanges thermiques. Ces structurations sont réalisables par lithographie avec un masque de particules. Avec les procédés décrits ci-dessus, la mise en œuvre de dépôts hétérogènes associant des particules de différentes dimensions rend possible l'obtention de géométries habituellement réalisées par lithographie, et notamment à des géométries avec des gradients de tailles de particules. Il est donc possible, avec cette technique, de former des surfaces avec des gradients d'énergie, par exemple pour favoriser la formation et l'écoulement de gouttes condensées en surface
Un autre exemple se rapporte au domaine de la tribologie. Pour les applications mécaniques, des films compacts peuvent être utilisés comme masque de lithographie pour créer des micro/nanocuves permettant la rétention du lubrifiant à la surface des objets en frottement. L'ajustement des dimensions de ces micro/nanocuves de rétention est un paramètre de réglage du coefficient de frottement. Un moyen simple pour changer les dimensions de ces micro/nanocuves est d'utiliser comme masque de gravure un film compact hétérogène composé de différentes tailles de particules, facile à obtenir avec le procédé spécifique à la présente invention.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Procédé de formation d'un film de particules (4) sur un liquide porteur (16) présent dans un réceptacle (10), en vue du dépôt de ce film (4") sur un substrat (36), caractérisé en ce qu'il comprend les étapes successives suivantes :
- réalisation d'une amorce de film (4') entre des moyens formant barrière (23) et une tête (5) présentant une rampe inclinée (12), ladite amorce étant obtenue par dispense de particules via ladite rampe inclinée, opérée jusqu'à ce que ces particules (4) flottant sur le liquide porteur occupent l'espace entre les moyens formant barrière (23) contre lesquelles elles sont en butée, et un front amont de particules (54) situé sur la rampe inclinée ; et
- allongement du film en réalisant, simultanément, une poursuite de la dispense de particules (4) via ladite rampe inclinée (12), et un déplacement de ladite tête (5) relativement au réceptacle (10) de manière à éloigner cette tête desdits moyens formant barrière (23), cet allongement du film étant effectué de manière à maintenir ledit front amont de particules (54) sur la rampe inclinée.
2. Procédé selon la revendication 1, caractérisé en ce qu'au cours de l'étape d'allongement du film, ledit front amont de particules (54) est maintenu dans une même position sur la rampe (12).
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que ladite tête (5) présente des moyens d'aspiration (13) permettant d'aspirer une partie du liquide porteur (16) à proximité d'une extrémité immergée (12b) de ladite rampe inclinée (12), lesdits moyens (13) étant activés au moins durant une partie de ladite étape d'allongement du film.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que des moyens d'amenée de liquide porteur (3) alimentent ladite tête (5) en liquide porteur de manière à ce que celui-ci entraîne avec lui, sur la rampe inclinée (12), lesdites particules (4).
5. Procédé selon la revendication 4 combinée à la revendication 3, caractérisé en ce que lesdits moyens d'aspiration de liquide porteur (13) communiquent avec lesdits moyens d'amenée de liquide porteur (3).
6. Procédé selon la revendication 4 ou la revendication 5, caractérisé en ce que ledit liquide porteur (16) et les particules (4) sont dispensées dans un réservoir à débordement (9) pratiqué dans la tête (5), ledit réservoir étant configuré pour que lorsqu'il déborde, la solution de liquide porteur (16) et de particules (4) s'écoule sur ladite rampe inclinée (12).
7. Procédé selon la revendication 6, caractérisé en ce que ledit liquide porteur (16) et lesdites particules (4) sont dispensés séparément dans ledit réservoir (9).
8. Procédé de dépôt d'un film (4") de particules (4) sur un substrat (36), comprenant un procédé de formation d'un film de particules ordonnées selon l'une quelconque des revendications précédentes, suivi d'une étape de transfert dudit film (4") sur le substrat (36).
9. Procédé selon la revendication 8, caractérisé en ce que ladite étape de transfert s'effectue avec le substrat (36) orienté horizontalement.
10. Procédé selon la revendication 9, caractérisé en ce que ledit substrat (36) est amené au contact dudit film (4") de particules flottant sur le liquide porteur (16), en étant déplacé verticalement.
11. Procédé selon la revendication 10, caractérisé en ce que ledit substrat horizontal (36) est immergé dans ledit liquide porteur (16) durant la formation dudit film de particules, puis remonté verticalement afin que ce film se dépose sur ce substrat horizontal.
12. Procédé selon la revendication 8, caractérisé en ce que ladite étape de transfert s'effectue avec le substrat (36) orienté verticalement ou de façon oblique.
13. Procédé selon la revendication 12, caractérisé en ce que ledit transfert s'effectue par tirage du substrat (36), et par mise en mouvement du film (4") sur le liquide porteur par déplacement de ladite tête (5) en direction dudit substrat (36).
14. Procédé selon la revendication 12 ou la revendication 13, caractérisé en ce que ledit substrat vertical ou oblique (36) est rigide ou souple.
15. Procédé selon l'une quelconque des revendications 12 à 14, caractérisé en ce que lesdits moyens formant barrière (23) sont formés par ledit substrat.
16. Installation (1) pour le dépôt d'un film (4") de particules (4) sur un substrat (36), l'installation comprenant un réceptacle (10) pour recevoir un liquide porteur (16) sur lequel ledit film est destiné à être formé, caractérisée en ce qu'elle comprend en outre une tête (5) présentant une rampe inclinée (12) par laquelle les particules (4) sont destinées à transiter avant d'atteindre le liquide porteur du réceptacle, et en ce qu'elle comprend des moyens (45) de déplacement de ladite tête (5) relativement au réceptacle (10), parallèlement à la surface dudit liquide porteur (16).
PCT/EP2013/068593 2012-09-10 2013-09-09 Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules WO2014037559A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13762434.2A EP2892658B1 (fr) 2012-09-10 2013-09-09 Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
US14/423,957 US9744557B2 (en) 2012-09-10 2013-09-09 Method for forming a film of particles on a carrier liquid, with movement of an inclined ramp for compressing the particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258473 2012-09-10
FR1258473A FR2995228B1 (fr) 2012-09-10 2012-09-10 Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules

Publications (1)

Publication Number Publication Date
WO2014037559A1 true WO2014037559A1 (fr) 2014-03-13

Family

ID=47356076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/068593 WO2014037559A1 (fr) 2012-09-10 2013-09-09 Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules

Country Status (4)

Country Link
US (1) US9744557B2 (fr)
EP (1) EP2892658B1 (fr)
FR (1) FR2995228B1 (fr)
WO (1) WO2014037559A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142301A1 (fr) 2015-03-06 2016-09-15 Commissariat à l'énergie atomique et aux énergies alternatives Procédé et dispositif pour détecter en temps réel un composé sécrété et la cible sécrétrice ainsi que leurs utilisations

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986720B1 (fr) * 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
FR3005432B1 (fr) 2013-05-13 2015-06-05 Commissariat Energie Atomique Procede de depot d'un film compact de particules sur la surface interieure d'une piece presentant un creux delimite par cette surface interieure
FR3006111B1 (fr) 2013-05-24 2016-11-25 Commissariat Energie Atomique Dispositif de conversion d'energie thermique en energie electrique a molecules thermo-sensibles
FR3011751B1 (fr) 2013-10-11 2015-12-25 Commissariat Energie Atomique Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
FR3011752B1 (fr) 2013-10-11 2015-12-25 Commissariat Energie Atomique Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
FR3027449B1 (fr) 2014-10-21 2017-10-20 Commissariat Energie Atomique Procede ameliore de realisation d'interconnexions pour circuit integre 3d

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270212A1 (fr) * 1986-09-24 1988-06-08 Exxon Research And Engineering Company Production de revêtements de particules colloidales très tassées
WO2003095108A1 (fr) * 2002-05-10 2003-11-20 Nanometrix Inc. Procede et appareil d'assemblage bidimensionnel de particules
US20050281944A1 (en) * 2004-06-17 2005-12-22 Jang Bor Z Fluid-assisted self-assembly of meso-scale particles
WO2008014604A1 (fr) 2006-08-02 2008-02-07 Nanometrix Inc. Appareil de transfert modulaire et procédé
WO2012113745A1 (fr) * 2011-02-24 2012-08-30 Commissariat à l'énergie atomique et aux énergies alternatives Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241341B2 (en) * 2002-05-10 2007-07-10 Nanometrix Inc. Method and apparatus for two dimensional assembly of particles
FR2911721B1 (fr) 2007-01-19 2009-05-01 St Microelectronics Crolles 2 Dispositif a mosfet sur soi
FR2959564B1 (fr) 2010-04-28 2012-06-08 Commissariat Energie Atomique Dispositif formant manometre destine a la mesure de pression de fluide diphasique, procede de realisation et reseau fluidique associes
FR2977121B1 (fr) 2011-06-22 2014-04-25 Commissariat Energie Atomique Systeme de gestion thermique a materiau a volume variable
FR2977810A1 (fr) 2011-07-13 2013-01-18 Commissariat Energie Atomique Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
FR2985249B1 (fr) 2012-01-02 2014-03-07 Commissariat Energie Atomique Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
FR2986720B1 (fr) 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
FR2986722B1 (fr) 2012-02-10 2014-03-28 Commissariat Energie Atomique Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules, avec une etape de realisation de connecteurs sur les objets
FR2986721B1 (fr) 2012-02-10 2014-06-27 Commissariat Energie Atomique Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270212A1 (fr) * 1986-09-24 1988-06-08 Exxon Research And Engineering Company Production de revêtements de particules colloidales très tassées
WO2003095108A1 (fr) * 2002-05-10 2003-11-20 Nanometrix Inc. Procede et appareil d'assemblage bidimensionnel de particules
US20050281944A1 (en) * 2004-06-17 2005-12-22 Jang Bor Z Fluid-assisted self-assembly of meso-scale particles
WO2008014604A1 (fr) 2006-08-02 2008-02-07 Nanometrix Inc. Appareil de transfert modulaire et procédé
WO2012113745A1 (fr) * 2011-02-24 2012-08-30 Commissariat à l'énergie atomique et aux énergies alternatives Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142301A1 (fr) 2015-03-06 2016-09-15 Commissariat à l'énergie atomique et aux énergies alternatives Procédé et dispositif pour détecter en temps réel un composé sécrété et la cible sécrétrice ainsi que leurs utilisations

Also Published As

Publication number Publication date
US9744557B2 (en) 2017-08-29
FR2995228A1 (fr) 2014-03-14
FR2995228B1 (fr) 2014-09-05
EP2892658B1 (fr) 2018-11-07
EP2892658A1 (fr) 2015-07-15
US20150217328A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2892658B1 (fr) Procede de formation d'un film de particules sur liquide porteur, avec deplacement d'une rampe inclinee de compression des particules
EP2678120B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees sur un substrat en defilement
EP2731731B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
EP2801108B1 (fr) Procede de transfert d'objets sur un substrat a l'aide d'un film compact de particules
EP2812125B1 (fr) Procede de depot d'un film de particules sur un substrat via un convoyeur liquide, comprenant une etape de structuration du film sur le substrat
EP2812126B1 (fr) Procede de depot de particules sur un substrat, comprenant une etape de structuration d'un film de particules sur un convoyeur liquide
EP2996816A1 (fr) Procede de realisation d'un substrat par projection de particules sur un film compact de particules solides flottant sur un liquide porteur
EP2797840B1 (fr) Procede et dispositif de purification de silicium
EP3038761B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
EP2996820A1 (fr) Procede de depot d'un film compact de particules sur la surface interieure d'une piece presentant un creux delimite par cette surface interieure
BE1026143A1 (fr) Dispositif pour manipuler des particules
EP3038760B1 (fr) Installation et procede a rendement ameliore de formation d'un film compact de particules a la surface d'un liquide porteur
WO2016113324A1 (fr) Procede de formation d'un film compact de particules a la surface d'un liquide porteur
WO2005064034A2 (fr) Dispositif pour deposer une couche de silicium polycristallin sur un support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13762434

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14423957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE