WO2014034394A1 - Liquid crystal display device and method for driving liquid crystal display device - Google Patents

Liquid crystal display device and method for driving liquid crystal display device Download PDF

Info

Publication number
WO2014034394A1
WO2014034394A1 PCT/JP2013/071331 JP2013071331W WO2014034394A1 WO 2014034394 A1 WO2014034394 A1 WO 2014034394A1 JP 2013071331 W JP2013071331 W JP 2013071331W WO 2014034394 A1 WO2014034394 A1 WO 2014034394A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
display device
crystal display
pixels
Prior art date
Application number
PCT/JP2013/071331
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 田中
村田 充弘
章仁 陣田
洋典 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014034394A1 publication Critical patent/WO2014034394A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0434Flat panel display in which a field is applied parallel to the display plane
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a liquid crystal display device and a driving method of the liquid crystal display device.
  • Japanese Unexamined Patent Application Publication No. 2004-354407 discloses a liquid crystal display device including a first electrode and a second electrode formed on one substrate, and a third electrode formed on the other substrate.
  • the potential of the third electrode is changed within one frame period, and the horizontal electric field generated between the first electrode and the second electrode is used in the image display period, and the image non-display period is displayed.
  • the liquid crystal molecules are driven by a vertical electric field generated between the first electrode and the third electrode.
  • the above-mentioned patent document describes that the fall response time can be particularly shortened by this driving method.
  • the driving method disclosed in the above-mentioned patent document is a driving method by so-called black insertion writing in which an image non-display period is provided within one frame period. Therefore, it is difficult to obtain sufficient brightness.
  • black display in a state where liquid crystal molecules are horizontally aligned and black display in a state where liquid crystal molecules are vertically aligned are mixed. For this reason, the black display cannot be compensated, and the contrast is lowered.
  • An object of the present invention is to provide a driving method capable of suppressing flicker. Moreover, it is providing the liquid crystal display device which performs the said drive method.
  • the liquid crystal display device disclosed herein includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each of the pixels, and a common formed over the plurality of pixels.
  • An electrode, a second substrate disposed opposite to the first substrate, a counter electrode formed on the second substrate, and the dielectric anisotropy sandwiched between the first substrate and the second substrate Includes a liquid crystal layer containing positive liquid crystal molecules, and a drive unit that controls the potential of at least one of the first electrode, the second electrode, the common electrode, and the counter electrode.
  • the driving unit sequentially writes the potentials of the first electrode and the second electrode for the plurality of pixels, and inverts the height relationship between the potential of the common electrode and the potential of the counter electrode for each inversion period.
  • the length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is less than half of the length of the inversion period.
  • the driving method disclosed herein includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and a common electrode formed over the plurality of pixels. And a second substrate disposed to face the first substrate, a counter electrode formed on the second substrate, the first substrate and the second substrate, and having a dielectric anisotropy
  • the level relationship with the potential of the electrode is inverted every predetermined inversion period.
  • the length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is less than half of the length of the inversion period.
  • a driving method capable of suppressing flicker is obtained. Further, a liquid crystal display device that executes the driving method can be obtained.
  • FIG. 1 is a perspective view schematically showing a part of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing one pixel extracted from the liquid crystal display device.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an equivalent circuit diagram of the liquid crystal display device.
  • FIG. 5A is a diagram for explaining a display operation by the liquid crystal display device.
  • FIG. 5B is a diagram for explaining a display operation by the liquid crystal display device.
  • FIG. 6 is a block diagram showing a functional configuration of the liquid crystal display device.
  • FIG. 7 is a timing chart of the driving method according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing a part of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing one pixel extracted from the liquid crystal display device.
  • FIG. 3 is a cross-sectional view taken along line AA
  • FIG. 8 is a diagram schematically showing the polarities of the electrodes in each pixel in the present embodiment.
  • FIG. 9 is a diagram schematically showing the polarity of the electrode in each pixel in another example of the present embodiment.
  • FIG. 10 is a diagram schematically showing the polarity of the electrode in each pixel in another example of the present embodiment.
  • FIG. 11 is a timing chart of the driving method according to the second embodiment of the present invention.
  • FIG. 12 is a timing chart of the driving method according to the third embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a liquid crystal display device according to a modification of the present invention.
  • FIG. 14 is an equivalent circuit diagram of a liquid crystal display device according to a modification of the present invention.
  • a liquid crystal display device includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and the plurality of pixels.
  • a common electrode formed; a second substrate disposed opposite the first substrate; a counter electrode formed on the second substrate; and the first substrate and the second substrate.
  • the driving unit sequentially writes the potentials of the first electrode and the second electrode for the plurality of pixels, and inverts the height relationship between the potential of the common electrode and the potential of the counter electrode for each inversion period.
  • the length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is not more than half the length of the inversion period (first configuration).
  • the liquid crystal display device includes the first electrode and the second electrode formed for each pixel.
  • the drive unit controls the potentials of the first electrode and the second electrode to form an electric field between the first electrode and the second electrode. Thereby, the orientation of the liquid crystal molecules in the liquid crystal layer can be controlled for each pixel.
  • the liquid crystal display device further includes a common electrode and a counter electrode.
  • the driving unit controls the potential of at least one of the common electrode and the counter electrode to form an electric field between the common electrode and the counter electrode.
  • the common electrode is formed on the first substrate
  • the counter electrode is formed on the second substrate.
  • both the first electrode and the second electrode are formed on the first substrate. Therefore, the direction of the electric field (hereinafter referred to as the vertical electric field) formed by the common electrode and the counter electrode is a direction intersecting the direction of the electric field (hereinafter referred to as the horizontal electric field) formed by the first electrode and the second electrode. .
  • the alignment of liquid crystal molecules is controlled by the lateral electric field.
  • the alignment of liquid crystal molecules is controlled by the vertical electric field.
  • the response speed can be increased as compared with the case where the orientation is controlled only by the vertical electric field or only the horizontal electric field.
  • the driving unit inverts the height relationship between the common electrode potential and the counter electrode potential every inversion period. That is, the drive unit inverts the vertical electric field for each inversion period. As a result, it is possible to prevent the liquid crystal layer from being biased.
  • the potential of the first electrode and the second electrode is affected by the inversion of the longitudinal electric field. For this reason, the alignment of the liquid crystal is disturbed and the luminance is reduced until the potential of the first electrode and the second electrode is written by the driving unit after the vertical electric field is reversed.
  • the length of the scanning period is half or less of the length of the inversion period. Therefore, it is possible to shorten the period in which the luminance is lowered due to the influence of the inversion of the vertical electric field. Thereby, flicker can be suppressed.
  • the potential of the first electrode and the potential of the second electrode are preferably opposite to each other (second configuration).
  • the drive unit preferably reverses the polarities of the potentials of the first electrode and the second electrode every period that is an integral multiple of the length of one frame period (first 3 configuration).
  • the driving unit preferably reverses the polarities of the potentials of the first electrode and the second electrode for each row of the pixels (fourth configuration).
  • the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each column of pixels (fifth configuration). .
  • the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each pixel (sixth configuration).
  • the length of the inversion period may be twice or more the length of one frame period (seventh configuration).
  • the length of the scanning period is shorter than the length of one frame period
  • the driving unit has the potentials of the first electrode and the second electrode for the plurality of pixels. May be written once in one frame period (eighth configuration).
  • the length of the scanning period is shorter than the length of one frame period, and the potentials of the first electrode and the second electrode are set to one frame period for the plurality of pixels. It may be configured to write twice or more (9th configuration).
  • the orientation of the liquid crystal molecules in the liquid crystal layer can be further stabilized.
  • an overcoat layer formed to cover the counter electrode may be further provided (tenth configuration).
  • the strength of the longitudinal electric field is reduced by the overcoat layer. For this reason, the influence of the transverse electric field becomes relatively large. Thereby, the transmittance can be improved.
  • a gate line formed for each row of pixels, first and second source lines formed for each column of pixels, and formed for each pixel.
  • a first switching element connected to the gate line and the first source line, and opened and closed by a signal supplied to the gate line; and formed for each pixel and connected to the gate line and the second source line.
  • a second switching element that opens and closes in response to a signal supplied to the gate line, wherein the first electrode is connected to the first switching element, and the second electrode is connected to the second switching element.
  • the first switching element and the second switching element include an oxide semiconductor (a twelfth configuration).
  • a driving method includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and the plurality of pixels.
  • a common electrode formed; a second substrate disposed opposite the first substrate; a counter electrode formed on the second substrate; and the first substrate and the second substrate.
  • a liquid crystal display device comprising a liquid crystal layer including liquid crystal molecules having positive rate anisotropy, wherein the potentials of the first electrode and the second electrode are sequentially written to the plurality of pixels, and the common electrode
  • the length of the scanning period for inverting the height relationship between the potential of the first electrode and the potential of the counter electrode every predetermined inversion period and writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels Is the inversion period Half the length or less (first aspect of the driving method).
  • the liquid crystal layer may include liquid crystal molecules having a positive dielectric anisotropy (second aspect of the driving method).
  • FIG. 1 is a perspective view schematically showing a part of a liquid crystal display device 1 according to an embodiment of the present invention.
  • the liquid crystal display device 1 includes an array substrate (first substrate) 10, a counter substrate (second substrate) 30, and a liquid crystal layer 20 sandwiched between the array substrate 10 and the counter substrate 30.
  • the array substrate 10 includes a substrate 11.
  • the substrate 11 has translucency.
  • the substrate 11 is a glass substrate, for example.
  • the substrate 11 may have a passivation film or the like formed on the surface.
  • a polarizing plate 15 is disposed on one surface of the substrate 11.
  • a common electrode 12, an insulating layer 13, and an array layer 14 are formed in this order.
  • the common electrode 12 is formed in a uniform surface so as to cover substantially the entire display area of the substrate 11.
  • the common electrode 12 is a translucent conductive film, for example, an ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) film.
  • the common electrode 12 is formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
  • the insulating layer 13 is formed so as to cover substantially the entire surface of the common electrode 12.
  • the insulating layer 13 has translucency and insulating properties.
  • the insulating layer 13 is, for example, a silicon nitride, silicon oxide, or silicon oxynitride film, and is formed by, for example, CVD.
  • the insulating layer 13 may also be an organic material such as an acrylic resin. In this case, the insulating layer 13 is formed by, for example, a spin coater or a slit coater.
  • the array layer 14 includes a plurality of pixels Px each having a pixel electrode formed thereon.
  • the array layer 14 further includes wiring (source line 141 and gate line 142) for supplying a signal to the pixel electrode, and a switching element.
  • the source lines 141 are formed in parallel with each other at a predetermined interval.
  • the gate lines 142 are formed in parallel with each other at a predetermined interval in a direction intersecting the source line 141.
  • the source line 141 and the gate line 142 preferably have high conductivity.
  • the source line 141 and the gate line 142 are, for example, metal films.
  • the direction in which the gate line 142 extends is referred to as the x direction
  • the direction in which the source line 141 extends is referred to as the y direction
  • the normal direction of the substrate 11 is referred to as the z direction.
  • the pixels Px are arranged in a matrix along the x direction and the y direction. Therefore, a set of a plurality of pixels Px having the same position in the x direction may be referred to as a column of pixels Px. Furthermore, a set of a plurality of pixels Px having the same position in the y direction may be referred to as a row of pixels Px.
  • FIG. 2 is a plan view showing one pixel Px extracted from the liquid crystal display device 1.
  • Two source lines 141A and 141B and one gate line 142 pass through one pixel Px.
  • the pixel Px further includes TFTs (Thin Film Transistors) 143A (first switching elements) and 143B (second switching elements) that are switching elements, and electrodes 144A (first electrodes) and 144B (second electrodes) that are pixel electrodes. Is formed.
  • TFTs Thin Film Transistors
  • the TFT 143A is formed in the vicinity of the intersection of the source line 141A and the gate line 142.
  • the source of the TFT 143A is connected to the source line 141A, the gate is connected to the gate line 142, and the drain is connected to the electrode 144A.
  • the TFT 143B is formed near the intersection of the source line 141B and the gate line 142.
  • the source of the TFT 143B is connected to the source line 141B, the gate is connected to the gate line 142, and the drain is connected to the electrode 144B. That is, the TFTs 143A and 143B share the gate line 142.
  • TFTs 143A and 143B include, for example, amorphous silicon, polysilicon, or an oxide conductor.
  • the TFTs 143A and 143B preferably include an oxide conductor having a high electron mobility.
  • An oxide conductor having a high electron mobility is, for example, IGZO (Indium Gallium Zinc Oxide).
  • the electrodes 144A and 144B have a so-called comb tooth shape. That is, it is composed of a main body portion branched into a plurality of portions and a connection portion for connecting the main body portions.
  • the electrode 144 ⁇ / b> A includes two main body portions that extend in the y direction and are arranged in parallel to each other, and a connection portion that connects the main body portions at one end in the y direction.
  • the electrode 144B includes two main body portions that extend in the y direction and are arranged in parallel to each other, and a connection portion that connects the main body portions at one end in the y direction. This configuration is merely an example, and the electrodes 144A and 144B can take any shape.
  • the main body portion of the electrode 144A and the main body portion of the electrode 144B are arranged so as to be alternately arranged. With this configuration, a potential difference can be formed between the electrode 144A and the electrode 144B, and an electric field can be formed in the xy in-plane direction.
  • the main body portion of the electrode 144A and the main body portion of the electrode 144B are arranged so as to be alternately arranged in the x direction. With this configuration, an electric field can be formed in the x direction.
  • the electrodes 144A and 144B are conductive films, for example, metal films such as Al or Cu.
  • the electrodes 144A and 144B may be transparent conductive films such as ITO or IZO.
  • the source lines 141A and 141B, the gate line 142, the TFTs 143A and 143B, and the electrodes 144A and 144B are illustrated as being formed on the same layer. However, these may be formed in a plurality of layers via an insulating film or the like. That is, the array layer 14 may include a plurality of films formed at different positions in the z direction.
  • the array layer 14 can be manufactured by a known semiconductor process.
  • the counter substrate 30 includes a substrate 31. Similar to the substrate 11, the substrate 31 has translucency.
  • the substrate 31 is a glass substrate, for example.
  • the substrate 31 may have a passivation film or the like formed on the surface.
  • a polarizing plate 33 is disposed on one surface of the substrate 31.
  • a counter electrode 32 is formed on the other surface of the substrate 31.
  • the counter electrode 32 is formed in a uniform surface so as to cover substantially the entire display area of the substrate 31.
  • the counter electrode 32 is a translucent conductive film, for example, an ITO or IZO film.
  • the counter electrode 32 is formed by, for example, CVD or sputtering.
  • the liquid crystal display device 1 is manufactured by bonding the array substrate 10 and the counter substrate 30 together with the peripheral edge sealed, and forming the liquid crystal layer 20 therebetween. As shown in FIG. 1, the array substrate 10 and the counter substrate 30 are disposed so that the array layer 14 and the counter electrode 32 face each other. Although not shown in FIG. 1, an alignment film is formed to cover the array layer 14 and the counter electrode 32.
  • the liquid crystal molecules constituting the liquid crystal layer 20 have birefringence. That is, the refractive index n e for the light vibrating in parallel with the optical axis, the refractive index n o for light oscillating perpendicularly to the optical axis are different.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • FIG. 4 is an equivalent circuit diagram of the liquid crystal display device 1.
  • the electrode 144A and the electrode 144B are capacitively coupled via the liquid crystal capacitance Clc3.
  • the electrode 144A and the counter electrode 32 are capacitively coupled via a liquid crystal capacitance Clc1, and the electrode 144B and the counter electrode 32 are capacitively coupled via a liquid crystal capacitance Clc2.
  • the electrode 144A and the common electrode 12 are capacitively coupled via the storage capacitor Cs1, and the electrode 144B and the common electrode 12 are capacitively coupled via the storage capacitor Cs2.
  • the signal VsA is supplied to the source line 141A, and the signal VsB is supplied to the source line 141B.
  • a signal Vg is supplied to the gate line 142, a signal Vcom is supplied to the common electrode 12, and a signal Vc is supplied to the counter electrode 32. Details of the signals VsA, VsB, Vg, Vcom, and Vc will be described later.
  • the liquid crystal molecules 20a of the liquid crystal layer 20 have a positive dielectric anisotropy ⁇ n and are aligned so that the direction of the molecular major axis and the direction of the electric field are parallel.
  • the liquid crystal display device 1 controls the potentials of the electrodes 144A and 144B, the counter electrode 32, and the common electrode 12, applies an electric field to the liquid crystal layer 20, and controls the alignment direction of the liquid crystal molecules 20a.
  • the liquid crystal display device 1 uses an alignment film for vertical alignment. Thereby, when an electric field is not applied to the liquid crystal layer 20, the liquid crystal molecules 20a are aligned so that the molecular long axis is in the z direction.
  • the electric field formed by the electrodes 144A and 144B is called a transverse electric field
  • the electric field formed by the common electrode 12 and the counter electrode 32 is called a vertical electric field.
  • FIG. 5A schematically shows a state in which only a vertical electric field is formed and no horizontal electric field is formed.
  • the potential of the counter electrode 32 is 7.5V
  • the potentials of the electrodes 144A and 144B and the common electrode 12 are 0V.
  • the liquid crystal molecules 20a are aligned so that the molecular long axis is parallel to the z direction by the action of the vertical electric field and the alignment films 15 and 33. At this time, the polarization direction of the light passing through the liquid crystal layer 20 hardly changes.
  • the polarizing plates 15 and 33 are arranged so that the transmission axes are orthogonal to each other. Therefore, the light transmitted through the polarizing plate 15 and the liquid crystal layer 20 is blocked by the polarizing plate 33. Therefore, black display (dark display) is performed in the pixel Px in which no horizontal electric field is formed as shown in FIG. 5A.
  • FIG. 5B schematically shows a state in which a horizontal electric field is formed in addition to the vertical electric field.
  • the potential of the counter electrode 32 is 7.5V
  • the potential of the electrode 144A is 5.0V
  • the potential of the electrode 144B is ⁇ 5.0V
  • the potential of the common electrode 12 is 0V. is there.
  • the liquid crystal molecules 20a are aligned with the molecular long axis inclined in the xy plane from the z direction due to a transverse electric field.
  • the polarization direction of the light passing through the liquid crystal layer 20 changes depending on the birefringence of the liquid crystal molecules 20a.
  • the light transmitted through the polarizing plate 15 and the liquid crystal layer 20 can be transmitted through the polarizing plate 33. Therefore, white display (bright display) is performed in the pixel Px in which the horizontal electric field is formed as shown in FIG. 5B.
  • the liquid crystal display device 1 can control the gradation of the pixel Px by the strength of the lateral electric field.
  • a vertical electric field is formed both when performing black display and when performing white display.
  • the response speed when switching from white display to black display can be improved by the vertical electric field. That is, the vertical electric field can improve the speed at which the liquid crystal molecules 20a tilted in the xy plane are aligned in the z direction.
  • black display is performed using the vertical alignment of the liquid crystal molecules 20a. That is, unlike the driving method disclosed in Japanese Patent Application Laid-Open No. 2004-354407, black display in a state where the liquid crystal molecules 20a are horizontally aligned and black display in a state where the liquid crystal molecules 20a are vertically aligned do not coexist. Therefore, compensation can be performed for black display, and high contrast can be obtained.
  • FIG. 6 is a block diagram showing a functional configuration of the liquid crystal display device 1.
  • the liquid crystal display device 1 further includes a control unit 51 and a drive unit 52.
  • the drive unit 52 includes a source driver 521, a gate driver 522, and a vertical electric field driver 523.
  • control unit 51 and the drive unit 52 are mounted on the array substrate 10 or the counter substrate 30 by, for example, a TAB (Tape Automated Bonding) technique or a COG (Chip On Glass) technique. Part or all of the control unit 51 and the drive unit 52 may be disposed at a place other than the array substrate 10 and the counter substrate 30.
  • the control unit 51 performs predetermined processing on the video signal Vin supplied from the outside and supplies the video signal Vin to the source driver 521, the gate driver 522, and the vertical electric field driver 523.
  • the source driver 521 generates the signals VsA and VsB based on the signal supplied from the control unit 51. Then, the source driver 521 supplies the signal VsA to the source line 141A and supplies the signal VsB to the source line 141B.
  • the gate driver 522 generates a signal Vg based on the signal supplied from the control unit 51 and supplies the signal Vg to the gate line 142.
  • the number of gate lines 142 is j (j is a natural number), and the signal Vg supplied to the gate line 142 in the k-th row (1 ⁇ k ⁇ j) is represented as a signal Vg_k.
  • the vertical electric field driver 523 generates signals Vcom and Vc based on the signal supplied from the control unit 51.
  • the vertical electric field driver 523 supplies the signal Vcom to the common electrode 12 and supplies the signal Vc to the counter electrode 32.
  • a circuit that generates the signal Vcom and supplies it to the common electrode 12 and a circuit that generates the signal Vc and supplies it to the counter electrode 32 may be provided separately.
  • the vertical electric field driver 523 may be configured to generate only one of the signals Vcom and Vc and supply a signal only to either the common electrode 12 or the counter electrode 32.
  • the other of the common electrode 12 and the counter electrode 32 can be set to a constant potential.
  • the vertical electric field is controlled by changing the potential of the counter electrode 32 while keeping the potential of the common electrode 12 constant will be described.
  • FIG. 7 is a timing chart of the driving method according to the first embodiment of the present invention.
  • Vc is a signal waveform of the signal Vc supplied from the driving unit 52 to the counter electrode 32 and is a potential of the counter electrode 32.
  • VsA and VsB in FIG. 7 are signal waveforms of signals VsA and VsB supplied from the source lines 141A and 141B to a certain pixel Px.
  • Vg_1 is a signal waveform of the signal Vg_1 supplied to the gate line 142 in the first row, and Va and Vb below it are the electrodes 144A and 144B connected to the gate line 142 in the first row. Potential.
  • Vc is a signal waveform of the signal Vc supplied from the driving unit 52 to the counter electrode 32 and is a potential of the counter electrode 32.
  • VsA and VsB in FIG. 7 are signal waveforms of signals VsA and VsB supplied from the source lines 141A and 141B to a certain pixel Px
  • Vg_j is a signal waveform of the signal Vg_j supplied to the gate line 142 in the j-th row, and Va and Vb below it are the electrodes 144A and 144B connected to the gate line 142 in the j-th row. Potential. Note that in FIG. 7, the potential Va of the electrode 144 ⁇ / b> A is indicated by a two-dot chain line, and the potential Vb of the electrode 144 ⁇ / b> B is indicated by a thick solid line for easy understanding of the drawing. The same applies to FIGS. 11 and 12 described later.
  • the drive unit 52 changes the potential Vc of the counter electrode 32 every period four times as long as one frame period (Tf). More specifically, the drive unit 52 changes the potential Vc so that the direction of the vertical electric field is reversed every period of 4Tf. That is, the drive unit 52 reverses the level relationship between the potential of the common electrode 12 and the potential of the counter electrode 32 for each period of 4Tf length. In this embodiment, since the potential Vcom of the common electrode 12 is constant, the drive unit 52 reverses the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. Yes.
  • the signals Vg1 to Vg_j become high level one by one in a time division manner. That is, in a certain period, the signal Vg_1 is at a high level, and the signals Vg_2 to Vg_j are at a low level. Then, in synchronization with the signal Vg_1 becoming low level, the signal Vg_2 becomes high level. While the signal Vg_2 is at a high level, the signal Vg_1 and the signals Vg_3 to Vg_j are at a low level. In this way, one of the signals Vg_1 to Vg_j sequentially becomes a high level, and the other signals become a low level.
  • the driving unit 52 sets the signals Vg_1 to Vg_j to the high level once during the scanning period Tgs. Accordingly, the driving unit 52 writes the potentials of the electrodes 144A and 144B once for all the pixels Px of the liquid crystal display device 1 during the scanning period Tgs.
  • the length of the scanning period Tgs is approximately equal to the length of one frame period Tf. That is, in the present embodiment, the drive unit 52 writes the potentials of the electrodes 144A and 144B once for all the pixels Px of the liquid crystal display device 1 in one frame period Tf.
  • the TFTs 143A and 143B connected to the gate line 142 in the k-th row are turned on.
  • the signal VsA is supplied from the source line 141A to the electrode 144A
  • the signal VsB is supplied from the source line 141B to the electrode 144B.
  • the potential VsA is written to the electrode 144A
  • the potential VsB is written to the electrode 144B.
  • the potentials of the electrode 144A and the electrode 144B are maintained substantially constant by the liquid crystal capacitors Clc1, Clc2, and Clc3 and the storage capacitors Cs1 and Cs2 even after the signal Vg_k becomes low level and the TFTs 143A and 143B are turned off.
  • the signals VsA and VsB may be supplied to each column in a time-sharing manner (dot sequential driving) or simultaneously (line sequential driving).
  • the electrode 144A and the electrode 144B are capacitively coupled to the counter electrode 32 through the liquid crystal capacitors Clc1 and Clc2. Therefore, when the potential of the counter electrode 32 changes, the potentials of the electrodes 144A and 144B are also affected. Therefore, as shown in FIG. 7, in the period from when the potential Vc of the counter electrode 32 changes until the potential is written again to the electrodes 144A and 144B (periods A1 and A2 in FIG. 7), the liquid crystal The orientation of the film is disturbed and the luminance is lowered. Further, the pixel Px on the start side (Vg_1) of the scanning period Tgs has a short luminance reduction period (see the period A1 in FIG.
  • the pixel Px on the end side (Vg_j) of the scanning period Tgs has a luminance reduction period. Is long (see period A2 in FIG. 7). For this reason, the luminance changes depending on the position in the liquid crystal display device 1, and a luminance gradient occurs.
  • the length of the scanning period Tgs is Tf, and the length of the inversion period for inverting the vertical electric field is 4Tf. That is, the length of the scanning period Tgs is a quarter of the length of the inversion period. Therefore, the luminance reduction period (periods A1 and A2) can be relatively shortened. Thereby, flicker can be suppressed.
  • the inversion period is 4 Tf.
  • the length of the inversion period may be n times the one frame period Tf (n is an integer of 2 or more).
  • the inversion period may be longer as long as the liquid crystal layer 20 does not cause a charge bias and can maintain reliability. The longer the inversion period is, the shorter the luminance reduction period is, and the influence of the luminance reduction period can be reduced.
  • the inversion period may be 60 times (60 Tf) of one frame period.
  • a preferable length of the frame inversion period is 60 times or more the length of one frame period Tf.
  • the upper limit of the inversion period length is preferably 3600 times the length of one frame period Tf. Here, 60 frames are displayed per second.
  • the signals VsA and VsB have opposite polarities. Further, in the present embodiment, the polarities of the signals VsA and VsB are inverted in synchronization with the timing when one of the signals Vg_1 to Vg_j becomes high level. That is, in this embodiment, the direction of the horizontal electric field is reversed every horizontal period. In the present embodiment, the polarities of the signals VsA and VsB are inverted every frame period Tf. That is, in the present embodiment, the direction of the horizontal electric field is reversed every frame period Tf.
  • FIG. 8 is a diagram schematically showing the polarities of the potential Va of the electrode 144A and the potential Vb of the electrode 144B in each pixel Px in the present embodiment. “+/ ⁇ ” in FIG. 8 indicates that the potential Va is positive and the potential Vb is negative. “ ⁇ / +” Indicates that the potential Va is negative and the potential Vb is positive. The same applies to FIGS. 9 and 10 described later.
  • so-called 1H line inversion driving and frame inversion driving are performed for the lateral electric field.
  • 1H line inversion driving is performed to invert the horizontal electric field for each row of the pixels Px.
  • column inversion driving may be performed to invert the horizontal electric field for each column of the pixels Px.
  • dot inversion driving for inverting the horizontal electric field for each pixel may be performed.
  • the polarity of the horizontal electric field is inverted every frame, but a driving method may be used in which the polarity is inverted every plural frames.
  • the driving method it is mainly the lateral electric field that determines the luminance of the pixel Px. Therefore, the luminance change due to the potential fluctuation of the vertical electric field is small as compared with the driving method using only the vertical electric field. Therefore, even if polarity inversion is performed in units of frames for the vertical electric field, flicker is unlikely to occur. In other words, flicker is unlikely to occur in the vertical electric field without performing line inversion driving or column inversion driving. As a result, the driving load can be reduced.
  • the vertical electric field and the horizontal electric field can be inverted while maintaining the display quality.
  • Vgh is a gate voltage when the TFT 143A (143B) is ON
  • Vgl is a gate voltage when the TFT 143A (143B) is OFF.
  • Cgd is the capacitance between the gate and drain of the TFT 143A (143B), and Cpix is the load capacitance of the electrodes 144A and 144B. It is preferable to apply a voltage that allows for this potential fluctuation ⁇ V to the electrodes 144A and 144B.
  • the potential Va of the electrode 144A and the potential Vb of the electrode 144B have opposite polarities in each of the pixels Px as in the present embodiment.
  • the potential Va and the potential Vb are preferably symmetric with respect to the potential Vcom of the common electrode 12.
  • the absolute value of the potential difference between the electrode 144A and the common electrode 12 and the absolute value of the potential difference between the electrode 144B and the common electrode 12 are preferably equal.
  • the electric field can be symmetric.
  • the absolute value of the potential difference between the electrode 144A and the common electrode 12 and the absolute value of the potential difference between the electrode 144B and the common electrode 12 can be made equal at the effective potential including the potential fluctuation ⁇ V. preferable.
  • FIG. 11 is a timing chart of the driving method according to the second embodiment of the present invention.
  • the driving unit 52 inverts the vertical electric field every period four times as long as one frame period Tf. Also in this embodiment, since the potential Vcom of the common electrode 12 is constant, the driving unit 52 inverts the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. ing.
  • the length of the scanning period Tgs is half the length of one frame period Tf. That is, the driving unit 52 performs so-called double speed driving in which the signals Vg_1 to Vg_j are set to the high level once every half of the period of one frame period Tf.
  • a luminance reduction period (periods A3 and A4) accompanying the inversion of the vertical electric field occurs.
  • the luminance reduction period can be shortened by performing the double speed driving.
  • the length of the luminance decrease period (period A3 in FIG. 11) in the pixel Px on the start side (Vg_1) of the scanning period Tgs and the pixel on the end side (Vg_j) of the scanning period Tgs can be reduced. That is, the luminance gradient can be reduced.
  • the electrodes 144A and 144B are not charged until the next frame period Tf starts after the scanning is completed.
  • the signals VsA and VsB are set to constant values (for example, the same potential as the common electrode 12). Thereby, charging / discharging to the source lines 141A and 141B can be stopped, and the power consumption of the liquid crystal display device 1 can be reduced.
  • the electrode 144A and the electrode 144B may be driven at higher speed as long as charging is possible.
  • the higher the driving speed the shorter the length of the luminance reduction period.
  • the TFTs 143A and 143B preferably use an oxide semiconductor with high electron mobility as a channel.
  • the inversion period is 4 Tf.
  • the length of the inversion period may be at least twice as long as the scanning period Tgs. Therefore, when performing m-times speed driving (m> 1 real number) in which one scan is performed in a period of 1 / m of the length of one frame period Tf, the length of the inversion period is n times (one frame period Tf) n can be an integer of 1 or more. However, the relationship of n ⁇ m ⁇ 2 is satisfied. More preferably, the length of the inversion period is 60 times or more of one frame period Tf. Here, 60 frames are displayed per second.
  • the inversion period may be longer as long as the reliability can be maintained.
  • the inversion period may be 60 times (60 Tf) of one frame period.
  • the driving method of the horizontal electric field can use 1H line inversion driving, column inversion driving, dot inversion driving, and a combination of these and frame inversion driving.
  • FIG. 12 is a timing chart of the driving method according to the third embodiment of the present invention.
  • the driving unit 52 inverts the vertical electric field every period four times as long as one frame period (Tf). Also in this embodiment, since the potential Vcom of the common electrode 12 is constant, the driving unit 52 inverts the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. ing.
  • the driving unit 52 performs so-called double speed driving in which the signals Vg_1 to Vg_j are set to the high level once every half of the period of one frame period Tf.
  • the electrodes 144A and 144B are not charged during the period from the end of scanning until the start of the next frame period Tf.
  • the same data is charged again with the same polarity. Thereby, the alignment of the liquid crystal layer 20 can be further stabilized.
  • a luminance reduction period (periods A5 and A6) accompanying the inversion of the vertical electric field occurs. Similar to the second embodiment, the luminance reduction period can be shortened by performing the double speed driving. Further, by performing the double speed driving, the length of the luminance decrease period (period A5 in FIG. 12) in the pixel Px on the start side (Vg_1) of the scanning period Tgs and the pixel on the end side (Vg_j) of the scanning period Tgs. The difference from the length of the luminance decrease period (period A5 in FIG. 12) at Px can be reduced. That is, the luminance gradient can be reduced.
  • the electrode 144A and the electrode 144B may be driven at a higher speed as long as the electrode 144A and the electrode 144B can be charged.
  • the higher the driving speed the shorter the length of the luminance reduction period.
  • the TFTs 143A and 143B preferably use an oxide semiconductor with high electron mobility as a channel.
  • the inversion period is 4 Tf.
  • the length of the inversion period may be at least twice as long as the scanning period Tgs. Therefore, when continuous writing is performed by m-times speed driving (m is an integer of 2 or more), the inversion period can be n times the frame period Tf (n is an integer of 1 or more). More preferably, the length of the inversion period is 60 times or more of one frame period Tf. Here, 60 frames are displayed per second.
  • the inversion period may be longer as long as the reliability can be maintained.
  • the inversion period may be 60 times (60 Tf) of one frame period.
  • the driving method of the horizontal electric field can use 1H line inversion driving, column inversion driving, dot inversion driving, and a combination of these and frame inversion driving.
  • FIG. 13 is a schematic cross-sectional view of a liquid crystal display device 2 according to a modification of the present invention.
  • FIG. 14 is an equivalent circuit diagram of the liquid crystal display device 2.
  • the liquid crystal display device 2 includes a counter substrate 40 instead of the counter substrate 30 of the liquid crystal display device 1.
  • the counter substrate 40 further includes an overcoat layer 41 in addition to the configuration of the counter substrate 30.
  • the overcoat layer 41 is formed so as to cover the counter electrode 32.
  • the overcoat layer 41 has translucency and insulation.
  • the overcoat layer 41 is, for example, a silicon nitride, silicon oxide, or silicon oxynitride film, and is formed by, for example, CVD.
  • the overcoat layer 41 may also be an organic material such as an acrylic resin. In this case, the overcoat layer 41 is formed by, for example, a spin coater or a slit coater.
  • the electrode 144A and the counter electrode 32 are capacitively coupled via the liquid crystal capacitor Clc1 and the capacitor Coc1 of the overcoat layer 41.
  • the electrode 144B and the counter electrode 32 are capacitively coupled via the liquid crystal capacitor Clc2 and the capacitor Coc2 of the overcoat layer 41.
  • the strength of the vertical electric field is reduced by the overcoat layer 41.
  • the influence of the horizontal electric field is relatively increased, and the liquid crystal molecules are easily aligned in the x direction. Thereby, the transmittance at the time of white display can be improved.
  • the relative dielectric constant of the overcoat layer 41 is preferably larger than 1. If the overcoat layer 41 is too thick, the response speed of the liquid crystal molecules decreases. Therefore, the thickness of the overcoat layer 41 is preferably greater than 0 ⁇ m and less than 4 ⁇ m. Further, the cell gap (the thickness of the liquid crystal layer 20) at this time is preferably greater than 2 ⁇ m and 7 ⁇ m or less.
  • Flicker can also be suppressed for the liquid crystal display device 2 by executing the driving method according to any one of the first to third embodiments of the present invention.
  • the present invention can be used industrially as a liquid crystal display device and a driving method thereof.

Abstract

Provided is a liquid crystal display device which performs a driving method capable of suppressing flicker. The liquid crystal display device comprises: a first substrate including a plurality of pixels arranged in a matrix; first and second electrodes formed for each pixel; a common electrode; a second substrate arranged opposite the first substrate; an opposite electrode formed on the second substrate; a liquid crystal layer including liquid crystal molecules having positive dielectric anisotropy; and a driving unit that controls at least one potential of the first electrode, the second electrode, the common electrode, and the opposite electrode. The driving unit sequentially writes the potentials of the first and second electrodes for the plurality of pixels while inverting the high and low relationship between the potential of the common electrode and the potential of the opposite electrode for each inversion period. The length of a scanning period (Tgs) for writing the potentials of the first and second electrodes one by one for the plurality of pixels is half or less of the length of the inversion period.

Description

液晶表示装置および液晶表示装置の駆動方法Liquid crystal display device and driving method of liquid crystal display device
 本発明は、液晶表示装置および液晶表示装置の駆動方法に関する。 The present invention relates to a liquid crystal display device and a driving method of the liquid crystal display device.
 従来、液晶表示装置の駆動方法として、様々な方式が知られている。 Conventionally, various methods are known as driving methods for liquid crystal display devices.
 特開2004-354407号公報には、一方の基板に形成した第1の電極および第2の電極と、他方の基板に形成した第3の電極とを備える液晶表示装置が開示されている。この液晶表示装置は、第3の電極の電位を1フレーム周期内で変化させ、画像表示期間では第1の電極と第2の電極との間で生じる横電界を利用し、画像非表示期間の初期段階では第1の電極と第3の電極との間で生じる縦電界で液晶分子を駆動する。上記特許文献には、この駆動方法によって特に立下り応答時間を短縮できると記載されている。 Japanese Unexamined Patent Application Publication No. 2004-354407 discloses a liquid crystal display device including a first electrode and a second electrode formed on one substrate, and a third electrode formed on the other substrate. In this liquid crystal display device, the potential of the third electrode is changed within one frame period, and the horizontal electric field generated between the first electrode and the second electrode is used in the image display period, and the image non-display period is displayed. In the initial stage, the liquid crystal molecules are driven by a vertical electric field generated between the first electrode and the third electrode. The above-mentioned patent document describes that the fall response time can be particularly shortened by this driving method.
特開2004-354407号公報JP 2004-354407 A
 上記特許文献に開示された駆動方法は、1フレーム期間内に画像非表示期間を設ける、いわゆる黒挿入書込みによる駆動方法である。そのため、充分な明るさを得ることが困難である。また、上記特許文献に開示された液晶表示装置では、液晶分子が水平に配向した状態での黒表示と、液晶分子が垂直に配向した状態での黒表示とが混在している。そのため、黒表示の補償を行うことができないため、コントラストが低下する。 The driving method disclosed in the above-mentioned patent document is a driving method by so-called black insertion writing in which an image non-display period is provided within one frame period. Therefore, it is difficult to obtain sufficient brightness. In the liquid crystal display device disclosed in the above-mentioned patent document, black display in a state where liquid crystal molecules are horizontally aligned and black display in a state where liquid crystal molecules are vertically aligned are mixed. For this reason, the black display cannot be compensated, and the contrast is lowered.
 ところで、液晶に直流電圧が印加されると、電極表面で電荷の偏りが起こる。そのため、電界の向きを定期的に反転させる必要がある。一般的な液晶表示装置では、電荷の偏りを防ぐための駆動方法として、1水平期間毎に対向する電極の極性を反転させる対向AC反転駆動や、1フレーム期間毎に対向する電極の極性を反転させるフレーム反転駆動等が知られている。 By the way, when a DC voltage is applied to the liquid crystal, the electric charge is biased on the electrode surface. Therefore, it is necessary to periodically reverse the direction of the electric field. In a general liquid crystal display device, as a driving method for preventing the bias of electric charge, the opposite AC inversion driving for inverting the polarity of the electrode facing each horizontal period and the polarity of the electrode facing each frame period are reversed. Frame inversion driving and the like are known.
 しかし、大型パネルや高精細パネルに対向AC反転駆動を適用すると、駆動負荷が大きくなる。一方、フレーム反転駆動では、あるフレームにおいて、すべての画素の極性が同じになるため、フリッカ(Flicker)が発生し易くなる。 However, when opposed AC inversion driving is applied to large panels and high-definition panels, the driving load increases. On the other hand, in the frame inversion driving, since the polarity of all the pixels is the same in a certain frame, flicker is likely to occur.
 また、上記特開2004-354407号公報に記載されているような3種類以上の電極を備える液晶表示装置において、フリッカを抑制する駆動方法は明らかにされていない。 In addition, a driving method for suppressing flicker in a liquid crystal display device including three or more types of electrodes as described in the above Japanese Patent Application Laid-Open No. 2004-354407 has not been clarified.
 本発明の目的は、フリッカを抑制することができる駆動方法を提供することである。また、当該駆動方法を実行する液晶表示装置を提供することである。 An object of the present invention is to provide a driving method capable of suppressing flicker. Moreover, it is providing the liquid crystal display device which performs the said drive method.
 ここに開示する液晶表示装置は、マトリクス状に配置された複数の画素を含む第1基板と、前記画素ごとに形成された第1電極および第2電極と、前記複数の画素にわたって形成された共通電極と、前記第1基板に対向して配置された第2基板と、前記第2基板に形成された対向電極と、前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層と、前記第1電極、前記第2電極、ならびに前記共通電極および前記対向電極の少なくとも一方の電位を制御する駆動部とを備える。前記駆動部は、前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を反転期間ごとに反転させる。前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である。 The liquid crystal display device disclosed herein includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each of the pixels, and a common formed over the plurality of pixels. An electrode, a second substrate disposed opposite to the first substrate, a counter electrode formed on the second substrate, and the dielectric anisotropy sandwiched between the first substrate and the second substrate Includes a liquid crystal layer containing positive liquid crystal molecules, and a drive unit that controls the potential of at least one of the first electrode, the second electrode, the common electrode, and the counter electrode. The driving unit sequentially writes the potentials of the first electrode and the second electrode for the plurality of pixels, and inverts the height relationship between the potential of the common electrode and the potential of the counter electrode for each inversion period. The length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is less than half of the length of the inversion period.
 ここに開示する駆動方法は、マトリクス状に配置された複数の画素を含む第1基板と、前記画素ごとに形成された第1電極および第2電極と、前記複数の画素にわたって形成された共通電極と、前記第1基板に対向して配置された第2基板と、前記第2基板に形成された対向電極と、前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層とを備える液晶表示装置の駆動方法であって、前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を所定の反転期間ごとに反転させる。前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である。 The driving method disclosed herein includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and a common electrode formed over the plurality of pixels. And a second substrate disposed to face the first substrate, a counter electrode formed on the second substrate, the first substrate and the second substrate, and having a dielectric anisotropy A driving method of a liquid crystal display device including a liquid crystal layer including positive liquid crystal molecules, wherein the potentials of the first electrode and the second electrode are sequentially written for the plurality of pixels, and the potential of the common electrode is opposed to the potential of the common electrode The level relationship with the potential of the electrode is inverted every predetermined inversion period. The length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is less than half of the length of the inversion period.
 本発明によれば、フリッカを抑制することができる駆動方法が得られる。また、当該駆動方法を実行する液晶表示装置が得られる。 According to the present invention, a driving method capable of suppressing flicker is obtained. Further, a liquid crystal display device that executes the driving method can be obtained.
図1は、本発明の一実施形態にかかる液晶表示装置の一部を抜き出して模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a part of a liquid crystal display device according to an embodiment of the present invention. 図2は、液晶表示装置から一つの画素を抜き出して示す平面図である。FIG. 2 is a plan view showing one pixel extracted from the liquid crystal display device. 図3は、図2のA-A線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 図4は、液晶表示装置の等価回路図である。FIG. 4 is an equivalent circuit diagram of the liquid crystal display device. 図5Aは、液晶表示装置による表示動作を説明するための図である。FIG. 5A is a diagram for explaining a display operation by the liquid crystal display device. 図5Bは、液晶表示装置による表示動作を説明するための図である。FIG. 5B is a diagram for explaining a display operation by the liquid crystal display device. 図6は、液晶表示装置の機能的構成を示すブロック図である。FIG. 6 is a block diagram showing a functional configuration of the liquid crystal display device. 図7は、本発明の第1の実施形態にかかる駆動方法のタイミングチャートである。FIG. 7 is a timing chart of the driving method according to the first embodiment of the present invention. 図8は、本実施形態における各画素における電極の極性を模式的に示した図である。FIG. 8 is a diagram schematically showing the polarities of the electrodes in each pixel in the present embodiment. 図9は、本実施形態の他の例における各画素における電極の極性を模式的に示した図である。FIG. 9 is a diagram schematically showing the polarity of the electrode in each pixel in another example of the present embodiment. 図10は、本実施形態の他の例における各画素における電極の極性を模式的に示した図である。FIG. 10 is a diagram schematically showing the polarity of the electrode in each pixel in another example of the present embodiment. 図11は、本発明の第2の実施形態にかかる駆動方法のタイミングチャートである。FIG. 11 is a timing chart of the driving method according to the second embodiment of the present invention. 図12は、本発明の第3の実施形態にかかる駆動方法のタイミングチャートである。FIG. 12 is a timing chart of the driving method according to the third embodiment of the present invention. 図13は、本発明の変形例にかかる液晶表示装置の模式的断面図である。FIG. 13 is a schematic cross-sectional view of a liquid crystal display device according to a modification of the present invention. 図14は、本発明の変形例にかかる液晶表示装置の等価回路図である。FIG. 14 is an equivalent circuit diagram of a liquid crystal display device according to a modification of the present invention.
 本発明の一実施形態にかかる液晶表示装置は、マトリクス状に配置された複数の画素を含む第1基板と、前記画素ごとに形成された第1電極および第2電極と、前記複数の画素にわたって形成された共通電極と、前記第1基板に対向して配置された第2基板と、前記第2基板に形成された対向電極と、前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層と、前記第1電極、前記第2電極、ならびに前記共通電極および前記対向電極の少なくとも一方の電位を制御する駆動部とを備える。前記駆動部は、前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を反転期間ごとに反転させる。前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である(第1の構成)。 A liquid crystal display device according to an embodiment of the present invention includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and the plurality of pixels. A common electrode formed; a second substrate disposed opposite the first substrate; a counter electrode formed on the second substrate; and the first substrate and the second substrate. A liquid crystal layer including liquid crystal molecules having positive rate anisotropy; and a driving unit that controls a potential of at least one of the first electrode, the second electrode, the common electrode, and the counter electrode. The driving unit sequentially writes the potentials of the first electrode and the second electrode for the plurality of pixels, and inverts the height relationship between the potential of the common electrode and the potential of the counter electrode for each inversion period. The length of the scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is not more than half the length of the inversion period (first configuration).
 上記の構成によれば、液晶表示装置は、画素ごとに形成された第1電極および第2電極を備える。駆動部は、第1電極および第2電極の電位を制御して、第1電極と第2電極との間に電界を形成する。これによって、液晶層の液晶分子の配向を画素ごとに制御することができる。 According to the above configuration, the liquid crystal display device includes the first electrode and the second electrode formed for each pixel. The drive unit controls the potentials of the first electrode and the second electrode to form an electric field between the first electrode and the second electrode. Thereby, the orientation of the liquid crystal molecules in the liquid crystal layer can be controlled for each pixel.
 液晶表示装置は、さらに、共通電極と対向電極とを備える。駆動部は、共通電極および対向電極の少なくとも一方の電位を制御して、共通電極と対向電極との間に電界を形成する。ここで、共通電極は第1基板に形成されており、対向電極は第2基板に形成されている。一方、第1電極および第2電極は、いずれも第1基板に形成されている。したがって、共通電極と対向電極とが形成する電界(以下、縦電界という)の方向は、第1電極と第2電極とが形成する電界(以下、横電界という)の方向と交差する方向である。 The liquid crystal display device further includes a common electrode and a counter electrode. The driving unit controls the potential of at least one of the common electrode and the counter electrode to form an electric field between the common electrode and the counter electrode. Here, the common electrode is formed on the first substrate, and the counter electrode is formed on the second substrate. On the other hand, both the first electrode and the second electrode are formed on the first substrate. Therefore, the direction of the electric field (hereinafter referred to as the vertical electric field) formed by the common electrode and the counter electrode is a direction intersecting the direction of the electric field (hereinafter referred to as the horizontal electric field) formed by the first electrode and the second electrode. .
 この構成によれば、横電界が相対的に大きい画素では、横電界によって液晶分子の配向が制御される。一方、横電界が相対的に小さい画素では、縦電界によって液晶分子の配向が制御される。このように、いずれの画素においても、液晶分子の配向は電界によって制御される。そのため、縦電界のみ、または横電界のみによって配向を制御する場合と比較して、応答速度を速くすることができる。 According to this configuration, in a pixel having a relatively large lateral electric field, the alignment of liquid crystal molecules is controlled by the lateral electric field. On the other hand, in a pixel having a relatively small horizontal electric field, the alignment of liquid crystal molecules is controlled by the vertical electric field. Thus, in any pixel, the alignment of liquid crystal molecules is controlled by the electric field. Therefore, the response speed can be increased as compared with the case where the orientation is controlled only by the vertical electric field or only the horizontal electric field.
 駆動部は、共通電極の電位と対向電極の電位との高低関係を、反転期間ごとに反転させる。すなわち、駆動部は、縦電界を反転期間ごとに反転させる。これによって、液晶層の電荷に偏りが生じるのを防止することができる。 The driving unit inverts the height relationship between the common electrode potential and the counter electrode potential every inversion period. That is, the drive unit inverts the vertical electric field for each inversion period. As a result, it is possible to prevent the liquid crystal layer from being biased.
 第1電極および第2電極の電位は、縦電界の反転の影響を受ける。そのため、縦電界が反転してから、駆動部によって第1電極および第2電極の電位が書き込まれるまでの間、液晶の配向が乱れ、輝度が低下する。しかし、上記の構成によれば、走査期間の長さは、反転期間の長さの半分以下である。そのため、縦電界の反転の影響によって輝度が低下する期間を短くすることができる。これによって、フリッカを抑制することができる。 The potential of the first electrode and the second electrode is affected by the inversion of the longitudinal electric field. For this reason, the alignment of the liquid crystal is disturbed and the luminance is reduced until the potential of the first electrode and the second electrode is written by the driving unit after the vertical electric field is reversed. However, according to the above configuration, the length of the scanning period is half or less of the length of the inversion period. Therefore, it is possible to shorten the period in which the luminance is lowered due to the influence of the inversion of the vertical electric field. Thereby, flicker can be suppressed.
 上記第1の構成において、前記画素のそれぞれにおいて、前記第1電極の電位と前記第2電極の電位とは互いに反対極性であることが好ましい(第2の構成)。 In the first configuration, in each of the pixels, the potential of the first electrode and the potential of the second electrode are preferably opposite to each other (second configuration).
 上記第1または第2の構成において、前記駆動部は、前記第1電極および前記第2電極の電位の極性を、1フレーム期間の長さの整数倍の期間ごとに反転させることが好ましい(第3の構成)。 In the first or second configuration, the drive unit preferably reverses the polarities of the potentials of the first electrode and the second electrode every period that is an integral multiple of the length of one frame period (first 3 configuration).
 上記の構成によれば、液晶層の電荷に偏りが生じるのを防止することができる。 According to the configuration described above, it is possible to prevent the liquid crystal layer from being biased.
 上記第1~第3のいずれかの構成において、前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素の行ごとに反転させることが好ましい(第4の構成)。 In any one of the first to third configurations, the driving unit preferably reverses the polarities of the potentials of the first electrode and the second electrode for each row of the pixels (fourth configuration). .
 上記の構成によれば、液晶層の電荷に偏りが生じるのを防止することができる。また、フリッカをより抑制することができる。 According to the configuration described above, it is possible to prevent the liquid crystal layer from being biased. Further, flicker can be further suppressed.
 上記第1~第3のいずれかの構成において、前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素の列ごとに反転させることが好ましい(第5の構成)。 In any one of the first to third configurations, it is preferable that the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each column of pixels (fifth configuration). .
 上記の構成によれば、液晶層の電荷に偏りが生じるのを防止することができる。また、フリッカをより抑制することができる。 According to the configuration described above, it is possible to prevent the liquid crystal layer from being biased. Further, flicker can be further suppressed.
 上記第1~第3のいずれかの構成において、前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素ごとに反転させることが好ましい(第6の構成)。 In any one of the first to third configurations, it is preferable that the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each pixel (sixth configuration).
 上記の構成によれば、液晶層の電荷に偏りが生じるのを防止することができる。また、フリッカをより抑制することができる。 According to the configuration described above, it is possible to prevent the liquid crystal layer from being biased. Further, flicker can be further suppressed.
 上記第1~第6のいずれかの構成において、前記反転期間の長さは1フレーム期間の長さの2倍以上であっても良い(第7の構成)。 In any one of the first to sixth configurations, the length of the inversion period may be twice or more the length of one frame period (seventh configuration).
 上記第1~第7のいずれかの構成において、前記走査期間の長さは1フレーム期間の長さよりも短く、前記駆動部は、前記複数の画素について前記第1電極および前記第2電極の電位を1フレーム期間に1回書き込む構成としても良い(第8の構成)。 In any one of the first to seventh configurations, the length of the scanning period is shorter than the length of one frame period, and the driving unit has the potentials of the first electrode and the second electrode for the plurality of pixels. May be written once in one frame period (eighth configuration).
 上記の構成によれば、1フレーム期間中に、第1電極および第2電極の充電を行わない休止期間が存在する。そのため、消費電力を低くすることができる。 According to the above configuration, there is a pause period in which the first electrode and the second electrode are not charged during one frame period. Therefore, power consumption can be reduced.
 上記第1~第7のいずれかの構成において、前記走査期間の長さは1フレーム期間の長さよりも短く、前記複数の画素について前記第1電極および前記第2電極の電位を1フレーム期間に2回以上書き込む構成としても良い(第9の構成)。 In any one of the first to seventh configurations, the length of the scanning period is shorter than the length of one frame period, and the potentials of the first electrode and the second electrode are set to one frame period for the plurality of pixels. It may be configured to write twice or more (9th configuration).
 上記の構成によれば、液晶層の液晶分子の配向をより安定させることができる。 According to the above configuration, the orientation of the liquid crystal molecules in the liquid crystal layer can be further stabilized.
 上記第1~第9のいずれかの構成において、前記対向電極を覆って形成されたオーバーコート層をさらに備えていても良い(第10の構成)。 In any one of the first to ninth configurations, an overcoat layer formed to cover the counter electrode may be further provided (tenth configuration).
 上記の構成によれば、オーバーコート層によって、縦電界の強さが小さくなる。そのため、相対的に横電界の影響が大きくなる。これによって、透過率を向上させることができる。 According to the above configuration, the strength of the longitudinal electric field is reduced by the overcoat layer. For this reason, the influence of the transverse electric field becomes relatively large. Thereby, the transmittance can be improved.
 上記第1~第10のいずれかの構成において、前記画素の行ごとに形成されたゲートラインと、前記画素の列ごとに形成された第1および第2ソースラインと、前記画素ごとに形成され、前記ゲートラインおよび前記第1ソースラインに接続され、前記ゲートラインに供給される信号によって開閉する第1スイッチング素子と、前記画素ごとに形成され、前記ゲートラインおよび前記第2ソースラインに接続され、前記ゲートラインに供給される信号によって開閉する第2スイッチング素子とをさらに備え、前記第1電極は前記第1スイッチング素子に接続され、前記第2電極は前記第2スイッチング素子に接続される構成としても良い(第11の構成)。 In any one of the first to tenth configurations, a gate line formed for each row of pixels, first and second source lines formed for each column of pixels, and formed for each pixel. A first switching element connected to the gate line and the first source line, and opened and closed by a signal supplied to the gate line; and formed for each pixel and connected to the gate line and the second source line. And a second switching element that opens and closes in response to a signal supplied to the gate line, wherein the first electrode is connected to the first switching element, and the second electrode is connected to the second switching element. (Eleventh configuration).
 上記第11の構成において、前記第1スイッチング素子および前記第2スイッチング素子は酸化物半導体を含むことが好ましい(第12の構成)。 In the eleventh configuration, it is preferable that the first switching element and the second switching element include an oxide semiconductor (a twelfth configuration).
 本発明の一実施の態様にかかる駆動方法は、マトリクス状に配置された複数の画素を含む第1基板と、前記画素ごとに形成された第1電極および第2電極と、前記複数の画素にわたって形成された共通電極と、前記第1基板に対向して配置された第2基板と、前記第2基板に形成された対向電極と、前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層とを備える液晶表示装置の駆動方法であって、前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を所定の反転期間ごとに反転させ、前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である(駆動方法の第1の態様)。 A driving method according to an embodiment of the present invention includes a first substrate including a plurality of pixels arranged in a matrix, a first electrode and a second electrode formed for each pixel, and the plurality of pixels. A common electrode formed; a second substrate disposed opposite the first substrate; a counter electrode formed on the second substrate; and the first substrate and the second substrate. A liquid crystal display device comprising a liquid crystal layer including liquid crystal molecules having positive rate anisotropy, wherein the potentials of the first electrode and the second electrode are sequentially written to the plurality of pixels, and the common electrode The length of the scanning period for inverting the height relationship between the potential of the first electrode and the potential of the counter electrode every predetermined inversion period and writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels Is the inversion period Half the length or less (first aspect of the driving method).
 上記駆動方法の第1の態様において、前記液晶層は誘電率異方性が正の液晶分子を含んでいても良い(駆動方法の第2の態様)。 In the first aspect of the driving method, the liquid crystal layer may include liquid crystal molecules having a positive dielectric anisotropy (second aspect of the driving method).
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
 [液晶表示装置]
 図1は、本発明の一実施形態にかかる液晶表示装置1の一部を抜き出して模式的に示す斜視図である。液晶表示装置1は、アレイ基板(第1基板)10と、対向基板(第2基板)30と、アレイ基板10および対向基板30に挟持された液晶層20とを備えている。
[Liquid Crystal Display]
FIG. 1 is a perspective view schematically showing a part of a liquid crystal display device 1 according to an embodiment of the present invention. The liquid crystal display device 1 includes an array substrate (first substrate) 10, a counter substrate (second substrate) 30, and a liquid crystal layer 20 sandwiched between the array substrate 10 and the counter substrate 30.
 アレイ基板10は、基板11を含んでいる。基板11は、透光性を有している。基板11は、例えばガラス基板である。基板11は、表面にパシベーション膜等が形成されていても良い。基板11の一方の面には偏光板15が配置されている。基板11の他方の面には、共通電極12、絶縁層13、およびアレイ層14が、この順で形成されている。 The array substrate 10 includes a substrate 11. The substrate 11 has translucency. The substrate 11 is a glass substrate, for example. The substrate 11 may have a passivation film or the like formed on the surface. A polarizing plate 15 is disposed on one surface of the substrate 11. On the other surface of the substrate 11, a common electrode 12, an insulating layer 13, and an array layer 14 are formed in this order.
 共通電極12は、基板11の表示領域の概略全面を覆って、一様な面状に形成されている。共通電極12は、透光性の導電膜であり、例えばITO(Indium Tin Oxide)またはIZO(Indium Zinc Oxide)の膜である。共通電極12は、例えばCVD(Chemical Vapor Deposition)またはスパッタリングによって成膜される。 The common electrode 12 is formed in a uniform surface so as to cover substantially the entire display area of the substrate 11. The common electrode 12 is a translucent conductive film, for example, an ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) film. The common electrode 12 is formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
 絶縁層13は、共通電極12の概略全面を覆って形成されている。絶縁層13は、透光性および絶縁性を有している。絶縁層13は、例えば窒化ケイ素、酸化ケイ素、または酸窒化ケイ素の膜であり、例えばCVDによって成膜される。絶縁層13はまた、アクリル樹脂等の有機物であっても良く、この場合、例えばスピンコータまたはスリットコータによって成膜される。 The insulating layer 13 is formed so as to cover substantially the entire surface of the common electrode 12. The insulating layer 13 has translucency and insulating properties. The insulating layer 13 is, for example, a silicon nitride, silicon oxide, or silicon oxynitride film, and is formed by, for example, CVD. The insulating layer 13 may also be an organic material such as an acrylic resin. In this case, the insulating layer 13 is formed by, for example, a spin coater or a slit coater.
 アレイ層14は、それぞれに画素電極が形成された複数の画素Pxを含んでいる。アレイ層14はさらに、画素電極に信号を供給するための配線(ソースライン141およびゲートライン142)と、スイッチング素子とを含んでいる。 The array layer 14 includes a plurality of pixels Px each having a pixel electrode formed thereon. The array layer 14 further includes wiring (source line 141 and gate line 142) for supplying a signal to the pixel electrode, and a switching element.
 ソースライン141は、互いに平行に所定の間隔で形成されている。ゲートライン142は、ソースライン141と交差する方向に、互いに平行に所定の間隔で形成されている。ソースライン141およびゲートライン142は、導電性が高いことが好ましい。ソースライン141およびゲートライン142は、例えば金属膜である。 The source lines 141 are formed in parallel with each other at a predetermined interval. The gate lines 142 are formed in parallel with each other at a predetermined interval in a direction intersecting the source line 141. The source line 141 and the gate line 142 preferably have high conductivity. The source line 141 and the gate line 142 are, for example, metal films.
 以下では図1に示すように、ゲートライン142が延びる方向をx方向と呼び、ソースライン141が延びる方向をy方向と呼ぶ。さらに、基板11の法線方向をz方向と呼ぶ。画素Pxは、x方向およびy方向に沿ってマトリクス状に配置されている。そのため、x方向の位置が等しい複数の画素Pxの一組を、画素Pxの列と呼ぶ場合がある。さらに、y方向の位置が等しい複数の画素Pxの一組を、画素Pxの行と呼ぶ場合がある。 Hereinafter, as shown in FIG. 1, the direction in which the gate line 142 extends is referred to as the x direction, and the direction in which the source line 141 extends is referred to as the y direction. Furthermore, the normal direction of the substrate 11 is referred to as the z direction. The pixels Px are arranged in a matrix along the x direction and the y direction. Therefore, a set of a plurality of pixels Px having the same position in the x direction may be referred to as a column of pixels Px. Furthermore, a set of a plurality of pixels Px having the same position in the y direction may be referred to as a row of pixels Px.
 図2は、液晶表示装置1から一つの画素Pxを抜き出して示す平面図である。一つの画素Pxを、2本のソースライン141Aおよび141Bと、1本のゲートライン142とが通過している。画素Pxにはさらに、スイッチング素子であるTFT(Thin Film Transistor)143A(第1スイッチング素子)および143B(第2スイッチング素子)ならびに画素電極である電極144A(第1電極)および144B(第2電極)が形成されている。 FIG. 2 is a plan view showing one pixel Px extracted from the liquid crystal display device 1. Two source lines 141A and 141B and one gate line 142 pass through one pixel Px. The pixel Px further includes TFTs (Thin Film Transistors) 143A (first switching elements) and 143B (second switching elements) that are switching elements, and electrodes 144A (first electrodes) and 144B (second electrodes) that are pixel electrodes. Is formed.
 TFT143Aは、ソースライン141Aとゲートライン142との交点近傍に形成されている。TFT143Aのソースはソースライン141Aに接続され、ゲートはゲートライン142に接続され、ドレインは電極144Aに接続されている。TFT143Bは、ソースライン141Bとゲートライン142との交点近傍に形成されている。TFT143Bのソースはソースライン141Bに接続され、ゲートはゲートライン142に接続され、ドレインは電極144Bに接続されている。すなわち、TFT143Aおよび143Bは、ゲートライン142を共有している。TFT143Aおよび143Bのそれぞれにゲートラインを形成する場合と比較して、配線を削減して開口率を高めることができる。また、TFT143AおよびTFT144Bを動作させるタイミングを一致させることができる。 The TFT 143A is formed in the vicinity of the intersection of the source line 141A and the gate line 142. The source of the TFT 143A is connected to the source line 141A, the gate is connected to the gate line 142, and the drain is connected to the electrode 144A. The TFT 143B is formed near the intersection of the source line 141B and the gate line 142. The source of the TFT 143B is connected to the source line 141B, the gate is connected to the gate line 142, and the drain is connected to the electrode 144B. That is, the TFTs 143A and 143B share the gate line 142. Compared with the case where gate lines are formed in each of the TFTs 143A and 143B, wiring can be reduced and the aperture ratio can be increased. Further, the timings at which the TFT 143A and the TFT 144B are operated can be matched.
 TFT143Aおよび143Bは、例えばアモルファスシリコン、ポリシリコン、または酸化物導電体を含む。TFT143Aおよび143Bは、電子移動度が高い酸化物導電体を含むことが好ましい。電子移動度が高い酸化物導電体は、例えばIGZO(Indium Gallium Zinc Oxide)である。 TFTs 143A and 143B include, for example, amorphous silicon, polysilicon, or an oxide conductor. The TFTs 143A and 143B preferably include an oxide conductor having a high electron mobility. An oxide conductor having a high electron mobility is, for example, IGZO (Indium Gallium Zinc Oxide).
 電極144Aおよび144Bは、いわゆる櫛歯形状である。すなわち、複数に枝分かれした本体部分と、本体部分同士を接続する接続部分とから構成されている。図2に示す例では、電極144Aは、y方向に延びて互いに平行に配置された2つの本体部分と、y方向の一方の端部で本体部分同士を接続する接続部分とから構成されている。同様に、電極144Bは、y方向に延びて互いに平行に配置された2つの本体部分と、y方向の一方の端部で本体部分同士を接続する接続部分とから構成されている。なお、この構成は例示であって、電極144Aおよび電極144Bは任意の形状を取り得る。 The electrodes 144A and 144B have a so-called comb tooth shape. That is, it is composed of a main body portion branched into a plurality of portions and a connection portion for connecting the main body portions. In the example shown in FIG. 2, the electrode 144 </ b> A includes two main body portions that extend in the y direction and are arranged in parallel to each other, and a connection portion that connects the main body portions at one end in the y direction. . Similarly, the electrode 144B includes two main body portions that extend in the y direction and are arranged in parallel to each other, and a connection portion that connects the main body portions at one end in the y direction. This configuration is merely an example, and the electrodes 144A and 144B can take any shape.
 電極144Aの本体部分と電極144Bの本体部分とは、交互に並ぶように配置されている。この構成によって、電極144Aと電極144Bとの間に電位差を形成して、xy面内方向に電界を形成することができる。図2に示す例では、電極144Aの本体部分と電極144Bの本体部分とは、x方向に交互に並ぶように配置されている。この構成によって、x方向に電界を形成することができる。 The main body portion of the electrode 144A and the main body portion of the electrode 144B are arranged so as to be alternately arranged. With this configuration, a potential difference can be formed between the electrode 144A and the electrode 144B, and an electric field can be formed in the xy in-plane direction. In the example shown in FIG. 2, the main body portion of the electrode 144A and the main body portion of the electrode 144B are arranged so as to be alternately arranged in the x direction. With this configuration, an electric field can be formed in the x direction.
 電極144Aおよび144Bは、導電膜であり、例えばAlまたはCu等の金属膜である。電極144Aおよび144Bは、ITOまたはIZO等の透明導電膜であっても良い。 The electrodes 144A and 144B are conductive films, for example, metal films such as Al or Cu. The electrodes 144A and 144B may be transparent conductive films such as ITO or IZO.
 図1および図2では、ソースライン141Aおよび141B、ゲートライン142、TFT143Aおよび143B、ならびに電極144Aおよび144Bは、同一の層上に形成されているように図示されている。しかしこれらは、絶縁膜等を介して複数の層に形成されていても良い。すなわちアレイ層14は、z方向の異なる位置に形成された複数の膜を含んでいていても良い。アレイ層14は、公知の半導体プロセスによって製造することができる。 1 and 2, the source lines 141A and 141B, the gate line 142, the TFTs 143A and 143B, and the electrodes 144A and 144B are illustrated as being formed on the same layer. However, these may be formed in a plurality of layers via an insulating film or the like. That is, the array layer 14 may include a plurality of films formed at different positions in the z direction. The array layer 14 can be manufactured by a known semiconductor process.
 再び図1を参照して、説明を続ける。対向基板30は、基板31を含んでいる。基板31は基板11と同様に、透光性を有している。基板31は、例えばガラス基板である。基板31は、表面にパシベーション膜等が形成されていても良い。基板31の一方の面には偏光板33が配置されている。基板31の他方の面には、対向電極32が形成されている。 Referring to FIG. 1 again, the explanation will be continued. The counter substrate 30 includes a substrate 31. Similar to the substrate 11, the substrate 31 has translucency. The substrate 31 is a glass substrate, for example. The substrate 31 may have a passivation film or the like formed on the surface. A polarizing plate 33 is disposed on one surface of the substrate 31. A counter electrode 32 is formed on the other surface of the substrate 31.
 対向電極32は、基板31の表示領域の概略全面を覆って、一様な面状に形成されている。対向電極32は、透光性の導電膜であり、例えばITOまたはIZOの膜である。対向電極32は、例えばCVDまたはスパッタリングによって成膜される。 The counter electrode 32 is formed in a uniform surface so as to cover substantially the entire display area of the substrate 31. The counter electrode 32 is a translucent conductive film, for example, an ITO or IZO film. The counter electrode 32 is formed by, for example, CVD or sputtering.
 液晶表示装置1は、アレイ基板10と対向基板30とを、周縁部を封止して貼り合わせ、間に液晶層20を形成することによって製造される。図1に示すように、アレイ基板10と対向基板30とは、アレイ層14と対向電極32とが向き合うように配置される。なお、図1には示していないが、アレイ層14および対向電極32を覆ってそれぞれに配向膜が形成されている。 The liquid crystal display device 1 is manufactured by bonding the array substrate 10 and the counter substrate 30 together with the peripheral edge sealed, and forming the liquid crystal layer 20 therebetween. As shown in FIG. 1, the array substrate 10 and the counter substrate 30 are disposed so that the array layer 14 and the counter electrode 32 face each other. Although not shown in FIG. 1, an alignment film is formed to cover the array layer 14 and the counter electrode 32.
 液晶層20を構成する液晶分子は、複屈折性を有している。すなわち、光学軸に平行に振動する光に対する屈折率nと、光学軸に垂直に振動する光に対する屈折率nとが異なっている。液晶表示装置1では、誘電率異方性Δn=n-nが正の液晶分子を使用する。液晶分子の誘電率異方性Δnは、大きい方が好ましい。 The liquid crystal molecules constituting the liquid crystal layer 20 have birefringence. That is, the refractive index n e for the light vibrating in parallel with the optical axis, the refractive index n o for light oscillating perpendicularly to the optical axis are different. In the liquid crystal display device 1, liquid crystal molecules having a positive dielectric anisotropy Δn = n e −n o are used. Larger dielectric anisotropy Δn of liquid crystal molecules is preferable.
 図3は、図2のA-A線に沿った断面図である。図4は、液晶表示装置1の等価回路図である。図4に示すように、電極144Aと電極144Bとは、液晶容量Clc3を介して容量性結合している。電極144Aと対向電極32とは液晶容量Clc1を介して容量性結合しており、電極144Bと対向電極32とは液晶容量Clc2を介して容量性結合している。電極144Aと共通電極12とは蓄積容量Cs1を介して容量性結合しており、電極144Bと共通電極12とは蓄積容量Cs2を介して容量性結合している。 FIG. 3 is a sectional view taken along line AA in FIG. FIG. 4 is an equivalent circuit diagram of the liquid crystal display device 1. As shown in FIG. 4, the electrode 144A and the electrode 144B are capacitively coupled via the liquid crystal capacitance Clc3. The electrode 144A and the counter electrode 32 are capacitively coupled via a liquid crystal capacitance Clc1, and the electrode 144B and the counter electrode 32 are capacitively coupled via a liquid crystal capacitance Clc2. The electrode 144A and the common electrode 12 are capacitively coupled via the storage capacitor Cs1, and the electrode 144B and the common electrode 12 are capacitively coupled via the storage capacitor Cs2.
 図4に示すように、ソースライン141Aには信号VsAが供給され、ソースライン141Bには信号VsBが供給される。ゲートライン142には信号Vgが供給され、共通電極12には信号Vcomが供給され、対向電極32には信号Vcが供給される。信号VsA、VsB、Vg、Vcom、およびVcの詳細については後述する。 As shown in FIG. 4, the signal VsA is supplied to the source line 141A, and the signal VsB is supplied to the source line 141B. A signal Vg is supplied to the gate line 142, a signal Vcom is supplied to the common electrode 12, and a signal Vc is supplied to the counter electrode 32. Details of the signals VsA, VsB, Vg, Vcom, and Vc will be described later.
 図5Aおよび図5Bを参照して、液晶表示装置1による表示動作の概略を説明する。 The outline of the display operation by the liquid crystal display device 1 will be described with reference to FIGS. 5A and 5B.
 液晶層20の液晶分子20aは、誘電率異方性Δnが正であり、分子長軸の方向と電界の方向とが平行になるように配向する。液晶表示装置1は、電極144A、144B、対向電極32、および共通電極12の電位を制御して、液晶層20に電界を印加し、液晶分子20aの配向方向を制御する。なお、液晶表示装置1には、垂直配向用の配向膜が用いられている。これによって、液晶層20に電界が印加されていない場合、液晶分子20aは、分子長軸がz方向を向くように配向する。 The liquid crystal molecules 20a of the liquid crystal layer 20 have a positive dielectric anisotropy Δn and are aligned so that the direction of the molecular major axis and the direction of the electric field are parallel. The liquid crystal display device 1 controls the potentials of the electrodes 144A and 144B, the counter electrode 32, and the common electrode 12, applies an electric field to the liquid crystal layer 20, and controls the alignment direction of the liquid crystal molecules 20a. The liquid crystal display device 1 uses an alignment film for vertical alignment. Thereby, when an electric field is not applied to the liquid crystal layer 20, the liquid crystal molecules 20a are aligned so that the molecular long axis is in the z direction.
 以下では、電極144Aと電極144Bとによって形成される電界を横電界と呼び、共通電極12と対向電極32とによって形成される電界を縦電界と呼ぶ。 Hereinafter, the electric field formed by the electrodes 144A and 144B is called a transverse electric field, and the electric field formed by the common electrode 12 and the counter electrode 32 is called a vertical electric field.
 図5Aは、縦電界だけが形成され、横電界が形成されていない状態を模式的に示している。図5Aに示す例では、対向電極32の電位は7.5Vであり、電極144A、144B、および共通電極12の電位は0Vである。 FIG. 5A schematically shows a state in which only a vertical electric field is formed and no horizontal electric field is formed. In the example shown in FIG. 5A, the potential of the counter electrode 32 is 7.5V, and the potentials of the electrodes 144A and 144B and the common electrode 12 are 0V.
 図5Aでは、液晶分子20aは、縦電界ならびに配向膜15および33の作用によって、分子長軸がz方向と平行になるように配向している。このとき、液晶層20を通る光の偏光方向は、ほとんど変化しない。偏光板15および33は、透過軸が互いに直交するように配置されている。したがって、偏光板15および液晶層20を透過した光は、偏光板33によって遮られる。そのため、図5Aのように横電界が形成されていない画素Pxでは、黒表示(暗表示)が行われる。 In FIG. 5A, the liquid crystal molecules 20a are aligned so that the molecular long axis is parallel to the z direction by the action of the vertical electric field and the alignment films 15 and 33. At this time, the polarization direction of the light passing through the liquid crystal layer 20 hardly changes. The polarizing plates 15 and 33 are arranged so that the transmission axes are orthogonal to each other. Therefore, the light transmitted through the polarizing plate 15 and the liquid crystal layer 20 is blocked by the polarizing plate 33. Therefore, black display (dark display) is performed in the pixel Px in which no horizontal electric field is formed as shown in FIG. 5A.
 図5Bは、縦電界に加えて、横電界が形成されている状態を模式的に示している。図5Bに示す例では、対向電極32の電位は7.5Vであり、電極144Aの電位は5.0Vであり、電極144Bの電位は-5.0Vであり、共通電極12の電位は0Vである。 FIG. 5B schematically shows a state in which a horizontal electric field is formed in addition to the vertical electric field. In the example shown in FIG. 5B, the potential of the counter electrode 32 is 7.5V, the potential of the electrode 144A is 5.0V, the potential of the electrode 144B is −5.0V, and the potential of the common electrode 12 is 0V. is there.
 図5Bでは、液晶分子20aは、横電界によって、分子長軸がz方向からxy面内に傾いて配向している。このとき、液晶層20を通る光の偏光方向は、液晶分子20aの複屈折性によって変化する。これによって、偏光板15および液晶層20を透過した光が、偏光板33を透過できるようになる。そのため、図5Bのように横電界が形成されている画素Pxでは、白表示(明表示)が行われる。 In FIG. 5B, the liquid crystal molecules 20a are aligned with the molecular long axis inclined in the xy plane from the z direction due to a transverse electric field. At this time, the polarization direction of the light passing through the liquid crystal layer 20 changes depending on the birefringence of the liquid crystal molecules 20a. Thereby, the light transmitted through the polarizing plate 15 and the liquid crystal layer 20 can be transmitted through the polarizing plate 33. Therefore, white display (bright display) is performed in the pixel Px in which the horizontal electric field is formed as shown in FIG. 5B.
 このように、液晶表示装置1は、横電界の強さによって画素Pxの階調を制御することができる。液晶表示装置1では、黒表示を行う場合にも、白表示を行う場合にも、縦電界が形成されている。縦電界によって、白表示から黒表示に切り替わる際の応答速度を向上させることができる。すなわち、縦電界によって、xy面内に傾いた液晶分子20aがz方向に配向する速度を向上させることができる。 Thus, the liquid crystal display device 1 can control the gradation of the pixel Px by the strength of the lateral electric field. In the liquid crystal display device 1, a vertical electric field is formed both when performing black display and when performing white display. The response speed when switching from white display to black display can be improved by the vertical electric field. That is, the vertical electric field can improve the speed at which the liquid crystal molecules 20a tilted in the xy plane are aligned in the z direction.
 また、本実施形態によれば、黒表示は液晶分子20aの垂直配向を用いて行っている。すなわち、特開2004-354407号公報の駆動方法のように、液晶分子20aが水平に配向した状態での黒表示と、液晶分子20aが垂直に配向した状態での黒表示とが混在しない。そのため、黒表示に対して補償を行うことができ、高いコントラストを得ることができる。 Further, according to the present embodiment, black display is performed using the vertical alignment of the liquid crystal molecules 20a. That is, unlike the driving method disclosed in Japanese Patent Application Laid-Open No. 2004-354407, black display in a state where the liquid crystal molecules 20a are horizontally aligned and black display in a state where the liquid crystal molecules 20a are vertically aligned do not coexist. Therefore, compensation can be performed for black display, and high contrast can be obtained.
 [駆動方法]
 [第1の実施形態]
 図6は、液晶表示装置1の機能的構成を示すブロック図である。液晶表示装置1は、制御部51と駆動部52とをさらに備えている。駆動部52は、ソースドライバ521と、ゲートドライバ522と、縦電界ドライバ523とを含んでいる。
[Driving method]
[First Embodiment]
FIG. 6 is a block diagram showing a functional configuration of the liquid crystal display device 1. The liquid crystal display device 1 further includes a control unit 51 and a drive unit 52. The drive unit 52 includes a source driver 521, a gate driver 522, and a vertical electric field driver 523.
 制御部51および駆動部52は例えば、TAB(Tape Automated Bonding)技術またはCOG(Chip On Glass)技術によって、アレイ基板10または対向基板30に実装されている。制御部51および駆動部52の一部または全部が、アレイ基板10および対向基板30以外の場所に配置されていても良い。 The control unit 51 and the drive unit 52 are mounted on the array substrate 10 or the counter substrate 30 by, for example, a TAB (Tape Automated Bonding) technique or a COG (Chip On Glass) technique. Part or all of the control unit 51 and the drive unit 52 may be disposed at a place other than the array substrate 10 and the counter substrate 30.
 制御部51は、外部から供給される映像信号Vinに所定の処理を実行して、ソースドライバ521、ゲートドライバ522、および縦電界ドライバ523へ供給する。 The control unit 51 performs predetermined processing on the video signal Vin supplied from the outside and supplies the video signal Vin to the source driver 521, the gate driver 522, and the vertical electric field driver 523.
 ソースドライバ521は、制御部51から供給された信号に基づいて信号VsAおよびVsBを生成する。そして、ソースドライバ521は、信号VsAをソースライン141Aに供給し、信号VsBをソースライン141Bに供給する。 The source driver 521 generates the signals VsA and VsB based on the signal supplied from the control unit 51. Then, the source driver 521 supplies the signal VsA to the source line 141A and supplies the signal VsB to the source line 141B.
 ゲートドライバ522は、制御部51から供給された信号に基づいて信号Vgを生成し、ゲートライン142に供給する。ここで、ゲートライン142の数をj(jは自然数)とし、k行目(1≦k≦j)のゲートライン142に供給される信号Vgを、信号Vg_kと表記する。 The gate driver 522 generates a signal Vg based on the signal supplied from the control unit 51 and supplies the signal Vg to the gate line 142. Here, the number of gate lines 142 is j (j is a natural number), and the signal Vg supplied to the gate line 142 in the k-th row (1 ≦ k ≦ j) is represented as a signal Vg_k.
 縦電界ドライバ523は、制御部51から供給された信号に基づいて信号VcomおよびVc生成する。縦電界ドライバ523は、信号Vcomを共通電極12に供給し、信号Vcを対向電極32に供給する。なお、縦電界ドライバ523に代えて、信号Vcomを生成して共通電極12に供給する回路と、信号Vcを生成して対向電極32に供給する回路とを別々に設けても良い。 The vertical electric field driver 523 generates signals Vcom and Vc based on the signal supplied from the control unit 51. The vertical electric field driver 523 supplies the signal Vcom to the common electrode 12 and supplies the signal Vc to the counter electrode 32. Instead of the vertical electric field driver 523, a circuit that generates the signal Vcom and supplies it to the common electrode 12 and a circuit that generates the signal Vc and supplies it to the counter electrode 32 may be provided separately.
 また、縦電界ドライバ523は、信号VcomおよびVcのいずれか一方だけを生成し、共通電極12および対向電極32のいずれか一方にだけ信号を供給する構成としても良い。この場合、共通電極12および対向電極32の他方は、一定電位とすることができる。以下では、共通電極12の電位を一定として、対向電極32の電位を変化させて、縦電界を制御する例を示す。 Further, the vertical electric field driver 523 may be configured to generate only one of the signals Vcom and Vc and supply a signal only to either the common electrode 12 or the counter electrode 32. In this case, the other of the common electrode 12 and the counter electrode 32 can be set to a constant potential. Hereinafter, an example in which the vertical electric field is controlled by changing the potential of the counter electrode 32 while keeping the potential of the common electrode 12 constant will be described.
 図7は、本発明の第1の実施形態にかかる駆動方法のタイミングチャートである。図7中のVcは、駆動部52から対向電極32に供給される信号Vcの信号波形であるとともに、対向電極32の電位である。図7中のVsAおよびVsBは、ソースライン141Aおよび141Bから、ある画素Pxに供給される信号VsAおよびVsBの信号波形である。図7中のVg_1は、1行目のゲートライン142に供給される信号Vg_1の信号波形であり、その下のVaおよびVbは、1行目のゲートライン142に接続された電極144Aおよび144Bの電位である。図7中のVg_jは、j行目のゲートライン142に供給される信号Vg_jの信号波形であり、その下のVaおよびVbは、j行目のゲートライン142に接続された電極144Aおよび144Bの電位である。なお、図7では、図を見易くするため、電極144Aの電位Vaを二点鎖線で、電極144Bの電位Vbを太い実線で、それぞれ示している。後述する図11および図12においても同様である。 FIG. 7 is a timing chart of the driving method according to the first embodiment of the present invention. In FIG. 7, Vc is a signal waveform of the signal Vc supplied from the driving unit 52 to the counter electrode 32 and is a potential of the counter electrode 32. VsA and VsB in FIG. 7 are signal waveforms of signals VsA and VsB supplied from the source lines 141A and 141B to a certain pixel Px. In FIG. 7, Vg_1 is a signal waveform of the signal Vg_1 supplied to the gate line 142 in the first row, and Va and Vb below it are the electrodes 144A and 144B connected to the gate line 142 in the first row. Potential. In FIG. 7, Vg_j is a signal waveform of the signal Vg_j supplied to the gate line 142 in the j-th row, and Va and Vb below it are the electrodes 144A and 144B connected to the gate line 142 in the j-th row. Potential. Note that in FIG. 7, the potential Va of the electrode 144 </ b> A is indicated by a two-dot chain line, and the potential Vb of the electrode 144 </ b> B is indicated by a thick solid line for easy understanding of the drawing. The same applies to FIGS. 11 and 12 described later.
 図7に示すように、本実施形態では、駆動部52は、1フレーム期間(Tf)の4倍の長さの期間ごとに、対向電極32の電位Vcを変化させている。より具体的には、駆動部52は、4Tfの長さの期間ごとに、縦電界の方向が反転するように、電位Vcを変化させている。すなわち、駆動部52は、4Tfの長さの期間ごとに、共通電極12の電位と対向電極32の電位との高低関係を反転させている。本実施形態では共通電極12の電位Vcomを一定としているので、駆動部52は、4Tfの長さの期間ごとに、電位Vcomの値を基準値として対向電極32の電位Vcの極性を反転させている。 As shown in FIG. 7, in the present embodiment, the drive unit 52 changes the potential Vc of the counter electrode 32 every period four times as long as one frame period (Tf). More specifically, the drive unit 52 changes the potential Vc so that the direction of the vertical electric field is reversed every period of 4Tf. That is, the drive unit 52 reverses the level relationship between the potential of the common electrode 12 and the potential of the counter electrode 32 for each period of 4Tf length. In this embodiment, since the potential Vcom of the common electrode 12 is constant, the drive unit 52 reverses the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. Yes.
 ここで、極性反転に伴うフリッカの影響を低減させるため、共通電極12と対向電極32との間の電位差の絶対値は一定であることが好ましい。すなわち、対向電極32のハイレベル電位をVc_H、ローレベル電位をVc_Lとしたとき、Vc_H-Vcom=Vcom-Vc_Lとなるように、Vc_HおよびVc_L、またはVcomの値が調整されていることが好ましい。 Here, in order to reduce the influence of flicker accompanying polarity inversion, the absolute value of the potential difference between the common electrode 12 and the counter electrode 32 is preferably constant. That is, it is preferable that the values of Vc_H and Vc_L, or Vcom are adjusted so that Vc_H−Vcom = Vcom−Vc_L when the high level potential of the counter electrode 32 is Vc_H and the low level potential is Vc_L.
 信号Vg1~Vg_jは、時分割で一つずつハイレベルになる。すなわち、ある期間では、信号Vg_1がハイレベルになり、信号Vg_2~Vg_jはローレベルになっている。そして、信号Vg_1がローレベルになるのと同期して、信号Vg_2がハイレベルになる。信号Vg_2がハイレベルの期間は、信号Vg_1および信号Vg_3~Vg_jはローレベルになっている。このように、信号Vg_1~Vg_jの一つが順次ハイレベルになり、他の信号はローレベルになる。 The signals Vg1 to Vg_j become high level one by one in a time division manner. That is, in a certain period, the signal Vg_1 is at a high level, and the signals Vg_2 to Vg_j are at a low level. Then, in synchronization with the signal Vg_1 becoming low level, the signal Vg_2 becomes high level. While the signal Vg_2 is at a high level, the signal Vg_1 and the signals Vg_3 to Vg_j are at a low level. In this way, one of the signals Vg_1 to Vg_j sequentially becomes a high level, and the other signals become a low level.
 図7中にScanとして模式的に示すように、駆動部52は、走査期間Tgsの間に、信号Vg_1~Vg_jを1回ずつハイレベルにする。これによって、駆動部52は、走査期間Tgsの間に、液晶表示装置1のすべての画素Pxについて電極144Aおよび電極144Bの電位を1回ずつ書き込む。本実施形態では、走査期間Tgsの長さは、1フレーム期間Tfの長さと概略等しい。すなわち、本実施形態では、駆動部52は、1フレーム期間Tfに、液晶表示装置1のすべての画素Pxについて電極144Aおよび電極144Bの電位を1回ずつ書き込む。 As schematically shown as Scan in FIG. 7, the driving unit 52 sets the signals Vg_1 to Vg_j to the high level once during the scanning period Tgs. Accordingly, the driving unit 52 writes the potentials of the electrodes 144A and 144B once for all the pixels Px of the liquid crystal display device 1 during the scanning period Tgs. In the present embodiment, the length of the scanning period Tgs is approximately equal to the length of one frame period Tf. That is, in the present embodiment, the drive unit 52 writes the potentials of the electrodes 144A and 144B once for all the pixels Px of the liquid crystal display device 1 in one frame period Tf.
 このときの動作を、図4を参照して説明する。信号Vg_k(1≦k≦j)がハイレベルになると、k行目のゲートライン142に接続されたTFT143Aおよび143Bがオンになる。これによって、ソースライン141Aから信号VsAが電極144Aに供給され、ソースライン141Bから信号VsBが電極144Bに供給される。これによって、電極144Aに電位VsAが書き込まれ、電極144Bに電位VsBが書き込まれる。電極144Aおよび電極144Bの電位は、信号Vg_kがローレベルになってTFT143Aおよび143Bがオフになった後も、液晶容量Clc1、Clc2およびClc3ならびに蓄積容量Cs1およびCs2によって概略一定に維持される。 The operation at this time will be described with reference to FIG. When the signal Vg_k (1 ≦ k ≦ j) becomes a high level, the TFTs 143A and 143B connected to the gate line 142 in the k-th row are turned on. Thus, the signal VsA is supplied from the source line 141A to the electrode 144A, and the signal VsB is supplied from the source line 141B to the electrode 144B. Accordingly, the potential VsA is written to the electrode 144A, and the potential VsB is written to the electrode 144B. The potentials of the electrode 144A and the electrode 144B are maintained substantially constant by the liquid crystal capacitors Clc1, Clc2, and Clc3 and the storage capacitors Cs1 and Cs2 even after the signal Vg_k becomes low level and the TFTs 143A and 143B are turned off.
 なお、各列への信号VsAおよびVsBの供給は時分割で行っても良く(点順次駆動)、一斉に行っても良い(線順次駆動)。 Note that the signals VsA and VsB may be supplied to each column in a time-sharing manner (dot sequential driving) or simultaneously (line sequential driving).
 電極144Aおよび電極144Bは、液晶容量Clc1およびClc2を介して対向電極32と容量性結合している。そのため、対向電極32の電位が変化すると、電極144Aおよび電極144Bの電位も影響を受ける。そのため、図7に示すように、対向電極32の電位Vcが変化してから、電極144Aおよび電極144Bに再び電位が書き込まれるまでの間の期間(図7中の期間A1およびA2)では、液晶の配向が乱れ、輝度が低下する。さらに、走査期間Tgsの始め側(Vg_1)の画素Pxでは輝度低下期間が短い(図7中の期間A1を参照)のに対し、走査期間Tgsの終わり側(Vg_j)の画素Pxでは輝度低下期間が長い(図7中の期間A2を参照)。このため、液晶表示装置1内の位置によって輝度が変化し、輝度傾斜が発生する。 The electrode 144A and the electrode 144B are capacitively coupled to the counter electrode 32 through the liquid crystal capacitors Clc1 and Clc2. Therefore, when the potential of the counter electrode 32 changes, the potentials of the electrodes 144A and 144B are also affected. Therefore, as shown in FIG. 7, in the period from when the potential Vc of the counter electrode 32 changes until the potential is written again to the electrodes 144A and 144B (periods A1 and A2 in FIG. 7), the liquid crystal The orientation of the film is disturbed and the luminance is lowered. Further, the pixel Px on the start side (Vg_1) of the scanning period Tgs has a short luminance reduction period (see the period A1 in FIG. 7), whereas the pixel Px on the end side (Vg_j) of the scanning period Tgs has a luminance reduction period. Is long (see period A2 in FIG. 7). For this reason, the luminance changes depending on the position in the liquid crystal display device 1, and a luminance gradient occurs.
 本実施形態にかかる駆動方法によれば、走査期間Tgsの長さはTfであり、縦電界を反転させる反転期間の長さは4Tfである。すなわち、走査期間Tgsの長さは、反転期間の長さの4分の1である。そのため、輝度低下期間(期間A1およびA2)を、相対的に短くすることができる。これによって、フリッカを抑制することができる。 According to the driving method according to the present embodiment, the length of the scanning period Tgs is Tf, and the length of the inversion period for inverting the vertical electric field is 4Tf. That is, the length of the scanning period Tgs is a quarter of the length of the inversion period. Therefore, the luminance reduction period (periods A1 and A2) can be relatively shortened. Thereby, flicker can be suppressed.
 本実施形態では、反転期間を4Tfにしている。しかし、反転期間の長さは、1フレーム期間Tfのn倍(nは2以上の整数)であれば良い。液晶層20に電荷の偏りを生じさせず、信頼性が維持できる範囲であれば、反転期間はさらに長くても良い。反転期間が長いほど、輝度低下期間は相対的に短くなり、輝度低下期間の影響を小さくすることができる。反転期間は、例えば、1フレーム期間の60倍(60Tf)であっても良い。好ましいフレーム反転期間の長さは、1フレーム期間Tfの長さの60倍以上である。反転期間長さの上限は、好ましくは1フレーム期間Tfの長さの3600倍である。なおここでは、1秒間に60フレーム表示されるとしている。 In this embodiment, the inversion period is 4 Tf. However, the length of the inversion period may be n times the one frame period Tf (n is an integer of 2 or more). The inversion period may be longer as long as the liquid crystal layer 20 does not cause a charge bias and can maintain reliability. The longer the inversion period is, the shorter the luminance reduction period is, and the influence of the luminance reduction period can be reduced. For example, the inversion period may be 60 times (60 Tf) of one frame period. A preferable length of the frame inversion period is 60 times or more the length of one frame period Tf. The upper limit of the inversion period length is preferably 3600 times the length of one frame period Tf. Here, 60 frames are displayed per second.
 本実施形態では、信号VsAおよびVsBは、互いに反対極性である。本実施形態ではさらに、信号Vg_1~Vg_jの一つがハイレベルになるタイミングと同期して、信号VsAおよびVsBの極性が反転している。すなわち、本実施形態では、1水平期間ごとに、横電界の方向を反転させている。本実施形態ではさらに、1フレーム期間Tfごとに、信号VsAおよびVsBの極性が反転している。すなわち、本実施形態では、1フレーム期間Tfごとに横電界の方向を反転させている。 In this embodiment, the signals VsA and VsB have opposite polarities. Further, in the present embodiment, the polarities of the signals VsA and VsB are inverted in synchronization with the timing when one of the signals Vg_1 to Vg_j becomes high level. That is, in this embodiment, the direction of the horizontal electric field is reversed every horizontal period. In the present embodiment, the polarities of the signals VsA and VsB are inverted every frame period Tf. That is, in the present embodiment, the direction of the horizontal electric field is reversed every frame period Tf.
 図8は、本実施形態における各画素Pxにおける電極144Aの電位Vaおよび電極144Bの電位Vbの極性を模式的に示した図である。図8中の「+/-」は、電位Vaが正極性で電位Vbが負極性であることを示している。「-/+」は、電位Vaが負極性で電位Vbが正極性であることを示している。後述する図9および図10においても同様である。 FIG. 8 is a diagram schematically showing the polarities of the potential Va of the electrode 144A and the potential Vb of the electrode 144B in each pixel Px in the present embodiment. “+/−” in FIG. 8 indicates that the potential Va is positive and the potential Vb is negative. “− / +” Indicates that the potential Va is negative and the potential Vb is positive. The same applies to FIGS. 9 and 10 described later.
 本実施形態では、横電界に関しては、いわゆる1Hライン反転駆動およびフレーム反転駆動を行っている。これによって、あるフレームにおいて全ての画素Pxが同一極性になることを避けることができる。したがって、フリッカをより抑制することができる。 In the present embodiment, so-called 1H line inversion driving and frame inversion driving are performed for the lateral electric field. Thereby, it is possible to avoid that all the pixels Px have the same polarity in a certain frame. Therefore, flicker can be further suppressed.
 本実施形態では、横電界を画素Pxの行ごとに反転させる1Hライン反転駆動を行っている。しかし、図9に示すように、横電界を画素Pxの列ごとに反転させるカラム反転駆動を行っても良い。また、図10に示すように、横電界を画素ごとに反転させるドット反転駆動を行っても良い。さらに、図8~図10では、1フレームごとに横電界の極性を反転させているが、複数フレームごとに極性を反転させる駆動方法としても良い。 In this embodiment, 1H line inversion driving is performed to invert the horizontal electric field for each row of the pixels Px. However, as shown in FIG. 9, column inversion driving may be performed to invert the horizontal electric field for each column of the pixels Px. Further, as shown in FIG. 10, dot inversion driving for inverting the horizontal electric field for each pixel may be performed. Further, in FIGS. 8 to 10, the polarity of the horizontal electric field is inverted every frame, but a driving method may be used in which the polarity is inverted every plural frames.
 なお、本実施形態にかかる駆動方法では、画素Pxの輝度を決定するのは主に横電界である。そのため、縦電界のみを用いる駆動方法と比較して、縦電界の電位変動による輝度変化は小さい。したがって、縦電界については極性反転をフレーム単位で行っても、フリッカは生じにくい。すなわち、縦電界についてはライン反転駆動やカラム反転駆動を行わなくても、フリッカは生じにくい。これによって、駆動負荷を小さくすることができる。 In the driving method according to the present embodiment, it is mainly the lateral electric field that determines the luminance of the pixel Px. Therefore, the luminance change due to the potential fluctuation of the vertical electric field is small as compared with the driving method using only the vertical electric field. Therefore, even if polarity inversion is performed in units of frames for the vertical electric field, flicker is unlikely to occur. In other words, flicker is unlikely to occur in the vertical electric field without performing line inversion driving or column inversion driving. As a result, the driving load can be reduced.
 以上のように、本実施形態による駆動方法によれば、表示品位を保ったまま、縦電界および横電界の反転を行うことができる。 As described above, according to the driving method of the present embodiment, the vertical electric field and the horizontal electric field can be inverted while maintaining the display quality.
 電極144Aおよび144Bは、TFT143Aおよび143Bに接続されている。そのため、TFT143Aおよび143BのON、OFFによるゲート電圧の変化によって、電極144Aおよび144Bの電位は変動する。電極144Aおよび144Bの電位は、具体的には、ΔV=(Vgh-Vgl)・Cgd/Cpix程度変動する。ここで、VghはTFT143A(143B)がON時のゲート電圧であり、VglはTFT143A(143B)がOFF時のゲート電圧である。また、CgdはTFT143A(143B)のゲートドレイン間の容量であり、Cpixは電極144Aおよび電極144Bの負荷容量である。電極144Aおよび144Bには、この電位変動ΔVを見込んだ電圧を印加することが好ましい。 The electrodes 144A and 144B are connected to the TFTs 143A and 143B. Therefore, the potentials of the electrodes 144A and 144B vary due to the change in the gate voltage caused by turning on and off the TFTs 143A and 143B. Specifically, the potentials of the electrodes 144A and 144B vary by about ΔV = (Vgh−Vgl) · Cgd / Cpix. Here, Vgh is a gate voltage when the TFT 143A (143B) is ON, and Vgl is a gate voltage when the TFT 143A (143B) is OFF. Cgd is the capacitance between the gate and drain of the TFT 143A (143B), and Cpix is the load capacitance of the electrodes 144A and 144B. It is preferable to apply a voltage that allows for this potential fluctuation ΔV to the electrodes 144A and 144B.
 電極144Aの電位Vaと電極144Bの電位Vbとは、本実施形態のように、画素Pxのそれぞれにおいて互いに反対極性であることが好ましい。このとき、電位Vaと電位Vbとは、共通電極12の電位Vcomを中心として対称であることが好ましい。換言すれば、電極144Aと共通電極12との間の電位差の絶対値、および電極144Bと共通電極12との間の電位差の絶対値が等しいことが好ましい。これによって、電界を対称にすることができる。この場合、上記の電位変動ΔVを含めた実効電位において、電極144Aと共通電極12との間の電位差の絶対値、および電極144Bと共通電極12との間の電位差の絶対値を等しくすることが好ましい。 It is preferable that the potential Va of the electrode 144A and the potential Vb of the electrode 144B have opposite polarities in each of the pixels Px as in the present embodiment. At this time, the potential Va and the potential Vb are preferably symmetric with respect to the potential Vcom of the common electrode 12. In other words, the absolute value of the potential difference between the electrode 144A and the common electrode 12 and the absolute value of the potential difference between the electrode 144B and the common electrode 12 are preferably equal. As a result, the electric field can be symmetric. In this case, the absolute value of the potential difference between the electrode 144A and the common electrode 12 and the absolute value of the potential difference between the electrode 144B and the common electrode 12 can be made equal at the effective potential including the potential fluctuation ΔV. preferable.
 [第2の実施形態]
 図11は、本発明の第2の実施形態にかかる駆動方法のタイミングチャートである。
[Second Embodiment]
FIG. 11 is a timing chart of the driving method according to the second embodiment of the present invention.
 本実施形態においても、第1の実施形態と同様に、駆動部52は、1フレーム期間Tfの4倍の長さの期間ごとに、縦電界を反転させている。本実施形態においても共通電極12の電位Vcomを一定としているので、駆動部52は、4Tfの長さの期間ごとに、電位Vcomの値を基準値として対向電極32の電位Vcの極性を反転させている。 Also in the present embodiment, as in the first embodiment, the driving unit 52 inverts the vertical electric field every period four times as long as one frame period Tf. Also in this embodiment, since the potential Vcom of the common electrode 12 is constant, the driving unit 52 inverts the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. ing.
 本実施形態では、走査期間Tgsの長さは1フレーム期間Tfの半分の長さである。すなわち、駆動部52は、1フレーム期間Tfの半分の長さの期間に、信号Vg_1~Vg_jを1回ずつハイレベルにする、いわゆる2倍速駆動を行っている。 In the present embodiment, the length of the scanning period Tgs is half the length of one frame period Tf. That is, the driving unit 52 performs so-called double speed driving in which the signals Vg_1 to Vg_j are set to the high level once every half of the period of one frame period Tf.
 本実施形態においても、縦電界の反転に伴う輝度低下期間(期間A3およびA4)が発生する。しかし、2倍速駆動を行うことによって、輝度低下期間を短くすることができる。さらに、2倍速駆動を行うことによって、走査期間Tgsの始め側(Vg_1)の画素Pxでの輝度低下期間(図11中の期間A3)の長さと、走査期間Tgsの終わり側(Vg_j)の画素Pxでの輝度低下期間(図11中の期間A4)の長さとの差を小さくすることができる。すなわち、輝度傾斜を低減させることができる。 Also in the present embodiment, a luminance reduction period (periods A3 and A4) accompanying the inversion of the vertical electric field occurs. However, the luminance reduction period can be shortened by performing the double speed driving. Further, by performing the double speed driving, the length of the luminance decrease period (period A3 in FIG. 11) in the pixel Px on the start side (Vg_1) of the scanning period Tgs and the pixel on the end side (Vg_j) of the scanning period Tgs. The difference from the length of the luminance decrease period (period A4 in FIG. 11) at Px can be reduced. That is, the luminance gradient can be reduced.
 また、本実施形態では、走査が終了してから次のフレーム期間Tfが開始するまでの間、電極144Aおよび144Bの充電を行っていない。この間、信号VsAおよびVsBは一定値(例えば、共通電極12と同じ電位)に設定されている。これによって、ソースライン141Aおよび141Bへの充放電を休止させ、液晶表示装置1の消費電力を低減させることができる。 In the present embodiment, the electrodes 144A and 144B are not charged until the next frame period Tf starts after the scanning is completed. During this time, the signals VsA and VsB are set to constant values (for example, the same potential as the common electrode 12). Thereby, charging / discharging to the source lines 141A and 141B can be stopped, and the power consumption of the liquid crystal display device 1 can be reduced.
 本実施形態では、2倍速駆動を行っている。しかし、電極144Aおよび電極144Bへの充電が可能な限り、より高速に駆動しても良い。高速に駆動するほど、輝度低下期間の長さが短くなる。なお、高速駆動を行うため、TFT143Aおよび143Bは、電子移動度の高い酸化物半導体をチャネルとして用いることが好ましい。 In this embodiment, double speed driving is performed. However, the electrode 144A and the electrode 144B may be driven at higher speed as long as charging is possible. The higher the driving speed, the shorter the length of the luminance reduction period. Note that in order to perform high-speed driving, the TFTs 143A and 143B preferably use an oxide semiconductor with high electron mobility as a channel.
 本実施形態では、反転期間を4Tfにしている。しかし、反転期間の長さは、走査期間Tgsの2倍以上であれば良い。したがって、1回の走査を1フレーム期間Tfの長さの1/mの期間で行うm倍速駆動(m>1の実数)を行う場合、反転期間の長さは1フレーム期間Tfのn倍(nは1以上の整数)とすることができる。但し、n×m≧2の関係を満たす。より好ましくは、反転期間の長さは、1フレーム期間Tfの60倍以上である。なおここでは、1秒間に60フレーム表示されるとしている。 In this embodiment, the inversion period is 4 Tf. However, the length of the inversion period may be at least twice as long as the scanning period Tgs. Therefore, when performing m-times speed driving (m> 1 real number) in which one scan is performed in a period of 1 / m of the length of one frame period Tf, the length of the inversion period is n times (one frame period Tf) n can be an integer of 1 or more. However, the relationship of n × m ≧ 2 is satisfied. More preferably, the length of the inversion period is 60 times or more of one frame period Tf. Here, 60 frames are displayed per second.
 本実施形態においても、信頼性が維持できる範囲であれば、反転期間はさらに長くても良い。反転期間は、例えば、1フレーム期間の60倍(60Tf)であっても良い。 Also in this embodiment, the inversion period may be longer as long as the reliability can be maintained. For example, the inversion period may be 60 times (60 Tf) of one frame period.
 本実施形態においても、横電界の駆動方法は、1Hライン反転駆動、カラム反転駆動、およびドット反転駆動、ならびにこれらとフレーム反転駆動との組み合わせを用いることができる。 Also in this embodiment, the driving method of the horizontal electric field can use 1H line inversion driving, column inversion driving, dot inversion driving, and a combination of these and frame inversion driving.
 [第3の実施形態]
 図12は、本発明の第3の実施形態にかかる駆動方法のタイミングチャートである。
[Third Embodiment]
FIG. 12 is a timing chart of the driving method according to the third embodiment of the present invention.
 本実施形態においても、第1の実施形態と同様に、駆動部52は、1フレーム期間(Tf)の4倍の長さの期間ごとに、縦電界を反転させている。本実施形態においても共通電極12の電位Vcomを一定としているので、駆動部52は、4Tfの長さの期間ごとに、電位Vcomの値を基準値として対向電極32の電位Vcの極性を反転させている。 Also in the present embodiment, as in the first embodiment, the driving unit 52 inverts the vertical electric field every period four times as long as one frame period (Tf). Also in this embodiment, since the potential Vcom of the common electrode 12 is constant, the driving unit 52 inverts the polarity of the potential Vc of the counter electrode 32 with the value of the potential Vcom as a reference value for each period of 4Tf length. ing.
 本実施形態においても、駆動部52は、1フレーム期間Tfの半分の長さの期間に、信号Vg_1~Vg_jを1回ずつハイレベルにする、いわゆる2倍速駆動を行っている。第2の実施形態では、走査が終了してから次のフレーム期間Tfが開始するまでの間、電極144Aおよび144Bの充電を行わない。これに対し、本実施形態では、1回目の走査が終了した後、同じデータを同極性で再度充電する。これによって、液晶層20の配向をより安定化させることができる。 Also in the present embodiment, the driving unit 52 performs so-called double speed driving in which the signals Vg_1 to Vg_j are set to the high level once every half of the period of one frame period Tf. In the second embodiment, the electrodes 144A and 144B are not charged during the period from the end of scanning until the start of the next frame period Tf. On the other hand, in this embodiment, after the first scan is completed, the same data is charged again with the same polarity. Thereby, the alignment of the liquid crystal layer 20 can be further stabilized.
 本実施形態においても、縦電界の反転に伴う輝度低下期間(期間A5およびA6)が発生する。第2の実施形態と同様に、2倍速駆動を行うことによって、輝度低下期間を短くすることができる。さらに、2倍速駆動を行うことによって、走査期間Tgsの始め側(Vg_1)の画素Pxでの輝度低下期間(図12中の期間A5)の長さと、走査期間Tgsの終わり側(Vg_j)の画素Pxでの輝度低下期間(図12中の期間A5)の長さとの差を小さくすることができる。すなわち、輝度傾斜を低減させることができる。 Also in the present embodiment, a luminance reduction period (periods A5 and A6) accompanying the inversion of the vertical electric field occurs. Similar to the second embodiment, the luminance reduction period can be shortened by performing the double speed driving. Further, by performing the double speed driving, the length of the luminance decrease period (period A5 in FIG. 12) in the pixel Px on the start side (Vg_1) of the scanning period Tgs and the pixel on the end side (Vg_j) of the scanning period Tgs. The difference from the length of the luminance decrease period (period A5 in FIG. 12) at Px can be reduced. That is, the luminance gradient can be reduced.
 本実施形態においても、電極144Aおよび電極144Bへの充電が可能な限り、より高速に駆動しても良い。高速に駆動するほど、輝度低下期間の長さが短くなる。なお、高速駆動を行うため、TFT143Aおよび143Bは、電子移動度の高い酸化物半導体をチャネルとして用いることが好ましい。 Also in this embodiment, the electrode 144A and the electrode 144B may be driven at a higher speed as long as the electrode 144A and the electrode 144B can be charged. The higher the driving speed, the shorter the length of the luminance reduction period. Note that in order to perform high-speed driving, the TFTs 143A and 143B preferably use an oxide semiconductor with high electron mobility as a channel.
 本実施形態では、反転期間を4Tfにしている。しかし、反転期間の長さは、走査期間Tgsの2倍以上であれば良い。したがって、m倍速駆動(mは2以上の整数)で連続書込みを行う場合、反転期間はフレーム期間Tfのn倍(nは1以上の整数)とすることができる。より好ましくは、反転期間の長さは、1フレーム期間Tfの60倍以上である。なおここでは、1秒間に60フレーム表示されるとしている。 In this embodiment, the inversion period is 4 Tf. However, the length of the inversion period may be at least twice as long as the scanning period Tgs. Therefore, when continuous writing is performed by m-times speed driving (m is an integer of 2 or more), the inversion period can be n times the frame period Tf (n is an integer of 1 or more). More preferably, the length of the inversion period is 60 times or more of one frame period Tf. Here, 60 frames are displayed per second.
 本実施形態においても、信頼性が維持できる範囲であれば、反転期間はさらに長くても良い。反転期間は、例えば、1フレーム期間の60倍(60Tf)であっても良い。 Also in this embodiment, the inversion period may be longer as long as the reliability can be maintained. For example, the inversion period may be 60 times (60 Tf) of one frame period.
 本実施形態においても、横電界の駆動方法は、1Hライン反転駆動、カラム反転駆動、およびドット反転駆動、ならびにこれらとフレーム反転駆動との組み合わせを用いることができる。 Also in this embodiment, the driving method of the horizontal electric field can use 1H line inversion driving, column inversion driving, dot inversion driving, and a combination of these and frame inversion driving.
 [液晶表示装置の構成の変形例1]
 本発明の第1~第3の実施形態にかかる駆動方法は、液晶表示装置1に加えて、以下に説明する液晶表示装置2に対しても好適に用いることができる。図13は、本発明の変形例にかかる液晶表示装置2の模式的断面図である。図14は、液晶表示装置2の等価回路図である。
[Modification Example 1 of Configuration of Liquid Crystal Display Device]
The driving methods according to the first to third embodiments of the present invention can be suitably used for the liquid crystal display device 2 described below in addition to the liquid crystal display device 1. FIG. 13 is a schematic cross-sectional view of a liquid crystal display device 2 according to a modification of the present invention. FIG. 14 is an equivalent circuit diagram of the liquid crystal display device 2.
 液晶表示装置2は、液晶表示装置1の対向基板30に代えて、対向基板40を備えている。対向基板40は、対向基板30が備える構成に加えて、オーバーコート層41をさらに含んでいる。 The liquid crystal display device 2 includes a counter substrate 40 instead of the counter substrate 30 of the liquid crystal display device 1. The counter substrate 40 further includes an overcoat layer 41 in addition to the configuration of the counter substrate 30.
 オーバーコート層41は、対向電極32を覆って形成されている。オーバーコート層41は、透光性および絶縁性を有している。オーバーコート層41は、例えば窒化ケイ素、酸化ケイ素、または酸窒化ケイ素の膜であり、例えばCVDによって成膜される。オーバーコート層41はまた、アクリル樹脂等の有機物であっても良く、この場合、例えばスピンコータまたはスリットコータによって成膜される。 The overcoat layer 41 is formed so as to cover the counter electrode 32. The overcoat layer 41 has translucency and insulation. The overcoat layer 41 is, for example, a silicon nitride, silicon oxide, or silicon oxynitride film, and is formed by, for example, CVD. The overcoat layer 41 may also be an organic material such as an acrylic resin. In this case, the overcoat layer 41 is formed by, for example, a spin coater or a slit coater.
 図14に示すように、電極144Aと対向電極32とは液晶容量Clc1およびオーバーコート層41の容量Coc1を介して容量性結合している。電極144Bと対向電極32とは、液晶容量Clc2およびオーバーコート層41の容量Coc2を介して容量性結合している。 As shown in FIG. 14, the electrode 144A and the counter electrode 32 are capacitively coupled via the liquid crystal capacitor Clc1 and the capacitor Coc1 of the overcoat layer 41. The electrode 144B and the counter electrode 32 are capacitively coupled via the liquid crystal capacitor Clc2 and the capacitor Coc2 of the overcoat layer 41.
 液晶表示装置2の構成によれば、オーバーコート層41によって、縦電界の強さが小さくなる。縦電界の強さが小さくなることで、相対的に横電界の影響が大きくなり、液晶分子がx方向に配向し易くなる。これによって、白表示時の透過率を向上させることができる。 According to the configuration of the liquid crystal display device 2, the strength of the vertical electric field is reduced by the overcoat layer 41. By reducing the strength of the vertical electric field, the influence of the horizontal electric field is relatively increased, and the liquid crystal molecules are easily aligned in the x direction. Thereby, the transmittance at the time of white display can be improved.
 オーバーコート層41の比誘電率は、1よりも大きいことが好ましい。オーバーコート層41が厚すぎると、液晶分子の応答速度が低下する。そのため、オーバーコート層41の厚さは、0μmよりも大きく4μm未満であることが好ましい。また、このときのセルギャップ(液晶層20の厚さ)は、2μmよりも大きく7μm以下であることが好ましい。 The relative dielectric constant of the overcoat layer 41 is preferably larger than 1. If the overcoat layer 41 is too thick, the response speed of the liquid crystal molecules decreases. Therefore, the thickness of the overcoat layer 41 is preferably greater than 0 μm and less than 4 μm. Further, the cell gap (the thickness of the liquid crystal layer 20) at this time is preferably greater than 2 μm and 7 μm or less.
 液晶表示装置2に対しても、本発明の第1~第3のいずれかの実施形態にかかる駆動方法を実行することで、フリッカを抑制することができる。 Flicker can also be suppressed for the liquid crystal display device 2 by executing the driving method according to any one of the first to third embodiments of the present invention.
 [その他の実施形態]
 以上、本発明についての実施形態を説明したが、本発明は上述の各実施形態のみに限定されず、発明の範囲内で種々の変更が可能である。また、各実施形態は、適宜組み合わせて実施することが可能である。
[Other Embodiments]
As mentioned above, although embodiment about this invention was described, this invention is not limited only to each above-mentioned embodiment, A various change is possible within the scope of the invention. Moreover, each embodiment can be implemented in combination as appropriate.
 本発明は、液晶表示装置およびその駆動方法として産業上の利用が可能である。 The present invention can be used industrially as a liquid crystal display device and a driving method thereof.
1,2 液晶表示装置
10 アレイ基板
11 基板
12 共通電極
13 絶縁層
14 アレイ層
141A,141B ソースライン
142 ゲートライン
143A,143B TFT
144A,144B 電極
15 偏光板
20 液晶層
30,40 対向基板
31 基板
32 対向電極
33 偏光板
41 オーバーコート層
1, 2 Liquid crystal display device 10 Array substrate 11 Substrate 12 Common electrode 13 Insulating layer 14 Array layers 141A, 141B Source line 142 Gate lines 143A, 143B TFT
144A, 144B Electrode 15 Polarizing plate 20 Liquid crystal layer 30, 40 Counter substrate 31 Substrate 32 Counter electrode 33 Polarizing plate 41 Overcoat layer

Claims (14)

  1.  マトリクス状に配置された複数の画素を含む第1基板と、
     前記画素ごとに形成された第1電極および第2電極と、
     前記複数の画素にわたって形成された共通電極と、
     前記第1基板に対向して配置された第2基板と、
     前記第2基板に形成された対向電極と、
     前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層と、
     前記第1電極、前記第2電極、ならびに前記共通電極および前記対向電極の少なくとも一方の電位を制御する駆動部とを備え、
     前記駆動部は、前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を反転期間ごとに反転させ、
     前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である、液晶表示装置。
    A first substrate including a plurality of pixels arranged in a matrix;
    A first electrode and a second electrode formed for each pixel;
    A common electrode formed over the plurality of pixels;
    A second substrate disposed opposite the first substrate;
    A counter electrode formed on the second substrate;
    A liquid crystal layer including liquid crystal molecules sandwiched between the first substrate and the second substrate and having positive dielectric anisotropy;
    A drive unit that controls the potential of at least one of the first electrode, the second electrode, and the common electrode and the counter electrode;
    The driving unit sequentially writes the potentials of the first electrode and the second electrode for the plurality of pixels, and inverts the height relationship between the potential of the common electrode and the potential of the counter electrode for each inversion period,
    The liquid crystal display device, wherein a length of a scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is equal to or less than half the length of the inversion period.
  2.  前記画素のそれぞれにおいて、前記第1電極の電位と前記第2電極の電位とは互いに反対極性である、請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein in each of the pixels, the potential of the first electrode and the potential of the second electrode have opposite polarities.
  3.  前記駆動部は、前記第1電極および前記第2電極の電位の極性を、1フレーム期間の長さの整数倍の期間ごとに反転させる、請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the driving unit inverts the polarities of the potentials of the first electrode and the second electrode every period that is an integral multiple of the length of one frame period.
  4.  前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素の行ごとに反転させる、請求項1~3のいずれか一項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each row of the pixels.
  5.  前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素の列ごとに反転させる、請求項1~3のいずれか一項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each column of the pixels.
  6.  前記駆動部は、前記第1電極および前記第2電極の電位の極性を、前記画素ごとに反転させる、請求項1~3のいずれか一項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the driving unit inverts the polarities of the potentials of the first electrode and the second electrode for each pixel.
  7.  前記反転期間の長さは1フレーム期間の長さの2倍以上である、請求項1~6のいずれか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 6, wherein the length of the inversion period is at least twice the length of one frame period.
  8.  前記走査期間の長さは1フレーム期間の長さよりも短く、
     前記駆動部は、前記複数の画素について前記第1電極および前記第2電極の電位を1フレーム期間に1回書き込む、請求項1~6のいずれか一項に記載の液晶表示装置。
    The length of the scanning period is shorter than the length of one frame period,
    The liquid crystal display device according to any one of claims 1 to 6, wherein the driving unit writes the potentials of the first electrode and the second electrode once in one frame period for the plurality of pixels.
  9.  前記走査期間の長さは1フレーム期間の長さよりも短く、
     前記複数の画素について前記第1電極および前記第2電極の電位を1フレーム期間に2回以上書き込む、請求項1~6のいずれか一項に記載の液晶表示装置。
    The length of the scanning period is shorter than the length of one frame period,
    7. The liquid crystal display device according to claim 1, wherein the potentials of the first electrode and the second electrode are written twice or more in one frame period for the plurality of pixels.
  10.  前記対向電極を覆って形成されたオーバーコート層をさらに備える、請求項1~9のいずれか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 9, further comprising an overcoat layer formed to cover the counter electrode.
  11.  前記画素の行ごとに形成されたゲートラインと、
     前記画素の列ごとに形成された第1および第2ソースラインと、
     前記画素ごとに形成され、前記ゲートラインおよび前記第1ソースラインに接続され、前記ゲートラインに供給される信号によって開閉する第1スイッチング素子と、
     前記画素ごとに形成され、前記ゲートラインおよび前記第2ソースラインに接続され、前記ゲートラインに供給される信号によって開閉する第2スイッチング素子とをさらに備え、
     前記第1電極は前記第1スイッチング素子に接続され、
     前記第2電極は前記第2スイッチング素子に接続される、請求項1~10のいずれか一項に記載の液晶表示装置。
    A gate line formed for each row of pixels;
    First and second source lines formed for each column of pixels;
    A first switching element formed for each pixel, connected to the gate line and the first source line, and opened and closed by a signal supplied to the gate line;
    A second switching element formed for each pixel, connected to the gate line and the second source line, and opened and closed by a signal supplied to the gate line;
    The first electrode is connected to the first switching element;
    The liquid crystal display device according to any one of claims 1 to 10, wherein the second electrode is connected to the second switching element.
  12.  前記第1スイッチング素子および前記第2スイッチング素子は酸化物半導体を含む、請求項11に記載の液晶表示装置。 The liquid crystal display device according to claim 11, wherein the first switching element and the second switching element include an oxide semiconductor.
  13.  マトリクス状に配置された複数の画素を含む第1基板と、
     前記画素ごとに形成された第1電極および第2電極と、
     前記複数の画素にわたって形成された共通電極と、
     前記第1基板に対向して配置された第2基板と、
     前記第2基板に形成された対向電極と、
     前記第1基板と前記第2基板とに挟持され、誘電率異方性が正の液晶分子を含む液晶層とを備える液晶表示装置の駆動方法であって、
     前記複数の画素について前記第1電極および前記第2電極の電位を順次書き込むとともに、前記共通電極の電位と前記対向電極の電位との高低関係を所定の反転期間ごとに反転させ、
     前記複数の画素について前記第1電極および前記第2電極の電位を1回ずつ書き込むための走査期間の長さは、前記反転期間の長さの半分以下である、駆動方法。
    A first substrate including a plurality of pixels arranged in a matrix;
    A first electrode and a second electrode formed for each pixel;
    A common electrode formed over the plurality of pixels;
    A second substrate disposed opposite the first substrate;
    A counter electrode formed on the second substrate;
    A driving method of a liquid crystal display device comprising a liquid crystal layer sandwiched between the first substrate and the second substrate and including liquid crystal molecules having positive dielectric anisotropy,
    The potentials of the first electrode and the second electrode are sequentially written for the plurality of pixels, and the height relationship between the potential of the common electrode and the potential of the counter electrode is inverted every predetermined inversion period,
    The driving method, wherein a length of a scanning period for writing the potentials of the first electrode and the second electrode once for each of the plurality of pixels is not more than half of the length of the inversion period.
  14.  前記液晶層は誘電率異方性が正の液晶分子を含む、請求項13に記載の駆動方法。 The driving method according to claim 13, wherein the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy.
PCT/JP2013/071331 2012-08-27 2013-08-07 Liquid crystal display device and method for driving liquid crystal display device WO2014034394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012186391A JP2015200680A (en) 2012-08-27 2012-08-27 Liquid crystal display device and driving method for liquid crystal display device
JP2012-186391 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014034394A1 true WO2014034394A1 (en) 2014-03-06

Family

ID=50183212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071331 WO2014034394A1 (en) 2012-08-27 2013-08-07 Liquid crystal display device and method for driving liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2015200680A (en)
WO (1) WO2014034394A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130783A (en) * 1997-07-14 1999-02-02 Mitsubishi Electric Corp Liquid crystal display element
JP2001209063A (en) * 1999-09-24 2001-08-03 Sharp Corp Liquid crystal display device and its displaying method
JP2004226594A (en) * 2003-01-22 2004-08-12 Sharp Corp Liquid crystal display device
JP2004354407A (en) * 2003-05-26 2004-12-16 Hitachi Ltd Liquid crystal display device
JP2007148337A (en) * 2005-10-31 2007-06-14 Casio Comput Co Ltd Liquid crystal display apparatus capable of controlling range of viewing angle
JP2008139797A (en) * 2006-12-05 2008-06-19 Semiconductor Energy Lab Co Ltd Display device and driving method of the same
WO2012128061A1 (en) * 2011-03-18 2012-09-27 シャープ株式会社 Liquid crystal drive method and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130783A (en) * 1997-07-14 1999-02-02 Mitsubishi Electric Corp Liquid crystal display element
JP2001209063A (en) * 1999-09-24 2001-08-03 Sharp Corp Liquid crystal display device and its displaying method
JP2004226594A (en) * 2003-01-22 2004-08-12 Sharp Corp Liquid crystal display device
JP2004354407A (en) * 2003-05-26 2004-12-16 Hitachi Ltd Liquid crystal display device
JP2007148337A (en) * 2005-10-31 2007-06-14 Casio Comput Co Ltd Liquid crystal display apparatus capable of controlling range of viewing angle
JP2008139797A (en) * 2006-12-05 2008-06-19 Semiconductor Energy Lab Co Ltd Display device and driving method of the same
WO2012128061A1 (en) * 2011-03-18 2012-09-27 シャープ株式会社 Liquid crystal drive method and liquid crystal display device

Also Published As

Publication number Publication date
JP2015200680A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
US8537084B2 (en) Liquid crystal panel and display apparatus including liquid crystal panel
US7907106B2 (en) Liquid crystal display and driving method thereof
TWI393094B (en) Liquid crystal display device and driving method
JP3564704B2 (en) Active matrix type liquid crystal display device and driving method thereof
US8248336B2 (en) Liquid crystal display device and operating method thereof
US6421039B1 (en) Liquid crystal display in-plane structure and method of manufacturing the same
US8581816B2 (en) Liquid crystal display and driving method thereof
US9489912B2 (en) Liquid crystal display apparatus and method for driving liquid crystal display apparatus
JP5290419B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
WO2012128061A1 (en) Liquid crystal drive method and liquid crystal display device
KR101602091B1 (en) Liquid-crystal-driving method and liquid crystal display device
US9733535B2 (en) Array substrate, liquid crystal display panel and display device
US10073312B2 (en) Structure for LCD panel
WO2013185425A1 (en) Pixel structure, display device and over-driving method
US9001101B2 (en) Liquid crystal display device and method of driving the same
JP4342538B2 (en) Liquid crystal display device and driving method of liquid crystal display device
KR101624826B1 (en) Liquid crystal drive method and liquid crystal display device
JP4361104B2 (en) Liquid crystal display
KR20070095639A (en) Liquid crystal display pannel and driving method thereof
US8766888B2 (en) In plane switching mode liquid crystal display device
WO2017130293A1 (en) Liquid crystal display device
KR20120114108A (en) Array substrate for thin film transistor
JPH02242228A (en) Liquid crystal display device
WO2014034394A1 (en) Liquid crystal display device and method for driving liquid crystal display device
JP4361105B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP