WO2014033884A1 - Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method - Google Patents

Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method Download PDF

Info

Publication number
WO2014033884A1
WO2014033884A1 PCT/JP2012/072078 JP2012072078W WO2014033884A1 WO 2014033884 A1 WO2014033884 A1 WO 2014033884A1 JP 2012072078 W JP2012072078 W JP 2012072078W WO 2014033884 A1 WO2014033884 A1 WO 2014033884A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
contact portion
cell module
wiring material
tangent
Prior art date
Application number
PCT/JP2012/072078
Other languages
French (fr)
Japanese (ja)
Inventor
司 川上
裕幸 神納
聡生 柳浦
光太郎 住友
友宏 舟谷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014532655A priority Critical patent/JP6249369B2/en
Priority to PCT/JP2012/072078 priority patent/WO2014033884A1/en
Publication of WO2014033884A1 publication Critical patent/WO2014033884A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a wiring material for a solar cell module, a solar cell module, and a method for manufacturing a solar cell module using the solar cell module.
  • the solar cell module is configured by connecting a plurality of solar cells to each other with a plurality of wiring members.
  • Patent Document 1 has a contact portion in which a wiring member electrically connected to the solar cell contacts the main surface of the solar cell, and a non-contact portion that extends to the outside of the main surface of the solar cell. And the structure by which a non-contact part is arrange
  • Patent Document 2 describes that in a solar cell module in which solar cells adjacent to each other are connected by an interconnector that is a wiring material, an uneven portion is provided on the interconnector. This states that it is possible to prevent the semiconductor substrate of the solar battery cell from being greatly warped during the manufacturing process of the solar battery module and to prevent cell cracking and electrode peeling.
  • the wiring member of the solar cell module according to the present invention is directed from the first contact portion connected in contact with the light receiving surface of one solar cell and the other solar cell adjacent to the one solar cell from the first contact portion.
  • a first portion having a first non-contact portion that extends away from the light-receiving surface and curves upward, and a second contact portion and a second contact portion that are in contact with and connected to the back surface of the other solar cell.
  • a second portion having a second non-contact portion that extends outward from the one solar cell and separates from the back surface and curves downward, and from the top of the first non-contact portion to the back surface of the other solar cell.
  • a wiring member including an intermediate portion bent toward the second non-contact portion and connected to an apex of the second non-contact portion, wherein the thickness of the wiring member is greater than the thickness of the solar cell.
  • the manufacturing method of the solar cell module which concerns on this invention is contacted and connected to the light-receiving surface of one solar cell so that the light-receiving surface of one solar cell and the back surface of the other solar cell may be connected.
  • a first portion having a first non-contact portion that extends from the contact portion and the first contact portion toward the other solar cell adjacent to the one solar cell and is curved away from the light-receiving surface and curved upward.
  • a second non-contact portion that contacts and is connected to the back surface of the other solar cell, and a second non-contact portion that extends from the second contact portion toward the one solar cell and that curves away from the back surface and curves downward.
  • a solar cell that includes a second portion having a curved portion of the first non-contact portion and an intermediate portion that is bent toward the back surface of the other solar cell and is connected to the curved portion of the second non-contact portion.
  • the contact portion is connected to the light receiving surface of one solar cell, the second contact portion of the wiring material is connected to the back surface of the other solar cell, and the sealing material on the light receiving surface side is disposed on the light receiving surface side of the solar cell,
  • the back surface side sealing material is disposed on the back surface side of the solar cell, the light receiving surface side protection member is disposed outside the light receiving surface side sealing material, and the back surface side protection member is disposed outside the back surface side sealing material.
  • the wiring material is connected by providing a non-contact part at the end of the solar cell, the stress generated in the wiring material can be reduced.
  • FIG. 4 It is a block diagram of the solar cell module in embodiment. It is the elements on larger scale of FIG. It is a flowchart which shows the procedure which manufactures the solar cell module in embodiment. It is a figure which shows the example of the other 3 shaping
  • FIG. 1 is a cross-sectional view showing the structure of the solar cell module 10.
  • the solar cells 11 and 12 constituting the solar cell module 10 have, as main surfaces, a light receiving surface that is a surface on which light from outside the solar cells 11 and 12 is mainly incident, and a back surface that is a surface opposite to the light receiving surface.
  • the upper side of the paper surface is the light receiving surface side
  • the lower side is the back surface side.
  • the solar cell module 10 is formed by connecting a plurality of solar cells 11 and 12 in series using a plurality of wiring members 13.
  • FIG. 1 as a unit of series connection, reference numerals are assigned to portions where the light receiving surface of one solar cell 11 and the back surface of the other solar cell 12 are connected using the wiring material 13.
  • the description will be continued on behalf of the solar cells 11 and 12 and the wiring member 13.
  • the solar cells 11 and 12 include a photoelectric conversion unit that generates light-generated carriers of holes and electrons by receiving light such as sunlight.
  • the photoelectric conversion unit is provided on a substrate of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), for example.
  • c-Si crystalline silicon
  • GaAs gallium arsenide
  • InP indium phosphide
  • the structure of the photoelectric conversion unit is a pn junction in a broad sense. For example, a heterojunction of an n-type single crystal silicon substrate and amorphous silicon can be used.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like, and indium oxide (In) are formed on the substrate on one side of the light-receiving surface side or the back surface side.
  • a transparent conductive film (TCO) composed of a light-transmitting conductive oxide was laminated, and an i-type amorphous silicon layer, phosphorus (P), etc. were doped on the other substrate
  • An n-type amorphous silicon layer and a transparent conductive film can be stacked.
  • the photoelectric conversion unit may have a structure other than this as long as it has a function of converting light such as sunlight into electricity.
  • a structure including a p-type polycrystalline silicon substrate, an n-type diffusion layer formed on the light-receiving surface side, and an aluminum metal film formed on the back surface side may be used.
  • a connection electrode is formed on the surface of the transparent conductive film using a conductive paste or the like.
  • the solar cells 11 and 12 include a photoelectric conversion unit, a transparent conductive film, and a connection electrode, and the thickness thereof varies depending on the specifications of the solar cell module 10. In the following description, the thin solar cells 11 and 12 will be described with a thickness of 0.1 to 0.2 mm. This thickness is merely an example, and other thicknesses may be used.
  • the wiring member 13 is a conductive member, and is connected to a connection electrode formed on the surface of the transparent conductive film on the photoelectric conversion portion using a conductive paste or the like via an adhesive.
  • a thin plate made of a metal conductive material such as copper is used. Instead of a thin plate, a stranded wire can be used.
  • the conductive material in addition to copper, silver, aluminum, nickel, tin, gold, or an alloy thereof can be used.
  • the thickness of the wiring material 13 is set according to specifications such as the generated power of the solar cell module 10, it is often not possible to make it too thin even if the solar cells 11 and 12 become thin.
  • the thickness of the wiring member 13 is larger than the thickness of the solar cells 11 and 12 in the range of 0.1 to 0.4 mm. This thickness is merely an example, and other thicknesses may be used.
  • thermosetting resin adhesive acrylic-based, highly flexible polyurethane-based, epoxy-based thermosetting resin adhesive, or solder can be used.
  • the thermosetting resin adhesive includes conductive particles.
  • As the conductive particles nickel, silver, nickel with gold coating, copper with tin plating, or the like can be used.
  • An insulating resin adhesive can also be used as the adhesive. In this case, either one or both of the wiring material 13 and the connection electrode facing each other are made uneven, and the resin is appropriately removed from between the wiring material 13 and the connection electrode to establish electrical connection. Like that.
  • the wiring member 13 that connects the light-receiving surface of the solar cell 11 and the back surface of the solar cell 12 is formed so as to be substantially S-shaped toward the paper surface of FIG.
  • the curved portion on the right side of the substantially S shape is the first portion 14 of the wiring member 13.
  • the first portion 14 is in contact with and connected to the light receiving surface of one solar cell 11, and extends outward from the first contact portion 15 toward the adjacent solar cell 12 and is separated from the light receiving surface.
  • the first non-contact portion 16 is curved toward the upper side of the light receiving surface.
  • the first contact portion 15 is a portion that is electrically and mechanically connected to the connection wiring of the solar cell 11, and the first non-contact portion 16 is disposed on the light receiving surface of the solar cell 11, At least a portion that is not electrically connected to the solar cell 11 including the connection electrode.
  • the bent portion on the left side of the substantially S shape is the second portion 17 of the wiring member 13.
  • the second portion 17 contacts the back surface of the other solar cell 12 adjacent to the one solar cell 11 and is connected to the outside from the second contact portion 18 to the adjacent solar cell 11. It has the 2nd non-contact part 19 extended and spaced apart from the back surface, and curving toward the back surface lower side.
  • the second contact portion 18 is a portion that is electrically and mechanically connected to the connection wiring of the solar cell 12, and the second non-contact portion 19 is disposed on the back surface of the solar cell 12. It is a part which is not electrically connected with the solar cell 12 including the electrode for at least.
  • the portion connecting the right bent portion and the left bent portion of the substantially S shape is the intermediate portion 20 of the wiring member 13.
  • the intermediate portion 20 is a portion that is bent from the curved top of the first non-contact portion 16 toward the back surface of the other solar cell 12 and connected to the curved top of the second non-contact portion 19.
  • the light receiving surface of the solar cell 11 and the back surface of the solar cell 12 are connected to each other using the wiring member 13 formed in this way, and a plurality of solar cells are connected in series by the same connection method.
  • a structure in which a plurality of solar cells are connected by a plurality of wiring members is called a solar cell string.
  • a solar cell string is sandwiched between a light-receiving surface side sealing material 21 and a back surface-side sealing material 22, and a light-receiving surface side protection member 23 and a back surface side protection member 24 are disposed outside the solar cell string.
  • the ends are fixed by frames 25 and 26.
  • the sealing material 21 on the light receiving surface side and the sealing material 22 on the back surface side are sheet-like members having a role as a shock buffering material and a function of preventing intrusion of foreign matter and moisture with respect to the solar cells 11 and 12. It is.
  • these sealing materials 21 and 22 for example, ethylene vinyl acetate (EVA) which is an olefin resin is used.
  • EVA ethylene vinyl acetate
  • EEA EEA
  • PVB silicone resin
  • urethane resin acrylic resin
  • epoxy resin epoxy resin
  • a coloring material such as titanium oxide can be added to the sealing material 22 on the back surface side to form a white colored layer.
  • FIG. 2 is an enlarged view showing details of the shape of the wiring member 13.
  • FIG. 2 is a cross-sectional view of the solar cells 11 and 12 and the wiring member 13 in the series connection direction of the solar cells 11 and 12.
  • the thickness of the solar cells 11 and 12 is A
  • the thickness of the wiring material 13 is B
  • the thickness of the sealing material 22 on the back surface side of the back surface of the solar cell 11 is D.
  • the thickness of the sealing material on the wiring material 13 is C.
  • the apex of the curvature of the first non-contact part 16 and the apex of the curve of the second non-contact part 19 are kept within the range of the thickness C of the sealing material.
  • Protective member 23 on the light receiving surface side is a transparent plate or film that can take in light from the outside.
  • a light-transmitting member such as a glass plate, a resin plate, or a resin film can be used.
  • the same protective member 24 on the back surface side as the protective member 23 on the light receiving surface side can be used.
  • an opaque plate or film can be used as the protection member 24 on the back side.
  • a laminated film such as a resin film having an aluminum foil inside can be used.
  • the boundary point between the first contact portion 15 and the first non-contact portion 16 is a separation start point 30 that starts to separate from the light receiving surface of one solar cell 11 with respect to the first non-contact portion 16.
  • the separation start point 30 as a boundary, the connection electrode of the solar cell 11 and the wiring member 13 are electrically and mechanically connected at the first contact portion 15, and the light receiving surface of the solar cell 11 and the wiring at the first non-contact portion 16.
  • the material 13 is at least not mechanically connected.
  • the position of the apex 31 of the curvature of the first non-contact part 16 is set so as to correspond to the position of the end of the light receiving surface of the solar cell 11.
  • the position of the apex 31 in the height direction is closer to the solar cell 11 than the boundary between the sealing material 21 on the light receiving surface side and the protective member 23 on the light receiving surface side.
  • the bending of the first non-contact portion 16 is performed within the range of the dimension C.
  • the boundary point between the second contact portion 18 and the second non-contact portion 19 is a separation start point 32 that starts to separate from the back surface of the other solar cell 12 with respect to the second non-contact portion 19.
  • the connection electrode of the solar cell 12 and the wiring member 13 are electrically and mechanically connected to each other at the second contact portion 18 with the separation start point 32 as a boundary, and the second non-contact portion 19 is a solar cell.
  • the back surface of 12 and the wiring member 13 are not at least electrically connected. Since there is an adhesive, the second non-contact portion 19 is mechanically connected to the solar cell 12 to the limit.
  • the position of the vertex 33 of the curve of the second non-contact portion 19 is set so as to correspond to the position of the end of the back surface of the solar cell 12, and the height direction of the vertex 33. Is positioned on the solar cell 12 side of the boundary between the sealing material 22 on the back surface side and the protective member 24 on the back surface side.
  • the tangent line 40 is a tangent line at a point 37 that becomes an inflection point of the bending direction in the first non-contact portion 16.
  • the tangent line 41 is a tangent line at a point that becomes the inflection point 38 in the second non-contact portion 19.
  • the tangent line 42 is a tangent line at a point 39 that becomes an inflection point in the middle portion 20 at the bending direction.
  • the distance dimension between the separation start point 30 of the first non-contact part 16 and the separation start point 32 of the second non-contact part 19 is a molding range of the wiring member 13.
  • the forming range of the wiring member 13 is set so that the tangent lines 40, 41, and 42 have the following relationship together with the dimensions A, B, C, and D. That is, the angle ⁇ 1 formed by the tangent line 40 and the plane parallel to the light receiving surface of the solar cell 11 is set to ⁇ 1 > 0, with the direction of lifting to the light receiving surface side from the light receiving surface as a plus.
  • the angle ⁇ 2 formed by the tangent line 41 and the plane parallel to the back surface of the solar cell 12 is set to ⁇ 2 > 0, where the direction of lifting from the back surface to the back surface side is plus.
  • the angle ⁇ 3 formed by the tangent line 40 and the tangent line 42 is set to be an obtuse angle.
  • an angle ⁇ 3 formed by the point 37, the intersection of the tangent line 40 and the tangent line 42, and the point 39 is set to be an obtuse angle.
  • the angle ⁇ 4 formed by the tangent line 41 and the tangent line 42 is set to be an obtuse angle.
  • the angle ⁇ 4 formed by the point 38, the intersection of the tangent line 41 and the tangent line 42, and the point 39 is set to be an obtuse angle.
  • the first non-contact portion 16, the intermediate portion 20, and the second non-contact portion 19 are preferably formed so as not to have a linear shape.
  • the first non-contact portion 16 is configured by combining a curve connecting the separation start point 30 and the point 37 and a curve connecting the point 37 and the vertex 31, and the intermediate portion 20 is configured by the vertex 31 and the point 31.
  • a curve connecting the point 39 and the vertex 33, and the second non-contact part 19 includes a curve connecting the vertex 33 and the point 38, a point 38 and the separation start point 32. Combining with connecting curves.
  • FIG. 3 is a flowchart showing a procedure for manufacturing the solar cell module 10.
  • a plurality of solar cells are formed (S10).
  • a wiring material is prepared.
  • This wiring material is an unmolded wiring material before the molding described in FIG. 2 is still performed (S11).
  • This unmolded wiring material is formed into the shape described in FIG. 2 (S12). That is, the first part 14 having the first contact part 15 and the first non-contact part 16, the second part 17 having the second contact part 18 and the second non-contact part 19, the first part 14 and the second part. 17 is formed into a wiring member 13 including an intermediate portion 20 that is a portion connecting 17.
  • the first contact portion 15 is connected to the light receiving surface of one solar cell 11 (S13), and the second contact portion 18 is connected to the back surface of the other solar cell 12 (S14). This is repeated for all the solar cells to form a solar cell string (S15).
  • the light receiving surface side sealing material 21, the back surface side sealing material 22, and the back surface side protective member 23 disposed so as to sandwich the solar cell string are disposed on the light receiving surface side protection member 23 (S ⁇ b> 16). Further, the laminated body is heated and pressurized (S17), and the ends are fixed by the frames 25 and 26 to obtain the solar cell module 10 (S18).
  • the plurality of wiring members 13 previously formed into a predetermined shape are prepared.
  • the planar size of the solar cell is large, or the like.
  • the separation start point 30, the curve vertex 31, the curve vertex 33, and the separation start point 32 may be sequentially formed while being connected to the solar cell using the unformed wiring material.
  • FIG. 4 shows four models used for the simulation.
  • FIG. 4C shows a model of the wiring member 13.
  • the molding shape between the constraining ranges on both sides of the wiring member 13 is the content described in FIG. That is, the first non-contact portion 16 and the second non-contact portion 19 are formed, and the three tangent lines 40, 41, and 42 are set in a predetermined angular relationship.
  • (D) is the same as (c) except that the constraint range is narrowed.
  • neither the first non-contact part 16 nor the second non-contact part 19 is provided, and the first non-contact part 16 and the second non-contact part 19 are not provided.
  • the distance between the constraining portions on both sides is the same as (c) and (d).
  • (a) narrows the space
  • FIG. 5 is a diagram showing the results of simulation. In the simulation, the magnitude of the stress generated in the wiring material when the wiring material expands and contracts due to a temperature change was obtained.
  • FIG. 5 is a diagram showing a result of simulating a change in stress generated in the wiring material when the wiring material is not in a stretched state in the solar cell module at room temperature and when the temperature becomes high or low from that state.
  • the maximum amount of stress generated in the wiring material when the temperature was changed to 90 ° C. and ⁇ 40 ° C. was obtained by setting the strain amount along the longitudinal direction of the wiring material in the solar cell module at room temperature to 0 ⁇ m.
  • the strain amount at room temperature of the wiring material is 0 ⁇ m and the environmental temperature changes from 90 ⁇ C to 90 ° C.
  • the strain amount of the wiring material becomes + ⁇ .
  • the strain amount of the wiring material becomes ⁇ .
  • ⁇ indicating the strain amount is, for example, 0 to 200 ⁇ m.
  • the horizontal axis in FIG. 5 is the strain amount of the wiring material, and takes 0 ⁇ m corresponding to room temperature, + ⁇ corresponding to 90 ° C., and ⁇ corresponding to ⁇ 40 ° C.
  • the vertical axis relatively shows the maximum stress value of the wiring material in the simulation. In the wiring material, the maximum stress occurs at the boundary between the first portion and the intermediate portion and the boundary between the first portion and the intermediate portion.
  • the four data shown in FIG. 5 correspond to (a), (b), (c), and (d) in FIG.
  • the first non-contact portion 16 and the second non-contact portion 19 are provided, and the three tangents 40, 41, and 42 are in a predetermined angular relationship, thereby reducing the stress generated in the wiring material.
  • Reducing stress generated in the wiring material is particularly effective when thin solar cells 11 and 12 are employed.
  • the solar cells 11 and 12 are thinned, they are easily affected by the stress of the wiring material.
  • the solar cells 11 and 12 are more likely to break due to the influence of the stress of the wiring material.
  • the solar cells 11 and 12 thinner than the wiring material are used, the possibility of the solar cells 11 and 12 being cracked can be reduced by using the wiring material having a predetermined angular relationship between the three tangents 40, 41 and 42. it can.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A wiring material (13) for a solar cell module (10) includes: a first part (14), which has a first contact portion (15) in contact with and connected to the light receiving surface of one solar cell (11), and a first non-contact portion (16), which extends outward from the first contact portion, and which bends toward above the light receiving surface by being spaced apart from the light receiving surface; a second part (17), which has a second contact portion (18) in contact with and connected to the rear surface of the other solar cell (12), and a second non-contact portion (19), which extends outward from the second contact portion, and which bends toward below the rear surface by being spaced apart from the rear surface; and an intermediate part (20), which is bent from the peak (31) of the bend of the first non-contact portion (16) toward the rear surface of the other solar cell (12), and which is connected to the peak (33) of the bend of the second non-contact portion (19). The thickness of the wiring material is more than that of the solar cell.

Description

太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法Solar cell module wiring material, solar cell module, and solar cell module manufacturing method
 本発明は、太陽電池モジュールの配線材と、太陽電池モジュール、及びこれを用いる太陽電池モジュールの製造方法に関する。 The present invention relates to a wiring material for a solar cell module, a solar cell module, and a method for manufacturing a solar cell module using the solar cell module.
 太陽電池モジュールは、複数の太陽電池を複数の配線材で互いに接続して構成される。 The solar cell module is configured by connecting a plurality of solar cells to each other with a plurality of wiring members.
 特許文献1には、太陽電池に電気的に接続される配線材が太陽電池の主面上に接触する接触部分と、接触部分に連なり太陽電池の主面の外側に延びる非接触部分とを有し、非接触部分が太陽電池の主面と側面との境界部分から離間するように配設される構成が開示されている。 Patent Document 1 has a contact portion in which a wiring member electrically connected to the solar cell contacts the main surface of the solar cell, and a non-contact portion that extends to the outside of the main surface of the solar cell. And the structure by which a non-contact part is arrange | positioned so that it may space apart from the boundary part of the main surface and side surface of a solar cell is disclosed.
 特許文献2には、互いに隣接する太陽電池セルが配線材であるインターコネクタによって接続される太陽電池モジュールにおいて、インターコネクタに凹凸部を設けることが述べられている。これによって、太陽電池モジュールの製造過程で太陽電池セルの半導体基板に大きな反りが生じるのを防止し、セル割れや電極剥がれが発生するのを防止できると述べている。 Patent Document 2 describes that in a solar cell module in which solar cells adjacent to each other are connected by an interconnector that is a wiring material, an uneven portion is provided on the interconnector. This states that it is possible to prevent the semiconductor substrate of the solar battery cell from being greatly warped during the manufacturing process of the solar battery module and to prevent cell cracking and electrode peeling.
特開2009-81205号公報JP 2009-81205 A 特開2005-302902号公報JP 2005-302902 A
 太陽電池に屈曲して接続される配線材に生じる応力を軽減することである。 It is to reduce the stress generated in the wiring material that is bent and connected to the solar cell.
 本発明に係る太陽電池モジュールの配線材は、一方の太陽電池の受光面に接触して接続される第1接触部と第1接触部から前記一方の太陽電池に隣接する他方の太陽電池に向かって延び受光面から離間して受光面上方に向かって湾曲する第1非接触部を有する第1部分と、他方の太陽電池の裏面に接触して接続される第2接触部と第2接触部から前記一方の太陽電池外側に延び裏面から離間して裏面下方に向かって湾曲する第2非接触部を有する第2部分と、第1非接触部の湾曲の頂点から他方の太陽電池の裏面に向かって曲げられ第2非接触部の湾曲の頂点に接続される中間部分と、を含む配線材であって、配線材の厚さが太陽電池の厚さよりも厚い。 The wiring member of the solar cell module according to the present invention is directed from the first contact portion connected in contact with the light receiving surface of one solar cell and the other solar cell adjacent to the one solar cell from the first contact portion. A first portion having a first non-contact portion that extends away from the light-receiving surface and curves upward, and a second contact portion and a second contact portion that are in contact with and connected to the back surface of the other solar cell. A second portion having a second non-contact portion that extends outward from the one solar cell and separates from the back surface and curves downward, and from the top of the first non-contact portion to the back surface of the other solar cell. A wiring member including an intermediate portion bent toward the second non-contact portion and connected to an apex of the second non-contact portion, wherein the thickness of the wiring member is greater than the thickness of the solar cell.
 また、本発明に係る太陽電池モジュールの製造方法は、一方の太陽電池の受光面と他方の太陽電池の裏面を接続するように、一方の太陽電池の受光面に接触して接続される第1接触部と第1接触部から前記一方の太陽電池に隣接する他方の太陽電池に向かって延び受光面から離間して受光面上方に向かって湾曲する第1非接触部を有する第1部分と、他方の太陽電池の裏面に接触して接続される第2接触部と第2接触部から前記一方の太陽電池に向かって延び裏面から離間して裏面下方に向かって湾曲する第2非接触部を有する第2部分と、第1非接触部の湾曲の頂点から他方の太陽電池の裏面に向かって曲げられ第2非接触部の湾曲の頂点に接続される中間部分とを含むように、太陽電池の厚さよりも厚い配線材を成形し、配線材の第1接触部を一方の太陽電池の受光面に接続し、配線材の第2接触部を他方の太陽電池の裏面に接続し、太陽電池の受光面側に受光面側の封止材を配置し、太陽電池の裏面側に裏面側の封止材を配置し、受光面側の封止材の外側に受光面側の保護部材を配置し、裏面側の封止材の外側に裏面側の保護部材を配置する。 Moreover, the manufacturing method of the solar cell module which concerns on this invention is contacted and connected to the light-receiving surface of one solar cell so that the light-receiving surface of one solar cell and the back surface of the other solar cell may be connected. A first portion having a first non-contact portion that extends from the contact portion and the first contact portion toward the other solar cell adjacent to the one solar cell and is curved away from the light-receiving surface and curved upward. A second non-contact portion that contacts and is connected to the back surface of the other solar cell, and a second non-contact portion that extends from the second contact portion toward the one solar cell and that curves away from the back surface and curves downward. A solar cell that includes a second portion having a curved portion of the first non-contact portion and an intermediate portion that is bent toward the back surface of the other solar cell and is connected to the curved portion of the second non-contact portion. Forming a wiring material thicker than the thickness of the first wiring material; The contact portion is connected to the light receiving surface of one solar cell, the second contact portion of the wiring material is connected to the back surface of the other solar cell, and the sealing material on the light receiving surface side is disposed on the light receiving surface side of the solar cell, The back surface side sealing material is disposed on the back surface side of the solar cell, the light receiving surface side protection member is disposed outside the light receiving surface side sealing material, and the back surface side protection member is disposed outside the back surface side sealing material. Place.
 太陽電池の端部で非接触部を設けて配線材を接続するので、配線材に生じる応力を軽減できる。 Since the wiring material is connected by providing a non-contact part at the end of the solar cell, the stress generated in the wiring material can be reduced.
実施の形態における太陽電池モジュールの構成図である。It is a block diagram of the solar cell module in embodiment. 図1の部分拡大図である。It is the elements on larger scale of FIG. 実施の形態における太陽電池モジュールを製造する手順を示すフローチャートである。It is a flowchart which shows the procedure which manufactures the solar cell module in embodiment. 実施の形態における配線材の成形法と、比較のために他の3つの成形の例を示す図である。It is a figure which shows the example of the other 3 shaping | molding for the comparison with the shaping | molding method of the wiring material in embodiment, and a comparison. 図4の4つの成形法について、配線材が伸縮したときに配線材に生じる応力の大きさをシミュレーションで求めた結果を示す図である。It is a figure which shows the result of having calculated | required the magnitude | size of the stress which arises in a wiring material about the four shaping | molding methods of FIG. 4 when a wiring material expands and contracts.
 以下に図面を用いて、本発明の実施の形態を詳細に説明する。以下で述べる材質、厚さ、寸法等は説明のための例示であって、太陽電池モジュールの仕様に応じ、適宜変更が可能である。以下では、全ての図面において一または対応する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The materials, thicknesses, dimensions, and the like described below are examples for explanation, and can be appropriately changed according to the specifications of the solar cell module. Hereinafter, in all the drawings, one or the corresponding element is denoted by the same reference numeral, and redundant description is omitted.
 図1は、太陽電池モジュール10の構造を示す断面図である。太陽電池モジュール10を構成する太陽電池11,12は、主面として、太陽電池11,12の外部からの光が主に入射する面である受光面と、受光面と反対側の面である裏面とを有するが、図1では、紙面の上側を受光面側、下側を裏面側とした。 FIG. 1 is a cross-sectional view showing the structure of the solar cell module 10. The solar cells 11 and 12 constituting the solar cell module 10 have, as main surfaces, a light receiving surface that is a surface on which light from outside the solar cells 11 and 12 is mainly incident, and a back surface that is a surface opposite to the light receiving surface. In FIG. 1, the upper side of the paper surface is the light receiving surface side, and the lower side is the back surface side.
 太陽電池モジュール10は、複数の太陽電池11,12を複数の配線材13を用いて互いに直列接続したものである。図1では、直列接続の1つの単位として、一方の太陽電池11の受光面と他方の太陽電池12の裏面とを配線材13を用いて接続する部分について符号を付した。以下では、太陽電池11,12と配線材13に代表して説明を続ける。 The solar cell module 10 is formed by connecting a plurality of solar cells 11 and 12 in series using a plurality of wiring members 13. In FIG. 1, as a unit of series connection, reference numerals are assigned to portions where the light receiving surface of one solar cell 11 and the back surface of the other solar cell 12 are connected using the wiring material 13. Hereinafter, the description will be continued on behalf of the solar cells 11 and 12 and the wiring member 13.
 太陽電池11,12は、太陽光等の光を受光することで正孔および電子の光生成キャリアを生成する光電変換部を備える。光電変換部は、例えば、結晶性シリコン(c-Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体材料の基板に設けられる。光電変換部の構造は、広義のpn接合である。例えば、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を用いることができる。この場合、受光面側または裏面側のうちの一方側の基板上に、i型非晶質シリコン層と、ボロン(B)等がドープされたp型非晶質シリコン層と、酸化インジウム(In23)の透光性導電酸化物で構成される透明導電膜(TCO)を積層し、他方側の基板上に、i型非晶質シリコン層と、燐(P)等がドープされたn型非晶質シリコン層と、透明導電膜を積層する構造とできる。 The solar cells 11 and 12 include a photoelectric conversion unit that generates light-generated carriers of holes and electrons by receiving light such as sunlight. The photoelectric conversion unit is provided on a substrate of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), for example. The structure of the photoelectric conversion unit is a pn junction in a broad sense. For example, a heterojunction of an n-type single crystal silicon substrate and amorphous silicon can be used. In this case, an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like, and indium oxide (In) are formed on the substrate on one side of the light-receiving surface side or the back surface side. 2 O 3 ) a transparent conductive film (TCO) composed of a light-transmitting conductive oxide was laminated, and an i-type amorphous silicon layer, phosphorus (P), etc. were doped on the other substrate An n-type amorphous silicon layer and a transparent conductive film can be stacked.
 光電変換部は、太陽光等の光を電気に変換する機能を有すれば、これ以外の構造であってもよい。例えば、p型多結晶シリコン基板と、その受光面側に形成されたn型拡散層と、その裏面側に形成されたアルミニウム金属膜とを備える構造であってもよい。 The photoelectric conversion unit may have a structure other than this as long as it has a function of converting light such as sunlight into electricity. For example, a structure including a p-type polycrystalline silicon substrate, an n-type diffusion layer formed on the light-receiving surface side, and an aluminum metal film formed on the back surface side may be used.
 透明導電膜の表面には導電ペースト等を用いて接続用電極が形成される。太陽電池11,12は、光電変換部、透明導電膜、接続用電極を含むもので、その厚さは、太陽電池モジュール10の仕様に応じて異なる。以下では、薄型の太陽電池11,12として、厚さが0.1~0.2mmとして説明を続ける。この厚さは例示であって、これ以外の厚さであってもよい。 A connection electrode is formed on the surface of the transparent conductive film using a conductive paste or the like. The solar cells 11 and 12 include a photoelectric conversion unit, a transparent conductive film, and a connection electrode, and the thickness thereof varies depending on the specifications of the solar cell module 10. In the following description, the thin solar cells 11 and 12 will be described with a thickness of 0.1 to 0.2 mm. This thickness is merely an example, and other thicknesses may be used.
 配線材13は導電性部材であって、光電変換部の上の透明導電膜の表面に導電ペースト等を用いて形成された接続用電極に接着剤を介して接続される。配線材13としては、銅等の金属導電性材料で構成される薄板が用いられる。薄板に代えて撚り線状のものを用いることもできる。導電性材料としては、銅の他に、銀、アルミニウム、ニッケル、錫、金、あるいはこれらの合金を用いることができる。配線材13の厚さは太陽電池モジュール10の発電電力等の仕様によって設定されるが、太陽電池11,12が薄型になってもあまり薄くできないことが多い。以下では、配線材13の厚さを、0.1~0.4mmの範囲で太陽電池11,12の厚さよりも厚いものとして説明を続ける。この厚さは例示であって、これ以外の厚さであってもよい。 The wiring member 13 is a conductive member, and is connected to a connection electrode formed on the surface of the transparent conductive film on the photoelectric conversion portion using a conductive paste or the like via an adhesive. As the wiring member 13, a thin plate made of a metal conductive material such as copper is used. Instead of a thin plate, a stranded wire can be used. As the conductive material, in addition to copper, silver, aluminum, nickel, tin, gold, or an alloy thereof can be used. Although the thickness of the wiring material 13 is set according to specifications such as the generated power of the solar cell module 10, it is often not possible to make it too thin even if the solar cells 11 and 12 become thin. Hereinafter, the description will be continued assuming that the thickness of the wiring member 13 is larger than the thickness of the solar cells 11 and 12 in the range of 0.1 to 0.4 mm. This thickness is merely an example, and other thicknesses may be used.
 接着剤としては、アクリル系、柔軟性の高いポリウレタン系、あるいはエポキシ系等の熱硬化性樹脂接着剤、または半田を用いることができる。熱硬化性樹脂接着剤には、導電性粒子が含まれる。導電性粒子としては、ニッケル、銀、金コート付ニッケル、錫メッキ付銅等を用いることができる。接着剤として、絶縁性の樹脂接着剤を用いることもできる。この場合には、配線材13または接続用電極の互いに対向する面のいずれか一方または双方を凹凸化して、配線材13と接続用電極の間から樹脂を適当に排除して電気的接続を取るようにする。 As the adhesive, acrylic-based, highly flexible polyurethane-based, epoxy-based thermosetting resin adhesive, or solder can be used. The thermosetting resin adhesive includes conductive particles. As the conductive particles, nickel, silver, nickel with gold coating, copper with tin plating, or the like can be used. An insulating resin adhesive can also be used as the adhesive. In this case, either one or both of the wiring material 13 and the connection electrode facing each other are made uneven, and the resin is appropriately removed from between the wiring material 13 and the connection electrode to establish electrical connection. Like that.
 太陽電池11の受光面と太陽電池12の裏面を接続する配線材13は、図1の紙面に向かって略S字形状となるように成形される。 The wiring member 13 that connects the light-receiving surface of the solar cell 11 and the back surface of the solar cell 12 is formed so as to be substantially S-shaped toward the paper surface of FIG.
 略S字形状の右側の曲り部分は、配線材13の第1部分14である。第1部分14は、一方の太陽電池11の受光面に接触して接続される第1接触部15と、第1接触部15から隣接する太陽電池12に向かって外側に延び受光面から離間して受光面上方に向かって湾曲する第1非接触部16を有する。第1接触部15は、太陽電池11の接続用配線と電気的および機械的に接続される部分であり、第1非接触部16は、太陽電池11の受光面の上に配置されるが、接続用電極を含め太陽電池11とは少なくとも電気的に接続されない部分である。 The curved portion on the right side of the substantially S shape is the first portion 14 of the wiring member 13. The first portion 14 is in contact with and connected to the light receiving surface of one solar cell 11, and extends outward from the first contact portion 15 toward the adjacent solar cell 12 and is separated from the light receiving surface. The first non-contact portion 16 is curved toward the upper side of the light receiving surface. The first contact portion 15 is a portion that is electrically and mechanically connected to the connection wiring of the solar cell 11, and the first non-contact portion 16 is disposed on the light receiving surface of the solar cell 11, At least a portion that is not electrically connected to the solar cell 11 including the connection electrode.
 略S字形状の左側の曲り部分は、配線材13の第2部分17である。第2部分17は、一方の太陽電池11に隣接する他方の太陽電池12の裏面に接触して接続される第2接触部18と第2接触部18から隣接する太陽電池11に向かって外側に延び裏面から離間して裏面下方に向かって湾曲する第2非接触部19を有する。第2接触部18は、太陽電池12の接続用配線と電気的および機械的に接続される部分であり、第2非接触部19は、太陽電池12の裏面の上に配置されるが、接続用電極を含め太陽電池12とは少なくとも電気的に接続されない部分である。 The bent portion on the left side of the substantially S shape is the second portion 17 of the wiring member 13. The second portion 17 contacts the back surface of the other solar cell 12 adjacent to the one solar cell 11 and is connected to the outside from the second contact portion 18 to the adjacent solar cell 11. It has the 2nd non-contact part 19 extended and spaced apart from the back surface, and curving toward the back surface lower side. The second contact portion 18 is a portion that is electrically and mechanically connected to the connection wiring of the solar cell 12, and the second non-contact portion 19 is disposed on the back surface of the solar cell 12. It is a part which is not electrically connected with the solar cell 12 including the electrode for at least.
 略S字形状の右側の曲り部分と左側の曲り部分を結ぶ部分は、配線材13の中間部分20である。中間部分20は、第1非接触部16の湾曲の頂点から他方の太陽電池12の裏面に向かって曲げられ第2非接触部19の湾曲の頂点に接続される部分である。 The portion connecting the right bent portion and the left bent portion of the substantially S shape is the intermediate portion 20 of the wiring member 13. The intermediate portion 20 is a portion that is bent from the curved top of the first non-contact portion 16 toward the back surface of the other solar cell 12 and connected to the curved top of the second non-contact portion 19.
 配線材13の形状のさらに詳細については、図2を用いて後述する。このように成形された配線材13を用いて太陽電池11の受光面と太陽電池12の裏面が互いに接続され、同様な接続法で複数の太陽電池が互いに直列に接続される。複数の太陽電池が複数の配線材で接続されたものを太陽電池ストリングと呼ぶ。太陽電池モジュール10は、太陽電池ストリングを、受光面側の封止材21と裏面側の封止材22で挟み、その外側に受光面側の保護部材23と裏面側の保護部材24を配置し、端部をフレーム25,26で固定して構成される。 Further details of the shape of the wiring member 13 will be described later with reference to FIG. The light receiving surface of the solar cell 11 and the back surface of the solar cell 12 are connected to each other using the wiring member 13 formed in this way, and a plurality of solar cells are connected in series by the same connection method. A structure in which a plurality of solar cells are connected by a plurality of wiring members is called a solar cell string. In the solar cell module 10, a solar cell string is sandwiched between a light-receiving surface side sealing material 21 and a back surface-side sealing material 22, and a light-receiving surface side protection member 23 and a back surface side protection member 24 are disposed outside the solar cell string. The ends are fixed by frames 25 and 26.
 受光面側の封止材21と裏面側の封止材22は、太陽電池11,12に対し、衝撃の緩衝材としての役割と、異物や水分の侵入を防ぐ機能等を有するシート状の部材である。これらの封止材21,22は、例えば、オレフィン系樹脂であるエチレンビニルアセテート(EVA)が用いられる。EVAの他に、EEA、PVB、シリコーン系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂を用いることもできる。なお、裏面側の封止材22に酸化チタン等の着色材を添加して白色等の着色層とすることもできる。 The sealing material 21 on the light receiving surface side and the sealing material 22 on the back surface side are sheet-like members having a role as a shock buffering material and a function of preventing intrusion of foreign matter and moisture with respect to the solar cells 11 and 12. It is. As these sealing materials 21 and 22, for example, ethylene vinyl acetate (EVA) which is an olefin resin is used. In addition to EVA, EEA, PVB, silicone resin, urethane resin, acrylic resin, and epoxy resin can also be used. In addition, a coloring material such as titanium oxide can be added to the sealing material 22 on the back surface side to form a white colored layer.
 図2は、配線材13の形状の詳細を示す拡大図である。図2は、太陽電池11,12および配線材13の、太陽電池11,12の直列接続方向の断面図である。ここでは、厚さの寸法関係として、太陽電池11,12の厚さをA、配線材13の厚さをB、配線材13の第1接触部15の上面における受光面側の封止材21の厚さをC、太陽電池11の裏面における裏面側の封止材22の厚さをDとする。このとき、受光面側の封止材21の厚さと+裏面側の封止材22の厚さの合計=EはA+B+C+Dで表わされる。薄型の太陽電池モジュール10においては、配線材13の上の封止材の厚さはCである。第1非接触部16の湾曲の頂点と第2非接触部19の湾曲の頂点は、この封止材の厚さCの範囲で留められる。 FIG. 2 is an enlarged view showing details of the shape of the wiring member 13. FIG. 2 is a cross-sectional view of the solar cells 11 and 12 and the wiring member 13 in the series connection direction of the solar cells 11 and 12. Here, as the dimensional relationship of the thickness, the thickness of the solar cells 11 and 12 is A, the thickness of the wiring material 13 is B, and the sealing material 21 on the light receiving surface side on the upper surface of the first contact portion 15 of the wiring material 13. The thickness of the sealing material 22 on the back surface side of the back surface of the solar cell 11 is D. At this time, the sum of the thickness of the sealing material 21 on the light receiving surface side and the thickness of the sealing material 22 on the back surface side = E is represented by A + B + C + D. In the thin solar cell module 10, the thickness of the sealing material on the wiring material 13 is C. The apex of the curvature of the first non-contact part 16 and the apex of the curve of the second non-contact part 19 are kept within the range of the thickness C of the sealing material.
 受光面側の保護部材23は、外部から光を取り入れることができる透明な板体、フィルムである。受光面側の保護部材23としては、ガラス板、樹脂板、樹脂フィルム等の透光性を有する部材を用いることができる。裏面側の保護部材24は、受光面側の保護部材23と同じものを用いることができる。裏面側からの受光を必要としない構造の太陽電池モジュールの場合は、裏面側の保護部材24として、不透明な板体やフィルムを用いることができる。例えば、アルミ箔を内部に有する樹脂フィルム等の積層フィルムを用いることができる。 Protective member 23 on the light receiving surface side is a transparent plate or film that can take in light from the outside. As the light-receiving surface side protective member 23, a light-transmitting member such as a glass plate, a resin plate, or a resin film can be used. The same protective member 24 on the back surface side as the protective member 23 on the light receiving surface side can be used. In the case of a solar cell module having a structure that does not require light reception from the back side, an opaque plate or film can be used as the protection member 24 on the back side. For example, a laminated film such as a resin film having an aluminum foil inside can be used.
 図2において、第1接触部15と第1非接触部16の境界点は、第1非接触部16について一方の太陽電池11の受光面から離間し始める離間始点30である。この離間始点30を境に、第1接触部15では太陽電池11の接続用電極と配線材13が電気的および機械的に接続され、第1非接触部16では太陽電池11の受光面と配線材13が少なくとも機械的に接続されない。 In FIG. 2, the boundary point between the first contact portion 15 and the first non-contact portion 16 is a separation start point 30 that starts to separate from the light receiving surface of one solar cell 11 with respect to the first non-contact portion 16. With the separation start point 30 as a boundary, the connection electrode of the solar cell 11 and the wiring member 13 are electrically and mechanically connected at the first contact portion 15, and the light receiving surface of the solar cell 11 and the wiring at the first non-contact portion 16. The material 13 is at least not mechanically connected.
 配線材13の長手方向において、第1非接触部16の湾曲の頂点31の位置は、太陽電池11の受光面の端部の位置に対応するように設定される。頂点31の高さ方向の位置は、受光面側の封止材21と受光面側の保護部材23の境界よりも太陽電池11の側とされる。このように、第1非接触部16の湾曲は、寸法Cの範囲内で行われる。 In the longitudinal direction of the wiring member 13, the position of the apex 31 of the curvature of the first non-contact part 16 is set so as to correspond to the position of the end of the light receiving surface of the solar cell 11. The position of the apex 31 in the height direction is closer to the solar cell 11 than the boundary between the sealing material 21 on the light receiving surface side and the protective member 23 on the light receiving surface side. As described above, the bending of the first non-contact portion 16 is performed within the range of the dimension C.
 同様に、第2接触部18と第2非接触部19の境界点は、第2非接触部19について他方の太陽電池12の裏面から離間し始める離間始点32である。離間始点30と同様に、離間始点32を境に、第2接触部18では太陽電池12の接続用電極と配線材13が電気的および機械的に接続され、第2非接触部19では太陽電池12の裏面と配線材13が少なくとも電気的に接続されない。接着材があるので、その限度で第2非接触部19が太陽電池12と機械的に接続されているのも同じである。 Similarly, the boundary point between the second contact portion 18 and the second non-contact portion 19 is a separation start point 32 that starts to separate from the back surface of the other solar cell 12 with respect to the second non-contact portion 19. Similarly to the separation start point 30, the connection electrode of the solar cell 12 and the wiring member 13 are electrically and mechanically connected to each other at the second contact portion 18 with the separation start point 32 as a boundary, and the second non-contact portion 19 is a solar cell. The back surface of 12 and the wiring member 13 are not at least electrically connected. Since there is an adhesive, the second non-contact portion 19 is mechanically connected to the solar cell 12 to the limit.
 同様に、配線材13の長手方向において、第2非接触部19の湾曲の頂点33の位置は、太陽電池12の裏面の端部の位置に対応するように設定され、頂点33の高さ方向の位置は、裏面側の封止材22と裏面側の保護部材24の境界よりも太陽電池12の側とされる。 Similarly, in the longitudinal direction of the wiring member 13, the position of the vertex 33 of the curve of the second non-contact portion 19 is set so as to correspond to the position of the end of the back surface of the solar cell 12, and the height direction of the vertex 33. Is positioned on the solar cell 12 side of the boundary between the sealing material 22 on the back surface side and the protective member 24 on the back surface side.
 接線40は、第1非接触部16で曲がり方の変曲点となる点37における接線である。同様に、接線41は、第2非接触部19で曲がり方の変曲点38となる点における接線である。接線42は、中間部分20で曲がり方の変曲点となる点39における接線である。 The tangent line 40 is a tangent line at a point 37 that becomes an inflection point of the bending direction in the first non-contact portion 16. Similarly, the tangent line 41 is a tangent line at a point that becomes the inflection point 38 in the second non-contact portion 19. The tangent line 42 is a tangent line at a point 39 that becomes an inflection point in the middle portion 20 at the bending direction.
 第1非接触部16の離間始点30と、第2非接触部19の離間始点32の間の距離寸法は、配線材13の成形範囲である。配線材13の成形範囲は、寸法A,B,C,Dと共に、接線40,41,42が以下の関係となるように設定される。すなわち、接線40が太陽電池11の受光面と平行な面となす角度θ1は、受光面よりも受光面側に持ち上がる方向をプラスとして、θ1>0とする。また、接線41が太陽電池12の裏面と平行な面となす角度θ2は、裏面より裏面側に持ち上がる方向をプラスとして、θ2>0とする。また、接線40と接線42とがなす角度θ3が鈍角となるようにする。具体的には、点37と、接線40と接線42との交点と、点39と、がなす角度θ3が鈍角となるようにする。また、接線41と接線42とがなす角度θ4が鈍角となるようにする。具体的には、点38と、接線41と接線42との交点と、点39と、がなす角度θ4が鈍角となるようにする。 The distance dimension between the separation start point 30 of the first non-contact part 16 and the separation start point 32 of the second non-contact part 19 is a molding range of the wiring member 13. The forming range of the wiring member 13 is set so that the tangent lines 40, 41, and 42 have the following relationship together with the dimensions A, B, C, and D. That is, the angle θ 1 formed by the tangent line 40 and the plane parallel to the light receiving surface of the solar cell 11 is set to θ 1 > 0, with the direction of lifting to the light receiving surface side from the light receiving surface as a plus. In addition, the angle θ 2 formed by the tangent line 41 and the plane parallel to the back surface of the solar cell 12 is set to θ 2 > 0, where the direction of lifting from the back surface to the back surface side is plus. The angle θ 3 formed by the tangent line 40 and the tangent line 42 is set to be an obtuse angle. Specifically, an angle θ 3 formed by the point 37, the intersection of the tangent line 40 and the tangent line 42, and the point 39 is set to be an obtuse angle. Further, the angle θ 4 formed by the tangent line 41 and the tangent line 42 is set to be an obtuse angle. Specifically, the angle θ 4 formed by the point 38, the intersection of the tangent line 41 and the tangent line 42, and the point 39 is set to be an obtuse angle.
 第1非接触部16、中間部分20、第2非接触部19は、直線形状を有さないように形成されることが好適である。具体的には、第1非接触部16は、離間始点30と点37とを結ぶ曲線と、点37と頂点31とを結ぶ曲線とを組み合わせて構成し、中間部分20は、頂点31と点39とを結ぶ曲線と、点39と頂点33とを結ぶ曲線とを組み合わせて構成し、第2非接触部19は、頂点33と点38とを結ぶ曲線と、点38と離間始点32とを結ぶ曲線とを組み合わせて構成する。このような構成とすることで、配線材13に生じる応力を分散させることができ、配線材13の断線を防ぐことができる。配線材に生じる応力については後述する。 The first non-contact portion 16, the intermediate portion 20, and the second non-contact portion 19 are preferably formed so as not to have a linear shape. Specifically, the first non-contact portion 16 is configured by combining a curve connecting the separation start point 30 and the point 37 and a curve connecting the point 37 and the vertex 31, and the intermediate portion 20 is configured by the vertex 31 and the point 31. 39, a curve connecting the point 39 and the vertex 33, and the second non-contact part 19 includes a curve connecting the vertex 33 and the point 38, a point 38 and the separation start point 32. Combining with connecting curves. By setting it as such a structure, the stress which arises in the wiring material 13 can be disperse | distributed, and the disconnection of the wiring material 13 can be prevented. The stress generated in the wiring material will be described later.
 図3は、太陽電池モジュール10の製造の手順を示すフローチャートである。最初に、複数の太陽電池を形成する(S10)。これに平行して、配線材を準備する。この配線材は、図2で説明した成形がまだおこなわれる前の未成形配線材である(S11)。この未成形配線材を図2で説明した形状に成形する(S12)。すなわち、第1接触部15と第1非接触部16を有する第1部分14と、第2接触部18と第2非接触部19を有する第2部分17と、第1部分14と第2部分17とを結ぶ部分である中間部分20とを含む配線材13に成形する。 FIG. 3 is a flowchart showing a procedure for manufacturing the solar cell module 10. First, a plurality of solar cells are formed (S10). Parallel to this, a wiring material is prepared. This wiring material is an unmolded wiring material before the molding described in FIG. 2 is still performed (S11). This unmolded wiring material is formed into the shape described in FIG. 2 (S12). That is, the first part 14 having the first contact part 15 and the first non-contact part 16, the second part 17 having the second contact part 18 and the second non-contact part 19, the first part 14 and the second part. 17 is formed into a wiring member 13 including an intermediate portion 20 that is a portion connecting 17.
 そして、第1接触部15を一方の太陽電池11の受光面に接続し(S13)、第2接触部18を他方の太陽電池12の裏面に接続する(S14)。これを全部の太陽電池に繰り返して、太陽電池ストリングが形成される(S15)。 Then, the first contact portion 15 is connected to the light receiving surface of one solar cell 11 (S13), and the second contact portion 18 is connected to the back surface of the other solar cell 12 (S14). This is repeated for all the solar cells to form a solar cell string (S15).
 その後、受光面側の保護部材23の上に、太陽電池ストリングを挟むように配置した受光面側の封止材21と裏面側の封止材22、裏面側の保護部材23を配置し(S16)、さらにその積層体に対して加熱・加圧処理を行い(S17)、端部をフレーム25,26で固定して太陽電池モジュール10が得られる(S18)。 Thereafter, the light receiving surface side sealing material 21, the back surface side sealing material 22, and the back surface side protective member 23 disposed so as to sandwich the solar cell string are disposed on the light receiving surface side protection member 23 (S <b> 16). Further, the laminated body is heated and pressurized (S17), and the ends are fixed by the frames 25 and 26 to obtain the solar cell module 10 (S18).
 上記では、S12において、予め所定の形状に成形した複数の配線材13を準備するものとしたが、太陽電池ストリングを構成する太陽電池の数が少ない場合、太陽電池の平面寸法が大きい場合等において、未成形の配線材を用いて太陽電池に接続しながら、離間始点30、湾曲の頂点31、湾曲の頂点33、離間始点32を順次形成するものとしてもよい。 In the above description, in S12, the plurality of wiring members 13 previously formed into a predetermined shape are prepared. However, when the number of solar cells constituting the solar cell string is small, the planar size of the solar cell is large, or the like. The separation start point 30, the curve vertex 31, the curve vertex 33, and the separation start point 32 may be sequentially formed while being connected to the solar cell using the unformed wiring material.
 上記構成の作用効果、特に、配線材の形状と配線材に生じる応力の関係について、有限要素法を用いたシミュレーション評価を行った結果を説明する。図4は、シミュレーションに用いた4つのモデルである。図4(c)が配線材13のモデルである。ここでは、配線材13の両側の拘束範囲の間の成形形状を図2で説明した内容とした。すなわち、第1非接触部16と第2非接触部19が形成され、3つの接線40,41,42が所定の角度関係に設定される。(d)は、拘束範囲を狭くした以外は(c)と同じである。 The results of simulation evaluation using the finite element method will be described with respect to the effects of the above configuration, in particular, the relationship between the shape of the wiring material and the stress generated in the wiring material. FIG. 4 shows four models used for the simulation. FIG. 4C shows a model of the wiring member 13. Here, the molding shape between the constraining ranges on both sides of the wiring member 13 is the content described in FIG. That is, the first non-contact portion 16 and the second non-contact portion 19 are formed, and the three tangent lines 40, 41, and 42 are set in a predetermined angular relationship. (D) is the same as (c) except that the constraint range is narrowed.
 図4(a),(b)は、第1非接触部16も第2非接触部19も設けず、また、第1非接触部16の湾曲、第2非接触部19の湾曲も設けず、直線的部分のみで成形した配線材の例である。ここでは、(c),(d)と異なり接線が2つであり、各接線の角度関係も(c),(d)と異なる。(b)は、両側の拘束部分の間の間隔を(c),(d)と同じとした。(a)は、(b)に比べ、両側の拘束部分の間の間隔をより狭くし、その間の屈曲をより強くしたものである。 4A and 4B, neither the first non-contact part 16 nor the second non-contact part 19 is provided, and the first non-contact part 16 and the second non-contact part 19 are not provided. It is an example of the wiring material shape | molded only by the linear part. Here, unlike (c) and (d), there are two tangents, and the angular relationship of each tangent is also different from (c) and (d). In (b), the distance between the constraining portions on both sides is the same as (c) and (d). Compared with (b), (a) narrows the space | interval between the constraining parts of both sides, and strengthens the bending between them.
 図5は、シミュレーションの結果を示す図である。シミュレーションは、温度変化によって配線材が伸縮するときに配線材に発生する応力の大きさを求めた。 FIG. 5 is a diagram showing the results of simulation. In the simulation, the magnitude of the stress generated in the wiring material when the wiring material expands and contracts due to a temperature change was obtained.
 図5は、室温下の太陽電池モジュールにおいて配線材が伸縮状態にないとして、その状態から高温または低温となったときの配線材に生じる応力の変化をシミュレーションした結果を示す図である。 FIG. 5 is a diagram showing a result of simulating a change in stress generated in the wiring material when the wiring material is not in a stretched state in the solar cell module at room temperature and when the temperature becomes high or low from that state.
 シミュレーションでは、室温下の太陽電池モジュールにおける配線材の長手方向に沿ったひずみ量を0μmとし、温度が90℃と-40℃に変化したときの配線材に発生する応力の最大値を求めた。配線材の室温におけるひずみ量を0μmとして、ここから90℃に環境温度が変化すると、配線材のひずみ量は+αとなる。室温から-40℃に環境温度が変化すると、配線材のひずみ量は-αとなる。ひずみ量を示すαは、例えば0~200μmとする。 In the simulation, the maximum amount of stress generated in the wiring material when the temperature was changed to 90 ° C. and −40 ° C. was obtained by setting the strain amount along the longitudinal direction of the wiring material in the solar cell module at room temperature to 0 μm. When the strain amount at room temperature of the wiring material is 0 μm and the environmental temperature changes from 90 μC to 90 ° C., the strain amount of the wiring material becomes + α. When the ambient temperature changes from room temperature to −40 ° C., the strain amount of the wiring material becomes −α. Α indicating the strain amount is, for example, 0 to 200 μm.
 図5の横軸は、配線材のひずみ量で、室温に対応する0μmと、90℃に対応する+αと、-40℃に対応する-αを取った。縦軸は、シミュレーションにおいて配線材の最大応力値を相対的に示した。配線材において最大応力が発生するのは、第1部分と中間部分の境界と第1部分と中間部分の境界であった。図5で示す4つのデータは、図4の(a),(b),(c),(d)に対応する。 The horizontal axis in FIG. 5 is the strain amount of the wiring material, and takes 0 μm corresponding to room temperature, + α corresponding to 90 ° C., and −α corresponding to −40 ° C. The vertical axis relatively shows the maximum stress value of the wiring material in the simulation. In the wiring material, the maximum stress occurs at the boundary between the first portion and the intermediate portion and the boundary between the first portion and the intermediate portion. The four data shown in FIG. 5 correspond to (a), (b), (c), and (d) in FIG.
 図5の結果から、図4(c)の配線材13の成形形状が配線材に発生する応力が他の成形形状に比べ小さくなっていることが分かる。成形を直線部分のみで構成した図4(a),(b)は、(c)に比べ、最大応力の値が約1.5倍~2倍の範囲で大きくなる。図4(d)の配線材は、(c)ほどではないが、(a),(b)に比べ、最大応力の値が小さくなる。 From the result of FIG. 5, it can be seen that the stress generated in the wiring material in the molding shape of the wiring member 13 in FIG. 4C is smaller than in other molding shapes. 4 (a) and 4 (b), in which the molding is configured with only a straight portion, the maximum stress value is larger in the range of about 1.5 to 2 times than (c). Although the wiring material of FIG. 4D is not as large as (c), the maximum stress value is smaller than those of (a) and (b).
 このように、第1非接触部16、第2非接触部19を設け、3つの接線40,41,42を所定の角度関係とすることで、配線材に生じる応力を軽減することができる。配線材に生じる応力を軽減することは、薄型の太陽電池11,12を採用する場合に特に有効である。太陽電池11,12を薄くすると配線材の応力の影響を受けやすくなる。例えば、配線材の応力の影響により太陽電池11,12が割れる可能性が高くなる。配線材より薄い太陽電池11,12を採用する場合に3つの接線40,41,42を所定の角度関係となる配線材を用いることで、太陽電池11,12が割れる可能性を低くすることができる。 As described above, the first non-contact portion 16 and the second non-contact portion 19 are provided, and the three tangents 40, 41, and 42 are in a predetermined angular relationship, thereby reducing the stress generated in the wiring material. Reducing stress generated in the wiring material is particularly effective when thin solar cells 11 and 12 are employed. When the solar cells 11 and 12 are thinned, they are easily affected by the stress of the wiring material. For example, the solar cells 11 and 12 are more likely to break due to the influence of the stress of the wiring material. When the solar cells 11 and 12 thinner than the wiring material are used, the possibility of the solar cells 11 and 12 being cracked can be reduced by using the wiring material having a predetermined angular relationship between the three tangents 40, 41 and 42. it can.
 10 太陽電池モジュール、11,12 太陽電池、13 配線材、14 第1部分、15 第1接触部、16 第1非接触部、17 第2部分、18 第2接触部、19 第2非接触部、20 中間部分、21,22 封止材、23 (受光面側の)保護部材、24 (裏面側の)保護部材、25,26 フレーム、30,32 離間始点、31,33 (湾曲の)頂点、37,38,39 (曲がり方の変曲点となる)点、40,41,42 接線。 10 solar cell module, 11, 12 solar cell, 13 wiring material, 14 first part, 15 first contact part, 16 first non-contact part, 17 second part, 18 second contact part, 19 second non-contact part , 20 middle part, 21, 22 sealing material, 23 (receiving surface side) protective member, 24 (back side) protective member, 25, 26 frame, 30, 32 separation start point, 31, 33 (curved) vertex , 37, 38, 39 (the point of inflection of the way of bending), 40, 41, 42 tangent.

Claims (9)

  1.  一方の太陽電池の受光面に接触して接続される第1接触部と前記第1接触部から前記一方の太陽電池に隣接する他方の太陽電池に向かって延び前記受光面から離間して前記受光面上方に向かって湾曲する第1非接触部を有する第1部分と、
     前記他方の太陽電池の裏面に接触して接続される第2接触部と前記第2接触部から前記一方の太陽電池外側に延び前記裏面から離間して前記裏面下方に向かって湾曲する第2非接触部を有する第2部分と、
     前記第1非接触部の前記湾曲の頂点から前記他方の太陽電池の前記裏面に向かって曲げられ前記第2非接触部の前記湾曲の頂点に接続される中間部分と、
     を含む配線材であって、
     前記配線材の厚さが前記太陽電池の厚さよりも厚い、太陽電池モジュールの配線材。
    A first contact portion connected in contact with a light receiving surface of one solar cell, and extends from the first contact portion toward the other solar cell adjacent to the one solar cell, and is separated from the light receiving surface to receive the light. A first portion having a first non-contact portion that curves toward the upper surface;
    A second non-contact portion that contacts and is connected to the back surface of the other solar cell, and extends from the second contact portion to the outside of the one solar cell and is curved away from the back surface and curved downward. A second portion having a contact portion;
    An intermediate portion bent from the apex of the curvature of the first non-contact portion toward the back surface of the other solar cell and connected to the apex of the curvature of the second non-contact portion;
    A wiring material including
    The wiring material of a solar cell module, wherein the wiring material is thicker than the solar cell.
  2.  請求項1に記載の太陽電池モジュールの配線材において、
     前記第1非接触部について曲がり方の変曲点となる点の接線である第1接線と、
     前記中間部分について曲がり方の変曲点となる点の接線である中間接線と、
     前記第2非接触部について曲がり方の変曲点となる点の接線である第2接線と、
     について、
     前記第1接線と前記中間接線とがなす角度が鈍角であり、前記第2接線と前記中間接線とがなす角度が鈍角である、太陽電池モジュールの配線材。
    In the wiring material of the solar cell module according to claim 1,
    A first tangent that is a tangent of a point that becomes an inflection point of the bending direction with respect to the first non-contact portion;
    A medium indirect line that is a tangent to a point that becomes an inflection point of the bending direction with respect to the intermediate portion;
    A second tangent that is a tangent of a point that becomes an inflection point of the bending direction with respect to the second non-contact portion;
    about,
    The wiring material for a solar cell module, wherein an angle formed by the first tangent and the medium indirect line is an obtuse angle, and an angle formed by the second tangent and the medium indirect line is an obtuse angle.
  3.  請求項2に記載の太陽電池モジュールの配線材において、
     前記第1接線と前記中間接線とがなす角度は、前記第1非接触部の変曲点と、前記前記第1接線と前記中間接線との交点と、前記中間部分の変曲点と、がなす角度であり、
     前記第2接線と前記中間接線とがなす角度は、前記第2非接触部の変曲点と、前記前記第2接線と前記中間接線との交点と、前記中間部分の変曲点と、がなす角度である、太陽電池モジュールの配線材。
    In the wiring material of the solar cell module according to claim 2,
    The angle formed by the first tangent and the intermediate indirect line is determined by the inflection point of the first non-contact portion, the intersection of the first tangent and the intermediate indirect line, and the inflection point of the intermediate portion. The angle to make,
    The angle formed by the second tangent and the intermediate indirect line is determined by the inflection point of the second non-contact portion, the intersection of the second tangent and the intermediate indirect line, and the inflection point of the intermediate portion. The wiring material of the solar cell module, which is the angle formed.
  4.  請求項3に記載の太陽電池モジュールの配線材において、
     前記第1非接触部、前記中間部分および前記第2非接触部は、直線形状を有さないように形成される、太陽電池モジュールの配線材。
    In the wiring material of the solar cell module according to claim 3,
    The wiring material of a solar cell module, wherein the first non-contact part, the intermediate part, and the second non-contact part are formed so as not to have a linear shape.
  5.  請求項1~4のうちのいずれか一項に記載の太陽電池モジュールの配線材において、
     前記第1非接触部の前記湾曲の頂点の位置は、前記一方の太陽電池の前記受光面の端部の位置に対応し、
     前記第2非接触部の前記湾曲の頂点の位置は、前記他方の太陽電池の前記裏面の端部の位置に対応する、太陽電池モジュールの配線材。
    In the wiring material of the solar cell module according to any one of claims 1 to 4,
    The position of the apex of the curve of the first non-contact portion corresponds to the position of the end of the light receiving surface of the one solar cell,
    The wiring material of the solar cell module, wherein the position of the top of the second non-contact portion corresponds to the position of the end of the back surface of the other solar cell.
  6.  請求項1~5のうちいずれか一項に記載の太陽電池モジュールの配線材と、
     前記配線材によって接続される複数の太陽電池と、を備える太陽電池モジュール。
    The wiring material of the solar cell module according to any one of claims 1 to 5,
    A solar cell module comprising a plurality of solar cells connected by the wiring member.
  7.  一方の太陽電池の受光面と他方の太陽電池の裏面を接続するように、
     前記一方の太陽電池の前記受光面に接触して接続される第1接触部と前記第1接触部から前記一方の太陽電池に隣接する他方の太陽電池に向かって延び前記受光面から離間して前記受光面上方に向かって湾曲する第1非接触部を有する第1部分と、
     前記他方の太陽電池の前記裏面に接触して接続される第2接触部と前記第2接触部から前記一方の太陽電池に向かって延び前記裏面から離間して前記裏面下方に向かって湾曲する第2非接触部を有する第2部分と、
     前記第1非接触部の前記湾曲の頂点から前記他方の太陽電池の前記裏面に向かって曲げられ前記第2非接触部の前記湾曲の頂点に接続される中間部分とを含むように、前記太陽電池の厚さよりも厚い配線材を成形し、
     前記配線材の前記第1接触部を前記一方の太陽電池の前記受光面に接続し、
     前記配線材の前記第2接触部を前記他方の太陽電池の前記裏面に接続し、
     前記太陽電池の前記受光面側に受光面側の封止材を配置し、前記太陽電池の前記裏面側に裏面側の封止材を配置し、
     前記受光面側の封止材の外側に受光面側の保護部材を配置し、前記裏面側の封止材の外側に裏面側の保護部材を配置する、太陽電池モジュールの製造方法。
    To connect the light receiving surface of one solar cell and the back surface of the other solar cell,
    A first contact portion that is connected in contact with the light receiving surface of the one solar cell, and extends from the first contact portion toward the other solar cell adjacent to the one solar cell and is separated from the light receiving surface. A first portion having a first non-contact portion that curves upward toward the light receiving surface;
    A second contact portion that contacts and is connected to the back surface of the other solar cell, and extends from the second contact portion toward the one solar cell and is curved away from the back surface and curved downward. A second part having two non-contact parts;
    An intermediate portion that is bent from the top of the curve of the first non-contact portion toward the back surface of the other solar cell and connected to the top of the curve of the second non-contact portion. Mold the wiring material thicker than the battery thickness,
    Connecting the first contact portion of the wiring member to the light receiving surface of the one solar cell;
    Connecting the second contact portion of the wiring member to the back surface of the other solar cell;
    A light-receiving surface side sealing material is disposed on the light-receiving surface side of the solar cell, a back-surface side sealing material is disposed on the back surface side of the solar cell,
    A method for manufacturing a solar cell module, comprising: a light-receiving surface side protective member disposed outside the light-receiving surface side sealing material; and a back surface side protective member disposed outside the back-surface side sealing material.
  8.  請求項7に記載の太陽電池モジュールの製造方法において、
     前記配線材は、前記第1非接触部について曲がり方の変曲点となる点の接線である第1接線と、前記中間部分について曲がり方の変曲点となる点の接線である中間接線と、がなす角度が鈍角となり、前記第2非接触部について曲がり方の変曲点となる点の接線である第2接線と、前記中間接線とがなす角度が鈍角となるように形成される、太陽電池モジュールの製造方法。
    In the manufacturing method of the solar cell module according to claim 7,
    The wiring member includes a first tangent line that is a point that becomes an inflection point of the bending direction with respect to the first non-contact portion, and a medium indirect line that is a tangent line of the point that becomes an inflection point of the bending direction with respect to the intermediate portion. The angle formed by the second intangible line is an obtuse angle, and the angle formed by the second tangent line that is a tangent point of the bending point of the second non-contact portion and the intermediate indirect line is an obtuse angle. Manufacturing method of solar cell module.
  9.  請求項8に記載の太陽電池モジュールの製造方法において、
     前記第1非接触部、前記中間部分および前記第2非接触部は、直線形状を有さないように形成される、太陽電池モジュールの製造方法。

     

     
    In the manufacturing method of the solar cell module according to claim 8,
    The method for manufacturing a solar cell module, wherein the first non-contact portion, the intermediate portion, and the second non-contact portion are formed so as not to have a linear shape.



PCT/JP2012/072078 2012-08-30 2012-08-30 Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method WO2014033884A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014532655A JP6249369B2 (en) 2012-08-30 2012-08-30 Solar cell module wiring material, solar cell module, and solar cell module manufacturing method
PCT/JP2012/072078 WO2014033884A1 (en) 2012-08-30 2012-08-30 Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072078 WO2014033884A1 (en) 2012-08-30 2012-08-30 Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method

Publications (1)

Publication Number Publication Date
WO2014033884A1 true WO2014033884A1 (en) 2014-03-06

Family

ID=50182732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072078 WO2014033884A1 (en) 2012-08-30 2012-08-30 Wiring material for solar cell module, solar cell module, and solar cell module manufacturing method

Country Status (2)

Country Link
JP (1) JP6249369B2 (en)
WO (1) WO2014033884A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026530A (en) * 2016-08-04 2018-02-15 京セラ株式会社 Solar battery module and interconnector for solar battery
JP2018082073A (en) * 2016-11-17 2018-05-24 信越化学工業株式会社 Manufacturing method for solar cell module
CN108598818A (en) * 2018-05-14 2018-09-28 浙江晶科能源有限公司 L-type convergent belt, photovoltaic module and convergent belt lead apparatus for bending

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098969A1 (en) * 2004-04-08 2005-10-20 Sharp Kabushiki Kaisha Solar battery and solar battery module
JP2005302902A (en) * 2004-04-08 2005-10-27 Sharp Corp Solar cell and solar cell module
WO2007013625A1 (en) * 2005-07-28 2007-02-01 Kyocera Corporation Solar cell module
JP2008147260A (en) * 2006-12-06 2008-06-26 Sharp Corp Interconnector, solar cell string, solar cell module, and method for manufacturing solar cell module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081205A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Solar battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098969A1 (en) * 2004-04-08 2005-10-20 Sharp Kabushiki Kaisha Solar battery and solar battery module
JP2005302902A (en) * 2004-04-08 2005-10-27 Sharp Corp Solar cell and solar cell module
WO2007013625A1 (en) * 2005-07-28 2007-02-01 Kyocera Corporation Solar cell module
EP1909333A1 (en) * 2005-07-28 2008-04-09 Kyocera Corporation Solar cell module
JP2008147260A (en) * 2006-12-06 2008-06-26 Sharp Corp Interconnector, solar cell string, solar cell module, and method for manufacturing solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026530A (en) * 2016-08-04 2018-02-15 京セラ株式会社 Solar battery module and interconnector for solar battery
JP2018082073A (en) * 2016-11-17 2018-05-24 信越化学工業株式会社 Manufacturing method for solar cell module
CN108598818A (en) * 2018-05-14 2018-09-28 浙江晶科能源有限公司 L-type convergent belt, photovoltaic module and convergent belt lead apparatus for bending

Also Published As

Publication number Publication date
JPWO2014033884A1 (en) 2016-08-08
JP6249369B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5879537B2 (en) Solar cell panel, solar cell module, and method for manufacturing solar cell module
TWI413266B (en) Photovoltaic module
JP5874011B2 (en) Solar cell and solar cell module
TWI495124B (en) Solar battery and solar battery module
EP3731282B1 (en) Solar battery module
WO2014050087A1 (en) Solar cell module, and production method for solar cell module
JP6308471B2 (en) Solar cell module
WO2016031232A1 (en) Solar module and solar module production method
WO2012015031A1 (en) Solar cell module
JPWO2013161069A1 (en) Solar cell module and method for manufacturing solar cell module
JP5507034B2 (en) Solar cell module and manufacturing method thereof
JP2010016246A (en) Solar cell module and method of manufacturing the same
JP6249369B2 (en) Solar cell module wiring material, solar cell module, and solar cell module manufacturing method
US20170133536A1 (en) Solar cell module and solar cell module production method
JPH0718458U (en) Solar cell module
US11362225B2 (en) Connection member set for solar battery cell, and solar cell string and solar cell module using same
JP2015065303A (en) Solar cell module and method of manufacturing the same
JP2013051339A (en) Solar cell module and manufacturing method of the same
US20170301815A1 (en) Solar-cell module
US20150228828A1 (en) Solar cell module and method of fabricating the same
JP5906422B2 (en) Solar cell and solar cell module
JP2015002318A (en) Solar cell module and manufacturing method thereof
WO2014155413A1 (en) Method of manufacturing tab wire
KR101283159B1 (en) Solar apparatus and method of fabricating the same
JPWO2014050078A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883962

Country of ref document: EP

Kind code of ref document: A1