WO2014033345A1 - Microbial consortium for the production of hydrogen - Google Patents

Microbial consortium for the production of hydrogen Download PDF

Info

Publication number
WO2014033345A1
WO2014033345A1 PCT/ES2013/070617 ES2013070617W WO2014033345A1 WO 2014033345 A1 WO2014033345 A1 WO 2014033345A1 ES 2013070617 W ES2013070617 W ES 2013070617W WO 2014033345 A1 WO2014033345 A1 WO 2014033345A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
clostridium
production
microbial consortium
consortium
Prior art date
Application number
PCT/ES2013/070617
Other languages
Spanish (es)
French (fr)
Inventor
Emiliano Enrique DÍAZ PORTUONDO
José Luís SANZ MARTÍN
Hayfa RAJHI
Original Assignee
Universidad Autónoma de Madrid
Mygen Laboratorio, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autónoma de Madrid, Mygen Laboratorio, S. L. filed Critical Universidad Autónoma de Madrid
Publication of WO2014033345A1 publication Critical patent/WO2014033345A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces

Definitions

  • the present invention falls within the field of biofuel production from microorganisms. Specifically, it refers to a microbial consortium which has utility for the production of hydrogen, organic acids and solvents, as well as a procedure for obtaining the consortium.
  • H2 hydrogen
  • H2 is presented as one of the most promising energies, since it is an environmentally sustainable fuel (because its combustion produces only water), its generation can be done in a renewable way and can be efficiently converted into electricity through of the fuel cell or used directly.
  • Photoreduction where light energy is necessary for microorganisms to produce hydrogen This route is carried out by cyanobacteria, red and green photosynthetic bacteria, and by some unicellular green algae;
  • H 2- consuming bacteria decrease the yield of H 2- producing bacteria, which means that in the anaerobic reactors currently operating the percentage of hydrogen does not exceed 5%.
  • different strategies that limit the development of consuming bacteria have been used, such as through the use of heat, since an initial thermal shock promotes the production of H 2 by eliminating non-sporulant H 2 consuming microorganisms and selecting producing bacteria of H 2 sporulants (Sung et al., Proc. 2002 US DOE Hydrogen Program Review.
  • H 2 can be achieved by inhibiting H 2 consuming microorganisms from anaerobic digestion.
  • the establishment of a type of H 2 consumer depends mainly on the type of inoculum, the concentration of H 2 , the carbon source, the solubility of the electron acceptor, etc. but in most anaerobic environments, hydrogenotrophic methanogenic bacteria are the most common group of H 2 consuming microorganisms Valdez-Vazquez I, 2009 .. International Journal of Hydrogen Energy 34 (9): 3639-3646). Therefore, for the accumulation of H 2 , Try to inhibit methanogenesis.
  • Clostridium bacteria are fundamental bacteria for the biological production of H 2 . Therefore, it is essential to study the biochemical routes that Clostridium follows for the conversion of carbohydrates to H 2 , C02, organic acids and solvents in the processes of production of H 2 , both by mixed consortia and pure cultures.
  • thermophilic conditions 55-60 ° C
  • the alternative, working in thermophilic conditions has also been investigated, both with pure cultures of C. uzonii and T. acidotolerans (Koskinen et ai, Biotechnol Bioeng. 2008, 101: 679-690), as mixed (O-Thong et al. Biores Technol. 2009, 100: 909-918) in which Thermoanaerobacterium spp. and Clostridium spp.
  • H 2 is higher at 55 ° C than at 37 ° C (Karlsson et al.
  • the present invention relates to a microbial consortium formed by a strain of Clostridium roseum and a strain of Streptomyces sp. which allows a high production of hydrogen (H 2 which makes this consortium an element of high interest in the biofuel industry.
  • the present invention therefore provides a mixture of strains, one belonging to the species Clostridium roseum with access number to the Spanish Type Culture Collection (CECT) 8187 which has been isolated by an isolation method under conditions of under vacuum (which allows a better selection of highly producing strains by eliminating the limitation caused by the partial pressure of H 2 in its production) and another belonging to the species Streptomyces sp. with access number to the Spanish Type Crop Collection (CECT) 8185, isolated from the granular sludge in aerobic conditions.
  • CECT Spanish Type Culture Collection
  • the consortium of the invention has the characteristic that by joining the strain of H5 Clostridium roseum with access number to the Spanish Crop Collection Type CECT8187 (producer of H 2 ) with the strain EJ1 of Streptomyces sp. With access number to the Spanish Culture Collection Type CECT8185, a greater amount of H 2 is produced than using the H5 strain Clostridium roseum or other strains independently, despite the Streptomyces sp. It is not a producer of H 2 .
  • the selected strains have advantages such as (i) that the specific strain of Streptomyces sp.
  • the consortium formed by at least the 2 strains has the additional advantage that when biofilms are formed, the use in bioreactors minimizes the loss of the strain both by greater protection of the strain and by lower elimination by changing the medium in the bioreactors and therefore They make the hydrogen production process easier and more profitable.
  • a first aspect of the invention relates to a microbial consortium from now on, the microbial consortium of the invention, which comprises the Clostridium roseum strain of access number to the Spanish Type CECT8187 Crop Collection and the Streptomyces strain sp. of access number to the Spanish Crop Collection Type CECT8185.
  • strain CECT8187 or strain H5 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium roseum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino, 9, 46980 Paterna (Valencia, Spain).
  • strain CECT8185 or strain EJ1 of the present invention is: Domain Bacteria I Edge Actinobacteria I Order Actinomycetales I Suborder Streptomycineae / Family Streptomycetaceae I Genus Streptomyces I Species Streptomyces sp. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino, 9, 46980 Paterna (Valencia, Spain).
  • Microbial consortium in the present invention is understood as a mixture of at least 2 strains of different microorganisms.
  • the consortium of the invention comprises the strain of Streptomyces sp. EJ1 CECT8185 and the strain of Clostridium roseum H5 CECT8187, and additionally other strains of different organisms.
  • the consortium of the invention works more adequately when the Streptomyces sp. It is in an adequate proportion for the formation of granules that integrate the producing strains. In this way, the appropriate ratio can be, for example, between 1: 1 and 1: 1000 with the rest of the strains that form the microbial consortium, although it may vary depending on the experimental conditions. Therefore, in a preferred embodiment of this aspect of the invention, the ratio between CECT8185 and CECT8187 is between 1: 1 and 1: 1000.
  • the consortium of the invention may additionally include other organisms that, for example, but not limited to, allow to degrade other different substrates and therefore allow better use of the starting material used by increasing the yield of the H 2 production process.
  • H 2 organic acids or solvents may be produced.
  • These organisms can be for example organisms belonging to the genus Clostridium, which can be used to produce H 2 .
  • the organisms that can be added to the consortium are, for example, strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. Therefore, in a preferred embodiment of the first aspect of the invention, the microbial consortium of the invention further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • the ratio between CECT8185 and strains CECT8187, CECT8186, CECT8188 and / or CECT8189 is between 1: 1 and 1: 1000.
  • Clostridium strain is understood as a strain belonging to the Bacteria Domain; Firmicutes Division; Clostridia class; Clostridial Order; Clostridiaceae family; Clostridium genus.
  • strain CECT8186 or strain H1 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium saccharobutylicum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino, 9, 46980 Paterna (Valencia, Spain).
  • strain CECT8188 or strain R6 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium butyricum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino, 9, 46980 Paterna (Valencia, Spain).
  • strain CECT8189 or strain RT2 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium diolis. This strain was deposited on July 20, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino, 9, 46980 Paterna (Valencia, Spain).
  • the microbial consortium of the invention can be used independently or in conjunction with other elements known to the person skilled in the art to, for example, but not limited to, make its application easier, maintain its characteristics longer, confer protection against to external conditions, or complement your activity. These compositions comprising other elements additional to the consortium of the invention would have the same utility as the consortium of the invention. Therefore, another aspect of the invention relates to a composition, hereinafter the composition of the invention, comprising the microbial consortium of the invention.
  • the microbial consortium of the invention has utility for the production of H 2 , since it has a high production rate. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of H 2 .
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection CECT8189 of Clostridium diolis.
  • the consortium of the invention is especially useful in dark or acidic fermentation processes in which degradation of organic matter is carried out under anaerobic conditions. Therefore, a preferred embodiment of this aspect of the invention refers to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of H 2 , where the production of H 2 is carried out by fermentation. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • “Dark or acidic fermentation” in the present invention is understood as the process that leads to the production of H 2 from the degradation by microorganisms of organic matter.
  • H 2 can be produced from different starting materials, for example, but not limited to, from pure substrates such as proteins or sugars, from complex substrates or even from mixtures such as residues.
  • the use of the latter is particularly interesting since it allows the use of materials that would otherwise be discarded.
  • the microbial consortium can be used for the production of H 2 in complex substrate samples, thus demonstrating its usefulness for use of different wastes as starting material for the production of H 2 . Therefore, another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Type CECT8187 Crop Collection and the Streptomyces sp.
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • Ultraban waste is understood in the present invention as waste from urban areas only.
  • “Industrial waste” in the present invention means waste from industrial areas exclusively: Example: Waste water from the industrial process of a brewery.
  • Agroindustrial waste is understood in the present invention as waste from agricultural and / or industrial holdings.
  • the microbial consortium has a higher production of various organic acids than for example the H5 strain independently.
  • another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium strain Roseum of access number to the Spanish Crop Collection Type CECT8187 and the strain of Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids.
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid.
  • a preferred embodiment of this aspect of the invention refers to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids, where the production of organic acids is carried out by fermentation.
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid. In the case of the formation of organic acids, one can also start from different pure substrates or complex substrates.
  • another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids, preferably by fermentation, where the initial substrate is urban waste, industrial waste and / or agroindustrial waste.
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid.
  • organic acid in the present invention is meant a compound that contains at least one carboxyl group.
  • carboxyl group in the present invention it is restricted to compounds formed by C, H and O of low molecular weight which contain at least one carboxyl group, such as, but not limited to, acetic acid, butyric acid, propionic acid, lactic acid, acid formic or succinic acid.
  • the consortium of the invention in addition to organic acids and H 2 , also presents the ability to produce solvents such as, but not limited to, ethanol, methanol, acetone and butanol. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain number of access to the Spanish Culture Collection Type CECT8187 and the strain of Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol. In a preferred embodiment of this aspect of the invention, the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • the solvents are selected from the list comprising ethanol, methanol, acetone and butanol.
  • a preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Type CECT8187 Crop Collection and the Streptomyces sp strain . of access number to the Spanish Crop Collection Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol, where the production of solvents is carried out by fermentation.
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • strain genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum
  • another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition
  • a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Collection of Crops Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol, and more preferably by fermentation, where the initial substrate is urban waste, industrial waste and / or agroindustrial waste .
  • the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • solvent in the present invention, organic solvents are understood as volatile organic compounds that are used to dissolve other compounds without solvent or solute undergoing chemical change.
  • the examples of the present invention also show that the consortium has the ability to form biofilms. These biofilms allow the agglutination of microorganisms so that they are better protected against the stress to which they may be subjected, for example, in a bioreactor and therefore allow a better use of productive capacity and greater use of resources. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the biofilm formation In a preferred embodiment, the consortium or composition further comprises at least one other strain of Clostridium.
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • biofilm or “biofilm” in the present invention is meant a community of microorganisms that grow embedded in a matrix of exopolysaccharides. These biofilms can be found adhered to different surfaces or, as in this invention, form granules that allow the aggregation of microorganisms.
  • Another aspect of the invention relates to a method for obtaining highly producing strains of H 2 , which comprises:
  • the strain selected in step (c) is selected from the list comprising strain H5 CECT8187, strain H1 CECT8186, strain R6 CECT8188 and strain RT2 CECT8189. In an even more preferred embodiment the strain the strain selected in step (c) is strain H5.
  • Under vacuum in the present invention is understood as a pressure in the range between 100 kPa and 100 Pa, equivalent to 1-0.00 atmospheres.
  • “Mud” in the present invention is understood to mean a microbial conglomerate or consortium that can have a definite shape or not.
  • Gramular sludge in the present invention means anaerobic sludge in the form of a granule that can be formed, for example, but not limited to, in anaerobic UASB reactors (Anaerobic Sludge Blanket Upflow)
  • Highly producing H 2 strains in the present invention are understood as those strains capable of producing an amount of H 2 greater than two moles of H 2 per mole of glucose consumed.
  • Another aspect of the invention relates to a process for obtaining a microbial consortium, comprising:
  • step (c) mix the strains of steps (c) and (f) characterized in that steps a, b and c are carried out under low vacuum conditions.
  • the strain selected in step (c) is strain H5 strain CECT8187.
  • at least one other Clostridium strain is additionally mixed in step (g).
  • the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
  • strain EJ1 of Streptomyces sp. it is mixed in step (g) in the form of spherical biofilms.
  • strains of step (g) are mixed in a ratio of between 1: 1 to 1: 1000.
  • FIG. 1 A and B Shows the formation of spherical particles by strain EJ1 (CECT8185) of Streptomyces sp. EXAMPLES
  • Example 1 Isolation of microorganisms producing H 2 under low vacuum conditions.
  • the process proceeded at 30 ° C and was always applied under vacuum (101325 Pa - 1, 333 Pa) or (760 torr- 0.01 torr).
  • a volume of inoculum between 0.1% and 5% of the useful volume, was transferred to another bioreactor with Reactor Medium (MR), which was incubated under the same conditions.
  • MR Reactor Medium
  • 3 and up to 15 successive passes were made.
  • 30 ml roll-tubes and petri dishes were inoculated using anaerobic jugs and jugs under low vacuum conditions (between 100 kPa and 100 Pa), until obtaining isolated colonies .
  • the pure H 2- producing cultures were extracted with DNA (Fast DNA spin kit for soil, MPbiomedical) and an amplification of the 16S RNAr was performed by PCR (primers 27F of sequence SEQ ID NO: 1 (AGAGTTTGATCMTGGCTCAG) and 1492R of sequence SEQ ID NO: 2 (TACGGYTACCTTGTTACGACTT) and was sent to be sequenced (BIGDYE kit)
  • the sequences obtained were analyzed using the Blast computer tool (http://blast.ncbi.nlm.nih.gov/) and with Ribosomal Datábase Project (RDP) (http://rdp.cme.msu.edu/), to determine its phylogeny (table 2).
  • RDP Ribosomal Datábase Project
  • Carbohydrate component 4g / l
  • strain EJ1 Sterilize in autoclave (120 ° C; 0.5 atm; 20 min)
  • Table 2 List of microorganisms producing H 2 isolated.
  • Example 2 Optimization of the physical-chemical parameters of the fermentation for the microorganisms producing H 2 isolated. All trials were done in triplicate. All bioreactors were inoculated with an initial Optical Density (OD) inoculum of 0.001 to 610 mm. The assays for pH optimization (5; 5.5; 6.5; 7.5) were incubated at 30 ° C. The tests for temperature optimization were performed at an initial pH of 6.5 and incubated at 25 ° C, 30 ° C, 35 ° C and 40 ° C.
  • OD Optical Density
  • H 2 measurements were made using a MDA Scientific Midas® Gas HoneyweII Detector and / or gas chromatography using a Bruker 450-GC chromatograph coupled to a TCD detector, with Varian CP2056 0.6m x1 / 8 "Ultimetal column Cromosorb GHP 100-120, working in bypass. Injector, detector and column temperatures were 150, 200 and 50 ° C respectively.
  • Nitrogen was used as a carrier gas with a flow rate of 25 ml min " 1 . pH were performed with the ThermoScientific-Orion 2STAR pH meter, the Optical Density was determined with a Pharmacia LKB-Novaspec II spectrophotometer and the Chemical Oxygen Demand with a Hatch device. The final fermentation products (volatile organic acids, glucose and their metabolic derivatives) were quantified by high performance liquid chromatography (HPLC) with a Vartar Prostar kit in order to study the fermentation products. The most relevant results are shown in table 3:
  • Example 3 Formation of a microbial consortium between an H 2 producing microorganism (strain H5 CECT8187) and the oxygen consuming microorganism ⁇ Streptomyces strain EJ1 CECT8185).
  • 100 ⁇ _ of strain H5 (CECT8187) was inoculated in a bioreactor (120 ml_) under anaerobic conditions in glucose medium (2 g COD / L) and supplemented with macronutrient solution (g / l) (NH 4 CI (0.20 -0.4), KH 2 P0 4 (0.1 - 0.55), MgS0 4 7H 2 0 (0.1 -0.4)) and micronutrients (mg / l) (2 FeCI 2 4H 2 0; 0.05 H 3 B0 3 ; 0.05 ZnCI 2 ; 0.04 CuCI 2 2H 2 0; 0.5 MnCI 2 .6H 2 0; 0.05 (NH 4 ) 6 Mo 7 0 24 .4H 2 0; 0, 09
  • Anaerobic conditions were obtained by gasifying the head space with N 2 : C0 2 (80:20), and adding L-cysteine (0.5 g / L) to the medium, leaving it until the redox indicator, the resazurine, turns from pink to colorless, a symptom that there is no free oxygen in the middle.
  • This mixture of microorganisms is grown in a discontinuous bioreactor in a medium MR 4 g COD / L), supplemented by micronutrient and micronutrient solutions.
  • This MR has an initial concentration of dissolved oxygen between 1 - 10 mg of O 2 / L of H 2 O.
  • Consortium growth was done at 30 ° C and with horizontal agitation (50 - 200 rpm) with an average time of 96 hours After the incubation time, a spherical biofilm was obtained where strain H5 has been agglutinated by Streptomyces strain EJ1. This fact was confirmed by the techniques of FISH and DGGE.
  • Example 4 Formation of a microbial consortium between four microorganisms producing H 2 (clostridia strains H5, H1, R6 and RT2) and the oxygen-consuming microorganism ⁇ Streptomyces sp. strain EJ1).
  • 100 ⁇ _ of strain EJ1 was inoculated in a bioreactor (250 mL) under aerobic conditions in MR medium (4 g-COD / L) or LB medium (1X), under agitation conditions between 80 - 150 rpm until achieve spherical biofilm formation.
  • Example 5 Isolation of Streptomyces sp. strain EJ1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a microbial consortium comprising a Clostridium roseum strain with Spanish Type Culture Collection access number CECT8187 and a Streptomyces sp. strain with Spanish Type Culture Collection access number CECT8185. The invention also relates to the use of said consortium for the production of hydrogen, organic acids, solvents or biofilms, and to a method for producing said consortium.

Description

DESCRIPCION  DESCRIPTION
CONSORCIO MICROBIANO PARA LA PRODUCCIÓN DE HIDRÓGENO MICROBIAL CONSORTIUM FOR HYDROGEN PRODUCTION
La presente invención se encuadra dentro del campo de la producción de biocombustibles a partir de microorganismos. Concretamente se refiere a un consorcio microbiano el cual presenta utilidad para la producción de hidrógeno, ácidos orgánicos y disolventes, así como a un procedimiento de obtención del consorcio. The present invention falls within the field of biofuel production from microorganisms. Specifically, it refers to a microbial consortium which has utility for the production of hydrogen, organic acids and solvents, as well as a procedure for obtaining the consortium.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
La necesidad de reducir el uso de los combustibles fósiles está promoviendo la búsqueda y empleo de nuevas fuentes renovables de energía. Entre ellas, el hidrógeno (H2) se presenta como una de las energías más prometedoras, ya que es un combustible ambientalmente sostenible (porque su combustión produce solo agua), su generación puede hacerse de forma renovable y puede ser convertido eficientemente en electricidad a través de la celda de combustible o utilizado directamente. The need to reduce the use of fossil fuels is promoting the search and use of new renewable sources of energy. Among them, hydrogen (H2) is presented as one of the most promising energies, since it is an environmentally sustainable fuel (because its combustion produces only water), its generation can be done in a renewable way and can be efficiently converted into electricity through of the fuel cell or used directly.
En la actualidad la producción anual de hidrógeno a nivel mundial supera los 50 millones de toneladas, sin embargo el 96% se produce a través de la conversión de los combustibles fósiles no renovables (Gas Natural, Petróleo y Carbón), mientras que sólo el 4% corresponde a hidrógeno producido a partir de fuentes renovables, fundamentalmente por la vía de la electrólisis del agua. Currently, annual hydrogen production worldwide exceeds 50 million tons, however 96% is produced through the conversion of non-renewable fossil fuels (Natural Gas, Petroleum and Coal), while only 4 % corresponds to hydrogen produced from renewable sources, mainly through the electrolysis of water.
Una de las formas de producir hidrógeno de forma renovable y sostenible, sería a través de la producción biológica a partir de residuos orgánicos y utilizando microorganismos (biohidrógeno). One of the ways to produce hydrogen in a renewable and sustainable way, would be through biological production from organic waste and using microorganisms (biohydrogen).
Esta forma está siendo en la actualidad muy estudiada por diversos grupos científicos, ya que tiene una serie de ventajas, entre las que destaca su bajo consumo energético (el reformado de gas natural para obtener hidrógeno debe hacerse a temperaturas superiores a los 850°C), libera menor cantidad de gases con efecto invernadero en su producción (en el reformado de gas natural para producir 1 Kg de Hidrógeno se generan como residuos 1 1 Kg de CO2), o el poder utilizar como materia prima los residuos sólidos o aguas residuales de diferentes orígenes, en lugar de otras fuentes de energía no renovables (como metano o carbón), contribuyendo además a la depuración de este tipo de aguas y residuos. This form is currently being studied by various scientific groups, as it has a number of advantages, including its low energy consumption (natural gas reforming to obtain hydrogen must be done at temperatures above 850 ° C), it releases less greenhouse gases in its production (in natural gas reforming to produce 1 Kg of Hydrogen they are generated as waste 1 1 Kg of CO2), or being able to use solid waste or wastewater from different origins as raw material, instead of other non-renewable energy sources (such as methane or coal), also contributing to the purification of this type of Water and waste
En teoría la producción biológica de Hidrógeno a través de la actividad microbiana solamente puede llevarse a cabo por dos vías: In theory, the biological production of hydrogen through microbial activity can only be carried out in two ways:
Fotorreducción donde la energía luminosa es necesaria para que los microorganismos produzcan Hidrógeno. Esta vía es llevada a cabo por cianobacterias, bacterias fotosintéticas rojas y verdes, y por algunas algas verdes unicelulares; Photoreduction where light energy is necessary for microorganisms to produce hydrogen. This route is carried out by cyanobacteria, red and green photosynthetic bacteria, and by some unicellular green algae;
Fermentación oscura o fermentación ácida: Donde la materia orgánica es fermentada a Hidrógeno, Dióxido de Carbono y ácidos orgánicos (fundamentalmente ácidos grasos volátiles). Esta vía es llevada a cabo por bacterias heterótrofas anaerobias (estrictas o facultativas).  Dark fermentation or acidic fermentation: Where organic matter is fermented to Hydrogen, Carbon Dioxide and organic acids (mainly volatile fatty acids). This route is carried out by anaerobic heterotrophic bacteria (strict or facultative).
Existen varios factores que influyen en el proceso de producción de hidrógeno por la vía fermentación y que habría que considerar para conseguir que fuera eficientemente aplicado a escala industrial. Entre los más estudiados están la selección del inoculo adecuado y algunos parámetros operacionales tales como el pH, la temperatura y presión parcial de H2. There are several factors that influence the process of hydrogen production by fermentation and that should be considered to ensure that it is efficiently applied on an industrial scale. Among the most studied are the selection of the appropriate inoculum and some operational parameters such as pH, temperature and partial pressure of H 2 .
Desde el punto de vista microbiológico en la vía fermentativa existen dos problemas fundamentales: la relación entre las bacterias productoras y consumidoras de hidrógeno, y la influencia de la presión parcial de hidrógeno en las bacterias productoras de hidrógeno. Las bacterias consumidoras de H2 disminuyen el rendimiento de las bacterias productoras de H2, lo que hace que en los reactores anaeróbicos que funcionan en la actualidad el porcentaje de hidrógeno no supere el 5%. Para evitarlo, se han utilizado diferentes estrategias que limiten el desarrollo de las bacterias consumidoras como por ejemplo mediante el uso de calor, ya que un choque térmico inicial promueve la producción de H2 eliminando los microorganismos consumidores de H2 no esporulantes y seleccionando bacterias productoras de H2 esporulantes (Sung et al., Proc. 2002 U.S. DOE Hydrogen Program Review. También se han ensayado otros métodos alternativos como tratamiento ácido, tratamiento alcalino, aireación parcial o inhibición mediante la adición de ácido 2-bromoetanosulfónico, de cloroformo o de yodo-propano. Tales tratamientos pueden a su vez ir en mayor o menor medida en detrimento de los productores de H2 o no eliminar a algunos acetógenos consumidores de H2, por lo que su empleo se encuentra actualmente en discusión y sus resultados cuestionados (Zhu, H., Beland, M., 2006, Int J Hydrogen Energy 31 , 1980-1988); Hu and Chen, Int J Hydrogen Energ. 2007, 32:3266-3273). From the microbiological point of view in the fermentation path there are two fundamental problems: the relationship between the producing and consuming bacteria of hydrogen, and the influence of the partial pressure of hydrogen on the hydrogen producing bacteria. H 2- consuming bacteria decrease the yield of H 2- producing bacteria, which means that in the anaerobic reactors currently operating the percentage of hydrogen does not exceed 5%. To avoid this, different strategies that limit the development of consuming bacteria have been used, such as through the use of heat, since an initial thermal shock promotes the production of H 2 by eliminating non-sporulant H 2 consuming microorganisms and selecting producing bacteria of H 2 sporulants (Sung et al., Proc. 2002 US DOE Hydrogen Program Review. Other alternative methods have also been tested such as acid treatment, alkaline treatment, partial aeration or inhibition by the addition of 2-bromoethanesulfonic acid, chloroform or Iodine-propane Such treatments may in turn go to a greater or lesser extent to the detriment of the producers of H 2 or not eliminate some acetogens consumers of H 2 , so their use is currently under discussion and their results questioned ( Zhu, H., Beland, M., 2006, Int J Hydrogen Energy 31, 1980-1988); Hu and Chen, Int J Hydrogen Energ. 2007, 32: 3266-3273).
Partiendo de inóculos microbianos complejos que llevan a cabo la digestión anaerobia existen dos formas fundamentales de producir H2: favoreciendo la acumulación de H2 (habitualmente escaso) en consorcios anaerobios degradadores de materia orgánica o mediante el aislamiento de bacterias productoras de H2 a partir de ecosistemas anaerobios, que a su vez se podrían mezclar con otros microorganismos para formar consorcios artificiales. Starting from complex microbial inoculums that carry out anaerobic digestion there are two fundamental ways of producing H 2 : favoring the accumulation of H 2 (usually scarce) in anaerobic consortia degrading organic matter or by isolating H 2 producing bacteria from of anaerobic ecosystems, which in turn could be mixed with other microorganisms to form artificial consortia.
La acumulación de H2 se puede consigue mediante la inhibición de microorganismos consumidores de H2 de la digestión anaerobia. El establecimiento de un tipo de consumidor de H2 depende principalmente del tipo de inoculo, la concentración de H2, la fuente de carbono, la solubilidad del aceptor de electrones, etc. pero en la mayoría de ambientes anaerobios las bacterias metanogénicas hidrogenotróficas son el grupo de microorganismos consumidores de H2 más común Valdez-Vazquez I, 2009.. International Journal of Hydrogen Energy 34(9): 3639-3646). Por ello, para la acumulación de H2 se intenta inhibir la metanogénesis. En la práctica se ha visto, en efecto, que un pH entre 5,5 y 6,5, tiempos de retención hidráulica cortos (<6h), los tratamientos por choque térmico (80-100°C 2-3h) y los inhibidores como el acetileno son eficientes minimizando la pérdida de H2 por microorganismos metanógenicos en sistemas no estériles Valdez-Vazquez I, 2009.. International Journal of Hydrogen Energy 34(9): 3639-3646). Mediante la inhibición de microorganismos consumidores de H2, por tanto, se consiguen comunidades microbianas productoras de H2 estables. Numerosos autores estudian la estructura, diversidad y dinámica de estas comunidades ya que profundizar en el funcionamiento de los consorcios productores de H2 es esencial para mejorar la eficiencia de este proceso. En estudios recientes se ha visto que los metabolitos más comúnmente formados durante la fermentación oscura por consorcios, son el acetato, propionato, butirato, etanol y butanol lo que sugiere que especies del género Clostridium sean las predominantes en estos sistemas productores de H2 ( Lay, 2000, Bioechnol Bioeng 68, 269-78). The accumulation of H 2 can be achieved by inhibiting H 2 consuming microorganisms from anaerobic digestion. The establishment of a type of H 2 consumer depends mainly on the type of inoculum, the concentration of H 2 , the carbon source, the solubility of the electron acceptor, etc. but in most anaerobic environments, hydrogenotrophic methanogenic bacteria are the most common group of H 2 consuming microorganisms Valdez-Vazquez I, 2009 .. International Journal of Hydrogen Energy 34 (9): 3639-3646). Therefore, for the accumulation of H 2 , Try to inhibit methanogenesis. In practice it has been seen, in effect, that a pH between 5.5 and 6.5, short hydraulic retention times (<6h), heat shock treatments (80-100 ° C 2-3h) and inhibitors as acetylene are efficient minimizing the loss of H 2 by methanogenic microorganisms in non-sterile systems Valdez-Vazquez I, 2009 .. International Journal of Hydrogen Energy 34 (9): 3639-3646). By inhibiting H 2 consuming microorganisms, therefore, stable H 2 producing microbial communities are achieved. Numerous authors study the structure, diversity and dynamics of these communities since deepening the functioning of the H 2 producing consortiums is essential to improve the efficiency of this process. In recent studies it has been seen that the metabolites most commonly formed during dark fermentation by consortia, are acetate, propionate, butyrate, ethanol and butanol, suggesting that species of the genus Clostridium are predominant in these H 2 producing systems (Lay , 2000, Bioechnol Bioeng 68, 269-78).
En estudios de enriquecimiento de inóculos por choque térmico y acidificación, se observó mediante microscopía electrónica de barrido, que los gránulos productores de H2 estaban típicamente compuestos por bacterias de forma bacilar formadoras de esporas y bacilos fusiformes, sugiriendo que las especie dominante era Clostridium sp. junto con Bacillus Fang HHP, Liu H, Zhang T. 2002, Biotechnol Bioeng 78, 44-52). In studies of inoculum enrichment by thermal shock and acidification, it was observed by scanning electron microscopy that the granules producing H 2 were typically composed of bacillary bacteria forming spores and fusiform bacilli, suggesting that the dominant species was Clostridium sp . together with Bacillus Fang HHP, Liu H, Zhang T. 2002, Biotechnol Bioeng 78, 44-52).
El enfoque alternativo a la manipulación de consorcios degradadores de materia orgánica para la producción de biohidrógeno es el aislamiento de bacterias que liberan H2 como subproducto de su metabolismo fermentativo, es decir, la producción de H2 por cultivos aislados puros. Diversos autores han estudiado la producción de H2 por cepas aisladas. (Wang et al. J Appl Microbiol. 2007, 103:1415-1423) y Chen Chen et al. 2006 Int. J. Hydrogen Ener. 31 , 2170-2178., aislaron distintas cepas de Clostridium muy eficientes en la producción de H2. También se han aislado varias cepas de Enterobacter y Thermoanaerobacterium). Además del aislamiento y la caracterización de cepas productoras de H2, algunos autores han trabajado con cultivos puros en estudios en continuo con reactores. (Zhang et al. Process Biochem 2006, 41 , 21 18-2123), por ejemplo, estudiaron la producción de H2 por un cultivo puro de Clostridium acetobutylicum en un reactor de filtro percolador. The alternative approach to the manipulation of organic matter degrading consortiums for biohydrogen production is the isolation of bacteria that release H 2 as a byproduct of their fermentative metabolism, that is, the production of H 2 by pure isolated cultures. Several authors have studied the production of H 2 by isolated strains. (Wang et al. J Appl Microbiol. 2007, 103: 1415-1423) and Chen Chen et al. 2006 Int. J. Hydrogen Ener. 31, 2170-2178., Isolated different strains of Clostridium very efficient in the production of H 2 . Several strains of Enterobacter and Thermoanaerobacterium) have also been isolated. In addition to the isolation and characterization of H 2 producing strains, some authors have worked with pure cultures in continuous studies with reactors. (Zhang et al. Process Biochem 2006, 41, 21 18-2123), for example, studied the production of H 2 by a pure culture of Clostridium acetobutylicum in a percolator filter reactor.
En el proceso de producción de biohidrógeno a partir de cultivos puros hay que tener en cuenta que la cepa utilizada puede estar especializada en la degradación de un tipo de compuestos por lo que no podría utilizar sustratos complejos. Con cultivos puros será por tanto necesario usar sustratos simples, lo cual dificulta trabajar con residuos. No se dará la degradación total de materia orgánica ya que habrá acumulación intermediarios al faltar las últimas etapas de la degradación. In the process of producing biohydrogen from pure cultures, it should be borne in mind that the strain used may be specialized in the degradation of one type of compound, so it could not use complex substrates. With pure cultures it will therefore be necessary to use simple substrates, which makes it difficult to work with waste. Total degradation of organic matter will not occur since there will be intermediary accumulation in the absence of the last stages of degradation.
Tanto los estudios de estructura, diversidad y dinámica de comunidades productoras de H2, como los aislamientos de bacterias productoras de H2 ponen de manifiesto que las bacterias del género Clostridium son bacterias fundamentales para la producción biológica del H2. Por ello, es imprescindible estudiar las rutas bioquímicas que sigue Clostridium para la conversión de carbohidratos a H2, C02, ácidos orgánicos y disolventes en los procesos de producción de H2, tanto por consorcios mixtos como por cultivos puros. Both studies of structure, diversity and dynamics of H 2 producing communities, as well as isolates of H 2 producing bacteria show that the Clostridium bacteria are fundamental bacteria for the biological production of H 2 . Therefore, it is essential to study the biochemical routes that Clostridium follows for the conversion of carbohydrates to H 2 , C02, organic acids and solvents in the processes of production of H 2 , both by mixed consortia and pure cultures.
La capacidad de las especies del género Clostridium para formar endosporas en condiciones desfavorables ha sido ampliamente utilizada para seleccionarlas, tanto a partir de ambientes naturales como de lodos de depuradoras, sometiendo el inoculo a un choque térmico. Los aislados de este género, sin embargo, presentan una desventaja a la hora de operar en cultivos continuos: si la presión parcial de H2 no se mantiene en niveles bajos, su metabolismo puede cambiar y dejar de producir H2, para producir etanol o lactato, lo que reduce o anula la producción de H2. Incluso en cultivos continuos mantenidos en condiciones no estériles durante largo tiempo, puede tener lugar un cambio de poblaciones: de productoras de H2 a consumidoras o no- productoras, tales como acetógenas, productoras de propionato, lactato o metanógenas (Kim et al, Process Biochem. 2006, 41 :199-207). Nuevamente la presión parcial de H2 (PH2) juega un papel clave en la evolución del proceso degradativo. The ability of species of the genus Clostridium to form endospores under unfavorable conditions has been widely used to select them, both from natural environments and from sewage sludge, subjecting the inoculum to thermal shock. Isolates of this genus, however, have a disadvantage when operating in continuous cultures: if the partial pressure of H 2 is not maintained at low levels, its metabolism can change and stop producing H 2 , to produce ethanol or lactate, which reduces or cancels the production of H 2 . Even in continuous cultures maintained in non-sterile conditions for a long time, a change in populations can take place: from producers of H 2 to consumers or non-producers, such as acetogens, producers of propionate, lactate or methanogens (Kim et al, Process Biochem. 2006, 41: 199-207). Again the H 2 partial pressure (PH 2 ) plays a key role in the evolution of the degradative process.
Una alternativa a este género son las bacterias anaerobias facultativas, especialmente las pertenecientes al género Enterobacter y otros miembros de la familia Enterobacteraceae como Citrobacter o Klebsiella (Ito et al, J Biosc Bioeng. 2005, 100: 260-265). A diferencia de los Clostridium, la producción de H2 en las enterobacterias no se inhibe a presiones parciales de H2 elevadas, pero su rendimiento es menos de la mitad del rendimiento de producción de H2 de Clostridium sp. o Rhodobacter sp. Una amplia revisión bibliográfica sobre el tema, si bien centrada en las investigaciones realizadas en Japón, uno de los países punteros en la bioproducción de H2, ha sido realizada por Nishio y Nakashimada (Nishio N et al. 2005. J Biosc Bioeng 100(3), 260-265). An alternative to this genus are facultative anaerobic bacteria, especially those belonging to the Enterobacter genus and other members of the Enterobacteraceae family such as Citrobacter or Klebsiella (Ito et al, J Biosc Bioeng. 2005, 100: 260-265). Unlike Clostridium, the production of H 2 in the enterobacteria is not inhibited at high partial pressures of H 2 , but its yield is less than half of the production yield of H 2 of Clostridium sp. or Rhodobacter sp. An extensive literature review on the subject, although focused on research conducted in Japan, one of the leading countries in the bioproduction of H 2 , has been carried out by Nishio and Nakashimada (Nishio N et al. 2005. J Biosc Bioeng 100 ( 3), 260-265).
Por otro lado, entre los parámetros operacionales más importantes a tener en cuenta durante la fermentación, el pH y la temperatura parecen jugar un papel clave en la producción de H2. Ambos factores han sido estudiados en múltiples trabajos. En la mayor parte de los casos reportados, el pH óptimo se sitúa en 5.5 (Jun et al. J microbiol Biotechnol. 2008; 18:1 130-1 135; Tang et al.J Biosci Bioeng. 2008, 106:80-87) por lo que este pH se emplea de forma rutinaria en múltiples trabajos. Con respecto a la temperatura, ésta tiene un efecto considerable sobre la producción de H2. Así, empleando lodos albañales como inoculo para la generación de H2 a partir de purines, (Tang et al.J Biosci Bioeng. 2008, 106:80-87) determinaron, para el rango mesofílico, la temperatura a la que se obtiene un rendimiento óptimo es de 45°C. La alternativa, trabajar en condiciones termofílicas (55-60°C), ha sido también investigada, tanto con cultivos puros de C. uzonii y T. acidotolerans (Koskinen et ai, Biotechnol Bioeng. 2008, 101 :679-690), como mixtos (O-Thong et al. Biores Technol. 2009, 100:909-918) en los que predominan Thermoanaerobacterium spp. y Clostridium spp. Aunque la producción de H2 es mayor a 55°C que a 37°C (Karlsson et al. Int J Hydrogen Energy 2008, 33:953- 962) y disminuyen los problemas de contaminación por bacterias consumidoras de H2, el proceso sólo tiene interés desde el punto de vista industrial para aquellos residuos (aguas residuales, principalmente) que se generan a alta temperatura, tales como ciertas industrias conserveras o papeleras. On the other hand, among the most important operational parameters to take into account during fermentation, pH and temperature seem to play a key role in the production of H 2 . Both factors have been studied in multiple works. In most of the reported cases, the optimal pH is 5.5 (Jun et al. J microbiol Biotechnol. 2008; 18: 1 130-1 135; Tang et al. J Biosci Bioeng. 2008, 106: 80-87 ) so this pH is used routinely in multiple jobs. With respect to temperature, it has a considerable effect on the production of H 2 . Thus, using sewage sludge as inoculum for the generation of H 2 from slurry, (Tang et al. J Biosci Bioeng. 2008, 106: 80-87) determined, for the mesophilic range, the temperature at which a Optimum performance is 45 ° C. The alternative, working in thermophilic conditions (55-60 ° C), has also been investigated, both with pure cultures of C. uzonii and T. acidotolerans (Koskinen et ai, Biotechnol Bioeng. 2008, 101: 679-690), as mixed (O-Thong et al. Biores Technol. 2009, 100: 909-918) in which Thermoanaerobacterium spp. and Clostridium spp. Although the production of H 2 is higher at 55 ° C than at 37 ° C (Karlsson et al. Int J Hydrogen Energy 2008, 33: 953-962) and contamination problems by consuming bacteria decrease of H 2 , the process only has an industrial interest for those wastes (wastewater, mainly) that are generated at high temperature, such as certain canning or paper mill industries.
A pesar de todo lo descrito anteriormente resulta necesaria aún la búsqueda de alternativas y/o mejoras para la producción de hidrógeno mediante microorganismos de forma que se mejoren los rendimientos de producción actuales. In spite of everything described above, it is still necessary to search for alternatives and / or improvements for the production of hydrogen by microorganisms so as to improve current production yields.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a un consorcio microbiano formado por una cepa de Clostridium roseum y una cepa de Streptomyces sp. el cual, permite una elevada producción de hidrógeno (H2 lo que convierte dicho consorcio en un elemento de alto interés en la industria de los biocombustibles. The present invention relates to a microbial consortium formed by a strain of Clostridium roseum and a strain of Streptomyces sp. which allows a high production of hydrogen (H 2 which makes this consortium an element of high interest in the biofuel industry.
En la presente invención se proporciona, por tanto, una mezcla de cepas, una perteneciente a la especie Clostridium roseum con número de acceso a la Colección Española de Cultivos Tipo (CECT) 8187 la cual se ha aislado mediante un método de aislamiento en condiciones de bajo vacío (lo que permite una mejor selección de las cepas altamente productoras al eliminarse la limitación que provoca la presión parcial de H2 en la producción de este) y otra perteneciente a la especie Streptomyces sp. con número de acceso a la Colección Española de Cultivos Tipo (CECT) 8185, aislado a partir del lodo granular en condiciones aerobias. El consorcio de la invención, tal y como se muestra en los ejemplos, presenta como característica que mediante la unión de la cepa de H5 Clostridium roseum con número de acceso a la Colección Española de Cultivos Tipo CECT8187 (productora de H2) con la cepa EJ1 de Streptomyces sp. con número de acceso a la Colección Española de Cultivos Tipo CECT8185 se produce mayor cantidad de H2 que utilizando la cepa de H5 Clostridium roseum u otras cepas de forma independiente, a pesar de que la cepa de Streptomyces sp. no es productora de H2. Por otro lado, las cepas seleccionadas presentan ventajas como (i) que la cepa concreta de Streptomyces sp. no produce antibióticos de forma contraria a lo que ocurre con la mayor parte de los organismos del mismo género, y (ii) además permite la formación de biopelículas esféricas las cuales aglutinan el microorganismo y permiten un mejor uso en biorreactores. Además, la cepa seleccionada de Streptomyces sp al ser consumidora de oxígeno, permite limitar la presencia de este, lo que en el consorcio provoca un mejor desarrollo de las otras cepas seleccionadas para la formación del consorcio. La cepa seleccionada de Clostridium roseum, por su parte, presenta una mayor producción de H2 por separado que algunos organismos de otras especies del genero Clostridium. El consorcio formado por al menos las 2 cepas tiene como ventaja adicional que al formarse biopelículas, el uso en bioreactores minimiza la pérdida de la cepa tanto por una mayor protección de la misma como por menor eliminación al cambiar el medio en los biorreactores y por tanto hacen el proceso de producción de hidrógeno más sencillo y rentable. The present invention therefore provides a mixture of strains, one belonging to the species Clostridium roseum with access number to the Spanish Type Culture Collection (CECT) 8187 which has been isolated by an isolation method under conditions of under vacuum (which allows a better selection of highly producing strains by eliminating the limitation caused by the partial pressure of H 2 in its production) and another belonging to the species Streptomyces sp. with access number to the Spanish Type Crop Collection (CECT) 8185, isolated from the granular sludge in aerobic conditions. The consortium of the invention, as shown in the examples, has the characteristic that by joining the strain of H5 Clostridium roseum with access number to the Spanish Crop Collection Type CECT8187 (producer of H 2 ) with the strain EJ1 of Streptomyces sp. With access number to the Spanish Culture Collection Type CECT8185, a greater amount of H 2 is produced than using the H5 strain Clostridium roseum or other strains independently, despite the Streptomyces sp. It is not a producer of H 2 . On the other hand, the selected strains have advantages such as (i) that the specific strain of Streptomyces sp. It does not produce antibiotics contrary to what occurs with most organisms of the same genus, and (ii) also allows the formation of spherical biofilms which agglutinate the microorganism and allow better use in bioreactors. In addition, the strain selected from Streptomyces sp, being an oxygen consumer, allows limiting its presence, which in the consortium causes a better development of the other strains selected for the formation of the consortium. The selected strain of Clostridium roseum, meanwhile, has a higher production of H 2 separately than some organisms of other species of the genus Clostridium. The consortium formed by at least the 2 strains has the additional advantage that when biofilms are formed, the use in bioreactors minimizes the loss of the strain both by greater protection of the strain and by lower elimination by changing the medium in the bioreactors and therefore They make the hydrogen production process easier and more profitable.
Por todo ello, un primer aspecto de la invención se refiere a un consorcio microbiano de ahora en adelante consorcio microbiano de la invención, que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185. Therefore, a first aspect of the invention relates to a microbial consortium from now on, the microbial consortium of the invention, which comprises the Clostridium roseum strain of access number to the Spanish Type CECT8187 Crop Collection and the Streptomyces strain sp. of access number to the Spanish Crop Collection Type CECT8185.
La clasificación científica de la cepa CECT8187 o cepa H5 de la presente invención es: Dominio Bacteria I Filo Firmicutes I Clase Clostridia I Orden Clostridiales I Familia Clostridiaceae I Género Clostridium I Especie Clostridium roseum. Dicha cepa fue depositada el 19 de Julio de 2012 en la Colección española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Científic Universitat de Valencia, Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia, España). The scientific classification of strain CECT8187 or strain H5 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium roseum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Científic Universitat de Valencia, Professor Agustín Escardino, 9, 46980 Paterna (Valencia, Spain).
La clasificación científica de la cepa CECT8185 o cepa EJ1 de la presente invención es: Dominio Bacteria I Filo Actinobacteria I Orden Actinomycetales I Suborden Streptomycineae / Familia Streptomycetaceae I Género Streptomyces I Especie Streptomyces sp. Dicha cepa fue depositada el 19 de Julio de 2012 en la Colección española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Científic Universitat de Valencia, Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia, España). The scientific classification of strain CECT8185 or strain EJ1 of the present invention is: Domain Bacteria I Edge Actinobacteria I Order Actinomycetales I Suborder Streptomycineae / Family Streptomycetaceae I Genus Streptomyces I Species Streptomyces sp. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Científic Universitat de Valencia, Professor Agustín Escardino, 9, 46980 Paterna (Valencia, Spain).
Se entiende por "consorcio microbiano" en la presente invención a una mezcla de al menos 2 cepas de microorganismos diferentes. El consorcio de la invención comprende la cepa de Streptomyces sp. EJ1 CECT8185 y la cepa de Clostridium roseum H5 CECT8187, y adicionalmente otras cepas de diferentes organismos. El consorcio de la invención funciona de forma más adecuada cuando la cepa Streptomyces sp. se encuentra en una proporción adecuada para la formación de gránulos que integren las cepas productoras. De esta forma, la proporción adecuada puede ser por ejemplo de entre 1 :1 y 1 : 1000 con el resto de las cepas que formen el consorcio microbiano, aunque puede variar en función de las condiciones experimentales. Por ello en una realización preferida de este aspecto de la invención, la proporción entre CECT8185 y CECT8187 es de entre 1 :1 y 1 :1000. "Microbial consortium" in the present invention is understood as a mixture of at least 2 strains of different microorganisms. The consortium of the invention comprises the strain of Streptomyces sp. EJ1 CECT8185 and the strain of Clostridium roseum H5 CECT8187, and additionally other strains of different organisms. The consortium of the invention works more adequately when the Streptomyces sp. It is in an adequate proportion for the formation of granules that integrate the producing strains. In this way, the appropriate ratio can be, for example, between 1: 1 and 1: 1000 with the rest of the strains that form the microbial consortium, although it may vary depending on the experimental conditions. Therefore, in a preferred embodiment of this aspect of the invention, the ratio between CECT8185 and CECT8187 is between 1: 1 and 1: 1000.
El consorcio de la invención puede incluir adicionalmente otros organismos que por ejemplo, aunque sin limitarse, permitan degradar otros sustratos diferentes y que por tanto permitan aprovechar mejor el material de partida utilizado aumentando el rendimiento del proceso de producción de H2. En este caso de igual forma que en el consorcio inicial se podrán producir H2, ácidos orgánicos o disolventes. Estos organismos pueden ser por ejemplo organismos pertenecientes al género Clostridium, los cuales pueden ser utilizados para producir H2. Dentro de los organismos que se pueden añadir al consorcio se encuentran por ejemplo la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. Por todo ello, en una realización preferida del primer aspecto de la invención, el consorcio microbiano de la invención comprende además al menos otra cepa de Clostridium. En una realización más preferida, la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. En una realización más preferida de este aspecto de la invención, la proporción entre CECT8185 y las cepas CECT8187, CECT8186, CECT8188 y/o CECT8189 es de entre 1 :1 y 1 :1000. The consortium of the invention may additionally include other organisms that, for example, but not limited to, allow to degrade other different substrates and therefore allow better use of the starting material used by increasing the yield of the H 2 production process. In this case, as in the initial consortium, H 2 , organic acids or solvents may be produced. These organisms can be for example organisms belonging to the genus Clostridium, which can be used to produce H 2 . Among the organisms that can be added to the consortium are, for example, strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. Therefore, in a preferred embodiment of the first aspect of the invention, the microbial consortium of the invention further comprises at least one other strain of Clostridium. In a more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In a more preferred embodiment of this aspect of the invention, the ratio between CECT8185 and strains CECT8187, CECT8186, CECT8188 and / or CECT8189 is between 1: 1 and 1: 1000.
Se entiende por cepa de Clostridium a una cepa perteneciente al Dominio Bacteria; División Firmicutes; Clase Clostridia; Orden Clostridiales; Familia Clostridiaceae; Género Clostridium. Clostridium strain is understood as a strain belonging to the Bacteria Domain; Firmicutes Division; Clostridia class; Clostridial Order; Clostridiaceae family; Clostridium genus.
La clasificación científica de la cepa CECT8186 o cepa H1 de la presente invención es: Dominio Bacteria I Filo Firmicutes I Clase Clostridia I Orden Clostridiales I Familia Clostridiaceae I Género Clostridium I Especie Clostridium saccharobutylicum. Dicha cepa fue depositada el 19 de Julio de 2012 en la Colección española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Científic Universitat de Valencia, Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia, España). The scientific classification of strain CECT8186 or strain H1 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium saccharobutylicum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Científic Universitat de Valencia, Professor Agustín Escardino, 9, 46980 Paterna (Valencia, Spain).
La clasificación científica de la cepa CECT8188 o cepa R6 de la presente invención es: Dominio Bacteria I Filo Firmicutes I Clase Clostridia I Orden Clostridiales I Familia Clostridiaceae I Género Clostridium I Especie Clostridium butyricum. Dicha cepa fue depositada el 19 de Julio de 2012 en la Colección española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Científic Universitat de Valencia, Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia, España). La clasificación científica de la cepa CECT8189 o cepa RT2 de la presente invención es: Dominio Bacteria I Filo Firmicutes I Clase Clostridia I Orden Clostridiales I Familia Clostridiaceae I Género Clostridium I Especie Clostridium diolis. Dicha cepa fue depositada el 20 de Julio de 2012 en la Colección española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Científic Universitat de Valencia, Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia, España). The scientific classification of strain CECT8188 or strain R6 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium butyricum. This strain was deposited on July 19, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Científic Universitat de Valencia, Professor Agustín Escardino, 9, 46980 Paterna (Valencia, Spain). The scientific classification of strain CECT8189 or strain RT2 of the present invention is: Domain Bacteria I Edge Firmicutes I Class Clostridia I Order Clostridiales I Family Clostridiaceae I Genus Clostridium I Species Clostridium diolis. This strain was deposited on July 20, 2012 in the Spanish Type Culture Collection (CECT), Building 3 CUE, Pare Científic Universitat de Valencia, Professor Agustín Escardino, 9, 46980 Paterna (Valencia, Spain).
El consorcio microbiano de la invención puede ser utilizado de forma independiente o bien en unión con otros elementos conocidos por el experto en la materia para, por ejemplo, aunque sin limitarse, hacer más fácil su aplicación, mantener sus características más tiempo, conferir protección frente a condiciones externas, o complementar su actividad. Estas composiciones que comprenden otros elementos adicionales al consorcio de la invención tendrían la misma utilidad que el consorcio de la invención. Por todo ello, otro aspecto de la invención se refiere a una composición, de ahora en adelante composición de la invención, que comprende el consorcio microbiano de la invención. The microbial consortium of the invention can be used independently or in conjunction with other elements known to the person skilled in the art to, for example, but not limited to, make its application easier, maintain its characteristics longer, confer protection against to external conditions, or complement your activity. These compositions comprising other elements additional to the consortium of the invention would have the same utility as the consortium of the invention. Therefore, another aspect of the invention relates to a composition, hereinafter the composition of the invention, comprising the microbial consortium of the invention.
Como se muestra en los ejemplos, el consorcio microbiano de la invención presenta utilidad para la producción de H2, ya que presenta una elevada tasa de producción. Por ello, otro aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de H2. En una realización preferida de este aspecto de la invención, el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. As shown in the examples, the microbial consortium of the invention has utility for the production of H 2 , since it has a high production rate. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of H 2 . In a preferred embodiment of this aspect of the invention, the consortium or composition further comprises at least one other strain of Clostridium. In a more preferred embodiment the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection CECT8189 of Clostridium diolis.
El consorcio de la invención, es especialmente útil en procesos de fermentación oscura o ácida en los cuales se lleva a cabo degradación de materia orgánica en condiciones anaeróbicas. Por todo ello, una realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de H2, donde la producción de H2 se lleva a cabo mediante fermentación. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. The consortium of the invention is especially useful in dark or acidic fermentation processes in which degradation of organic matter is carried out under anaerobic conditions. Therefore, a preferred embodiment of this aspect of the invention refers to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of H 2 , where the production of H 2 is carried out by fermentation. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
Se entiende por "fermentación oscura o ácida" en la presente invención aquel proceso que lleva a la producción de H2 a partir de la degradación por parte de microorganismos de materia orgánica. "Dark or acidic fermentation" in the present invention is understood as the process that leads to the production of H 2 from the degradation by microorganisms of organic matter.
La producción de H2 se puede producir a partir de diferentes materiales de partida, como por ejemplo, aunque sin limitarse, a partir de sustratos puros como proteínas o azúcares, a partir de sustratos complejos o incluso a partir de mezclas como por ejemplo residuos. El uso de estos últimos resulta particularmente interesante ya que permite el aprovechamiento de materiales que de otra forma sería desechados. En la presente invención se muestra que el consorcio microbiano puede ser utilizado para la producción de H2 en muestras complejas de sustratos, por lo que demuestra su utilidad para el uso de diferentes residuos como material de partida para la producción de H2. Por tanto, otra realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o de una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de H2, preferiblemente mediante fermentación donde el sustrato inicial son residuos urbanos, residuos industriales y/o residuos agroindustriales. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. The production of H 2 can be produced from different starting materials, for example, but not limited to, from pure substrates such as proteins or sugars, from complex substrates or even from mixtures such as residues. The use of the latter is particularly interesting since it allows the use of materials that would otherwise be discarded. In the present invention it is shown that the microbial consortium can be used for the production of H 2 in complex substrate samples, thus demonstrating its usefulness for use of different wastes as starting material for the production of H 2 . Therefore, another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Type CECT8187 Crop Collection and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of H 2 , preferably by fermentation where the initial substrate is urban waste, industrial waste and / or agroindustrial waste. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
Se entiende por "residuo urbano" en la presente invención, residuos procedentes de zonas urbanas exclusivamente. "Urban waste" is understood in the present invention as waste from urban areas only.
Se entiende por "residuo industrial" en la presente invención, residuos procedentes de zonas industriales exclusivamente: Ejemplo: Agua residuales proveniente del proceso industrial de una cervecería. "Industrial waste" in the present invention means waste from industrial areas exclusively: Example: Waste water from the industrial process of a brewery.
Se entiende por "residuos agroindustrial" en la presente invención, residuos procedentes de explotaciones agrícolas y/o industriales "Agroindustrial waste" is understood in the present invention as waste from agricultural and / or industrial holdings.
Además de para la producción de H2, tal y como se demuestra en los ejemplos el consorcio microbiano presenta una mayor producción de diversos ácidos orgánicos que por ejemplo la cepa H5 de forma independiente. In addition to the production of H 2 , as demonstrated in the examples, the microbial consortium has a higher production of various organic acids than for example the H5 strain independently.
Por esto, otro aspecto de la invención se refiere al uso de un consorcio microbiano o de una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de ácidos orgánicos. En una realización preferida de este aspecto de la invención, el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. En una realización aun más preferida los ácidos orgánicos se seleccionan de la lista que comprende ácido acético, ácido butírico ácido propiónico, ácido láctico, ácido fórmico o ácido succínico. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium strain Roseum of access number to the Spanish Crop Collection Type CECT8187 and the strain of Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids. In a preferred embodiment of this aspect of the invention, the consortium or composition further comprises at least one other strain of Clostridium. In a more preferred embodiment the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In an even more preferred embodiment, the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid.
De igual forma que en el caso del H2 estos ácidos orgánicos se pueden producir de forma preferible en procesos de fermentación oscura o ácida. Por todo ello, una realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de ácidos orgánicos, donde la producción de ácidos orgánicos se lleva a cabo mediante fermentación. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. En una realización aun más preferida los ácidos orgánicos se seleccionan de la lista que comprende ácido acético, ácido butírico ácido propiónico, ácido láctico, ácido fórmico o ácido succínico. En el caso de la formación de los ácidos orgánicos, también se puede partir de diferentes sustratos puros o de sustratos complejos. Por esto, otra realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de ácidos orgánicos, preferiblemente mediante fermentación, donde el sustrato inicial son residuos urbanos, residuos industriales y/o residuos agroindustriales. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. En una realización aun más preferida los ácidos orgánicos se seleccionan de la lista que comprende ácido acético, ácido butírico ácido propiónico, ácido láctico, ácido fórmico o ácido succínico. In the same way that in the case of H 2 these organic acids can be produced preferably in dark or acidic fermentation processes. Therefore, a preferred embodiment of this aspect of the invention refers to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids, where the production of organic acids is carried out by fermentation. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In an even more preferred embodiment, the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid. In the case of the formation of organic acids, one can also start from different pure substrates or complex substrates. Therefore, another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of organic acids, preferably by fermentation, where the initial substrate is urban waste, industrial waste and / or agroindustrial waste. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In an even more preferred embodiment, the organic acids are selected from the list comprising acetic acid, butyric acid, propionic acid, lactic acid, formic acid or succinic acid.
Se entiende por "ácido orgánico" en la presente invención un compuesto que contiene, al menos un grupo carboxilo. En la presente invención se restringe a compuestos formados por C, H y O de bajo peso molecular que contienen, al menos, un grupo carboxilo, como por ejemplo, aunque sin limitarse, ácido acético, ácido butírico, ácido propiónico, ácido láctico, ácido fórmico o ácido succínico. By "organic acid" in the present invention is meant a compound that contains at least one carboxyl group. In the present invention it is restricted to compounds formed by C, H and O of low molecular weight which contain at least one carboxyl group, such as, but not limited to, acetic acid, butyric acid, propionic acid, lactic acid, acid formic or succinic acid.
Además de ácidos orgánicos y H2, el consorcio de la invención, tal y como se muestra en los ejemplos también presenta la capacidad de producir disolventes como por ejemplo, aunque sin limitarse, etanol, metanol, acetona y butanol. Por esto, otro aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de disolventes, preferiblemente etanol, metanol, acetona y/o butanol. En una realización preferida de este aspecto de la invención, el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. En una realización aun más preferida los disolventes se seleccionan de la lista que comprende etanol, metanol, acetona y butanol. In addition to organic acids and H 2 , the consortium of the invention, as shown in the examples, also presents the ability to produce solvents such as, but not limited to, ethanol, methanol, acetone and butanol. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain number of access to the Spanish Culture Collection Type CECT8187 and the strain of Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol. In a preferred embodiment of this aspect of the invention, the consortium or composition further comprises at least one other strain of Clostridium. In a more preferred embodiment the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In an even more preferred embodiment the solvents are selected from the list comprising ethanol, methanol, acetone and butanol.
La producción de disolventes, en el caso del consorcio de la invención se puede producir de forma preferible en procesos de fermentación oscura o ácida. Por todo ello, una realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o de una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de disolventes, preferiblemente etanol, metanol, acetona y/o butanol, donde la producción de disolventes se lleva a cabo mediante fermentación. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. Además, como en los casos anteriores también se puede partir de diferentes sustratos puros o de sustratos complejos. Por esto, otra realización preferida de este aspecto de la invención se refiere al uso de un consorcio microbiano o una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la producción de disolventes, preferiblemente etanol, metanol, acetona y/o butanol, y más preferiblemente mediante fermentación, donde el sustrato inicial son residuos urbanos, residuos industriales y/o residuos agroindustriales. En una realización más preferida el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. The production of solvents, in the case of the consortium of the invention, can preferably occur in dark or acidic fermentation processes. Therefore, a preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Type CECT8187 Crop Collection and the Streptomyces sp strain . of access number to the Spanish Crop Collection Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol, where the production of solvents is carried out by fermentation. In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis. In addition, as in the previous cases, it is also possible to start from different pure substrates or complex substrates. Therefore, another preferred embodiment of this aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of access number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Collection of Crops Type CECT8185 for the production of solvents, preferably ethanol, methanol, acetone and / or butanol, and more preferably by fermentation, where the initial substrate is urban waste, industrial waste and / or agroindustrial waste . In a more preferred embodiment the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
Se entiende por "disolvente" en la presente invención, a disolventes orgánicos, compuestos orgánicos volátiles que se utilizan para disolver otros compuestos sin que ni solvente ni soluto sufran cambio químico. By "solvent" in the present invention, organic solvents are understood as volatile organic compounds that are used to dissolve other compounds without solvent or solute undergoing chemical change.
En los ejemplos de la presente invención también se demuestra que el consorcio presenta la capacidad de formar biopelículas. Estas biopeliculas permiten aglutinar los microorganismos de forma que quedan mejor protegidos frente al estrés al que pueden estar sometidos por ejemplo en un biorreactor y por tanto permiten un mejor aprovechamiento de la capacidad productiva y mayor aprovechamiento de los recursos. Por tanto, otro aspecto de la invención se refiere al uso de un consorcio microbiano o de una composición que comprende la cepa de Clostridium roseum de número de acceso a la Colección Española de Cultivos Tipo CECT8187 y la cepa de Streptomyces sp. de número de acceso a la Colección Española de Cultivos Tipo CECT8185 para la formación de biopelículas. En una realización preferida, el consorcio o la composición comprende además al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. The examples of the present invention also show that the consortium has the ability to form biofilms. These biofilms allow the agglutination of microorganisms so that they are better protected against the stress to which they may be subjected, for example, in a bioreactor and therefore allow a better use of productive capacity and greater use of resources. Therefore, another aspect of the invention relates to the use of a microbial consortium or a composition comprising the Clostridium roseum strain of accession number to the Spanish Crop Collection Type CECT8187 and the Streptomyces sp. of access number to the Spanish Crop Collection Type CECT8185 for the biofilm formation In a preferred embodiment, the consortium or composition further comprises at least one other strain of Clostridium. In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
Se entiende por "biopelícula" o "biofilm" en la presente invención a una comunidad de microorganismos que crecen embebidos en una matriz de exopolisacáridos. Estos biofilms se pueden encontrar adheridos a diferentes superficies o, como en esta invención, formar gránulos que permiten la agregación de los microorganismos. By "biofilm" or "biofilm" in the present invention is meant a community of microorganisms that grow embedded in a matrix of exopolysaccharides. These biofilms can be found adhered to different surfaces or, as in this invention, form granules that allow the aggregation of microorganisms.
En la presente invención, también se describe un procedimiento mediante el cual se obtienen cepas altamente productoras de H2. Este procedimiento se realiza en condiciones de bajo vacío, lo cual evita la inhibición del crecimiento producida por la acumulación de H2. Esto permite una mejor selección de organismos altamente productores de H2. Por ello otro aspecto de la invención se refiere a un procedimiento de obtención de cepas altamente productoras de H2, que comprende: In the present invention, a method is also described by which highly H 2 producing strains are obtained. This procedure is performed in low vacuum conditions, which prevents the inhibition of growth caused by the accumulation of H 2 . This allows a better selection of highly producing organisms of H 2 . Therefore, another aspect of the invention relates to a method for obtaining highly producing strains of H 2 , which comprises:
a) cultivar en un bioreactor en condiciones aerobias una muestra de lodo,  a) cultivate a mud sample in a bioreactor under aerobic conditions,
b) aislar colonias presentes en el lodo de (a), y  b) isolate colonies present in the mud of (a), and
c) cultivar las colonias de (b) y seleccionar las cepas más productoras, caracterizado porque se lleva a cabo en condiciones de bajo vacío.  c) cultivate the colonies of (b) and select the most producing strains, characterized in that it is carried out under low vacuum conditions.
En una realización preferida de este aspecto de la invención la cepa seleccionada en el paso (c) se selecciona de la lista que comprende la cepa H5 CECT8187, la cepa H1 CECT8186, la cepa R6 CECT8188 y la cepa RT2 CECT8189. En una realización aun más preferida la cepa la cepa seleccionada en el paso (c) es la cepa H5. In a preferred embodiment of this aspect of the invention the strain selected in step (c) is selected from the list comprising strain H5 CECT8187, strain H1 CECT8186, strain R6 CECT8188 and strain RT2 CECT8189. In an even more preferred embodiment the strain the strain selected in step (c) is strain H5.
Se entiende por "bajo vacío" en la presente invención, una presión en el rango comprendido entre 100 kPa y 100 Pa, equivalente a 1 -0,001 atmósferas. "Under vacuum" in the present invention is understood as a pressure in the range between 100 kPa and 100 Pa, equivalent to 1-0.00 atmospheres.
Se entiende por "lodo" en la presente invención a un conglomerado o consorcio microbiano que puede tener una forma definida o no. "Mud" in the present invention is understood to mean a microbial conglomerate or consortium that can have a definite shape or not.
Se entiende por "lodo granular" en la presente invención lodo anaerobio en forma de gránulo que puede formarse por ejemplo, aunque sin limitarse, en reactores anaeróbicos UASB (Upflow Anaerobio Sludge Blanket) "Granular sludge" in the present invention means anaerobic sludge in the form of a granule that can be formed, for example, but not limited to, in anaerobic UASB reactors (Anaerobic Sludge Blanket Upflow)
Se entiende por "cepas altamente productoras de H2" en la presente invención, aquellas cepas capaces de producir una cantidad de H2 superior a dos moles de H2 por mol de glucosa consumida. "Highly producing H 2 strains" in the present invention are understood as those strains capable of producing an amount of H 2 greater than two moles of H 2 per mole of glucose consumed.
Para la obtención del consorcio de la invención, resulta necesario mezclar una cepa altamente productora de H2 con la cepa EJ1 de Streptomyces sp. Por ello, otro aspecto de la invención se refiere a un procedimiento para obtener un consorcio microbiano, que comprende: To obtain the consortium of the invention, it is necessary to mix a highly producing strain of H 2 with strain EJ1 of Streptomyces sp. Therefore, another aspect of the invention relates to a process for obtaining a microbial consortium, comprising:
a) cultivar en un bioreactor en condiciones aerobias una muestra de lodo,  a) cultivate a mud sample in a bioreactor under aerobic conditions,
b) aislar colonias presentes en el lodo de (a), y  b) isolate colonies present in the mud of (a), and
c) cultivar las colonias de (b) y seleccionar las cepas más productoras, d) independientemente cultivar lodo granular triturado en condiciones aerobias  c) cultivate the colonies of (b) and select the most producing strains, d) independently cultivate crushed granular sludge under aerobic conditions
e) seleccionar los flóculos formados  e) select the floc formed
f) aislar en placa el microorganismo formador de los flóculos, que corresponde con Streptomyces sp.  f) insulate on the plaque-forming microorganism, which corresponds to Streptomyces sp.
g) mezclar las cepas de los pasos (c) y (f) caracterizado porque los pasos a, b y c se llevan a cabo en condiciones de bajo vacío. En una realización preferida de este aspecto de la invención la cepa seleccionada en el paso (c) es la cepa la cepa H5 CECT8187. En una realización más preferida de este aspecto de la invención, adicionalmente se mezcla en el paso (g) al menos otra cepa de Clostridium. En una realización aun más preferida la cepa del género Clostridium es la cepa H1 de número de acceso a la Colección Española de Cultivos Tipo CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número de acceso a la Colección Española de Cultivos Tipo CECT8188 de Clostridium butyricum y/o la cepa RT2 de número de acceso a la Colección Española de Cultivos Tipo CECT8189 de Clostridium diolis. g) mix the strains of steps (c) and (f) characterized in that steps a, b and c are carried out under low vacuum conditions. In a preferred embodiment of this aspect of the invention the strain selected in step (c) is strain H5 strain CECT8187. In a more preferred embodiment of this aspect of the invention, at least one other Clostridium strain is additionally mixed in step (g). In an even more preferred embodiment, the strain of the genus Clostridium is strain H1 of access number to the Spanish Crop Collection Type CECT8186 of Clostridium saccharobutylicum, strain R6 of access number to the Spanish Crop Collection Type CECT8188 of Clostridium butyricum and / or strain RT2 of access number to the Spanish Crop Collection Type CECT8189 of Clostridium diolis.
En otra realización preferida, la cepa EJ1 de Streptomyces sp. se mezcla en el paso (g) en forma de biopelículas esféricas. In another preferred embodiment, strain EJ1 of Streptomyces sp. it is mixed in step (g) in the form of spherical biofilms.
En otra realización preferida las cepas del paso (g) se mezclan en una proporción de entre 1 :1 a 1 :1000. In another preferred embodiment the strains of step (g) are mixed in a ratio of between 1: 1 to 1: 1000.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. A y B Muestra la formación de partículas esféricas por parte de la cepa EJ1 (CECT8185) de Streptomyces sp. EJEMPLOS Fig. 1. A and B Shows the formation of spherical particles by strain EJ1 (CECT8185) of Streptomyces sp. EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la utilidad del consorcio microbiano para la producción de H2, ácidos orgánicos y disolventes. Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se incluyen solamente con fines ilustrativos, por lo que no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos The invention will now be illustrated by tests carried out by the inventors, which demonstrates the usefulness of the microbial consortium for the production of H2, organic acids and solvents. These specific examples provided serve to illustrate the nature of the present invention and are included for illustrative purposes only, and therefore should not be construed as limitations on the invention claimed herein. Therefore, the examples described
más adelante ilustran la invención sin limitar el campo de aplicación de la misma. below they illustrate the invention without limiting its scope of application.
Ejemplo 1 : Aislamiento de los microorganismos productores de H2 en condiciones de bajo vacío. Example 1: Isolation of microorganisms producing H 2 under low vacuum conditions.
Para el aislamiento de bacterias productoras de H2 y la obtención de un cultivo enriquecido, se trabajaron con diferentes tipos de biorreactores (Volumen: 20 - 300 ml_). Inicialmente para el arranque se inocularon entre un 1 % y hasta 20% de un lodo que puede proceder de diferentes orígenes como por ejemplo de la depuradora anaerobia de una cervecera (cepas H5 CECT8187 y H1 CECT8186), lodo de una depuradora aerobia de aguas residuales urbanas, lodo de un digestor anaerobio de residuos sólidos urbanos (cepa R6 CECT8188) y sedimento de río (cepa RT2 CECT8189) en medio de cultivo. El proceso transcurrió a 30 °C y siempre se aplicó bajo vacío (101325 Pa - 1 ,333 Pa) ó (760 torr- 0,01 torr). Durante la etapa de enriquecimiento se transfirió, cada 5-15 días, un volumen de inoculo, entre 0,1 % y 5% del volumen útil, a otro biorreactor con Medio Reactor (MR), el cual se incubó en las mismas condiciones. De manera similar se hicieron entre 3 y hasta 15 pases sucesivos. Posteriormente, a partir del cultivo enriquecido obtenido se inocularon roll-tubes de 30 mi y placas petri (con el mismo medio de cultivo) utilizando jarras anaeróbicas y jarras en condiciones de bajo vacío (entre 100 kPa y 100 Pa), hasta obtener colonias aisladas. Finalmente, las colonias aisladas se reinocularon en biorreactores con medio líquido (Volumen: 20 ml_ - 120 ml_), se crecieron a 30°C (en el mismo medio de cultivo) y se seleccionaron los cultivos que producían más H2 (medidos con MDA Scientific Midas® Gas Detector de Honeywell y con un cromatógrafo de gases Bruker 450-GC). A los cultivos puros productores de H2, se les extrajo el ADN (Fast DNA spin kit for soil, MPbiomedical) y se realizó una amplificación del 16S RNAr por PCR (cebadores 27F de secuencia SEQ ID NO:1 (AGAGTTTGATCMTGGCTCAG) y 1492R de secuencia SEQ ID NO:2 (TACGGYTACCTTGTTACGACTT) y se envió a secuenciar (kit BIGDYE). Las secuencias obtenidas fueron analizas mediante la herramienta informática Blast (http://blast.ncbi.nlm.nih.gov/) y con Ribosomal Datábase Project (RDP) (http://rdp.cme.msu.edu/), para determinar su filogenia (tabla 2). Con este procedimiento de aislamiento se obtuvieron varias cepas de microorganismos altamente productores de H2 (tabla 2), ya que se eliminó el problema causado por la inhibición producida por la presión parcial de H2. For the isolation of H 2 producing bacteria and obtaining an enriched culture, different types of bioreactors were worked on (Volume: 20 - 300 ml_). Initially for starting, between 1% and up to 20% of a sludge were inoculated, which can come from different sources such as the anaerobic sewage treatment plant of a brewery (strains H5 CECT8187 and H1 CECT8186), sludge from an aerobic sewage treatment plant urban sludge from an anaerobic digester of urban solid waste (strain R6 CECT8188) and river sediment (strain RT2 CECT8189) in culture medium. The process proceeded at 30 ° C and was always applied under vacuum (101325 Pa - 1, 333 Pa) or (760 torr- 0.01 torr). During the enrichment stage, a volume of inoculum, between 0.1% and 5% of the useful volume, was transferred to another bioreactor with Reactor Medium (MR), which was incubated under the same conditions. Similarly, between 3 and up to 15 successive passes were made. Subsequently, from the enriched culture obtained, 30 ml roll-tubes and petri dishes (with the same culture medium) were inoculated using anaerobic jugs and jugs under low vacuum conditions (between 100 kPa and 100 Pa), until obtaining isolated colonies . Finally, the isolated colonies were re-dominated in bioreactors with liquid medium (Volume: 20 ml_ - 120 ml_), they grew at 30 ° C (in the same culture medium) and cultures that produced more H 2 were selected (measured with Honeywell MDA Scientific Midas® Gas Detector and with a Bruker 450-GC gas chromatograph). The pure H 2- producing cultures were extracted with DNA (Fast DNA spin kit for soil, MPbiomedical) and an amplification of the 16S RNAr was performed by PCR (primers 27F of sequence SEQ ID NO: 1 (AGAGTTTGATCMTGGCTCAG) and 1492R of sequence SEQ ID NO: 2 (TACGGYTACCTTGTTACGACTT) and was sent to be sequenced (BIGDYE kit) The sequences obtained were analyzed using the Blast computer tool (http://blast.ncbi.nlm.nih.gov/) and with Ribosomal Datábase Project (RDP) (http://rdp.cme.msu.edu/), to determine its phylogeny (table 2). With this isolation procedure, several strains of microorganisms highly producing H 2 (table 2) were obtained, since the problem caused by the inhibition caused by the partial pressure of H 2 was eliminated.
Tabla 1 : Medios utilizados en los ejemplos: Table 1: Means used in the examples:
Se empleó para el Solución Macronutrientes  It was used for the Macronutrient Solution
crecimiento de 1 mL de Solución de  1 mL growth of Solution
Medio  Means, medium
Streptomyces sp y Micronutrientes  Streptomyces sp and Micronutrients
Extracto de  Extract from
productores de H2 Componente Carbohidrato: 4g/l Carne (EC)* H 2 Component producers Carbohydrate: 4g / l Meat (EC) *
Extracto de carne  Meat extract
*4g DQO/L Enrasado hasta 1000 mL con dH20 * 4g COD / L Flush up to 1000 mL with dH 2 0
Se empleó para el Solución Macronutrientes It was used for the Macronutrient Solution
crecimiento y 1 mL de Solución de  growth and 1 mL of Solution
enriquecimiento de Micronutrientes  Micronutrient enrichment
cultivos productores Componente Carbohidrato: 2g/l Growing crops Carbohydrate Component: 2g / l
Medio Reactor Reactor Medium
de H2 y en la Sacarosa of H 2 and in the Sucrose
(MR)* (MR) *
formación de Componente Proteica: 1 g/L  Formation of Protein Component: 1 g / L
consorcios Extracto de carne; 0,5 g/l Extracto  consortia Meat extract; 0.5 g / l Extract
de levadura  of yeast
*4g DQO/L Enrasado hasta 1000 mL con dH20 Solución Macronutrientes * 4g COD / L Flush up to 1000 mL with dH 2 0 Macronutrient Solution
1 ml_ de Solución de  1 ml_ of Solution
Se empleo en el  He was employed at the
Micronutrientes  Micronutrients
estudio de la cinética  kinetic study
Componente Carbohidrato: 4g/l Carbohydrate component: 4g / l
Medio glucosa de crecimiento de los Average glucose growth of
Glucosa  Glucose
(MG) productores de H2 (MG) H 2 producers
Enrasado hasta 1000 mL con dH20 Ajustar a pH7 Flush up to 1000 mL with dH 2 0 Adjust to pH7
*4g DQO/L * 4g COD / L
Esterilizar en autoclave (120°C; 0,5 atm; 20 min) o por filtración (22μΜ) Sterilize in autoclave (120 ° C; 0.5 atm; 20 min) or by filtration (22μΜ)
Bacto-triptona 10 g /L, Extracto deBacto-Tryptone 10 g / L, Extract from
Se empleó para el Levadura 5 g/L y NaCI 5 g/L. 5 g / L and 5 g / L NaCI were used for yeast.
Medio LB (1X) crecimiento de la Ajustar a pH7  Medium LB (1X) growth of the Adjust to pH7
cepa EJ1 Esterilizar en autoclave (120°C; 0,5 atm; 20 min)  strain EJ1 Sterilize in autoclave (120 ° C; 0.5 atm; 20 min)
Tabla 2: Relación de Microorganismos productores de H2 aislados. Table 2: List of microorganisms producing H 2 isolated.
Figure imgf000024_0001
Figure imgf000024_0001
Ejemplo 2: Optimización de los parámetros físico-químicos de la fermentación para los microorganismos productores de H2 aislados. Todos los ensayos se hicieron por triplicado. Se inocularon todos los biorreactores con un inoculo de Densidad Optica (DO) inicial de 0,001 a 610 mm. Los ensayos para la optimización de pH (5; 5,5; 6,5; 7,5) se incubaron a 30°C. Los ensayos para la optimización de la temperatura se realizaron a pH inicial de 6,5 y se incubaron a 25 °C, 30 °C, 35°C y 40°C. Se tomaron muestras a las 14h, 24h y 48h (y en algunos casos 72h) de incubación, determinándose en todos los casos los siguientes parámetros: H2 producido, pH del medio, densidad óptica del medio (DO), demanda química de oxígeno del medio (DQO), y productos finales de la fermentación. Las medidas de H2 se hicieron mediante un detector MDA Scientific Midas® Gas Detector de HoneyweII y/o mediante cromatografía de gases utilizando un cromatógrafo Bruker 450-GC acoplado a un detector TCD, con columna Varían CP2056 0,6m x1/8" Ultimetal Cromosorb GHP 100-120, trabajando en bypass. Las temperaturas del inyector, detector y columna fueron de 150, 200 y 50 °C respectivamente. Se utilizó nitrógeno como gas portador con una velocidad de flujo de 25 mi min" 1.Las medidas de pH se realizaron con el pH-metro ThermoScientific-Orion 2STAR, la Densidad Optica se determinó con un espectrofotometro Pharmacia LKB-Novaspec II y la Demánda Química de oxígeno con un equipo Hatch. Se cuantificaron los productos finales de fermentación (ácidos orgánicos volátiles, glucosa y sus derivados metabólicos) por cromatografía líquida de alta resolución (HPLC) con un equipo Varían Prostar con el fin de estudiar los productos de las fermentaciones. Los resultados más relevantes se muestran en la tabla 3: Example 2: Optimization of the physical-chemical parameters of the fermentation for the microorganisms producing H 2 isolated. All trials were done in triplicate. All bioreactors were inoculated with an initial Optical Density (OD) inoculum of 0.001 to 610 mm. The assays for pH optimization (5; 5.5; 6.5; 7.5) were incubated at 30 ° C. The tests for temperature optimization were performed at an initial pH of 6.5 and incubated at 25 ° C, 30 ° C, 35 ° C and 40 ° C. Samples were taken at 14h, 24h and 48h (and in some cases 72h) of incubation, determining in all cases the following parameters: H 2 produced, pH of the medium, optical density of the medium (OD), chemical oxygen demand of the medium (COD), and final fermentation products. H 2 measurements were made using a MDA Scientific Midas® Gas HoneyweII Detector and / or gas chromatography using a Bruker 450-GC chromatograph coupled to a TCD detector, with Varian CP2056 0.6m x1 / 8 "Ultimetal column Cromosorb GHP 100-120, working in bypass. Injector, detector and column temperatures were 150, 200 and 50 ° C respectively. Nitrogen was used as a carrier gas with a flow rate of 25 ml min " 1 . pH were performed with the ThermoScientific-Orion 2STAR pH meter, the Optical Density was determined with a Pharmacia LKB-Novaspec II spectrophotometer and the Chemical Oxygen Demand with a Hatch device. The final fermentation products (volatile organic acids, glucose and their metabolic derivatives) were quantified by high performance liquid chromatography (HPLC) with a Vartar Prostar kit in order to study the fermentation products. The most relevant results are shown in table 3:
Tabla 3: Parámetros de las cepas pH Temperatu Table 3: Parameters of pH Temperat strains
Producción  Production
óptimo ra óptima  optimal optimum
media de H2 Producción de otrosaverage of H 2 Production of others
Cepa de de Strain of
(ml_ H2/ g DQO elementos (mM) crecimien crecimient (ml_ H 2 / g COD elements (mM) growth growth
eliminada)  removed)
to o (°C)  to o (° C)
H5 5,5 - 7,5 35 397 En medio MR: 18,8 CECT818 ácido butírico; 4,2 ácido 7 acético; 0,7 ácido propiónico H5 5.5 - 7.5 35 397 In MR medium: 18.8 CECT818 butyric acid; 4.2 acetic acid 7; 0.7 propionic acid
H1 En medio MR: 13 ácido H1 In MR medium: 13 acid
CECT818 5,5 - 7,5 35 252 butírico; 7,6 ácido 6 acético; 2,7 etanol CECT818 5.5-7.5 35 252 butyric; 7.6 acetic acid 6; 2.7 ethanol
En medio MG: 1 ,7 ácido In MG medium: 1, 7 acid
R6 R6
butírico, 7,2 ácido CECT818 6,5 35 264  butyric acid 7.2 CECT818 6.5 35 264
acético; 3,3 ácido 8  acetic; 3.3 acid 8
propiónico; 4,6 etanol propionic; 4.6 ethanol
RT2 RT2
En medio EC: 4,9 ácido CECT818 6,5 35 475  In EC medium: 4.9 CECT818 acid 6.5 35 475
acético; 18, 2 etanol 9  acetic; 18, 2 ethanol 9
H5 CECT  H5 CECT
En medio EC: 0,09 ácido 8187 +  In EC medium: 0.09 acid 8187 +
fórmico, 4,4 ácido EJ1 7,0 30-35 480  formic, 4.4 acid EJ1 7.0 30-35 480
acético; 19,9 ácido CECT818  acetic; 19.9 CECT818 acid
butírico; 2,6 Etanol. 5  butyric; 2.6 Ethanol 5
De manera general se observó en todos los biorreactores, un aumento paralelo en la producción de H2 y la densidad óptica (610 nm), con un descenso del pH del medio provocado por la producción de ácidos orgánicos. In general, a parallel increase in H 2 production and optical density (610 nm) was observed in all bioreactors, with a decrease in the pH of the medium caused by the production of organic acids.
Ejemplo 3: Formación de un consorcio microbiano entre un microorganismo productor de H2 (cepa H5 CECT8187) y el microorganismo consumidor de oxígeno {Streptomyces cepa EJ1 CECT8185). Se inocularon 100 μΙ_ de la Cepa H5 (CECT8187) en un biorreactor (120 ml_) en condiciones anaeróbicas en medio glucosa (2 g DQO/L) y se complementó con solución macronutrientes (g/l) (NH4CI (0,20 -0,4), KH2P04 (0,1 - 0,55), MgS04 7H20 (0,1 -0,4)) y micronutrientes (mg/l) (2 FeCI24H20; 0,05 H3B03; 0.05 ZnCI2; 0,04 CuCI22H20; 0,5 MnCI2.6H20; 0,05 (NH4)6Mo7024.4H20; 0,09 AICI3.6H20, 2 CoCI2.6H20; 0,09 NiCI2.6H20; 0,16 Na2Se0.5H20; 1 EDTA; 0,2 resazurina), hasta alcanzar la fase exponencial. Las condiciones anaerobias se obtuvieron gasificando el espacio de cabeza con N2:C02 (80:20), y añadiendo L-cisteína (0,5 g/L) al medio, dejándolo hasta que el indicador redox, la resazurina, vira de rosa a incoloro, síntoma de que no hay oxígeno libre en el medio. Example 3: Formation of a microbial consortium between an H 2 producing microorganism (strain H5 CECT8187) and the oxygen consuming microorganism {Streptomyces strain EJ1 CECT8185). 100 μΙ_ of strain H5 (CECT8187) was inoculated in a bioreactor (120 ml_) under anaerobic conditions in glucose medium (2 g COD / L) and supplemented with macronutrient solution (g / l) (NH 4 CI (0.20 -0.4), KH 2 P0 4 (0.1 - 0.55), MgS0 4 7H 2 0 (0.1 -0.4)) and micronutrients (mg / l) (2 FeCI 2 4H 2 0; 0.05 H 3 B0 3 ; 0.05 ZnCI 2 ; 0.04 CuCI 2 2H 2 0; 0.5 MnCI 2 .6H 2 0; 0.05 (NH 4 ) 6 Mo 7 0 24 .4H 2 0; 0, 09 AICI 3 .6H20, 2 CoCI 2 .6H20; 0.09 NiCI 2 .6H 2 0; 0.16 Na 2 Se0.5H 2 0; 1 EDTA; 0.2 resazurine), until the exponential phase is reached. Anaerobic conditions were obtained by gasifying the head space with N 2 : C0 2 (80:20), and adding L-cysteine (0.5 g / L) to the medium, leaving it until the redox indicator, the resazurine, turns from pink to colorless, a symptom that there is no free oxygen in the middle.
Por otro lado, se inocularon 100 μΙ_ de la Cepa EJ1 (CECT8185) en un biorreactor (250 ml_) en condiciones aeróbicas en MR (4 g-DQO/L) ó Medio LB 1X, en condiciones de agitación entre 80 - 150 rpm hasta alcanzar la formación de la biopelícula esférica. Posteriormente se trituraron varias biopelículas del cultivo de Streptomyces Cepa EJ1 (CECT8185) y se mezclaron con la cepa H5 (CECT8187) en proporción de DO (610 nm) entre EJ1 :H5 (Entre 1 :1 hasta 1 - 1000). Esta mezcla de microorganismos se cultiva en un biorreactor discontinuo en un medio MR 4 g DQO/L), suplementado por las soluciones de micronutrientes y micronutrientes. Este MR tiene una concentración inicial de oxígeno disuelto de entre 1 - 10 mg de O2/L de H2O. El crecimiento del consorcio se hizo a 30°C y con agitación horizontal (50 - 200 rpm) con un tiempo promedio de 96 horas. Transcurrido el tiempo de incubación se obtuvo una biopelícula esférica donde la cepa H5 ha sido aglutinada por Streptomyces cepa EJ1 . Este hecho fue confirmado por las técnicas de FISH y DGGE. Estas biopelículas (H5-Streptomyces) se inocularon en un biorreactor (120 mL) en condiciones anaeróbicas en medio MR (4 g-DQO/L) y en poco tiempo se detecto una producción de H2 superior a la registrada por el cultivo pura H5 en las misma condiciones (tabla 4). Tabla 4: Producción de H2 de la cepa H5(CECT8187), del consorcio H5(CECT8187)+EJ1 (CECT8185), y del consorcio H5(CECT8187) + H1(CECT8186) + R6(CECT8188) + RT2(CECT8189) + EJ1(CECT8185) On the other hand, 100 μΙ_ of Strain EJ1 (CECT8185) was inoculated in a bioreactor (250 ml_) under aerobic conditions in MR (4 g-COD / L) or Medium LB 1X, under stirring conditions between 80 - 150 rpm until achieve spherical biofilm formation. Subsequently, several biofilms of the Streptomyces strain EJ1 culture (CECT8185) were crushed and mixed with strain H5 (CECT8187) in OD ratio (610 nm) between EJ1: H5 (Between 1: 1 to 1 - 1000). This mixture of microorganisms is grown in a discontinuous bioreactor in a medium MR 4 g COD / L), supplemented by micronutrient and micronutrient solutions. This MR has an initial concentration of dissolved oxygen between 1 - 10 mg of O 2 / L of H 2 O. Consortium growth was done at 30 ° C and with horizontal agitation (50 - 200 rpm) with an average time of 96 hours After the incubation time, a spherical biofilm was obtained where strain H5 has been agglutinated by Streptomyces strain EJ1. This fact was confirmed by the techniques of FISH and DGGE. These biofilms (H5-Streptomyces) were inoculated in a bioreactor (120 mL) under anaerobic conditions in MR medium (4 g-COD / L) and in a short time a production of H 2 higher than that registered by the pure H5 culture was detected under the same conditions (table 4). Table 4: Production of H 2 of strain H5 (CECT8187), of the H5 consortium (CECT8187) + EJ1 (CECT8185), and of the H5 consortium (CECT8187) + H1 (CECT8186) + R6 (CECT8188) + RT2 (CECT8189) + EJ1 (CECT8185)
Figure imgf000028_0001
Figure imgf000028_0001
Ejemplo 4: Formación de un consorcio microbiano entre cuatro microorganismos productores de H2 (clostridios cepas H5, H1 , R6 y RT2) y el microorganismo consumidor de oxígeno {Streptomyces sp. cepa EJ1). Example 4: Formation of a microbial consortium between four microorganisms producing H 2 (clostridia strains H5, H1, R6 and RT2) and the oxygen-consuming microorganism {Streptomyces sp. strain EJ1).
Se inocularon por separado 100 μΙ_ de cada una de las cepas productoras de H2 (H5, H1 , R6 y RT2) en biorreactores (120 mL) en condiciones anaeróbicas en medio glucosa (4 g-DQO/L) y se complementó con solución macronutrientes y micronutrientes, hasta alcanzar la fase exponencial. Las condiciones anaerobias se obtuvieron gasificando el espacio de cabeza con N2:CO2 (80:20) y añadiendo L-cisteína (0,5 g/L) al medio, dejándolo hasta que el indicador redox, la resazurina, vira de rosa a incoloro, síntoma de que no hay oxígeno libre en el medio. Por otro lado, se inocularon 100 μΙ_ de la Cepa EJ1 en un biorreactor (250 mL) en condiciones aeróbicas en medio MR (4 g-DQO/L) ó medio LB (1X), en condiciones de agitación entre 80 - 150 rpm hasta alcanzar la formación de la biopelícula esférica. 100 μΙ_ of each of the H 2 producing strains (H5, H1, R6 and RT2) were inoculated separately in bioreactors (120 mL) under anaerobic conditions in glucose medium (4 g-COD / L) and supplemented with solution macronutrients and micronutrients, until reaching the exponential phase. Anaerobic conditions were obtained by gasifying the head space with N 2 : CO 2 (80:20) and adding L-cysteine (0.5 g / L) to the medium, leaving it until the redox indicator, the resazurine, turns pink colorless, a symptom that there is no oxygen free in the middle. On the other hand, 100 μΙ_ of strain EJ1 was inoculated in a bioreactor (250 mL) under aerobic conditions in MR medium (4 g-COD / L) or LB medium (1X), under agitation conditions between 80 - 150 rpm until achieve spherical biofilm formation.
Posteriormente se trituraron varias biopelículas del cultivo de Streptomyces Cepa EJ1 y se mezclaron a la vez con las cuatro cepas H5, H1 , R6 y RT2 en proporción de DO (610 nm) entre EJ1 :H5:H1 :R6:RT2 (1 :10:10:10:10). Esta mezcla de microorganismos se cultiva en un biorreactor discontinuo en un medio MR (4 gDQO/L), suplementado por las soluciones de micronutrientes y micronutrientes. Este medio mixto tiene una concentración inicial de oxígeno disuelto de entre 1 - 10 mg de O2/L de H2O. El crecimiento del consorcio se realiza a 30°C y con agitación horizontal (50 - 200 rpm) a un tiempo promedio de 96 horas. Transcurrido el tiempo de incubación se obtuvo una biopelícula esférica donde las cuatro cepas H5, H1 , R6 y RT2 han sido aglutinadas por Streptomyces cepa EJ1 . Este hecho fue confirmado por las técnicas de FISH y DGGE. Estas biopelículas (H5-H1 -R6-RT2-Sfreptomyces) se inocularon en un biorreactor (120 mL) en condiciones anaeróbicas en medio mixto (4 gDQO/L) y en poco tiempo se detecto una producción de H2 significativa superior a la producción de la cepa H5 de forma independiente (tabla 4). Subsequently, several biofilms of the Streptomyces Cepa EJ1 culture were crushed and mixed at the same time with the four strains H5, H1, R6 and RT2 in OD ratio (610 nm) between EJ1: H5: H1: R6: RT2 (1: 10 : 10: 10: 10). This mixture of microorganisms is grown in a discontinuous bioreactor in an MR medium (4 g COD / L), supplemented by micronutrient and micronutrient solutions. This mixed medium has an initial dissolved oxygen concentration of between 1-10 mg of O2 / L of H2O. The consortium is grown at 30 ° C and with horizontal agitation (50-200 rpm) at an average time of 96 hours. After the incubation time, a spherical biofilm was obtained where the four strains H5, H1, R6 and RT2 have been agglutinated by Streptomyces strain EJ1. This fact was confirmed by the techniques of FISH and DGGE. These biofilms (H5-H1 -R6-RT2-Sfreptomyces) were inoculated in a bioreactor (120 mL) under anaerobic conditions in mixed medium (4 gDQO / L) and in a short time a significant H 2 production was detected superior to the production of strain H5 independently (table 4).
Ejemplo 5: Aislamiento de la cepa Streptomyces sp. cepa EJ1. Example 5: Isolation of Streptomyces sp. strain EJ1.
Se inoculó entre 0,5 y 1 gramo de lodo granular anaerobio triturado en 100 mi de medio MR (4 g DQO/L) ó medio LB. Posteriormente se crecieron los organismos en condiciones aerobias a 30 °C durante 24 horas a 120 rpm en agitación horizontal. Los microorganismos formadores de flóculos se separaron del medio líquido y se realizaron aislamientos sucesivos en placa en condiciones aerobias a 30 °C hasta obtener cultivos puros. Estos cultivos axénicos se crecieron de nuevo en condiciones aerobias en medio MR a 30 °C, 120 rpm en agitación horizontal y se seleccionó la cepa que forma flóculos, en forma de biopelículas esféricas (figura 1 ). El análisis de su 16S rRNA demostró que se trataba de Streptomyces sp. (cepa EJ1 CECT 8185). Between 0.5 and 1 gram of crushed anaerobic granular sludge was inoculated in 100 ml of MR medium (4 g COD / L) or LB medium. The organisms were subsequently grown in aerobic conditions at 30 ° C for 24 hours at 120 rpm in horizontal agitation. The floc-forming microorganisms were separated from the liquid medium and successive plate insulations were performed under aerobic conditions at 30 ° C until pure cultures were obtained. These axenic cultures were grown again in aerobic conditions in MR medium at 30 ° C, 120 rpm in horizontal agitation and the strain that forms flocs was selected, in Shape of spherical biofilms (Figure 1). Analysis of its 16S rRNA showed that it was Streptomyces sp. (strain EJ1 CECT 8185).

Claims

REIVINDICACIONES
1 . - Consorcio microbiano que comprende la cepa H5 de Clostridium roseum de número CECT 8187 y la cepa EJ1 de Streptomyces sp. de número CECT 8185. one . - Microbial consortium comprising strain H5 of Clostridium roseum of number CECT 8187 and strain EJ1 of Streptomyces sp. of CECT number 8185.
2. - Consorcio microbiano según la reivindicación 1 , que además comprende al menos otra cepa del género Clostridium. 2. - Microbial consortium according to claim 1, further comprising at least one other strain of the genus Clostridium.
3. - Consorcio microbiano según la reivindicación 2 donde la cepa del género Clostridium es la cepa H1 de número CECT8186 de Clostridium saccharobutylicum, la cepa R6 de número CECT8188 de Clostridium butyricum y/o la cepa RT2 de número CECT8189 de Clostridium diolis. 3. - Microbial consortium according to claim 2 wherein the strain of the genus Clostridium is strain H1 of number CECT8186 of Clostridium saccharobutylicum, strain R6 of number CECT8188 of Clostridium butyricum and / or strain RT2 of number CECT8189 of Clostridium diolis.
4. - Composición que comprende un consorcio microbiano según cualquiera de las reivindicaciones 1 a 3. 4. - Composition comprising a microbial consortium according to any of claims 1 to 3.
5. - Uso del consorcio microbiano según cualquiera de las reivindicaciones 1 a 3 o de una composición según la reivindicación 4 para la producción de hidrógeno. 5. - Use of the microbial consortium according to any one of claims 1 to 3 or of a composition according to claim 4 for the production of hydrogen.
6. - Uso del consorcio microbiano según cualquiera de las reivindicaciones 1 a 3 o de una composición según la reivindicación 4 para la producción de ácidos orgánicos. 6. - Use of the microbial consortium according to any of claims 1 to 3 or of a composition according to claim 4 for the production of organic acids.
7. - Uso según la reivindicación 6 donde los ácidos orgánicos son ácido acético, ácido butírico, ácido propiónico, ácido láctico, ácido fórmico y/o ácido succínico. 7. - Use according to claim 6 wherein the organic acids are acetic acid, butyric acid, propionic acid, lactic acid, formic acid and / or succinic acid.
8. - Uso del consorcio microbiano según cualquiera de las reivindicaciones 1 a 3 o de una composición según la reivindicación 4 para la producción de disolventes. 8. - Use of the microbial consortium according to any one of claims 1 to 3 or of a composition according to claim 4 for the production of solvents.
9. - Usó según la reivindicación 8 donde los disolventes son etanol, metanol, acetona y/o butanol. 9. - Used according to claim 8 wherein the solvents are ethanol, methanol, acetone and / or butanol.
10. - Uso según cualquiera de las reivindicaciones 5 a 9 donde la producción de hidrógeno, de ácidos orgánicos y/o de disolventes tiene lugar por fermentación. 10. - Use according to any of claims 5 to 9 wherein the production of hydrogen, organic acids and / or solvents takes place by fermentation.
1 1 . - Uso del consorcio microbiano o de la composición según cualquiera de las reivindicaciones 5 a 10 donde el sustrato inicial son residuos urbanos, residuos industriales y/o residuos agroindustriales. eleven . - Use of the microbial consortium or the composition according to any of claims 5 to 10 wherein the initial substrate is urban waste, industrial waste and / or agroindustrial waste.
12. - Uso del consorcio microbiano según cualquiera de las reivindicaciones 1 a 3 o de una composición según la reivindicación 4 para formación de biopelículas. 12. - Use of the microbial consortium according to any of claims 1 to 3 or a composition according to claim 4 for biofilm formation.
13. - Procedimiento de obtención de una cepa altamente productora de hidrógeno que comprende: 13. - Procedure for obtaining a highly hydrogen producing strain comprising:
a) cultivar en un bioreactor en condiciones aerobias una muestra de lodo,  a) cultivate a mud sample in a bioreactor under aerobic conditions,
b) aislar colonias presentes en el lodo de (a), y  b) isolate colonies present in the mud of (a), and
c) cultivar las colonias de (b) y seleccionar las cepas más productoras, caracterizado porque se lleva a cabo en condiciones de bajo vacío.  c) cultivate the colonies of (b) and select the most producing strains, characterized in that it is carried out under low vacuum conditions.
14. -Procedimiento según la reivindicación 13 donde la cepa altamente productora aislada en el paso (c) es la cepa H5 de Clostridium roseum 14. Procedure according to claim 13 wherein the highly producing strain isolated in step (c) is Clostridium roseum strain H5
CECT8187. CECT8187.
15. - Procedimiento de obtención de un consorcio microbiano que comprende obtener una cepa altamente productora de hidrógeno según la reivindicación 14 que además comprende: d) cultivar lodo granular triturado en condiciones aerobias 15. - Method of obtaining a microbial consortium comprising obtaining a highly hydrogen producing strain according to claim 14 which further comprises: d) cultivating crushed granular sludge under aerobic conditions
e) seleccionar los flóculos formados f) aislar en placa el microorganismo formador de los flóculos, que corresponde con Streptomyces sp. CECT8185 e) select the floc formed f) insulate on the plaque-forming microorganism, which corresponds to Streptomyces sp. CECT8185
g) mezclar las cepas de los pasos (c) y (f).  g) mix the strains of steps (c) and (f).
16.- Procedimiento según la reivindicación 15 donde en el paso (g) se mezcla además al menos otra cepa del género Clostridium. 16. Method according to claim 15 wherein in step (g) at least one other strain of the genus Clostridium is also mixed.
17.- Procedimiento según la reivindicación 16 donde la cepa del género 17. Method according to claim 16 wherein the strain of the genus
Clostridium es la cepa H1 de número CECT8186 de Clostridium Clostridium is strain H1 of number CECT8186 of Clostridium
saccharobutylicum, la cepa R6 de número CECT8188 de Clostridium butyricum y/o la cepa RT2 de número CECT8189 de Clostridium diolis. saccharobutylicum, strain R6 of number CECT8188 of Clostridium butyricum and / or strain RT2 of number CECT8189 of Clostridium diolis.
PCT/ES2013/070617 2012-09-03 2013-09-03 Microbial consortium for the production of hydrogen WO2014033345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231356 2012-09-03
ES201231356A ES2456776B1 (en) 2012-09-03 2012-09-03 MICROBIAL CONSORTIUM FOR HYDROGEN PRODUCTION

Publications (1)

Publication Number Publication Date
WO2014033345A1 true WO2014033345A1 (en) 2014-03-06

Family

ID=50182561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070617 WO2014033345A1 (en) 2012-09-03 2013-09-03 Microbial consortium for the production of hydrogen

Country Status (2)

Country Link
ES (1) ES2456776B1 (en)
WO (1) WO2014033345A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088884A1 (en) * 2016-11-08 2018-05-17 Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C. Method for obtaining a microbial consortium in order to produce hydrogen and hydrolysates using complex substrates
WO2023281373A1 (en) * 2021-07-08 2023-01-12 Agharkar Research Institute Of Maharashtra Association For Cultivation Of Science A liquid microbial consortium for biohydrogen generation and a process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118775A1 (en) * 2004-06-04 2005-12-15 Kam Biotechnology Ltd. Methods and bacterial strains for producing hydrogen from biomass
US20090035812A1 (en) * 2007-08-03 2009-02-05 National Chung Hsing University Microbial hydrogen-producing process and system thereof
US20100233776A1 (en) * 2007-03-14 2010-09-16 National University Corporation Yokohama National University Novel hydrogen-producing bacterium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118775A1 (en) * 2004-06-04 2005-12-15 Kam Biotechnology Ltd. Methods and bacterial strains for producing hydrogen from biomass
US20100233776A1 (en) * 2007-03-14 2010-09-16 National University Corporation Yokohama National University Novel hydrogen-producing bacterium
US20090035812A1 (en) * 2007-08-03 2009-02-05 National Chung Hsing University Microbial hydrogen-producing process and system thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HUNG, C.H. ET AL.: "Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review", BIORESOURCE TECHNOLOGY, vol. 102, no. 18, 2011, pages 8437 - 8444 *
MAINTINGUER, S.I. ET AL.: "Fermentative hydrogen production by microbial consortium", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 33, no. 16, 2008, pages 4309 - 4431 *
RAJHI, H. ET AL.: "Dark fermentation: isolation and characterization of hydrogen-producing strains from sludges", INTERNATIONAL MICROBIOLOGY, vol. 16, no. 1, March 2013 (2013-03-01), pages 53 - 62 *
RAJHI, H. ET AL.: "Microbial consortia for hydrogen production enhancement", CURRENT MICROBIOLOGY, vol. 67, no. 1, July 2013 (2013-07-01), pages 30 - 35 *
WANG, X. ET AL.: "The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge", JOURNAL OF APPLIED MICROBIOLOGY, vol. 103, no. 5, 2007, pages 1415 - 1423 *
YOKOI, H. ET AL.: "H2 production from starch by a mixed culture of Clostridium buytricum and Enterobacter aerogenes", BIOTECHNOLOGY LETTERS, vol. 20, no. 2, 1998, pages 143 - 147 *
YOKOI, H. ET AL.: "Microbial hydrogen production from sweet potato starch residue", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 91, no. 1, 2001, pages 58 - 63 *
YOKOI, H. ET AL.: "Microbial production of hydrogen from starch-manufacturing wastes", BIOMASS AND BIOENERGY, vol. 22, no. 5, 2002, pages 389 - 395 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088884A1 (en) * 2016-11-08 2018-05-17 Centro De Investigación Y Asistencia En Tecnología Y Diseño Del Estado De Jalisco A.C. Method for obtaining a microbial consortium in order to produce hydrogen and hydrolysates using complex substrates
WO2023281373A1 (en) * 2021-07-08 2023-01-12 Agharkar Research Institute Of Maharashtra Association For Cultivation Of Science A liquid microbial consortium for biohydrogen generation and a process thereof

Also Published As

Publication number Publication date
ES2456776B1 (en) 2015-01-27
ES2456776A1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
Cabrol et al. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function
Ortigueira et al. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass
Sompong et al. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis
Roy et al. Biohythane production from organic wastes: present state of art
Valdez-Vazquez et al. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime
Patel et al. Whey waste as potential feedstock for biohydrogen production
Han et al. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review
Kongjan et al. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture
Pan et al. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3
Junghare et al. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters
Magrini et al. Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse
Kumar et al. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains
Ohnishi et al. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora
Sivagurunathan et al. Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition
Marone et al. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities
Zhang et al. Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 C) mixed culture fermentation
Kumar et al. High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system
Wang et al. Enhanced fermentative hydrogen production from cassava stillage by co-digestion: the effects of different co-substrates
Hassan et al. Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration
Mishra et al. Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent
Ohnishi et al. Hydrogen fermentation using lactate as the sole carbon source: solution for ‘blind spots’ in biofuel production
Sharma et al. Enhancement effect of amino acids on hydrogen production from organic fraction of municipal solid waste using co-culture of Escherichia coli and Enterobacter aerogenes
Jiang et al. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor
Singh et al. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments
Huang et al. A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832308

Country of ref document: EP

Kind code of ref document: A1