WO2014032650A1 - Procédé et dispositif de détection d'un arc électrique - Google Patents

Procédé et dispositif de détection d'un arc électrique Download PDF

Info

Publication number
WO2014032650A1
WO2014032650A1 PCT/DE2013/100296 DE2013100296W WO2014032650A1 WO 2014032650 A1 WO2014032650 A1 WO 2014032650A1 DE 2013100296 W DE2013100296 W DE 2013100296W WO 2014032650 A1 WO2014032650 A1 WO 2014032650A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant circuit
toroidal coil
parallel
capacitor
parallel resonant
Prior art date
Application number
PCT/DE2013/100296
Other languages
German (de)
English (en)
Inventor
Bernd Willer
Original Assignee
Newtos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newtos Ag filed Critical Newtos Ag
Publication of WO2014032650A1 publication Critical patent/WO2014032650A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a method and a device with which in circuits the occurrence of both parallel and serial arcs is detected with great certainty.
  • the method and the device are e.g. suitable for arc detection in photovoltaic systems (PV systems).
  • DE 10 2005 017 835 B3 shows a photovoltaic generator with a thermal switch, which responds when the temperature increases.
  • the photovoltaic generator has the disadvantage that the thermal switch triggers only at a temperature increase in its immediate vicinity. As a result, fires are often not recognized very late or at worst not at all.
  • WO 2012/022346 A9 describes a method for monitoring a PV system with regard to occurring arcing in which the current profile in the strings of the PV system is analyzed within a running time window, which is approximately 500 s, with a microcontroller. If the microcontroller registers within the time window a significant increase in current (e.g., factor 4) associated with falling below a specified voltage reference within a particular time interval (e.g., 1V for 50 ms), this is considered an indication of the occurrence of an arc.
  • a significant increase in current e.g., factor 4
  • a specified voltage reference e.g. 1V for 50 ms
  • the proposed method can detect arcs only in the development (metallic phase), but not a standing arc (gas phase). Therefore, the method for secure detection of both phases is insufficient.
  • the object of the invention is to find a method and a device with which in electrical circuits, in particular in PV systems, parallel and serial arcs with high Her probability be recognized.
  • the method should be feasible with cost-effective means.
  • the proposed method is based on the detection of the typical interference frequency spectrum of arcs, which contains frequencies of about 50 Hz to well in the megahertz range, the amplitudes decrease with increasing frequency f with 1 / f (so-called "pink noise"). For detection, a weighted amplitude demodulation is performed.
  • a toroidal coil having a ferrous core to which a capacitor is connected in parallel is used.
  • the toroidal coil and the capacitor form a parallel resonant circuit, which, since with its help arcs are detected, hereinafter also referred to as a toroidal sensor.
  • At least one (preferably exactly one) current-carrying line to be monitored for the occurrence of electric arcs is passed through the toroidal coil, usually rectilinearly, ie the current-carrying line passes through the from the ring core coil enclosed area (through the opening / the inside) of the annular coil.
  • the live line may be either a DC line (i.e., a DC line) or an AC line.
  • the parallel resonant circuit is tied to an electrical ground potential, i. the toroidal coil and the capacitor of the parallel resonant circuit are electrically conductively connected to a common ground terminal (or ground potential terminal).
  • a toroidal coil is used, whose core consists of iron powder.
  • the field lines are almost entirely internal to the core.
  • EMC electromagnetic compatibility
  • Electromagnetic compatibility describes the ability of a device (system or system) to operate satisfactorily in an electromagnetic environment.
  • favorable EMC behavior presupposes that the device in question is insensitive to external disturbances and, on the other hand, that the device itself causes only minor electromagnetic interference.
  • the special structure of the parallel oscillating circuit / toroidal sensor acting as a sensor for interference signals ensures that the frequencies of interfering signals, in particular the "pink noise", produce different levels of amplitudes.
  • Frequencies near the resonant frequency of the parallel resonant circuit induce (in the toroidal coil) comparatively high voltages (no or weak attenuation), whereas frequencies far away from the resonant frequency induce only relatively small voltages (high attenuation).
  • the material of the core of the toroidal coil influences the amplitude characteristic of the parasitic frequencies; it has been found that with a core of a soft magnetic material, such as iron powder, favorable resonant frequencies (see below) can be achieved with simultaneous strong suppression of the neighboring frequencies, whereas with hard magnetic materials, such as ferrites, comparatively higher resonance frequencies would be achieved (at the expense of the amplitude in the resonance point).
  • a soft magnetic material such as iron powder
  • hard magnetic materials such as ferrites
  • a parallel resonant circuit has proven its resonance frequency at 300 to 600 kHz, preferably at about 450 kHz or in a
  • the parallel resonant circuit has a resonant frequency in the range between 430 kHz and 480 kHz, wherein the resonant frequency is preferably in the range between 440 and 470 kHz.
  • the parallel resonant circuit may be formed with a resonance frequency of 450 kHz.
  • the signals generated in the parallel resonant circuit / toroidal sensor used for the method according to the invention are further processed, preferably as described below.
  • the electrical voltages (voltage / noise) induced in the toroidal coil are AM demodulated under rectification.
  • the AM Demodulator outputs at its output (on the output side, after demodulation) an AC-superimposed DC signal or noise signal.
  • the DC amplitude of this DC signal is approximately proportional to the voltage induced in the toroidal coil (ie to the disturbance variable).
  • AM demodulators can be used which have an input frequency range of approximately 150 kHz to 1 MHz.
  • the AM demodulators are available as integrated circuits; a discrete simplifying replacement structure is preferable for cost and availability reasons.
  • the AM demodulator may include a diode and a capacitor connected, for example, between the cathode of the diode and a ground potential terminal.
  • the DC signals generated by means of or behind the diode are fed to a controller, which is determined by the magnitude of the voltage values (eg when exceeding a voltage value of 0.2 VDC) and the time length (eg at exceeding 250 ms) of the incoming DC signals determines that an arc is present in the PV system.
  • the controller acting as an evaluation unit can thus be configured, for example, such that it detects whether a harmful arc exists or not based on the magnitude and / or the duration of the voltage signals generated by the demodulator; wherein, for example, it may be judged to be a harmful arc if the voltage value of the voltage signal output by the demodulator remains above a predetermined voltage threshold for at least a predetermined minimum time, or if the amplitude of the voltage signal output by the demodulator is greater than a predetermined amplitude threshold and / or the duration of the output from the demodulator voltage signal or voltage pulse is greater than a predetermined minimum period of time.
  • This evaluation of the duration of the DC signals by the microcontroller makes it possible to distinguish with very great certainty from (hazardous) arcs generated interference signals from other interference signals, which are caused, for example, by shorter contact arcs during switching operations (relays); whereby the signals are always transmitted to the controller (regardless of their height and duration).
  • the magnitude of the voltage value of the DC signals is approximately proportional to the energy of the arc, wherein the height of the DC signals is limited by the supply voltage / supply voltage range of the microcontroller.
  • the toroidal coil and the capacitor of the parallel resonant circuit have a common ground reference, in particular an inductive feedback from the parallel resonant circuit to the current-carrying line and the arc can be reliably suppressed, thereby avoiding (accompanied by such feedback) distortion of the induced by the arc current noise and the voltage amplitude of the demodulated signal may be formed substantially in proportion to the energy of the arc.
  • a Hall sensor can be used, which detects the current flow (including the DC current direction) through the at least one relevant current-carrying line or string line, or it is, if a corresponding software in the controller used (eg in a controller in the inverter on Arcs supervised PV system) can be implemented, carried out a voltage monitoring of the at least one current-carrying line or the (relevant) at least one string by means of the controller.
  • the Hall sensor which is particularly suitable for retrofitting into existing systems, can be installed in the same place / on the same board as the toroid sensor;
  • the at least one current-carrying line (which is present, for example, in the form of a string line of a PV system) is guided through the toroidal sensor and guided past the Hall sensor.
  • a (short) reverse current occurs, since e.g. In the case of a PV system, at the same time the respective string and the inverter are (largely) short-circuited by the arc, which leads to a discharge of the capacitors in the inverter and to the formation of a reverse current.
  • the reverse current can be detected with the Hall sensor.
  • a monitoring device for performing the described method is provided.
  • the monitoring device is designed to carry out the method for arc detection according to one of the embodiments described above, so that in the following merely is addressed to the corresponding embodiments of the monitoring device and, moreover, reference is hereby made to the corresponding explanations regarding the method.
  • the monitoring device comprises a (eg, just a single) toroidal coil having a ferruginous core and a capacitor connected in parallel with the toroidal coil such that a parallel resonant circuit is formed by the toroidal coil and the capacitor, the toroidal coil and the capacitor being electrically conductive to a common ground Reference point (eg a ground potential connection) are coupled.
  • a common ground Reference point eg a ground potential connection
  • the parallel resonant circuit may e.g. be designed such that its resonance frequency is in a range around 450 kHz, preferably in a range between 430 kHz and 480 kHz, e.g. in a range between 440 kHz and 470 kHz.
  • the monitoring device further comprises an amplifier which is connected to the parallel resonant circuit and is designed to amplify the electrical signals induced in the toroidal coil, so that by means of the amplifier e.g. which are amplified by occurring in the current-carrying line arcs in the toroidal coil induced voltage signals.
  • the amplifier can be designed in particular for current amplification of the electrical signals induced in the toroidal coil.
  • the monitoring device may further include a demodulator connected to the parallel resonant circuit and configured for amplitude demodulation (AM demodulation) of the voltage signals induced in the toroidal coil.
  • the demodulator may include a diode and a capacitor connected between the diode and a ground terminal;
  • the diode may be connected behind the amplifier such that its forward direction is directed away from the parallel resonant circuit and the amplifier, and the capacitor may be coupled thereto at the side of the diode remote from the parallel resonant circuit.
  • the amplifier has an input for receiving the electrical signal or voltage signal to be amplified and an output for outputting the amplified electrical signal or voltage signal.
  • the demodulator has an input for receiving the voltage signal to be demodulated and an output for outputting the demodulated voltage signal.
  • the amplifier is connected with its input to the parallel resonant circuit and with its output to the demodulator, so that the tapped from the toroidal coil electrical signals are first amplified and demodulated after amplification under rectification.
  • the voltage signals induced by an arc in the toroidal coil are instantaneously, i. be amplified before any other signal processing (especially before demodulation), the influence of any distortion of the voltage signals can be kept low by such signal processing, so that the voltage amplitude of the subsequently demodulated signal can be kept substantially proportional to the strength of the arc.
  • the demodulator may be connected with its output (e.g., directly) to a controller adapted to evaluate the signals demodulated by the demodulator.
  • the monitoring device may include, in addition to the toroidal sensor by means of which both parallel and serial arcs can be detected, an auxiliary sensor for detecting only parallel arcs.
  • the additional sensor may e.g. be a Hall sensor or a voltage sensor.
  • Fig. 1 A circuit for detecting arcs
  • Fig. 2 The operation of a circuit for the exclusive detection of parallel arcs.
  • the realized as a parallel resonant circuit toroidal sensor 1 (Fig. 1), with the example of serial and parallel arcs detected in PV systems, consists of the toroidal coil 2, which has an annular core of solidified iron powder and by the one on the occurrence is guided by arcs to be monitored DC or AC line (not shown) of the PV system to be monitored, and the capacitor 3, which is connected in parallel to the toroidal coil 2.
  • the resonant frequency of the toroidal sensor 1 is about 450 kHz and is an example in a frequency range between 440 kHz and 470 kHz.
  • the AM demodulator consists of the decoupling stage 5, which serves to adapt the incoming voltage signals to the subsequent stages and from which the voltage signals are amplified by a factor of e.g. about 90 voltage amplified and coupled, the diode 6, by means of which the voltage signals are simultaneously demodulated and rectified, and the capacitor 7, which smoothes the signals coming from the diode 6.
  • the DC signals thus generated are conducted into the A / D input of a controller 8 of the inverter (not shown) of the PV system and evaluated by means of a software implemented in the controller 8 of the inverter. If the required functions can not be implemented in the inverter, a separate microcontroller 8 can also be used.
  • the controller / microcontroller 8 evaluates this as the occurrence of a (mostly serial) arc in the PV system and triggers an alarm and / or a suitable action. The alarm status remains until the manual operation of a reset function. All components of the monitoring device are connected to the same ground potential 14, wherein in particular the toroidal coil 2 and the capacitor 3 of the parallel resonant circuit 1 are electrically conductively connected to a common ground potential terminal 14.
  • Fig. 2 is a PV system with a PV string, which has a plurality of PV modules 9, an inverter 10 and a circuit 1 1 for detecting parallel arcing.
  • the circuit 1 1 includes a Hall sensor (not shown) that can measure both the current level and the direction of the current in the string line 12. If a parallel arc occurs, this leads to a short circuit of the inverter 10 and to a discharge of the capacitors 13 of the inverter 10. The (short-term) reverse current caused thereby is detected by the circuit 11 by means of the Hall sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

L'invention concerne un procédé et un dispositif permettant de détecter avec une grande fiabilité l'apparition d'un arc électrique dans un circuit. Pour la détection des fréquences perturbatrices émises par les arcs électriques sous forme d'un « bruit rose », on utilise une bobine à noyau annulaire (2) contenant du fer, en parallèle de laquelle est branché un condensateur (3), la bobine à noyau annulaire et le condensateur étant reliés par un même potentiel à la masse (14) et au moins un conducteur de courant devant être contrôlé pour arcs électriques étant passé à travers la bobine à noyau annulaire.
PCT/DE2013/100296 2012-08-27 2013-08-19 Procédé et dispositif de détection d'un arc électrique WO2014032650A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012107871 2012-08-27
DE102012107871.8 2012-08-27
DE102012110687.8A DE102012110687A1 (de) 2012-08-27 2012-11-08 Verfahren zur Lichtbogenerkennung in Photovoltaikanlagen
DE102012110687.8 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014032650A1 true WO2014032650A1 (fr) 2014-03-06

Family

ID=49263072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/100296 WO2014032650A1 (fr) 2012-08-27 2013-08-19 Procédé et dispositif de détection d'un arc électrique

Country Status (2)

Country Link
DE (1) DE102012110687A1 (fr)
WO (1) WO2014032650A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082953A1 (fr) * 2014-11-25 2016-06-02 Media Broadcast Gmbh Dispositif de surveillance pour une installation d'antennes d'émission et procédé de surveillance d'une installation d'antenne d'émission
WO2020221501A1 (fr) * 2019-04-30 2020-11-05 Webasto SE Arrangement de reconnaissance d'un arc électrique dans un sous-ensemble électronique à l'aide d'un oscillateur de pierce modifié
CN113595048A (zh) * 2021-08-06 2021-11-02 国网河南省电力公司新野县供电公司 一种全补偿消弧线圈接地残流检测方法及系统
WO2021227718A1 (fr) * 2020-05-09 2021-11-18 威胜集团有限公司 Circuit de détection d'amplification à sélection de fréquence et dispositif de détection de sécurité

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2996157B1 (fr) * 2014-09-09 2016-05-25 SMA Solar Technology AG Procédé de détection et dispositif de détection d'arcs électriques dans une installation photovoltaïque

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1020410B (de) * 1955-01-26 1957-12-05 Messwandler Bau Gmbh Anordnung zum Schutz gegen von hochfrequenten Schwingungen begleitete laenger anhaltende Stoerungen und Fehler in Hochspannungsapparaten und -geraeten
WO1995025374A1 (fr) * 1994-03-16 1995-09-21 Alpha Real Ag Procede permettant de proteger une installation electrique, notamment une installation a tension continue, par ex. une installation photovoltaique, et unite de detection pour cette installation
WO1996035250A1 (fr) * 1995-05-02 1996-11-07 Siemens Energy & Automation, Inc. Procede et appareil de detection d'arcs electriques dans un systeme d'alimentation en courant alternatif par surveillance du bruit haute frequence
WO1998035237A2 (fr) * 1997-01-24 1998-08-13 Square D Company Systeme de detection d'arcs electriques
WO2000011696A1 (fr) * 1998-08-24 2000-03-02 Leviton Manufacturing Co., Inc. Dispositif d'interruption de circuit a declenchement independant et verrouillage de rearmement
WO2009019581A2 (fr) * 2007-08-07 2009-02-12 Eaton Corporation Interrupteur de circuit comprenant un circuit de test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963406A (en) * 1997-12-19 1999-10-05 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
DE10203163A1 (de) * 2002-01-28 2003-08-07 Tyco Electronics Amp Gmbh Schaltungsanordnung und Verfahren zum Detektieren eines Defektes in einem Leiter
DE102005017835B3 (de) 2005-04-18 2006-11-23 Beck Energy Gmbh Photovoltaikgenerator mit Thermoschalterelement
EP2457313B1 (fr) * 2009-07-23 2014-03-05 Enphase Energy, Inc. Procédé et appareil de détection d arcs électriques
DE102010036816A1 (de) 2010-08-03 2012-02-09 Newtos Ag Verfahren und Vorrichtung zur Überwachung und Steuerung einer Photovoltaik-Anlage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1020410B (de) * 1955-01-26 1957-12-05 Messwandler Bau Gmbh Anordnung zum Schutz gegen von hochfrequenten Schwingungen begleitete laenger anhaltende Stoerungen und Fehler in Hochspannungsapparaten und -geraeten
WO1995025374A1 (fr) * 1994-03-16 1995-09-21 Alpha Real Ag Procede permettant de proteger une installation electrique, notamment une installation a tension continue, par ex. une installation photovoltaique, et unite de detection pour cette installation
WO1996035250A1 (fr) * 1995-05-02 1996-11-07 Siemens Energy & Automation, Inc. Procede et appareil de detection d'arcs electriques dans un systeme d'alimentation en courant alternatif par surveillance du bruit haute frequence
WO1998035237A2 (fr) * 1997-01-24 1998-08-13 Square D Company Systeme de detection d'arcs electriques
WO2000011696A1 (fr) * 1998-08-24 2000-03-02 Leviton Manufacturing Co., Inc. Dispositif d'interruption de circuit a declenchement independant et verrouillage de rearmement
WO2009019581A2 (fr) * 2007-08-07 2009-02-12 Eaton Corporation Interrupteur de circuit comprenant un circuit de test

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAEBERLIN H ET AL: "Arc Detector for Remote Detection of Dangerous Arcs on the DC Side of PV Plants", 22ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, MILANO, ITALY,, 3 September 2007 (2007-09-03), pages 1 - 6, XP002600942 *
JAY JOHNSON ET AL: "Differentiating series and parallel photovoltaic arc-faults", PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012 38TH IEEE, IEEE, 3 June 2012 (2012-06-03), pages 720 - 726, XP032257926, ISBN: 978-1-4673-0064-3, DOI: 10.1109/PVSC.2012.6317708 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082953A1 (fr) * 2014-11-25 2016-06-02 Media Broadcast Gmbh Dispositif de surveillance pour une installation d'antennes d'émission et procédé de surveillance d'une installation d'antenne d'émission
WO2020221501A1 (fr) * 2019-04-30 2020-11-05 Webasto SE Arrangement de reconnaissance d'un arc électrique dans un sous-ensemble électronique à l'aide d'un oscillateur de pierce modifié
US11843237B2 (en) 2019-04-30 2023-12-12 Webasto SE Device for detecting an electric arc in an electronic assembly using a modified pierce oscillator
WO2021227718A1 (fr) * 2020-05-09 2021-11-18 威胜集团有限公司 Circuit de détection d'amplification à sélection de fréquence et dispositif de détection de sécurité
CN113595048A (zh) * 2021-08-06 2021-11-02 国网河南省电力公司新野县供电公司 一种全补偿消弧线圈接地残流检测方法及系统

Also Published As

Publication number Publication date
DE102012110687A1 (de) 2014-05-15

Similar Documents

Publication Publication Date Title
DE69024975T2 (de) Spektrumerfassung von lichtbögen und radiofrequenzen
WO2014032650A1 (fr) Procédé et dispositif de détection d'un arc électrique
DE102012109749A1 (de) Verfahren und Vorrichtung zum Erkennen eines Lichtbogens in einem Gleichstromkreis
DE102018114425A1 (de) Schaltüberwachungsvorrichtung
DE102018114540B3 (de) Verfahren zur Erkennung von Lichtbögen in Gleichstromkreisen
DE102018115104A1 (de) Streuverlustdetektor, drahtlosleistungsübertragungsvorrichtung, drahtlosleistungsempfangsvorrichtung und drahtlosleistungsübertragungssystem
DE4300736A1 (fr)
EP2765665B1 (fr) Dispositif de détection de courants électriques différentiels, notamment de courants mélangés constitués de courant continu lisse et de courants alternatifs
DE112019000934T5 (de) Lichtbogenentladungs-Erfassungsvorrichtung
WO1999056140A1 (fr) Procede et dispositif pour la surveillance d'une ligne d'electrode d'une installation bipolaire de transport de courant continu a haute tension (c.c.h.t)
EP3997469B1 (fr) Détection d'une décharge partielle
EP3757580B1 (fr) Dispositif de détection de courants différentiels dans des installation électriques alimentées en courant continu
DE102017110955A1 (de) Detektion eines Schutzleiterausfalls mittels aktiver Schirmung
DE2731453C3 (de) Erdschlußdetektor
EP3080885B1 (fr) Procédé et équipement de génération d'un signal de résonance indiquant la présence d'une oscillation ferrorésonante dans une installation électrique
EP2269095B1 (fr) Dispositif pour détecter des éléments conducteurs métalliques
EP3599693A1 (fr) Identification d'un arc électrique
EP3137913B1 (fr) Détecteur de court-circuit
CH635710A5 (de) Einrichtung fuer den fehlerrichtungs-vergleichsschutz fuer eine leitung eines elektrischen netzes.
DE102010053816A1 (de) Vorrichtung zum Erkennen eines Lichtbogens und zugehöriges Verfahren
EP3715883A1 (fr) Détection d'une décharge partielle
EP1594207B1 (fr) Dispositif de protection pour courants de fuite alternatifs et continues
WO2020064101A1 (fr) Nœud de capteur radioélectrique
EP3835799A1 (fr) Agencement de circuit pour applications de sécurité
DE102004037193A1 (de) Vorrichtung und Verfahren zur Erkennung von Lichtbögen in einem Stromkreis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13770624

Country of ref document: EP

Kind code of ref document: A1