WO2014032501A1 - 一种信号传输方法及用户终端 - Google Patents

一种信号传输方法及用户终端 Download PDF

Info

Publication number
WO2014032501A1
WO2014032501A1 PCT/CN2013/080910 CN2013080910W WO2014032501A1 WO 2014032501 A1 WO2014032501 A1 WO 2014032501A1 CN 2013080910 W CN2013080910 W CN 2013080910W WO 2014032501 A1 WO2014032501 A1 WO 2014032501A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
actual
spectral density
transmit
Prior art date
Application number
PCT/CN2013/080910
Other languages
English (en)
French (fr)
Inventor
吴茜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014032501A1 publication Critical patent/WO2014032501A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present invention claims the priority of the Chinese patent application filed on August 28, 2012 by the Chinese Patent Office, the application number is 201210310344.1, and the invention name is "a signal transmission method and user terminal". The entire contents are incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications technologies, and in particular, to a signal transmission method and a user terminal.
  • an uplink resource allocated to a user terminal by a network side device is allowed to perform physical uplink shared channel (PUSCH) information transmission, a PUSCH, and an uplink physical control channel on a non-contiguous resource (Physical Uplink Shared Channel, PUSCH) Uplink Control Channel, PUCCH) simultaneous transmission of information and introduction of uplink carrier aggregation technology, so that two or more resource clusters can be simultaneously transmitted on one radio frequency link, and each resource cluster can include at least one resource block (Resource block) , RB).
  • PUSCH physical uplink shared channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the power back-off is required, so that the radio frequency power amplifier on the user terminal enters the linear working area, thereby reducing the size of the intermodulation products, so that the radio frequency index can meet the requirements.
  • MPR maximum power reduction
  • Embodiments of the present invention provide a signal transmission method and a user terminal, which optimizes a maximum power backoff amount used when power backing is performed to reduce the size of an intermodulation product.
  • a first aspect of the embodiments of the present invention provides a signal transmission method, including:
  • the maximum value of the maximum power back-off amount is used as a reference back-off amount of power, and the actual transmission power spectral density is adjusted according to the reference back-off amount of the power to transmit a signal.
  • the method before adjusting the actual transmit power spectral density to transmit the signal according to the reference backoff amount of the power, the method further includes: calculating, by the user terminal, the multiple non-contiguous resources The average power spectral density of the transmitted signal on the cluster, and the relative difference between the maximum power spectral density of the computing system and the average power spectral density;
  • the method further includes: using a difference between the reference backoff amount of the power and the relative difference as an actual maximum power of the user terminal. The amount of back-off is adjusted, and the actual transmit power spectral density is adjusted according to the actual maximum power back-off amount to transmit a signal.
  • the method before adjusting the actual transmit power spectral density according to the reference backoff amount of the power to transmit the signal, the method further includes: When a plurality of intermodulation products of the same order are superimposed on the position, determining a superposition power of the plurality of intermodulation products of the same order at the one position;
  • a third implementation manner of the first aspect when a plurality of intermodulation products of the same order are superimposed at a plurality of locations, respectively, determining the respective locations a superposition power of a plurality of intermodulation products of the same order, and selecting a maximum value of the superposition power corresponding to each of the positions;
  • the method further includes: subtracting a value of the reference backoff amount of the power from a difference between the relative difference and the maximum value of the superimposed power as a real maximum power backoff And adjust the actual transmit power spectral density according to the actual maximum power back-off amount to transmit the signal.
  • a second aspect of the embodiments of the present invention provides a user terminal, including:
  • a back-off amount determining unit configured to determine a maximum power back-off MPR amount corresponding to each order intermodulation product in a frequency interval of the radio frequency indicator
  • a reference determining unit configured to use a maximum value of the maximum power back-off amount determined by the back-off amount determining unit as a reference back-off amount of power
  • a signal transmission unit configured to adjust the actual transmit power spectral density according to the reference backoff amount of the power determined by the reference determining unit to transmit the signal.
  • the user terminal further includes: a relative difference calculating unit, configured to calculate an average power spectral density of the signal transmitted by the user terminal on the plurality of discontinuous resource clusters, and Calculating a relative difference between a maximum power spectral density of the system and the average power spectral density;
  • the signal transmission unit is further configured to use, by the reference determining unit, a difference between a reference backoff amount of power and a relative difference calculated by the relative difference calculation unit as an actual maximum power backoff amount of the user terminal, and The actual transmit power spectral density is adjusted according to the actual maximum power back-off amount to transmit a signal.
  • the user terminal further includes:
  • a superposition power determining unit configured to determine a superposition power of a plurality of intermodulation products of the same order at the one position when a plurality of intermodulation products of the same order are superimposed at one position;
  • the signal transmission unit is further configured to subtract, from the reference backoff amount of the power determined by the reference determining unit, a value obtained by subtracting the difference between the relative difference and the superimposed power as an actual maximum power backoff amount, and according to the The actual maximum power back-off amount adjusts the actual transmit power spectral density to transmit the signal.
  • the superposition power determining unit is further configured to: when there are multiple When the product is superimposed, the superposition powers of the plurality of intermodulation products of the same order at the respective positions are respectively determined, and the maximum value of the superposition power corresponding to the respective positions is selected;
  • the signal transmission unit is further configured to subtract, by using a reference backoff amount of the power determined by the reference determining unit, a value obtained by subtracting the difference between the relative difference and the maximum value of the superimposed power as an actual maximum power backoff amount, and The actual transmit power spectral density is adjusted according to the actual maximum power back-off amount to transmit a signal.
  • the maximum power backoff amount corresponding to each inter-modulation product in the frequency interval of the radio frequency indicator needs to be determined first, and the determined The maximum value of the maximum power back-off amount is used as the reference back-off amount of the power, and the actual transmission power spectral density is adjusted according to the reference back-off amount to transmit the signal.
  • the user terminal transmits the signal by the power backoff method, and reduces the size of the generated intermodulation product, so that the radio frequency indicator on the uplink channel satisfies the requirement; and in this implementation, the radio frequency is taken into consideration when determining the maximum power backoff amount.
  • the requirement of the indicator in the corresponding frequency band, so that a suitable maximum power backoff amount can be determined, and the determined maximum power backoff amount is optimized.
  • FIG. 1 is a flowchart of a signal transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the relationship between each radio frequency indicator and each frequency interval when the channel bandwidth of the user terminal is 10 MHz;
  • FIG. 3 is a flowchart of another signal transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of comparison of intermodulation products generated by a user terminal transmitting signals through maximum power spectral density and transmitting signals by average power spectral density;
  • FIG. 5 is a flowchart of another signal transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another user terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another user terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a signal transmission method, which is mainly a method for a user terminal to transmit a signal on a non-contiguous uplink resource cluster.
  • the flowchart is as shown in FIG. 1 and includes:
  • Step 101 Determine a maximum power backoff amount corresponding to each order (each order) intermodulation product in a frequency interval corresponding to the radio frequency indicator.
  • the resource block is the smallest transmission unit of the transmission resource, at least one A contiguous resource block can form a resource cluster.
  • the radio frequency index needs to meet the requirements.
  • the value of the radio frequency index needs to be within a certain range. Since each radio frequency index requires different values in different situations, the specific requirements are required. It mainly depends on the channel bandwidth (CBW) of the user terminal, the frequency range, and the coexistence signaling sent by the network.
  • CBW channel bandwidth
  • the maximum power required by the SE in some frequency bands is the first preset power.
  • the maximum power required by the SEM in other frequency bands is the second preset power.
  • the CBW is certain, and the user terminal needs to determine which frequency band needs to be considered in which frequency band, that is, the correspondence between the frequency interval and the radio frequency indicator, to determine each radio frequency indicator.
  • MPR maximum power reduction
  • the corresponding relationship may be preset in the user terminal. When the user terminal is triggered to perform power backoff, the corresponding relationship may be taken out from the storage space of the user terminal.
  • each radio frequency indicator and each frequency interval are Relationship diagram, where the abscissa is frequency and the unit is megahertz (MHz); if the radio frequency index is SEM or SE, the ordinate is the Power Spectral density (PSD) of the signal transmitted by the user terminal, and the unit is decibel millivolt. (dBm)/MHz, if the RF indicator is ACLR, then the ordinate is the ratio of the signal power of the adjacent channel to the signal power of the main channel, then the correspondence between the RF indicator and the frequency interval is as shown in Table 1:
  • ACLR1 and ACLR2 in Table 1 above are ACLR values in two different cases; SEM1 is when CBW is greater than 5MHz The maximum PSD required is -10 dBm/MHz, SEM2 is -13 dBm/MHz when CBW is greater than 5 MHz, and SEM3 is the maximum PSD required when CBW is greater than 5 MHz. dBm/MHz; SE1 requires a maximum PSD of -30 dBm/MHz when CBW is greater than 1 GHz, and SE2 is -36 dBm/MHz when CBW is less than 1 GHz.
  • Table 1 is only for explaining the correspondence between the frequency interval and the RF index.
  • the data given is only a specific example. In other cases, there may be different correspondence data.
  • the user terminal After determining the frequency interval corresponding to the radio frequency indicator, the user terminal needs to go through a large number of experiments to determine the maximum power backoff amount, but in the course of the experiment, the user may specifically pass the user terminal in two non- The adjustment of the transmission power spectral density on successive resource blocks, changing the size of the intermodulation products generated when the signal is transmitted, and then the difference between the threshold of the RF indicator corresponding to the frequency interval in which the intermodulation product is located To continuously adjust the transmit power spectral density, so that the user terminal finally adjusts the actual transmit power spectral density according to the obtained maximum power backoff amount to generate intermodulation products when transmitting signals, and a certain radio frequency indicator can be in the corresponding frequency interval. fulfil requirements.
  • the maximum value required for each radio frequency indicator in different frequency bands under different CB W may be preset in the user terminal, and considering the actual application of the user terminal, in order to save the storage space of the user terminal, a specific CBW may be preset.
  • the frequency component is the product of intermodulation.
  • the maximum power backoff corresponding to each intermodulation product in the frequency interval corresponding to the radio frequency index is determined by simulation or test, and is recorded as MPR , where i indicates the number of the radio frequency indicator to be considered, j Indicates the order of the intermodulation, indicating that the user terminal rolls back when transmitting a signal.
  • Step 102 The user terminal determines, as the reference backoff amount of the power, the maximum power back-off amount corresponding to each order intermodulation product in the frequency interval of the determined radio frequency indicator, that is, the maximum value of the maximum power back-off amount determined in the foregoing step 101.
  • Step 103 The user terminal adjusts the actual transmit power spectral density according to the reference backoff amount of the power to transmit the signal.
  • the user terminal can subtract the above reference backoff based on the current transmit power spectral density.
  • the amount is obtained from the actual transmit power spectral density, and the signal is transmitted according to the actual transmit power spectral density. It can be seen that, in the embodiment of the present invention, when the user terminal transmits a signal on a non-contiguous resource block in the uplink channel, it is necessary to first determine a maximum power backoff amount corresponding to each order intermodulation product in the frequency range of the radio frequency indicator, which will be determined.
  • the maximum value of the maximum power back-off amount is used as the reference back-off amount of power, and the actual transmission power spectral density is adjusted according to the reference back-off amount to transmit the signal.
  • the user terminal transmits the signal by the method of power backoff, which reduces the size of the generated intermodulation product, so that the radio frequency indicator on the uplink channel can meet the requirement; and in this implementation, considering the maximum power backoff amount is considered.
  • the reference backoff amount is the maximum maximum power backoff amount.
  • the PSD decreases, and the intermodulation size generated by the small PSD also becomes smaller, in order to make the determined maximum power backoff amount.
  • step 104 that is, calculate an average of the signal transmitted by the user terminal on multiple non-contiguous resource clusters. Power spectral density (denoted as PSD w ), and the relative difference between the maximum power spectral density and the average power spectral density of the computing system
  • the relative difference needs to be considered when determining the actual maximum power backoff amount.
  • the user terminal needs to calculate the reference backoff amount of the power determined in step 102 and the step 104.
  • the relative difference of the difference is M ⁇ M ⁇ H ⁇ 1 as the actual maximum power backoff amount of the user terminal, and the actual transmit power spectral density is determined according to the actual maximum power backoff amount to transmit the signal.
  • the abscissa indicates the frequency
  • the ordinate indicates the power spectral density, that is, the PSD
  • the two non-contiguous resource clusters of the uplink channel respectively include only one resource block, that is, the resource blocks 1 and 50 (the oblique in FIG. 4)
  • the portion of the line fill) and the user terminal transmits the signal through the maximum power spectral density
  • the resulting intermodulation product, IMD (RBI, RB50) (the portion filled with diagonal lines in Figure 4), is the largest.
  • one resource cluster includes resource blocks 1 and 2
  • another resource cluster includes resource blocks 50 and 51, considering the actual power spectral density of the signal actually transmitted by the user terminal on the resource block.
  • IMDs intermodulation products
  • resource blocks 1 and 2 which are intermodulation products formed between resource blocks 50 and 51, respectively.
  • the user terminal may subtract the relative difference calculated in step 104 and the superimposed power determined in step 105 from the reference backoff amount of the power determined in step 102.
  • N The order of the products for intermodulation.
  • the value obtained by the difference is N.
  • the actual transmission power spectral density is adjusted according to the actual maximum power back-off amount to transmit the signal, that is, the actual power spectral density is obtained by subtracting the actual maximum power back-off amount based on the transmission power spectral density, and according to the actual Power spectral density to transmit signals.
  • step 103 After the user terminal performs the above steps 104 and 105, during the execution of step 103,
  • APSD2 APSD ⁇ -ceil ⁇ —— 3 ⁇ 4 V U )
  • the difference between the above relative difference and the superimposed power is ⁇ .
  • a negative value may occur, and the maximum value of ⁇ 2 and 0 is calculated when determining the maximum power back-off amount.
  • APSD2 Max(0, APSDl -ceil ⁇ —— 3 ⁇ 4 V U ))
  • the user terminal may subtract the difference between the relative difference calculated in step 104 and the maximum value of the superimposed power determined in step 105 by the reference backoff amount of the power determined in step 102.
  • the maximum power back-off amount yields the actual power spectral density and transmits the signal according to the actual power spectral density.
  • the user terminal when the user terminal performs the above steps 104 and 105, the user terminal can simultaneously perform The rows may also be executed sequentially. Only one of the possible implementation sequences is shown in FIG. 5; and there is no absolute order relationship between the above steps 101 to 102 and step 104, which may be performed simultaneously or sequentially, as shown in FIG. Only one possible implementation method is shown; and there is no absolute order relationship between the above steps 101 to 102 and step 105.
  • the embodiment of the present invention further provides a user terminal, where the user terminal supports a non-contiguous uplink channel, and the structure diagram 6 includes:
  • the back-off amount determining unit 11 is configured to determine a maximum power back-off MPR amount corresponding to each order intermodulation product in the frequency range of the radio frequency indicator. Specifically, the back-off amount determining unit 11 may first obtain the frequency interval corresponding to the radio frequency index, which may be as shown in Table 1 above, and then obtain a maximum power back-off amount through a large number of experiments, which may be based on the user terminal in this process. The magnitude of the multi-order intermodulation products generated when transmitting signals on two non-contiguous resource blocks, and the difference between the thresholds required by the radio frequency indicators corresponding to the frequency interval in which the intermodulation products are located continuously adjusts the power backoff amount. When the user terminal finally generates an intermodulation product according to the obtained maximum power backoff amount, a certain radio frequency indicator can meet the requirement in the corresponding frequency interval.
  • the reference determining unit 12 is configured to use the maximum value of the maximum power back-off amounts determined by the back-off amount determining unit 11 as a reference back-off amount of power.
  • the back-off amount determining unit 11 may determine a plurality of maximum power back-off amounts, which may be specifically as shown in Table 2 above. If not described herein, the reference back-off amount of the power determined by the reference determining unit 12 is a plurality of maximum powers. The maximum amount of backlash.
  • the signal transmission unit 13 is configured to adjust the actual transmit power spectral density according to the reference backoff amount of the power determined by the reference determining unit 12 to transmit a signal. Specifically, the signal transmission unit 13 may be based on the current transmit power spectral density. The above-mentioned reference back-off amount is subtracted to obtain the actual transmission power spectral density, and the signal is transmitted according to the actual transmission power spectral density.
  • the backoff amount determining unit 11 when the signal is transmitted on the non-contiguous uplink channel, the backoff amount determining unit 11 needs to determine the maximum power backoff amount corresponding to each intermodulation product in the frequency range of the radio frequency indicator, and the reference The determining unit 12 will determine the maximum value of the determined maximum power back-off amount It is the reference back-off amount of power, and is transmitted by the signal transmission unit 13.
  • the user terminal transmits the signal by the power backoff method, and reduces the size of the generated intermodulation product, so that the radio frequency indicator on the uplink channel satisfies the requirement; and in this implementation, the radio frequency is taken into consideration when determining the maximum power backoff amount.
  • the user terminal may include, in addition to the structure of FIG. 6, a relative difference calculating unit 14 and a superimposing power determining unit 15, specifically:
  • the relative difference calculation unit 14 is configured to calculate an average power spectral density of the signal transmitted by the user terminal on the plurality of resource clusters, and calculate a relative difference between the maximum power spectral density of the system and the average power spectral density.
  • the superimposed power determining unit 15 is configured to determine a superimposed power of a plurality of intermodulation products of the same order at the one position when a plurality of intermodulation products of the same order are superimposed at one position, for example, c g / . /( 10 * log l0(N inter _ mod ) )
  • the signal transmission unit 13 also needs to consider that when the user terminal actually transmits a signal, the actual PSD of the user terminal decreases as the non-contiguous resource blocks increase, and the intermodulation generated by the small PSD The size also becomes smaller.
  • the relative difference calculation unit 14 is required to calculate the relative difference between the maximum power spectral density of the system and the average power spectral density of the actual transmission signal of the user terminal, and then the signal transmission unit 13 that the reference determining unit 12 determines the difference between the reference backoff amount of power and the relative difference as the actual maximum power backoff amount of the user terminal, and adjusts the actual transmission according to the actual maximum power backoff amount. Power spectral density to transmit signals.
  • the user terminal when determining the actual maximum power backoff amount, the user terminal needs to consider the superposition of multiple intermodulation products of the same order in at least one location, if only one location is considered Superimposing a same number of order intermodulation product, superimposing the power determining unit 15 is determined by the power of the superposed position, 13 is determined by the reference signal transmission unit of the power unit 12 determines the reference relative subtracting the amount of retraction superimposing the difference value of the difference between the power obtained as the actual maximum amount of power back-off, and adjust the actual transmit power spectral density according to the actual maximum amount of transmission power backoff signal; if there are at least two need to consider positions on the When a plurality of intermodulation products of the same order are superimposed, the superimposition power determining unit 15 respectively determines the superimposing powers of the plurality of intermodulation products of the same order at each position, and selects the maximum value of the superimposed power corresponding to each position, and transmits the signal.
  • the unit 13 returns the value obtained by subtracting the difference between the relative difference and the superimposed power maximum value by the reference back-off amount of the power determined by the reference determining unit 12 as the actual maximum power back-off amount, and returns according to the actual maximum power.
  • the demodulation adjusts the actual transmit power spectral density to transmit the signal.
  • FIG. 8 Another embodiment of the present invention provides another user terminal.
  • the structure of the user terminal is as shown in FIG. 8.
  • the memory 20, the processor 21, the input device 23 and the output device 24 are respectively connected to the bus, wherein:
  • the memory 20 is used to store data input from the input device 23, and may also store information such as necessary files for processing the data by the processor 21;
  • the input device 23 and the output device 24 are ports for the user terminal to communicate with other settings.
  • the processor 21 may perform the following steps: determining the maximum power back-off amount corresponding to each order intermodulation product in the frequency interval of each radio frequency indicator. Specifically, the maximum power backoff amount may be determined according to an intermodulation product generated when the output device 24 transmits signals on two non-contiguous resource blocks; and the maximum value of the maximum power backoff amount is used as a reference of the power. After the output device 24 obtains the reference back-off amount of power from the processor 21, the actual transmit power spectral density is adjusted according to the reference back-off amount of the power to transmit a signal.
  • the processor 21 may further calculate an average power spectral density of the signal transmitted by the user terminal on the plurality of non-contiguous resource clusters, and calculate a relative difference between the maximum power spectral density of the system and the average power spectral density, and The difference between the reference backoff amount of power and the relative difference calculated by the relative difference calculating unit is used as the actual maximum power backoff amount of the user terminal, such that the output device 24
  • the actual maximum power backoff amount can be obtained from the processor 21, and the actual transmit power spectral density is adjusted according to the actual maximum power backoff amount to transmit the signal.
  • the processor 21 may also determine the superposition power of the plurality of intermodulation products of the same order at the one location, and the power The reference back-off amount minus the value obtained by the difference between the relative difference and the superimposed power is taken as the actual maximum power back-off amount, so that the output device 24 can obtain the actual maximum power back-off amount from the processor 21, and according to the The actual maximum power back-off amount adjusts the actual transmit power spectral density to transmit a signal; when there are multiple intermodulation products of the same order superimposed at a plurality of positions, the processor 21 may respectively determine the same order at the respective positions.
  • the superimposed power of the plurality of intermodulation products, and selecting the maximum value of the superimposed power corresponding to the respective positions, and subtracting the relative difference and the superimposed power from the reference backoff amount of the power determined by the reference determining unit The value obtained by the difference between the values is taken as the actual maximum power back-off amount, so that the output device 24 can obtain the actual maximum power back-off amount from the processor 21, and according to Said actual maximum power backoff amount adjusting actual transmit power spectral density of the transmitted signal.
  • the processor 21 may calculate according to the following formula. That is, the superimposed power is: ⁇ . Wherein said N.
  • the m. d is the number of intermodulation products of the same order at that position.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: Read only memory (ROM), random access memory (RAM), magnetic or optical disk, and the like.

Abstract

本发明实施例公开了信号传输方法及用户终端,应用于通信技术领域。用户终端在非连续的上行资源块上传输信号时,确定射频指标的频率区间内各阶互调产物对应的最大功率回退量,将确定的最大功率回退量中的最大值作为功率的基准回退量,并根据该基准回退量调整实际发射功率谱密度来传输信号。通过本发明的信号传输方法,减小了互调产物的大小,使得上行信道上的射频指标满足要求;且在确定最大功率回退量时考虑到射频指标在相应的频段内的要求,可以确定出较为合适的最大功率回退量,优化了确定的最大功率回退量。

Description

一种信号传输方法及用户终端 本申请要求于 2012 年 08 月 28 日提交中国专利局、 申请号为 201210310348.1、发明名称为"一种信号传输方法及用户终端"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 特别涉及信号传输方法及用户终端。
背景技术 在移动通信系统中, 网络侧设备给用户终端分配的上行资源中允许在 非连续的资源上进行物理共享信道 (Physical Uplink Shared Channel , PUSCH )信息的传输、 PUSCH和上行物理控制信道( Physical Uplink Control Channel, PUCCH )信息的同传以及上行载波聚合技术的引入, 使得在一个 射频链路上可以有两个及以上的资源簇同时传输, 每个资源簇可以包括至 少一个资源块(Resource block, RB )。
在实际的应用中, 由于发射机射频通道的非线性, 这种多个资源簇同 时传输时会产生互调产物, 资源簇在系统带宽中的位置和大小不同会在不 同位置产生互调产物, 从而对不同的射频指标产生影响, 比如邻道抑制比 ( Adjacent Channel Leakage Ratio , ACLR ) , 杂散稿射模板 ( Spurious Emission Mask, SEM )的参数或杂散稿射( Spurious emission, SE )等, 使 得这些射频指标无法满足要求。
现有技术中, 为了使得射频指标能满足要求, 就需要进行功率回退, 使得用户终端上的射频功率放大器进入线性工作区, 从而减小了互调产物 的大小, 使得射频指标能满足要求, 但是按照现有的方法确定最大功率回 退(Maximum Power Reduction, MPR )量后, 在某些情况下, 比如两个资 源簇之间相隔较近等情况下, 会造成过多的不必要的功率回退量, 牺牲了 系统增益。
发明内容 本发明实施例提供一种信号传输方法及用户终端, 优化了为了减小互 调产物大小而进行的功率回退时使用的最大功率回退量。
本发明实施例的第一方面, 提供一种信号传输方法, 包括:
确定射频指标的频率区间内各阶互调产物对应的最大功率回退 MPR 量;
将所述最大功率回退量中的最大值作为功率的基准回退量, 并根据所 述功率的基准回退量调整实际发射功率谱密度来传输信号。
在第一方面的第一种可能的实现方式中, 在根据所述功率的基准回退 量调整实际发射功率谱密度来传输信号之前, 还包括: 计算用户终端在所 述多个非连续的资源簇上传输信号的平均功率谱密度, 及计算系统最大功 率谱密度与所述平均功率谱密度的相对差;
则所述根据所述功率的基准回退量调整实际发射功率谱密度来传输信 号具体包括: 将所述功率的基准回退量与所述相对差的差值作为所述用户 终端的实际最大功率回退量, 并按照所述实际最大功率回退量调整实际发 射功率谱密度来传输信号。
结合第一方面的第一种实现方式, 在第一方面的第二种实现方式中, 在根据所述功率的基准回退量调整实际发射功率谱密度来传输信号之前, 还包括: 当在一个位置上有多个相同阶数的互调产物叠加时, 确定所述一 个位置上相同阶数的多个互调产物的叠加功率;
则所述根据所述功率的基准回退量调整实际发射功率谱密度来传输信 号具体包括: 将所述功率的基准回退量减去所述相对差与所述叠加功率之 差得到的值作为实际最大功率回退量, 并按照所述实际最大功率回退量调 整实际发射功率谱密度来传输信号。
结合第一方面的第二种实现方式, 在第一方面的第三种实现方式中, 当在多个位置上分别有多个相同阶数的互调产物叠加时, 分别确定所述各 个位置上相同阶数的多个互调产物的叠加功率, 并选择所述各个位置对应 叠加功率的最大值;
则所述根据所述功率的基准回退量传输信号具体包括: 将所述功率的 基准回退量减去所述相对差与所述叠加功率最大值之差得到的值作为实际 最大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密 度来传输信号。
本发明实施例的第二方面, 提供一种用户终端, 包括:
回退量确定单元, 用于确定射频指标的频率区间内各阶互调产物对应 的最大功率回退 MPR量;
基准确定单元, 用于将所述回退量确定单元确定的所述最大功率回退 量中的最大值作为功率的基准回退量;
信号传输单元, 用于根据所述基准确定单元确定的功率的基准回退量 调整实际发射功率谱密度来传输信号。
在第二方面的第一种可能的实现方式中, 用户终端, 还包括: 相对差计算单元, 用于计算用户终端在所述多个非连续的资源簇上传 输信号的平均功率谱密度, 及计算系统最大功率谱密度与所述平均功率谱 密度的相对差;
所述信号传输单元, 还用于将所述基准确定单元确定功率的基准回退 量与所述相对差计算单元计算的相对差的差值作为所述用户终端的实际最 大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度 来传输信号。
结合第二方面的第一种实现方式, 在第二方面的第二种可能的实现方 式中, 用户终端还包括:
叠加功率确定单元, 用于当在一个位置上有多个相同阶数的互调产物 叠加时, 确定所述一个位置上相同阶数的多个互调产物的叠加功率;
所述信号传输单元, 还用于将所述基准确定单元确定的功率的基准回 退量减去所述相对差与所述叠加功率之差得到的值作为实际最大功率回退 量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来传输信号。
结合第二方面的第二种实现方式, 在第二方面的第三种可能的实现方 式中, 所述叠加功率确定单元, 还用于当在多个位置上分别有多个相同阶 数的互调产物叠加时, 分别确定所述各个位置上相同阶数的多个互调产物 的叠加功率, 并选择所述各个位置对应叠加功率的最大值;
所述信号传输单元, 还用于将所述基准确定单元确定的功率的基准回 退量减去所述相对差与所述叠加功率最大值之差得到的值作为实际最大功 率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来传 输信号。
可见, 在本发明实施例中, 用户终端在上行信道中非连续的资源块上 传输信号时, 需要先确定射频指标的频率区间内各阶互调产物对应的最大 功率回退量, 将确定的最大功率回退量中的最大值作为功率的基准回退量, 并根据基准回退量来调整实际发射功率谱密度来传输信号。 这样用户终端 通过功率回退的方法传输信号, 减小了产生的互调产物的大小, 从而使得 上行信道上的射频指标满足要求; 且本实施中, 在确定最大功率回退量时 考虑到射频指标在相应的频段内的要求, 这样可以确定出较为合适的最大 功率回退量, 优化了确定的最大功率回退量。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1是本发明实施例提供的一种信号传输方法流程图;
图 2是在用户终端的信道带宽为 10MHz的情况下, 各个射频指标与各 个频率区间的关系示意图;
图 3是本发明实施例提供的另一种信号传输方法流程图;
图 4是用户终端通过最大功率谱密度传输信号与通过平均功率谱密度 传输信号所产生的互调产物的比较示意图;
图 5是本发明实施例提供的另一种信号传输方法流程图;
图 6是本发明实施例提供的一种用户终端的结构示意图;
图 7是本发明实施例提供的另一种用户终端的结构示意图;
图 8是本发明实施例提供的另一种用户终端的结构示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例提供一种信号传输方法, 主要是用户终端在非连续的上 行资源簇上传输信号的方法, 流程图如图 1所示, 包括:
步骤 101 , 确定射频指标对应的频率区间内各阶(各个阶数)互调产物 对应的最大功率回退量。 其中资源块是传输资源的最小传输单元, 至少一 个连续的资源块可以组成一个资源簇。
可以理解, 当用户终端在上行非连续的任意两个资源簇上传输信号时, 会产生互调产物, 为了减少互调产物需要进行功率回退, 即减小用户终端 的发射功率, 同时当用户终端按照回退后的功率传输信号时, 需要使得射 频指标能满足要求, 主要是射频指标的值需要在一定的范围内, 由于每个 射频指标在不同情况下要求的值都不同, 其具体要求主要取决于用户终端 的信道带宽(Channel Bandwidth, CBW )、 频率范围和网络下发的共存信令 等因素, 比如在 CBW—定时, 在某些频段内 SE要求的最大功率为第一预 置功率, 而另一些频段内 SEM所要求的最大功率为第二预置功率等。 这样 对于用户终端所处的当前网络来说, 其 CBW是一定的, 就需要用户终端先 确定在哪些频段需要考虑哪个射频指标, 即频率区间与射频指标的对应关 系, 才能确定每个射频指标的要求, 从而针对不同射频指标的要求来确定 合适的最大功率回退( Maximum Power Reduction, MPR )量。 其中该对应 关系可以是预置在用户终端, 当用户终端被触发进行功率回退时, 可以从 用户终端的存储空间中取出该对应关系。
例如图 2所示为在用户终端的上行信道带宽为 10MHz的情况下, 其中 最高频率 (记为 fliigh )为 5MHz, 最低频率(记为 flow )为 -5MHz时, 各 个射频指标与各个频率区间的关系示意图, 其中横坐标为频率, 单位为兆 赫兹(MHz ); 如果射频指标是 SEM或 SE, 则纵坐标为用户终端传输信号 的功率谱密度( Power Spectral density, PSD ),单位为分贝毫伏( dBm )/MHz, 如果射频指标是 ACLR, 则纵坐标为相邻信道的信号功率与主信道的信号 功率的比值, 则射频指标与频率区间的对应关系如下表 1所示:
表 1 射频指标与频率区间的对应关系 低频保护区域 高频保护区域
射频指标
fL fH fL fH
ACLR1 flow flow - 5 fhigh fhigh+5 ACLR2 flow - 5 flow - 10 fhigh+5 fhigh+10
SEMI flow - 1 flow - 5 fhigh+1 fhigh+5
SEM2 flow - 5 flow - CBW fhigh+5 fhigh+CBW
SEM3 flow - CBW flow -CBW-5 fhigh +CBW fhigh+CBW+5
SE1 flow -CBW-5 flow -CBW- 15 fhigh+CBW+5 fhigh+CBW+15
SE2 flow -CBW-5 flow -CBW- 15 fhigh+CBW+5 fhigh+CBW+15 需要说明的是, 上述表 1中 ACLR1和 ACLR2是在两种不同情况下的 ACLR值; SEM1 是当 CBW 大于 5MHz 时所要求的最大 PSD 即为 -10 dBm/MHz, SEM2 是当 CBW 大于 5MHz 时所要求的最大 PSD 即为 -13 dBm/MHz, SEM3 是当 CBW 大于 5MHz 时所要求的最大 PSD 即为 -25 dBm/MHz; SE1当 CBW大于 1GHz时所要求的最大 PSD即为 -30 dBm/MHz, SE2是当 CBW小于 1GHz时所要求的最大 PSD即为 -36 dBm/MHz。
上述表 1 中只是为了说明频率区间与射频指标的对应关系, 其中给出 的数据只是一个具体的例子, 在其它情况下可以有不同的对应关系数据。
用户终端在确定了射频指标对应的频率区间后, 在确定最大功率回退 量时, 是需要经过大量的实验来确定, 但是在实验的过程中, 用户具体可 以通过对该用户终端在两个非连续的资源块上发射功率谱密度的调整, 改 变传输信号时产生的互调产物大小, 进而通过互调产物的大小与互调产物 所处的频率区间对应的射频指标所要求的门限的差值来不断的调整发射功 率谱密度, 使得用户终端最终根据得到的某一个最大功率回退量调整实际 发射功率谱密度来传输信号时产生互调产物时, 某一射频指标在对应的频 率区间内可以满足要求。其中每个射频指标在不同 CB W下的不同频段内所 要求的最大值可以是预置在用户终端中, 且考虑到用户终端的实际应用, 为了节省用户终端的存储空间,可以预置特定 CBW下某些频段所要求的最 大值, 而不会预置所有情况的 CBW下射频指标的要求。
当用户终端在每两个非连续的资源块上传输信号时, 都会再生出新的 频率分量即互调产物, 通过仿真或测试等手段确定出射频指标对应的频率 区间内各阶互调产物对应的最大功率回退量, 记为 MPR , i表示需要考虑 的射频指标的编号, j 表示互调的阶数, 表示用户终端在发射信号时回退
M ^"后, j阶互调产物所处频率区间内对应的射频指标 i可以满足要求。
例如下表 2所示的 3、 5和 7阶互调产物对应的最大功率回退量,可见, 对于某些射频指标比如 SEM3 ,任意一阶的互调产物出现在该射频指标对应 的频率区间内时, 该射频指标都不满足要求, 需要进行功率回退。
表 1 各阶互调产物对应的最大功率回退量
Figure imgf000009_0001
步骤 102,用户终端将确定的射频指标的频率区间内各阶互调产物对应 的最大功率回退量即上述步骤 101 中确定的最大功率回退量的最大值作为 功率的基准回退量。
通过步骤 101 即可得到至少一个射频指标对应的最大功率回退量, 并 将其中的最大值作为基准回退量即 MPR = Max )
步骤 103 ,用户终端根据功率的基准回退量调整实际发射功率谱密度来 传输信号。
用户终端可以在当前的发射功率谱密度的基础上减去上述的基准回退 量得到实际发射功率谱密度, 并根据实际发射功率谱密度来传输信号。 可见, 在本发明实施例中, 用户终端在上行信道中非连续的资源块上 传输信号时, 需要先确定在射频指标的频率区间内各阶互调产物对应的最 大功率回退量, 将确定的最大功率回退量中的最大值作为功率的基准回退 量, 并根据基准回退量调整实际发射功率谱密度来传输信号。 这样用户终 端通过功率回退的方法传输信号, 减小了产生的互调产物的大小, 从而使 得上行信道上的射频指标能满足要求; 且本实施中, 在确定最大功率回退 量时考虑到射频指标在相应的频段内的要求, 这样可以确定出较为合适的 最大功率回退量, 优化了确定的最大功率回退量。
需要说明的是, 用户终端可以通过上述步骤 101到步骤 102, 在两个非 连续的资源块上传输信号的情况下的基准回退量, 该基准回退量是最大的 最大功率回退量, 而在实际系统中, 当资源簇的个数增多或者每个簇的 RB 增多时, PSD就会减小, 小的 PSD产生的互调大小也会变小, 为了使得确 定的最大功率回退量更合适, 参考图 3 所示的一个具体的实施例中, 则在 执行上述步骤 103之前, 用户终端还需要执行步骤 104, 即计算用户终端实 际在多个非连续的资源簇上传输信号的平均功率谱密度 (记为 PSDw ), 及计算系 统最大功率谱密度与平均功率谱密度的相对差
APSDl = PSD_ -PSDaverage , 在确定实际最大功率回退量时需要考虑该相对差, 则在执行上述步骤 103时, 用户终端需要将步骤 102中确定的功率的基准 回退量与步骤 104 中计算的相对差的差值即 M^ M^^H^^1作为 用户终端的实际最大功率回退量, 并按照实际最大功率回退量确定实际发 射功率谱密度来传输信号。
例如图 4所示, 其中横坐标表示频率, 纵坐标表示功率谱密度即 PSD, 如果上行信道的两个非连续的资源簇上分别只包括一个资源块即资源块 1 和 50(图 4中斜线填充的部分),且用户终端通过最大功率谱密度传输信号, 则形成的互调产物即 IMD (RBI, RB50) (图 4中斜线填充的部分)是最大 的。
随着资源簇上资源块的增加, 即一个资源簇上包括资源块 1和 2, 另一 资源簇上包括资源块 50和 51 ,考虑用户终端实际在资源块上传输信号的实 际功率谱密度, 这样即可产生 4个互调产物(IMD)即资源块 1和 2, 分别 与资源块 50和 51之间形成的互调产物,具体为: IMD ( RBI , RB50 )、 IMD (RBI, RB51)、 IMD (RB2, RB50 )和 IMD (RB2, RB51 ), 可见, 如果 用户终端实际中传输信号的平均功率谱密度与最大功率谱密度相差 SD 时, 在这种情况下所产生的互调产物的大小也是有一定差别的。
进一步地, 随着资源簇个数及每个资源簇上 RB的进一步增加, 由于每 两个非连续的资源块之间都会产生互调产物, 则在同一位置上可能会产生 多个互调产物, 这样多个互调产物叠加, 则需要更大的最大功率回退量才 能使得各个射频指标都满足要求, 其中, 低阶(比如 3、 5和 7阶) 的互调 产物对信号质量的影响比高阶的互调产物的影响大, 因此可以只关注同一 位置上所叠加的低阶互调产物的个数, 而忽略高阶的互调产物。
则参考图 5 所示的一个具体的信号传输实施例中, 在确定实际最大功 率回退量时, 如果考虑到一个位置上形成的多个互调产物, 例如在 3 阶的 互调产物处有多个 3 阶的互调产物相互叠加, 则用户终端还需要执行步骤
105, 即确定一个位置上相同阶数的多个互调产物的叠加功率, 具体可以为 尸― 7(10*loglO(Nmtermd)) 10*logl0(Nmter_mod)
即大于或等于 Ν。 的最小整数, 其中, 为一个位置上相同阶数的互调产物的个数, N。 为互调产物的阶数。 则在执行上述步骤 103时, 用户终端可以将步骤 102中确定的功率的 基准回退量减去步骤 104中计算的相对差与步骤 105中确定的叠加功率之 。 一))
差所得到的值即
Figure imgf000011_0001
N.
作为实际 最大功率回退量, 并按照实际最大功率回退量调整实际发射功率谱密度来 传输信号, 即在发射功率谱密度的基础上减去实际最大功率回退量得到实 际功率谱密度, 并按照实际功率谱密度来传输信号。
在用户终端执行上述步骤 104和 105后, 在执行步骤 103的过程中,
10 * los l0CN )
APSD2=APSD\ -ceil{—— ¾ VU )
上述相对差与叠加功率之差即 Ν。 可能会出 现负的值, 则在确定最大功率回退量时, 需要取计算的 ΔΑ^2与 0的最大值
10 * los l0CN )
APSD2 = Max(0, APSDl -ceil{—— ¾ VU ))
即: N。 ; 且步骤 102中确定的功率 的基准回退量减去上述相对差值与叠加功率之差 ΔΛ¾)2得到的值也可以是 负值,也需要通过如下计算^^2 = ^^^^ ^^2)来确定实际最大 功率回退量。
如果考虑到多个位置上分别形成的多个互调产物, 例如, 在 3 阶的互 调产物处有 3个 3阶的互调产物, 在 5阶的互调产物处有 5个 5阶的互调 产物, 在确定最大功率回退量时, 用户终端在执行步骤 105 时, 需要分别 确定各个位置上相同阶数的多个互调产物的叠加功率 Pi ( i=l,2, ... , Ν, Ν 为位置的数量), 并选择各个位置上的叠加功率中的最大值 皿, 其中在确 cg/./(10 * log l0(Ninter_mod ) ) 定每个位置上的叠加功率 Pi时可以通过上述的公式即 N。* 来确定; 则在执行上述步骤 103时, 用户终端可以将步骤 102中确定的功 率的基准回退量减去步骤 104中计算的相对差与步骤 105中确定的叠加功 率最大值之差得到的值即^^2 =^^ ^^_^作为实际最大功率 回退量, 并按照实际最大功率回退量调整实际发射功率谱密度来传输信号, 即在发射功率谱密度的基础上减去实际最大功率回退量得到实际功率谱密 度, 并按照实际功率谱密度来传输信号。
需要说明的是, 用户终端在执行上述步骤 104和 105时, 可以同时执 行也可以顺序执行, 图 5 中只示出其中一种可能的实现顺序; 且上述步骤 101到 102与步骤 104之间也没有绝对的顺序关系,可以同时执行也可以顺 序执行, 图 3中也只示出一种可能的实现方法; 且上述步骤 101到 102与 步骤 105之间也没有绝对的顺序关系。
本发明实施例还提供一种用户终端, 该用户终端支持非连续的上行信 道, 结构示意图 6如所示, 包括:
回退量确定单元 11 , 用于确定射频指标的频率区间内各阶互调产物对 应的最大功率回退 MPR量。 具体地, 回退量确定单元 11可以先获取射频 指标对应的频率区间, 具体可以如上表 1 所示, 然后再通过大量的实验来 得到最大功率回退量, 在这个过程中可以根据用户终端在两个非连续的资 源块上传输信号时所产生的多阶互调产物的大小, 与互调产物所处的频率 区间对应的射频指标所要求的门限的差值不断地调整功率回退量, 使得用 户终端最终根据得到的某一个最大功率回退量传输信号时产生互调产物 时, 某一射频指标在对应的频率区间内可以满足要求。
基准确定单元 12,用于将所述回退量确定单元 11确定的所述最大功率 回退量中的最大值作为功率的基准回退量。
回退量确定单元 11可以确定多个最大功率回退量, 具体可以如上述表 2所示, 在此不进行赘述, 则基准确定单元 12确定的功率的基准回退量即 为多个最大功率回退量的最大值。
信号传输单元 13 ,用于根据所述基准确定单元 12确定的功率的基准回 退量调整实际发射功率谱密度来传输信号, 具体地, 信号传输单元 13可以 在当前的发射功率谱密度的基础上减去上述的基准回退量得到实际发射功 率谱密度, 并根据实际发射功率谱密度来传输信号。
在本发明实施例的用户终端中, 在非连续的上行信道上传输信号时, 需要由回退量确定单元 11确定射频指标的频率区间内各阶互调产物对应的 最大功率回退量, 基准确定单元 12将确定的最大功率回退量中的最大值作 为功率的基准回退量, 并由信号传输单元 13来传输信号。 这样用户终端通 过功率回退的方法传输信号, 减小了产生的互调产物的大小, 从而使得上 行信道上的射频指标满足要求; 且本实施中, 在确定最大功率回退量时考 虑到射频指标在相应的频段内的要求, 这样可以确定出较为合适的最大功 率回退量, 优化了确定的最大功率回退量。
参考图 7所示, 在一个具体的实施例中, 用户终端除了可以包括如图 6 的结构外, 还可以包括: 相对差计算单元 14和叠加功率确定单元 15 , 具体 地:
相对差计算单元 14, 用于计算用户终端在所述多个资源簇上传输信号 的平均功率谱密度, 及计算系统最大功率谱密度与所述平均功率谱密度的 相对差。
叠加功率确定单元 15 , 用于当在一个位置上有多个相同阶数的互调产 物叠加时, 确定所述一个位置上相同阶数的多个互调产物的叠加功率, 例 cg/./(10 * log l0(Ninter_mod ) )
如叠加功率为: Ν。* , 其中所述^ ^^为互调产物的阶数, 所述 n^-md为所述一个位置上相同阶数的互调产物的个数。 本实施例的用户终端中, 信号传输单元 13还需要考虑到用户终端实际 传输信号时, 随着非连续的资源块的增加,用户终端实际的 PSD就会减小, 小的 PSD产生的互调大小也会变小, 为了使得确定的最大功率回退量更合 适, 则需要相对差计算单元 14计算系统最大功率谱密度与用户终端实际传 输信号的平均功率谱密度的相对差, 则信号传输单元 13会将所述基准确定 单元 12确定功率的基准回退量与所述相对差的差值作为所述用户终端的实 际最大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱 密度来传输信号。
进一步地, 用户终端在确定实际的最大功率回退量时, 需要考虑到至 少一个位置上多个相同阶数的互调产物的叠加, 如果只考虑一个位置上多 个相同阶数的互调产物的叠加, 则叠加功率确定单元 15需要确定该位置的 叠加功率, 由信号传输单元 13将所述基准确定单元 12确定的功率的基准 回退量减去所述相对差与所述叠加功率之差所得到的值作为实际最大功率 回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来传输 信号; 如果需要考虑至少两个位置上分别有多个相同阶数的互调产物叠加 时, 则叠加功率确定单元 15则分别确定各个位置上相同阶数的多个互调产 物的叠加功率, 并选择各个位置对应叠加功率的最大值, 信号传输单元 13 回将基准确定单元 12确定的功率的基准回退量减去所述相对差与所述叠加 功率最大值之差得到的值作为实际最大功率回退量, 并按照所述实际最大 功率回退量调整实际发射功率谱密度来传输信号。
本发明实施例还提供另一种用户终端, 其结构示意图如图 8所示, 包 括分别连接到总线上的存储器 20、处理器 21、输入装置 23和输出装置 24, 其中:
存储器 20中用来储存从输入装置 23输入的数据, 且还可以储存处理 器 21处理数据的必要文件等信息;
输入装置 23和输出装置 24是用户终端与其他设置通信的端口; 本实施例中处理器 21可以执行如下的步骤: 确定各个射频指标的频率 区间内各阶互调产物对应的最大功率回退量, 具体可以根据输出装置 24在 两个非连续的资源块上传输信号时所产生的互调产物来确定最大功率回退 量; 将所述最大功率回退量中的最大值作为功率的基准回退量; 输出装置 24向处理器 21获取功率的基准回退量后,根据所述功率的基准回退量调整 实际发射功率谱密度来传输信号。
进一步地, 处理器 21还可以计算用户终端在所述多个非连续的资源簇 上传输信号的平均功率谱密度, 及计算系统最大功率谱密度与所述平均功 率谱密度的相对差, 并将功率的基准回退量与所述相对差计算单元计算的 相对差的差值作为所述用户终端的实际最大功率回退量, 这样输出装置 24 可以向处理器 21获取实际最大功率回退量, 并按照所述实际最大功率回退 量调整实际发射功率谱密度来传输信号。
进一步地, 当在一个位置上有多个相同阶数的互调产物叠加时, 处理 器 21还可以确定所述一个位置上相同阶数的多个互调产物的叠加功率, 并 将所述功率的基准回退量减去所述相对差与所述叠加功率之差得到的值作 为实际最大功率回退量, 这样输出装置 24可以向处理器 21获取实际最大 功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来 传输信号; 当在多个位置上分别有多个相同阶数的互调产物叠加时, 处理 器 21可以分别确定所述各个位置上相同阶数的多个互调产物的叠加功率, 并选择所述各个位置对应叠加功率的最大值, 且将所述基准确定单元确定 的功率的基准回退量减去所述相对差和所述叠加功率最大值之差得到的值 作为实际最大功率回退量, 这样输出装置 24可以向处理器 21获取实际最 大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度 来传输信号。
具体地, 处理器 21在确定一个位置上相同阶数的多个互调产物的叠加 cg/./(l0 * log l0(Ninter_mod ) ) 功率时,可以按照如下的公式来计算,即叠加功率为: Ν。 , 其中所述 N。 为互调产物的阶数, 所述 m。d为该位置上相同阶数的互调 产物的个数。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算 机可读存储介质中, 存储介质可以包括: 只读存储器(ROM )、 随机存取存 储器(RAM )、 磁盘或光盘等。
以上对本发明实施例所提供的信号传输方法及用户终端, 进行了详细
^明的原理及实施方式进行了阐述, 以 上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对 于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范 围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限 制。

Claims

权利要求
1、 一种信号传输方法, 其特征在于, 包括:
确定射频指标的频率区间内各阶互调产物对应的最大功率回退 MPR 量;
将所述最大功率回退量中的最大值作为功率的基准回退量, 并根据所 述功率的基准回退量调整实际发射功率谱密度来传输信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述确定所述射频指标的 频率区间内各阶互调产物对应的最大功率回退量, 具体包括:
根据所述用户终端在两个非连续的资源块上传输信号时所产生的多阶 互调产物的大小, 与所述互调产物所处的频率区间对应的射频指标所要求 的门限的差值, 确定所述射频指标的频率区间内各阶互调产物对应的最大 功率回退量。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述根据所述功率的 基准回退量调整实际发射功率谱密度来传输信号之前, 还包括:
计算用户终端在所述多个非连续的资源簇上传输信号的平均功率谱密 度, 及计算系统最大功率谱密度与所述平均功率谱密度的相对差;
则所述根据所述功率的基准回退量调整实际发射功率谱密度来传输信 号具体包括:
将所述功率的基准回退量与所述相对差的差值作为所述用户终端的实 际最大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱 密度来传输信号。
4、 如权利要求 3所述的方法, 其特征在于, 所述根据所述功率的基准 回退量调整实际发射功率谱密度来传输信号之前, 还包括:
当在一个位置上有多个相同阶数的互调产物叠加时, 确定所述一个位 置上相同阶数的多个互调产物的叠加功率; 则所述根据所述功率的基准回退量调整实际发射功率谱密度来传输信 号具体包括: 将所述功率的基准回退量减去所述相对差与所述叠加功率之 差得到的值作为实际最大功率回退量, 并按照所述实际最大功率回退量调 整实际发射功率谱密度来传输信号。
5、 如权利要求 4 所述的方法, 其特征在于, 所述叠加功率为:
Figure imgf000019_0001
, 其中所述7 为互调产物的阶数, 所述 。d为所 述一个位置上相同阶数的互调产物的个数。
6、 如权利要求 4所述的方法, 其特征在于, 当在多个位置上分别有多 个相同阶数的互调产物叠加时, 分别确定所述各个位置上相同阶数的多个 互调产物的叠加功率, 并选择所述各个位置对应叠加功率的最大值;
则所述根据所述功率的基准回退量调整实际发射功率谱密度来传输信 号具体包括: 将所述功率的基准回退量减去所述相对差与所述叠加功率最 大值之差所得到的值作为实际最大功率回退量, 并按照所述实际最大功率 回退量调整实际发射功率谱密度来传输信号。
7、 一种用户终端, 其特征在于, 包括:
回退量确定单元, 用于确定射频指标的频率区间内各阶互调产物对应 的最大功率回退 MPR量;
基准确定单元, 用于将所述回退量确定单元确定的所述最大功率回退 量中的最大值作为功率的基准回退量;
信号传输单元, 用于根据所述基准确定单元确定的功率的基准回退量 调整实际发射功率谱密度来传输信号。
8、 如权利要求 7所述的用户终端, 其特征在于, 还包括:
相对差计算单元, 用于计算用户终端在所述多个非连续的资源簇上传 输信号的平均功率谱密度, 及计算系统最大功率谱密度与所述平均功率谱 密度的相对差; 所述信号传输单元, 还用于将所述基准确定单元确定功率的基准回退 量与所述相对差计算单元计算的相对差的差值作为所述用户终端的实际最 大功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度 来传输信号。
9、 如权利要求 8所述的用户终端, 其特征在于, 还包括:
叠加功率确定单元, 用于当在一个位置上有多个相同阶数的互调产物 叠加时, 确定所述一个位置上相同阶数的多个互调产物的叠加功率;
所述信号传输单元, 还用于将所述基准确定单元确定的功率的基准回 退量减去所述相对差与所述叠加功率之差得到的值作为实际最大功率回退 量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来传输信号。
10、 如权利要求 9所述的用户终端, 其特征在于, 还包括:
所述叠加功率确定单元, 还用于当在多个位置上分别有多个相同阶数 的互调产物叠加时, 分别确定所述各个位置上相同阶数的多个互调产物的 叠加功率, 并选择所述各个位置对应叠加功率的最大值;
所述信号传输单元, 还用于将所述基准确定单元确定的功率的基准回 退量减去所述相对差与所述叠加功率最大值之差所得到的值作为实际最大 功率回退量, 并按照所述实际最大功率回退量调整实际发射功率谱密度来 传输信号。
PCT/CN2013/080910 2012-08-28 2013-08-06 一种信号传输方法及用户终端 WO2014032501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210310348.1 2012-08-28
CN201210310348.1A CN103634891A (zh) 2012-08-28 2012-08-28 一种信号传输方法及用户终端

Publications (1)

Publication Number Publication Date
WO2014032501A1 true WO2014032501A1 (zh) 2014-03-06

Family

ID=50182465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080910 WO2014032501A1 (zh) 2012-08-28 2013-08-06 一种信号传输方法及用户终端

Country Status (2)

Country Link
CN (1) CN103634891A (zh)
WO (1) WO2014032501A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006059B (zh) * 2014-12-31 2019-11-29 华为技术有限公司 一种数据传输方法、装置和设备
CN106973395B (zh) * 2016-01-14 2021-04-20 中兴通讯股份有限公司 链路校准的方法和装置、及射频馈入系统
WO2020161524A1 (en) * 2019-02-07 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Estimation of intermodulation product power spectra in a radio system
CN111836294B (zh) * 2019-08-12 2023-06-23 维沃移动通信有限公司 测试方法和测试设备
CN115968019B (zh) * 2023-03-16 2023-08-01 荣耀终端有限公司 通信参数的处理方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190596A1 (en) * 2003-02-25 2004-09-30 Lehmann Nikolaus H. Methods and apparatus for transmitting and receiving randomly inverted wideband signals
CN101711058A (zh) * 2009-12-15 2010-05-19 中兴通讯股份有限公司 一种资源分配方法和系统
CN102075951A (zh) * 2011-01-19 2011-05-25 大唐移动通信设备有限公司 一种调整频域资源分布位置的方法及装置
CN102469566A (zh) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 无线资源分配方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190596A1 (en) * 2003-02-25 2004-09-30 Lehmann Nikolaus H. Methods and apparatus for transmitting and receiving randomly inverted wideband signals
CN101711058A (zh) * 2009-12-15 2010-05-19 中兴通讯股份有限公司 一种资源分配方法和系统
CN102469566A (zh) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 无线资源分配方法及装置
CN102075951A (zh) * 2011-01-19 2011-05-25 大唐移动通信设备有限公司 一种调整频域资源分布位置的方法及装置

Also Published As

Publication number Publication date
CN103634891A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2014032501A1 (zh) 一种信号传输方法及用户终端
TW202112169A (zh) 資訊發送方法及裝置、資訊接收方法及裝置、通訊節點及儲存介質
TW201924398A (zh) 用於無線區域網路的頻譜掩蔽和平坦度
KR101524114B1 (ko) 멀티­액세스 통신 시스템들에서 동적 채널 재사용
US20120275319A1 (en) Concurrent transmission of wi-fi and bluetooth signals
EP4050829B1 (en) Method and device for transmitting physical layer protocol data unit
CN110167123A (zh) 一种功率控制方法及装置
US10009796B2 (en) Bandwidth adjustment method and bandwidth adjustment controller
WO2011098027A1 (zh) 功率控制方法、网络设备和终端
US20210211999A1 (en) Power Determining Method and Apparatus
CN112867129B (zh) 功率余量上报发送方法和装置
WO2012097738A1 (zh) 一种调整频域资源分布位置的方法及装置
CN111867090A (zh) 一种功率余量的确定方法及装置
CN110446252B (zh) 用于定向lbt的能量阈值确定方法、定向lbt方法及装置、存储介质、终端、基站
TWI796954B (zh) 分佈式音調資源單元的導頻音調生成方法及通信裝置
WO2024027495A1 (zh) 信息确定方法及装置、存储介质及电子装置
WO2021203374A1 (zh) 传输随机接入信号的方法和装置
WO2023231271A1 (zh) 一种功率分配的方法和装置
US10251135B2 (en) Method for controlling power of carrier signal, user equipment, and base station
WO2020134122A1 (zh) 一种远端干扰的规避方法、系统及装置
EP4274316A1 (en) Uplink transmission resource scheduling method, base station, user equipment and communication system
CN102281617B (zh) Td-scdma多载波hsupa系统的e-tfc选择方法和装置
EP4152721A1 (en) Method and device for transmitting physical layer protocol data unit
CN111800793B (zh) 一种干扰的优化方法、装置
JP7450533B2 (ja) 基地局装置、通信方法及び無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833364

Country of ref document: EP

Kind code of ref document: A1