WO2014032294A1 - 一种下行控制信道资源的分配方法及装置 - Google Patents

一种下行控制信道资源的分配方法及装置 Download PDF

Info

Publication number
WO2014032294A1
WO2014032294A1 PCT/CN2012/080887 CN2012080887W WO2014032294A1 WO 2014032294 A1 WO2014032294 A1 WO 2014032294A1 CN 2012080887 W CN2012080887 W CN 2012080887W WO 2014032294 A1 WO2014032294 A1 WO 2014032294A1
Authority
WO
WIPO (PCT)
Prior art keywords
epdcch
resource
resource block
block pairs
enhanced physical
Prior art date
Application number
PCT/CN2012/080887
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2012/080887 priority Critical patent/WO2014032294A1/zh
Priority to CN201280003967.4A priority patent/CN103404062B/zh
Publication of WO2014032294A1 publication Critical patent/WO2014032294A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and an apparatus for allocating downlink control channel resources in a mobile communication system. Background technique
  • the downlink multiple access method is usually orthogonal. Orthogonal Frequency Division Multiple Access (OFDMA).
  • the downlink resources of the system are divided into Orthogonal Frequency Division Multiple (OFDM) symbols in terms of time, and are divided into subcarriers in terms of frequency.
  • a certain subcarrier within a certain OFDM symbol is called a resource element (Resource Element, RE).
  • RE resource element
  • one downlink subframe contains two slots, each slot having 7 or 6 OFDM symbols, that is, a total of 14 or 12 OFDM symbols.
  • each time slot when a normal Cyclic Prefix (CP) length is used, each time slot includes 7 OFDM symbols, and when the extended CP length is used, each time slot includes 6 OFDM symbols.
  • a Resource Block is defined.
  • One RB includes 12 subcarriers in the frequency domain and one slot in the time domain, that is, 7 or 6 OFDMes. Symbol, so an RB contains 84 or 72 REs.
  • a pair of RBs of two slots is called an RB pair, that is, a resource block pair (RB pair ).
  • the various data carried on the subframe are organized by mapping various physical channels on the physical time-frequency resources of the subframe.
  • control channels can be roughly divided into two categories: control channels and traffic channels.
  • the data carried by the control channel can be referred to as control data or control information
  • the data carried by the traffic channel can be referred to as service data.
  • the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) are time-division in one subframe, and the PDCCH is carried in one subframe.
  • n OFDM symbols where n can be any one of 1, 2, 3, and 4, and is determined by a Physical Control Format Indicator Channel (PCFICH), and is interleaved in the frequency domain.
  • PCFICH Physical Control Format Indicator Channel
  • the user equipment demodulates and decodes the PDCCH according to the payload size and the aggregation level of the PDCCH in the search space of the PDCCH based on the cell-specific reference signals (CRS), and uses the UE to specify The Radio Network Temporary Identity (RNTI) descrambles a Cyclic Redundancy Check (CRC) to check and determine the UE's own PDCCH, and according to the scheduling information in the PDCCH
  • the scheduled data is processed or received as appropriate.
  • a complete PDCCH consists of one or several Control Channel Elements (CCEs).
  • One CCE consists of 9 Resource Element Groups (REGs), and one REG occupies 4 REs.
  • one PDCCH may consist of 1, 2, 4 or 8 CCEs.
  • Multi-user multiple input multiple output in LTE system after version 10
  • MIMO Multiple-Out-put
  • CoMP Coordinated Multiple Points
  • DMRS UE-specific reference signals
  • ePDCCH enhanced physical downlink control channel
  • ePCFICH Physical Control Format Indicator Channel
  • the ePDCCH is not in the control region of the first n symbols of one subframe, but is in the region of the subframe in which downlink data is transmitted, and is frequency-divided with the PDSCH, and may occupy different RBs from the PDSCH.
  • the ePDCCH reference signal is a DMRS structure that multiplexes the reference signal of the PDSCH of the transmission mode 9 defined in Release 10, and can use reference signals of four DMRS ports, namely DMRS ports 7, 8, 9 and 10.
  • the ePDCCH may be classified into a localized ePDCCH and a distributed ePDCCH.
  • the ePDCCH is mapped in a PRB or a neighboring PRB, so that the base station can transmit the ePDCCH on the PRB with better channel conditions according to the channel state report of the UE, thereby obtaining the frequency scheduling gain.
  • the ePDCCH is distributed to multiple PRBs, so that the benefits of frequency diversity can be obtained.
  • the systematic PDCCH resource works in a time division multiplexing manner together with the PDSCH, and the PDCCH resource is indicated by the PCFICH channel display.
  • the ePDCCH resource works in conjunction with the PDSCH by means of frequency division multiplexing.
  • the configuration information of the ePDCCH that is, the resource information
  • RRC Radio Resource Control
  • Message configuration when the ePDCCH resource exists independently, that is, when the PDCCH resource does not exist in the system, the configuration method of the ePDCCH resource is still an open subject. Summary of the invention
  • An embodiment of the present invention provides a method and an apparatus for allocating a downlink control channel resource, which may be configured to determine a location of the enhanced physical downlink control channel resource according to a cell identification code when the system does not have a physical downlink control channel resource, and complete The allocation of the enhanced physical downlink control channel resources.
  • a first aspect of the present invention provides a method for allocating a downlink control channel resource, which may include: acquiring a number P of resource block pairs to be configured for an enhanced physical downlink control channel;
  • the determining, by the cell identifier, the resource location of the P resource block pair and mapping may include:
  • a second possible implementation manner when P > 1, the resource location of the P resource block pairs is determined according to a cell identifier, and mapping is further performed.
  • the resource locations of the remaining P-1 resource block pairs are determined and mapped according to the resource locations of the first resource block pair.
  • the resource location of the first resource block pair may be calculated by using the following formula:
  • n 1A RB_ ePDCCH,0,0 N i l C O ell m 111 od U N 1
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair may be calculated by using the following formula: DL
  • _ePDCCH,0,0 M ⁇ , I C D e11 1 m 11 od U N i R ⁇ B_ePDCCH + ⁇ ⁇ where n, RB_ePDCCH, 0. is the resource location of the first resource block pair, N 11 For the cell identification code,
  • N ⁇ -ePDCCH is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources, and ⁇ is a shift flag.
  • the resource positions of the remaining P-1 resource block pairs may pass the following formula Calculation:
  • the method may further include:
  • At least one resource element is allocated as an enhanced physical control format indicating channel resource, where the enhanced physical control format indicates that the channel resource is used to indicate a resource block that needs to be configured later.
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' LL RB— ePDCCH / p]/(M + l)JmodN- DL
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' U RB— ePDCCH / P /(M + l)JmodN DL
  • N DL Nn 1 PRB_ePDCCH,0, p + m .
  • R D B L is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources.
  • a second aspect of the present invention provides an enhanced physical control format indicating channel resource coding method, which may include:
  • the information bits are encoded by means of ( ⁇ , ⁇ ) block coding, and a code word with a number of bits X is obtained, wherein the bit X is used to indicate the number of coded bits after the block coding, and the information bit is used to indicate the block coding. Number of information bits before;
  • Each combined codeword is ⁇ /( ⁇ ⁇ ) times before and after cascading, and mapped to the one resource element, and when ⁇ can not be divisible by ⁇ , the last combined codeword of the cascade is combined
  • the tail omission ensures that the resource elements are used up, where n ⁇ 2, X ⁇ l, Y ⁇ l and ⁇ .
  • a third aspect of the present invention provides an apparatus for encoding an enhanced physical control format indicating channel resource, which may include:
  • the block coding module encodes the information bits by using ( ⁇ , ⁇ ) block coding to obtain a code word with a bit number X, wherein the bit X is used to indicate the number of coded bits after the block coding, and the information bit is used.
  • a distance judging module judging whether a Hamming distance between codewords whose number of bits is X is the same;
  • a combination coding module configured to: when the Hamming distances between the codewords are different, the number of the n bits is The codewords of X are combined with each other to form a combined codeword such that the Hamming distance between the respective combined codewords is the same;
  • a repetition coding module configured to perform each of the codewords with the number of bits of X before and after ⁇ / ⁇ Cascading, mapping to N resource elements used as the enhanced physical control format indication channel resource, when N cannot divide X, then omitting the tail of the concatenated last-level codeword to ensure that the resource element is used Ending; or cascading each combined codeword ⁇ /( ⁇ ⁇ ) times before and after mapping to the resource elements, when ⁇ cannot divide ⁇ , the last level of the cascade
  • the tail omission of the combined codeword ensures that the resource elements are used up, where n ⁇ 2, X ⁇ l, Y ⁇ l and ⁇ .
  • a fourth aspect of the present invention provides a device for allocating a downlink control channel resource, which may include: a quantity acquisition module, where the number of resource block pairs to be configured for acquiring an enhanced physical downlink control channel is obtained.
  • a location confirmation module determining, according to a cell identifier, a resource location of the resource block pair and mapping
  • the location confirmation module is further configured to:
  • the location confirmation module may be further used to:
  • the resource locations are allocated and mapped according to the resource locations of the first resource block pair for the remaining P-1 resource block pairs.
  • the resource location of the first resource block pair determined by the location confirmation module may be calculated by using the following formula:
  • nRB_ePDCCH 0, 0 ⁇ ⁇ ID Aii * ⁇ '' RB. ePDCCH
  • N 11 a cell identification code
  • N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair determined by the location confirmation module may be determined by the following formula rCell M DL + ⁇
  • n RB_ePDCCH, 0.
  • the first is a resource location of the resource block, N 11 a cell identification code,
  • N RB — ePDCCH is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources, and ⁇ is a shift flag.
  • the resource location of the remaining P-1 resource block pairs determined by the location confirmation module It can be calculated by the following formula:
  • nRB_ePDCCHQ nRB_ePDCCHQ, p ⁇ ( n RB_ePDCCHQ, 0 + P .
  • the determining the P according to the cell identifier After the resource location of the resource block pair is mapped, the number obtaining module may be further configured to: allocate at least one resource element as an enhanced physical control format indicating channel resource, among the resources allocated for the enhanced physical downlink control channel, The enhanced physical control format indicates that the channel resource is used to indicate the number L of resource block pairs that need to be configured later, where L ⁇ l
  • the resource location of the L resource block pairs determined by the location confirmation module may be calculated by using the following formula
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' LL RB— ePDCCH / P_/(M + l)JmodN DL
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' U RB— ePDCCH / P /(M + l)JmodN DL
  • RB ePDCCH where 0 ⁇ p ⁇ P - 1, l ⁇ m ⁇ M, n ⁇ epDccH is the position of the pth resource block pair in the mth resource block pair of the L resource block pairs to be configured later
  • the N ⁇ PDCCH is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources.
  • a fifth aspect of the present invention provides a device for allocating a downlink control channel resource, which may include: a processor and a memory, where the memory is used to store a program executed by the processor, and the processor may be configured to:
  • the processor may be further configured to:
  • the processor when P > 1, the processor may be further configured to:
  • the resource locations of the remaining P-1 resource block pairs are determined and mapped according to the resource locations of the first resource block pair.
  • the resource location of the first resource block pair determined by the processor may be calculated by using the following formula:
  • n Cell DL
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair determined by the processor is calculated by using the following formula: rCell DL + ⁇
  • N 11 a cell identification code
  • N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system, ⁇ is the displacement Sign.
  • the resource location of the remaining P-1 resource block pairs determined by the processor may be By the following
  • the determining the P according to the cell identifier After the resource locations of the resource block pairs are mapped and mapped, the processor can also be used to:
  • At least one resource element is allocated as an enhanced physical control format indicating channel resource, where the enhanced physical control format indicates that the channel resource is used to indicate a resource block that needs to be configured later.
  • the processor determines that the resource locations of the L resource block pairs are calculated by the following formula:
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' LL RB— ePDCCH / P_/(M + l)JmodN DL
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' U RB— ePDCCH / P /(M + l)JmodN rDL
  • the physical downlink control channel resource does not exist in the system.
  • allocation of the enhanced physical downlink control channel resource by means of block coding, repeated coding, and combined coding, the Hamming distance between the coded codewords is ensured to be the same, and the enhanced physical control format indication is enhanced. The stability and reliability of information or data transmission in the channel.
  • FIG. 1 is a schematic flowchart of a method for allocating a downlink control channel resource according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for allocating a downlink control channel resource according to a second embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for encoding a physical control format indication channel resource according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a composition of an apparatus for encoding an enhanced physical control format indication channel resource according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first embodiment of a downlink control channel resource allocation apparatus according to the present invention
  • FIG. 7 is a schematic diagram of a second embodiment of a downlink control channel resource allocation apparatus according to the present invention.
  • the allocating method includes the following steps:
  • the foregoing resource block pair may be a virtual resource block pair, or may be a physical resource block pair, where P is an integer greater than or equal to 1, and the specific number of P may be predefined by the system, or through the main system message block.
  • MIB Master Information Block
  • S102 Determine, according to the cell identifier, a resource location of the P resource block pairs and perform mapping.
  • each user cell is pre-allocated with a cell identification code, which can be obtained through various scenes. Such as cell routing paging, location area update, cell update, routing area update, and the like.
  • the allocation method in this embodiment may be used to determine the location of the enhanced physical downlink control channel resource according to the cell identification code when the system does not have the physical downlink control channel resource, and complete the enhanced physical downlink control channel resource. Distribution.
  • the allocating method includes the following steps:
  • S202 Determine, according to the cell identifier, a resource location of the first resource block pair in the P resource block pair and map the resource location.
  • the resource location of the first resource block pair can be calculated by using the following formula:
  • nRB_ePDCCH 0, 0 ⁇ ⁇ ID Aii * ⁇ ''RB.ePDCCH
  • N 11 a cell identification code
  • N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair may also be calculated by the following formula: rCell M DL + ⁇
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system, ⁇ is the displacement
  • the flag, whose value is configured by the system, can be transmitted in the MIB information.
  • S203 Determine, according to a resource location of the first resource block pair, a resource location of the remaining P-1 resource block pairs and perform mapping.
  • the resource locations of the remaining P-1 resource block pairs may be calculated by using the following formula: nRB_ePDCCHQ, p ⁇ ( n RB_ePDCCHQ, 0 + P.
  • one of the above two formulas can be arbitrarily selected for calculation according to the needs of the scene.
  • the P resource block blocks can be evenly distributed to the physics for configuration enhancement by the calculation manners given in step S202 and step S203.
  • the allocation interval of the P resource block pairs may be determined by rounding down or rounding up.
  • the allocating method includes the following steps:
  • S301 Obtain a number P of resource block pairs that need to be configured for the enhanced physical downlink control channel.
  • S302. Determine, according to the cell identifier, a resource location of the first resource block pair of the P resource block pairs and perform mapping.
  • a resource allocated for the enhanced physical downlink control channel allocate at least one resource element as an enhanced physical control format indicating channel resource.
  • the enhanced physical control format indicates that the channel resource is used to indicate the number L of resource block pairs that need to be configured later, where L ⁇ l.
  • the M represents the number of groups of resource block pairs that need to be configured subsequently, and M ⁇ l
  • the resource locations of the L resource block pairs can be calculated by the following formula:
  • RB ePDCCH ePDCCH where 0 ⁇ p ⁇ P-1, l ⁇ m ⁇ M, n ⁇ epDccH is the position of the pth resource block pair in the mth resource block pair of the L resource block pairs to be configured later, N R D B L is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources.
  • step S305 it is determined that the calculation formula of the L resource block pairs can be arbitrarily selected according to the scenario or the user needs.
  • the cell identification code binding method has implicitly determined the resource resource block pair as the enhanced physical downlink control channel resource, but when the number of UEs served by the system increases, the enhanced physical downlink control channel resource There will be a further increase in demand. Therefore, the steps S304-S305 can be passed.
  • the method performs subsequent configuration of enhanced physical downlink control channel resources.
  • the L resource block blocks may be equally allocated to resources for configuring the enhanced physical downlink control channel, and the number of resources of the enhanced physical downlink control channel may not be divisible by the calculation manner described in step S305.
  • the allocation interval of the L resource block pairs is determined by rounding down or rounding up.
  • an enhanced configuration scheme of the enhanced physical downlink control channel resources is disclosed.
  • the implicit allocation that is, the initial configuration based on the cell identification code, and the explicit allocation further supplemented when the number of UEs is large is Subsequent configurations can achieve better allocation of enhanced physical downlink control channel resources in various situations.
  • FIG. 4 it is a schematic flowchart of a method for coding an enhanced physical control format indication channel resource according to an embodiment of the present invention.
  • the encoding method includes the following steps:
  • the bit X is used to indicate the number of coded bits after the block coding
  • the information bit is used to indicate the number of information bits before the block coding.
  • step S4 Determine whether the Hamming distance between the code words whose number of bits is X is the same. If yes, go to step S403, otherwise go to step S404.
  • the purpose of ensuring that the Hamming distance is the same is to average the performance of decoding, and improve the stability of information or data transmission in the enhanced physical control format indication channel.
  • each of the codewords with the number of bits of X is N/X times before and after cascading, and mapped to N resource elements used as the enhanced physical control format indication channel resource, when N cannot be divisible X
  • the resource element is used up.
  • the reliability of information or data transmission in the enhanced physical control format indication channel can be improved by the coding method as described above.
  • the specific encoding process please see the table below:
  • the number of resource elements N allocated for use as an enhanced physical control format indicating channel resource is 36, and is encoded by means of (3, 2) block coding, where E-CFI indicates the number L of resource block pairs to be subsequently configured.
  • the number of resource elements is still 36.
  • 4 code words ⁇ 0,1,1,1>, ⁇ 1,0,1,0 are found. >, ⁇ 1,1,0,1>, ⁇ 0,0,0,0>
  • the Hamming distances between each other are (3,2,3, ), (3,3,2), (2, 3,3), (3,2,3), which are different from each other, because the four codewords are combined with each other to form a combined codeword.
  • the number of codewords combined with each other varies according to the specific situation, only It is necessary to ensure that the Hamming distance between the individual combination code words is the same. In this embodiment, all of the original four codewords are selected to be combined.
  • the Hamming distance between each combination code word is (12, 12, 12), and the encoding is completed.
  • Encoding of the enhanced physical control format indication channel resource in various situations can be completed by means of block coding, combined codeword, and repeated coding, to ensure that information or data transmission is performed in the enhanced physical control format indication channel. Stability and reliability.
  • the encoding apparatus includes: a packet encoding module 10, a distance determining module 20, a repetition encoding module 30, and a combined encoding module 40.
  • the block coding module 10 is configured to encode the information bit Y by using ( ⁇ , ⁇ ) block coding to obtain a code word with a bit number X, where the bit X is used to indicate the number of coded bits after the block coding.
  • the information bit is used to indicate the number of information bits before the packet is encoded. Noun the same;
  • the repetition coding module 30 is configured to perform ⁇ / ⁇ cascading of each of the codewords with the number of bits of X, and to map to one of the resource elements used as the enhanced physical control format indication channel resource.
  • ⁇ cannot divide X the tail of the last-level codeword of the cascading is omitted to ensure that the resource elements are used up; or each combined codeword is ⁇ /( ⁇ ⁇ ) times before and after cascading, Mapping to the plurality of resource elements, when ⁇ cannot divide ⁇ , omitting the tail of the cascaded last-level combined codeword to ensure that the resource elements are used up, wherein n ⁇ 2, X ⁇ l , Y ⁇ l and ⁇ ;
  • the combination encoding module 40 is configured to combine n codewords with the number of bits X into each other to form a combined codeword when the Hamming distance between the respective codewords is different, so that the com- The distance is the same.
  • FIG. 6 is a schematic diagram showing the composition of a first embodiment of a downlink control channel resource allocation apparatus according to the present invention.
  • the distribution device includes a number acquisition module 100 and a location confirmation module 200.
  • the number obtaining module 100 is configured to acquire resources that need to be configured on the enhanced physical downlink control channel.
  • the location confirmation module 200 is configured to determine and map resource locations of the P resource block pairs according to the cell identifier; where P ⁇ l.
  • the resource block pair may be a virtual resource block pair or a physical resource block pair.
  • the location confirmation module 100 is further configured to:
  • the location confirmation module 100 is further configured to:
  • the resource locations are allocated and mapped according to the resource locations of the first resource block pair for the remaining P-1 resource block pairs.
  • the resource location of the first resource block pair determined by the location confirmation module 100 can be calculated by the following formula:
  • n 1A RB_ePDCCH,0,0 N i l C O ell m 11W o J d U N i ⁇ R D B L — ePDCCH where n RB ePDCCH . .
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair determined by the location confirmation module 100 can also be calculated by the following formula:
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system, ⁇ is the displacement
  • the flag, whose value is configured by the system, can be transmitted through the MIB.
  • the limit value of the number of N R D PDCCHs may be the number of all resource block pairs in the system bandwidth.
  • the resource locations of the remaining P-1 resource block pairs determined by the location confirmation module 100 may be calculated by the following formula: nRB_ePDCCHQ, p ⁇ ( n RB_ePDCCHQ, 0 + P .
  • the number obtaining module 100 is further configured to allocate, according to the allocated resources of the enhanced physical downlink control channel, at least one resource element as an enhanced physical control format indicating channel resource, where the enhanced physical control format indicates a channel resource.
  • L The number L of the resource block pairs that are to be configured to be subsequently configured, where L ⁇ l
  • the resource locations of the L resource block pairs determined by the location confirmation module 100 can be calculated by the following formula:
  • RB ePDCCH where 0 ⁇ p ⁇ P - 1, l ⁇ m ⁇ M, n ⁇ epDccH is the position of the pth resource block pair in the mth resource block pair of the L resource block pairs to be configured later , ⁇ 1 ⁇ is the number of resource block pairs in the system that can be used to configure the enhanced physical downlink control channel resources.
  • FIG. 7 is a schematic diagram showing the composition of a second embodiment of a downlink control channel resource allocation apparatus according to the present invention.
  • the distribution device includes: a processor 300 and a memory 400 cooperating with the processor 300.
  • the memory 400 is configured to store a program executed by the processor 300, and the processor 300 is configured to: Obtaining the number P of resource block pairs that need to be configured for the enhanced physical downlink control channel;
  • the processor 300 is further configured to:
  • processor 300 is further configured to:
  • the resource locations of the remaining P-1 resource block pairs are determined and mapped according to the resource locations of the first resource block pair.
  • the resource location of the first resource block pair determined by the processor 300 can be calculated by the following formula:
  • n 1A RB_ePDCCH, 0, 0 N i l C O ell m 11W o J d U N i ⁇ R D B L — ePDCCH where n RB ePDCCH . .
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system.
  • the resource location of the first resource block pair determined by the processor 300 can also be calculated by the following formula:
  • a resource position of the first resource block pair, N 11 a cell identification code, N ⁇ - ePDCCH number of resource blocks is arranged on the enhanced physical downlink control channel resources may be used for the system, ⁇ is the displacement
  • the flag, whose value is configured by the system, can be transmitted through the MIB.
  • the resource locations of the remaining P-1 resource block pairs determined by the processor 300 can be calculated by the following formula:
  • nRB_ePDCCHQ nRB_ePDCCHQ, p ⁇ ( n RB_ePDCCHQ, 0 + P .
  • the processor 300 is further configured to:
  • At least one resource element is allocated as an enhanced physical control format indicating channel resource, where the enhanced physical control format indicates that the channel resource is used to indicate a resource block that needs to be configured later.
  • L M X P, where M represents the number of groups of resource block pairs that need to be configured subsequently, and ⁇ ⁇ 1
  • the processor 300 determines that resource locations of the L resource block pairs can be calculated by the following formula:
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' LL RB— ePDCCH / P_/(M + l)Jmod N RB—ePDCCH
  • n RB ePDCCH,m, p ⁇ n PRB—ePDCCH,0,p + m ' U RB— ePDCCH / P /(M + l)Jmod N RB— ePDCCH
  • the present invention has the following advantages:
  • the physical downlink control channel resource does not exist in the system.
  • the allocation of the enhanced physical downlink control channel resources is completed.
  • the initial configuration of the enhanced physical downlink control channel resources may be implemented by implicit allocation based on the cell identifier, and the resource blocks are evenly allocated to be used for Configuring the enhanced physical downlink control channel resources; when the number of UEs served by the system increases, the subsequent configuration of the enhanced physical downlink control channel resources is implemented by explicit allocation, and the initial configuration combined with the subsequent configuration can implement enhancement in various situations.
  • Physical downlink control channel resources are better allocated; by means of block coding, repeated coding and combined coding, it is ensured that the Hamming distance between the coded codewords is the same, and is improved in the enhanced physical control format indication channel. , the stability and reliability of information or data transmission.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (Random Access Memory).

Abstract

本发明实施例提供了一种下行控制信道资源的分配方法,包括:获取增强的物理下行控制信道需要配置的资源块对的数目P;根据小区识别码确定所述P个资源块对的资源位置并进行映射;其中,P为大于或等于1的整数。本发明实施例还公开了一种下行控制信道资源的分配装置。采用本发明,可以实现在系统不存在物理下行控制信道资源时,根据小区识别码确定所述增强的物理下行控制信道资源的位置,完成对所述增强的物理下行控制信道资源的分配。

Description

一种下行控制信道资源的分配方法及装置 技术领域
本发明涉及移动通信领域, 尤其涉及移动通信系统中的一种下行控制信道 资源的分配方法及装置。 背景技术
在第三代合作伙伴计划 ( 3rd Generation Partnership Project, 3GPP ) 长期演 进 ( Long Term Evolution, LTE )或 LTE高级演进 ( LTE-advanced, LTE-A ) 系 统中, 下行多址接入方式通常采用正交频分复用的多址接入( Orthogonal Frequency Division Multiple Access , OFDMA )方式。 系统的下行资源从时间上 看被划分成了正交频分复用多址 ( Orthogonal Frequency Division Multiple, OFDM )符号, 从频率上看被划分成了子载波。 在某个 OFDM符号内的某个子载 波称为资源元素 ( Resource Element, RE ) 。 根据 LTE版本 8/9/10的标准, 一个 下行子帧包含有两个时隙,每个时隙有 7个或者 6个 OFDM符号, 即共含有 14个或 12个 OFDM符号。 其中, 采用正常的循环前缀(Cyclic Prefix, CP )长度时每个 时隙包括 7个 OFDM符号, 采用扩展的 CP长度时每个时隙包括 6个 OFDM符号。 根据 LTE版本 8/9/10的标准, 定义了资源块(Resource Block, RB ) , 一个 RB在 频域上包含 12个子载波, 在时域上为一个时隙, 即包含 7个或 6个 OFDM符号, 因 此一个 RB包含 84个或 72个 RE。 在一个子帧内的相同子载波上, 两个时隙的一对 RB称之为 RB对, 即资源块对(RB pair )。 子帧上承载的各种数据, 是在子帧的 物理时频资源上划分出各种物理信道来组织映射的。 各种物理信道大体可分为 两类: 控制信道和业务信道。 相应地, 控制信道^载的数据可称为控制数据或 控制信息, 业务信道承载的数据可称为业务数据。 版本 10和之前的 LTE系统中, 物理下行控制信道 ( Physical Downlink Control Channel, PDCCH )与物理下行共 享信道(Physical Downlink Shared Channel, PDSCH )在一个子帧中是时分的, PDCCH承载在一个子帧的前 n个 OFDM符号内, 其中, n可以为 1、 2、 3、 4中的 任意一种, 并由物理控制格式指示信道 ( Physical Control Format Indicator Channel, PCFICH )确定,在频域上是通过交织处理后打散到整个系统带宽上的, 以获得频率分集增益; 其调度的下行数据从该子帧的第 n+1个符号开始映射。 用 户设备 ( User Equipment, UE )基于小区特定的参考信号( Cell-specific reference signals, CRS )在 PDCCH的搜索空间内根据 PDCCH的载荷大小和聚合水平对 PDCCH进行解调、 解码后, 用该 UE特定的无线网络临时标识(Radio Network Temporary Identity, RNTI )解扰循环冗余校验码 ( Cyclic Redundancy Check, CRC ) 来校验并确定该 UE自己的 PDCCH, 并根据该 PDCCH中的调度信息对其 所调度的数据做相应的接收或发送处理。 一个完整的 PDCCH由一个或几个控制 信道元素 ( Control Channel Element, CCE )组成, 一个 CCE由 9个资源元素组 ( Resource Element Group, REG )组成, 一个 REG占 4个 RE。 根据 LTE版本 8/9/10, 一个 PDCCH可以由 1、 2、 4或 8个 CCE组成。
在版本 10之后的 LTE系统中, 多用户多输入多输出 ( Multiple-Input
Multiple-Out-put, MIMO )和协同多点传输 ( Coordinated Multiple Points, CoMP ) 等技术的引入使得控制信道容量受限,因此会引入基于 MIMO预编码方式传输的 PDCCH, 这种 PDCCH可以基于 UE特定的参考信号 (UE- specific reference signals, DMRS)来解调, 下称增强的物理下行控制信道( enhance Physical Downlink Control Channel, ePDCCH ) , 对应地, 可定义一种增强的物理控制格 式指示信道 ( enhance Physical Control Format Indicator Channel , ePCFICH ) 。 ePDCCH不在一个子帧的前 n个符号的控制区域, 而是在该子帧的传输下行数据 的区域, 且与 PDSCH是频分的, 可与 PDSCH占用不同的 RB。 在 LTE版本 11中, ePDCCH参考信号是复用在版本 10中定义的传输模式 9的 PDSCH的参考信号即 DMRS结构, 并且可以使用 4个 DMRS端口的参考信号, 即 DMRS端口 7、 8、 9和 10。
根据 ePDCCH的映射方式, ePDCCH可以分为局部式的 ePDCCH和分布式的 ePDCCH。 对局部式的 ePDCCH, ePDCCH集中映射在一个 PRB或者相邻的 PRB 内, 这样基站可以根据 UE的信道状态汇报, 选择信道条件较好的 PRB上发送 ePDCCH, 从而获得频率调度增益。 对分布式的 ePDCCH, ePDCCH分散映射到 多个 PRB上, 从而可以获得频率分集的好处。 以上可知, 系统地 PDCCH资源通 过时分复用的方式和 PDSCH共同工作, PDCCH资源是通过 PCFICH信道显示指 示的。 而 ePDCCH资源是通过频分复用的方式和 PDSCH共同工作。 当 ePDCCH 资源和 PDCCH资源同时存在于系统时, ePDCCH的配置信息, 也即资源信息可 以通过 PDCCH的信令传送无线资源控制协议( Radio Resource Control, RRC ) 消息配置。 但是在 ePDCCH资源独立存在的场景下, 也即当系统不存在 PDCCH 资源时, ePDCCH资源的配置方法还是一个公开未决的课题。 发明内容
本发明实施例提供了一种下行控制信道资源的分配方法及装置, 可以实现 在系统不存在物理下行控制信道资源时, 根据小区识别码确定所述增强的物理 下行控制信道资源的位置, 完成对所述增强的物理下行控制信道资源的分配。
本发明第一方面提供一种下行控制信道资源的分配方法, 可包括: 获取增强的物理下行控制信道需要配置的资源块对的数目 P;
根据小区识别码确定所述 P个资源块对的资源位置并进行映射;
其中, P≥l。
在第一种可能的实现方式中, 所述根据小区识别码确定所述 P个资源块对 的资源位置并进行映射可包括:
根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资源位置 并进行映射。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当 P > 1时,所述根据小区识别码确定所述 P个资源块对的资源位置并进行映射还 可包括:
根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的资源位 置并进行映射。
结合第一方面的第一或第二种可能的实现方式, 在第三种可能的实现方式 中, 所述第一个资源块对的资源位置可通过如下公式计算:
n 1ARB_ ePDCCH,0,0 = N i lCOell m 111odU N 1 | ΚDΒL_ ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
结合第一方面的第一或第二种可能的实现方式, 在第四种可能的实现方式 中, 所述第一个资源块对的资源位置可通过如下公式计算: DL
_ePDCCH,0,0 = M丄、 ICDe11 1 m11odU N i R^B_ePDCCH + ^ ^Δ 其中, n, RB_ePDCCH,0. 为所述第一个资源块对的资源位置, N 11为小区识别码,
N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
结合第一方面的第一或第二或第三或第四种可能的实现方式, 在第五种可 能的实现方式中, 所述剩余的 P-1个资源块对的资源位置可通过如下公式计算:
DL
ePDCCH/ pJmodN RB ePDCCH
Figure imgf000006_0001
DL
nRB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P _ePDCCH/p modN RB_ePDCCH 其中, l≤p≤P— 1 , nRB ePDCCH,。,p为所述剩余的 P-1个资源块对中第 p个资源 块对的位置。 结合第一方面或第一方面的第一或第二或第三或第四或第五种可能的实现 方式, 在第六种可能的实现方式中, 所述根据小区识别码确定所述 P个资源块 对的资源位置并进行映射之后, 还可包括:
在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源元 素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信道 资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l 。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所 述 L满足 L = M xP, 所述 M表示所述后续需要配置的资源块对的组数, 且 M≥l ,
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / p]/(M + l)JmodN- DL
RB ePDCCH
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)JmodN DL
RB ePDCCH
n n1PRB_ePDCCH,0, p + m . NDL
RB_ePDCCH,m,p .1 -丄、 RB— ePDCCH / PJ/(M + 1 modN DL
RB— ePDCCH n RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 丄、 RDBL ePDCCH / /P A /(M + 1 modN DL
RB ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
本发明第二方面提供一种增强的物理控制格式指示信道资源的编码方法, 可包括:
对信息位 Υ采用 (Χ,Υ )分组编码的方式进行编码, 得到比特数目为 X的 码字, 其中, 比特位 X用于指示分组编码后的编码比特数目, 信息位 Υ用于指 示分组编码前的信息比特数目;
判断各个比特数目为 X的码字之间的汉明距离是否相同; 至 Ν个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 Ν不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源元素用完;
若否, 则将 η个所述比特数目为 X的码字相互组合形成组合码字, 使得各个 组合码字之间的汉明距离相同;
将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个资源元素 中, 当 Ν不能整除 η· Χ时, 则将级联的最后一级组合码字的尾部省略确保所述 资源元素用完, 其中, n≥2 , X≥l , Y≥l且 Χ≠Υ。
本发明第三方面提供一种增强的物理控制格式指示信道资源的编码装置, 可包括:
分组编码模块, 对信息位 Υ采用 (Χ,Υ )分组编码的方式进行编码, 得到比 特数目为 X的码字, 其中, 比特位 X用于指示分组编码后的编码比特数目, 信 息位 Υ用于指示分组编码前的信息比特数目;
距离判断模块, 判断各个比特数目为 X的码字之间的汉明距离是否相同; 组合编码模块, 用于当各个码字之间的汉明距离不相同时, 将 η个所述比 特数目为 X的码字相互组合形成组合码字, 使得各个组合码字之间的汉明距离 相同;
重复编码模块, 用于将每个所述比特数目为 X的码字分别进行 Ν/ Χ次前后 级联, 映射至 N个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 N不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源元素用 完; 或将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个资源元 素中, 当 Ν不能整除 η· Χ时, 则将级联的最后一级组合码字的尾部省略确保所 述资源元素用完, 其中, n≥2 , X≥l , Y≥l且 Χ≠Υ。
本发明第四方面提供一种下行控制信道资源的分配装置, 可包括: 数目获取模块, 获取增强的物理下行控制信道需要配置的资源块对的数目
Ρ;
位置确认模块, 根据小区识别码确定所述 Ρ个资源块对的资源位置并进行 映射;
其中, P≥l。
在第一种可能的实现方式中, 所述位置确认模块可进一步用于:
根据所述小区识别码确定所述 ρ个资源块对中第一个资源块对的资源位置 并进行映射。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当 ρ > ι时, 所述位置确认模块可进一步用于:
根据所述第一个资源块对的资源位置为剩余的 P-1 个资源块对分配资源位 置并进行映射。
结合第四方面的第一或第二种可能的实现方式, 在第三种可能的实现方式 中, 所述位置确认模块确定的第一个资源块对的资源位置可通过如下公式计算:
「Cell 1 TVT DL
nRB_ ePDCCH,0,0 ~ ^ID Aii * ^ '' RB. ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
结合第四方面的第一或第二种可能的实现方式, 在第四种可能的实现方式 中, 所述位置确认模块确定的所述第一个资源块对的资源位置可通过如下公式 rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^ 其中, n, RB_ePDCCH,0. 为所述第一个资源块对的资源位置, N 11为小区识别码,
N RB— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
结合第四方面的第二或第三或第四种可能的实现方式, 在第五种可能的实 现方式中,所述位置确认模块确定的所述剩余的 P-1个资源块对的资源位置可通 过如下公式计算:
nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P .
Figure imgf000009_0001
DL
nRB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P ePDCCH; P ^modN RB ePDCCH 其中, l≤p≤P - 1 , nRB d)DCCH, p为所述剩余的 P-1个资源块对中第 p个资源块对 的位置。
结合第四方面或第四方面的第一或第二或第三或第四或第五种可能的实现 方式, 在第六种可能的实现方式中, 所述根据小区识别码确定所述 P个资源块 对的资源位置并进行映射之后, 所述数目获取模块还可用于在为所述增强的物 理下行控制信道已分配的资源中, 分配至少一个资源元素作为增强的物理控制 格式指示信道资源, 所述增强的物理控制格式指示信道资源用于指示后续需要 配置的资源块对的数目 L, 其中, L≥l
结合第四方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所 述 L满足 L = M xP, 所述 M表示所述后续需要配置的资源块对的组数, 且 M≥l ,
所述位置确认模块确定的所述 L个资源块对的资源位置可通过如下公式计
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / P_/(M + l)JmodN DL
RB— ePDCCH
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)JmodN DL
RB— ePDCCH 或 n DL
RB_ePDCCH,m,p ■ nUpRB— ePDCCH 0 p + m■ N- RB ePDCCH PJ/(M + I) modN DL
RB ePDCCH
n RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 RDBL ePDCCH / /P A /(M + 1 modN DL
RB ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, N^^PDCCH为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
本发明第五方面提供一种下行控制信道资源的分配装置, 可包括: 处理器及存储器, 所述存储器可用于存储所述处理器执行的程序, 所述处 理器可用于:
获取增强的物理下行控制信道需要配置的资源块对的数目 P;
根据小区识别码确定所述 P个资源块对的资源位置并进行映射;
其中, P≥l
在第一种可能的实现方式中, 所述处理器可进一步用于:
根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资源位置 并进行映射。
结合第五方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当 P > 1时, 所述处理器可进一步用于:
根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的资源位 置并进行映射。
结合第五方面的第一或第二种可能的实现方式, 在第三种可能的实现方式 中, 所述处理器确定的所述第一个资源块对的资源位置可通过如下公式计算:
n = Cell DL
A1RB_ePDCCH,0,0 丄、 ID RB ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
结合第五方面的第一或第二种可能的实现方式, 在第四种可能的实现方式 中, 所述处理器确定的所述第一个资源块对的资源位置课通过如下公式计算: rCell DL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
结合第五方面的第二或第三或第四种可能的实现方式, 在第五种可能的实 现方式中,所述处理器确定的所述剩余的 P-1个资源块对的资源位置可通过如下
ePDCCH
Figure imgf000011_0001
DL
nRB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P ePDCCH; P ^modN RB ePDCCH 其中, l≤p≤P— 1 , nRB ePDCCH,。,p为所述剩余的 P-1个资源块对中第 p个资源块对 的位置。 结合第五方面或第五方面的第一或第二或第三或第四或第五种可能的实现 方式, 在第六种可能的实现方式中, 所述根据小区识别码确定所述 P个资源块 对的资源位置并进行映射之后, 所述处理器还可用于:
在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源元 素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信道 资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l
结合第五方面或第五方面的第六种可能的实现方式, 在第七种可能的实现 方式中, 所述 L满足 L = M xP, 所述 M表示所述后续需要配置的资源块对的 组数, 且 M≥l ,
所述处理器确定所述 L个资源块对的资源位置通过如下公式计算:
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / P_/(M + l)JmodN DL
RB— ePDCCH
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)JmodN rDL
½B— ePDCCH 或 n n + m . DL
RB_ePDCCH,m,p .11PRB_ePDCCH,0, p N- RB ePDCCH PJ/(M + I modN DL
RB ePDCCH
n DL
RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 丄、 RDBL ePDCCH / /P A /(M + 1 modN RB ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
实施本发明实施例, 具有如下有益效果:
通过获取增强的物理下行控制信道需要配置的资源块对的数目 Ρ,再根据小 区识别码确定所述 Ρ个资源块对的资源位置并进行映射, 可以实现在系统不存 在物理下行控制信道资源时, 完成对增强的物理下行控制信道资源的分配; 通 过分组编码、 重复编码结合组合编码的方式, 可确保编码后的码字之间的汉明 距离相同, 提高在所述增强的物理控制格式指示信道中, 信息或数据传输的稳 定性及可靠性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明下行控制信道资源的分配方法第一实施例的流程示意图; 图 2为本发明下行控制信道资源的分配方法第二实施例的流程示意图; 图 3为本发明下行控制信道资源的分配方法第三实施例的流程示意图; 图 4为本发明实施例增强的物理控制格式指示信道资源的编码方法的流程 示意图;
图 5 为本发明实施例增强的物理控制格式指示信道资源的编码装置的组成 示意图;
图 6为本发明下行控制信道资源的分配装置第一实施例的组成示意图; 图 7为本发明下行控制信道资源的分配装置第二实施例的组成示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参照图 1 ,为本发明下行控制信道资源的分配方法第一实施例的流程示意 图。 在本实施例中, 所述分配方法包括以下步骤:
5101 , 获取增强的物理下行控制信道需要配置的资源块对的数目 P。
具体地, 上述资源块对可以是虚拟资源块对, 也可以是物理资源块对, 其 中, P为大于或等于 1的整数, 且 P的具体数目可以通过系统预先定义, 或通过 主系统消息块( Master Information Block, MIB ) 的信息传输。
5102, 根据小区识别码确定所述 P个资源块对的资源位置并进行映射。 在现有系统中, 每个用户小区均预分配了一个小区识别码, 可通过多种场 景获得。 如小区路由寻呼、 定位区域更新、 小区更新、 路由区更新等。
通过本实施例所述分配方法, 可以实现在系统不存在物理下行控制信道资 源时, 根据小区识别码确定所述增强的物理下行控制信道资源的位置, 完成对 所述增强的物理下行控制信道资源的分配。
请参照图 2,为本发明下行控制信道资源的分配方法第二实施例的流程示意 图。 在本实施例中, 所述分配方法包括以下步骤:
5201 , 获取增强的物理下行控制信道需要配置的资源块对的数目 P。
5202, 根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资 源位置并进行映射。
具体地, 所述第一个资源块对的资源位置可通过如下公式计算:
「Cell 1 TVT DL
nRB_ePDCCH,0,0 ~ ^ID Aii * ^ ''RB.ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
或者, 所述第一个资源块对的资源位置还可以通过如下公式计算: rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志, 其数值由系统配置, 可在 MIB的信息中传输。
更具体地,在步骤 S202的两个公式中, mod表示取余运算,例如, 当所述 为 9 , 且所述 NR D B L ePDCCH为 4时, 则所述 nRB ePDCC脚 =9觸(14=1。
S203 , 根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的 资源位置并进行映射。
具体地, 所述剩余的 P-1个资源块对的资源位置可通过如下公式计算: nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P .
Figure imgf000014_0001
或 nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 +
Figure imgf000014_0002
其中, l≤ p≤P— 1 , nRB ePDCCH,。,p为所述剩余的 P-1个资源块对中第 p个资源 块对的位置。 更具体地, 在步骤 S203的两个公式中, L」及「1分别表示向下取整及向上取 整的运算, 例如, 当所述 I — ePDCa^9, 且 P为 4时, 则 LNR D B L ePDCCH/P」=2, 丄、 RDBL ePDCCH/ /P L =3 , 具体应用时, 可根据场景的需要任意选择上述两个公式中的一 个来进行计算。 在本实施例中, 给出了资源块对资源位置的具体计算方式, 通过步骤 S202 及步骤 S203中给出的计算方式即可以将所述 P个资源块块平均分配至用于配置 增强的物理下行控制信道的资源中。 当所述增强的物理下行控制信道的资源的 数目不能整除 P时, 采用向下取整或向上取整的方式确定所述 P个资源块对的 分配间隔即可。
请参照图 3 ,为本发明下行控制信道资源的分配方法第三实施例的流程示意 图。 在本实施例中, 所述分配方法包括以下步骤:
S301 , 获取增强的物理下行控制信道需要配置的资源块对的数目 P。 5302, 根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资 源位置并进行映射。
5303 , 根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的 资源位置并进行映射。
5304, 在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个 资源元素作为增强的物理控制格式指示信道资源。
所述增强的物理控制格式指示信道资源用于指示后续需要配置的资源块对 的数目 L, 其中, L≥l。
5305 , 确定后续需要配置的 L个资源块对的资源位置并进行映射。
其中, 所述 L满足 L = M x P, 所述 M表示所述后续需要配置的资源块对 的组数, 且 M≥l ,
所述 L个资源块对的资源位置可通过如下公式计算:
n N DL
RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / P_/(M + l)Jmod N DL
RB— ePDCCH
n N DL
RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)Jmod N DL
RB— ePDCCH
n n + m .
RB_ePDCCH,m,p .11PRB_ePDCCH,0, p N- DL
RB ePDCCH ZpJ/(M + l) modN DL
RB ePDCCH
Figure imgf000015_0001
ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
在步骤 S305中, 确定所述 L个资源块对的计算公式可以根据场景或用户需要 任意选用。
在步骤 S301-S303 中已经通过小区识别码绑定的方法隐式确定了 Ρ个资源 块对作为增强的物理下行控制信道资源,但是当系统服务的 UE数目增多时,增 强的物理下行控制信道资源将有进一步增大的需求。 因此可通过步骤 S304-S305 所述方法进行增强的物理下行控制信道资源的后续配置。 通过步骤 S305所述的 计算方式, 可将所述 L个资源块块平均分配至用于配置增强的物理下行控制信 道的资源中, 当所述增强的物理下行控制信道的资源的数目不能整除 L时, 采 用向下取整或向上取整的方式确定所述 L个资源块对的分配间隔。
在本实施例中, 公开了一种增强的物理下行控制信道资源较为完整的配置 方案,通过基于小区识别码实现的隐式分配即初始配置,再结合 UE数量较多时 进一步补充的显式分配即后续配置可以实现各种情况下对增强的物理下行控制 信道资源较好地分配。
请参照图 4,为本发明实施例增强的物理控制格式指示信道资源的编码方法 的流程示意图。 在本实施例中, 所述编码方法包括以下步骤:
5401 , 对信息位 Y采用 (Χ,Υ )分组编码的方式进行编码, 得到比特数目 为 X的码字。
其中, 比特位 X用于指示分组编码后的编码比特数目, 信息位 Υ用于指示 分组编码前的信息比特数目。
5402, 判断各个比特数目为 X的码字之间的汉明距离是否相同, 若是, 则 执行步骤 S403, 否则执行步骤 S404。
其中, 确保所述汉明距离相同的目的是为了使得译码的性能平均, 提高在 所述增强的物理控制格式指示信道中, 信息或数据传输的稳定性。
5403, 将每个所述比特数目为 X的码字分别进行 N/ X次前后级联, 映射至 N个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 N不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源元素用完。
5404, 则将 n个所述比特数目为 X的码字相互组合形成组合码字, 使得各 个组合码字之间的汉明距离相同。
5405, 将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个资 源元素中, 当 Ν不能整除 η · Χ时, 则将级联的最后一级组合码字的尾部省略确 保所述资源元素用完。
其中, n≥2 , X≥l , Y≥l且 Χ≠Υ。
通过如上所述的编码方式, 可以提高在所述增强的物理控制格式指示信道 中, 信息或数据传输的可靠性。 具体的编码过程, 请参见下表所示:
Figure imgf000017_0001
此时,分配用作增强的物理控制格式指示信道资源的资源元素数目 N为 36, 采用 (3,2 )分组编码的方式进行编码, 其中 E-CFI表示后续配置的资源块对的 数目 L, 当采用 (3,2 )分组编码时, X=3为比特位, 即此时 <0,1,1>3比特的码 字代表 1 , <1,0,1>代表 2, <1,1,0>代表 3, <0,0,0>代表 4; Y=2为指示位, 此时 需要对 L=l或 2或 3或 4进行编码, 共 4种情况, 即 2的 2次方, 因此指示位 为 2, 当 L=5时, 大于 2的 2次方, 小于 2的 3次方, 则此时指示位必须为 3。
进行( 3,2 )分组编码后, 需要判断各个比特数目为 X的码字之间的汉明距 离是否相同, 在本例中, <0,1,1>、 <1,0,1>、 <1,1,0>、 <0,0,0>各自之间的汉明距 离均为 (2,2,2, ), 完全相同, 因此可直接进行后续的重复编码。
因为资源元素的数目 N=36,因此将 N除以比特位即得到本例中需要重复编 码的次数为 36/3=12次。 将每个所述比特数目为 X的码字分别进行 12次前后级 联, 映射至 36个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 N不能整除 X时,则将级联的最后一级码字的尾部省略确保所述资源元素用完。
请再参见下表:
Figure imgf000017_0002
此表中, 资源元素的数目仍为 36个, 采用 (4,2 )编码的方式进行分组编码 后, 发现 4个码字 <0,1,1,1>、 <1,0,1,0>、 <1,1,0,1>、 <0,0,0,0>彼此之间的汉明距 离分别为 (3,2,3, )、 (3,3,2 )、 (2,3,3 )、 (3,2,3 ), 互不相同, 因 匕可^]夺 4个码字相 互组合形成组合码字, 当然, 相互组合的码字数量根据具体情况有所不同, 只 需要确保各个组合码字之间的汉明距离相同即可。 在本实施例中, 选择将原来 的 4个码字全部组合, 当然, 也可以根据需要只组合其中的 2个码字, 然后将 每个组合码字分别进行 Ν/(η· Χ)次前后级联,映射至所述 Ν个资源元素中, 当 Ν 不能整除 η· Χ时,则将级联的最后一级组合码字的尾部省略确保所述资源元素用 可得到如下所示表格:
Figure imgf000018_0001
此时, 各个组合码字之间的汉明距离均为 (12,12,12 ), 编码完成。
通过分组编码、 组合码字、 重复编码结合的方式, 可以完成各种情况下对 增强的物理控制格式指示信道资源的编码, 确保在所述增强的物理控制格式指 示信道中, 信息或数据传输的稳定性及可靠性。
请参照图 5,为本发明实施例增强的物理控制格式指示信道的编码装置的组 成示意图。 在本实施例中, 所述编码装置包括: 分组编码模块 10、 距离判断模 块 20、 重复编码模块 30及组合编码模块 40。
所述分组编码模块 10用于对信息位 Y采用 ( Χ,Υ )分组编码的方式进行编 码, 得到比特数目为 X的码字, 其中, 比特位 X用于指示分组编码后的编码比 特数目, 信息位 Υ用于指示分组编码前的信息比特数目。 否相同;
所述重复编码模块 30用于将每个所述比特数目为 X的码字分别进行 Ν/Χ 次前后级联, 映射至 Ν个用作所述增强的物理控制格式指示信道资源的资源元 素中, 当 Ν不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源 元素用完; 或将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个 资源元素中, 当 Ν不能整除 η· Χ时, 则将级联的最后一级组合码字的尾部省略 确保所述资源元素用完, 其中, n≥2 , X≥l , Y≥l且 Χ≠Υ;
所述组合编码模块 40用于当各个码字之间的汉明距离不相同时, 将 η个所 述比特数目为 X的码字相互组合形成组合码字, 使得各个组合码字之间的汉明 距离相同。
请参照图 6,为本发明下行控制信道资源的分配装置第一实施例的组成示意 图。在本实施例中,所述分配装置包括:数目获取模块 100及位置确认模块 200。
所述数目获取模块 100用于获取增强的物理下行控制信道需要配置的资源 块对的数目 P;
所述位置确认模块 200用于根据小区识别码确定所述 P个资源块对的资源 位置并进行映射; 其中, P≥l。
其中, 所述资源块对可以是虚拟资源块对, 也可以是物理资源块对。
具体地, 所述位置确认模块 100进一步用于:
根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资源位置 并进行映射;
当 > 1时, 所述位置确认模块 100进一步用于:
根据所述第一个资源块对的资源位置为剩余的 P-1 个资源块对分配资源位 置并进行映射。
更具体地, 所述位置确认模块 100确定的第一个资源块对的资源位置可通 过如下公式计算:
n 1ARB_ ePDCCH,0,0 = N i lCOell m 11WoJdU N i^ RDBL— ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
当然, 所述位置确认模块 100确定的所述第一个资源块对的资源位置还可 以通过如下公式计算:
rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志, 其数值由系统配置, 可通过 MIB的信息传输。 其中, NR D PDCCH的数目极限值可以是系统带宽下所有资源块对的数目。 所述位置确认模块 100确定的所述剩余的 P-1个资源块对的资源位置可通过 如下公式计算: nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P .
Figure imgf000019_0001
nRB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P
Figure imgf000020_0001
ePDCCH 其中, l≤p≤P - 1 , nRB d)DCCH, p为所述剩余的 P-l个资源块对中第 p个资源块对 的位置。 当系统服务的 UE数目增多时,增强的物理下行控制信道资源将有进一步增 大的需求。 因此需要进行增强的物理下行控制信道资源的后续配置。 所述数目 获取模块 100还用于在为所述增强的物理下行控制信道已分配的资源中, 分配 至少一个资源元素作为增强的物理控制格式指示信道资源, 所述增强的物理控 制格式指示信道资源用于指示后续需要配置的资源块对的数目 L,其中, L≥l 所述 L满足 L = M X P, 所述 M表示所述后续需要配置的资源块对的组数, 且 Μ≥1 ,
所述位置确认模块 100确定的所述 L个资源块对的资源位置可通过如下公 式计算:
n RB_ePDCCH,m, p ■nPRB— ePDCCH, 0,p + m' LL RB— ePDCCH / P_/(M + l)JmodN- DL
RB— ePDCCH
n RB_ePDCCH,m, p ■nPRB— ePDCCH, 0,p + m' U RB— ePDCCH / P /(M + l)JmodN- DL
RB— ePDCCH
n DL
RB— ePDCCH,m,p ■ nUp RB— ePDCCH, 0,p + m ui■ N- RB ePDCCH PJ/(M + I modN DL
RB ePDCCH
n RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 丄、 RDBL ePDCCH / /P A /(M + 1 modN DL
RB ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, Ν 1· 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
请参照图 7,为本发明下行控制信道资源的分配装置第二实施例的组成示意 图。 在本实施例中, 所述分配装置包括: 处理器 300及与所述处理器 300配合 的存储器 400
所述存储器 400用于存储所述处理器 300执行的程序, 所述处理器 300用 于: 获取增强的物理下行控制信道需要配置的资源块对的数目 P;
根据小区识别码确定所述 P个资源块对的资源位置并进行映射;
其中, P≥l。
具体地, 所述处理器 300进一步用于:
根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资源位置 并进行映射。
当 >1时, 所述处理器 300进一步用于:
根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的资源位 置并进行映射。
优选地, 所述处理器 300确定的所述第一个资源块对的资源位置可通过如 下公式计算:
n 1ARB_ePDCCH,0,0 =N i lCOellm 11WoJdUN i^RDBL— ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
当然, 所述处理器 300确定的所述第一个资源块对的资源位置还可以通过 如下公式计算:
rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志, 其数值由系统配置, 可通过 MIB的信息传输。
所述处理器 300确定的所述剩余的 P-1个资源块对的资源位置可通过如下公 式计算:
nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P .
Figure imgf000021_0001
DL
nRB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P L_ePDCCH/P ^nodN ';RB_ePDCCH 其中, 1≤ p≤P_l , n RB— ePDCCH'O, p为所述剩余的 P-1个资源块对中第 p个资源块对 的位置。
所述根据小区识别码确定所述 P个资源块对的资源位置并进行映射之后, 所述处理器 300还用于:
在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源元 素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信道 资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l 。
所述 L满足 L = M X P, 所述 M表示所述后续需要配置的资源块对的组数, 且 Μ≥1 ,
所述处理器 300确定所述 L个资源块对的资源位置可通过如下公式计算:
N DL DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / P_/(M + l)Jmod N RB— ePDCCH
N DL DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)Jmod N RB— ePDCCH
n n + m . DL DL
RB_ePDCCH,m,p .11PRB_ePDCCH,0, p N- RB ePDCCH PJ/(M + I mod N RB ePDCCH
DL
n RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 丄、 RDBL ePDCCH / /P A /(M + 1 mod N RB ePDCCH 其中, 0≤ p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
通过上述实施例的描述, 本发明具有以下优点:
通过获取增强的物理下行控制信道需要配置的资源块对的数目 Ρ,再根据小 区识别码确定所述 Ρ个资源块对的资源位置并进行映射, 可以实现在系统不存 在物理下行控制信道资源时, 完成对增强的物理下行控制信道资源的分配; 其 中, 通过基于小区识别码的隐式分配可以实现对增强的物理下行控制信道资源 的初始配置, 将 Ρ个资源块对平均地分配至用于配置增强的物理下行控制信道 的资源中; 当系统服务的 UE数目增多时,通过显式分配实现对增强的物理下行 控制信道资源的后续配置, 初始配置结合后续配置可以实现各种情况下对增强 的物理下行控制信道资源较好地分配; 通过分组编码、 重复编码结合组合编码 的方式, 可确保编码后的码字之间的汉明距离相同, 提高在所述增强的物理控 制格式指示信道中, 信息或数据传输的稳定性及可靠性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存取存储器(Random Access Memory, 筒称 RAM )等。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种下行控制信道资源的分配方法, 其特征在于, 包括:
获取增强的物理下行控制信道需要配置的资源块对的数目 P;
根据小区识别码确定所述 P个资源块对的资源位置并进行映射;
其中, P≥l。
2、 如权利要求 1所述的分配方法, 其特征在于, 所述根据小区识别码确定 所述 P个资源块对的资源位置并进行映射包括:
根据所述小区识别码确定所述 P个资源块对中第一个资源块对的资源位置 并进行映射。
3、 如权利要求 2所述的分配方法, 其特征在于, 当 >1时, 所述根据小 区识别码确定所述 P个资源块对的资源位置并进行映射还包括:
根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的资源位 置并进行映射。
4、 如权利要求 2或 3所述的分配方法, 其特征在于, 所述第一个资源块对 的资源位置通过如下公式计算:
n 1ARB_ePDCCH,0,0 =N i lCOellm 11WoJdUN i^RDBL— ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
5、 如权利要求 2或 3所述的分配方法, 其特征在于, 所述第一个资源块对 的资源位置通过如下公式计算:
rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
6、 如权利要求 2-5任一项所述的分配方法, 其特征在于, 所述剩余的 P-1 个资源块对的资源位置通过如下公式计算:
ePDCCH
n
Figure imgf000025_0001
RB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P ePDCCH 其中, l≤p≤P— 1 , nRB ePDCCH,。,p为所述剩余的 P-1个资源块对中第 p个资源 块对的位置。
7、 如权利要求 1-5任一项所述的分配方法, 其特征在于, 所述根据小区识 别码确定所述 P个资源块对的资源位置并进行映射之后, 还包括:
在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源元 素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信道 资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l
8、如权利要求 7所述的分配方法,其特征在于,所述 L满足 L = M xP
Figure imgf000025_0002
述 M表示所述后续需要配置的资源块对的组数, 且 Μ≥1 , n N DL
RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH / p]/(M + l)JmodN r
J-DL
RB ePDCCH
n N DL
RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' U RB— ePDCCH / P /(M + l)JmodN rDL
JRB ePDCCH 或 n NDL
RB— ePDCCH,m,p ■ nUp RB— ePDCCH, 0,p + m ui■ L、RB— ePDCCH PJ/(M + I modN DL
RB— ePDCCH
或 n n + m .
RB_ePDCCH,m,p ■"PRB— ePDCCH,0,p RDBL ePDCCH / /P A /(M + I modN DL
RB ePDCCH 其中, 0≤p≤P— 1 , l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
9、一种增强的物理控制格式指示信道资源的编码方法, 其特征在于, 包括: 对信息位 Υ采用 (Χ,Υ )分组编码的方式进行编码, 得到比特数目为 X的 码字, 其中, 比特位 X用于指示分组编码后的编码比特数目, 信息位 Υ用于指 示分组编码前的信息比特数目;
判断各个比特数目为 X的码字之间的汉明距离是否相同; 至 Ν个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 Ν不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源元素用完;
若否, 则将 η个所述比特数目为 X的码字相互组合形成组合码字, 使得各个 组合码字之间的汉明距离相同;
将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个资源元素 中, 当 Ν不能整除 η· Χ时, 则将级联的最后一级组合码字的尾部省略确保所述 资源元素用完, 其中, n≥2 , X≥l , Y≥l且 Χ≠Υ
10、 一种增强的物理控制格式指示信道资源的编码装置, 其特征在于, 包 括:
分组编码模块, 对信息位 Υ采用 (Χ,Υ )分组编码的方式进行编码, 得到比 特数目为 X的码字, 其中, 比特位 X用于指示分组编码后的编码比特数目, 信 息位 Υ用于指示分组编码前的信息比特数目;
距离判断模块, 判断各个比特数目为 X的码字之间的汉明距离是否相同; 组合编码模块, 用于当各个码字之间的汉明距离不相同时, 将 η个所述比 特数目为 X的码字相互组合形成组合码字, 使得各个组合码字之间的汉明距离 相同;
重复编码模块, 用于将每个所述比特数目为 X的码字分别进行 Ν/ Χ次前后 级联, 映射至 N个用作所述增强的物理控制格式指示信道资源的资源元素中, 当 N不能整除 X时, 则将级联的最后一级码字的尾部省略确保所述资源元素用 完; 或将每个组合码字分别进行 Ν/(η· Χ)次前后级联, 映射至所述 Ν个资源元 素中, 当 Ν不能整除 η · Χ时, 则将级联的最后一级组合码字的尾部省略确保所 述资源元素用完, 其中, n≥2 , X≥l , Y≥l且 Χ≠Υ。
11、 一种下行控制信道资源的分配装置, 其特征在于, 包括:
数目获取模块, 获取增强的物理下行控制信道需要配置的资源块对的数目
Ρ;
位置确认模块, 根据小区识别码确定所述 Ρ个资源块对的资源位置并进行 映射;
其中, P≥l。
12、 如权利要求 11所述的分配装置, 其特征在于, 所述位置确认模块进一 步用于:
根据所述小区识别码确定所述 Ρ个资源块对中第一个资源块对的资源位置 并进行映射。
13、 如权利要求 12所述的分配装置, 其特征在于, 当 > 1时, 所述位置 确认模块进一步用于:
根据所述第一个资源块对的资源位置为剩余的 P-1 个资源块对分配资源位 置并进行映射。
14、 如权利要求 12或 13所述的分配装置, 其特征在于, 所述位置确认模 块确定的第一个资源块对的资源位置通过如下公式计算:
n 1ARB_ ePDCCH,0,0 = N i lCOell m 11WoJdU N i^ RDBL— ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
15、 如权利要求 12或 13所述的分配装置, 其特征在于, 所述位置确认模 块确定的所述第一个资源块对的资源位置通过如下公式计算:
rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
16、 如权利要求 13至 15任一项所述的分配装置, 其特征在于, 所述位置 确认模块确定的所述剩余的 P-1个资源块对的资源位置通过如下公式计算: ePDCCH
n
Figure imgf000028_0001
RB_ePDCCHQ,p ~ nRB_ePDCCHQ,0 + P ePDCCH 其中, 1≤ p≤P - l , n p为所述剩余的 P- 1个资源块对中第 p个资源块对 的位置。
17、 如权利要求 11-16任一项所述的分配装置, 其特征在于, 所述根据小区 识别码确定所述 P个资源块对的资源位置并进行映射之后, 所述数目获取模块 还用于在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源 元素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信 道资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l。
18、 如权利要求 17所述的分配装置, 其特征在于, 所述 L满足 L= M x P : 所述 M表示所述后续需要配置的资源块对的组数, 且 Μ≥1 ,
所述位置确认模块确定的所述 L个资源块对的资源位置通过如下公式计算:
N DL
n RB— ePDCCH,m, p ■nPRB— ePDCCH,0,p + m' LL丄、 RB— ePDCCH / P_/(M + l)JmodN rDL
½B— ePDCCH n L
RB_ePDCCH,m,p ■nPRB— ePDCCH0 p + m' 1 RB_ePDCCH/ P /(M + l)JmodN- D
RB— ePDCCH
n DL
RB_ePDCCH,m,p ■ nUpRB— ePDCCH0 p N- DL
RB ePDCCH PJ/(M + I modN RB ePDCCH
n L
RB_ePDCCH,m,p .A1PRB_ePDCCH,0,p ^ 111 丄、 RDBL ePDCCH / /P A /(M+1 modN D
RB ePDCCH 其中, 0≤p≤P— 1, l≤m≤M, n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, Ν 1· 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
19 种下行控制信道资源的分配装置, 其特征在于, 包括: 处理器及存 储器, 所述存储器用于存储所述处理器执行的程序, 所述处理器用于:
获取增强的物理下行控制信道需要配置的资源块对的数目 Ρ;
根据小区识别码确定所述 Ρ个资源块对的资源位置并进行映射;
其中, P≥l
20、如权利要求 19所述的分配装置, 其特征在于, 所述处理器进一步用于: 根据所述小区识别码确定所述 Ρ个资源块对中第一个资源块对的资源位置 并进行映射。
21、 如权利要求 20所述的分配装置, 其特征在于, 当 >1时, 所述处理 器进一步用于:
根据所述第一个资源块对的资源位置确定剩余的 P-1 个资源块对的资源位 置并进行映射。
22、 如权利要求 20或 21所述的分配装置, 其特征在于, 所述处理器确定 的所述第一个资源块对的资源位置通过如下公式计算:
rCell 1 TDL
ePDCCH,0,0 ~ ^ID RB— ePDCCH 其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码, N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目。
23、 如权利要求 20或 21所述的分配装置, 其特征在于, 所述处理器确定 的所述第一个资源块对的资源位置通过如下公式计算:
rCell MDL + Δ
A1RB_ePDCCH,0,0 i lO 111 U i RB_ePDCCH ^ ^
其中, nRB ePDCCH。。为所述第一个资源块对的资源位置, N 11为小区识别码,
N^— ePDCCH为系统中可用于配置所述增强的物理下行控制信道资源的资源块对的 数目, Δ为移位标志。
24、 如权利要求 21-23任一项所述的分配装置, 其特征在于, 所述处理器确 定的所述剩余的 P-1个资源块对的资源位置通过如下公式计算: nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P .
Figure imgf000030_0001
或 nRB_ePDCCHQ,p ~ (nRB_ePDCCHQ,0 + P ·
Figure imgf000030_0002
其中, l≤p≤P— 1 , nRB ePDCCH,。,p为所述剩余的 P-1个资源块对中第 p个资源块对 的位置。
25、 如权利要求 19-24任一项所述的分配装置, 其特征在于, 所述根据小区 识别码确定所述 P个资源块对的资源位置并进行映射之后, 所述处理器还用于: 在为所述增强的物理下行控制信道已分配的资源中, 分配至少一个资源元 素作为增强的物理控制格式指示信道资源, 所述增强的物理控制格式指示信道 资源用于指示后续需要配置的资源块对的数目 L, 其中, L≥l。
26、 如权利要求 25所述的分配装置, 其特征在于, 所述 L满足 L= M xP, 所述 M表示所述后续需要配置的资源块对的组数, 且 Μ≥1 , 所述处理器确定所述 L个资源块对的资源位置通过如下公式计算:
DL
n RB_ePDCCH,m,p ■nPRB— ePDCCH,0,p + m' LL RB— ePDCCH/ P_/(M + l)JmodN- RB— ePDCCH
DL
n RB_ePDCCH,m,p ■nPRB— ePDCCH,0,p + m' U 1 RB_ePDCCH/ P /(M + l)JmodN- RB— ePDCCH
DL DL
n RB— ePDCCH,m,p ■ nUp RB— ePDCCH, 0,p + m 111■ N- RB ePDCCH PJ/(M + I modN RB ePDCCH DL DL
n RB_ePDCCH,m,p nPRB_ePDCCH,0,p + M' I I ^RB_ ePDCCH /(M+1 modN RB ePDCCH 其中, 0≤ p≤P— 1, l≤m≤M , n^epDccH 为所述后续需要配置的 L个 资源块对中第 m组资源块对中的第 p个资源块对的位置, NR D BL 为系统中可用 于配置所述增强的物理下行控制信道资源的资源块对的数目。
PCT/CN2012/080887 2012-08-31 2012-08-31 一种下行控制信道资源的分配方法及装置 WO2014032294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/080887 WO2014032294A1 (zh) 2012-08-31 2012-08-31 一种下行控制信道资源的分配方法及装置
CN201280003967.4A CN103404062B (zh) 2012-08-31 一种下行控制信道资源的分配方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/080887 WO2014032294A1 (zh) 2012-08-31 2012-08-31 一种下行控制信道资源的分配方法及装置

Publications (1)

Publication Number Publication Date
WO2014032294A1 true WO2014032294A1 (zh) 2014-03-06

Family

ID=49565856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080887 WO2014032294A1 (zh) 2012-08-31 2012-08-31 一种下行控制信道资源的分配方法及装置

Country Status (1)

Country Link
WO (1) WO2014032294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201490A1 (en) * 2017-05-05 2018-11-08 Zte Corporation Transmission based on data blocks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102256358A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种数据传输和接收方法、装置及系统
WO2012020536A1 (ja) * 2010-08-10 2012-02-16 パナソニック株式会社 基地局、中継局、送信方法、及び受信方法
CN102624489A (zh) * 2012-03-20 2012-08-01 电信科学技术研究院 一种增强的控制信道传输的方法、装置及系统
CN102638892A (zh) * 2012-03-26 2012-08-15 电信科学技术研究院 一种对e-pdcch进行资源映射的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020536A1 (ja) * 2010-08-10 2012-02-16 パナソニック株式会社 基地局、中継局、送信方法、及び受信方法
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102256358A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种数据传输和接收方法、装置及系统
CN102624489A (zh) * 2012-03-20 2012-08-01 电信科学技术研究院 一种增强的控制信道传输的方法、装置及系统
CN102638892A (zh) * 2012-03-26 2012-08-15 电信科学技术研究院 一种对e-pdcch进行资源映射的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201490A1 (en) * 2017-05-05 2018-11-08 Zte Corporation Transmission based on data blocks
CN110870237A (zh) * 2017-05-05 2020-03-06 中兴通讯股份有限公司 基于数据块的传输
US11271693B2 (en) 2017-05-05 2022-03-08 Zte Corporation Transmission based on data blocks

Also Published As

Publication number Publication date
CN103404062A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
US10742349B2 (en) Apparatus and method for encoding and decoding channel in communication or broadcasting system
US11212036B2 (en) Data communication method, device, and system
CN113783678B (zh) 通信方法和通信装置
EP2941077B1 (en) Pdsch transmission method and device
CN109511172B (zh) 用于在无线通信系统中传输控制信息的方法和装置
US10420092B2 (en) Resource allocation information indication method, base station, and user equipment
US11528091B2 (en) Method and apparatus for performing channel coding and decoding in communication or broadcasting system
EP3425981B1 (en) Resource allocation method and network device
US11863489B2 (en) Method and apparatus for transmitting and receiving multiple data in wireless cooperative communication system
US20130301561A1 (en) System and Method for Antenna Port Association
WO2014019206A1 (zh) 控制信道的传输、接收方法、基站和用户设备
US11856594B2 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
KR20140042892A (ko) 제어 채널을 수신 및 송신하기 위한 방법 및 장치
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
KR20170108008A (ko) 지시 정보를 전송하는 방법 및 장치
WO2014046591A1 (en) Method and communication node for mapping an enhanced physical downlink control channel, epdcch, message
US20210185672A1 (en) Time Domain Resource Configuration Method
US11751148B2 (en) Method and apparatus for data transmission in wireless cellular communication system
WO2017101632A1 (zh) 信号处理方法及装置
CN113517946A (zh) 一种通信方法及装置
WO2013139259A1 (zh) 正交频分多址接入系统中的编码传输方法和系统
WO2014032294A1 (zh) 一种下行控制信道资源的分配方法及装置
US11870572B2 (en) Method and apparatus for performing channel coding and decoding in communication or broadcasting system
US20240023039A1 (en) Method and apparatus for data transmission in wireless cellular communication system
WO2017028071A1 (zh) 下行控制信息的接收、发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883531

Country of ref document: EP

Kind code of ref document: A1