WO2014030874A1 - Apparatus for pre-treating waste activated sludge and method for pre-treating waste activated sludge using same - Google Patents

Apparatus for pre-treating waste activated sludge and method for pre-treating waste activated sludge using same Download PDF

Info

Publication number
WO2014030874A1
WO2014030874A1 PCT/KR2013/007308 KR2013007308W WO2014030874A1 WO 2014030874 A1 WO2014030874 A1 WO 2014030874A1 KR 2013007308 W KR2013007308 W KR 2013007308W WO 2014030874 A1 WO2014030874 A1 WO 2014030874A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
ozone
waste activated
cavitation
venturi
Prior art date
Application number
PCT/KR2013/007308
Other languages
French (fr)
Korean (ko)
Inventor
남궁규철
Original Assignee
에스워터(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스워터(주) filed Critical 에스워터(주)
Publication of WO2014030874A1 publication Critical patent/WO2014030874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Definitions

  • the present invention relates to a waste activated sludge pretreatment device generated in a biological treatment tank of sewage and wastewater treatment plants and a method for pretreating waste activated sludge using the same.
  • Waste activated sludge or excessive sludge which is continuously generated in biological treatment tanks of sewage and wastewater treatment plants, is one of the representative organic wastes.
  • these organic waste activated sludges have been treated by various methods such as landfilling, incineration, sea dumping, composting, auxiliary fueling, carbonization, etc., but most sewage and wastewater treatment plants have adopted the most cost-effective method of treatment. For this reason, a large amount of organic waste activated sludge has been dumped in the sea, sprinkled on land or landfilled all over the world.
  • In Korea more than 70% of sewage sludge has been disposed of by dumping at the end of 2006, since direct landfilling of organic waste sludge was banned in 2003.
  • an international environmental convention, such sea dumping was totally banned. Therefore, in the future, all of this organic waste sludge must be disposed of properly in land.
  • Activated sludge flocs are lumps of microorganisms frozen together and are connected to each other through extracellular polymeric substances (EPS) (see Korean Patent Registration No. 10-0948494 FIG. 1).
  • EPS extracellular polymeric substances
  • these sludge floc structures In order to reduce waste activated sludge fundamentally, these sludge floc structures must be broken and the cell walls must be broken to allow the release of microbial components.
  • the treated sludge is then fed back into the biological treatment tank or used as a carbon source in the advanced treatment process to remove nitrogen or phosphorus, thus making it possible to zero the waste activated sludge discharged from the wastewater treatment plant.
  • the water content in order to be recycled by composting, the water content must be lowered to less than 60% after dehydration. In this case, the pore water and some internal water of cells around the activated sludge should be removed. There is a limit that only free water can be removed only by the commonly used mechanical dehydration method.
  • suitable alternative methods should be techniques that can destroy such activated sludge floc structures and break cell walls.
  • sludge treatment through anaerobic digestion when the anaerobic digestion efficiency is increased, the solids are converted into biogas, which can recover a large amount of energy source, and consequently, the amount of sludge to be disposed of eventually decreases. You get an effect. Therefore, a pretreatment technique is required to increase the extinguishing efficiency. For this purpose, the amount of organic matter present as a solid and the amount of dissolved organic matter must be increased. This is possible only when the activated sludge floc structure is broken as described in the above two methods, and at the same time, the microbial cell wall is destroyed to release the intracellular material to the outside.
  • waste activated sludge pretreatment has been tested and developed such as ultrasonication, high temperature heat treatment, ozone oxidation, cavitation treatment, alkali treatment, enzyme treatment, mechanical treatment, acid treatment, microbial treatment, wet oxidation process, vacuum treatment, etc. (Nam Gung-cheol, quoted from the 2008 KOSEN Expert Review).
  • Ozone oxidation of sewage sludge destroys the cell walls of the sludge reacted with ozone, releasing substances inside the cells (COD components).
  • COD components substances inside the cells
  • polysaccharides, proteins, lipids, and the like react with ozone to be converted to low molecular weight compounds. If the ozone dose is high enough, intracellular substances can be converted to carbon dioxide and water and mineralized. Waste activated sludge treatment using ozone can be divided into treatment for sludge reduction and pretreatment of anaerobic digestion (Korean Patent Registration No. 10-0928972).
  • Hydrodynamic cavitation differs in ultrasonic cavitation and principle, but shows similar characteristics in its effect.
  • HC is produced through turbulent flow of liquids, and often occurs when there is a large pressure difference in the flow of liquids. For example, if the device is made to pass through an orifice with a small cross-sectional area while moving the fluid at high pressure in a pipe with a constant cross-sectional area, there is a large pressure difference at the discharge portion of the orifice, which causes cavitation immediately after the discharge portion. This happens.
  • Another example is a device that allows a fluid passing through an orifice to meet a blade.
  • the orifice shape is not spherical but excellent in elliptical shape.
  • HC HC
  • pressure, flow rate, and cavitation chamber design The pressure at the orifice inlet, the restoring pressure at the orifice discharge, and the minimum pressure for the occurrence of cavitation are important, and it is essential for commercial applications to clarify the relevant time factors (Namung Kyu-cheol, Journal of the Korean Society of Civil Engineers, Vol. 55) 10, pp 50-55, 2007).
  • a process and apparatus are needed to effectively disassemble the structure of the sludge floc and to attack and destroy the cell walls of the microorganisms so that intracellular materials and internal water are released to the outside.
  • Cavitation and ozonation technologies provide an effective means of achieving this goal and, when used together, provide excellent synergy. Therefore, by integrating these technologies effectively and pretreating the waste activated sludge, a process and apparatus have been introduced that can reduce sludge reduction, improve sludge dewatering efficiency, and improve digestion efficiency (Korean Patent Registration No. 10-0948494).
  • a sludge pretreatment process that can further improve sludge reduction, dewatering capacity, and anaerobic digestion efficiency with a simpler process.
  • the ozone was treated in a separate contact tank, so the pump capacity for injecting ozone had to be large, and the ozone contact tank had a limitation in uniformly solubilizing the organic sludge in the treatment of a large amount of organic sludge. have.
  • the present invention combines a physical treatment using cavitation with a chemical treatment using ozone in the pretreatment to solubilize the sludge, the operation cost is lower, the energy efficiency is simpler, and the device that maximizes the efficiency of the sludge solubilization, namely reduction, To improve the sludge dewatering efficiency and high anaerobic digestion efficiency sludge pretreatment device.
  • the present invention in order to achieve the above technical problem, in the pretreatment apparatus for solubilizing waste activated sludge,
  • a high pressure pump for introducing sludge from the first sludge reservoir into a cavitation chamber at a pressure of 7 bar to 560 bar;
  • a cavitation chamber having an orifice to allow cavitation to be generated while the high pressure sludge discharged from the high pressure pump passes;
  • a venturi unit having an ozone injection unit for injecting ozone into the sludge discharged from the cavitation chamber;
  • It provides a waste activated sludge pretreatment apparatus comprising a second sludge storage tank for storing the treated sludge installed downstream of the venturi.
  • the venturi unit may be configured with one to ten venturi tubes connected in series.
  • the ozone injection portion connected to the venturi tube may be connected to the neck of the narrowest cross-sectional area of the venturi tube.
  • the pressure of the sludge introduced into the cavitation chamber from the first sludge reservoir is more preferably 7bar to 560bar, most preferably 10bar to 420bar.
  • the apparatus of the present invention may further include an ozone contact tank for ozone treatment of sludge discharged from the venturi portion between the downstream of the venturi portion and the second sludge storage tank.
  • the first sludge storage tank may further include a filtration tank for filtering foreign substances of a predetermined size or more from the sludge to be treated.
  • the apparatus comprises the step of ozone treatment with cavitation generation by passing the sludge to be treated through a venturi tube having a high pressure cavitation chamber and an ozone injection section using the apparatus. Waste activated sludge pretreatment methods are provided.
  • the waste activated sludge may be treated with alkali, hydrogen peroxide, or alkali and hydrogen peroxide before being introduced into the venturi part.
  • the apparatus according to the present invention maximizes the cavitation effect by placing a cavitation chamber by an orifice at the rear of the high pressure part in solubilizing the sludge by using a high pressure cavitation device, and then puts a venturi part to introduce ozone by dispersing and introducing ozone. It can save and also get good stirring effect. Therefore, compared with the case where only the ozone-only mixing treatment or the low pressure cavitation is performed using the venturi unit, the sludge reduction, the sludge dewatering efficiency and the anaerobic digestion efficiency are improved. In addition, even when using an additional ozone contact tank, the size of the pump and tank can be made small.
  • FIG. 1 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a third embodiment of the present invention.
  • FIG. 4 is a schematic view showing various forms of orifices.
  • 5 is a view showing the solubilization effect of the venturi tube.
  • the waste activated sludge pretreatment apparatus of the present invention includes a first sludge storage tank 1, a high pressure pump (HPP) 2, a cavitation chamber 4 having an orifice 3, and an ozone injection unit 6 therein.
  • ozone is injected into the ozone injection unit 6 of the venturi tube 5, and ozone and sludge are effectively mixed and further processed by a relatively weak hydraulic cavitation while passing through the venturi tube 5.
  • the sludge is divided into individual cells, mainly by dissolving the floc structure and breaking the bond formed by the extracellular fibrous materials.
  • Ozone is injected from the venturi part 5 and mixed with the sludge and undergoes a weak cavitation phenomenon, and gas-liquid mixing is effectively performed, and ozone destroys the sludge by oxidizing the cell walls and extracellular tissues of the individualized cells through oxidation reaction. Solubilization.
  • the pressure of the high pressure pump 2 is preferably 7 bar to 560 bar, more preferably 10 bar to 420 bar. If the pressure is too low, the process may not proceed properly due to the pressure drop loss in the venturi portion, and if the pressure is too high, there may be a problem that the cost is increased by using expensive equipment. If necessary, the pump may be further used in front of the high pressure pump 2 to smoothly operate the high pressure pump.
  • the cavitation chamber refers to a region in which high pressure cavitation is formed from an orifice to a front end of the venturi portion.
  • the orifice 3 of the cavitation chamber 4 may have one or several openings and is not particularly limited. Sludge sucked into the orifice 3 by the high-pressure pump 2 is a cavitation phenomenon such as a shock wave is generated as the bubbles generated by the expansion portion rapidly collapses.
  • the ozone injection section 6 is formed in the neck portion of the venturi tube 5 in which the cross-sectional area of the venturi tube 5 is drastically reduced, and when the fluid passes through the portion, the velocity of the fluid increases rapidly and thus the fluid The pressure of is greatly reduced. In other words, since negative pressure is generated, ozone is naturally inhaled, so there is no need to operate a separate pump for ozone injection. In addition, the gas in the dissolved state in the fluid is released from the fluid or the phase change of water occurs to form cavities (cavities) is generated.
  • each venturi tube 5 having the ozone injection unit 6 is connected in series.
  • two or more venturi tubes 5 are connected in series to form the venturi unit.
  • the solubilization efficiency can be further improved while the sludge passes through each venturi tube.
  • each venturi tube may be configured to be detachably connected to easily adjust the number of venturi tubes as needed.
  • ozone may be injected into each venturi tube, only some of them may be injected.
  • the sludge to be treated contains a large solid, it may further include a filtration tank 10 for filtering it.
  • the filtration tank 10 is installed in the front end of the 1st sludge storage tank 1, it can also be installed in the rear end.
  • it may be provided with a means for promoting the solubilization of the sludge, that is, a means for adding before introduction into the venturi portion 5, such as alkali or hydrogen peroxide.
  • an ozone contacting tank 20 may be provided to further ozonate the sludge flowing out of the venturi part, and an additional ozone contacting tank 20 may be provided.
  • the size or pump capacity of the reactor may also be much smaller than in the case of not using the device according to the invention, thus making the installation compact.
  • the sludge and ozone may be contacted in two ways. One is to use a gas-liquid mixing pump and the other is to use an injector / venturi. In the former case, the sludge in the contact tank 20 is removed by the gas-liquid mixing pump 30, and ozone is injected therein, and the sludge and ozone are mixed through the gas-liquid mixing pump 30 and put back into the ozone contacting tank 20. (See FIG.
  • Sewage sludge samples were taken from a biofilm reactor (MBR) pilot facility (treatment capacity: 300 tons / day, average TSS: 10,000 mg / L) installed in the sewage treatment plant.
  • MLR biofilm reactor
  • TSS 10,000 mg / L
  • Orifice cross section 0.785 mm 2
  • Venturi tube cross section 7.065 mm 2
  • Ozone injection volume 120mg / L
  • Filtration tank specification stainless steel screen with 1.0mm mesh (screen area: 0.196m 2 )
  • Ozone contact tank and pump specifications 1.2m 3 size cylindrical contact tank with bubble breaker on top, 2HP 380V gas-liquid mixing pump (Shinpung Naesan pump)
  • the ozone generator is a water-cooled device (SW-50 of Sewang C-Tech), and the ozone generating capacity is up to 50g-O 3 / hr
  • the raw material oxygen was pure oxygen (99.99%) stored in a high pressure vessel.
  • the treated sludge was analyzed in the following manner.
  • Experimental results in the case of treating only ozone with an ozone contact pump without high pressure cavitation can also refer to Korean Patent Registration No. 10-0948494.
  • the experimental results according to the ozone input amount are as follows.
  • Experimental results in the case of performing ozone treatment by cavitation and ozone contact pump can also refer to Korean Patent Registration No. 10-0948494.
  • the experimental results according to the ozone input amount are as follows.
  • Example 1 120mg / L 1200 mg / L 10 1m 3 , 50g / hr, 2.4hr Comparative Example 2 One 250 mg / L 520mg / L 2.08 20L, 30g / hr, 10min 2 417mg / L 870 mg / L 2.09 20L, 50g / hr, 10min Comparative Example 3 One 250 mg / L 1,028 mg / L 4.11 20L, 30g / hr, 10min 2 417mg / L 1,204 mg / L 2.89 20L, 50g / hr, 10min
  • the high pressure as in the present invention is compared with the case of using an ozone contact pump without using a venturi tube (Comparative Example 2) or when using a cavitation and an ozone contact pump (Comparative Example 3).
  • a venturi tube after cavitation it can be seen that a much better SCODcr increase, that is, a sludge solubilization effect, can be obtained compared to the same ozone dose.
  • FIG. 3 of Korean Patent Registration No. 10-0866620 of Samchang Enterprise shows the effect of the number of venturi tubes on the sludge solubilization efficiency (see FIG. 5).
  • Comparative Example 4 shows very slow processing performance.
  • the SCOD value was 1,600 mg / L when treated with one venturi tube for 20 hours, and the SCOD increase was obtained when the treatment was performed for 10 hours with two.
  • the SCOD value reaches 1,550 mg / L after the high pressure cavitation through two stages of low pressure cavitation, and the treatment time is within 1 minute to 3 minutes. This shortening of time results in a small space, a small area for the treatment facility, and a compact facility, thereby reducing facility investment and operation management costs.
  • ozone is added to about 100mg / L ⁇ 150mg / L.
  • the SCOD growth rate increased from 400mg / L to 1200mg / L at the ozone injection rate of 120mg / L. Increased to 1600 mg / L when cavitation was included.
  • the sludge reduction rate is 40% under this condition, and compared with 0.05 kg O 3 consumed / kg Sludge reduced shown in Comparative Example 5, the ozone treatment efficiency is about twice as high as 0.025 kg O 3 consumed / kg Sludge reduced. It can be seen that. As a result, it can be seen that the sludge reduction effect of the present invention is about 2 times for the same ozone input.
  • the sludge solubilization rate is significantly lower in Comparative Example 1 and Comparative Example 4, in which only cavitation was performed without ozone treatment, as compared with the ozone treatment.
  • the treatment rate is lower than in the present invention.
  • the apparatus according to the present invention maximizes the cavitation effect by placing a cavitation chamber by an orifice at the rear of the high pressure part in solubilizing the sludge by using a high pressure cavitation device, and then puts a venturi part to introduce ozone by dispersing and introducing ozone. It can save and also get good stirring effect. Therefore, compared with the case where only the ozone-only mixing treatment or the low pressure cavitation is performed using the venturi unit, the sludge reduction, the sludge dewatering efficiency and the anaerobic digestion efficiency are improved. In addition, even when using an additional ozone contact tank, the size of the pump and tank can be made small.

Abstract

The present invention relates to an apparatus for pre-treating waste activated sludge that is generated in biological treatment tanks of sewage treatment plants and waste water treatment plants, and a method for pre-treating waste activated sludge using same. The apparatus for pre-treating waste activated sludge that solubilizes sludge includes: a first sludge storage tank that accommodates sludge to be treated; a high-pressure pump that introduces the sludge from the first sludge storage tank into a cavitation chamber at a pressure of between 7 bars and 560 bars; the cavitation chamber that has an orifice so that cavitation is generated while the high-pressure sludge discharged from the high-pressure pump passes therethrough; a Venturi section that has an ozone injection unit which injects ozone into the sludge discharged from the cavitation chamber; and a second sludge storage tank that is disposed on a downstream side of the Venturi section to store the treated sludge.

Description

폐활성슬러지 전처리 장치 및 이를 이용한 폐활성슬러지 전처리 방법Waste activated sludge pretreatment device and waste activated sludge pretreatment method using same
본 발명은 하수 및 폐수 처리장의 생물학적 처리조에서 발생되는 폐활성슬러지 전처리 장치 및 이를 이용하여 폐활성슬러지를 전처리하는 방법에 관한 것이다.The present invention relates to a waste activated sludge pretreatment device generated in a biological treatment tank of sewage and wastewater treatment plants and a method for pretreating waste activated sludge using the same.
하수 및 폐수 처리장의 생물학적 처리조에서 지속적으로 발생되는 폐활성슬러지(waste activated sludge or excessive sludge)는 대표적인 유기성 폐기물(organic wastes)에 속한다. 지금까지 이러한 유기성 폐활성슬러지는 매립, 소각, 해역투기, 퇴비화, 보조연료화, 탄화 등 여러 가지 방법으로 처리되어 왔지만, 대부분의 하수 및 폐수 처리장에서는 비용적으로 가장 유리한 처리 방식을 채택해 왔다. 이러한 이유로, 전세계적으로 많은 양의 유기성 폐활성슬러지가 해역에 투기되거나 농지에 뿌려지거나 땅에 매립되어 왔다. 대한민국의 경우, 2003년에 유기성 폐슬러지의 직매립이 금지되면서 2006년말 70% 이상의 하수슬러지가 해역투기에 의해 처분되고 있는 실정이다. 하지만 국제환경협약인 런던협약에 가입하게 되면서 이러한 해역투기는 전면 금지되게 되었다. 따라서 향후 이러한 유기성 폐슬러지는 전량 육상에서 적절한 방법으로 처리되어야만 한다. Waste activated sludge or excessive sludge, which is continuously generated in biological treatment tanks of sewage and wastewater treatment plants, is one of the representative organic wastes. Until now, these organic waste activated sludges have been treated by various methods such as landfilling, incineration, sea dumping, composting, auxiliary fueling, carbonization, etc., but most sewage and wastewater treatment plants have adopted the most cost-effective method of treatment. For this reason, a large amount of organic waste activated sludge has been dumped in the sea, sprinkled on land or landfilled all over the world. In Korea, more than 70% of sewage sludge has been disposed of by dumping at the end of 2006, since direct landfilling of organic waste sludge was banned in 2003. However, by joining the London Convention, an international environmental convention, such sea dumping was totally banned. Therefore, in the future, all of this organic waste sludge must be disposed of properly in land.
이러한 배경에서, 슬러지 발생량 자체를 원천적으로 감량하기 위한 방법, 퇴비나 복토재 또는 보조연료 등으로 재활용하는 방법, 그리고 혐기성 소화를 통해 메탄(CH4)과 같은 에너지원을 회수하는 방법 등이 미래의 해결 방안으로 떠오르고 있다. 이러한 방법들을 구현하기 위해서는 폐활성슬러지가 적절히 전처리 되어야 하는데, 현재 개발된 기술들은 효율 및 비용 측면에서 아직 미흡한 실정이다.Against this backdrop, the future solution is to reduce sludge generation by itself, to recycle it as compost or cover material or auxiliary fuel, and to recover energy sources such as methane (CH 4 ) through anaerobic digestion. Emerging into the room. In order to implement these methods, waste activated sludge must be properly pretreated. Currently developed technologies are still insufficient in terms of efficiency and cost.
폐활성슬러지를 적절히 전처리하기 위해서는 무엇보다 활성슬러지 플록(floc)의 구조를 정확히 이해하는 것이 중요하다. 활성슬러지 플록은 미생물들이 서로 얼기설기 모인 덩어리로서 미생물 세포외부의 섬유상 구조(extracellular polymeric substances, EPS)를 통해 서로 연결되어 있다(대한민국 특허등록 제10-0948494호 도 1 참조). In order to properly pretreat the waste activated sludge, it is important to understand the structure of activated sludge floc. Activated sludge flocs are lumps of microorganisms frozen together and are connected to each other through extracellular polymeric substances (EPS) (see Korean Patent Registration No. 10-0948494 FIG. 1).
폐활성슬러지를 원천적으로 감량화하기 위해서는 반드시 이러한 슬러지 플록 구조를 깨뜨려야 하고 또한 세포벽을 깨뜨려서 미생물 구성물질이 외부로 방출되도록 해야 한다. 이렇게 처리된 슬러지는 다시 생물학적 처리조로 투입되거나 질소나 인을 제거하는 고도처리공정의 탄소원으로 이용됨으로써 하폐수처리장의 폐활성슬러지 배출량을 0(zero)으로 만들 수 있게 된다. 또한 퇴비화 등으로 재활용되기 위해서는 필히 탈수 후 함수율을 60% 미만까지 낮추어야 하는데, 이 경우 활성슬러지 주변의 물 중 간극수 및 일부 세포 내부수까지 제거해 주어야 한다. 흔히 사용되는 기계적 탈수 방식만으로는 자유수밖에 제거할 수 없어 한계가 있다. 따라서 다른 대안이 필요하며, 적절한 대안 방법은 이러한 활성슬러지 플록 구조를 파괴하고 세포벽을 깨뜨릴 수 있는 기술이어야 한다. 그리고, 혐기성 소화를 통한 슬러지 처리의 경우, 혐기성 소화효율이 높아지면 고형물이 바이오가스(biogas)로 전환되어 결과적으로 많은 양의 에너지원을 회수할 수 있고 또한 부수적으로 최종 처분할 슬러지의 양이 줄어드는 효과를 얻게 된다. 따라서 소화효율을 높일 수 있는 전처리 기술이 필요하며, 이를 위해서는 고형물로 존재하는 유기물의 양을 줄이고 용존성 유기물의 양을 늘릴 수 있어야 한다. 이것은 앞서 위 두 가지 방법에서 기술한 바와 같이 활성슬러지 플록 구조를 깨뜨리면서 동시에 미생물 세포벽을 파괴하여 세포내 물질을 외부로 방출시킬 수 있어야 가능해지는 것이다.In order to reduce waste activated sludge fundamentally, these sludge floc structures must be broken and the cell walls must be broken to allow the release of microbial components. The treated sludge is then fed back into the biological treatment tank or used as a carbon source in the advanced treatment process to remove nitrogen or phosphorus, thus making it possible to zero the waste activated sludge discharged from the wastewater treatment plant. In addition, in order to be recycled by composting, the water content must be lowered to less than 60% after dehydration. In this case, the pore water and some internal water of cells around the activated sludge should be removed. There is a limit that only free water can be removed only by the commonly used mechanical dehydration method. Therefore, other alternatives are needed, and suitable alternative methods should be techniques that can destroy such activated sludge floc structures and break cell walls. In the case of sludge treatment through anaerobic digestion, when the anaerobic digestion efficiency is increased, the solids are converted into biogas, which can recover a large amount of energy source, and consequently, the amount of sludge to be disposed of eventually decreases. You get an effect. Therefore, a pretreatment technique is required to increase the extinguishing efficiency. For this purpose, the amount of organic matter present as a solid and the amount of dissolved organic matter must be increased. This is possible only when the activated sludge floc structure is broken as described in the above two methods, and at the same time, the microbial cell wall is destroyed to release the intracellular material to the outside.
지금까지 폐활성슬러지 전처리 방법으로 초음파 처리, 고온 열처리, 오존 산화, 캐비테이션 처리, 알칼리처리, 효소처리, 기계적 처리, 산처리, 미생물처리, 습식산화공정, 진공처리 등의 방법들이 테스트되고 개발되어 왔다 (남궁규철, 2008 KOSEN Expert Review 에서 재인용).So far, waste activated sludge pretreatment has been tested and developed such as ultrasonication, high temperature heat treatment, ozone oxidation, cavitation treatment, alkali treatment, enzyme treatment, mechanical treatment, acid treatment, microbial treatment, wet oxidation process, vacuum treatment, etc. (Nam Gung-cheol, quoted from the 2008 KOSEN Expert Review).
하수 슬러지를 오존산화로 처리하면 오존과 반응한 슬러지의 세포벽이 파괴되면서 세포내부의 물질(COD 성분)이 방출되게 된다. 또한, 다당류, 단백질, 지질 등은 오존과 반응하여 저분자량 화합물로 전환된다. 오존 주입량이 충분히 높다면, 세포내 물질은 이산화탄소와 물로 전환, 무기물화 될 수 있다. 오존을 이용한 폐활성슬러지 처리는 슬러지 감량화를 위한 처리와 혐기성 소화의 전처리로 구분할 수 있다(대한민국 특허등록 제10-0928972호). 실규모 슬러지 감량화 처리에서는 0.05kgO3/kgTSS 의 오존 주입으로 19-35%의 슬러지 감량 효과를 얻었다고 보고되었다. 이를 혐기성 소화 전처리에 적용하였을 때, 10% 정도의 소화 슬러지 감량화 효과를 얻을 수 있었다. 그리고 오존 주입량을 0.03kgO3/kgTSS 에서 0.06 kgO3/kgTSS로 증가시켜 용해성 COD 물질의 배출을 11%에서 16%로 증가시킬 수 있었다. 하지만 혐기성 소화조를 거친 후 배출수의 COD가 증가하고, 슬러지 감소량에 비해 비용이 높아지는 단점이 있다고 보고되었다. 한 연구에서 오존 전처리에 대한 자금회수 기간은 약 6 년으로 추산되었다. 한편 이러한 문제점의 해결 방안의 하나로, 오존 전처리 후 중온 소화조에 클로즈드 루프 오존 산화 장치를 둔 경우가 오존 주입량에 비해 훨씬 우수한 가스생산, COD 감소 등을 얻을 수 있었다고 보고되었다(남궁규철, 2008 KOSEN Expert Review 에서 재인용).Ozone oxidation of sewage sludge destroys the cell walls of the sludge reacted with ozone, releasing substances inside the cells (COD components). In addition, polysaccharides, proteins, lipids, and the like react with ozone to be converted to low molecular weight compounds. If the ozone dose is high enough, intracellular substances can be converted to carbon dioxide and water and mineralized. Waste activated sludge treatment using ozone can be divided into treatment for sludge reduction and pretreatment of anaerobic digestion (Korean Patent Registration No. 10-0928972). In the sludge reduction treatment, it was reported that an ozone injection of 0.05 kgO 3 / kg TSS resulted in a sludge reduction effect of 19-35%. When applied to anaerobic digestion pretreatment, digestive sludge reduction of about 10% was obtained. In addition, the ozone dose was increased from 0.03 kgO 3 / kgTSS to 0.06 kgO 3 / kgTSS, increasing the emission of soluble COD from 11% to 16%. However, it has been reported that after the anaerobic digester, the COD of the effluent is increased and the cost is higher than the sludge reduction amount. In one study, the payback period for ozone pretreatment was estimated to be about six years. On the other hand, as a solution to this problem, it was reported that the closed loop ozone oxidizer in the medium temperature digester after ozone pretreatment was able to obtain much better gas production and COD reduction compared to the amount of ozone injection (Nam Gung Kyu, 2008 KOSEN Expert Review) Requoted from).
수력학적 캐비테이션(Hydrodynamic cavitation; HC)은 초음파에 의한 공동현상과 원리에서 차이가 있지만 그 효과에서는 유사한 특징을 보인다. HC는 액체의 난류 흐름을 통해 생성되는 것으로, 흔히 액체의 흐름시 큰 압력차가 생길 때 발생한다. 예를 들어, 일정 단면적을 갖는 파이프 내에 고압으로 유체를 빠른 속도로 이동시키면서 작은 단면적을 갖는 오리피스(orifice)를 통과하도록 장치를 만들면, 오리피스의 토출부에서 큰 압력차가 존재하여 토출부 직후에서 공동현상이 발생한다. 다른 예로, 오리피스를 통과한 유체가 블레이드를 만나도록 하는 장치를 들 수 있다. 이 때 오리피스 모양은 구형이 아니고 타원형일 때 성능이 우수하다. 이 경우 블레이드가 진동을 하면서 공동현상이 매우 뚜렷하고 효과적으로 일어나도록 할 수 있다. 한편, 하나의 오리피스를 통해 공동현상을 일으키는 것과 달리 복수 개의 오리피스를 통해 유체를 통과시키면 공동현상 효과가 커질 수 있다. HC에 영향을 주는 변수들로는 압력, 유속, 캐비테이션쳄버(cavitation chamber) 설계 등과 함께 공동 현상 발생의 시간적 요인을 들 수 있다. 오리피스 입구에서의 압력과 오리피스 토출부에서의 복원 압력, 그리고 공동현상 발생을 위한 최소 압력 등이 중요하며 이와 관련 시간적 요인을 명확히 하는 것이 상업적 응용에 꼭 필요하다 (남궁규철, 대한토목학회지 제55권 제10호, pp 50-55, 2007 에서 재인용).Hydrodynamic cavitation (HC) differs in ultrasonic cavitation and principle, but shows similar characteristics in its effect. HC is produced through turbulent flow of liquids, and often occurs when there is a large pressure difference in the flow of liquids. For example, if the device is made to pass through an orifice with a small cross-sectional area while moving the fluid at high pressure in a pipe with a constant cross-sectional area, there is a large pressure difference at the discharge portion of the orifice, which causes cavitation immediately after the discharge portion. This happens. Another example is a device that allows a fluid passing through an orifice to meet a blade. The orifice shape is not spherical but excellent in elliptical shape. In this case, as the blade vibrates, the cavitation can be caused very clearly and effectively. On the other hand, unlike the cavitation through one orifice, passing the fluid through a plurality of orifices can increase the cavitation effect. Variables affecting HC include the temporal factors of cavitation, along with pressure, flow rate, and cavitation chamber design. The pressure at the orifice inlet, the restoring pressure at the orifice discharge, and the minimum pressure for the occurrence of cavitation are important, and it is essential for commercial applications to clarify the relevant time factors (Namung Kyu-cheol, Journal of the Korean Society of Civil Engineers, Vol. 55) 10, pp 50-55, 2007).
한 연구에서는 캐비테이션 전처리를 거친 슬러지를 중온 혐기성 소화할 때 전처리 하지 않은 경우에 비해 체류 시간을 13일에서 6일로 대폭 줄일 수 있었다고 보고하였다. 그리고 슬러지 감량화 효과, 가스 생산량 등에서 캐비테이션 처리에 앞서 알칼리처리를 추가함으로써 처리 효율이 상당히 좋아지는 것으로 보고되었다(대한민국 공개특허 제2001-0072106호). 이 공정은 MicroSludgeTM(캐나다)이라는 공정으로 상용화되어, 최근 실규모 플랜트에 적용되고 있다. 이 공정은 회전 드럼농축기를 이용해서 농축된 슬러지를 pH 8.5-10의 조건으로 1 시간 정도 알칼리 처리한 후, 12,000 psi의 고압 조건에서 캐비테이션 처리를 한다. 그 결과, 최고 80%까지 슬러지 가용화가 가능했다고 한다. 이 때, 가용화된 슬러지의 pH는 6.8-7.4로 변화한다. 이렇게 처리된 슬러지의 중온 소화 결과 18-78%까지 휘발성 고형물을 감소시킬 수 있는 것으로 보고되었다. 한편, 상용화된 캐비테이션 공정의 다른 예로 Biogest Crown Disintegration System(영국)이 있다. 이 공정은 매우 빠른 유속을 이용하며, 슬러지를 혐기성 소화조에 투입하기에 앞서 캐비테이션 처리를 3회 수행한다. 또 다른 상용화 공정의 예로는 RND (Rapid Non-equilibrium Decompression)가 있다. 이 공정은 고압 하에서 과포화로 용존된 CO2가 압력강하에 따라 급격히 팽창하는 현상을 이용하여 세포벽을 파괴한다. 이 공정의 장점은 CO2를 재이용할 수 있으며 에너지 비용이 적게 소요되어 초기투자비의 회수 기간이 2년 미만이라는 점이다.One study reported that the residence time of cavitation pretreated sludge could be drastically reduced from 13 days to 6 days when not treated at moderate anaerobic digestion. In addition, the treatment efficiency is reported to be considerably improved by adding the alkali treatment prior to the cavitation treatment in the sludge reduction effect, gas production amount, and the like (Korea Patent Publication No. 2001-0072106). This process has been commercialized in a process called MicroSludge (Canada) and has recently been applied to real scale plants. In this process, the concentrated sludge is alkaline treated using a rotary drum concentrator at pH 8.5-10 for about 1 hour, followed by cavitation at a high pressure of 12,000 psi. As a result, up to 80% of sludge solubilization was possible. At this time, the pH of the solubilized sludge changes to 6.8-7.4. It has been reported that mesophilic digestion of this treated sludge can reduce volatile solids by 18-78%. Another example of a commercially available cavitation process is the Biogest Crown Disintegration System (UK). This process uses a very high flow rate and performs three cavitation treatments before the sludge is introduced into the anaerobic digester. Another example of a commercialization process is Rapid Non-equilibrium Decompression (RND). This process takes advantage of the phenomenon that CO 2 dissolved due to supersaturation under high pressure rapidly expands with the pressure drop, thereby destroying the cell wall. The advantage of this process is that CO 2 can be reused and energy costs are low, resulting in a payback period of less than two years.
하수 슬러지 처리의 전체 효율을 높이기 위해서는, 앞서 기술한 바와 같이 슬러지 플록의 구조를 효과적으로 해체하면서 또한 미생물의 세포벽을 공격하여 파괴함으로써 세포내 물질과 내부수가 외부로 방출되도록 할 수 있는 공정 및 장치가 필요하다. 캐비테이션과 오존산화 기술은 이러한 목적을 달성하는 효과적인 수단을 제공하며 함께 사용함으로써 우수한 시너지 효과를 얻게 해준다. 따라서 이 기술들을 효과적으로 통합하여 폐활성슬러지를 전처리함으로써, 슬러지 감량화, 슬러지 탈수효율 향상, 소화 효율 향상을 종합적으로 가능하게 하는 공정 및 장치가 소개되었다(대한민국 특허등록 제10-0948494호). 그러나 보다 간단한 공정으로 슬러지 감량, 탈수능 향상 및 혐기성 소화 효율을 더욱 향상시킬 수 있는 슬러지 전처리 공정은 여전히 요구되고 있다. In order to increase the overall efficiency of sewage sludge treatment, as described above, a process and apparatus are needed to effectively disassemble the structure of the sludge floc and to attack and destroy the cell walls of the microorganisms so that intracellular materials and internal water are released to the outside. Do. Cavitation and ozonation technologies provide an effective means of achieving this goal and, when used together, provide excellent synergy. Therefore, by integrating these technologies effectively and pretreating the waste activated sludge, a process and apparatus have been introduced that can reduce sludge reduction, improve sludge dewatering efficiency, and improve digestion efficiency (Korean Patent Registration No. 10-0948494). However, there is still a need for a sludge pretreatment process that can further improve sludge reduction, dewatering capacity, and anaerobic digestion efficiency with a simpler process.
특히 기존의 캐비테이션-오존 공정에서는 오존을 별도의 접촉조에 두고 처리하였기 때문에 오존을 투입하기 위한 펌프용량이 커야 했으며, 또한 대용량의 유기성 슬러지를 처리함에 있어서 오존접촉조는 유기성 슬러지를 균일하게 가용화하는데 한계가 있다.In particular, in the existing cavitation-ozone process, the ozone was treated in a separate contact tank, so the pump capacity for injecting ozone had to be large, and the ozone contact tank had a limitation in uniformly solubilizing the organic sludge in the treatment of a large amount of organic sludge. have.
따라서, 본 발명은 캐비테이션을 이용하는 물리적 처리와 오존을 이용하는 화학적 처리를 결합하여 슬러지를 가용화하는 전처리에 있어서, 운전비용이 보다 저렴하고 에너지 효율이 높고 간단하면서도 슬러지 가용화 효율을 극대화한 장치, 즉 감량화, 슬러지 탈수효율 향상 및 혐기성 소화 효율이 높은 슬러지 전처리 장치를 제공하고자 한다. Accordingly, the present invention combines a physical treatment using cavitation with a chemical treatment using ozone in the pretreatment to solubilize the sludge, the operation cost is lower, the energy efficiency is simpler, and the device that maximizes the efficiency of the sludge solubilization, namely reduction, To improve the sludge dewatering efficiency and high anaerobic digestion efficiency sludge pretreatment device.
또한 본 발명은 상기 장치를 이용하여 슬러지를 전처리하는 방법을 제공하고자 한다. It is another object of the present invention to provide a method for pretreating sludge using the apparatus.
본 발명은 상기 기술적 과제를 달성하기 위하여, 폐활성슬러지를 가용화하기 위한 전처리 장치에 있어서, The present invention, in order to achieve the above technical problem, in the pretreatment apparatus for solubilizing waste activated sludge,
처리될 슬러지를 수용하는 제1 슬러지 저장조; A first sludge reservoir containing the sludge to be treated;
상기 제1 슬러지 저장조로부터의 슬러지를 7bar ~ 560bar의 압력으로 캐비테이션 챔버에 도입하기 위한 고압펌프; A high pressure pump for introducing sludge from the first sludge reservoir into a cavitation chamber at a pressure of 7 bar to 560 bar;
상기 고압펌프로부터 배출되는 고압 슬러지가 통과하면서 캐비테이션이 발생될 수 있도록 오리피스를 구비한 캐비테이션 챔버;A cavitation chamber having an orifice to allow cavitation to be generated while the high pressure sludge discharged from the high pressure pump passes;
상기 캐비테이션 챔버로부터 배출되는 슬러지에 오존을 주입하기 위한 오존주입부를 구비한 벤츄리부; 및A venturi unit having an ozone injection unit for injecting ozone into the sludge discharged from the cavitation chamber; And
상기 벤츄리부의 하류에 설치되어 처리된 슬러지를 저장하는 제2 슬러지 저장조를 포함하는 것을 특징으로 하는 폐활성슬러지 전처리 장치를 제공한다. It provides a waste activated sludge pretreatment apparatus comprising a second sludge storage tank for storing the treated sludge installed downstream of the venturi.
본 발명의 바람직한 구현 예에 의하면, 상기 벤츄리부는 1개 내지 10개의 벤츄리관이 직렬 연결되어 구성될 수 있다. According to a preferred embodiment of the present invention, the venturi unit may be configured with one to ten venturi tubes connected in series.
본 발명의 바람직한 구현예에 의하면, 상기 벤츄리관에 연결된 오존주입부는 벤츄리관의 단면적이 가장 좁은 목 부분에 연결될 수 있다. According to a preferred embodiment of the present invention, the ozone injection portion connected to the venturi tube may be connected to the neck of the narrowest cross-sectional area of the venturi tube.
본 발명의 바람직한 구현예에 의하면, 상기 제1 슬러지 저장조로부터 캐비테이션 챔버에 도입되는 슬러지의 압력이 7bar ~ 560bar인 것이 더욱 바람직하고, 가장 바람직하게는 10bar ~ 420bar 이다. According to a preferred embodiment of the present invention, the pressure of the sludge introduced into the cavitation chamber from the first sludge reservoir is more preferably 7bar to 560bar, most preferably 10bar to 420bar.
본 발명의 바람직한 구현예에 의하면, 본 발명의 장치는 상기 벤츄리부의 하류와 상기 제2 슬러지 저장조 사이에 벤츄리부로부터 배출되는 슬러지를 오존 처리하기 위한 오존접촉조를 더 포함할 수 있다. According to a preferred embodiment of the present invention, the apparatus of the present invention may further include an ozone contact tank for ozone treatment of sludge discharged from the venturi portion between the downstream of the venturi portion and the second sludge storage tank.
본 발명의 바람직한 구현예에 의하면, 상기 제1 슬러지 저장조의 전단 또는 후단에, 처리될 슬러지로부터 소정 크기 이상의 이물질을 걸러내기 위한 여과조를 더 포함할 수 있다.According to a preferred embodiment of the present invention, at the front or rear end of the first sludge storage tank, it may further include a filtration tank for filtering foreign substances of a predetermined size or more from the sludge to be treated.
본 발명의 또 다른 양상에 따르면, 상기 장치를 이용하여, 처리하고자하는 슬러지를 고압 캐비테이션 챔버 및 오존주입부를 구비한 벤츄리관을 통과하도록 함으로써 캐비테이션 발생과 함께 오존처리하는 단계를 포함하는 것을 특징으로 하는 폐활성슬러지 전처리 방법이 제공된다. According to yet another aspect of the present invention, the apparatus comprises the step of ozone treatment with cavitation generation by passing the sludge to be treated through a venturi tube having a high pressure cavitation chamber and an ozone injection section using the apparatus. Waste activated sludge pretreatment methods are provided.
본 발명의 바람직한 구현예에 의하면, 상기 폐활성슬러지는 벤츄리부로 도입되기 전에 알칼리, 과산화수소, 또는 알칼리 및 과산화수소로 처리된 것일 수 있다.According to a preferred embodiment of the present invention, the waste activated sludge may be treated with alkali, hydrogen peroxide, or alkali and hydrogen peroxide before being introduced into the venturi part.
본 발명에 따른 장치는 고압 캐비테이션 장치를 이용하여 슬러지를 가용화함에 있어서 고압부 후단에 오리피스에 의한 캐비테이션 챔버를 두어 캐비테이션 효과를 최대화한 후, 벤츄리부를 두어 오존을 분산 도입함으로써 오존을 주입하는데 들어가는 에너지 비용을 절감하고 또한 좋은 교반효과를 얻을 수 있다. 따라서, 벤츄리부를 이용하여 오존만 혼합처리만 한 경우 또는 저압 캐비테이션만 실시한 경우에 비해 슬러지 감량화, 슬러지 탈수효율 향상 및 혐기성 소화 효율의 향상 등의 효과를 가진다. 또한 오존접촉탱크를 추가로 이용하는 경우에도 펌프 및 탱크의 크기를 작은 규모로 할 수 있다.The apparatus according to the present invention maximizes the cavitation effect by placing a cavitation chamber by an orifice at the rear of the high pressure part in solubilizing the sludge by using a high pressure cavitation device, and then puts a venturi part to introduce ozone by dispersing and introducing ozone. It can save and also get good stirring effect. Therefore, compared with the case where only the ozone-only mixing treatment or the low pressure cavitation is performed using the venturi unit, the sludge reduction, the sludge dewatering efficiency and the anaerobic digestion efficiency are improved. In addition, even when using an additional ozone contact tank, the size of the pump and tank can be made small.
도 1은 본 발명의 제1 실시예에 따른 폐활성슬러지 전처리 장치의 개략도이다. 1 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 폐활성슬러지 전처리 장치의 개략도이다. 2 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 폐활성슬러지 전처리 장치의 개략도이다. 3 is a schematic diagram of a waste activated sludge pretreatment apparatus according to a third embodiment of the present invention.
도 4는 오리피스의 다양한 형태를 보여주는 개략도이다.4 is a schematic view showing various forms of orifices.
도 5는 벤츄리관의 가용화 효과를 보여주는 도면이다.5 is a view showing the solubilization effect of the venturi tube.
이하, 첨부된 도면을 참조한 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 제1 실시 형태에 따른 전처리 장치의 개략도이다. 도시된 바와 같이 본 발명의 폐활성슬러지 전처리 장치는 제1 슬러지 저장조(1), 고압펌프(HPP, 2), 오리피스(3)를 구비한 캐비테이션 챔버(4), 오존주입부(6)을 구비한 벤츄리관(5) 및 제2 슬러지 저장조(7)를 포함한다. 즉, 처리할 슬러지는 제1 저장조(1)로부터 고압펌프(2)에 의해 고압 캐비테이션 장치(high pressure cavitation unit, 4)를 거치면서 수력학적 캐비테이션에 의해 처리되고, 이어서 벤츄리관(5)에 유입되는데, 이 때 벤츄리관(5)의 오존주입부(6)에 오존이 주입되고 벤츄리관(5)을 거치면서 비교적 약한 수력학적 캐비테이션에 의해 오존과 슬러지가 효과적으로 혼합되고 추가적으로 처리된다. 1 is a schematic diagram of a pretreatment apparatus according to a first embodiment of the present invention. As shown, the waste activated sludge pretreatment apparatus of the present invention includes a first sludge storage tank 1, a high pressure pump (HPP) 2, a cavitation chamber 4 having an orifice 3, and an ozone injection unit 6 therein. A venturi tube 5 and a second sludge reservoir 7. That is, the sludge to be treated is treated by hydraulic cavitation from the first reservoir 1 via a high pressure cavitation unit 4 by a high pressure pump 2 and then introduced into the venturi tube 5. At this time, ozone is injected into the ozone injection unit 6 of the venturi tube 5, and ozone and sludge are effectively mixed and further processed by a relatively weak hydraulic cavitation while passing through the venturi tube 5.
단계적으로 구분지어 보면, 오리피스(3)를 구비한 고압 캐비테이션 장치(4)에서 슬러지는 주로 그 플록(floc) 구조가 해체되고 세포외부의 섬유상 물질들에 의해 형성된 결합이 끊어지면서 개별적인 세포들로 나누어지게 되고, 벤츄리부(5)에서 오존이 주입되어 슬러지와 섞임과 동시에 약한 캐비테이션 현상을 거치면서 기액혼합이 효과적으로 이루어지고 오존은 개별화된 세포들의 세포벽과 세포외부 조직을 산화반응을 통해 파괴하여 슬러지를 가용화(solubilization)하게 된다. Stepwise, in the high pressure cavitation device 4 with the orifice 3, the sludge is divided into individual cells, mainly by dissolving the floc structure and breaking the bond formed by the extracellular fibrous materials. Ozone is injected from the venturi part 5 and mixed with the sludge and undergoes a weak cavitation phenomenon, and gas-liquid mixing is effectively performed, and ozone destroys the sludge by oxidizing the cell walls and extracellular tissues of the individualized cells through oxidation reaction. Solubilization.
고압펌프(2)의 압력은 7bar~560bar가 바람직하고, 보다 바람직하게는 10bar~420bar이다. 압력이 너무 낮으면 벤츄리부에서의 압력 강하 손실 때문에 공정이 제대로 진행될 수 없고, 압력이 지나치게 높으면 고가의 장비를 사용하여 비용이 증가하게 되는 문제점이 있을 수 있다. 필요에 따라, 고압펌프(2) 전단에 펌프를 더 사용하여 고압펌프의 작동을 원활히 할 수도 있다. The pressure of the high pressure pump 2 is preferably 7 bar to 560 bar, more preferably 10 bar to 420 bar. If the pressure is too low, the process may not proceed properly due to the pressure drop loss in the venturi portion, and if the pressure is too high, there may be a problem that the cost is increased by using expensive equipment. If necessary, the pump may be further used in front of the high pressure pump 2 to smoothly operate the high pressure pump.
본 명세서에서, 캐비테이션 챔버란 오리피스로부터 벤츄리부 전단까지 영역으로 고압 캐비테이션이 형성되는 영역을 지칭한다. 캐비테이션 챔버(4)의 오리피스(3)는 도 4에 도시한 바와 같이, 개구부가 1개 또는 여러 개 일 수 있으며 특별히 제한되지 않는다. 고압펌프(2)에 의해 오리피스(3)로 흡입된 슬러지는 확장부를 지나면서 발생된 기포가 급격히 붕괴되면서 충격파가 발생하는 등 캐비테이션 현상이 형성된다. In the present specification, the cavitation chamber refers to a region in which high pressure cavitation is formed from an orifice to a front end of the venturi portion. As shown in FIG. 4, the orifice 3 of the cavitation chamber 4 may have one or several openings and is not particularly limited. Sludge sucked into the orifice 3 by the high-pressure pump 2 is a cavitation phenomenon such as a shock wave is generated as the bubbles generated by the expansion portion rapidly collapses.
오존주입부(6)는 벤츄리관(5)의 단면적이 급격하게 감소하는 벤츄리관(5)의 목 부분에 형성되는데, 이 부분을 유체가 통과할 때, 유체의 속도는 급격히 증가하며 그에 따라 유체의 압력은 크게 감소하게 된다. 즉 음압이 발생하기 때문에 오존은 자연스럽게 흡입되므로 오존 주입을 위해 별도의 펌프를 가동할 필요가 없다. 또한, 유체 속의 용존 상태의 기체가 유체로부터 이탈하거나 물의 상변화가 일어나 공동(cavities)이 형성되어 캐비테이션 현상이 생성된다.The ozone injection section 6 is formed in the neck portion of the venturi tube 5 in which the cross-sectional area of the venturi tube 5 is drastically reduced, and when the fluid passes through the portion, the velocity of the fluid increases rapidly and thus the fluid The pressure of is greatly reduced. In other words, since negative pressure is generated, ozone is naturally inhaled, so there is no need to operate a separate pump for ozone injection. In addition, the gas in the dissolved state in the fluid is released from the fluid or the phase change of water occurs to form cavities (cavities) is generated.
이러한 수리동력학적 캐비테이션 현상은 다른 기술 분야에서도 사용되어 왔으나, 고압 캐비테이션 장치와 벤츄리관을 이용한 오존주입을 병행함으로써 오존접촉조의 필요성을 아예 없애거나 그 규모를 대폭 줄일 수 있고, 낮은 펌프 압력으로도 빠른 기액혼합을 달성할 수 있다. 이에 따라 에너지 효율이 현저히 향상되고 비용을 절감할 수 있다.This hydrodynamic cavitation phenomenon has been used in other technical fields, but the use of a high pressure cavitation device and an ozone injection using a venturi tube eliminates the need for an ozone contact tank at all, or greatly reduces the size of the ozone contact tank. Gas-liquid mixing can be achieved. This can significantly improve energy efficiency and reduce costs.
또한, 본 발명의 전처리 장치에서는, 도 1에 도시된 바와 같이 오존주입부(6)를 구비한 벤츄리관(5)이 하나만 직렬로 연결된 경우를 도시하였으나, 둘 이상 직렬로 연결되어 벤츄리부를 형성하도록 구성될 수 있으며, 이 경우 슬러지는 각각의 벤츄리관을 거치면서 가용화 효율은 더욱 향상될 수 있다. 특히, 각각의 벤츄리관은 착탈 가능하게 연결되어 필요에 따라 벤츄리관의 수를 용이하게 조절할 수 있도록 구성될 수도 있다. 또한 각각의 벤츄리관에 모두 오존을 주입할 수도 있지만, 경우에 따라서는 일부에만 주입할 수도 있다. In addition, in the pretreatment apparatus of the present invention, as shown in FIG. 1, only one venturi tube 5 having the ozone injection unit 6 is connected in series. However, two or more venturi tubes 5 are connected in series to form the venturi unit. In this case, the solubilization efficiency can be further improved while the sludge passes through each venturi tube. In particular, each venturi tube may be configured to be detachably connected to easily adjust the number of venturi tubes as needed. In addition, although ozone may be injected into each venturi tube, only some of them may be injected.
도 2는 본 발명의 다른 실시형태이다. 도시된 바와 같이 제1 슬러지 저장조(1), 고압펌프(2), 오리피스(3)를 구비한 캐비테이션 챔버(4), 벤츄리관을 포함하는 벤츄리부(5) 및 제2 슬러지 저장조(7) 외에, 처리하고자 하는 슬러지가 큰 고형물을 함유하는 경우 이를 여과하기 위한 여과조(10)를 더 포함할 수 있다. 도 2에서는 여과조(10)가 제1 슬러지 저장조(1)의 전단에 설치된 경우를 도시하나, 후단에 설치하는 것도 가능하다. 또한 도시되지는 않았지만 슬러지의 가용화를 촉진하기 위한 약제, 즉 알칼리 또는 과산화수소 등울 벤츄리부(5)에 도입하기 전에 첨가하기 위한 수단을 구비할 수도 있다. 2 is another embodiment of the present invention. In addition to the first sludge reservoir 1, the high pressure pump 2, the cavitation chamber 4 with the orifice 3, the venturi part 5 including the venturi tube and the second sludge reservoir 7 as shown. If the sludge to be treated contains a large solid, it may further include a filtration tank 10 for filtering it. In FIG. 2, although the filtration tank 10 is installed in the front end of the 1st sludge storage tank 1, it can also be installed in the rear end. Although not shown, it may be provided with a means for promoting the solubilization of the sludge, that is, a means for adding before introduction into the venturi portion 5, such as alkali or hydrogen peroxide.
또 다른 실시형태로는 도 2에 도시된 바와 같이, 벤츄리부에서 유출되는 슬러지를 추가로 오존처리하기 위한 오존접촉조(20)를 둘 수 있고, 추가의 오존접촉조(20)를 구비하는 경우에도 반응기의 크기나 펌프 용량은 본 발명에 따른 장치를 사용하지 않는 경우에 비해 훨씬 소형이어도 되므로 설비가 컴팩트하게 될 수 있다. In another embodiment, as shown in FIG. 2, an ozone contacting tank 20 may be provided to further ozonate the sludge flowing out of the venturi part, and an additional ozone contacting tank 20 may be provided. The size or pump capacity of the reactor may also be much smaller than in the case of not using the device according to the invention, thus making the installation compact.
오존접촉조(20)에서 슬러지와 오존을 접촉시키는 방법은 두 가지 방식이 있을 수 있다. 하나는 기액혼합펌프를 이용하는 방법, 다른 하나는 인젝터/벤추리를 이용하는 방법이다. 전자의 경우 기액혼합펌프(30)로 접촉조(20)내 슬러지를 빼내고 여기에 오존이 주입되면서 기액혼합펌프(30)를 거쳐 슬러지와 오존을 혼합시켜 다시 오존접촉조(20)로 넣어주는 방법이고(도 2 참조), 후자는 액체이송 펌프(40)를 이용하여 오존접촉조(20)의 슬러지를 빼내고 이 슬러지가 인젝터/벤추리(50)를 지나가게 하면서 목부분에 오존을 주입하여 섞은 후 다시 오존접촉조(20)로 넣어주는 방법이다(도 3 참조). 어느 방법이든 효과적으로 사용될 수 있다. 이하 본 발명의 실시예를 들어 구체적으로 설명한다. 그러나 이러한 설명이 본 발명의 권리범위를 제한하는 것은 아니며, 본 발명의 명세서 및 청구항에 기재되어진 바에 의하여 당업자가 용이하게 치환할 수 있고, 이와 같은 치환이 자명한 균등범위는 본 발명의 권리 범위에 속한다.In the ozone contact tank 20, the sludge and ozone may be contacted in two ways. One is to use a gas-liquid mixing pump and the other is to use an injector / venturi. In the former case, the sludge in the contact tank 20 is removed by the gas-liquid mixing pump 30, and ozone is injected therein, and the sludge and ozone are mixed through the gas-liquid mixing pump 30 and put back into the ozone contacting tank 20. (See FIG. 2), the latter removes the sludge of the ozone contact tank 20 by using the liquid transfer pump 40 and after mixing the injecting ozone to the neck while passing the sludge passes through the injector / venturi (50) It is a method to put back into the ozone contact tank 20 (see Fig. 3). Either method can be used effectively. Hereinafter, the embodiment of the present invention will be described in detail. However, this description does not limit the scope of the present invention, those skilled in the art can be easily substituted by those described in the specification and claims of the present invention, the equivalent range for which such substitution is obvious is within the scope of the present invention. Belongs.
실시예 1Example 1
하수처리장에 설치된 생물막반응기(MBR) 파일럿 설비(처리용량: 300톤/일, 평균 TSS: 10,000mg/L)에서 하수 슬러지 시료를 채취하여 사용하였다. 도 1에 도시된 바와 같은 장치(벤츄리관 1개 직렬연결)를 이용하였으며, 구체적인 사양은 다음과 같다. Sewage sludge samples were taken from a biofilm reactor (MBR) pilot facility (treatment capacity: 300 tons / day, average TSS: 10,000 mg / L) installed in the sewage treatment plant. A device (1 venturi tube in series connection) as shown in Figure 1 was used, specific specifications are as follows.
제1 슬러지 저장조 용량: 1.5m3 1st sludge reservoir capacity: 1.5 m 3
고압펌프 유량: 17L/min High pressure pump flow rate: 17 L / min
고압펌프 압력: 150barHigh pressure pump pressure: 150 bar
오리피스 단면적: 0.785mm2 Orifice cross section: 0.785 mm 2
벤츄리관 단면적: 7.065mm2 Venturi tube cross section: 7.065 mm 2
오존주입량: 120mg/L Ozone injection volume: 120mg / L
여과조 사양: 1.0mm mesh를 갖는 스테인레스 스틸 스크린 장착 (스크린면적: 0.196m2)Filtration tank specification: stainless steel screen with 1.0mm mesh (screen area: 0.196m 2 )
오존접촉조 및 펌프 사양: 상단에 거품파괴기를 설치한 1.2m3 크기 원통형 접촉조, 2HP 380V 기액혼합펌프((주)신풍내산펌프) Ozone contact tank and pump specifications: 1.2m 3 size cylindrical contact tank with bubble breaker on top, 2HP 380V gas-liquid mixing pump (Shinpung Naesan pump)
오존발생장치는 수냉식 장치이며((주)세왕씨이텍의 SW-50), 오존 발생용량은 최대 50g-O3/hr이다. 원료 산소는 고압용기에 저장된 순산소(99.99%)를 사용하였다.The ozone generator is a water-cooled device (SW-50 of Sewang C-Tech), and the ozone generating capacity is up to 50g-O 3 / hr The raw material oxygen was pure oxygen (99.99%) stored in a high pressure vessel.
처리된 슬러지는 다음과 같은 방법으로 분석하였다. The treated sludge was analyzed in the following manner.
① pH - 각 시료를 pH meter를 이용하여 pH를 측정하였다.① pH-Each sample was measured for pH using a pH meter.
② 온도 - 각 시료를 온도계를 이용하여 온도를 측정하였다.② Temperature-Each sample was measured for temperature using a thermometer.
③ 부유물질(SS; suspended solids) - 유리섬유 여지(GF/C)를 미리 정제수로 씻은 다음 시계접시위에 놓고 105-110℃의 건조기 안에서 2시간 건조시켜 황산 데시케이터에 넣어 방냉하고 항량으로 하여 무게를 정밀히 달고 여과기에 부착시켰다. 시료 적당량을 여과기에 주입하면서 흡인여과한 후 여과기의 기벽과 여지상의 잔류물을 물로 수회 씻어주고 유리섬유 여지를 핀센트로 주의하면서 여과기에서 끄집어 내여 시계 접시위에 놓고 105-110℃의 건조기 안에서 2시간 건조시켜 황산 데시케이터에 넣어 방냉한 다음 항량으로 하여 무게를 정밀히 측정하였다. 여과 전후의 유리섬유 여지 무게의 차를 계산하여 부유물질의 양으로 하였다.③ Suspended solids (SS; suspended solids)-After washing the glass fiber filter (GF / C) with purified water in advance, place it on a watch plate, dry it for 2 hours in a dryer at 105-110 ℃, cool it in a sulfuric acid desiccator, The weight was precisely weighed and attached to the filter. Aspirate the sample with a suitable amount, filter it, and wash the filter wall and filter residue with water several times, remove the glass fiber with a pincent and place it on a watch dish, paying attention to a pincent, and dry it in a dryer at 105-110 ° C for 2 hours. The mixture was allowed to stand in a sulfuric acid desiccator, allowed to cool, and then weighed accurately as a constant weight. The difference in the weight of the glass fiber filter before and after filtration was calculated to be the amount of suspended solids.
④ SCODcr - 시료를 유리섬유 여지(GF/C)로 여과한 후 여과된 액을 수 CODcr분석키트에 2mL 주입후 150℃에서 반응시킨 후 HS-2300Plus 수질분석기(Humas, Korea)를 이용하여 SCODcr을 분석하였다.④ SCODcr-After filtering the sample with glass fiber filter (GF / C), the filtered solution is injected into 2mL of water CODcr analysis kit and reacted at 150 ℃, and then SCODcr is analyzed using HS-2300Plus water analyzer (Humas, Korea). Analyzed.
비교예 1-고압 캐비테이션만 실시하는 경우Comparative Example 1-Only High Pressure Cavitation
오존 처리없이 고압 캐비테이션(200bar)만 실시하는 경우는 대한민국특허등록 제10-0948494호에 기재된 실험예를 참조할 수 있다. 결과는 다음과 같다. When only high pressure cavitation (200bar) is performed without ozone treatment, reference may be made to the experimental example described in Korean Patent Registration No. 10-0948494. The result is as follows.
표 1
원수 1분 2분 5분 10분
슬러지 접촉횟수(회) - 0.8 1.6 4 8
pH 7.14 7.12 7.11 7.03 6.91
온도 (℃) 26 32 36 44 55
SCODcr (mg/L) 43.2 262.49 325.76 532.29 1070.81
SCODcr/SS 비율(×1000) 5.02 29.17 40.72 66.54 133.85
Table 1
enemy 1 min 2 minutes 5 minutes 10 minutes
Sludge Contact Count (times) - 0.8 1.6 4 8
pH 7.14 7.12 7.11 7.03 6.91
Temperature (℃) 26 32 36 44 55
SCODcr (mg / L) 43.2 262.49 325.76 532.29 1070.81
SCODcr / SS Ratio (× 1000) 5.02 29.17 40.72 66.54 133.85
비교예Comparative example 2- 2- 벤츄리관을Venturi tube 사용하지 않고 오존접촉펌프로 오존처리만 하는 경우 Ozone treatment with ozone contact pump without use
고압 캐비테이션 없이 오존접촉펌프에 의해 오존만 처리하는 경우의 실험결과도 대한민국특허등록 제10-0948494호를 참조할 수 있다. 오존 투입량에 따른 실험결과는 다음과 같다. Experimental results in the case of treating only ozone with an ozone contact pump without high pressure cavitation can also refer to Korean Patent Registration No. 10-0948494. The experimental results according to the ozone input amount are as follows.
(2-1) 오존 투입량 30g/hr (2-1) ozone dose 30 g / hr
표 2
원수 1분 5분 10분
오존 슬러지 접촉횟수(회) - 1 5 10
pH 7.14 6.63 6.46 6.19
온도 (℃) 26 27 30 33
SCODcr (mg/L) 37.69 107.91 350.97 557.96
SCOD/SS 비율(×1000) 5.38 15.42 87.74 139.49
TABLE 2
enemy 1 min 5 minutes 10 minutes
Ozone sludge contact count (times) - One 5 10
pH 7.14 6.63 6.46 6.19
Temperature (℃) 26 27 30 33
SCODcr (mg / L) 37.69 107.91 350.97 557.96
SCOD / SS ratio (× 1000) 5.38 15.42 87.74 139.49
(2-2) 오존 투입량 50g/hr (2-2) ozone dosage 50g / hr
표 3
원수 1분 5분 10분
오존 슬러지 접촉횟수(회) - 1 5 10
pH 7.14 6.44 6.19 5.75
온도 (℃) 26 28 30 35
SCODcr (mg/L) 37.69 278.49 616.89154.22 907.46
SCOD/SS 비율(×1000) 5.38 46.42 154.22 302.49
TABLE 3
enemy 1 min 5 minutes 10 minutes
Ozone sludge contact count (times) - One 5 10
pH 7.14 6.44 6.19 5.75
Temperature (℃) 26 28 30 35
SCODcr (mg / L) 37.69 278.49 616.89154.22 907.46
SCOD / SS ratio (× 1000) 5.38 46.42 154.22 302.49
30g/hr 에서 50g/hr 으로 투입 오존량을 증가시킬 경우 슬러지의 파괴가 증가하게 되고 이는 SCOD의 증가 및 SCOD/SS의 증가로 나타났다.Increasing the amount of ozone from 30g / hr to 50g / hr increased the destruction of sludge, which increased SCOD and increased SCOD / SS.
비교예 3-벤츄리관을 이용하지 않은 캐비테이션 및 오존처리Comparative Example 3 Cavitation and Ozone Treatment without Venturi Tube
캐비테이션과 오존접촉펌프에 의한 오존처리를 실시한 경우의 실험결과도 대한민국특허등록 제10-0948494호를 참조할 수 있다. 오존 투입량에 따른 실험결과는 다음과 같다.Experimental results in the case of performing ozone treatment by cavitation and ozone contact pump can also refer to Korean Patent Registration No. 10-0948494. The experimental results according to the ozone input amount are as follows.
(3-1) 오존 투입량 30g/hr (3-1) ozone dose 30 g / hr
표 4
원수 1분 5분 10분
오존 슬러지 접촉횟수(회) - 1 5 10
pH 7.14 6.53 6.32 6.18
온도 (℃) 26 30 32 35
SCODcr (mg/L) 37.69 404.28 719.74 1065.90
SCOD/SS 비율(×1000) 5.38 67.38 179.94 355.30
Table 4
enemy 1 min 5 minutes 10 minutes
Ozone sludge contact count (times) - One 5 10
pH 7.14 6.53 6.32 6.18
Temperature (℃) 26 30 32 35
SCODcr (mg / L) 37.69 404.28 719.74 1065.90
SCOD / SS ratio (× 1000) 5.38 67.38 179.94 355.30
(3-2) 오존 투입량 50g/hr (3-2) ozone dosage 50g / hr
표 5
원수 1분 5분 10분
오존 슬러지 접촉횟수(회) - 1 5 10
pH 7.14 6.42 6.17 5.76
온도 (℃) 26 28 32 35
SCODcr (mg/L) 37.69 549.99 924.69 1242.10
SCOD/SS 비율(×1000) 5.38 78.57 231.17 414.03
Table 5
enemy 1 min 5 minutes 10 minutes
Ozone sludge contact count (times) - One 5 10
pH 7.14 6.42 6.17 5.76
Temperature (℃) 26 28 32 35
SCODcr (mg / L) 37.69 549.99 924.69 1242.10
SCOD / SS ratio (× 1000) 5.38 78.57 231.17 414.03
단위 오존 투입량에 따른 처리 성능 비교Comparison of Treatment Performance with Unit Ozone Dose
오존 투입을 실시한 실시예 1, 비교예 2 및 3의 장치를 이용한 경우 단위 오존 투입량당 SCODcr 증가비율을 비교하면 다음과 같다. In the case of using the apparatus of Example 1, Comparative Examples 2 and 3 subjected to ozone injection, the SCODcr increase ratio per unit ozone dose is compared as follows.
표 6
구분 오존투입농도 SCODcr 증가량 단위 오존투입량당 SCODcr 증가비율 비고 (처리량, 오존발생량, 오존투입시간)
실시예 1 120mg/L 1200mg/L 10 1m3, 50g/hr, 2.4hr
비교예2 1 250mg/L 520mg/L 2.08 20L, 30g/hr, 10min
2 417mg/L 870mg/L 2.09 20L, 50g/hr, 10min
비교예3 1 250mg/L 1,028mg/L 4.11 20L, 30g/hr, 10min
2 417mg/L 1,204mg/L 2.89 20L, 50g/hr, 10min
Table 6
division Ozone Injection Concentration SCODcr increase SCODcr increase rate per unit ozone dose Remarks (throughput amount, ozone generation amount, ozone injection time)
Example 1 120mg / L 1200 mg / L 10 1m 3 , 50g / hr, 2.4hr
Comparative Example 2 One 250 mg / L 520mg / L 2.08 20L, 30g / hr, 10min
2 417mg / L 870 mg / L 2.09 20L, 50g / hr, 10min
Comparative Example 3 One 250 mg / L 1,028 mg / L 4.11 20L, 30g / hr, 10min
2 417mg / L 1,204 mg / L 2.89 20L, 50g / hr, 10min
상기 표 6으로부터, 벤츄리관을 사용하지 않고 오존접촉펌프를 이용하여 실시한 경우(비교예 2) 또는 캐비테이션과 오존접촉펌프를 이용하여 실시한 경우(비교예 3)의 경우와 비교하여 본원발명과 같이 고압 캐비테이션 후 벤츄리관을 이용하는 경우 동일 오존투입량 대비 훨씬 우수한 SCODcr 증가, 즉 슬러지 가용화 효과를 얻을 수 있음을 알 수 있다.From Table 6 above, the high pressure as in the present invention is compared with the case of using an ozone contact pump without using a venturi tube (Comparative Example 2) or when using a cavitation and an ozone contact pump (Comparative Example 3). In the case of using a venturi tube after cavitation, it can be seen that a much better SCODcr increase, that is, a sludge solubilization effect, can be obtained compared to the same ozone dose.
비교예 4-벤츄리관을 이용한 저압 캐비테이션만 실시Comparative Example 4 Only Low Pressure Cavitation Using Venturi Tube
삼창기업의 대한민국특허등록 제10-0866620호의 도 3은 벤츄리관의 수가 슬러지 가용화 효율에 미치는 영향을 그래프로 나타내고 있다(도 5 참조). FIG. 3 of Korean Patent Registration No. 10-0866620 of Samchang Enterprise shows the effect of the number of venturi tubes on the sludge solubilization efficiency (see FIG. 5).
도 5에 의하면, 벤츄리관 1 개로 20시간 처리 후에는 1,600 ㎎/L의 SCOD 값을 보였다. 반면, 벤츄리관 2 개를 직렬로 연결한 경우에는 운전시작과 동시에 SCOD가 증가하여 14시간 처리 후에 SCOD 농도가 2,700 ㎎/L에 도달하였으며, 그 이후부터는 SCOD 증가량이 미미하였다. 20시간 처리 후의 SCOD 증가량은 벤츄리관 두 개를 직렬로 연결한 경우가 벤츄리관이 하나일 때보다 약 2배였다. 이는 벤츄리관 두 개를 직렬로 연결함으로써 캐비테이션 발생 영역이 2배로 확장되는 효과가 있음을 보여준다. According to FIG. 5, after 20 hours of treatment with one venturi tube, an SCOD value of 1,600 mg / L was shown. On the other hand, when two venturi tubes were connected in series, the SCOD increased with the start of operation, and the SCOD concentration reached 2,700 mg / L after 14 hours of treatment, and since then, the SCOD increase was minimal. After 20 hours of treatment, the increase in SCOD was about twice that of two venturi tubes in series. This shows that by connecting two Venturi tubes in series, the area of cavitation can be doubled.
본원발명과 대비하면 비교예 4는 매우 느린 처리 성능을 보인다. 비교예 4는 벤츄리관 1개로 20시간의 처리를 해야 SCOD값이 1,600mg/L이고 2개로 10시간의 처리를 해야 이 정도의 SCOD 증가를 얻을 수 있었다. 이에 비해 본원발명에서는 고압캐비테이션 후 저압캐비테이션을 2단 거쳐서 SCOD값이 1,550mg/L에 달하며, 이 때 처리 시간은 1분 이내 ~ 3분까지 소요된다. 이러한 시간 단축은 처리설비를 위한 공간, 면적이 작게 되고 컴팩트한 설비 구현을 가능하게 하여 시설투자비 및 운영관리비용을 줄이는 효과로 귀결된다.In contrast to the present invention, Comparative Example 4 shows very slow processing performance. In Comparative Example 4, the SCOD value was 1,600 mg / L when treated with one venturi tube for 20 hours, and the SCOD increase was obtained when the treatment was performed for 10 hours with two. On the contrary, in the present invention, the SCOD value reaches 1,550 mg / L after the high pressure cavitation through two stages of low pressure cavitation, and the treatment time is within 1 minute to 3 minutes. This shortening of time results in a small space, a small area for the treatment facility, and a compact facility, thereby reducing facility investment and operation management costs.
비교예 5-오존주입후 PFR 반응기를 사용한 실시Comparative Example 5-After Ozone Injection Using PFR Reactor
Praxair Technology, Inc의 US Patent 7,695,622(April 13, 2010)은 슬러지 감량화를 위하여 슬러지를 오존으로 처리함에 있어 오존을 주입하는 양을 다른 이전 문헌들에 비해 줄일 수 있는 기술을 제시하고 있다. 이러한 방법으로 오존을 단일 또는 다중(multiple) 주입점에서 주입한 후 플러그 플로우(plug flow) 반응기에 연계되어 처리되도록 하고 있다. 그러나 슬러지의 가용화 정도를 나타내는 SCOD값을 제시하고 있지 않아 직접 비교는 어렵다. US Pat. No. 7,695,622 to Praxair Technology, Inc. (April 13, 2010) proposes a technique for reducing the amount of ozone injected compared to other previous documents in treating sludge with ozone for sludge reduction. In this way, ozone is injected at a single or multiple injection points and then linked to a plug flow reactor. However, it is difficult to compare directly because it does not present an SCOD value indicating the solubilization of the sludge.
다만 캐비테이션을 거쳐 오존처리하는 본 발명에서는 오존을 100mg/L~150mg/L 정도로 투입한다. TSS 10,000mg/L 인 슬러지를 연속혼합반응기(CSTR)에 두고 1개의 벤츄리관을 사용하여 오존처리하는 경우 오존주입률 120mg/L에서 SCOD 증가율이 400mg/L에서 1200mg/L로 증가하였는데, 앞에 고압 캐비테이션이 포함된 경우에는 1600mg/L로 증가하였다. 본 발명의 경우 이 조건에서 슬러지 감량율이 40%로, 이를 비교예 5에 제시된 0.05kg O3 consumed/kg Sludge reduced와 비교하면 0.025kg O3 consumed/kg Sludge reduced로 오존처리 효율이 2배 정도 되는 것을 알 수 있다. 결과적으로 동일한 오존 투입에 대해 본 발명에서는 2배 정도 슬러지 감량 효과가 있음을 알 수 있다. However, in the present invention that ozone treatment through cavitation, ozone is added to about 100mg / L ~ 150mg / L. When the sludge with TSS 10,000mg / L was placed in a continuous mixing reactor (CSTR) and ozonated using one venturi tube, the SCOD growth rate increased from 400mg / L to 1200mg / L at the ozone injection rate of 120mg / L. Increased to 1600 mg / L when cavitation was included. In the present invention, the sludge reduction rate is 40% under this condition, and compared with 0.05 kg O 3 consumed / kg Sludge reduced shown in Comparative Example 5, the ozone treatment efficiency is about twice as high as 0.025 kg O 3 consumed / kg Sludge reduced. It can be seen that. As a result, it can be seen that the sludge reduction effect of the present invention is about 2 times for the same ozone input.
이상 실시예 및 비교예에서 살펴본 바와 같이, 오존처리없이 캐비테이션만 실시한 비교예 1 및 비교예 4의 경우는 오존처리를 실시한 경우에 비하여 슬러지 가용화율이 현저히 낮게 된다. 또한 비교예 2 및 비교예 5의 경우처럼 벤츄리관을 사용하지 않고 오존접촉펌프를 이용하여 실시한 경우 또는 벤츄리관을 통한 오존주입 후 PFR 반응기를 이용하는 경우에도 본원발명에 경우보다 처리율이 낮다. 또한 고압캐비테이션 후에 벤츄리관을 사용하지 않고 일반 오존 접촉 펌프를 이용하는 경우보다 본원발명과 같이 고압 캐비테이션 후 벤츄리관을 이용하는 경우 동일 오존투입량 대비 훨씬 우수한 SCODcr 증가, 즉 슬러지 가용화 효과를 얻을 수 있다.As described in the above Examples and Comparative Examples, the sludge solubilization rate is significantly lower in Comparative Example 1 and Comparative Example 4, in which only cavitation was performed without ozone treatment, as compared with the ozone treatment. In addition, in the case of using the ozone contact pump without using the venturi tube as in the case of Comparative Example 2 and Comparative Example 5 or using the PFR reactor after the ozone injection through the venturi tube, the treatment rate is lower than in the present invention. In addition, when using a venturi tube after high-pressure cavitation as in the present invention, it is possible to obtain a much better SCODcr increase, that is, a sludge solubilization effect compared to the same ozone dose, than when using a general ozone contact pump without using a venturi tube after a high-pressure cavitation.
본 발명에 따른 장치는 고압 캐비테이션 장치를 이용하여 슬러지를 가용화함에 있어서 고압부 후단에 오리피스에 의한 캐비테이션 챔버를 두어 캐비테이션 효과를 최대화한 후, 벤츄리부를 두어 오존을 분산 도입함으로써 오존을 주입하는데 들어가는 에너지 비용을 절감하고 또한 좋은 교반효과를 얻을 수 있다. 따라서, 벤츄리부를 이용하여 오존만 혼합처리만 한 경우 또는 저압 캐비테이션만 실시한 경우에 비해 슬러지 감량화, 슬러지 탈수효율 향상 및 혐기성 소화 효율의 향상 등의 효과를 가진다. 또한 오존접촉탱크를 추가로 이용하는 경우에도 펌프 및 탱크의 크기를 작은 규모로 할 수 있다. The apparatus according to the present invention maximizes the cavitation effect by placing a cavitation chamber by an orifice at the rear of the high pressure part in solubilizing the sludge by using a high pressure cavitation device, and then puts a venturi part to introduce ozone by dispersing and introducing ozone. It can save and also get good stirring effect. Therefore, compared with the case where only the ozone-only mixing treatment or the low pressure cavitation is performed using the venturi unit, the sludge reduction, the sludge dewatering efficiency and the anaerobic digestion efficiency are improved. In addition, even when using an additional ozone contact tank, the size of the pump and tank can be made small.

Claims (7)

  1. 폐활성슬러지를 가용화하기 위한 전처리 장치에 있어서, In the pretreatment apparatus for solubilizing waste activated sludge,
    처리될 폐활성슬러지를 수용하는 제1 슬러지 저장조; A first sludge reservoir containing waste activated sludge to be treated;
    상기 제1 슬러지 저장조로부터의 슬러지를 7bar ~ 560bar의 압력으로 캐비테이션 챔버에 도입하기 위한 고압펌프; A high pressure pump for introducing sludge from the first sludge reservoir into a cavitation chamber at a pressure of 7 bar to 560 bar;
    상기 고압펌프로부터 배출되는 고압 슬러지가 통과하면서 캐비테이션이 발생될 수 있도록 오리피스를 구비한 캐비테이션 챔버;A cavitation chamber having an orifice to allow cavitation to be generated while the high pressure sludge discharged from the high pressure pump passes;
    상기 캐비테이션 챔버로부터 배출되는 슬러지에 오존을 주입하기 위한 오존주입부를 구비한 벤츄리부; 및A venturi unit having an ozone injection unit for injecting ozone into the sludge discharged from the cavitation chamber; And
    상기 벤츄리부의 하류에 설치되어 처리된 슬러지를 저장하는 제2 슬러지 저장조를 포함하는 것을 특징으로 하는 폐활성슬러지 전처리 장치.And a second sludge storage tank configured to store the treated sludge installed downstream of the venturi part.
  2. 제1항에 있어서,The method of claim 1,
    상기 벤츄리부는 1개 내지 10개의 벤츄리관이 직렬 연결되어 구성된 것을 특징으로 하는 폐활성슬러지 전처리 장치.The venturi unit waste activated sludge pretreatment apparatus, characterized in that 1 to 10 venturi tube is connected in series.
  3. 제1항에 있어서,The method of claim 1,
    상기 벤츄리관에 연결된 오존주입부는 벤츄리관의 단면적이 가장 좁은 목 부분에 연결된 것을 특징으로 하는 폐활성슬러지 전처리 장치. Ozone injection unit connected to the venturi tube waste activated sludge pre-treatment device, characterized in that the cross-section of the venturi tube is connected to the narrowest neck.
  4. 제1항에 있어서,The method of claim 1,
    상기 벤츄리부의 하류와 상기 제2 슬러지 저장조 사이에. 벤츄리부로부터 배출되는 슬러지를 오존 처리하기 위한 오존접촉조를 더 포함하는 것을 특징으로 하는 폐활성슬러지 전처리 장치.Between the downstream of the venturi section and the second sludge reservoir. Waste activated sludge pretreatment apparatus further comprises an ozone contact tank for ozone treatment of the sludge discharged from the venturi.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 슬러지 저장조의 전단 혹은 후단에, 처리될 슬러지로부터 소정 크기 이상의 이물질을 걸러내기 위한 여과조를 더 포함하는 것을 특징으로 하는 폐활성슬러지 전처리 장치.A waste activated sludge pretreatment apparatus further comprising a filtration tank for filtering foreign substances of a predetermined size or more from the sludge to be treated before or after the first sludge storage tank.
  6. 제1항 내지 제5항 중 어느 한 항의 장치를 이용하여 폐활성슬러지를 전처리하는 방법. A method of pretreating waste activated sludge using the apparatus of any one of claims 1 to 5.
  7. 제6항에 있어서,The method of claim 6,
    상기 폐활성슬러지는 벤츄리부로 도입되기 전에 알칼리, 과산화수소, 또는 알칼리 및 과산화수소로 처리된 것을 특징으로 하는 방법.The waste activated sludge is treated with alkali, hydrogen peroxide, or alkali and hydrogen peroxide before being introduced into the venturi section.
PCT/KR2013/007308 2012-08-23 2013-08-14 Apparatus for pre-treating waste activated sludge and method for pre-treating waste activated sludge using same WO2014030874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120092176A KR20140025865A (en) 2012-08-23 2012-08-23 Apparatus for pretreatment of waste activated sludge and waste activated sludge pretreatment process by using same
KR10-2012-0092176 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030874A1 true WO2014030874A1 (en) 2014-02-27

Family

ID=50150137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007308 WO2014030874A1 (en) 2012-08-23 2013-08-14 Apparatus for pre-treating waste activated sludge and method for pre-treating waste activated sludge using same

Country Status (2)

Country Link
KR (1) KR20140025865A (en)
WO (1) WO2014030874A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291442A (en) * 2014-10-09 2015-01-21 常州大学 Method for inhibiting activated sludge bulking of SBR pool
WO2018201304A1 (en) * 2017-05-02 2018-11-08 东莞源控环保科技有限公司 Wastewater treatment system and method for effective volume reduction of organic sludge
CN111533293A (en) * 2020-07-07 2020-08-14 天津万峰环保科技有限公司 High-efficiency ozone gas dissolving device
EP4206150A1 (en) * 2021-12-28 2023-07-05 Lin, Chic-Yi Method for preparing agricultural products from biological sludge containing microbial cells
WO2023156711A1 (en) * 2022-02-15 2023-08-24 Suosil Oy Method for production of liquid and solid organomineral fertilizer and the system for their production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529104A (en) * 2014-12-30 2015-04-22 新奥科技发展有限公司 Sludge pretreatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403652B1 (en) * 2000-07-14 2003-11-10 (주)세명백트론 Apparatus for disslving ozone in water
KR20100028613A (en) * 2008-07-17 2010-03-12 에스워터(주) A device for pretreatment of waste sludge
KR20110090747A (en) * 2010-02-02 2011-08-10 주식회사 크리스탈이엔지 Water re-cycling system and method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403652B1 (en) * 2000-07-14 2003-11-10 (주)세명백트론 Apparatus for disslving ozone in water
KR20100028613A (en) * 2008-07-17 2010-03-12 에스워터(주) A device for pretreatment of waste sludge
KR20110090747A (en) * 2010-02-02 2011-08-10 주식회사 크리스탈이엔지 Water re-cycling system and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291442A (en) * 2014-10-09 2015-01-21 常州大学 Method for inhibiting activated sludge bulking of SBR pool
WO2018201304A1 (en) * 2017-05-02 2018-11-08 东莞源控环保科技有限公司 Wastewater treatment system and method for effective volume reduction of organic sludge
CN111533293A (en) * 2020-07-07 2020-08-14 天津万峰环保科技有限公司 High-efficiency ozone gas dissolving device
EP4206150A1 (en) * 2021-12-28 2023-07-05 Lin, Chic-Yi Method for preparing agricultural products from biological sludge containing microbial cells
WO2023156711A1 (en) * 2022-02-15 2023-08-24 Suosil Oy Method for production of liquid and solid organomineral fertilizer and the system for their production

Also Published As

Publication number Publication date
KR20140025865A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2010008254A2 (en) A device for pretreatment of waste sludge and a method for pretreatment of waste sludge using the same
WO2014030874A1 (en) Apparatus for pre-treating waste activated sludge and method for pre-treating waste activated sludge using same
EP1007482B2 (en) Method for purifying waste water comprising an additional sludge treatment by ozonation
CN101704615B (en) Method for reducing sludge by adopting ultrasound-magnetic field coupling to disrupt sludge
CN103508593B (en) A kind of Chemical deep treatment process being applied to antibiotic waste water and administering
CN101310006A (en) Rapid non-equilibrium decompression of microorganism-containing waste streams
WO2018201304A1 (en) Wastewater treatment system and method for effective volume reduction of organic sludge
KR100849671B1 (en) Advanced sludge decreasing system and method using thermal expension
WO2004026773A1 (en) Method for advanced wastewater treatment without excess sludge using sludge disintegration
KR20000033408A (en) Method for degrading organic matters using autothemal thermophilic aerobic digestion
KR20190050475A (en) Sludge decomposition system and operating method of the same
Moussavi et al. Effect of ozonation on reduction of volume and mass of waste activated sludge
CN109437503B (en) Process and method for reducing papermaking sludge
WO2013073789A1 (en) Method and apparatus for organic waste pretreatment
Suschka et al. Low intensity surplus activated sludge pretreatment before anaerobic digestion
Suschka et al. Alkaline solubilisation of waste activated sludge (WAS) for soluble organic substrate–(SCOD) production
KR0159367B1 (en) Anaerobic digestion reactor using gas pressure and gravitation force and waste water treatment using thereof
WO2021117980A1 (en) Process for biogasifying organic waste with high efficiency through denitrification of digestion wastewater by using digestion gas and preparation of char of digested sludge
JP3971657B2 (en) Method and apparatus for treating organic waste liquid
KR20150003697A (en) Apparatus for pretreatment of waste activated sludge and waste activated sludge pretreatment process by using same
JP2002059190A (en) Method of treating sewage and sludge
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
KR101405879B1 (en) Treatment method for solubilization and reduction of sludge
KR100334124B1 (en) Method for supplying pure oxygen to aerobic digestion process and apparatus therefor
US20220259088A1 (en) High solids anaerobic digestion with post-digestion hydrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13830322

Country of ref document: EP

Kind code of ref document: A1